Food and beverage choices contributing to dietary guidelines adherence in the Lower Mississippi Delta

Jessica LThomson ${ }^{1, *}$, Stephen J Onufrak ${ }^{2}$, Carol L Connell ${ }^{3}$, Jamie M Zoellner ${ }^{4}$, Lisa M Tussing-Humphreys ${ }^{1}$, Margaret L Bogle ${ }^{5}$ and Kathy Yadrick ${ }^{3}$
${ }^{1}$ USDA Agricultural Research Service, 284 Knapp Hall, Human Nutrition and Food, LSU AgCenter, Baton Rouge, LA 70803, USA: ${ }^{2}$ USDA Agricultural Research Service, Stoneville, MS, USA: ${ }^{3}$ College of Health, University of Southern Mississippi, Hattiesburg, MS, USA: ${ }^{4}$ College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA: ${ }^{5}$ Delta Obesity Prevention Research Unit, USDA Agricultural Research Service, Little Rock, AR, USA

Submitted 6 January 2011: Accepted 19 May 2011: First published online 30 June 2011

Abstract

Objectives: The objectives of the present study were to evaluate diet quality among Lower Mississippi Delta (LMD) residents using the Healthy Eating Index-2005 (HEI-2005) and to identify the top five dietary sources contributing to HEI-2005 components. Demographic differences in HEI-2005 scores were also explored. Design: Diet quality was evaluated using HEI-2005. Demographic differences in HEI-2005 scores were investigated using multivariable regression models adjusting for multiple comparisons. The top five dietary sources contributing to HEI-2005 components were identified by estimating and ranking mean MyPyramid equivalents overall and by demographic characteristics. Setting: Dietary data, based on a single 24 h recall, from the Foods of Our Delta Study 2000 (FOODS 2000) were used in the analyses. Subjects: FOODS 2000 adult participants 18 years of age or older. Results: Younger age was the largest determinant of low diet quality in the LMD with HEI-2005 total and seven component scores declining with decreasing age. Income was not a significant factor for HEI-2005 total or component scores. The top five dietary sources differed by all five of the demographic variables, particularly for total vegetables and energy from solid fats, alcoholic beverages and added sugars (SoFAAS). Soft drinks were the leading source of SoFAAS energy intake for all demographic groups. Conclusions: The assessment of diet quality and identification of top dietary sources revealed the presence of demographic differences for selected HEI-2005 components. These findings allow identification of food patterns and culturally appropriate messaging and highlight the difficulties of treating this region as a homogeneous population.

Keywords
Dief quality HEI-2005
Top food sources
Lower Mississippi Delta

The Lower Mississippi Delta (LMD) region is a sparsely populated and highly agricultural area encompassing the alluvial plain of the Mississippi River in the states of Arkansas, Louisiana and Mississippi. The highly impoverished LMD region has long suffered from disproportionately high rates of obesity, diabetes, hypertension and other chronic diseases. Behavioral Risk Factor Surveillance System (BRFSS) data from the early 1990s revealed that $31 \cdot 3 \%$ of residents in the LMD region were obese, 6.9% reported diabetes and $28 \cdot 9 \%$ reported hypertension ${ }^{(1)}$. A 2007 BRFSS oversample of LMD counties in Mississippi revealed that obesity, diabetes and hypertension rates had risen to $37 \cdot 0 \%$, $12 \cdot 2 \%$ and $36 \cdot 5 \%$, respectively ${ }^{(2)}$.

The high prevalence of obesity and chronic disease in the LMD may be due in part to dietary patterns among

LMD residents, which differ from those of the US population as a whole ${ }^{(3)}$. For example, both African American (AA) and white LMD residents consume fewer servings of fruits and vegetables compared to national averages for their respective races ${ }^{(4)}$. Additionally, twenty-four regional foods contributing at least 0.5% to energy and selected nutrient intakes were found among LMD residents that were uncommon in the overall US diet ${ }^{(3)}$.

Designing dietary modifications to increase adherence to the Dietary Guidelines for Americans (DGA) in a given population requires not only measurement of DGA adherence, but also knowledge of the top food sources corresponding to specific DGA inadequacies for that population. This information is critical for developing culturally sensitive dietary modifications that will be
acceptable to the target population. Furthermore, dietary interventions need to be tailored to account for differences in food choices that may be related to sex, race/ethnicity, education and income if interventions are to have a broad impact in the target region. The objectives of the present study were to evaluate diet quality among LMD residents using the Healthy Eating Index-2005 (HEI-2005) and to determine the top five dietary sources contributing to HEI-2005 components. Demographic differences in HEI-2005 scores were also investigated.

Experimental methods

Study population

Analyses were performed using data from the Foods of Our Delta Study 2000 (FOODS 2000), a cross-sectional telephone survey of residents in the thirty-six-county LMD region which was conducted from January to June $2000^{(4)}$. FOODS 2000 used list-assisted random-digit dialling and a two-stage stratified cluster sampling plan. Demographic information was collected during an initial interview. Dietary intake data were collected using the US Department of Agriculture (USDA) 24 h recall multiple-pass methodology at an unscheduled follow-up telephone interview with the assistance of a foods measurement guide. FOODS 2000 collected dietary intake data on 1751 adults and 485 children. A more detailed description of the FOODS 2000 methodology may be found elsewhere ${ }^{(4)}$. The procedures followed in FOODS 2000 were in accordance with ethical standards and approval was obtained from the institutional review board of Westat, Rockville, MD. For the present study, only the adult data (participants 18 years of age or older) were analysed. Additionally, only plausible dietary records were used in the analyses. Dietary intake plausibility was based on the following criterion: $2093 \mathrm{~kJ}(500 \mathrm{kcal}) \leq$ intake $\leq 25121 \mathrm{~kJ}(6000 \mathrm{kcal})^{(5)}$.

The Healthy Eating Index-2005

The Healthy Eating Index-2005 (HEI-2005) is a scoring method designed to measure adherence to the 2005 DGA ${ }^{(6)}$. The HEI-2005 is composed of twelve components corresponding to total fruit (including 100% fruit juice), whole fruit, total vegetables, dark green and orange vegetables and legumes (GOV\&L), total grains, whole grains, milk, meat and beans, oils, saturated fat, sodium, and energy from solid fats, alcoholic beverages and added sugars (SoFAAS). The total score, calculated as the sum of the component scores, has a maximum value of 100. Component scores are calculated using a density approach per 4187 kJ (1000 kcal) or as a percentage of energy, and range from 0 to 5 for fruit, vegetables and whole grains components; from 0 to 10 for milk, meat and beans, saturated fat and oils components; and from 0 to 20 for the SoFAAS component. For each component, higher scores reflect better adherence to DGA recommendations
corresponding to that component. For fruit, vegetables, grains, meat and beans, and milk components, each score is based upon MyPyramid equivalents consumed per 4187 kJ (1000 kcal). Oils and sodium component scores are calculated based upon grams consumed per 4187 kJ (1000 kcal). Saturated fat and SoFAAS component scores are calculated based upon percentage of energy intake attributed to these energy sources. MyPyramid equivalents were derived using version $1 \cdot 0$ of the MyPyramid Equivalents Database, which provides equivalents per 100 grams for each unique USDA six-digit food code ${ }^{(7)}$.

Identification of top food sources overall and by demographic characteristics

For HEI-2005 component scores corresponding to total fruit, total vegetables, total grains, whole grains and SoFAAS, the top five food sources for the LMD adult population were identified by estimating and ranking the mean number of MyPyramid equivalents consumed from each food source category. This was done for the adult sample as a whole and within specific demographic groups. These five HEI-2005 components were chosen due to their relevance to obesity prevention and their potential for modification in this population. Food sources were categorized based on food groupings corresponding to three-digit USDA food codes ${ }^{(8)}$. Food codes were combined only for the four categories identified as ready-to-eat (RTE) cereals since the cereals within these four categories were very similar.

Data analysis

All statistical analyses were performed using SAS ${ }^{\circledR}$ version $9 \cdot 2$ (SAS Institute, Inc., Cary, NC, USA) and SUDAAN ${ }^{\circledR}$ version $10 \cdot 0 \cdot 1$ (Research Triangle Institute, Research Triangle Park, NC, USA) statistical software packages. SAS survey and SUDAAN procedures were used to compute frequencies, means and their associated confidence intervals, as well as to perform the regression analysis. These procedures are tailored to account for the complex sampling design used in FOODS 2000. Hence the results are weighted and should be considered representative of the adult LMD population. The population ratio method was used to compute mean HEI-2005 scores and corresponding 95% confidence intervals using jackknife variances for the overall population. This method computes scores using the ratio of the weighted sum of MyPyramid equivalents for the relevant HEI-2005 component to the weighted sum of energy intake for the entire population. It is the least biased way to estimate a mean HEI-2005 score for a population ${ }^{(9)}$.

Using linear models, HEI-2005 total and component score least-squares means were estimated for each demographic group while simultaneously adjusting for all other demographic variables. Demographic variables included sex (male or female), age group (18-29, 30-39, $40-59$ or ≥ 60 years), race (white or AA), income level
($<$ \$US 15000 , \$US $15000-29999$ or $\geq \$$ US 30000) and education level ($<$ high school (did not graduate high school), high school (high school graduate) or $>$ high school (any college or technical school)). The computation of the multivariable-adjusted HEI scores was based on the mean of individual scores rather than the mean of the population. This method tends to underestimate most HEI-2005 component scores compared to the population ratio method ${ }^{(9)}$. For the demographic variables with more than two levels (age, income and education), post boc pair-wise comparisons were performed using leastsquares means with Tukey-Kramer multiple comparisons adjustments.

Results

Results are presented for the 1689 LMD adult respondents in FOODS 2000 with plausible dietary records. This LMD population was composed of $47 \cdot 5 \%$ males, $42 \cdot 8 \% \mathrm{AA}$, and $20 \cdot 7 \%$ were less than 30 years of age while $23 \cdot 3 \%$ were greater than 60 years of age. Almost a quarter ($23 \cdot 1 \%$) of the population earned less than $\$$ US 15000 per annum and $23 \cdot 2 \%$ had less than a high school education. The HEI-2005 total score for the population was $54 \cdot 5$ (Table 1).

Demographic differences in Healthy Eating Index-2005 scores

As shown in Table 1, HEI-2005 total mean scores were higher for females (48.9) and older adults (53.9 for ≥ 60 years of age) compared to males ($46 \cdot 6$) and younger adults ($44 \cdot 5$ for $18-29$ years of age), respectively. Total fruit mean scores were higher for females ($1 \cdot 8$), AA ($2 \cdot 0$), older adults ($2 \cdot 7$ for ≥ 60 years of age) and those with at least a high school education ($1 \cdot 8$ for high school education and 2.0 for $>$ high school education) compared to males ($1 \cdot 6$), whites $(1 \cdot 4)$, younger adults $(1 \cdot 4$ for 18-29 years of age) and those without a high school education (1.4), respectively. Whole fruit mean scores also differed by sex and age in a manner similar to total fruit. Total vegetables mean scores were higher for the oldest age $(2 \cdot 5)$ compared to the youngest age group ($2 \cdot 1$) and for those with more than a high school education $(2 \cdot 5)$ compared to those with less than $(2 \cdot 2)$ or a high school education ($2 \cdot 2$). Higher mean scores for GOV\&L, total grains and whole grains were associated with older age. Additionally, total grains mean scores were higher for AA (4.2) compared to whites (4•1), while whole grains mean scores were associated with a higher education level. Higher milk mean scores were observed for whites $(4 \cdot 2)$ compared to AA (3.1) and for both younger ($3 \cdot 8$) and older adults ($4 \cdot 5$) compared to middleaged adults ($3 \cdot 2$ for $30-39$ years of age and $3 \cdot 1$ for $40-45$ years of age). Meat and beans, saturated fat and sodium mean scores did not differ demographically among LMD residents. Oils mean scores were higher
for whites $(6 \cdot 1)$ and younger adults $(5 \cdot 9)$ compared to AA $(5 \cdot 1)$ and older adults $(5 \cdot 1)$, respectively. Higher SoFAAS mean scores were observed for females $(7 \cdot 7)$ compared to males ($6 \cdot 6$), older ($10 \cdot 3$) compared to younger adults (5.2) and those in the highest income group ($7 \cdot 9$) compared to the middle group ($6 \cdot 7$).

Top food sources for selected Healthy Eating Index-2005 components overall and by demographic characteristics

Total fruit and total vegetables components
The top five sources for total fruit (Table 2) were citrus juices (35.6%), non-citrus fruits (excluding berries; $32 \cdot 4 \%$), non-citrus juices ($10 \cdot 5 \%$), citrus fruits ($7 \cdot 8 \%$) and fruit drinks (4.7%) for the LMD adult population as a whole. While these remained the top five sources across demographic groups, differences existed in the ranking of the sources. Sex and income differences occurred in the order of the top two sources, while racial differences were seen in the order of the top four sources. Age differences were observed for the order of these top sources, while the only education differences were in the order of the third and fourth sources.

The top five sources for total vegetables (Table 3) were cooked vegetables ($13 \cdot 2 \%$), raw vegetables ($12 \cdot 3 \%$), fried potatoes ($8 \cdot 6 \%$), grain mixtures (including burritos, tacos, pizza, spaghetti, and pasta and rice dishes; $8 \cdot 1 \%$) and potato chips (and sticks; 5.9\%) for the LMD adult population as a whole. Two of the top five sources for males and AA consisted of fried potato variations, fried potatoes ($10 \cdot 2 \%$ and $9 \cdot 7 \%$, respectively) and potato chips ($7 \cdot 0 \%$, and $10 \cdot 2 \%$, respectively). For females and whites, only one of the two variations was fried, fried potatoes ($6 \cdot 8 \%$ and $7 \cdot 9 \%$, respectively); the other was mashed potatoes ($5 \cdot 4 \%$) and baked/boiled potatoes ($6 \cdot 3 \%$), respectively. For the three younger age groups, three of the five top sources consisted of some type of potato or grain mixture, while four of the five top sources were some type of vegetable or vegetable soup for the oldest age group. Three of the top five total vegetables sources were potatobased for the lowest income group, while only two top sources were potato-based for the two higher income groups. Four of the top five sources were the same for all three education groups except for their orders.

Total grains and whole grains components

The top five sources for total grains (Table 4) were white breads (and rolls; $23 \cdot 6 \%$), grain mixtures ($10 \cdot 2 \%$), sandwiches (with meat; $8 \cdot 1 \%$), cooked cereals and rice ($7 \cdot 1 \%$) and salty snacks (including corn/tortilla chips, popcorn, and pretzels; $6 \cdot 3 \%$) for the LMD adult population as a whole. The only sex difference was in the order of the sources. Racial differences existed in the third, fourth and fifth sources, which were sandwiches ($7 \cdot 3 \%$), salty snacks ($6 \cdot 2 \%$) and biscuits ($5 \cdot 2 \%$) for whites and

Table 1 Healthy Eating Index-2005 (HEI-2005) multivariable-adjusted total and component scores for Lower Mississippi Delta adults overall and by demographic characteristics (n 1689)

Characteristic	Total (100 points)		Total fruit (5 points)		Whole fruit (5 points)		Total vegetables (5 points)		GOV\&L (5 points)		Total grains (5 points)		Whole grains (5 points)		Milk (10 points)	
	Mean	SE														
Total sample	$54 \cdot 5$		$2 \cdot 4$		$2 \cdot 3$		$3 \cdot 2$		$1 \cdot 2$		$4 \cdot 9$		$0 \cdot 8$		$4 \cdot 1$	
Sex																
Male	$46 \cdot 6^{\text {a }}$	0.66	$1 \cdot 6^{\text {a }}$	$0 \cdot 10$	$1 \cdot 1^{\text {a }}$	0.11	$2 \cdot 3$	0.07	0.9	0.09	$4 \cdot 2$	0.06	0.7	0.06	$3 \cdot 4$	$0 \cdot 19$
Female	$48 \cdot 9^{\text {b }}$	0.53	$1 \cdot 8^{\text {b }}$	0.08	$1 \cdot 5^{\text {b }}$	$0 \cdot 07$	$2 \cdot 3$	0.05	$0 \cdot 8$	0.06	$4 \cdot 2$	0.05	0.7	0.05	3.8	$0 \cdot 10$
Race																
White	$48 \cdot 2$	0.53	$1 \cdot 4^{\text {a }}$	0.08	$1 \cdot 2$	0.07	$2 \cdot 4$	0.05	$0 \cdot 8$	0.06	$4 \cdot 1^{\text {a }}$	0.06	$0 \cdot 7$	0.06	$4 \cdot 2^{\text {a }}$	$0 \cdot 16$
AA	$47 \cdot 3$	0.73	$2 \cdot 0^{\text {b }}$	$0 \cdot 10$	$1 \cdot 4$	$0 \cdot 11$	$2 \cdot 2$	0.06	$0 \cdot 8$	0.08	$4 \cdot 2{ }^{\text {b }}$	0.05	0.7	0.06	$3 \cdot 1{ }^{\text {b }}$	$0 \cdot 15$
Age (years)																
18-29	$44 \cdot 5^{\text {a }}$	0.82	$1 \cdot 4^{\mathrm{a}, \mathrm{b}}$	0.13	$0 \cdot 7^{\text {a }}$	0.11	$2 \cdot 1^{\text {a }}$	0.09	$0 \cdot 5^{\text {a }}$	0.07	$4 \cdot 1^{\text {a }}$	0.07	$0 \cdot 4^{\text {a }}$	$0 \cdot 10$	$3 \cdot 8^{\text {a,d }}$	0.25
30-39	$45 \cdot 0^{\text {a,b }}$	$0 \cdot 80$	$1 \cdot 2^{\text {a }}$	$0 \cdot 12$	$0.9{ }^{\text {a }}$	$0 \cdot 11$	$2 \cdot 2^{\text {a,b }}$	0.08	$0 \cdot 7^{\text {a,b }}$	$0 \cdot 10$	$4 \cdot 1^{\text {a }}$	0.08	$0 \cdot 5^{\text {a,b }}$	0.08	$3 \cdot 2 \cdot{ }^{\text {a,b }}$	$0 \cdot 18$
40-59	$47 \cdot 6{ }^{\text {b }}$	$0 \cdot 73$	$1 \cdot 6^{\text {b }}$	$0 \cdot 11$	$1 \cdot 4^{\text {b }}$	$0 \cdot 12$	$2 \cdot 4^{\text {a,b }}$	0.07	$0 \cdot 9 .{ }^{\text {b,c }}$	0.06	$4 \cdot 1^{\text {a }}$	0.08	$0 \cdot 8^{\text {b,c }}$	0.08	$3 \cdot{ }^{\text {b }}$	$0 \cdot 15$
≥ 60	$53.9{ }^{\text {c }}$	$0 \cdot 89$	$2 \cdot 7^{\text {c }}$	$0 \cdot 12$	$2 \cdot 2^{\text {c }}$	$0 \cdot 14$	$2 \cdot 5^{\text {b }}$	$0 \cdot 07$	$1 \cdot 3^{\text {c }}$	$0 \cdot 13$	$4 \cdot{ }^{\text {b }}$	0.06	$1 \cdot 1^{\text {c }}$	0.08	$4 \cdot 5^{\text {c,d }}$	$0 \cdot 22$
Income level																
<\$US 15000	$47 \cdot 3$	$0 \cdot 66$	$1 \cdot 6$	$0 \cdot 12$	$1 \cdot 2$	$0 \cdot 12$	$2 \cdot 4$	0.08	$0 \cdot 8$	0.09	$4 \cdot 1$	0.08	$0 \cdot 7$	0.07	$3 \cdot 9$	$0 \cdot 17$
\$US 15000-29 999	$47 \cdot 4$	$0 \cdot 86$	1.7	$0 \cdot 10$	$1 \cdot 3$	$0 \cdot 11$	$2 \cdot 2$	0.08	$0 \cdot 8$	0.09	$4 \cdot 2$	0.08	0.7	0.09	$3 \cdot 5$	$0 \cdot 20$
\geq \$US 30000	$48 \cdot 7$	$0 \cdot 62$	$1 \cdot 8$	$0 \cdot 11$	$1 \cdot 3$	$0 \cdot 10$	$2 \cdot 4$	$0 \cdot 06$	$0 \cdot 9$	$0 \cdot 07$	$4 \cdot 1$	0.07	$0 \cdot 7$	0.07	$3 \cdot 5$	$0 \cdot 15$
Education level																
$<$ High school	47.0	0.93	$1 \cdot 4^{\text {a }}$	$0 \cdot 14$	$1 \cdot 1$	$0 \cdot 15$	$2 \cdot{ }^{\text {a }}$	0.08	0.9	$0 \cdot 11$	$4 \cdot 1$	0.08	$0 \cdot 6^{\text {a,b }}$	0.09	$3 \cdot 5$	0.20
	$47 \cdot 2$	$0 \cdot 69$	$1 \cdot 8^{\text {b }}$	$0 \cdot 10$	$1 \cdot 3$	0.09	$2 \cdot{ }^{\text {a }}$	0.06	$0 \cdot 8$	0.07	$4 \cdot 1$	0.06	$0 \cdot 6^{\text {a }}$	0.05	$3 \cdot 5$	$0 \cdot 18$
$>$ High school	$49 \cdot 1$	$0 \cdot 66$	$2 \cdot 0^{\text {b }}$	$0 \cdot 11$	$1 \cdot 5$	$0 \cdot 11$	$2 \cdot 5^{\text {b }}$	0.07	$0 \cdot 8$	0.08	$4 \cdot 2$	$0 \cdot 06$	$0 \cdot 9^{\text {b }}$	0.07	3.9	$0 \cdot 16$
	Meat and beans (10 points)		Oils (10 points)		Saturated fat (10 points)		Sodium (10 points)		SoFAAS (20 points)							
	Mean	SE														
Total sample	$10 \cdot 0$		$7 \cdot 3$		$5 \cdot 8$		$6 \cdot 7$		$5 \cdot 8$							
Sex																
Male	$8 \cdot 2$	$0 \cdot 12$	$5 \cdot 4$	$0 \cdot 17$	$5 \cdot 8$	0.23	$6 \cdot 5$	$0 \cdot 14$	$6 \cdot 6^{\text {a }}$	0.31						
Female	$8 \cdot 1$	$0 \cdot 11$	$5 \cdot 8$	$0 \cdot 15$	$5 \cdot 8$	$0 \cdot 14$	$6 \cdot 3$	$0 \cdot 13$	$7 \cdot 7^{\text {b }}$	$0 \cdot 27$						
Race																
White	$8 \cdot 0$	$0 \cdot 10$	$6 \cdot 1^{\text {a }}$	$0 \cdot 14$	$5 \cdot 7$	$0 \cdot 20$	$6 \cdot 3$	$0 \cdot 12$	$7 \cdot 2$	0.26						
AA	$8 \cdot 2$	$0 \cdot 13$	$5 \cdot 1^{\text {b }}$	$0 \cdot 18$	$6 \cdot 0$	$0 \cdot 20$	$6 \cdot 4$	$0 \cdot 14$	$7 \cdot 1$	$0 \cdot 34$						
Age (years)																
18-29	$7 \cdot 8$	$0 \cdot 15$	$5 \cdot 9^{\text {a }}$	$0 \cdot 22$	$5 \cdot 9$	$0 \cdot 27$	$6 \cdot 6$	$0 \cdot 19$	$5 \cdot 2^{\text {a }}$	0.42						
30-39	$8 \cdot 2$	$0 \cdot 18$	$5 \cdot 8^{\text {a,b }}$	0.24	$6 \cdot 0$	$0 \cdot 26$	$6 \cdot 6$	$0 \cdot 22$	$5 \cdot 8^{\text {a }}$	0.38						
40-59	$8 \cdot 3$	$0 \cdot 16$	$5 \cdot 7^{\text {a,b }}$	$0 \cdot 19$	$5 \cdot 8$	$0 \cdot 21$	$6 \cdot 2$	$0 \cdot 16$	$7 \cdot 4^{\text {b }}$	0.34						
≥ 60	$8 \cdot 2$	$0 \cdot 18$	$5 \cdot 1^{\text {b }}$	0.21	$5 \cdot 6$	$0 \cdot 24$	$6 \cdot 1$	$0 \cdot 18$	$10 \cdot 3^{\text {c }}$	$0 \cdot 42$						
Income level																
<\$US 15000	$8 \cdot 0$	$0 \cdot 14$	$5 \cdot 5$	0.21	$5 \cdot 7$	0.24	$6 \cdot 5$	$0 \cdot 18$	$6 \cdot 9^{\text {a,b }}$	0.35						
\$US 15000-29 999	$8 \cdot 1$	$0 \cdot 16$	$5 \cdot 7$	0.23	$6 \cdot 1$	$0 \cdot 21$	$6 \cdot 3$	$0 \cdot 15$	$6 \cdot 7^{\text {a }}$	$0 \cdot 40$						
\geq \$US 30000	$8 \cdot 3$	$0 \cdot 13$	$5 \cdot 6$	$0 \cdot 21$	$5 \cdot 8$	$0 \cdot 20$	$6 \cdot 3$	$0 \cdot 16$	$7.9{ }^{\text {b }}$	0.29						
Education level																
$<$ High school	$8 \cdot 1$	$0 \cdot 17$	$5 \cdot 4$	0.23	$6 \cdot 1$	0.28	$6 \cdot 6$	0.20	$7 \cdot 1$	0.42						
High school	$8 \cdot 1$	$0 \cdot 11$	$5 \cdot 8$	$0 \cdot 18$	$5 \cdot 6$	$0 \cdot 18$	$6 \cdot 1$	$0 \cdot 16$	$7 \cdot 3$	0.34						
$>$ High school	$8 \cdot 1$	$0 \cdot 14$	$5 \cdot 7$	$0 \cdot 19$	$5 \cdot 9$	0.22	$6 \cdot 5$	$0 \cdot 15$	$7 \cdot 2$	$0 \cdot 35$						

GOV\&L, dark green and orange vegetables and legumes; SoFAAS, solid fats, alcoholic beverages and added sugars; AA, African Americans.
Mean values for the total sample were computed using the population ratio method.
Mean values are least-squares means of individual scores adjusted for all other demographic variables.
a,b,c, Mean values within a column for categories of a characteristic with unlike superscript letters were significantly different using the Tukey-Kramer method for multiple comparisons ($P<0.05$). Mean values without superscript letters were not compared with one another owing to non-significance of the effect in the model.
cooked cereals and rice ($9 \cdot 2 \%$), sandwiches ($9 \cdot 2 \%$) and cornbread ($6 \cdot 4 \%$) for AA. The only age differences among the three younger age groups were in the order of the fourth and fifth sources. In the oldest age group, the third, fourth and fifth sources - wheat breads, cornbread and biscuits - were not top sources for the other three age groups. The top five sources were the same for both the middle and highest income groups, while the lowest income group differed from the other two in the order of the second, third and fourth sources. Additionally, for the lowest income group, the fifth source was wheat breads,
while it was cooked cereals and rice for the other two income groups. Four of the top five sources were the same for all three education groups except for their orders.

The top five sources for whole grains (Table 5) were cooked cereals and rice (24.0%), RTE cereals (22.5%), salty snacks (20.7%), wheat breads (and rolls, not whole wheat; $15 \cdot 1 \%$) and pancakes ($2 \cdot 9 \%$) for the LMD adult population as a whole. Four of the top five sources were similar for males and females except for their ranking. The fifth top source was pancakes for males and whole wheat breads for females. The top four sources were the

Table 2 Top five dietary sources contributing to the Healthy Eating Index-2005 (HEl-2005) total fruit component score in Lower Mississippi Delta adults overall and by demographic characteristics (n 1689)

Characteristic	Top five sources											
	\#1 Source	\%T	Mean	SE	\#2 Source	\%T	Mean	SE	\#3 Source	\%T	Mean	SE
Total sample	Citrus juices	$35 \cdot 6$	$0 \cdot 28$	0.02	NC fruits	$32 \cdot 4$	$0 \cdot 25$	$0 \cdot 01$	NC juices	$10 \cdot 5$	0.08	0.01
Sex												
Male	Citrus juices	$38 \cdot 7$	$0 \cdot 31$	0.03	NC fruits	$29 \cdot 7$	$0 \cdot 24$	$0 \cdot 02$	NC juices	$10 \cdot 5$	0.08	0.02
Female	NC fruits	$34 \cdot 9$	$0 \cdot 27$	$0 \cdot 02$	Citrus juices	$32 \cdot 8$	$0 \cdot 25$	$0 \cdot 02$	NC juices	$10 \cdot 6$	$0 \cdot 08$	$0 \cdot 01$
Race												
White	NC fruits	$35 \cdot 7$	$0 \cdot 24$	0.02	Citrus juices	$32 \cdot 9$	$0 \cdot 22$	$0 \cdot 02$	Citrus fruits	$8 \cdot 5$	0.06	0.01
AA	Citrus juices	$38 \cdot 2$	$0 \cdot 35$	0.02	NC fruits	$29 \cdot 5$	$0 \cdot 27$	$0 \cdot 02$	NC juices	$12 \cdot 4$	$0 \cdot 12$	$0 \cdot 02$
Age (years)												
18-29	Citrus juices	$46 \cdot 9$	$0 \cdot 32$	0.05	NC fruits	$23 \cdot 7$	$0 \cdot 16$	0.03	NC juices	$11 \cdot 7$	0.08	0.03
30-39	Citrus juices	$35 \cdot 8$	$0 \cdot 24$	0.04	NC fruits	$27 \cdot 4$	$0 \cdot 18$	0.03	NC juices	$11 \cdot 9$	0.08	0.02
40-59	NC fruits	$36 \cdot 2$	$0 \cdot 27$	0.03	Citrus juices	$32 \cdot 6$	$0 \cdot 24$	0.03	Citrus fruits	$8 \cdot 6$	0.06	0.01
≥ 60	NC fruits	$35 \cdot 8$	$0 \cdot 37$	0.03	Citrus juices	$32 \cdot 3$	$0 \cdot 33$	$0 \cdot 03$	NC juices	$11 \cdot 8$	$0 \cdot 12$	$0 \cdot 02$
Income level												
<\$US 15000	Citrus juices	$37 \cdot 9$	$0 \cdot 30$	0.03	NC fruits	$33 \cdot 1$	$0 \cdot 26$	0.03	NC juices	$10 \cdot 7$	0.08	0.02
\$US 15000-29 999	NC fruits	$32 \cdot 6$	0.24	0.03	Citrus juices	$27 \cdot 0$	$0 \cdot 20$	0.03	NC juices	$15 \cdot 3$	$0 \cdot 12$	0.02
\geq US \$30000	Citrus juices	$39 \cdot 3$	$0 \cdot 31$	0.03	NC fruits	$31 \cdot 0$	$0 \cdot 25$	$0 \cdot 02$	NC juices	$8 \cdot 8$	$0 \cdot 07$	$0 \cdot 02$
Education level												
$<$ High school	Citrus juices	$37 \cdot 6$	$0 \cdot 27$	0.04	NC fruits	$33 \cdot 4$	$0 \cdot 24$	0.03	NC juices	$12 \cdot 8$	0.09	0.02
High school	Citrus juices	$35 \cdot 8$	$0 \cdot 27$	0.03	NC fruits	$30 \cdot 9$	$0 \cdot 23$	0.02	NC juices	$13 \cdot 3$	$0 \cdot 10$	0.02
$>$ High school	Citrus juices	33.9	$0 \cdot 29$	0.03	NC fruits	$33 \cdot 5$	$0 \cdot 29$	$0 \cdot 02$	Citrus fruits	$7 \cdot 9$	$0 \cdot 07$	$0 \cdot 01$

Top five sources

	\#4 Source	\% T	Mean	SE	\#5 Source	\%T	Mean	SE
Total sample	Citrus fruits	$7 \cdot 8$	$0 \cdot 06$	$0 \cdot 01$	Fruit drinks	$4 \cdot 7$	$0 \cdot 04$	$0 \cdot 01$
Sex								
Male	Citrus fruits	$8 \cdot 0$	0.06	0.01	Fruit drinks	$4 \cdot 6$	0.04	0.01
Female	Citrus fruits	$7 \cdot 6$	0.06	$0 \cdot 01$	Fruit drinks	$4 \cdot 8$	0.04	$0 \cdot 01$
Race								
White	NC juices	$8 \cdot 4$	0.06	0.01	Fruit drinks	$3 \cdot 3$	0.02	0.01
AA	Citrus fruits	$7 \cdot 1$	0.07	$0 \cdot 01$	Fruit drinks	$5 \cdot 8$	0.05	0.01
Age (years)								
18-29	Fruit drinks	$7 \cdot 3$	0.05	0.01	Citrus fruits	$4 \cdot 5$	0.03	0.01
30-39	Citrus fruits	$8 \cdot 4$	0.06	0.02	Fruit drinks	$7 \cdot 9$	0.05	0.01
40-59	NC juices	$8 \cdot 3$	0.06	0.01	Fruit drinks	$4 \cdot 5$	0.03	0.01
≥ 60	Citrus fruits	$8 \cdot 4$	0.09	$0 \cdot 02$	Fruit drinks	$1 \cdot 6$	$0 \cdot 02$	$0 \cdot 00$
Income level								
<\$US 15000	Citrus fruits	$7 \cdot 1$	0.06	0.01	Fruit drinks	$4 \cdot 4$	0.03	0.01
\$US 15000-29 999	Citrus fruits	$11 \cdot 1$	0.08	$0 \cdot 02$	Fruit drinks	$4 \cdot 8$	0.04	0.01
\geq US \$30000	Citrus fruits	$6 \cdot 4$	0.05	$0 \cdot 01$	Fruit drinks	$5 \cdot 1$	$0 \cdot 04$	$0 \cdot 01$
Education level								
$<$ High school	Citrus fruits	$7 \cdot 6$	0.05	0.02	Fruit drinks	$2 \cdot 4$	0.02	0.00
High school	Citrus fruits	7.9	0.06	0.01	Fruit drinks	$4 \cdot 4$	0.03	0.01
$>$ High school	NC juices	$7 \cdot 4$	0.06	$0 \cdot 01$	Fruit drinks	$5 \cdot 7$	0.05	0.01

\%T, percentage of HEI-2005 component MyPyramid equivalents; AA, African Americans; NC, non-citrus (excludes dried fruits and berries).
same for whites and AA except for their order. The fifth top source was non-sweet crackers for whites and pancakes for AA. The top source for the two youngest age groups was RTE cereals ($44 \cdot 2 \%$ and $29 \cdot 8 \%$, respectively), while the top source was salty snacks ($26 \cdot 6 \%$) for adults aged $40-59$ years and cooked cereals and rice ($36 \cdot 4 \%$) for those ≥ 60 years of age. Whole wheat breads were a top source only for those ≥ 60 years of age. The top source was cooked cereals and rice for the lowest and highest income groups (25.9% and $26 \cdot 5 \%$, respectively), while the top source was salty snacks for the middle income group ($28 \cdot 3 \%$). The four top sources were the same for all three education groups except for their ranking. The fifth source was pancakes for the lowest education group, sweet crackers for the middle education group and non-sweet crackers for the highest education group.

Solid fats, alcoholic beverages and added

sugars component

The top five sources for SoFAAS (Table 6) were soft drinks ($19 \cdot 0 \%$), beers and ales ($4 \cdot 7 \%$), processed meats (including frankfurters, sausages, luncheon meats and meat spreads; 4.0%), grain mixtures (3.9%) and cakes (3.6%) for the LMD adult population as a whole. Soft drinks remained the top source for all demographic groups, ranging from $10 \cdot 3 \%$ for adults ≥ 60 years of age to $24 \cdot 3 \%$ for those $18-29$ years of age. Similar to the total sample, beers and ales were the second top source for males, whites, adults aged $30-59$ years, the highest income group and the lowest education group. For females, AA, the lowest income group and the middle education group, the second top source was processed meats. Fruit drinks, milk, cakes and grain mixtures were

Table 3 Top five dietary sources contributing to the Healthy Eating Index-2005 (HEI-2005) total vegetables component score in Lower Mississippi Delta adults overall and by demographic characteristics (n 1689)

Characteristic	Top five sources											
	\#1 Source	\%T	Mean	SE	\#2 Source	\%T	Mean	SE	\#3 Source	\%T	Mean	SE
Total sample	Cooked veg	$13 \cdot 2$	$0 \cdot 18$	$0 \cdot 01$	Raw veg	$12 \cdot 3$	$0 \cdot 17$	0.01	Fried potatoes	$8 \cdot 6$	$0 \cdot 12$	0.01
Sex												
Male	Cooked veg	$12 \cdot 7$	$0 \cdot 20$	0.02	Raw veg	$10 \cdot 7$	0.17	0.02	Fried potatoes	$10 \cdot 2$	$0 \cdot 16$	0.01
Female	Raw veg	$14 \cdot 1$	$0 \cdot 18$	0.01	Cooked veg	$13 \cdot 8$	$0 \cdot 17$	0.01	Grain mixtures	$8 \cdot 8$	$0 \cdot 11$	$0 \cdot 01$
Race												
White	Raw veg	$14 \cdot 6$	$0 \cdot 22$	0.02	Cooked veg	$13 \cdot 1$	$0 \cdot 20$	0.02	Fried potatoes	7.9	$0 \cdot 12$	0.01
AA	Cooked veg	$13 \cdot 5$	$0 \cdot 16$	$0 \cdot 02$	Grain mixtures	$10 \cdot 3$	$0 \cdot 13$	$0 \cdot 02$	Potato chips	$10 \cdot 2$	$0 \cdot 12$	$0 \cdot 01$
Age (years)												
18-29	Fried potatoes	$15 \cdot 8$	$0 \cdot 20$	0.02	Potato chips	$12 \cdot 0$	$0 \cdot 16$	0.03	Grain mixtures	$11 \cdot 1$	$0 \cdot 15$	0.02
30-39	Cooked veg	$14 \cdot 5$	$0 \cdot 22$	0.03	Raw veg	$10 \cdot 7$	$0 \cdot 16$	0.02	Grain mixtures	$9 \cdot 5$	$0 \cdot 15$	0.02
40-59	Raw veg	$14 \cdot 1$	$0 \cdot 20$	0.02	Cooked veg	14.0	0.20	0.02	Grain mixtures	$8 \cdot 1$	$0 \cdot 12$	0.02
≥ 60	Cooked veg	$14 \cdot 6$	$0 \cdot 20$	$0 \cdot 02$	Raw veg	13.9	$0 \cdot 19$	$0 \cdot 02$	Vegetable soups	$7 \cdot 1$	$0 \cdot 10$	$0 \cdot 03$
Income level												
<\$US 15000	Cooked veg	$14 \cdot 2$	$0 \cdot 17$	0.02	Potato chips	$9 \cdot 1$	$0 \cdot 11$	0.02	Raw veg	$8 \cdot 6$	$0 \cdot 10$	0.01
\$US 15000-29 999	Cooked veg	$12 \cdot 4$	$0 \cdot 16$	0.03	Raw veg	$10 \cdot 0$	$0 \cdot 13$	0.02	Grain mixtures	$9 \cdot 2$	$0 \cdot 12$	0.03
\geq \$US 30000	Cooked veg	$15 \cdot 2$	$0 \cdot 24$	0.02	Raw veg	$13 \cdot 3$	0.21	0.02	Fried potatoes	$8 \cdot 8$	$0 \cdot 14$	$0 \cdot 01$
Education level												
$<$ High school	Cooked veg	$14 \cdot 5$	$0 \cdot 18$	0.03	Raw veg	$11 \cdot 0$	$0 \cdot 13$	0.02	Mashed potatoes	$8 \cdot 2$	$0 \cdot 10$	$0 \cdot 02$
High school	Cooked veg	$12 \cdot 7$	$0 \cdot 17$	0.02	Raw veg	$10 \cdot 9$	$0 \cdot 15$	0.02	Fried potatoes	$9 \cdot 5$	$0 \cdot 13$	0.02
> High school	Raw veg	$14 \cdot 3$	0.22	0.02	Cooked veg	13.0	0.20	0.02	Grain mixtures	$9 \cdot 8$	$0 \cdot 15$	$0 \cdot 02$

	Top five sources							
	\#4 Source	\%T	Mean	SE	\#5 Source	\%T	Mean	SE
Total sample	Grain mixtures	$8 \cdot 1$	$0 \cdot 12$	0.01	Potato chips	$5 \cdot 9$	0.08	0.01
Sex								
Male	Grain mixtures	$7 \cdot 5$	$0 \cdot 13$	0.02	Potato chips	$7 \cdot 0$	$0 \cdot 11$	0.01
Female	Fried potatoes	$6 \cdot 8$	$0 \cdot 09$	0.01	Mashed potatoes	$5 \cdot 4$	0.07	$0 \cdot 01$
Race								
White	Grain mixtures	$6 \cdot 4$	$0 \cdot 10$	0.01	Baked potatoes	$6 \cdot 3$	$0 \cdot 10$	0.01
AA	Fried potatoes	9.7	$0 \cdot 12$	$0 \cdot 01$	Raw veg	$9 \cdot 1$	$0 \cdot 11$	0.01
Age (years)								
18-29	Raw veg	$8 \cdot 4$	$0 \cdot 11$	0.02	Cooked veg	$8 \cdot 3$	$0 \cdot 11$	0.02
30-39	Fried potatoes	$9 \cdot 4$	$0 \cdot 14$	0.02	Potato chips	$8 \cdot 3$	$0 \cdot 12$	0.02
40-59	Fried potatoes	$7 \cdot 3$	$0 \cdot 10$	0.01	Mashed potatoes	$5 \cdot 5$	0.08	0.01
≥ 60	DGL veg	$6 \cdot 7$	$0 \cdot 09$	$0 \cdot 02$	Baked potatoes	$5 \cdot 2$	0.07	$0 \cdot 01$
Income level								
<\$US 15000	Fried potatoes	$8 \cdot 1$	$0 \cdot 10$	0.02	Mashed potatoes	$7 \cdot 3$	0.09	0.01
\$US 15000-29 999	Fried potatoes	$7 \cdot 0$	0.09	0.02	Mashed potatoes	$6 \cdot 4$	0.08	$0 \cdot 02$
\geq UUS 30000	Grain mixtures	$8 \cdot 1$	$0 \cdot 14$	$0 \cdot 02$	Baked potatoes	$5 \cdot 2$	0.08	$0 \cdot 02$
Education level								
$<$ High school	Fried potatoes	$7 \cdot 9$	$0 \cdot 10$	0.02	Grain mixtures	$6 \cdot 9$	0.09	$0 \cdot 02$
High school	Grain mixtures	$7 \cdot 2$	$0 \cdot 11$	0.01	Potato chips	$6 \cdot 7$	0.09	$0 \cdot 02$
$>$ High school	Fried potatoes	$8 \cdot 3$	0.13	0.01	Potato chips	$5 \cdot 4$	0.08	$0 \cdot 01$

\%T, percentage of HEI-2005 component MyPyramid equivalents; AA, African Americans; veg, vegetables (other than white potatoes, dark green and deep yellow vegetables, tomatoes, lettuce, green beans, corn, peas, lima beans and their mixtures); DGL veg, dark green leafy vegetables.
the second top source for adults aged 18-29 years, those ≥ 60 years of age, the middle income group and the highest education group, respectively. The third, fourth and fifth top sources varied across groups and included: cakes, fried potatoes and processed meats for males; grain mixtures, cookies and fruit drinks for females; tea, cakes and grain mixtures for whites; fruit drinks, beers and ales, and grain mixtures for AA; grain mixtures, fried potatoes and sandwiches for those 18-29 years of age; grain mixtures, tea and fried potatoes for those 30-39 years of age; processed meats, cakes, and cookies for those 40-59 years of age; processed meats, frozen milk desserts and cakes for those ≥ 60 years of age; beers and ales, fruit drinks and cookies for the lowest income group; processed meats, beers and ales, and sugars for
the middle income group; grain mixtures, fried potatoes and tea for the highest income group; candies, processed meats and fruit drinks for the lowest education group; beers and ales, tea and grain mixtures for the middle education group; and cakes, beers and ales, and fried potatoes for the highest education group.

Discussion

While adherence to the DGA 2005 using the HEI-2005 has been estimated within the US population as a whole and among demographic subsets ${ }^{(10-12)}$, few studies have applied the HEI-2005 to regional US populations ${ }^{(13)}$. When examining total and component HEI-2005 scores

Table 4 Top five dietary sources contributing to the Healthy Eating Index-2005 (HEl-2005) total grains component score in Lower Mississippi Delta adults overall and by demographic characteristics (n 1689)

Characteristic	Top five sources											
	\#1 Source	\%T	Mean	SE	\#2 Source	\%T	Mean	SE	\#3 Source	\%T	Mean	SE
Total sample	White B\&R	$23 \cdot 6$	$1 \cdot 38$	0.04	Grain mixtures	$10 \cdot 2$	$0 \cdot 60$	0.04	Sandwiches	$8 \cdot 1$	$0 \cdot 48$	0.04
Sex												
Male	White B\&R	$24 \cdot 5$	1.64	0.07	Grain mixtures	$9 \cdot 4$	$0 \cdot 63$	0.05	Sandwiches	$9 \cdot 3$	$0 \cdot 62$	0.07
Female	White B\&R	$22 \cdot 4$	$1 \cdot 15$	0.05	Grain mixtures	$11 \cdot 1$	$0 \cdot 57$	0.05	CC\&R	$7 \cdot 1$	$0 \cdot 36$	0.03
Race												
White	White B\&R	$24 \cdot 0$	$1 \cdot 42$	0.06	Grain mixtures	$9 \cdot 5$	0.56	0.05	Sandwiches	$7 \cdot 3$	$0 \cdot 43$	0.06
AA	White B\&R	$24 \cdot 0$	$1 \cdot 38$	0.06	Grain mixtures	$10 \cdot 7$	$0 \cdot 61$	0.06	CC\&R	$9 \cdot 2$	$0 \cdot 53$	0.05
Age (years)												
18-29	White B\&R	$22 \cdot 1$	$1 \cdot 37$	$0 \cdot 11$	Grain mixtures	$15 \cdot 1$	0.94	$0 \cdot 11$	Sandwiches	$12 \cdot 9$	$0 \cdot 80$	0.09
30-39	White B\&R	$22 \cdot 5$	$1 \cdot 41$	0.08	Grain mixtures	$13 \cdot 3$	$0 \cdot 83$	$0 \cdot 11$	Sandwiches	$8 \cdot 4$	$0 \cdot 53$	$0 \cdot 10$
40-59	White B\&R	$24 \cdot 7$	1.42	0.06	Grain mixtures	$8 \cdot 6$	0.50	0.06	Sandwiches	$7 \cdot 9$	$0 \cdot 45$	0.07
≥ 60	White B\&R	$24 \cdot 2$	$1 \cdot 31$	0.09	CC\&R	$10 \cdot 6$	$0 \cdot 57$	$0 \cdot 06$	Wheat B\&R	$6 \cdot 5$	0.35	0.04
Income level												
<\$US 15000	White B\&R	$25 \cdot 3$	1.43	0.08	CC\&R	$8 \cdot 9$	$0 \cdot 50$	$0 \cdot 06$	Grain mixtures	$7 \cdot 6$	$0 \cdot 43$	0.06
\$US 15000-29 999	White B\&R	$23 \cdot 6$	$1 \cdot 45$	0.09	Grain mixtures	$9 \cdot 5$	$0 \cdot 58$	$0 \cdot 10$	Sandwiches	$8 \cdot 2$	0.50	0.09
\geq \$US 30000	White B\&R	$22 \cdot 4$	$1 \cdot 34$	0.06	Grain mixtures	$11 \cdot 6$	$0 \cdot 70$	$0 \cdot 07$	Sandwiches	$8 \cdot 6$	$0 \cdot 52$	0.06
Education level												
$<$ High school	White B\&R	$26 \cdot 5$	$1 \cdot 47$	$0 \cdot 10$	Grain mixtures	$8 \cdot 5$	0.47	0.07	CC\&R	$8 \cdot 5$	$0 \cdot 47$	0.05
High school	White B\&R	$25 \cdot 5$	$1 \cdot 50$	0.09	Grain mixtures	$9 \cdot 0$	0.53	0.05	Sandwiches	$8 \cdot 3$	0.49	0.06
$>$ High school	White B\&R	$20 \cdot 3$	$1 \cdot 23$	0.06	Grain mixtures	$12 \cdot 5$	$0 \cdot 76$	0.07	Sandwiches	$8 \cdot 6$	0.53	0.09

Top five sources

	Top five sources							
	\#4 Source	\%T	Mean	SE	\#5 Source	\%T	Mean	SE
Total sample	CC\&R	$7 \cdot 1$	$0 \cdot 41$	0.03	Salty snacks	$6 \cdot 3$	$0 \cdot 37$	0.04
Sex								
Male	CC\&R	$7 \cdot 0$	0.47	0.05	Salty snacks	$6 \cdot 1$	0.40	0.06
Female	Sandwiches	$6 \cdot 7$	$0 \cdot 34$	0.04	Salty snacks	$6 \cdot 5$	$0 \cdot 33$	0.04
Race								
White	Salty snacks	$6 \cdot 2$	0.36	0.04	Biscuits	$5 \cdot 2$	0.31	0.03
AA	Sandwiches	$9 \cdot 2$	$0 \cdot 53$	0.06	Cornbread	$6 \cdot 4$	$0 \cdot 36$	0.04
Age (years)								
18-29	Salty snacks	$7 \cdot 8$	0.49	0.09	CC\&R	$4 \cdot 8$	$0 \cdot 30$	0.05
30-39	CC\&R	$7 \cdot 7$	0.48	0.07	Salty snacks	$5 \cdot 8$	$0 \cdot 36$	0.06
40-59	Salty snacks	$7 \cdot 4$	0.43	0.06	CC\&R	$6 \cdot 0$	$0 \cdot 34$	0.03
≥ 60	Cornbread	$6 \cdot 0$	$0 \cdot 32$	0.04	Biscuits	$5 \cdot 9$	$0 \cdot 32$	0.04
Income level								
<\$US 15000	Sandwiches	$6 \cdot 8$	0.38	0.06	Wheat B\&R	$6 \cdot 4$	0.36	$0 \cdot 10$
\$US 15000-29 999	Salty snacks	$7 \cdot 2$	0.44	0.08	CC\&R	$6 \cdot 9$	0.43	0.06
\geq UUS 30000	Salty snacks	$6 \cdot 1$	$0 \cdot 37$	0.05	CC\&R	$5 \cdot 6$	$0 \cdot 34$	0.04
Education level								
$<$ High school	Sandwiches	$6 \cdot 7$	0.37	0.06	Cornbread	$6 \cdot 1$	$0 \cdot 34$	0.05
High school	Salty snacks	$6 \cdot 9$	0.40	0.06	CC\&R	$6 \cdot 1$	0.36	0.04
$>$ High school	CC\&R	$7 \cdot 0$	0.43	0.05	Salty snacks	$6 \cdot 4$	$0 \cdot 39$	0.05

$\% \mathrm{~T}$, percentage of HEI-2005 component MyPyramid equivalents; AA, African Americans; B\&R, breads and rolls; CC\&R, cooked cereals and rice.
by demographic characteristics within the LMD population, younger age was the most important determinant of low diet quality. HEI-2005 total, total fruit, whole fruit, total vegetables, GOV\&L, total grains, whole grains and SoFAAS scores declined with decreasing age. Previous studies in the LMD have focused on dietary pattern differences by race, income or food security status, with less attention given to the implications that age has on dietary intake ${ }^{(4,14,15)}$. The present study's findings suggest that race and income may have smaller effects on diet quality when considered in conjunction with other demographic characteristics, such as age. Tailoring educational messages to age-specific groups may be more critical to the success of a dietary intervention than targeting groups delineated by race or socio-economic status in the LMD region.

Unlike previous applications of HEI-2005 that simply focus on total and component scores ${ }^{(10-13)}$, the current unique investigation of top dietary sources contributing to HEI-2005 components provides insight into strategies and messages that could improve the diet quality and health of a region. Although some messages are appropriate for the entire LMD population, others may be more appropriate for specific demographic groups. All five of the demographic variables considered had an effect on food consumption patterns. For sex and race, ten of thirty and twelve of thirty-one top foods differed between males and females, and between whites and AA, respectively. For age, twenty-one of forty-two top foods differed among the four age groups. For income and education, fourteen of thirty-five and fourteen of thirty-three top

Table 5 Top five dietary sources contributing to the Healthy Eating Index-2005 (HEl-2005) whole grains component score in Lower Mississippi Delta adults overall and by demographic characteristics (n 1689)

Characteristic	Top five sources											
	\#1 Source	\%T	Mean	SE	\#2 Source	\%T	Mean	SE	\#3 Source	\%T	Mean	SE
Total sample	CC\&R	$24 \cdot 0$	$0 \cdot 12$	0.01	RTE cereals	$22 \cdot 5$	$0 \cdot 11$	0.01	Salty snacks	$20 \cdot 7$	$0 \cdot 10$	0.01
Sex												
Male	RTE cereals	$24 \cdot 4$	$0 \cdot 12$	0.01	Salty snacks	$23 \cdot 1$	$0 \cdot 11$	0.02	CC\&R	$18 \cdot 9$	0.09	$0 \cdot 02$
Female	CC\&R	$28 \cdot 8$	$0 \cdot 14$	$0 \cdot 02$	RTE cereals	$20 \cdot 8$	$0 \cdot 10$	0.01	Salty snacks	$18 \cdot 3$	$0 \cdot 09$	$0 \cdot 02$
Race												
White	RTE cereals	$29 \cdot 4$	$0 \cdot 15$	0.02	CC\&R	$23 \cdot 8$	$0 \cdot 13$	0.02	Salty snacks	$16 \cdot 5$	0.09	$0 \cdot 01$
AA	CC\&R	$26 \cdot 4$	$0 \cdot 10$	0.02	Salty snacks	$25 \cdot 2$	$0 \cdot 10$	$0 \cdot 02$	Wheat B\&R	$18 \cdot 7$	$0 \cdot 07$	$0 \cdot 02$
Age (years)												
18-29	RTE cereals	$44 \cdot 2$	$0 \cdot 12$	0.05	Wheat B\&R	$13 \cdot 5$	0.04	0.01	Salty snacks	$11 \cdot 3$	0.03	0.01
30-39	RTE cereals	$29 \cdot 8$	$0 \cdot 11$	0.02	Salty snacks	$23 \cdot 8$	0.09	0.02	CC\&R	$18 \cdot 9$	0.07	0.03
40-59	Salty snacks	$26 \cdot 6$	$0 \cdot 14$	0.03	CC\&R	$21 \cdot 8$	$0 \cdot 12$	0.02	Wheat B\&R	$17 \cdot 6$	0.09	0.02
≥ 60	CC\&R	$36 \cdot 4$	$0 \cdot 24$	0.04	RTE cereals	$19 \cdot 2$	$0 \cdot 13$	0.02	Salty snacks	15.0	$0 \cdot 10$	$0 \cdot 03$
Income level												
<\$US 15000	CC\&R	$25 \cdot 9$	$0 \cdot 11$	0.03	Wheat B\&R	$24 \cdot 7$	$0 \cdot 11$	0.03	Salty snacks	$23 \cdot 5$	$0 \cdot 10$	0.03
\$US 15000-29 999	Salty snacks	$28 \cdot 3$	$0 \cdot 13$	0.03	RTE cereals	$26 \cdot 7$	$0 \cdot 13$	0.04	CC\&R	15.5	0.07	$0 \cdot 02$
\geq US \$30000	CC\&R	$26 \cdot 5$	$0 \cdot 15$	$0 \cdot 02$	RTE cereals	26.4	$0 \cdot 15$	0.02	Salty snacks	$16 \cdot 2$	$0 \cdot 09$	$0 \cdot 02$
Education level												
$<$ High school	CC\&R	$28 \cdot 2$	$0 \cdot 12$	0.03	Salty snacks	$22 \cdot 7$	$0 \cdot 10$	0.03	RTE cereals	$17 \cdot 7$	0.07	0.01
High school	Salty snacks	$24 \cdot 0$	0.09	0.02	Wheat B\&R	$20 \cdot 4$	0.08	0.02	RTE cereals	18.3	0.07	0.01
> High school	RTE cereals	$27 \cdot 4$	$0 \cdot 17$	0.02	CC\&R	$26 \cdot 2$	$0 \cdot 16$	0.03	Salty snacks	18.0	$0 \cdot 11$	$0 \cdot 02$

	Top five sources							
	\#4 Source	\%T	Mean	SE	\#5 Source	\%T	Mean	SE
Total sample	Wheat B\&R	$15 \cdot 1$	0.07	0.01	Pancakes	$2 \cdot 9$	0.01	0.00
Sex								
Male	Wheat B\&R	$16 \cdot 1$	0.08	0.02	Pancakes	$3 \cdot 4$	0.02	0.00
Female	Wheat B\&R	$14 \cdot 2$	$0 \cdot 07$	0.01	Whole wheat B\&R	$3 \cdot 3$	0.02	0.01
Race								
White	Wheat B\&R	$12 \cdot 7$	0.07	0.01	Non-sweet crackers	$3 \cdot 4$	0.02	0.01
AA	RTE cereals	$12 \cdot 3$	0.05	0.01	Pancakes	$4 \cdot 6$	0.02	0.00
Age (years)								
18-29	Non-sweet crackers	$9 \cdot 3$	0.03	0.03	Pancakes	$6 \cdot 0$	0.02	0.01
30-39	Wheat B\&R	$10 \cdot 2$	0.04	0.01	Sweet crackers	$4 \cdot 6$	0.02	0.01
40-59	RTE cereals	$16 \cdot 2$	$0 \cdot 09$	0.01	Breakfast pastries	$4 \cdot 0$	0.02	0.01
≥ 60	Wheat B\&R	$14 \cdot 7$	$0 \cdot 10$	0.01	Whole wheat B\&R	$3 \cdot 5$	0.02	0.02
Income level								
<\$US 15000	RTE cereals	$10 \cdot 9$	0.05	0.01	Pancakes	$4 \cdot 6$	0.02	0.01
\$US 15000-29 999	Wheat B\&R	$13 \cdot 5$	0.06	0.01	Sweet crackers	$4 \cdot 1$	0.02	0.01
\geq WUS 30000	Wheat B\&R	$12 \cdot 8$	$0 \cdot 07$	0.01	Breakfast pastries	$3 \cdot 6$	0.02	$0 \cdot 01$
Education level								
$<$ High school	Wheat B\&R	$13 \cdot 0$	0.05	0.01	Pancakes	$4 \cdot 5$	0.02	0.01
High school	CC\&R	$17 \cdot 6$	0.07	0.02	Sweet crackers	$5 \cdot 2$	0.02	0.01
$>$ High school	Wheat B\&R	$12 \cdot 1$	$0 \cdot 07$	0.01	Non-sweet crackers	$3 \cdot 3$	0.02	0.01

\%T, percentage of HEI-2005 component MyPyramid equivalents; AA, African Americans; CC\&R, cooked cereals and rice; RTE, ready-to-eat; B\&R, breads and rolls.
foods differed among the three income groups and the three education groups, respectively. Interestingly, one food (biscuits) and one beverage (sweet tea), identified as regional foods for the $\mathrm{LMD}^{(3)}$, were top dietary sources for the total grains and SoFAAS components, respectively. This highlights the importance of taking cultural food preferences into account when designing dietary interventions.

Regarding the targeting of dietary modifications, the substitution of more healthful foods or preparations for less healthful ones may work well in this population. Substitutions should account for not only the type of food, but the timing and location of meals as well. For example, the consumption of more whole fruits and less fruit juices and drinks should be encouraged for the entire

LMD adult population, with perhaps stronger emphasis for males, AA and those less than 40 years of age. Substituting whole fruits for fruit drinks is an especially important message since fruit drinks contain little fruit juice while contributing a significant amount of added sugar to the diet. Similarly, the consumption of vegetables other than white potatoes, particularly French fries and potato chips, should be encouraged for the entire LMD population, with added focus on those less than 30 years of age and those in the lowest income group. This substitution will not only help to reduce the amount of saturated fat in the diet, a DGA 2010 recommendation ${ }^{(16)}$, but also help to increase the variety of vegetables being consumed, particularly if the consumption of healthy preparations of culturally acceptable vegetables such as

Table 6 Top five dietary sources contributing to the Healthy Eating Index-2005 (HEI-2005) solid fats, alcoholic beverages and added sugars (SoFAAS) component score in Lower Mississippi Delta adults overall and by demographic characteristics (n 1689)

Characteristic	Top five sources											
	\#1 Source	\%T	Mean	SE	\#2 Source	\%T	Mean	SE	\#3 Source	\%T	Mean	SE
Total sample	Soft drinks	$19 \cdot 0$	$157 \cdot 0$	$5 \cdot 7$	Beers \& ales	$4 \cdot 7$	38.9	$5 \cdot 1$	Proc meats	$4 \cdot 0$	$33 \cdot 3$	$2 \cdot 3$
Sex												
Male	Soft drinks	$19 \cdot 2$	$188 \cdot 4$	$9 \cdot 2$	Beers \& ales	$7 \cdot 0$	$69 \cdot 1$	$10 \cdot 4$	Cakes	$3 \cdot 8$	$37 \cdot 2$	6.0
Female	Soft drinks	$18 \cdot 7$	$128 \cdot 6$	$7 \cdot 0$	Proc meats	$4 \cdot 3$	$29 \cdot 9$	$2 \cdot 8$	Grain mixtures	$4 \cdot 2$	$29 \cdot 2$	$2 \cdot 5$
Race												
White	Soft drinks	$19 \cdot 1$	$161 \cdot 5$	$7 \cdot 8$	Beers \& ales	$4 \cdot 7$	$40 \cdot 2$	$8 \cdot 5$	Tea	$4 \cdot 7$	$39 \cdot 8$	4.0
AA	Soft drinks	$18 \cdot 9$	$152 \cdot 8$	$8 \cdot 6$	Proc meats	$6 \cdot 1$	$49 \cdot 6$	$4 \cdot 6$	Fruit drinks	$5 \cdot 6$	$45 \cdot 1$	$4 \cdot 1$
Age (years)												
18-29	Soft drinks	$24 \cdot 3$	$239 \cdot 9$	$15 \cdot 4$	Fruit drinks	$5 \cdot 5$	$54 \cdot 7$	$7 \cdot 0$	Grain mixtures	$5 \cdot 5$	$54 \cdot 5$	$7 \cdot 0$
30-39	Soft drinks	$22 \cdot 4$	$223 \cdot 6$	$12 \cdot 9$	Beers \& ales	$6 \cdot 7$	$66 \cdot 5$	$17 \cdot 5$	Grain mixtures	$4 \cdot 4$	$43 \cdot 5$	$5 \cdot 6$
40-59	Soft drinks	$17 \cdot 2$	$136 \cdot 0$	$7 \cdot 6$	Beers \& ales	$5 \cdot 9$	$46 \cdot 2$	$8 \cdot 5$	Proc meats	$4 \cdot 5$	$35 \cdot 3$	$3 \cdot 8$
≥ 60	Soft drinks	$10 \cdot 3$	$62 \cdot 2$	$7 \cdot 1$	Milk	$5 \cdot 5$	$33 \cdot 0$	$3 \cdot 1$	Proc meats	$4 \cdot 9$	29.4	$5 \cdot 0$
Income level												
<\$US 15000	Soft drinks	$18 \cdot 9$	$149 \cdot 5$	$13 \cdot 3$	Proc meats	$5 \cdot 2$	$40 \cdot 8$	$5 \cdot 1$	Beers \& ales	$5 \cdot 2$	$40 \cdot 7$	$8 \cdot 6$
\$US 15000-29 999	Soft drinks	$19 \cdot 5$	$155 \cdot 4$	$10 \cdot 3$	Cakes	$4 \cdot 6$	$36 \cdot 5$	$7 \cdot 2$	Proc meats	$4 \cdot 2$	33.4	$3 \cdot 5$
\geq \$US 30000	Soft drinks	$18 \cdot 9$	$162 \cdot 5$	$8 \cdot 7$	Beers \& ales	$4 \cdot 5$	$38 \cdot 5$	$9 \cdot 6$	Grain mixtures	$4 \cdot 3$	$36 \cdot 8$	$3 \cdot 6$
Education level												
$<$ High school	Soft drinks	$18 \cdot 6$	$146 \cdot 9$	$13 \cdot 5$	Beers \& ales	$6 \cdot 4$	$50 \cdot 5$	14.5	Candies	$4 \cdot 1$	$32 \cdot 4$	$5 \cdot 2$
High school	Soft drinks	$20 \cdot 0$	$170 \cdot 4$	$9 \cdot 7$	Proc meats	$4 \cdot 9$	$41 \cdot 6$	$5 \cdot 4$	Beers \& ales	$4 \cdot 8$	$40 \cdot 9$	$7 \cdot 3$
$>$ High school	Soft drinks	$18 \cdot 2$	$152 \cdot 6$	$10 \cdot 3$	Grain mixtures	$4 \cdot 6$	$38 \cdot 4$	$3 \cdot 4$	Cakes	$4 \cdot 0$	$33 \cdot 7$	$6 \cdot 3$

	Top five sources							
	\#4 Source	\%T	Mean	SE	\#5 Source	\%T	Mean	SE
Total sample	Grain mixtures	$3 \cdot 9$	$32 \cdot 0$	$2 \cdot 0$	Cakes	3.597	$29 \cdot 8$	$3 \cdot 3$
Sex								
Male	Fried potatoes	$3 \cdot 8$	$37 \cdot 0$	$4 \cdot 5$	Proc meats	$3 \cdot 8$	$35 \cdot 2$	$3 \cdot 1$
Female	Cookies	$3 \cdot 7$	$25 \cdot 8$	$2 \cdot 2$	Fruit drinks	$3 \cdot 7$	$25 \cdot 3$	$2 \cdot 5$
Race								
White	Cakes	$3 \cdot 8$	$32 \cdot 5$	$4 \cdot 6$	Grain mixtures	$3 \cdot 6$	$30 \cdot 5$	$2 \cdot 6$
AA	Beers \& ales	$4 \cdot 7$	$38 \cdot 0$	$6 \cdot 0$	Grain mixtures	$4 \cdot 0$	$32 \cdot 5$	$3 \cdot 1$
Age (years)								
18-29	Fried potatoes	$5 \cdot 0$	$42 \cdot 9$	$7 \cdot 8$	Sandwiches	$4 \cdot 6$	$39 \cdot 9$	$8 \cdot 3$
30-39	Tea	$3 \cdot 4$	$34 \cdot 4$	$7 \cdot 7$	Fried potatoes	$3 \cdot 3$	$31 \cdot 4$	$8 \cdot 2$
40-59	Cakes	$3 \cdot 8$	29.8	$5 \cdot 1$	Cookies	$3 \cdot 4$	$27 \cdot 2$	$2 \cdot 7$
≥ 60	FM desserts	$4 \cdot 9$	$29 \cdot 4$	$4 \cdot 9$	Cakes	$4 \cdot 7$	$28 \cdot 5$	$5 \cdot 1$
Income level								
<\$US 15000	Fruit drinks	$4 \cdot 2$	$33 \cdot 1$	$4 \cdot 1$	Cookies	$3 \cdot 8$	$29 \cdot 6$	$5 \cdot 2$
\$US 15000-29 999	Beers \& ales	$4 \cdot 0$	$32 \cdot 2$	$7 \cdot 5$	Sugars	$3 \cdot 7$	$29 \cdot 7$	$4 \cdot 0$
\geq US \$30000	Fried potatoes	$3 \cdot 7$	$31 \cdot 7$	$4 \cdot 2$	Tea	$3 \cdot 7$	$31 \cdot 1$	$4 \cdot 9$
Education level								
$<$ High school	Proc meats	$4 \cdot 0$	$31 \cdot 9$	$4 \cdot 7$	Fruit drinks	$3 \cdot 9$	$30 \cdot 7$	$6 \cdot 6$
High school	Tea	$3 \cdot 7$	$31 \cdot 2$	$5 \cdot 3$	Grain mixtures	$3 \cdot 5$	$30 \cdot 2$	$3 \cdot 2$
$>$ High school	Beers \& ales	$3 \cdot 7$	$30 \cdot 8$	$7 \cdot 9$	Fried potatoes	3.4	$28 \cdot 1$	$3 \cdot 1$

\%T, percentage of HEI-2005 component energy intake; AA, African Americans; Proc meats, processed meats (frankfurters, sausages, luncheon meats and meat spreads); FM desserts, frozen milk desserts.
sweet potatoes and collard greens are encouraged. However, because foods such as French fries are often consumed outside the home, typically at fast-food restaurants, a more suitable substitution may be a side salad, which is available at most fast-food establishments. In a large, prospective cohort of middle-aged women, the intake of fruit juice was found to be positively associated with the development of diabetes, while the intake of whole fruit and leafy green vegetables had an inverse association ${ }^{(17)}$. Further, evidence suggests that eating whole fruit (v. fruit puree or juice) at the start of a meal can be an effective strategy for increasing satiety and decreasing energy intake ${ }^{(18)}$.

The presence of salty snacks as a top food source for both total and whole grains deserves particular attention
since such foods add to the overabundance of sodium and saturated fat in the American diet. The consumption of lower-sodium, lower-fat, wholegrain snack foods should be encouraged, particularly for those 30-39 years of age and those in the middle income and education groups. Increasing intake of whole grains, a DGA 2010 recommendation ${ }^{(16)}$, has been associated with lower adiposity in adults ${ }^{(19)}$. However, those investigators caution that emphasis should be placed on the substitution of refined grains with whole grains rather than the addition of whole grains to a diet already high in refined grains ${ }^{(19)}$.

The SoFAAS category appears to provide the most opportunity for improving the diet of adult LMD residents. Indeed, the DGA 2010 gives special attention to solid fats and added sugars, two components of the SoFAAS
category, because they are consumed in excessive amounts by Americans ${ }^{(16)}$. The fact that the top five sources accounted for only 35% of the SoFAAS component attests to the ubiquitous presence of SoFAAS in the American food supply. In this study, only eleven of the 165 food and beverage groups did not contribute to the SoFAAS category (data not shown). The consumption of soft drinks requires special focus since these drinks are a significant source of added sugars in the diet of LMD adults, particularly younger adults. Consumption of soft drinks and other sugar-sweetened beverages (SSB; e.g. fruit drinks and sweet tea) should be strongly discouraged. Intervention and social marketing strategies should focus on social norms associated with beverage consumption patterns among younger adults. Alternatives such as water and artificially sweetened soft drinks and teas should be encouraged as more healthful substitutes. Results from women participating in a weight-loss intervention suggest that replacing SSB with water may be an effective method to lower total energy intake in free-living individuals ${ }^{(20)}$. In another study conducted in both men and women, investigators found that reduction of SSB intake was significantly associated with weight loss ${ }^{(21)}$. Hence, advocating the replacement of less healthy foods and beverages with more healthful ones is a viable strategy to improve the diet quality and health of individuals.

The present study is not without limitations. The data were collected in 2000 and may not fully represent current dietary intake of LMD adults. For example, anecdotal evidence through discussions with Delta residents suggests that intake of wholegrain breads may have increased since the time the data were collected. Furthermore, because the populations of most LMD counties have been declining in recent decades, the demographic profile of this region may have also changed since 2000. Nevertheless, the FOODS 2000 data set was collected using a highly sophisticated stratified sampling plan and the same multiple-pass dietary recall methodology used by the National Health and Nutrition Examination Survey (NHANES). Finally, the impact of food availability on diet quality or food sources was not assessed because this information was not collected. The low availability of supermarkets and healthy food in the region has been highlighted in previous research as possible determinants of diet quality ${ }^{(22,23)}$.

In conclusion, the findings of the present study showed that the assessment of diet quality and identification of top dietary sources revealed the presence of demographic differences in selected HEI-2005 components, information that is necessary for tailoring nutrition interventions in the LMD region. Not only do these findings allow for identification of food patterns and culturally appropriate messaging that could reach the entire population through social marketing and media approaches, they also highlight the difficulties of treating this region as a homogeneous population. The assessment of dietary pattern quality and adherence to dietary guidelines, as well as the
determination of top food sources, are critical steps in the development of culturally appropriate dietary modifications for a given population. To improve adherence to DGA in the LMD population, intervention studies are needed to promote culturally familiar foods of higher nutritional quality.

Acknowledgements

This work was sponsored in part by the USDA Agricultural Research Service Projects 6251-53000-004-00D and 6401-53000-001-00D. None of the authors declared a conflict of interest. The authors' contributions were as follows. J.L.T. assisted with study design, performed statistical analysis and prepared manuscript and tables; S.J.O. oversaw the study design and statistical analysis, and assisted in manuscript preparation; C.L.C. assisted with study design and manuscript preparation, especially the development of dietary modifications; J.M.Z. assisted with study design, manuscript preparation and tables; L.M.T.-H. assisted with study design, manuscript preparation and tables; M.L.B. assisted with formulation of the study design; K.Y. assisted with study design, manuscript preparation and tables.

References

1. Smith J, Lensing S, Horton JA et al. (1999) Prevalence of self-reported nutrition-related health problems in the Lower Mississippi Delta. Am J Public Health 89, 1418-1421.
2. McAnally R (2008) BRFSS Oversample of Mississippi Delta Counties. Jackson, MS: Mississippi State Department of Health.
3. Tucker KL, Maras J, Champagne C et al. (2005) A regional food-frequency questionnaire for the US Mississippi Delta. Public Health Nutr 8, 87-96.
4. Champagne CM, Bogle ML, McGee BB et al. (2004) Dietary intake in the lower Mississippi delta region: results from the Foods of our Delta Study. J Am Diet Assoc 104, 199-207.
5. Willett W (1998) Nutritional Epidemiology. New York: Oxford University Press.
6. Guenther PM, Reedy J \& Krebs-Smith SM (2008) Development of the Healthy Eating Index-2005. J Am Diet Assoc 108, 1896-1901.
7. Friday JE \& Bowman SA (2006) MyPyramid Equivalents Database for USDA Survey Food Codes, 1994-2002 Version 1.0. Beltsville, MD: USDA ARS, Community Nutrition Research Group.
8. US Department of Agriculture (2004) USDA Food and Nutrition Database for Dietary Studies, 1.0. Beltsville, MD: USDA ARS, Food Surveys Research Group.
9. Freedman LS, Guenther PM, Krebs-Smith SM et al. (2008) A population's mean Healthy Eating Index-2005 scores are best estimated by the score of the population ratio when one 24 -hour recall is available. J Nutr $\mathbf{1 3 8}$, 1725-1729.
10. Guenther PM, Juan WY, Lino M et al. (2008) Diet Quality of Low-income and Higher Income Americans in 2003-04 as Measured by the Healthy Eating Index-2005. Nutrition Insight no. 42. Alexandria, VA: USDA Center for Nutrition Policy and Promotion.
11. Guenther PM, Juan WY, Reedy J et al. (2007) Diet Quality of Americans in 1994-96 and 2001-02 as Measured by the Healthy Eating Index-2005. Nutrition Insight 37. Alexandria, VA: USDA Center for Nutrition Policy and Promotion.
12. Juan WY, Guenther PM \& Kott PS (2008) Diet Quality of Older Americans in 1994-96 and 2001-02 as Measured by the Healthy Eating Index-2005. Nutrition Insight 41. Alexandria, VA: USDA Center for Nutrition Policy and Promotion.
13. Savoca MR, Arcury TA, Leng X et al. (2009) Severe tooth loss in older adults as a key indicator of compromised dietary quality. Public Health Nutr 13, 466-474.
14. Champagne CM, Casey PH, Connell CL et al. (2007) Poverty and food intake in rural America: diet quality is lower in food insecure adults in the Mississippi Delta. J Am Diet Assoc 107, 1886-1894.
15. McCabe-Sellers BJ, Bowman S, Stuff JE et al. (2007) Assessment of the diet quality of US adults in the Lower Mississippi Delta. Am J Clin Nutr 86, 697-706.
16. US Department of Agriculture, US Department of Health and Human Services (2010) Dietary Guidelines for Americans, 2010. Washington, DC: US Government Printing Office.
17. Bazzano LA, Li TY, Joshipura KJ et al. (2008) Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 31, 1311-1317.
18. Flood-Obbagy JE \& Rolls BJ (2009) The effect of fruit in different forms on energy intake and satiety at a meal. Appetite 52, 416-422.
19. McKeown NM, Troy LM, Jacques PF et al. (2010) Whole- and refined-grain intakes are differentially associated with abdominal visceral and subcutaneous adiposity in healthy adults: the Framingham Heart Study. Am J Clin Nutr 92, 1165-1171.
20. Stookey JD, Constant F, Gardner CD et al. (2007) Replacing sweetened caloric beverages with drinking water is associated with lower energy intake. Obesity (Silver Spring) 15, 3013-3022.
21. Chen L, Appel LJ, Loria C et al. (2009) Reduction in consumption of sugar-sweetened beverages is associated with weight loss: the PREMIER trial. Am J Clin Nutr 89, 1299-1306.
22. Blanchard T \& Lyson T (2006) Food Availability and Food Deserts in the Nonmetropolitan South. Food Assistance Needs of the South's Vulnerable Population. Mississippi State, MS: Southern Rural Development Center.
23. Connell CL, Yadrick MK, Simpson P et al. (2007) Food supply adequacy in the Lower Mississippi Delta. J Nutr Educ Behav 39, 77-83.
