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Bradley T. Shapiro 

 
Abstract 

 
 The goal of this paper is to evaluate commonly held 

criticisms of the practice of ability tracking in high school 

mathematics.  To do so, I employ data from the National 

Education Longitudinal Study of 1988 and follow-ups to model 

classroom selection and education production.  This paper will 

focus only on the causes and effects of tracking on students who 

were tracked as low-ability in eighth grade.  From this, we can 

see how many students, if any, switched out of the low-ability 

track by tenth grade and how various switches have affected 

their test scores in mathematics.  I find that students exercise 

mobility between ability-tracks as late as tenth grade and that 

ability-track placement is largely determined by test scores.  

In addition, I find evidence that there would be minimal, if 

any, test score improvement among low-ability students if they 

were all moved to a class of heterogeneous ability.  
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1. Introduction 

 
The practice of ability tracking in education systems is 

not a new phenomenon.  Many school systems throughout the world 

use programs that place students into classes according to 

ability to appropriately focus the material to the specific 

group.  In theory, if all of the bright students were in a class 

together, more material could be covered.  Conversely, in a 

classroom of heterogeneous ability, it is possible that the 

teacher would be forced to slow down the presentation of 

material to allow the slower students to keep up. 

There are many different kinds of ability tracking at 

different levels of education.  Some schools use intelligence 

tests in the early years of schooling to determine which track a 

student will follow.  Other schools use a combination of 

performance in the previous year, teacher recommendations and 

beginning-of-year tests to determine the placement of students 

into classrooms.  As students advance in age, it is possible 

that schools allow students to choose their own classes. 

In recent years, the usefulness of ability tracking in 

primary and secondary schools in the United States has come into 

question (Oakes 1992, Slavin 1990).  Critics of the practice 

cite a plethora of problems including unfair track placements, a 

lack of achievement gains among high achievers attributed to 
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tracking, a lack of mobility between tracks, and unequal 

outcomes for lower and higher track students.  From these 

criticisms, many conclude that the only logical course of action 

is to abandon the tracking system in favor of exclusively 

heterogeneous classes. 

It is instructive to ask how students are placed and to 

inquire into the fairness of that process.  Are students stuck 

in these tracks for their entire educational careers, unable to 

change?  It seems plausible that after several years in a 

particular track that a student may no longer be able to make a 

jump into a more advanced setting.  Are non-academic factors 

such as race, economic background, or extracurricular activities 

affecting placements?  Even if such considerations are not 

affecting placements, are they strong predictors of track?  

Available data could shed some light on all of these questions. 

Additionally, while track placement is indeed an 

interesting process, the results of those placements are of 

primary concern.  Are the students in the low ability tracks 

showing smaller test score improvements than their colleagues in 

the high ability tracks?  If so, is tracking the cause of the 

lower scores, or is there simply something else correlated both 

with test score improvements and track placement such as 

intelligence, motivation or attention span?  These are questions 

that, with cleverly designed models, we may be able to learn 
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more about.  As I will discuss in the pages to come, separating 

innate differences in ability from the effect of track placement 

is rather difficult, as intelligence, motivation and attention 

span are to a large extent unmeasurable, are potentially dynamic 

and surely correlate with achievement. 

1.1 Why Do We Care? 

We care about these questions for a few reasons.  First, if 

students are unable to move between tracks, students who are 

simply a little slow to develop might completely miss out on the 

opportunity to be exposed to advanced material later in their 

educational careers.  This could lead to decreases in co-

curricular and extra-curricular opportunities, eventual 

educational attainment and job market earnings.  Next, if 

students are being placed in ability tracks on the basis of race 

or socio-economic status, there would be obvious reasons for 

concern. 

Another reason that we care about these questions is that 

there is indeed a movement to de-track America’s schools.  Such 

a reform would be costly in time and money and would be 

difficult to reverse.  Before such comprehensive reforms are put 

into place, it would be wise to consider the validity of the 

claims against tracking. 

In publicly providing education, we want students at all 

levels of ability to be achieving to their fullest potential, 
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and the system in which they are placed may play a large role in 

their eventual success in life.  If simple reforms can make a 

large difference in the quality of education for traditionally 

‘left behind’ students, then it is worthwhile to explore their 

merits and costs. 

As most of the criticisms of tracking express concerns 

about the students tracked to low-ability classes, this paper 

will focus only on the causes and effects of tracking on 

students who were tracked as low-ability in an initial time 

period: eighth grade in our particular data.  From this, we can 

see how many students, if any, switched out of the low-ability 

track by tenth grade and how various switches have affected 

their test scores in mathematics. 

2. Developing a Model 

Developing an empirical model can be a daunting task.  

Often, insight from economic theory can help to specify such 

models.  In addition to theory, the literature also aids the 

process of specifying a model.  In the topic at hand, we are 

faced with two distinct questions: 

1. How is track placement determined at the high school level? 

2. How does track placement affect test score improvements? 

As it turns out, the appropriate tools for these two questions 

are different, but they are related in several ways.  I address 

the first question using a discrete choice model to estimate the 
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probability of 10th grade placement in a particular track based 

on a variety of factors.  I address the second question using an 

education production function approach. 

 Unfortunately, there is very little guidance from economic 

theory with regard to designing education production functions 

(Hanushek 1986).  There have been attempts that are described 

below to accurately weigh the effects of a variety of factors on 

test scores.  Intuitively, it seems obvious that factors such as 

class size and teacher experience should be included, among many 

others.  What proves most difficult is deciding the functional 

form of the relationship between test score improvement and past 

test scores.  Past literature suggests that there is something 

more complicated than a linear relationship, but there is 

relatively little detail pertaining to the particular form.  

 Below, mathematics test score improvement from eighth to 

tenth grade is plotted against eighth grade mathematics test 

scores.  We might expect that those close to the minimum score 

in eighth grade have nowhere to go but up and those at the top 

of the distribution have the opposite effect, but what happens 

in the middle?  Also, base year test score may serve as a proxy 

for intelligence, so we might expect marginally higher base year 

scores to be associated with marginally better improvements.  My 

specification came after many trial and error attempts to 
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ascertain the relationship between the two variables in addition 

to the contributions from the literature discussed below.   

       Figure 1 

  

One major criticism of the production function approach is 

that most such studies use data that are aggregated over a 

district, state or even the country, while one of the most 

defining characteristics of the student body in the United 

States is its heterogeneity.  In this paper, I use student level 

data from the National Education Longitudinal Study of 1988 to 

estimate the effects of changing from a tracked to an untracked 

math class between eighth and tenth grade on students initially 
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in classes that the teachers identified as having “lower levels 

of performance.”   

 This tracking study, like many others, analyzes high school 

achievement.  Tracking at the high school level must be seen in 

a different light than tracking at the primary school level.  

Separation by ability in high school may be largely a matter of 

student choice.  A teacher-reported “high ability” course may be 

an Advanced Placement course or an International Baccalaureate 

option.  While classes of this nature may require certain pre-

requisites, they may be chosen primarily by students and 

parents.  Any effort to detrack a high school may require the 

removal of these elective courses in favor of courses accessible 

to all students in the ability distribution, or the placing of 

all students in such accelerated classes.   

 In addition, it must be noted that if students are able to 

exercise mobility at the tenth grade level, being tracked in a 

low-ability class earlier must not have precluded them from 

partaking in more difficult classes later on in their 

educational careers.  

2.1 The Tracking Debate – History and Literature 

Oakes (1992) provides harsh criticisms of ability-tracking 

practices.  Her most critical claims are that tracking 

placements are both permanent and unfair, that tracking hurts 

low-ability students while not helping high-ability students, 
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and that outcomes are not equal for the different tracks due to 

limited availability of opportunities.  Ability tracking comes 

in many different forms, making it infeasible to address all 

forms in a single study. Therefore, tracking will be addressed 

in this paper by asking, “Is there a case for planned 

heterogeneity in ability levels in mathematics classrooms in 

particular?”  In addition, this paper will only address tracking 

in mathematics at the high school level.  It is possible that 

students respond differently to tracking at different ages and 

in different subjects; those possibilities are not addressed 

here.  However, addressing high school tracking may be 

particularly informative because it could provide insight into 

the question of whether or not students are locked into tracks 

at an early age. 

 Some conclusive studies on classroom composition examine 

tracking in its most basic form, special education.  Hanushek, 

Rivkin & Kain (1998) conclude that special education programs 

increase achievement of both regular students and special 

education students.  Of course, these results must be accepted 

cautiously since not all special education students take the 

same tests as regular students.  However, both groups improved 

when they were separated.   

 Argys, Rees, & Brewer (1996) conclude that Oakes’ claim 

that detracking does not hurt high-ability students is false.  



9 

 

They come to this conclusion by controlling for both track-

assignment and classroom characteristics.  They estimate that 

the average student, if moved from a low-ability class to a 

high-ability class would increase her mathematics test score by 

8.6 percent.  In addition, they estimate that a move in the 

opposite direction would lead to a decrease in score by 8.4 

percent.  They estimate that complete detracking would cause a 

2.0 percent decline in overall average test scores.  These 

results imply that there are clear winners and losers in 

detracking.  Such results are potentially susceptible to 

misspecification bias, and the present paper reexamines this 

question.  According to Argys, Rees, & Brewer (1996), if a 

school system’s goals include avoiding changes that make some 

students worse off, detracking is not the answer.  If the school 

system wants a solution that improves the performance of the 

student who is performing at the lowest level without regards to 

impacts on other groups, detracking ought to help.  However, the 

work reported in the present paper suggests that they may not 

have captured the whole picture. 

 Figlio & Page (2000) consider the possibility of Tiebout 

voting – the idea that families vote with their feet.  They 

choose to live in districts that will provide satisfactory 

educations for their children.  Since tracking seems to help 

high-ability students, a large-scale detracking effort by a 
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particular school would cause a movement of high-ability 

students away from that school.  In other words, with mobility 

of the student body taken into account, the benefits obtained 

from the presence of the high-ability students might be lost.  

Indeed, Figlio & Page find that both gifted and remedial 

programs attract high-income and medium-income families, making 

the student body more economically diverse.  Summers & Wolfe 

(1975) find that low-ability students benefit greatly from 

having high-ability students in the school.  This may be because 

the parents of high-ability students contribute to the classroom 

atmosphere (Hoover-Dempsey, 1987), because the peer effect of 

high-achieving students with them in untracked classes such as 

physical education is motivation for low-ability students or 

because the correlation between high ability and high income 

leads to more resources being spent on the low-ability students.  

Thus it is likely to be in the interest of low-ability students 

to keep high-ability students around.  Therefore, Figlio & Page 

(2000) conclude that tracking actually helps low-ability 

students because without it the high-ability students would 

likely leave. 

 Hallinan (1994, 1996) explains that many objective and 

subjective criteria are taken into consideration when 

determining track placement.  Such considerations as scheduling, 

teacher assessments of potential, previous track and test scores 
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are parts of the track determination process.  In addition, 

track mobility provides an opportunity to correct for 

inappropriate initial track placements.  Hallinan explains that 

while practice deviates from the theory of tracking, many of 

these can be fixed at a relatively low cost compared to the cost 

of eliminating tracking altogether.  One of the major problems 

she describes is a lack of homogeneity in classes.  Without 

homogeneity in classes, the potential for directing instruction 

at a specific ability level is diminished and all that remains 

of each track is a potentially harmful label.  In order to 

maintain homogeneity, track mobility is crucial.  This paper 

finds indeed that students who outperform their classroom peers 

are able to move to higher tracks. 

Zimmer (2003) tackles the question of homogeneity in 

tracked classes.  He models education production taking into 

account both track placement and class average test score.  His 

findings are consistent with Figlio’s claim that tracking is 

advantageous to all groups if the classes are truly homogeneous 

in ability.  That is, high ability students perform better in 

higher tracks as the average test score increases.  In addition, 

students in homogeneous low ability tracks outperform their 

untracked counterparts when the average class achievement is the 

same.  This suggests that there may be some de-facto equilibrium 

tracking even in ‘untracked’ settings. 
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 Argys, Rees & Brewer (1996) look deeper into the issue of 

the determinants of track placements.  They use a sample of 

students of all abilities, and estimate the probability of being 

placed into various tracks based on different factors, using a 

multinomial logit model.  They find that the largest 

determinants of track placement are previous track placement and 

test scores in the previous period.  This study estimates a 

similar model, but differs in the sample used and in the 

interpretation of the results.  As I use only data from students 

initially placed in low-ability tracks in the sample, I can 

isolate the probability of switching tracks as opposed to the 

probability of being in a particular track.  In other words, I 

am attempting to compare apples with apples. 

 Finally, Oakes decries the fact that economic outcomes for 

high-ability and low-ability students are different.  Figlio and 

Page (2000) state that “those studies [that suggest unequal 

outcomes] have not adequately addressed the possibility that 

track placement and tracking programs may be endogenous with 

respect to student outcomes.”  In other words, we should expect 

that some students will have a higher potential for learning and 

therefore learn more, and it should not be surprising if those 

who have learned more have higher wages.  These students could 

possess unmeasurable characteristics such as motivation, 

attention-span and raw intelligence.  While some of these 
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unmeasurables could be dynamic and affected by tracking, surely 

some of them are natural.  Still, Oakes does present a 

reasonable concern when she says that many opportunities (e.g. 

high quality teachers) afforded to high-track students may not 

be afforded to low-track students.  It is possible that this 

problem could be fixed at a relatively low cost at the school 

level, with a change in administrative attitude.   

Indeed, many high schools allow students to select their 

courses.  At the elementary school level, however, such choice 

is much less common, and some level of parental participation in 

placements might be preferable to exclusively administrative 

placements.  In addition, the teaching pedagogy may have room 

for improvement in the lower tracks.  Such improvements could be 

made by different teacher assignment practices, merit 

incentives, or some other method.  The possibilities for 

improved content and pedagogy in tracks are not considered in 

this paper, but they are certainly worthwhile avenues for future 

research. 

2.2 Question 1: How is Track Placement Determined at the High 

School Level? 

 Using the available data, I start with the group of 

students who were, according to their teachers, placed in a 

class of lower ability for eighth grade in mathematics.  From 

there, I would like to estimate the probability of one student 
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switching into a class of high, average or varying ability by 

tenth grade.  Questions of this type are not new, and I follow 

the example from Argys, Rees and Brewer (1996), who determine 

the probability of being tracked high, average, varying or low 

in eighth grade, that incorporates a variety of factors using a 

multinomial logit model.  However, in contrast to the Argys 

model, I focus only on students initially in low-ability 

classes.  This way, the predicted probabilities may be 

interpreted as the probability of switching from a low track to 

some other track.  I find that higher test scores are associated 

with higher probabilities of switching to each of high, mixed 

and average tracks.  In addition, I find that a variety of other 

factors are also associated with track changes.  However, I do 

not find that race and socioeconomic status are significantly 

related to track changes.  I do find that a substantial 

proportion of students change tracks.  Thus the data from the 

National Education Longitudinal Study of 1988 refute claims that 

students get “locked in” to certain tracks without the 

opportunity to change.   

2.3 Question 2: What Effect Does Tracking Have on Test Score 

Achievement? 

 I would like to determine whether a switch to heterogeneous 

classes would have a positive effect on the test scores of low 

achieving students.  To do this, I estimate an education 
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production function for the entire sample of initially low 

achieving students in eighth grade, using the tracks to which 

students are assigned in tenth grade as regressors.  The 

production function is a standard regression function, estimated 

by least squares.  After using several methods to allow for 

unequal variance of the error terms (heteroskedasticity), I find 

that there is evidence that the effects of switching to a 

heterogeneous class are approximately zero. 

 
3. The National Education Longitudinal Study of 1988 Data 

 
The National Education Longitudinal Study of 1988 (NELS) is 

a nationally representative survey that follows students from 

eighth grade into the workforce.  For each student, surveys are 

completed during eighth grade, tenth grade and twelfth grade by 

the student, two of the student’s teachers, the student’s parent 

and a school administrator.  No other available study has 

included so much detail from so many sources at the student 

level as the NELS. 

 Each student surveyed took achievement tests at the end of 

the eighth grade and tenth grade in reading, mathematics, 

science and history.  The scores represent an estimated number 

of items the student answered correctly.  Only the math and 

reading test results are used in this paper. 
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Argys, Rees and Brewer find that the main determinant of 

tenth grade track is eighth grade track.  However, in this data 

set “track” is a characteristic of each class that is reported 

by the teacher.  A high ability track, as reported by the 

teacher, might be an Advanced Placement course or an 

International Baccalaureate course.  Since most high school 

students are able to choose the classes they take, “track” may 

be more a matter of student choice than an administrative 

decision.  While tracks of a student’s earlier years may 

determine the student’s preparation for the high school courses, 

only the effects of the high school track itself, which may be 

chosen by the student, are examined in this paper and in other 

papers that use the NELS data set.  More specifically, this 

paper looks into the results for those students who switched 

from a low ability track to other tracks or to an untracked 

setting, to determine if track mobility is possible and/or 

helpful.  Changes between eighth grade and tenth grade are 

considered because most students in the United States begin high 

school in ninth grade.  This presents the possibility that a 

student has re-evaluated his or her future in deciding which 

courses to take or even which school to attend.   

For each student, two teachers were interviewed to provide 

classroom level characteristics.  The sample in this paper is 

restricted to those students who had a mathematics teacher 
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interviewed.  The teachers answered whether the class was “lower 

levels of achievement”, “average levels of achievement”, “higher 

levels of achievement” or “varying levels of achievement.”  

While such data may not be optimal, as teachers may have 

subjective views as to how classes should be classified, these 

data are likely to be more reliable than student self-reported 

track placement.  Students who had teacher reports of “lower 

levels of achievement” in the classroom at the eighth grade and 

different teacher reports of classroom ability at the tenth 

grade were categorized as switching from Low to Average, Low to 

High or Low to Untracked.  Of the 3959 students that had both 

eighth grade and tenth grade mathematics teachers respond to the 

question of track placement, 561 students were categorized in 

eighth grade as being in a math class with “lower levels of 

achievement.”  Of those 561 students, 321 of them had tenth 

grade teachers reporting that the student was in a track other 

than “lower levels of achievement.”  191 students were reported 

to have switched from a “lower levels of achievement” class to 

an “average levels of achievement” class.  51 were reported to 

have switched to a “higher levels of achievement” class, and 79 

switched to an untracked setting.  The number of students 

switching is statistically bigger than zero at any conventional 

level, contradicting Oakes’ claim that students are not able to 

move among tracks.   
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The survey data provide a large variety of information, 

giving many possible control variables at the student, classroom 

and school level for both the multinomial logit model and 

education production function.  For example, teachers were 

surveyed on the ability level of their classes, class sizes and 

their own experience levels.  Administrators were surveyed on 

school characteristics such as the number of students in the 

school taking remedial math courses.  Information was also 

gathered on student socioeconomic status, gender and race.  

Those characteristics most likely to be associated with test 

score achievement are included in an education production 

function below. 

3.1 Selection of the Control Variables: The Multinomial Logit 

Model 

 The main variable of interest in the track placement model 

is eighth grade test score.  This is because if the tracking 

system is functioning flexibly and efficiently, students who are 

misplaced in a lower track and subsequently perform well should 

be able to switch tracks.  Also, if initial test scores are a 

signal of ability and motivation, it is possible that this could 

bias the results of the education production function.  For 

example, if someone with higher ability switches to a higher 

track, we might expect that student to show greater improvement. 
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 As Hallinan (1994) points out, non-academic and 

motivational factors may play a role in determining tracks.  

Scheduling issues with extra-curricular activities may also play 

a role.  I have included variables that may signal student 

motivation, such as the student’s estimation of how far she will 

go in school and the teacher’s estimation of how frequently the 

student completes homework.  In addition, I have included a 

dummy for whether or not the school has band available as a 

proxy for extra-curricular activities present in the school.  

Base year class sizes are included as a control, and race and 

socioeconomic status are included to test the claim that tracks 

are chosen on the basis of discriminatory behavior. 

Table 1 below presents the mean eighth grade test score by 

tenth grade track for the 561 students who were in low tracks in 

the eighth grade.  Interestingly, students who switched out of 

the low track have eighth grade math scores significantly higher 

than their colleagues who remained in the low track.  As might 

be expected, those switching to a high track have the highest 

eighth grade scores.  Those switching to heterogeneous classes 

and to average ability classes have mean eighth grade scores 

that are very close.  Given those numbers, we might expect that 

students who switch to other tracks are the brighter students 

and will show the greatest improvements. 
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Table 1 

Eighth Grade Test Scores By Tenth Grade Track 

10
th

 Grade Track 

Placement N Mean Std Dev Minimum Maximum 

Higher Levels 51 37.71 12.17 17.43 66.81 

Average Levels 191 30.15 8.566 17.84 55.34 

Lower Levels 240 25.58 6.772 16.38 54.40 

Varying Levels 79 30.32 9.178 17.66 60.52 

 

 Table 2 shows the number and the percentage of students of 

each race in tenth grade track.  Nothing stands out as 

particularly troubling about these numbers, but they do suggest 

that we must take any race inferences from our model with a 

grain of salt, as the sample sizes are quite small.  That is, we 

should probably not try to draw too much inference from the fact 

that two out of eight Native American students switched to a 

high track. 

Table 2 

Race By 10
th

 Grade Placement 

 

10
th

 Grade Track 

Placement White 

African 

American Hispanic 

Asian 

American 

Native 

American 

Race 

Unknown 

Total 359 85 76 28 8 5 

Higher Levels 33 

(9.2%) 

5    

(5.9%) 

8 

(10.5%) 

3 

(10.7%) 

2      

(25%) 

0 

Average Levels 122 

(34.0%) 

31 

(36.5%) 

25 

(32.9%) 

8 

(28.6%) 

3   

(37.5%) 

2 

Lower Levels 146 

(40.7%) 

42 

(49.4%) 

35 

(46.1%) 

13 

(46.4%) 

1   

(12.5%) 

3 

Varying Levels 58 

(16.1%) 

7    

(8.2%) 

8 

(10.5%) 

4 

(14.3%) 

2      

(25%) 

0 
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3.2 Selection of the Control Variables: The Education Production 

Function 

As the literature has pointed out, there are many 

determinants to test score improvement.  Following the 

literature as well as intuition, a rich set of control variables 

that may be correlated with improvement in test scores have been 

included.  While there have been ongoing debates about the 

effects of class size achievement (Krueger 2000, Hanushek 1999), 

it seems natural that class size could have some effect on test 

scores, so it is included.  It is worth to noting that a 

remedial class is not the same as a small class.  Indeed, Boozer 

and Rouse (2001) find that class size effects become more 

pronounced when remedial education is taken into account.  Since 

we are controlling for track placement in this paper, the class 

size coefficient should not absorb the effects of the class 

ability level.  Following the suggestion of Figlio (2000), a 

variable is included for the percentage of students in the 

school who are in remedial mathematics.  If his hypothesis is 

true, the coefficient attached to this variable should be 

significant and negative.  Controls for race, socioeconomic 

status, gender and teacher experience have also been included in 

the model. 

While specifying the functional form of the previous test-

score effect is quite difficult, after many attempts, a 
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reasonable specification emerged.  There was evidence of a non-

linear relationship between previous test scores and 

improvements in test scores, and the best fit I found was a 

quadratic relationship.  The possibilities of logarithmic and 

hyperbolic relationships were explored, but they complicated the 

intuition of the model while not fitting the data any better.  

The estimation of the rest of the model was robust to changes in 

the test score specification.  Eighth grade reading test scores 

are included in the model, as they could signal other components 

of ability. 

4. Execution of the Models 
 
4.1 Track Mobility and the Multinomial Logit 

 
The first question at hand is that of ability track 

mobility.  To further examine the question, we look at changes 

in track as utility-maximizing decisions.  The utility gained as 

a result of switching from a low track to a different track can 

be described as 

U(Tia) = f(Yi8, Xi8, Xi10)        (1) 

In equation (1), T stands for the 10th grade track of student i 

in initial track a.  Yi8 represents the mathematics test score of 

student i in eighth grade.  Xi8 is a vector of control variables 

reported by the student, teacher, school and parent level for 

eighth grade.  Xi10 is a similar vector of control variables for 



23 

 

the tenth grade.  We will use a multinomial logit model to 

describe the probabilities of switching to various tracks. 

4.2 Assumptions of the Multinomial Logit Model 

 As with any empirical model, the multinomial logit starts 

with some basic assumptions (Cramer, 1991). 

(1) The data are case specific.  That is, each independent 

variable has only a single value for each case ; 

(2) The dependent variable is not perfectly predicted from the 

independent variables ; 

(3) The independence of irrelevant alternatives ; 

(4) The alternatives do not have an inherent order ; and 

(5) The error terms of the utility functions (equation 1) are 

independently and identically Gumbel distributed. 

Now, the first two assumptions are easily confirmed with the 

data.  The third merits some discussion.  What it means is that 

the introduction of an irrelevant alternative will not affect 

the choice of a particular alternative.  That is, if we are 

choosing whether to walk, bike or bus to school and wish to 

model it with a multinomial logit, the introduction of different 

types of buses (blue or pink, for example) should have no effect 

on whether I choose to bike or walk.  Is this a good assumption?  

It is difficult to tell, so it should be kept in mind when 

making inferences. 
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 Assumption four is easily confirmed, as the tracks are not 

used as sequencing devices.  That is, I can assign each track 

different numbers without consequence to inference.  Assumption 

five is highly unintuitive, but with the number of observations 

we have, the difference between the Gumbel distribution and the 

Normal distribution are quite small, indeed small enough to be 

ignored.  If we chose to assume the errors to be normally 

distributed, we would need to use a multinomial probit model, 

which is costly both in terms of intuition and computation. 

4.3 Mechanics of the Multinomial Logit Model 

The model I employ differs from that of Argys, Rees and Brewer 

in that the dependent variable is modeled only for the subset of 

the student population that was initially in track a, in this 

case, the “lower levels of ability” track.  In effect, this 

paper is looking for the conditional probability of placement in 

track b given that the student was initially in track a.  This 

allows a more direct analysis of the test score effects of 

switching from one particular track to another. 

A student enrolled in track a in 8th grade will choose to enroll 

in track b in 10th grade if and only if 

U(b) > U(c)     (2) 

for all available tracks c ≠ b.  A student chooses to remain in 

track a if 

U(a) ≥  U(c)     (3) 
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for all available tracks c ≠ a.  If the errors of equation (1) 

are Gumbel distributed, the probability that a student changes 

from track a to another track can be represented by a 

multinomial logit model.  The probability of switching from 

track a to track b is: 

Pr(T10 = b | T8 = a) = 
��(�)

�� ∑ ��(
)



 ,  (4) 

where U(j) is the utility gained from being in track j.  The 

probability of remaining in track a is considered the reference 

outcome and is represented by: 

Pr(T10 = a | T8 = a) = 
�

�� ∑ ��(
)



 .  (5) 

The multinomial logistic regression is used to determine the 

probability of an event with more than two discrete possible 

outcomes that do not have a natural ordering.  In this case, we 

use the different possibilities for mobility as our dependent 

variable.  It is clear from equations (4) and (5) that the 

summation of these numbers over all alternatives is equal to 

one, so it may indeed be viewed as a probability.  Coefficients 

are estimated using maximum likelihood. 
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4.4 Results of the Multinomial Logit 

The results from the estimation of the multinomial logit 

model, equation (1), are seen below in Table 3. 

As expected, the eighth grade test score of a student in a 

lower achieving math course is a strong indicator of a move to 

average, untracked and higher achieving classes.  An increase in 

score by 0.1 standard deviations is associated with an increase 

in the log odds of switching to an average track mathematics 

course of 0.062.  The log odds of switching to a high achieving 

mathematics course are increased by 0.131 with a 0.1 standard 

deviation increase in score.  Log odds of switching to untracked 

change by 0.068 with a test score increase of 0.1 standard 

deviations.  This suggests that students switching to untracked 

settings are the ones that are scoring better initially, which 

would tend to bias test score effects upwards of a switch to an 

untracked class. 
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Table 3 

What are the Determinants of Track Mobility? 

Estimates of Equation 1 

Likelihood Ratio = 150.6 
Standard Errors in Parentheses 

Variable Average High Untracked 

Intercept -2.777 

(0.813) 

-8.497 

(1.491) 

-2.402 

(0.980) 

8
th

 Grade Test Score 0.062*** 

(0.016) 

0.131*** 

(0.021) 

0.068*** 

(0.019) 

8
th

 Grade Class Size 0.063*** 

(0.016) 

0.081*** 

(0.027) 

0.053**  

(0.021) 

Gender (1 = Female) 0.301 

(0.219) 

0.525 

(0.368) 

0.531* 

(0.284) 

Socioeconomic Status 0.005 

(0.164) 

-0.013 

(0.276) 

-0.019 

(0.219) 

Band is Available in School (1 = 

Yes) 
-1.216** 

(0.544) 

0.013 

(0.969) 

-1.448** 

(0.644) 

How Far Student Thinks she will 

Go in School (Increasing in Years) 
0.198** 

(0.091) 

0.305* 

(0.168) 

-0.068 

(0.115) 

Student Often Does Not Turn in 

Homework (1 = Yes) 
-0.642*** 

(0.252) 

-2.467*** 

(0.777) 

-0.403 

(0.323) 

Native American 1.421 

(1.120) 

2.738** 

(1.374) 

1.720  

(1.274) 

African American 0.090 

(0.310) 

-0.039 

(0.632) 

-0.534 

(0.473) 

Hispanic -0.243 

(0.332) 

0.013 

(0.551) 

-0.543 

(0.472) 

Asian American -0.396 

(0.539) 

0.192 

(0.775) 

-0.083 

(0.639) 

*** Significant at the 1% Level 

** Significant at the 5% Level 

*Significant at the 10% Level 

 

 Having Band available as an extracurricular activity is 

negatively associated with switching to average or untracked 

settings.  This suggests that the existence of band may cause 
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scheduling conflicts that could restrict a student’s ability to 

switch tracks.  However, the band option seems unlikely to 

prevent a student from moving to a higher track.  Students may 

think that forgoing band or other extracurricular activities for 

which band proxies is worth the benefit of being among the 

higher achieving students.   

 Class size in the eighth grade class shows a positive and 

significant relationship to all track changes.  This means that 

the larger the eighth grade class was for a particular student, 

the larger the probability is that he or she switched.  The 

interpretation of this is not clear.  It could mean that 

students were unhappy with larger class sizes, so they elected 

to move to another track.  However, higher tracks tend to have 

higher average class sizes.  Another idea is that the students 

in the larger classes that performed better would be more likely 

to be funneled out of the classes because the teachers and 

administrators had an incentive to keep class sizes low in the 

low-ability classes. 

The eighth grade teacher reporting that a student rarely 

turns in homework is negatively associated with all track 

changes.  This is not terribly surprising, as a student who 

lacks engagement in class may very well not be willing to take 

the initiative to make a change of course.   
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 The student’s expectation of how far she will advance in 

school is positively and significantly associated with a switch 

to average track.  It shows a weak positive correspondence to 

switching to a high track and a weak negative correspondence to 

a switch to an average track.  This variable is likely a proxy 

for motivation rather than raw intelligence.  By sheer 

motivation, a student could probably take the more advanced 

material in the average class, but without the raw intelligence, 

success in the high track is less likely. 

Being female shows a weak, insignificant association with 

changing to an average or high track, but a significant 

association with a switch to an untracked class.  Socioeconomic 

status and race show no significance at any conventional p-

value, providing no evidence to the theory that track mobility 

is reserved only for the privileged.  Defacto segregation may be 

a cause of this, as schools are often homogeneous in race and 

socio-economic status.  If this is the case, then it appears 

that schools with students with mostly low socio-economic status 

or that are mostly homogeneous in race still allow to change 

tracks.  As expected by Hallinan (1994), variables other than 

simple achievement go into the decision to exercise upward track 

mobility.  Contrary to the beliefs of many tracking critics, 

none of the race variables show statistical significance to the 

decision to change course designations.  While race has been 
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shown (Argys, Rees & Brewer 1996) to be a determinant to track 

placement, it appears not to be significantly associated with 

track mobility.  The same holds true for socio-economic status.  

4.5 Test Score Effects and the Education Production Function 

In this paper, I use a standard education production function 

to describe achievement at the tenth grade level: 

(Yia10 – Yil8) = β1 Yil8 + β2 Yil8
2 + β 3Xi + β 4Tia + εi (7) 

In equation (7), (Yia10 – Yil8) represents the improvement in 

mathematics test score of student i from 8th to 10th grade who had 

an eighth grade track placement of l and a tenth grade track 

placement of a.  The variable Yil8 indicates the initial test 

score of student in i in eighth grade.  Following Zimmer (2003) 

and Argys, Rees and Brewer (1996), this term (and its square)are 

intended to capture all of the effects of education inputs at 

the eighth grade level and below.  Thus, the remaining terms 

should capture just the effects of these inputs for the tenth 

grade year.  The independent variable Xi is a vector of control 

variables for the student, including eighth grade reading test 

score, socio-economic status, class size, race and teacher 

experience. The vector Tia is composed of dummies indicating a 

change to track a by student i initially in track l.  I estimate 

a production function only for those students initially in a 

track categorized as “lower achieving” by the teacher.  With 

this methodology, I can compare the achievement of those who 
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have switched away from a low track to those who have remained 

in a low track.  It is by this process that I am able to see 

whether switching to a different track is associated with test 

score improvements for students initially in lower-ability 

classrooms.  Given the information from Table 1, it is possible 

and likely that track switches of students are endogenous with 

test scores.  That is, students who score well above the average 

in a low ability track are likely to move to a higher track.  

Thus parameters attached to the vector Tia are likely to be 

biased upward. 

4.6 Assumptions of The Least Squares Estimation of (7) 

 The assumptions of the regression model used here are as 

follows (Greene): 

(1) The independent variables are fixed in repeated samples; 

(2) The dependent variable cannot be predicted perfectly from 

the independent variables; 

(3) The εi’s are normally distributed; 

(4) E[εi] = 0 ; 

(5) Var[εi
2] = σ2 for all i(homoskedasticity); and 

(6) Cov[εi,εj] = 0 if i ≠ j. 

As will be discussed below, many of these assumptions are 

not realistic, and I must employ some correction mechanisms to 

make sure that any inferences are not misleading.  In 
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particular, assumption (5) is rejected easily.  The other 

assumptions cannot be rejected with our data. 

4.7 Properties of Estimators and The Gauss-Markov Theorem 

 Least squares estimation is the typical choice for this 

type of function because it is intuitively tractable and 

computationally simple.  The main result driving the use of 

least squares estimation is the Gauss-Markov Theorem.  Before we 

discuss that theorem, here are definitions of some desirable 

properties of estimators. 

Definition 1: An estimator, ẑ of z is said to be unbiased if E[ẑ] 

= z.  In other words, if the mean of the sampling distribution 

of the estimator is equal to the parameter we are trying to 

estimate. 

Definition 2: Let Z be a class of estimators ẑ ϵ Z.  The 

estimator ẑ is said to be relatively efficient if Var[ẑ] ≤ Var[z] 

for all z ϵ Z. 

 These properties are by no means the only desirable 

properties in estimators, but they are some of the most easily 

testable.  While unbiasedness is often desirable, it is possible 

that requiring unbiasedness could come with much greater costs 

in terms of efficiency.  The efficiency of estimators is 

necessary to make inferences.  That is, if the variance of the 

estimator’s sampling distribution is very high, we will have a 

difficult time drawing any conclusions from that estimator. 
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Theorem 1(Gauss-Markov): In a model where the errors have 

expected value zero, are uncorrelated and have equal variance, 

the best linear unbiased estimators (BLUE) may be obtained 

through least squares estimation. 

 Best in terms of Gauss-Markov here means relatively 

efficient when compared with the class of linear and unbiased 

estimators.  As mentioned before, it may not always be desirable 

to require that estimators be unbiased, but in this case, we 

will be satisfied with estimators that are relatively efficient 

in this class. 

4.8 Heteroskedasticity 

Definition 3: Regression disturbances whose variances are not 

constant across observations are said to be heteroskedastic. 

As is often the case with cross-sectional data, there is a 

clear violation of the homoskedasticity condition in this data 

set.  That is, the ‘equal variance’ condition on the errors in 

the Gauss-Markov theorem does not hold.  As can be seen from 

Scatter Plot 1 and Scatter Plot 2, the residuals of the OLS 

estimation of equation (1) appear to be related to the base year 

test score, and are clearly not spread equally around the zero 

line.  Further investigation also provides reason to believe 

that the residuals are also correlated with teacher experience.   
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To formally test for heteroskedasticity, we use two tests: 

the White test and the Breusch-Pagan test.  The White test 

regresses the errors against all of the independent variables 

and tests the hypothesis that all of the coefficients are equal 

to zero.  The Breusch-Pagan test regresses the errors against 

any subset of the independent variables that may be suspicious.  

This model fails the White test and the Breusch-Pagan test using 

teacher experience, base year test score and base year test 

score squared. 
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Heteroskedasticity is a problem for two reasons.  First, it 

entails a violation in one of the assumptions of the Gauss-

Markov theorem, which means that we cannot use this theorem to 

make valid inferences.  That is, our estimators are no longer 

BLUE.   

Next, the way we estimate our standard errors and our 

significance depends crucially on the fact that our disturbances 

have constant variance.  That is, the variance/covariance matrix 

for our coefficients, ∑�∗ ,is evaluated (Greene 2003)as 

∑ =�∗  (X’X)-1X’(σ2I)X(X’X)-1     (8) 
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where X is an (n x k) matrix with each column represents a 

control variable and each row represents an observation. Here, I 

is an (n x n) identity matrix, so (σ2I) is a diagonal matrix with 

σ2 in every diagonal entry.  Also, σ2 represents the variance of 

the disturbances which we have assumed to be constant.  As such, 

using simple algebra, we can simplify the VCV matrix down to, 

∑ =�∗  σ2 (X’X)-1(X’X)(X’X)-1 =  σ2 (X’X)-1   (9) 

This gives us a (k x k) variance/covariance matrix where 

the kth diagonal entry represent the square of the standard error 

of variable k.  Since σ2 is not known, it is estimated by the 

disturbances, but is still assumed to be constant across the 

disturbances.  Clearly, if we have a situation where the σ2 are 

not equal across observations, we cannot make the 

simplification, as we did in equation (9), and our standard 

errors that we estimate will not be correct. 

 To deal with this problem, I will take two approaches: One 

will adjust our estimation of standard errors and the other will 

entail a completely different way to estimate the model. 

As we can see, heteroskedasticity causes the estimated 

standard errors to be incorrect because the standard error 

calculation supposes that the variances of the error terms are 

all the same. To address this, I will estimate robust standard 

errors (White 1980).  This is, in a sense, a more conservative 

way to estimate the standard errors, thus causing us to make 
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inferences more cautiously than we otherwise would.  To estimate 

the robust standard errors, we estimate �� for each observation 

using the actual residuals.  That is, in our computation of 

equation (8), we replace ∑�∗ with an estimation of ∑��
�∗ , a 

heteroskedasticity-consistent estimator of the 

variance/covariance matrix using the ��
�’s,the squared error term, 

namely: 

∑ =��
�∗ (X’X)-1X’diag(��

�)X(X’X)-1     (10) 

  Intuitively, this would make the sampling variance 

increase in the total error for each variable and thus the 

standard errors would increase in total error.  White proved 

that this formulation of the standard error converges to the 

actual standard error asymptotically, so that with a large 

sample, we are not too much is sacrificed in terms of 

efficiency. 

An important advantage to this approach is that it does not 

require us to know the exact functional form of the 

heteroskedasticity.  In addition, since it causes the standard 

errors to increase in total squared disturbance, it provides us 

with conservative estimates of standard errors that would tend 

to steer us towards caution in inference. 

The disadvantage to this approach is that our estimators 

are inefficient relative to other methods such as weighted least 
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squares (Greene 2003).  Our estimators could potentially be 

chosen to have a lower variance.  However, if the estimators 

remain significant with the robust standard errors, the 

inferences should not be misleading. 

Next, to try and find more efficient estimators, I specify 

a weighted least squares (WLS) model.  To do this, I note that 

the residuals appear to be related base year score and teacher 

experience, and I model the squared residuals as a function of 

base year score, base year score squared and teacher experience: 

��
� =  �� +  ���� + ����

� + ���,       (11) 

where Y8 is 8
th grade test score and E is teacher experience. 

  Then, the original model is estimated again, but each 

observation is weighted by the reciprocal of the predicted value 

of the squared residuals, following Greene (2003).  When the 

measurements of the errors are uncorrelated but have different 

variances (i.e. are heteroskedastic), Greene points out that a 

weighting mechanism ought to be used.  If a weighted sum of the 

squared residuals is minimized, β*is BLUE if the reciprocal of 

the measurement’s variance (i.e. the predicted residual) is used 

as the weight.  If the squared residuals are modeled correctly, 

the resulting estimators will be efficient and inferences from 

the standard errors will be valid.  The intuition behind the 

approach is that some observations have better predictive power 

than others, and we ought to pay more attention to the ones that 
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show a more systematic relationship to the independent 

variables.  See the figures below. 

 

 



40 

 

While these plots are highly exaggerated, they are 

illustrative of the motivation behind the weighted least squares 

formulation.  In the first example plot, you can see that for 

the middle values of the independent variable, the errors are 

quite large.  When estimating the line, we take every 

observation to have equal value and minimize the sum of the 

squared distances from the prediction line.  As a result, our 

line is systematically wrong for all values of the independent 

variable because the observations with high variance are 

influencing the estimation. 

In the second example plot, we put a higher priority on 

minimizing the squared distances from the prediction line at the 

values of the independent variable where the errors are likely 

to be lower.  That way, we can see the systematic relationship 

between the independent and dependent variables more clearly and 

with less error for some values and with greater error for other 

values of the independent variable.  

The disadvantage to this approach is that it is difficult 

to know the exact functional form of the squared residuals, 

though the plots do give an intuitive idea.  In addition, this 

method devalues observations with large residuals.  It is 

possible that those observations actually contain a lot of 

information.  When making inferences, we must keep in mind the 

behavior of the residuals, as it is certain that our model has 
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less predictive power over some subset of the independent 

variable.  However, upon using this estimation using weights, 

the model passes both the White and the Breusch-Pagan tests. 

4.9 Results of Approach I – Robust Standard Errors  

In Table 4, results from the initial OLS estimation are 

presented with the original, incorrect, standard errors as well 

as the heteroskedasticity consistent standard errors.  While 

some of the robust standard errors are larger than those 

estimated assuming homoskedasticity, none of them are 

drastically different.  In fact, if we accept a 5% level of 

significance, none of our variables change from significant to 

insignificant or vice versa. 

The variables relating to track changes show some of what 

we expected.  Switching from a low track to either an average 

track or a higher track is associated with higher test score 

gains.  Of course, the mean base year test scores show that 

these students are significantly brighter than average among the 

students in our sample, implying that this coefficient does not 

necessarily represent a valid estimate of the consequences of 

moving a typical student to a higher track.  Interestingly, 

despite the fact that those students switching from a low track 

to an untracked class have higher initial scores, the parameter 

associated with a switch to an untracked class is negative, 
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though not significant.  If we take a 95% confidence interval of 

the effect of mixed classes,  

Table 4 

Parameter Estimates for Equation (7) with Robust Standard Errors 

R
2
 = 0.226, 556 Observations, 66 with Missing Values 

Variable 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Heteroscedasticity 

Consistent 

Std 

Error t Value Pr > |t| 

Intercept -2.822 2.811 -1.00 0.315 2.521 -1.12 0.263 

Base Year Mathematics 

Test Score 

0.444 0.167 2.66 0.008 0.156 2.85 0.004 

Base Year Mathematics 

Test Score Squared 

-0.008 0.002 -3.38 0.001 0.002 -3.77 <0.001 

Base Year Reading Test 

Score 

0.143 0.046 3.08 0.002 0.045 3.16 0.002 

“Average Levels of 

Ability” in 10
th

 grade 

2.805 0.618 4.54 <0.001 0.612 4.58 <0.001 

“Varying Levels of 

Ability” in 10
th

 grade 

-0.056 0.805 -0.07 0.945 0.831 -0.07 0.947 

“Higher Levels of Ability” 

in 10
th

 grade 

6.293 1.018 6.18 <0.001 1.129 5.57 <0.001 

Percent of Students in 

Remedial Math  

-0.093 0.027 -3.45 <0.001 0.027 

 

-3.42 <0.001 

Socioeconomic Status 

Composite 

1.026 0.357 2.87 0.004 0.363 2.82 0.005 

Sex (1 = female) -1.142 0.516 -2.21 0.027 0.509 -2.24 0.025 

Teacher Experience -0.308 0.100 -3.07 0.002 0.102 -3.01 0.003 

Class Size 0.036 0.038 0.94 0.349 0.037 0.98 0.330 

Asian -1.976 1.182 -1.67 0.095 1.277 -1.55 0.123 

African American -0.486 0.774 -0.63 0.530 0.717 -0.68 0.498 

Hispanic 1.225 0.785 1.56 0.119 0.735 1.67 0.096 

Native American 2.259 2.022 1.12 0.265 1.761 1.28 0.200 
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the upper limit of the interval has the student improving by 

only 1.5 questions as a result of the change.  The lower limit 

has the student doing worse by about 1.7 questions.  In view of 

the higher initial test scores, this number may even be biased 

upward.  These numbers are hardly enough to inspire widespread 

reform.   

Somewhat surprisingly, class size shows a positive 

relationship with test score gains.  While this is consistent 

with findings from Argys et. al. (1996), it seems to contradict 

the more common practice of making lower-track classes small.  

This question almost surely warrants further research to 

determine what exactly is causing the positive class size 

effect.  Also consistent with Argys et. al, being Asian shows a 

negative and not quite significant association with test score 

improvement in this sample.  Finally, it is extremely 

interesting to note that teacher experience shows a strong 

negative association with test score gains.  It seems that the 

students in a low track benefit more from inexperienced teachers 

than from experienced ones.  Perhaps the experienced teachers 

who have proven themselves as high quality instructors have been 

rewarded with higher tracks and the only remaining experienced 

teachers in the low tracks are the largely unsuccessful ones.  

If that is the case, then it is not surprising that the 

inexperienced teachers would have a greater positive effect on 
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test scores than the experienced ones, on average.  This 

suggests that perhaps closer attention ought to be paid to the 

process that matches teachers to classrooms. 

 As might be expected, socioeconomic status shows a strong 

positive test score effect.  Also, the percent of students in 

the school needing remedial math shows a strong negative effect 

on test score gains.  It seems that there are intra-school peer 

effects in mathematics.  The positive spillovers may come from 

higher ability students’ tendency to be wealthy, from parental 

volunteer time or simply from providing motivation.   This 

finding supports Figlio’s conclusion that high ability and 

average ability students leaving the school would be detrimental 

to low ability students.   

 Of course, some of our inferences about significance may be 

understated, as the robust standard errors approach produces 

consistent, but inefficient estimators.  Even though the robust 

standard errors do not appear much different from the original 

ones, we may be able to improve our estimation with the weighted 

least squares. 

4.10 Results of Approach II – Weighted Least Squares 

To estimate the weighted least squares model, the residuals 

squared must first be regressed against base year mathematics 

test score, base year mathematics test score squared, and 

teacher experience to obtain weights.  The results from that 
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estimation are presented in Table 5.  As expected from the 

scatter plots, both of the test score terms are significant and 

the squared term is negative, creating the concave down 

appearance.  Also as expected, the residuals squared are 

positively related to teacher experience. 

Table 5 

Estimation of Residuals Squared, Equation (11)
 

R
2
 = 0.0475 

Variable 

Parameter 

Estimate 

Standard 

Error t-Value Pr > |t| 

Intercept -61.776 20.506   

8
th

 grade Mathematics Test Score 5.001 1.236 4.05 <.0001 

8
th

 grade Mathematics Test Score Squared -0.065 0.017 -3.72 0.0002 

Teacher Experience 1.891 0.793 2.38 0.0176 

 
 From here, I use the reciprocal of the predicted value of 

the residual squared as a weight for the original regression, 

following Greene (2003).  If the weights are correct, the 

resulting estimators should be both consistent and efficient.  

The results of the weighted regression are presented in Table 6.  

While it is difficult to know for sure the functional form of 

the disturbances, we will have some measure of success or 

failure by tests for heteroskedasticity after the weighted 

estimation.  This weighted least squares model passes both the 

White and Breusch-Pagan tests with p-values of 0.16 and 0.99 

respectively.  Prior to weighting, this specification failed the 

tests with p-values of 0.01 and 0.0001.   So while we may not 
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have the exact functional form of the residuals, we now do not 

reject the hypothesis that our errors are homoskedastic. 

Table 6 

Weighted Least Squares Estimation of Equation (7) 

R
2 
= 0.226 

Variable 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Intercept -2.759 2.474 -1.12 0.2654 

8
th

 Grade Mathematics Test Score 0.447 0.153 2.91 0.0037 

8
th

 Grade Mathematics Test Score Squared -0.008 0.002 -3.76 0.0002 

8
th

 Grade Reading Test Score 0.120 0.047 2.57 0.0105 

“Average Levels of Ability” 10
th

 grade 2.428 0.578 4.20 <.0001 

“Varying Levels of Ability” 10
th

 grade -0.108 0.752 -0.14 0.8858 

“Higher Levels of Ability” 10
th

 grade 6.298 1.019 6.18 <.0001 

Percent of Students in Remedial Math -0.080 0.024 -3.30 0.0010 

Socio-Economic Status 1.063 0.338 3.14 0.0018 

Sex -0.988 0.477 -2.07 0.0389 

Teacher Experience -0.279 0.101 -2.77 0.0058 

Class Size 0.059 0.035 1.71 0.0872 

Asian -2.419 1.126 -2.15 0.0323 

African American -0.593 0.677 -0.88 0.3816 

Hispanic 0.581 0.695 0.84 0.4030 

Native American 3.085 2.110 1.46 0.1444 

 
 From the table we can see that most of the variables have 

the same signs and interpretations, though some of the 

magnitudes have changed a small amount.  The only variable that 

changed from significant to insignificant at the 5% level is 

Hispanic.  Notably, the track change variables did not change 

appreciably- in fact, it shifted downward.  A change from a low 
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track to an untracked class is still negative and insignificant, 

with a relatively tight confidence interval centered slightly 

left of zero, while changes from low to average and high are 

positive and significant. 

5 Where Else Could We Go From Here? 

5.1 A Look into Matching – Background and Introduction 

 As mentioned above, the methods I use for modeling these 

questions are all limited in different ways.  With the limited 

powers of the available models and data, what is the best course 

of action?   

The theory of matching processes could be used to model an 

educational environment where students are given a choice among 

classes within a school. One could use the empirical model of 

education production as well as the empirical discrete choice 

model as inputs into the design of indifference solving 

mechanisms for the matching process.  From here, it would be 

valuable to estimate the potential costs and efficiency gains of 

such a scheme. 

The most common application of the matching process is what 

is commonly known as the stable marriage problem (Gale and 

Shapley, 1962).  That process starts with two sets: n men 

comprise set M and n women comprise the set W.  For a marriage 

to occur, an element of M and an element of W must agree to 
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marry.  To have stable marriages, scenarios where a change could 

make everyone better or equal off must not be possible.   

Matching processes have been applied to problems ranging 

from college football games to matching medical school graduates 

to residencies.  Roth et al (2008) use an extension of the 

matching process to match students to schools in New York City.  

Various tie breaking mechanisms must be analyzed to resolve 

indifferences in preferences. 

The matching process could apply to the choice of a 

classroom within a school, as opposed to schools within a 

district, with some changes to the structure of the model.  The 

design of such a model should be guided, in part, by empirical 

results regarding education production and revealed preferences 

of students.    

 Why might we want to consider such a scheme?  The empirical 

literature on education production is vast.  Krueger & Whitmore 

(2000) find that some categories of students are more responsive 

to class size reductions than others.  Hanushek (2003) suggests 

that peer effects play a role in schools and that different 

categories of students have different responses to the ability 

of their peers.  Hanushek (1986) finds many inputs that have far 

different effects on different categories of students.  Keeping 

track of how each individual will respond to inputs and trying 

to provide them accordingly could bring up information and 
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administrative cost problems akin to those of central planning.  

Indeed the findings in this paper showed some surprising results 

for a small subset of the student population. 

Allowing choice within a school may allow students and 

parents to maximize their own utility within a school, 

alleviating some of the costs of ineffective or unwanted inputs 

as well as allowing students to directly express their 

preferences for learning.  To my knowledge, there are no 

empirical or theoretical inquiries into this kind of a scheme. 

5.2 - Proposed Model Idea:  

To model an intra-school class choice scheme using a matching 

process.  The following research questions must be addressed: 

(1) What are the Model Parameters: What can we learn from the 

existing applications of the matching process?  What 

assumptions about the initial parameters must we make?  Given 

those, what rules for the process will provide efficiency 

and/or strategy-proofness?   

(2) How would we Design Such a Mechanism?: How can we optimally 

design a set of initial options for each school so that the 

cost of changing options after students express their 

preferences can be minimized?  What rules can be put in place 

to allow schools to be flexible in the face of varying 

preferences from year to year?  Given a set of options, how 
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will groups of students make choices?  How will we account for 

student indifferences or default assignments? 

(3) What are the Consequences in terms of efficiency? 

5.3 - Addressing the Model Questions: 

(1) Model Parameters 

View class selection as a matching game, matching students to 

classes.  The Roth (2008) model assumes a fixed capacity of each 

school.  Instead of a fixed capacity for each class, we will 

assume a minimum number of students per class and a fixed school 

size.  Students will express their preferences, and the matching 

will be achieved in a way similar to the Roth model.  However, 

we will relax the assumption of a fixed set of classes.  That 

is, if all students in a school want the same type of class, 

some or all of the classes can change to provide several copies 

of a specified class.  This will likely complicate the matching 

process.  The metamorphosis could drastically change the 

implications in the Roth model with regards to strategy and 

efficiency.  I would like to eventually relax the assumption of 

fixed school size to allow for school expansion in a more 

dynamic model. 

(2) Design 

Using intuition gained from my current empirical research 

along with data such as the National Education Longitudinal 

Study of 1988, I will empirically model education production 
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functions for a number of subsets of students.  This data 

follows students from eighth grade into the workforce, surveying 

students, teachers, parents and administrators.  Criteria other 

than expected test scores may factor into students choices, as 

suggested by Hallinan (1996), so a discrete choice model 

including extra-curricular activities, peer group composition, 

teacher characteristics and other factors as inputs should be 

specified to determine what students value when choosing a 

class.  Guided by these empirical results regarding efficiency 

and revealed preference, initial course offerings can be 

designed with the purpose of minimizing the need for changes in 

course offerings after student preferences are known.  These 

results will also allow us to make a thoughtful decision about 

the default class placements of indifferent students.   

(3) Consequences 

Using predictions based on the empirical models, we can 

estimate the potential efficiency gains of this plan.  After 

implementation, we can test whether the prediction held true. 

5.4 - Broader Impacts of the Proposal 

Through this research, I plan to contribute to the field in 

three very important ways: (1) extend the theory of matching 

processes to make the model more accessible to other 

applications where capacity constraints are not realistic and 

changes in one of the matching sets are feasible; (2) create 
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realistic policy proposals that could potentially increase 

efficiency in the public school system; (3) bring into the 

academic and policy conversation the idea of students taking 

ownership in their educations.   The fostering of this kind of 

attitude has potential to help all kinds of students.  To my 

knowledge, no such model of the distribution of students across 

classrooms within a school has yet been developed.   

6 Conclusions 

Ability tracking is a controversial practice at all levels 

of education as evidenced by the plethora of literature on the 

subject.  However, the nature of tracking in different settings 

is remarkably different.  The theory of tracking assumes that 

instruction will be targeted at a specific group, raising the 

efficiency of classroom placements.  Of course, as with all 

theories, there are places for unintended consequences.  Much 

literature in the economics of education is devoted to the 

theory of school choice.  Perhaps school choice may be extended 

to include class choice as described in the matching model 

above, as class placement at the high school level can be viewed 

as a utility maximizing decision for students, and there may be 

a separating equilibrium based on varying classroom and teacher 

characteristics.  Further research on this subject may prove 

extremely useful to teachers, parents, and administrators alike.  

Perhaps the only difference in many tracks is the label, and the 
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label is what is actually detrimental to both the teacher’s view 

of the class and the student’s view of himself or herself.  

Evidence from this paper shows that students switching from a 

track labeled “low” to a track labeled “average” show greater 

improvement in test scores than those who remain in the low 

track.  Of course, selection bias may be driving this result, 

and with a larger sample size could very well have been 

significant.  However, the focus of this paper is to determine 

whether students who switch from a lower achieving class to an 

untracked class perform systematically better than their 

counterparts who remain in the lower performing track.  Evidence 

from this paper provides evidence to refute that hypothesis.  

The upper end of the 95% confidence interval would have a 

student improving by about 1.4 questions, or 0.14 standard 

deviations.  This number is not significant enough to warrant 

widespread reform. 

 The claim of critics that students are “locked in” to 

particular tracks and unable to move seems to be completely 

unfounded, as more than half of our sample of eighth graders 

initially in a low track exercised mobility and switched 

mathematics courses.  As expected by some, both academic and 

non-academic factors are related to the decision to switch 

classes.  With a larger data set and more variables, we may be 

able to deduce more about the nature of track mobility and the 
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possibility of making sure that our school systems can 

compensate for initial errors in placement and differences in 

student preferences with regards to the composition of a 

classroom.  At any rate, it appears that students who perform 

above average for their track can and do exercise vertical (and 

tracked to untracked) mobility in mathematics courses. 

 Considering all of the literature on the subject and the 

nature of tracking at the high school level, it seems that the 

call for complete detracking is unfounded.  Taking away the 

choice of a more difficult class from a young adult contradicts 

much of what the education system is trying to do in encouraging 

students to be ambitious and successful.  Indeed, the evidence 

does not even support the claim that students initially in lower 

performing classes improve with a switch to a class of varying 

levels of performance.  However, administrators should think 

about the way classes are labeled and the way in which resources 

are divided among classes, as the evidence shows that different 

students respond differently to different educational inputs. 
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