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CHAPTER 3.  EXAMPLE OF A VISUALIZATION TECHNIQUE

In Chapter 2, we developed a visualization capability that can be used to analyze

large sets of data.  In this chapter, we will provide an illustrative example of these

concepts using a finite-difference time-domain (FDTD) model of a rectangular microstrip

patch antenna.  Near-field quantities of the antenna will be visualized and compared to

the theory of operation.  We selected a microstrip patch antenna because it is explained

analytically and is well documented in the literature.

Microstrip patch antennas are low-profile radiators that are typically lightweight,

small in size, and conformable to planar and non-planar surfaces.  Since patch elements

are fabricated using printed-circuit technology, they can be manufactured in large

quantities to reduce cost and are compatible with monolithic microwave integrated circuit

(MMIC) designs.  These antennas are well suited to applications where an aerodynamic

profile and reliable performance are significant constraints.  As a result, patch antennas

have found numerous applications in aircraft, spacecraft, satellites and missiles [13].

The geometry and theory of operation of a rectangular microstrip antenna are

explained in Sections 3.1 and 3.2, respectively.  The geometry of the FDTD

computational model is presented in Section 3.3, with primary focus placed on how the

significant features of the microstrip patch antenna are modeled.  Finally, the data is

visualized in Section 3.4 and compared to the theory presented for the microstrip patch

antenna.  This comparison will demonstrate that radiation mechanisms can be identified

visually.



24

3.1 Geometry of a Rectangular Microstrip Patch Antenna

The radiating patch of a microstrip antenna can be shaped in a variety of

configurations including rectangular, circular, elliptical and triangular.  The example

presented in this chapter deals with a rectangular patch antenna.  Figure 3-1 depicts the

geometry of a rectangular microstrip patch antenna.
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Figure 3-1.  Geometry of a rectangular microstrip patch antenna (not to scale).



25

It is seen that a microstrip antenna is made up of a metallic patch and feed line that are

offset from a ground plane by a dielectric substrate material.  In order to eliminate the

occurrence of surface waves, the thickness of the dielectric substrate is usually kept to a

small fraction of a wavelength (0.003λ0 ≤ h ≤ 0.05λ0).  Surface waves degrade the

performance of a microstrip antenna in two ways.  First, they reduce the total power that

is available for direct radiation, which reduces the efficiency of the antenna.  Second,

surface waves adversely affect the pattern and polarization characteristics of the antenna

since they are scattered at surface discontinuities, namely at the edges of the substrate and

ground plane.  The dielectric constant of the substrate usually falls in the range of 2.2 ≤ εr

≤ 12.  This is indicative of the trade-off that exists between antenna efficiency and

element size.  Substrate materials with lower dielectric constants are typically low loss,

which results in higher antenna efficiency.  Substrates with higher dielectric constants

allow size reduction of the element at the expense of antenna efficiency (due to increased

losses) [13].

Photo etching is commonly used to deposit the patch and feed line on the

substrate, so the thickness of the metallization is very small (t«λ0 where λ0 is a

wavelength in free space).  The length of the metallic patch, L, is selected so that the

antenna resonates at a particular operating frequency (λ0/3 ≤ L ≤ λ0/2).  As we shall see

in the next section, the length of the metallic patch needs to be tuned to account for the

fringing fields at the edges of the patch.  Finally, the width of the patch, W, is used to

adjust the input impedance of the antenna [13].
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Figure 3-2.  Feed configurations for microstrip antennas [13].
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The patch element shown in Figure 3-1 uses a microstrip line feed.  This is one of

a number of feed arrangements that can be used with microstrip antennas.  Figure 3-2

illustrates some of the more popular feed arrangements.  The offset microstrip line feed

eases the task of matching since the offset depth controls the input impedance of the

antenna.  Additionally, this configuration is simple to fabricate and lends itself well to

analytical modeling.  However, the feed line radiates and causes pattern and polarization

degradation.  The coaxial feed reduces spurious feed radiation and is easy to construct

and match, although it tends to have a narrow bandwidth and is difficult to model

analytically.  The aperture-coupled feed isolates the feed mechanism from the radiating

element through the use of a ground plane.  Energy from the feed line is coupled to the

element patch through the aperture slot.  Unfortunately, the ground plane makes this feed

configuration quite difficult to manufacture.  Finally, the proximity-coupled feed removes

the ground plane so it is easier to manufacture than the aperture-coupled feed.  It has low

spurious radiation, is fairly easy to analyze, and provides the largest bandwidth of the

feed configurations presented here [13].

In this section we have defined the geometry of a rectangular microstrip patch

antenna.  Now we are prepared to discuss the analytical methods used to model and

characterize the antenna.  In the next section, three techniques will be reviewed: the

transmission-line method, the cavity model, and numerical techniques.  Then, in Section

3.3 we will model a microstrip patch antenna using a FDTD computational code.
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3.2 Theory of Operation

Microstrip patch antennas have been analyzed using a variety of techniques.

Three well-known methods are the transmission-line model, the cavity model, and full-

wave numerical models.  Below we will provide an overview of each of the three

methods and discuss the strengths and weaknesses of each.

3.2.1 Transmission Line Model

The transmission-line model is the simplest of the three techniques we will

consider and, as a result, is the least accurate.  The microstrip antenna is modeled as two

radiating slots that are separated by a distance Leff.  Referring to Figure 3-3, we can see

the physical meaning of Leff.  It is essentially the length of the patch, L, plus an additional

distance, 2∆L, to account for the fact that the patch looks electrically wider due to the

fringing fields.  Balanis [13] provides the following formula for the added distance
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In the above equation, εreff is the effective dielectric constant of a microstrip transmission

line given by [8]
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Thus, the effective distance separating the two radiating slots becomes

L L Leff = + 2∆ . (3-3)
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Finally, Balanis [13] uses this adjusted length to calculate the resonant frequency of the

antenna

( )f
c

Lr
eff reff

010 2
=

ε
, (3-4)

where c is the speed of light in a vacuum.

Since the transmission-line model accounts for the fringing effects at the edges of

the patch, it provides a good characterization of the resonant frequency.  It also models

the input impedance of the antenna fairly accurately.  However, it does not account for

the affects of a truncated dielectric substrate or a finite ground plane nor does it provide

insight into the radiation patterns of the antenna.  Additionally, the model breaks down as

the height of the dielectric substrate, h, becomes a significant portion of a wavelength.
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Figure 3-3.  Transmission-line model of microstrip antenna [13].
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3.2.2 Cavity Model

In order to gain insight into the radiating mechanism of an antenna, we need to

first understand the near-field quantities that are present on the structure.  The cavity

model aids in this pursuit since it provides a mathematical solution for the electric and

magnetic fields of a microstrip antenna.  It does so by using a dielectrically loaded cavity

to represent the antenna.  As we can see in Figure 3-4, this technique models the substrate

material, but it assumes that the material is truncated at the edges of the patch.  The patch

and ground plane are represented with perfect electric conductors and the edges of the

substrate are modeled with perfectly conducting magnetic walls.  It should be noted that

the cavity model does not include feed effects; the feed is shown in the figure simply for

reference.
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Figure 3-4.  Geometry of cavity model.
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Balanis formulates a solution to the above cavity problem using the vector

potential approach [8] and [13].  Summarizing the technique, we begin by assuming that

the dielectric is very thin, which means that the electric field is constant along the height

of the substrate, h, and is nearly normal to the surface of the patch.  Therefore, we only

need to consider TMz modes inside the cavity.  Now, we can write an expression for the

electric and magnetic fields within the cavity in terms of the vector potential Az [8]:
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Since the vector potential must satisfy the homogeneous wave equation

∇ + =2 2 0A k Az z , (3-6)

we can use separation of variables to write the following general solution
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where kx, ky, and kz are wavenumbers.  Applying the boundary conditions
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we obtain a solution for the electric and magnetic fields inside the cavity:
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and Amnp is the amplitude coefficient.  Finally, the resonant frequencies for the cavity are

given by
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Examining the above fields for (TMz)100 dominant mode excitation, we see that

ky=kz=0 and the field components reduce to
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We can convert to equivalent electric and magnetic current densities using:

r r

r r
J n H

M n E

= ×

= − ×

$

$
(3-13)

where $n  is the outward directed surface normal.  The magnetic field is zero along the

x=0 and x=L walls and is normal to the surface along the y=0 and y=W walls.  Therefore,

no equivalent electric current density flows on the walls of the cavity.  The electric field

results in a non-zero magnetic current density on the walls of the cavity.  Figure 3-5

shows both the electric field and corresponding magnetic current densities for the

microstrip antenna.  The magnetic currents can be broken into a pair of radiating slots and

a pair of non-radiating slots.  The radiating slots are in phase so they will constructively

interfere in the far-field.  Thus, these two slots form the primary radiating mechanism for

the microstrip antenna.  On the other hand, the non-radiating slots are out of phase so

they will destructively interfere in the far-field and will not contribute to the radiated

fields.
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Figure 3-5.  Field configurations and current densities for microstrip patch [13].
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From the above results, we can see that the cavity model provides excellent

insight into the radiating mechanism of a microstrip patch antenna.  It provides the field

configurations of the radiating and non-radiating slots that can be used to solve for the

radiation patterns [13].  Since the antenna is modeled as a cavity, additional work is

necessary to accurately model the input impedance.  An effective loss tangent needs to be

added to account for the power that is lost to radiation [13].  Alternatively, the radiated

energy can be modeled using an impedance boundary condition at the walls [14].

Although the cavity model is quite adept at modeling the radiating mechanism for

a microstrip antenna, it does have some limitations.  First, the cavity model does not

model the feed effects.  Nor does it model the adverse effects introduced by a finite

substrate and ground plane.  One way to circumvent these limitations is to employ

numerical techniques.

3.2.3 Full-Wave Numerical Models

In some instances, we may need to understand how the behavior of an antenna is

affected by its surroundings.  For example, we may want to develop a model that includes

the effects of a feed structure, a finite ground plane, or a case enclosure.  For problems

such as these, the techniques described above become highly impractical.  Fortunately,

there are a variety of numerical analysis techniques that can handle these problems quite

nicely, including the method of moments (MoM), the finite-element method (FEM), and

the FDTD method.  All three of these techniques are computationally intensive, which in

the past limited the size and complexity of problems that could be approached.  However,

due to recent advances in computing capabilities, these techniques have become much
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more powerful.  In addition, these techniques are somewhat generalized so they are

capable of modeling a variety of antennas (not just the microstrip patch).  The details of

each technique are quite intricate, so we will focus on the FDTD method because it is

used to generate the examples presented in this thesis.

The FDTD method uses a discretization in time and space to calculate a solution

of Maxwell’s curl equations directly in the time domain [15]:
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Rearranging these equations, with 
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J E= σ , we obtain
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Evaluating the vector curl operator ( ∇ ×
r
A ) and employing central differencing in both

time and space to approximate the partial derivatives, we obtain six update equations (one

for each component of the electric and magnetic fields).  For example, the update

equation for the Ex component is as follows:
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The electromagnetic structure is modeled by approximating its geometry and

composition with Yee cells of different material parameters (both conductivity and

relative dielectric constant).  Figure 3-6 depicts an example Yee cell along with its

corresponding field calculation points.  At the outer boundaries of the computational

space an absorbing boundary condition is used to simulate free-space radiation.  In order

to avoid numerical instabilities in the finite-difference algorithm, the time increment must

not violate the Courant stability condition [4]:
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An excitation is then applied to the computational model and the 
r
E - and 

r
H -field

computations are alternately marched through time from time zero to the desired stopping

point.  Results can be viewed either in the time domain or in the frequency domain.  In

order to obtain the frequency characteristics of the antenna it is necessary to compute a

fast-Fourier transform (FFT) of the transient output data.

The FDTD techniques presented above allow antennas to be modeled in fine

detail.  Feed lines, finite ground planes, and case enclosures can all be included in the

computational model.  In addition, the techniques are highly generalized so a number of

antennas can be analyzed.  Tirkas and Balanis [4] demonstrate the versatility of FDTD

techniques by using it to model a dipole, open-ended waveguide, and horn antenna.  The

major drawback of numerical techniques in general is that they generate huge amounts of

data.  However, we can alleviate this problem greatly through the use of visualization.
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Figure 3-6.  Example Yee cell with field calculation points.

3.3 Geometry of Computational Model

In order to simulate an antenna using FDTD we first must model the geometry in

the computational space.  This is a tedious process since care needs to be taken so that all

of the important details of the antenna are modeled properly.  In many cases this can be

an iterative process that involves correcting errors and determining how finely certain

details need to be modeled.  Figure 3-7 shows the layout of the FDTD computational

space that was used to simulate the rectangular microstrip patch antenna.
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Figure 3-7.  FDTD computational space.

As we can see, the feed line and finite ground plane are included in the model.

The microstrip line is fed at the edge of the substrate by a z-directed (out of the page)

infinitesimal dipole, which simulates a microstrip to coaxial line connector.  The

dielectric substrate (Duroid 5870, εr=2.35) is modeled with three Yee cells in the z-

dimension (out of the page).  A free-space border is placed between the antenna and the

absorbing boundary condition to avoid any instability that could be caused by coupling.
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We elected to excite the antenna for dominant mode operation (f = 3 GHz).  The

FDTD computational engine was run on a Pentium 133 personal computer with 64

Megabytes of memory.  The total execution time for this model was approximately 96

hours.  In the next section we will present animations of the equivalent current densities

located on a planar surface a single Yee cell above the metallization.  This should allow

us to view the radiating mechanism, the affect of the finite ground plane, and the affect of

the feed line.

3.4 Application of Visualization Technique

This section will provide an example of the visualization techniques that were

developed in Chapter 2.  Results from the above FDTD model of a rectangular microstrip

patch antenna will be visualized.  The visualization techniques involve converting phasor

data to a time domain animation so that magnitude and phase information is displayed

concurrently; however, the vector components will be viewed separately.  Figure 3-8

depicts the visualization network that was used in AVS to generate the animations.

Essentially, the data is read in, colorized, displayed, and output to an image format.

These images are then combined in Adobe Premiere to form the animations that are

presented below.
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Figure 3-8.  AVS visualization network used to generate examples.

Figures 3-9 to 3-12 contain the animations of the magnetic and electric equivalent

current densities.  Starting with the My component, which is shown in Figure 3-9, we can

see that the FDTD results are quite inclusive.  The radiating slots are present and behave

as the cavity model predicted, although the patch edge that is connected to the feed has a

slight asymmetry.  We also see that the feed line is contributing a cross-polarization to the

radiation pattern, which is the same order of magnitude as the primary radiating

mechanism.  This is important since cross-polarization is undesirable in many antenna

applications.  In addition, the effect of the finite ground plane is evident and is also the

same amplitude as the radiating slots.  This can have adverse effects on the radiation
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pattern since a larger distance than the patch edges separates the edges of the ground

plane.  Now instead of having an array of two radiating slots, we have an array of four

slots.  This may lead to unwanted nulls in the antenna pattern.  We also see two

unexpected results.  First, there appears to be a small amplitude surface wave that is

propagating in the dielectric substrate.  Also, we can see a backspill of the feed

excitation.  This is due to the fact that we used an infinitesimal dipole, which has an

omnidirectional radiation pattern.

The Mx field component is displayed in Figure 3-10.  From the color legend we

can see that amplitude of this component is the same as the My component.  This

component includes the non-radiating slots that were predicted by the cavity model.

These slots are out of phase and will cancel in the far field as the cavity model suggested.

In addition we see a standing wave on the feed line that has a small traveling wave

component; the latter is characteristic of a radiating structure.  We also see the affects of

the finite ground plane, although these quantities cancel in the far field so they do not

adversely affect the radiation pattern.

Figures 3-11 and 3-12 show the Jx and Jy components, respectively.  These

quantities are much smaller in amplitude than the magnetic current densities, which was

suggested by the cavity model (ideally they should be zero).  In addition to the small

amplitude of these components, they will cancel in the far field since they are out of

phase.  Therefore, they should have a negligible affect on the overall radiation pattern.
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Figure 3-9.  My equivalent magnetic current density.

Figure 3-10.  Mx equivalent magnetic current density.
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Figure 3-11.  Jx equivalent electric current density.

Figure 3-12.  Jy equivalent electric current density.


