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Evaluating Time-varying Effect in Single-type and Multi-type

Semi-parametric Recurrent Event Models

Abstract

This dissertation aims to develop statistical methodologies for estimating the effects of time-

fixed and time-varying factors in recurrent events modeling context. The research is moti-

vated by the traffic safety research question of evaluating the influence of crash on driving risk

and driver behavior. The methodologies developed, however, are general and can be applied

to other fields. Four alternative approaches based on various data settings are elaborated

and applied to 100-Car Naturalistic Driving Study in the following Chapters.

Chapter 1 provides a general introduction and background of each method, with a sketch

of 100-Car Naturalistic Driving Study. In Chapter 2, I assessed the impact of crash on

driving behavior by comparing the frequency of distraction events in per-defined windows.

A count-based approach based on mixed-effect binomial regression models was used.

In Chapter 3, I introduced intensity-based recurrent event models by treating number of

Safety Critical Incidents and Near Crash over time as a counting process. Recurrent event

models fit the natural generation scheme of the data in this study. Four semi-parametric

models are explored: Andersen-Gill model, Andersen-Gill model with stratified baseline

functions, frailty model, and frailty model with stratified baseline functions. I derived model

estimation procedure and and conducted model comparison via simulation and application.

The recurrent event models in Chapter 3 are all based on proportional assumption, where

effects are constant. However, the change of effects over time is often of primary interest. In

Chapter 4, I developed time-varying coefficient model using penalized B-spline function to

approximate varying coefficients. Shared frailty terms was used to incorporate correlation

within subjects. Inference and statistical test are also provided. Frailty representation was

proposed to link time-varying coefficient model with regular frailty model.

In Chapter 5, I further extended framework to accommodate multi-type recurrent events

with time-varying coefficient. Two types of recurrent-event models were developed. These

models incorporate correlation among intensity functions from different type of events by

correlated frailty terms. Chapter 6 gives a general review on the contributions of this dis-

sertation and discussion of future research directions.
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Chapter 1 Introduction

1.1 Background

1.1.1 Introduction to Analysis of Recurrent Event Data

Recurrent event models focus on situations where events occur more than once per subject

over follow-up time. It arises in fields such as medicine, public health, social sciences, reli-

ability, and transportation safety research. For example, the repeated occurrence of heart

attacks can be treated as recurrent events. Another example is the time to multiple failures

of a product. The system which generating such data are referred as recurrent event process

and can be analyzed by counting process models.

The literature on the statistical analysis of recurrent events has grown rapidly and a

variety of methods has been developed. The approaches can be classified into two major

categories based on the type of outcomes: frequency and time-to-event. For frequency

approach, Poisson or negative binomial regression model is often used to evaluate if the rates

of events over a predetermined study period differ by treatment [13]. Longitudinal modeling

methods can be used to to discover pattern over time by dividing study period into non-

overlapping intervals. In this setup, each subject is associated with multiple observations.

The correlation within subject is taken into account by either generalized linear mixed models

or generalized estimating equations (GEE) models[11].

Time-to-event data include not only frequency but also the time to each occurrence.

Event occurrences are treated as a realization of counting process and modeled through by the

intensity function. The relationship between covariates or treatment (fixed or time-varying)

to event occurrence can be evaluated by comparing corresponding intensities. Objectives in

analyzing recurrent data also include identifying variation across a population of processes

after adjusted by potential covariates.

The frequency approach and the time-to-event approach are closely related with each

other. Long time interval associates with low rate/risk and thus fewer events in a fixed time

window. Short intervals correspond to high risk and more events are expected. As a matter

of fact, frequency data models have assumptions of underlying distribution of time between

events. For example, the standard Poisson regression has the underlying assumption that

time intervals are exponentially distributed.
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1.1.2 Event Frequency Approach

Poisson and negative binomial regression models are two widely applied approaches for mod-

eling event frequency. They are natural fit for count observations.

For Poisson regression models, the probability of subject i having yi events per time unit

is given by:

Pr(yi) = exp(−λi)
λyii
yi!
, (1.1)

where λi is the expected number of events. A logarithm link function is often used to link λ

with explanatory variables as λi = exp(X ′iβ); where X i is a vector of explanatory variables

and β is a vector of estimable parameters.

Negative binomial regression is an extension of Poisson regression with assumption that

λi in (1.1) follows a gamma distribution. The negative binomial model can be expressed by

rewriting the function form as:

λi = exp[X ′iβ + εi], (1.2)

where exp(εi) follows gamma distribution error term with mean 1 and variance α. This extra

error term allows differentiation between mean and variance.

In the context where two types of outcome are possible, binomial regression models can

be used to explaining the probability of a specific event. The model is given as follows:

Pr(yi) =

(
ni
yi

)
pyii (1− pi)ni−yi

log(
pi

1− pi
) = X ′iβ,

where yi is the number of events for subject i; pi is the probability of an event. ni is the

number of baseline samples.

Estimation and inference of model parameters is usually achieved by maximum likelihood

estimation with iterative reweighted least square method [15].

1.1.3 Time-to-event Data Approach

Time-to-event data consist of time to each event and to the end of study. Cox’s proportional

hazards model [8] is a commonly used model for time-to-event data. It provides reliable

estimates of survival times and relative risk associated with covariates. Several extensions

have been proposed for circumstances where events may happen more than once [2, 16, 20].

The model assume that no more than one event may happen at a given time and events

occur in continuous time.

The models are built on counting process models and intensity functions is the key for

2



modeling and statistical inference. The general recurrent event model setup is discussed as

follows. For a single recurrent event process starting at t = 0, let 0 < t1 < t2 < t3 < · · ·
denote event times, where tk is the time of k-th event. The associated counting process

{N(t), 0 ≤ t} records the cumulative number of events generated by the process. Specifically,

N(t) =
∑∞

k=1 I(tk ≤ t) is the number of events occurring over the time interval (0, t ].

Intensity function of the process gives instantaneous probability of an event occurring at t

and is mathematically defined as

λ(t|H(t)) = lim
4t→0

Pr[4N(t) = 1|H(t)]

4t
, (1.3)

where 4N(t) = N(t +4t−)−N(t−) is the number of events in the interval [t, t +4t] and

H(t) = {N(s), 0 ≤ s < t} denotes the history of the process at time t [7].

The above modeling framework is general and encompass various data structure, models,

dependence structures. Three types of models are commonly used: overall intensity models,

frailty models, and marginal hazard models [9]. Overall intensity model is also well known

as Poisson Process model or Andersen-Gill model (A-G model) [2]. It describes situations

where events occur randomly in such a way that the numbers of events in non overlapping

time intervals are statistically independent. Frailty model is an extension of A-G model

that considers conditional intensity given the unobservable random effect. This model can

address the correlation within subjects Hougaard [12]. Marginal model provides a basis for

the development of robust methods of inference because it doesn’t involve assumptions as

that of Poisson Process. When the correlation within subject is unknown or not of interest,

the marginal hazard model approach which models the ’population-averaged’ covariate effects

has been widely used [20].

1.1.4 Time-varying Coefficient Recurrent Event Model

The models discussed in Section 1.1.3 are based on the constant covariates coefficients as-

sumption. It is convenient for estimation and interpretation but the assumption may not

be satisfied in real data which could lead to bias in the coefficient estimates. In addition,

evaluating time-varying effect could be of prime interest in some studies. To incorporate

time-varying coefficients into intensity function, two techniques have been proposed and

widely used: the kernel-weighted partial likelihood method and spline models.

Kernel-weighted partial likelihood method is proposed by Fan et al. [10] and further

developed by Cai and Sun [6]. Coefficients are estimated locally based on the partial likeli-

hood in a window around each time point where models are built for intensity function.Cai

et al. [4], Cai et al. [5] and Sun et al. [18] elaborated this approach using marginal hazard

3



framework.

Spline functions aim to approximate the functional form of varying coefficients. A com-

mon form is piecewise polynomials functions that satisfying continuity constraints at the

knots. Zucker and Karr [23] developed a penalized partial likelihood approach . The penalty

function was designed to make the estimator smooth and thereby reduce variance. More re-

cently, Amorim et al. [1] expanded spline technique to the filed of recurrent events data. Yu

et al. [21] used a Gaussian frailty model to describe the intensity, accommodating both time-

varying and time-constant coefficients. Penalized spline method and Laplace approximation

were used to estimate coefficients.

Part of this dissertation focuses on developing a semi-parametric recurrent event model

with time-varying coefficients. Penalized B-spline function is adopted to estimate the time

varying effects. I jointly estimate variance component and smoothing parameter by using

profile likelihood method. The proposed approach can be relatively easily implemented by

fitting a frailty model.

1.1.5 Multi-type Time-to-event Data

Several types of related recurrent events could occur in the same period of time. For ex-

ample, in a transportation study, a safety-related event may be classified into several levels

according to severity. It is a challenging yet intriguing to model all events simultaneously.

In the context of multi-type recurrent event, Cai and Schaubel [3] proposed a class of semi-

parametric marginal means/rates models, with a general relative risk form on the censored

event processes of interest. Wang et al. [19] and Zhu et al. [22] developed approaches with an

arbitrary structure for both the relationship between the recurrent events and the terminal

event and the effect of covariates on the terminal event. In these studies, dependency between

events is considered but not of interest. Frailty provides a convenient tool to incorporate

dependence and heterogeneity. Sankaran and Anisha [17] extended shared frailty model to

recurrent event data with multiple cases for gap time distributions. In Mazroui et al. [14],

two types of recurrent events with dependent terminal events were jointly modeled.

1.2 Motivated Example: The 100-Car Naturalistic Driving Study

Methodologies developed in the dissertation are motivated by the objective of evaluating

influence of crash on driving risk and distraction behavior. Data for the analysis were from

the 100-Car NDS. NDS is a novel approach for traffic research characterized by instrument-

ing participant vehicles with multi-channel video cameras, high-precision kinematic sensors,

GPS, and radar sensors and continuous data collection for a extended period of time. The

4



NDS provides detailed information under natural driving movement and provide an unique

opportunity for evaluate the impact of crash on driver behavior. The 100-Car NDS was the

first instrumented vehicle study undertaken with the primary purpose of collecting large-

scale NDS naturalistic driving data. Data were collected from 241 primary participants in

northern Virginia. About 2, 000, 000 vehicle miles and 43, 000 hours of driving are recorded

in total. This study used data from 107 primary drivers. Crash distribution across drivers

by their demographic information is given in Table 1.1.

Table 1.1: Number of driver and driving time across groups in 100-Car NDS.

Age group

Total number of crash < 30 (49 subjects) 31 ∼ 55 (44 subjects) > 55 (14 subjects)

F M F M F M

0
Number of driver 11 15 10 26 4 7

Average driving hour 255 317 236 378 264 332

1
Number of driver 10 3 2 4 1 2

Average driving hour 344 345 448 431 32 360

2
Number of driver 4 6 . 2 . .

Average driving hour 415 359 . 489 . .

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2, I used mixed Bino-

mial model to compare distraction rate before and after crash using 100-Car NDS. Four

intensity-based recurrent event models are introduced in Chapter 3 with model assessment

and comparison. In Chapter 4, I extended the research to explore time-varying coefficient

models, which allow to examine the functional form of crash influence over time. Chapter 5

considers a general platform of multi-type recurrent event model with time-varying coeffi-

cient and dependent terminal event. Detailed derivation for two types of recurrent events is

highlighted. Chapter 6 provides a general review on the contributions of this dissertation,

as well as discussion for future research directions.
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Chapter 2 Evaluating the Impact of Crashes on Driving Behavior

2.1 Introduction

Driver behavior is a critical contributing factor to traffic safety. It has been estimated that

more than 90% of crashes are associated with driver errors [15]. A study by Curry et al. [3]

concluded that 95.6% of all teen-involved serious crashes were due to driver error.

Studies have shown that driving risk is strongly associated with demographic and person-

ality characteristics [6]. Within individual level, Chipman [2], Kaneko and Jovanis [9], Waller

et al. [16] has revealed reduced driving risk with increased driving experience . Previous

studies on driver’s experience are typically based on measures from years of driving and/or

mileage traveled (e.g.,Levy [10], Waller et al. [16]). For example, Waller et al. [16] used length

since licensure as the measurement of experience. Kaneko and Jovanis [9] considered years of

experience of drivers from a national less-than-truckload firm as a factor. Experiences based

on years or mileage of driving includes the effects of many factors. For example, drivers are

more mature and doing fewer risky behaviors, or they learn skill and be able to deal with

more complex situations, or they learn lesson from drastic crash events. Using time and

amount of driving as measurement of experience is commonly associated with age-related

changes [1]. Thus, with experience measures it is difficult to isolate the effects of a specific

associated factor.

One hypothesis is that crash experience decreases the frequency of risky driving behavior.

The rationale is that drivers learned from their collision events (crash) and change their

behavior correspondingly, thus reduce driving risk. From a psychological point of view,

Lucas [12] showed that drivers who had been involved in a motor vehicle accident reported

significantly greater worries about driving than did drivers who had not been in an accident.

Research on this topic is limited. Lin et al. [11] considered association between crash

experience and risk-taking path among students in Taiwan. Crash experience was measured

in terms of crash history prior to the study, crash frequency, time elapsed since the last crash,

and crash severity respectively. There was no significant association observed. af Wåhlberg

[1] conducted a study of bus drivers for about three years. Repeated measurements of speed

change behaviors were compared between drivers with no crashes and drivers who had at least

one crash. A steady decline in speed change was observed within the crash group over time

but not related to their crashes. The no-crash group showed a similar pattern. Rajalin and

Summala [14] studied the effect of fatal accidents on surviving drivers’ subsequent driving
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behavior based on self-reported driving behavior. The study showed that car drivers typically

returned to their ’normal’ driving within a few months, while heavy-vehicle drivers tended

to be more cautious in terms of mileage of driving. The above studies focused on various

populations and adopted different measurement of driving behavior (risk-taking score, speed

change, and amount of driving). Many are based on self-reported data. Currently, however,

there is no established study about the relationship between crash experience and driving

risk using naturalistic driving data.

Naturalistic driving study (NDS) provides an innovative way to access traffic safety and

driving behavior data [4, 5, 13] and thus makes exploring the relationship between crash ex-

perience and driving behavior and risk accessible. Participant vehicles are instrumented with

data acquisition systems (DASs) that include cameras and various sensors to continuously

monitor the driving process. The video images and kinematic measures can provide not only

the exact driving behavior, vehicle kinematic, and driving environmental information, but

also the sequence and precise time for each sub-event.

In NDS the video recordings can be used to assess driver behaviors that were difficult to

retrieve before. In the present study, distraction pattern is evaluated as driving behavior.

A high frequency of distraction and/or more complex non-driving-related tasks indicates

more distracted driving behavior. To be specific, secondary tasks, such as communications,

entertainment, information gathering, and navigation not required to drive, have been used

to measure distraction. The secondary tasks can be categorized into three levels: complex

(C), moderate (M), and simple (S), based on whether the task requires multi-step, multi-

ple eye glances away from the forward roadway, and/or multiple button presses. Detailed

categorization of distraction can be found in Table 2.1[7].
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Table 2.1: Definition of distraction.

Simple Secondary Tasks Moderate Secondary Tasks Complex Secondary Tasks

1.Adjusting radio 1.Talking/listening to handheld device 1.Dialing a handheld device

2.Adjusting other devices

integral to the vehicle

2.Handheld device-other 2.Locating/reaching/answering hand-

held device

3.Talking to passenger in

adjacent seat

3. Inserting/retrieving CD 3. Operating a personal digital assis-

tant (PDA)

4. Talking/Singing: no

passenger present

4. Inserting/retrieving cassette 4. Viewing a PDA

5. Drinking 5. Reaching for object (not handheld

device)

5. Reading

6. Smoking 6. Combing or fixing hair 6. Animal/object in vehicle

7. Lost in thought 7. Other personal hygiene 7. Reaching for a moving object

8. Other simple tasks 8. Eating 8. Insect in vehicle

9. Looking at external object 9. Applying makeup

In this study, driving behavior is measured by the probability of distraction in randomly

selected baseline samples occurring over a specific time period. According to the visual and

manual demand of the secondary task, each baseline can be classified into four categories:

(1) no distraction, (2) simple secondary task, (3) moderate secondary task, and (4) complex

secondary task. Moderate and complex secondary tasks are used as indicators of high-risk

behavior and used the percentage of baselines with moderate and complex secondary tasks to

measure the likelihood of a driver to engage in high-risk behavior. Drivers were considered to

have driven more cautiously if a larger proportion of moderate and complex secondary tasks

occurred before a crash than after. The rest of this chapter is organized as follows. Section 2.2

introduces the sampling design and data collection structure. Application of mixed binomial

regression model is presented in Section 2.3 to estimate crash impact. Section 2.4 contains

conclusion and some discussion for future research.

2.2 Baseline Sampling Design and Data Collection

Driving is a continuous process and distraction behavior changes constantly. Although NDS

makes the entire driving record accessible, it is not possible to reduce all video recordings

by visual inspection and keep track of distraction. Guo and Hankey [7] proposed an analysis

framework based on a case-cohort approach. Under their analysis framework, a random

sampling scheme for baseline reduction led to approximation of odds ratio risk rate ratio.

This random sampling scheme is stratified by drivers, and the number of samples for each

driver is proportional to the valid moving hours or miles traveled. The random samples also
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present the general behavior of drivers under normal driving conditions, and thus can be used

to evaluate driver distraction. In 100-Car NDS, 11,466 baseline samples were incorporated

from two sources. The first source is an existing baseline sample from a previous National

Surface Transportation Safety Center for Excellence (NSTSCE) project [7], which contained

10,952 baseline samples. To increase the sample size close to crash time, 514 additional

baseline samples were reduced within a 30-hour window around the crashes, which brought

the total sample size to 882 within this window. Among all baseline samples, 44% involve

various levels of distraction, and 40% are categorized as moderate or complex distractions.

The objective of the study is to examine difference of distraction behavior before and

after crash. We proposed a before-after comparison through evaluation of the probability of

high risky behavior. This approach requires a predefined a window”, e.g., 10 hours of driving

time. For each crash, the predefined before-and-after windows are considered as a matched

pair, and the number of moderate and complex secondary tasks as well as the total number

of baselines were evaluated. Data collection for this approach is illustrated in Figure 2.1.

Figure 2.1: Baseline data collection.

An appropriate length of window needs to be carefully selected. If crash experience

acts as a short stimulation for drivers and only affects driving behavior temporarily, a large

window size will mask the effect of the crash by including non-influenced data. On the other

hand, a small window size will not be able to capture enough event data and thus lose power

to evaluate crash impact.

Window size selection is constrained by overlapping problem, which refers to a situation

where the time interval between two accidents is less than the window size. Ideally, window

size is chosen to be smaller than the shortest time interval between two consecutive accidents

for one driver. However, in the 100-Car NDS, one driver experienced two collisions within 1

hour of driving, which makes the idea situation unsatisfied (one hour is too short to observe

any event). Figure 2.2 shows a histogram of the time gaps between two consecutive crashes

conducted by the same driver. Over 75% of two successive crashes for one driver were at

least 30 hours apart, so the current study begins with a window size of 15 hours. Crash
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effect based on other window sizes will be investigated later.

Figure 2.2: Crash interval histogram.

An existing sample of 10, 952 baselines was randomly sampled from the 100-Car data [8].

For each baseline, a rigorous data reduction protocol was used to extract driver behavior

information. Among these baselines samples, only 952 fall in the 30-hour window around

observed crashes. For the purpose of comparing distraction before and after a crash, we

reduced an additional 514 baselines within a 30-hour driving window around crashes. With

these additional data, the final sampling scheme, as illustrated in Figure 2.3, was as follows:

Two samples were randomly selected within a 2-hour window before and after a crash, and

two were randomly selected in the 25-hour window. For the rest of the 30 hours, two samples

were randomly selected in every 5-hour window.

Figure 2.3: Baseline sampling scheme.

Table 2.2 lists the total number of baseline samples across window sizes. There is a small

proportion of double-counted samples in the table, due to overlapping windows between
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crashes. Baseline samples could be included in an after-crash window while being included

in the before window of the next crash. Thus, the total number of baseline in Table 2.2

is larger than the total number of unique baselines that are identified from data reduction.

Sampling rate, defined as the number of samples per hour, shows consistency between the

before and after windows.

Table 2.2: Baseline sample distribution.
Window size (hours) Total sample before Total sample after Sampling rate before Sampling rate after

5 218 196 44 39

10 336 310 34 31

15 450 432 30 29

20 559 535 28 27

25 660 634 26 25

30 773 730 26 24

35 864 785 25 22

40 949 855 24 21

45 1003 901 22 20

50 1076 970 22 19

55 1136 1031 21 19

60 1184 1086 20 18

Figure 2.4 shows the ratio between the moderate and complex distraction proportions

before and after a crash. The results indicate that drivers’ engagement in moderate and

complex secondary tasks tends to be lower after crashes, especially within a 15-hour driving

time window. However, this decreasing effect tends to diminish over time.

Figure 2.4: Ratio of distraction rate after vs. before by gender.
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2.3 Modeling Baseline Distraction Using Mixed Binomial Regres-

sion

A formal statistical inference was conducted to investigate the impacts of crashes on driver

distraction. For each crash, the number of baselines in which drivers engaged in moderate and

complex secondary tasks during the before and after period are considered as a matched pair.

A crash effect is observed if a larger probability of moderate and complex secondary tasks

occurs before a crash than after. Mixed binomial regression models are used to evaluate

the factors that affect the probability of distraction. Mixed binomial regression model is

adopted to (1) incorporate the correlation among observations from the same driver, and

(2) to adjust for confounding effects, e.g. gender, through modeling. Gender effect allows

distraction behavior between male and female to be discerned. The model is given as follows:

Pr(Yijk) =

(
nijk
yijk

)
p
yijk
ijk (1− pijk)nijk−yijk

log(
pijk

1− pijk
) = β0 + β1xijk + β2genderi + εi,

where:

1. Yijk is the total number of moderate and complex distractions for subject i, i =

1, · · · , 107 in the before-after window of number j-th crash. Frequency follows a bino-

mial distribution.

2. nijk is the total number of baseline samples in the associated window.

3. pijk is the probability of a moderate or complex distraction.

4. xijk indicates whether the distraction happens before or after a crash: xijk = 0 if it

happens before, otherwise xijk = 1.

5. β1 is crash effect and β2 indicates gender distinction.

6. εi is a normally distributed random effect of mean 0 associated with subject i.

Results indicated that the percentage of baselines where drivers engaged in complex

secondary tasks dropped after crashes. The maximum decrease occurred in the 15-hour

window, with odds ratio = 0.54; 95% CI [0.32, 0.93]. Crash impact on distraction was also

explored with varying window sizes, as shown in Figure 2.5. Distraction probability decreased

after a crash, especially in the initial 15 hours. The difference diminished as window size

increased and became negligible after 50 hours. This result suggests that drivers tend to
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engage less in distractions during the initial period after a crash but return to regular behavior

after a certain time period. The confidence band is relatively wide, which is primarily due

to the relatively small sample size.

Figure 2.5: Crash impact on distraction proportion.

2.4 Discussion

This study evaluated the influence of crash on driver distraction behavior using 100-Car

NDS data. Driving behavior was measured by secondary driving tasks. Crash influence

on driving behavior was evaluated with a count-based approach using a mixed binomial

regression model.The results indicate that drivers’ engagement in moderate and complex

secondary tasks tends to be lower after crashes, especially within a 15-hour driving time

window. This decreasing effect tends to diminish over time.

There is some limitations of this count-based before-after comparison. Although it is

straightforward, arbitrarily defined window lead to overlapping issue. Some baselines samples

are studied twice. In addition, it’s not easy to measure time-varying pattern of crash effect

using this approach. In the next three chapters, we propose to evaluate the data from a

different angle and solve the problem of defining window.
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Chapter 3 Assessing Influence of Crash on Driving Risk Using

Semi-parametric Recurrent Events Model

3.1 Introduction

Compared to the event frequency based approach, examining time to event provides an

alternative way to evaluate covariate effect. In this case, no predefined time interval is

required. It is also consistent with the natural data generation procedure and could be more

informative in estimating covariates’ effects.

In NDS, crash is a common indication of driving risk. In addition, several types of safety-

related events were identified through kinematic signatures of the vehicle and confirmed

through visual inspection for video recordings, such as: near crash (NC), and safety critical

incident (SCI). A crash is defined as any contact with an object, either moving or fixed, at

any speed in which kinetic energy is measurably transferred or dissipated. Crashes include

a participants vehicle making contact with other vehicles, roadside barriers, and objects on

or off the roadway, pedestrians, cyclists, or animals. A NC is defined as any circumstance

requiring a rapid, evasive maneuver by the participant (or his/her vehicle) or any other

vehicle, pedestrian, cyclist, or animal to avoid a crash. The crashes and near-crashes were

identified through a multiple-step process of automatic trigger identification followed by

visual confirmation by experts as described in Dingus et al. [6]. A SCI is defined as an

unexpected events resulting in a close call or requiring fast action (evasive maneuver) on

the part of a driver to avoid a crash Dingus et al. [6]. These safety related events represent

non-desired safety conditions that should be avoided and are widely used in the literature as

surrogate of crash for measuring driving risk Guo et al. [7] and are adopted in this paper.

NCs and SCIs occur at much higher frequency than crashes. Therefore, recurrent events

modeling technique is needed. This technique has been commonly used in clinical trial and

manufacture industry (e.g. Andersen and Gill [1], Lin et al. [9], Wei et al. [14]). Andersen and

Gill [1] introduced a counting process model with the Cox [5] type of intensity function. The

model assumes events occur randomly such that the numbers of events in non overlapping

time intervals are statistically independent. Lin et al. [9] proved robustness of the inference by

relaxing the Poisson-type assumption in Andersen and Gill [1]. Nielsen et al. [12] worked on

an intensity function depending on unobservable quantities–frailties. Wei et al. [14] proposed

a stratified model to analyze multivariate failure time data without correlation assumption.

But in transportation, studies have more focused on duration models, which measure the
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conditional probability of a crash happening given the history from the most recent crash(e.g.,

Chang and Jovanis [2], Jovanis and Chang [8], Lord and Mannering [10],Chung [3]). The

processes of crash, NC, and SCI were rarely been studied as recurrent event.

This chapter focuses on investigating the influence of crashes on driving risk. We proposed

to evaluate the influence of crashes on the intensity of SCI/NC by treating number of SCIs

and NCs over time as a counting process. Four semi-parametric recurrent events models are

compared and applied to 100-Car Naturalistic Driving Study. The objective is to evaluate

whether drivers are more cautious in terms of whether SCI/NC rate will decrease after crash.

Furthermore, we are also interested in whether male and female respond to crash differently.

The rest of this chapter is organized as follows. Section 3.2 introduces the 100-Car NDS in

terms of measurement of driving risk. Section 3.3 explains the alternative models along with

their assumptions and model fitting evaluation. A simulation study of model performance

is summarized in Section 3.4. The application of models to the 100-Car NDS is presented in

Section 3.5. Section 3.6 contains concluding remarks and some discussion.

3.2 100-Car NDS Data Setting for Recurrent Events Model

As discussed above, SCIs and NCs were used to measure driving risk. Average rate of

both SCI and NC by gender, age, and total crash are explored in Table 3.1. Event rate is

calculated as number of events per hours of driving. In general, SCIs occur 8 to 10 times

more frequently than NCs across all groups of drivers. Higher SCI/NC rates are associated

with drivers experienced more crashes.

Table 3.1: SCI/NC rate by groups

Age group

Total number of crash < 30(49 subjects) 31 ∼ 55(44 subjects) > 55(14 subjects)

F M F M F M

0
SCI rate* 0.18 0.15 0.15 0.11 0.04 0.1

NC rate* 0.02 0.02 0.02 0.01 0.01 0.02

1
SCI rate* 0.27 0.26 0.41 0.22 0.16 0.14

NC rate* 0.03 0.02 0.04 0.03 0.06 0.01

≤ 2
SCI rate* 0.52 0.33 . 0.27 . .

NC rate* 0.05 0.03 . 0.02 . .

*: number of event per hour per driver

Data setting is shown in Figure 3.1. where each horizontal line represents the driving

record of one driver. Drivers were subject to different numbers of crashes, NCs, and SCIs
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at different time points throughout study. Thus, it was important to record all timestamps.

We focused on the actual driving time. Non-driving time when the vehicle was not in use

was excluded. As illustrated in the Figure, each driving period was divided into several

phases based on relationship with crashes: before the first crash (coded as 0), between the

first and second crash (coded as 1), and after the second crash (coded as 2). Driving period

will be taken into account as covariate, working as an external and independent factor on

SCI intensity. To account for potential confounding and interacting effects, gender and the

age of the driver when first enrolled in the study are also evaluated.

Figure 3.1: Data collection structure.

3.3 Semi-Parametric Recurrent Events Models

The concept of intensity functions and counting process has been introduced in 1. In this

chapter, we focused on four alternative models, including an Andersen-Gill (A-G) model, a

stratified A-G model, a frailty model, and a stratified frailty model.

3.3.1 Andersen-Gill Model

A Poisson process model, or Andersen-Gill model, is commonly used in the recurrent event

literature [1]. It describes situations where events occur randomly in such a way that the

numbers of events in non overlapping time intervals are statistically independent. The overall

intensity function of Poisson Process is:

λi(t|zi(t)) = λ0(t) exp[z′i(t)β], (3.1)

where i = 1, · · · ,m represents individual subject. Baseline intensity λ0(t) is a nonnegative

integrable function. zi(t) is a vector of fixed or time-varying external covariates associated

with subject i and acts multiplicatively on the baseline. β is a vector of regression parameters
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of the same length as zi(t).

As can be seen from definition, the A-G model assumes that the probability of an event

in (t, t +4t) may depend on t but not on H(t). Cumulative intensity, denoted as µ(t) =∫ t
0
λ(t)dt, is continuous and finite for all t > 0 and can be explained as the average number

of events occurring in time period (0, t ].

The estimation of coefficients (β̂) can be derived from maximizing log partial likelihood

[4], which is given as follows:

log(PL) =
m∑
i=1

ni∑
j=1

zi(t)′β − ∑
k∈Rij

exp[zk(t)
′β]

 . (3.2)

Where ni is the total number of events of subject i, Rij consists of all subjects who are

at risk at given tij. The baseline function can be estimated by inserting β̂ into log partial

likelihood and given in (3.3).

λ̂0(t) =

∑m
i=1 Yi(t)dNi(t)∑m

i=1 Yi(t) exp[zi(t)′β̂]
, (3.3)

where Yi(t) indicates whether subject i is under study at time t, and
∑m

i=1 Yi(t)dNi(t) is the

total number of events at t.

3.3.2 Stratified A-G model

It is likely that subjects are sampled from subgroups of individuals with varying intensity

functions. An effective way to accommodate this situation is to stratify the baseline function

into strata. It is assumed that baseline functions vary among strata while coefficients remain

the same. The stratification model is given bellow:

λri(t|z′ri(t)) = λ0r(t) exp[z′ri(t)β], (3.4)

where r = 1, · · · , R indicates stratum level, λ0r(t) is the baseline function for stratum r, and

zri(t) is the corresponding covariates vector for subject i in strata r, 1 ≤ i ≤ mr.

Estimation procedure for stratified model is very similar as that of A-G model, with log

partial likelihood:

log(PLstr) =
R∑
r=1

mr∑
i=1

nri∑
j=1

zri(t)′β − ∑
k∈Rrij

exp[zrk(t)
′β]

 . (3.5)
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3.3.3 Shared Frailty Model

In applications involving multiple subjects, heterogeneity is often apparent and requires con-

sideration. Heterogeneity describes, conditioning on covariates, variation among individual

intensity rate functions. In another word, there is more within-individual variation in event

occurrence than is accounted for by a Poisson process. To capture the relation of the cor-

related observations, it has been considered that those event times of one subject share an

unobserved effect [11, 12]. This shared individual random effect accounts for the variation

beyond conditioning on covariates.

The shared frailty model assigns a random effect, ui, i = 1, · · · ,M to each subject

acting multiplicately on the Poisson intensity model. Then, the intensity function is formed

accordingly as:

λi(t|ui, zi(t)) = uiλ0(t) exp[z′i(t)β], (3.6)

where the random terms ui,· · · , um are independent and identically distributed (i.i.d) with

mean 1 (manually defined) and distribution function G(u). Frailty gives the interpretation

that individuals with ui > 1 tend to occur at a faster rate. There are several choices for

distribution G(u), including Gamma, inverse Gaussian, and lognormal [15]. In this chapter,

lognormal distribution is of primary use. If one specifies γi = log(ui), then γi ∼ N(0, σ) and

3.6 turns to be:

λi(t|γi, zi(t)) = λ0(t) exp[z′i(t)β + γi], (3.7)

For the shared frailty model, there are two commonly used methods to obtain β̂. One

is expectation-maximization (EM) algorithm and the other is maximizing penalized partial

log-likelihood. Therneau et al. [13] have proved that solution to lognormal shared frailty

models by the E-M algorithm is closely linked to PPL estimation. The logarithm of PPL is

given below:

log(PPL) =
m∑
i=1

ni∑
j=1

zi(t)′β − ∑
k∈Rij

exp[zk(t)
′β]

− 1

2σ2

M∑
i=1

γ ′γ, (3.8)

where γ = (γ1, · · · ,γm).

The maximization of this approximate likelihood is a doubly iterative process that alter-

nates between the following two steps:

1. For a fixed value of σ2, find the best covariates estimation by maximizing the penalized

partial log likelihood, Log(PPL)
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2. For fixed values of β and γ, calculate the REML estimation of σ̂2 =
γ̂′γ̂+trace(H−1

22 )

m
in

which H−122 is the inverse of the second derivative matrix associated with frailty terms.

The estimation for baseline function is given as (3.9), which is the same as the A-G model

with an offset of estimated random effects.

λ̂0(t) =

∑m
i=1 Yi(t)dNi(t)∑m

i=1 Yi(t) exp[zi(t)′β̂ + γ̂i]
(3.9)

3.3.4 Stratified Shared Frailty Model

The stratified shared frailty model encloses both varying baseline function and among indi-

viduals variation and as a combination of the (3.4) and (3.7) as follows:

λri(t|zri(t), γri) = λ0r(t) exp[zri(t)
′β + γri]. (3.10)

where r indicates stratum level with baseline function of λ0r(t), and zri(t) is covariates vector

for subject i, 1 ≤ i ≤ mr.

The estimation for β is by maximizing PPL, similar as that of previous shared frailty

model. Baseline estimation for stratum r is given below:

λ̂0r(t) =

∑mr

i=1 Yri(t)dNri(t)∑mr

i=1 Y0r(t) exp[zri(t)′β̂ + γ̂ri]
, (3.11)

where mr is the number of subjects in strata r and Yri(t) is an indicator of whether subject

i in strata r is still under study at time t.

3.3.5 Model Fitting: Cox-Snell Residual

Cox-Snell residuals are useful for checking the overall fit of the final model [4]. For case of

several processes i = 1, · · · ,M , with intensity λi(t), Cox-Snell residuals are defined as

rij =

∫ ti,j

ti,j−1

λ̂i(s)ds, (3.12)

where j = 1, · · · , ni + 1. ti,0. ti,ni+1 are the start and stop times for subject i. λ̂i(t) is the

estimated intensity rate. If the model is correct then rij should behave like a censored sample

from a unit exponential distribution. Thus a plot of the estimated cumulative intensity rate

of the residuals versus the residuals should be a straight line through the origin with a slope

of 1 [4].
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3.4 Simulation Study

3.4.1 Simulation setup

We conducted a simulation study to evaluate the performance of the alternative approaches.

The simulation setup is analogous to the real situation and described below:

1. The driving time for 50 subjects was generated from a normal distribution with a mean

of 335 and a standard deviation of 160, which was estimated from the 100-Car Study

Data.

2. For each subject, up to two crashes were generated based on the intensity function:

λi(t) =
1

150
. (3.13)

The rate 1
150

was selected based on the crash rate estimated from 100-Car data. The

rate implies that on average one crash will occur for every 150 hours of driving. Other

baseline rates were also evaluated and the model performance was robust to the change

in baseline rate. Gender and other external factors were not considered in the simula-

tion. Crash intensity was restricted to be constant over time. Crashes were considered

to occur independently. If a simulated crash occurred later than the driver’s study

time, the crash would be censored.

3. After generating censor time and crash time, the intensity function for each driver is

defined as follows:

λri(t) =crt
kr−1 × exp

[
β1(sexri = M) + β2(Iri(t) = 1) + β3(Iri(t) = 2)

+ β4(Iri(t) = 1)(sexri = M) + β5(Iri(t) = 2)(sexri = M) + γri

]
,

(3.14)

where

(a) r = 1, 2, or 3, indicates stratum level. Drivers in level 1 do not experience any

crashes, drivers in level 2 have only one crash, and drivers in level 3 have two

crashes.

(b) Baseline functions depend on two parameters, c and r, which can vary from stra-

tum to stratum, as denoted by cr and kr. kr > 1 indicates that the SCI rate

increases over time. kr = 1 corresponds to a constant rate, while kr < 1 means a

decreasing rate.
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(c) Iri(t) is a time-varying crash indicator. It takes a value of 1 when t is between

the first and second crash and 2 when t is larger than the second crash time.

(d) β1 is gender effect; β2 is the first crash effect for female drivers; β3 is the second

crash effect for female drivers; β2 + β4 is the first crash effect for male drivers;

β3 + β5 is the second crash effect for male drivers.

(e) γri ∼ N(0, σ), r = 1, · · · , 3; i = 1, · · · , 50 are independent frailty terms.

3.4.2 Simulation results

In order to cover a sufficient large range of parameter space, 24 settings with different baseline

parameter combinations, as well as various combinations of gender and crash effects were

tested. In each setting, 500 repeats were generated and two models were implemented: a

stratified frailty model and a frailty model. Because of space limits, we only provide results

for selected scenarios.

Figure 3.2 shows a coverage probability (CP) comparison between two models, where

three strata share the same shape parameter, k (set as 1), but have different scale parameters,

c. Seven setting results with assorted combinations of c are presented. Both models perform

well, with an average CP around 95% and small bias (1% to 3% difference). The stratified

frailty model does not show a great benefit over the frailty model because the variation

among strata is proportional, and thus can be explained through frailty terms. Figure 3.2

shows results from another seven settings where three strata share the same scale parameter,

c (set as 0.2), but different shape parameters, k. The stratified frailty model retains a CP

of around 95% while the frailty model performs poorly, with the CP being as low as 20%.

Figure 3.2: Coverage probability comparison I.

25



Figure 3.3: Coverage probability comparison II.

To evaluate model performance at different levels of standard deviation for frailty terms,

two settings are shown in Table 3.2: one has frailty terms follows N(0, 0.5), the other has

frailty terms follow N(0, 1). Baseline functions are set to be the same. This variance of

frailty terms represents a degree of heterogeneity among subjects. With higher levels of

heterogeneity, we observed larger bias and empirical standard error for fixed effect estimation

(β1). Bias and empirical standard error for other effects remain similar. Compared to the

low CP of the frailty model, the stratified frailty model has around a 95% CP for all effects.

In Table 3.3, the performance of the stratified frailty model was tested when there was

no stratification. Three baseline functions are set with the same c and k. Although the

stratified frailty model is more complicated than the situation requires, the 95% CP on

average indicates a credible and stable estimation.
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Table 3.2: Simulation result I: k=(.95,1.1,1.22) c=(0.2,0.17,0.15).

Stratified Frailty Model Frailty Model

Parameter True value Bias SE % SEM4 CP∗ Bias SE % SEM4 CP∗

β1 -0.2 0.002 0.159 0.173 95.8 0.004 0.198 0.205 95.6

β2 0 -0.001 0.059 0.062 94.8 0.04 0.06 0.059 89.4

β3 -0.6 0.003 0.078 0.078 95.6 0.115 0.085 0.074 66.6

β2 + β4 -0.2 0.002 0.069 0.068 94.2 0.046 0.071 0.066 87

β3 + β5 -0.7 0.007 0.082 0.083 94 0.124 0.089 0.079 66.4

σ 0.5 -0.036 NA NA NA 0.121 NA NA NA

β1 -0.2 0.039 0.323 0.301 91.6 -0.011 0.698 0.372 92.8

β2 0 -0.003 0.056 0.055 96 0.025 0.06 0.052 88.8

β3 -0.6 0.005 0.083 0.069 94.2 0.095 0.079 0.065 67.7

β2 + β4 -0.2 -0.002 0.061 0.06 95.2 0.095 0.079 0.065 67.7

β3 + β5 -0.7 0.009 0.087 0.073 95 0.101 0.083 0.069 65.1

σ 1 -0.063 NA NA NA 0 NA NA NA

%: Empirical standard error

4: Mean of standard error

*: Coverage probability

Table 3.3: Simulation result II: k=(1,1,1) c=(0.2,0.2,0.2).

Stratified Frailty Model Frailty Model

Parameter True value Bias SE % SEM4 CP∗ Bias SE % SEM4 CP∗

β1 -0.2 -0.006 0.228 0.265 96.8 -0.007 0.218 0.237 97

β2 0 -0.003 0.086 0.086 95.4 -0.004 0.082 0.08 93.6

β3 -0.6 -0.005 0.121 0.116 94.2 -0.007 0.106 0.104 94

β2 + β4 -0.2 -0.006 0.1 0.097 94.6 -0.005 0.092 0.091 96

β3 + β5 -0.7 0.003 0.129 0.125 93.4 0.002 0.115 0.113 93.8

σ 0.75 -0.036 NA NA NA -0.021 NA NA NA

%: Empirical standard error

4: Mean of standard error

*: Coverage probability

In summary, stratified frailty model is capable of accommodating possible variation

among groups without losing power of the test for effects of interest. If subjects behave

differently with various intensity functions, aggregating them together will mask the effect

of covariates in the individual level.
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3.5 Application in 100-Car NDS

In this section, four models are applied to 100-Car NDS. Three covariates are incorporated

in to model: gender (G), age at the driver first enrolled in the study, and crash effect based

on relationship with crashes (0 for before first crash, 1 for between first and second crash,

and 2 for after second crash). In order to test and estimate each crash effect, it is considered

as categorical variable. Since the study lasted for one year, age is considered to be constant.

Estimation of crash effects on SCI using A-G model, stratified A-G model, shared frailty

model, and stratified shared frailty model is elaborated in Table 3.4. The stratified frailty

model yields an intensity rate ratio of 0.8 (95% CI [0.693, 0.971]) between after the time

of the first crash and before the first crash for male drivers. There is no significant first

crash influence on female drivers, with an intensity rate ratio of 1.115 (95% CI [0.96, 1.296]).

Unlike first crash effect, SCI risk drops sharply after the second crash for both female and

male drivers, with a corresponding rate ratio of 0.432 (95% CI [0.342, 0.547]) and 0.472 (95%

CI [0.377, 0.59]) respectively. The shared frailty model shows a comparable second crash

effect as the stratified frailty model. Post-crash intensity is significantly lower. However, in

terms of first crash effect, it is not significant for male drivers. Other than that, intensity

rate increases substantially. Models without frailty terms have larger standard errors, thus

wider confidence interval on the estimation, which leads to non-significant results.

Table 3.4: Crash effect estimation on SCI.

Model Contrast Estimate Intensity Rate Ratio CI∗ Pr>ChiSq

A-G

1 vs. 0 Female 0.228 1.256 0.745 2.119 0.393

2 vs. 1 Female 0.526 1.693 1.083 2.645 0.021

1 vs. 0 Male 0.162 1.176 0.712 1.943 0.528

2 vs. 1 Male 0.269 1.309 0.778 2.201 0.310

Stratified A-G

1 vs. 0 Female -0.053 0.948 0.552 1.628 0.847

2 vs. 1 Female 0.056 1.058 0.691 1.619 0.795

1 vs. 0 Male -0.382 0.683 0.378 1.233 0.206

2 vs. 1 Male -0.065 0.937 0.572 1.533 0.795

Shared frailty

1 vs. 0 Female 0.145 1.156 1.017 1.314 0.027

2 vs. 1 Female -0.385 0.681 0.57 0.812 < .0001

1 vs. 0 Male -0.030 0.970 0.836 1.126 0.691

2 vs. 1 Male -0.337 0.714 0.598 0.852 0.000

Stratified frailty

1 vs. 0 Female 0.109 1.115 0.960 1.296 0.155

2 vs. 1 Female -0.839 0.432 0.342 0.547 < .0001

1 vs. 0 Male -0.199 0.820 0.693 0.971 0.021

2 vs. 1 Male -0.751 0.472 0.377 0.590 < .0001

*: Confidence Limits of Intensity Rate Ratio
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Table 3.5 lists estimations of first crash effect on NC based on four models. NCs are

observed much less frequently compared to SCI events. Four female drivers experienced two

or more crashes in the study, as shown in Table 3. After careful examination, only one of

them had more than one NC recorded after the second crash. The rest have the second

crash as their last driving record. Consequently, the estimation of the second crash effect for

female drivers depends heavily on one single driver, which may lead to an individual crash

influence rather than a population-wise effect. Thus, we decided to use time up to the second

crash only and evaluate the first crash influence on NC. As indicated by the stratified frailty

model, the intensity rate after first crash is 0.52 times (95% CI [0.314, 0.874]) the before-

crash intensity rate for male drivers. Female drivers do not show a significant decreasing

trend after a crash. A similar crash influence was found for SCI data. Estimation of σ is

0.93 based on REML estimation.

The shared frailty model proposes a different crash influence compared to the stratified

frailty model. Neither male nor female drivers reveal a remarkably lower post-crash intensity.

Models without frailty terms have larger standard errors, and thus wider confidence bands

on the estimation, which leads to non-significant results.

Table 3.5: Crash effect estimation on NC.

Model Contrast Estimate Intensity Rate Ratio CI∗ Pr>ChiSq

A-G
1 vs. 0 Female 0.206 1.228 0.712 2.120 0.460

1 vs. 0 Male 0.284 1.329 0.816 2.163 0.253

Stratified A-G
1 vs. 0 Female -0.359 0.698 0.378 1.289 0.251

1 vs. 0 Male -0.545 0.58 0.329 1.024 0.060

Shared frailty
1 vs. 0 Female 0.222 1.249 0.815 1.913 0.308

1 vs. 0 Male -0.140 0.870 0.558 1.355 0.537

Stratified frailty
1 vs. 0 Female -0.117 0.890 0.551 1.438 0.633

1 vs. 0 Male -0.646 0.524 0.314 0.874 0.013

*: Confidence Limits of Intensity Rate Ratio

Figure 3.4 and Figure 3.5 show the Cox-Snell residual plots of four intensity based models

for residuals of SCI and NC respectively. As mentioned in Section 3.3, if model is specified

correct, Cox-Snell residuals follow exponential one distribution.

In current study for SCI, distribution of residuals is heavy tailed compared to exponential

one distribution. For residuals larger than 6, the percentage varies from 1% to 2% from model

to model. The probability associated with large (> 6) Cox-Snell residuals is supposed to be

0.25% for exponential one distribution. These extreme large residuals will lead to a departure

of fitting from a straight line. Long intervals between two SCI events are the major source

of extreme residuals, such as a 20-hour gap compared to a 5-hour gap on average. We have
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Table 3.6: Distribution of extreme Cox-Snell residuals on SCI.
Quartile 96% 96.5% 97% 97.5% 98% 98.5% 99% 99.5% 100%

A-G 3.90 4.16 4.69 5.38 6.04 7.34 9.67 16.16 88.95
Stratified A-G 3.89 4.21 4.59 5.06 5.85 7.14 9.01 15.40 71.00

Frailty 3.77 4.02 4.32 4.64 5.12 5.68 6.76 8.73 36.73
Stratified frailty 3.71 3.97 4.21 4.52 4.88 5.43 6.37 8.11 34.72

examined those long gaps and there is a possibility that this was caused by missing event

identification during the data reduction process. For this reasons, we present the distribution

of extremely large residuals in Table 3.6 and set the upper limit of the residual to 6. It can

be shown that the model fitting is reasonably well for majority of the data points.

For NC, residual plots of stratified frailty model is much closer to a straight line comparing

to other three models, indicates the best model fitting. In order to evaluate difference among

strata, estimated baseline intensity functions of SCI and NC are explored by stratified frailty

model in Figure 3.6. It can be concluded intensity rate among different stratum is not

identical, which supports the idea of stratification.
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(a) A-G model (b) Stratified A-G model

(c) Frailty Model (d) Stratified Frailty Model

Figure 3.4: Cox-Snell residual plots for SCI.
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(a) A-G model (b) Stratified A-G model

(c) Frailty Model (d) Stratified Frailty Model

Figure 3.5: Cox-Snell residual plots for NC.

Figure 3.6: Baseline intensity rate estimation of SCI(left) and NC(right).
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3.6 Conclusion and Discussion

This study evaluated the influence of crashes on driving risk using 100-Car NDS data. The

results suggest that crashes have a positive effect on driver behavior with lower SCI intensity

after crashes. Drivers might either learn from the crashes experience or be more attentive

while driving, which is reflected in the reduced SCI intensity within a short window after

crashes. In addition, the study indicates that female and male drivers showed different re-

sponse to crashes and the number of crashes also influence driver behavior. Male drivers

responded to both the first crash and the second crash with a lower SCI intensity after each

crash. Females showed no significant response to the first crash but did show a decreased SCI

intensity after the second crash. These findings provide crucial information for understand-

ing driver’s response to dramatic safety events and can be critical for development safety

education programs and safety counter measures.

We evaluated and compared four intensity-based recurrent models based on the char-

acteristics of the data. Safety outcomes, including SCIs and NCs, are used as markers for

driving risk. The simulation study demonstrated that the stratified frailty model is capable

of accommodating possible variation among groups without losing power to test for effects of

interest. If subjects behave differently among various levels, aggregating them together will

mask the effect at the individual level. We also observed robust performance of the stratified

frailty model when subjects are not from different levels. Application the models to the data

suggest that the stratified frailty model fits the context of the study and provides the best

model fitting for the data.

There are a couple of limitations of this study. First, the individual driver risk variation

might be confounded with the observed effect. Second, the study is based on a relative

small number of crashes with mild crash severity. With larger NDS data sets becoming

available, such as the Second Strategic Highway Research Program (SHRP 2) Naturalistic

Driving Study, more concrete evidence will be available on the influence of crashes on driver

behavior and potentially the influence of crashes by severity.

33



Bibliography

[1] P. K. Andersen and R. D. Gill. Cox’s Regression Model for Counting Processes: A

Large Sample Study. The Annals of Statistics, 10(4):1100–1120, 1982.

[2] H. Chang and P. P. Jovanis. Formulating accident occurrence as a survival process.

Accident Analysis & Prevention, 22(5):407 – 419, 1990.

[3] Y. Chung. Development of an accident duration prediction model on the korean freeway

systems. Accident Analysis & Prevention, 42(1):282 – 289, 2010.

[4] R. J. Cook and J. F. Lawless. The statistical analysis of recurrent events. Statistics for

biology and health. Springer, 2007.

[5] D. R. Cox. Regression Models and Life-Tables. Journal of the Royal Statistical Society.

Series B (Methodological), 34(2):187–220, 1972.

[6] T. A. Dingus, S. Klauer, V. L. Neale, A. Petersen, S. E. Lee, J. Sudweeks, M. A.

Perez, J. Hankey, D. Ramsey, S. Gupta, C. Bucher, Z. R. Doerzaph, J. Jermeland, and

R. Knipling. The 100-car naturalistic driving study, phase ii–results of the 100-car field

experiment. U.S. Dept. of Transportation Report DOT-HS-810-593, 2006.

[7] F. Guo, S. G. Klauer, J. M. Hankey, and T. A. Dingus. Near-crashes as crash surro-

gate for naturalistic driving studies. the Transportation Research Record:Journal of the

Transportation Research Board, 2147:66–74, 2010.

[8] P. P. Jovanis and H. Chang. Disaggregate model of highway accident occurrence using

survival theory. Accident Analysis & Prevention, 21(5):445 –458, 1989.

[9] D. Y. Lin, L. J. Wei, I. Yang, and Z. Ying. Semiparametric regression for the mean

and rate functions of recurrent events. Journal of the Royal Statistical Society. Series

B (Statistical Methodology), 62(4):711–730, 2000.

[10] D. Lord and F. Mannering. The statistical analysis of crash-frequency data: A review

and assessment of methodological alternatives. Transportation Research Part A: Policy

and Practice, 44(5):291 – 305, 2010.

[11] C. A. McGilchrist and C. W. Aisbett. Regression with frailty in survival analysis.

Biometrics, 47:461–466, 1991.

34



[12] G. G. Nielsen, R. D. Gill, P. K. Andersen, and T. I. A. Sørensen. A Counting Process

Approach to Maximum Likelihood Estimation in Frailty Models. Scandinavian Journal

of Statistics, 19(1), 1992.

[13] T. M. Therneau, P. M. Grambsch, and V. S. Pankratz. Penalized survival models and

frailty. Journal of Computational and Graphical Statistics, 12(1):156–175, 2003.

[14] L. J. Wei, D. Y. Lin, and L. Weissfeld. Regression Analysis of Multivariate Incom-

plete Failure Time Data by Modeling Marginal Distributions. Journal of the American

Statistical Association, 84(408):1065–1073, 1989.

[15] A. Wienke. Frailty Models in Survival Analysis. Chapman & Hall/CRC Biostatistics

Series. CRC Press, Hoboken, 2010.

35



Chapter 4 Inference on Semi-parametric Frailty Model with Time-

varying Coefficient

4.1 Introduction

Recurrent events data are often encountered in longitudinal study in many disciplines, such

as biomedical research, public health, and engineering. It has been widely studied using

marginal models and frailty models by assuming risk factors’ effects are constant over time

[2, 13, 20]. As constant effect assumption may not hold in reality, it is an important extension

to evaluate time-varying coefficients. Among varieties of approaches, semiparametric time-

varying coefficients model has received much attention over past decades [6, 19, 21]. By

assuming covariate effects on the logarithm of the hazard function as an unknown function

over time, researchers are able to explore temporal effects of the covariates on the failure

time.

To incorporate time-varying coefficients in hazard function, two type of techniques have

been widely studied. One is kernel-weighted partial likelihood and the other is spline-based

model. Kernel-weighted partial likelihood was proposed by Fan et al. [10] and further devel-

oped by Cai and Sun [6]. Coefficients are estimated locally based on the partial likelihood

in a window around each time point where models are build for intensity function. Tian

et al. [19] constructed pointwise and simultaneous confidence intervals for the regression pa-

rameters over a properly chosen time interval via a simple resampling technique. They also

derived a prediction method for future survival with any specific set of covariates. Cai et al.

[4] and Cai et al. [5] elaborated such question under marginal hazard framework.

Spline provides an approximating function of the interested coefficient(s). Early studies

were Cox-based models defined for univariate time-to-event and were proposed to detect

nonlinear covariate effect, not specifically for time-varying effect [15]. Zucker and Karr [23]

used a penalized partial likelihood approach, where the penalty function was designed to

make estimates smooth and thereby reduce variance. Sleeper and Harrington [17] developed

a survival model based on data from a clinical trial using regression splines. More recently,

Amorim et al. [1] expanded spline technique to the filed of recurrent events data. Yan and

Huang [21] offered an adaptive group lasso method that not only selects important variables

but also selects between time-independent and time-varying specifications. Sun et al. [18]

formulated a class of semiparametric marginal rates models, which incorporate a mixture of

time-varying and time-independent parameters, to analyze recurrent event data. Yu et al.
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[22] proposed a spline method to estimate coefficients and a Gaussian frailty to characterize

the correlation among recurrent events.

A major motivation of this paper is to study how crash experience influences driving

risk. In the previous Chapter, we showed driving risk was reduced after crash with amount

of decrease varies between gender. To explore and examine the pattern of influence over time

is an appealing question. Based on personal driving experience, the conjecture is that drivers

are more cautious following a crash and less careful over time. A presumable consequence

is that driving risk decreases first after crash and gradual increase as time pass by. Klauer

et al. [12] stated driving pattern and risk tended to remain stable for mature drivers. It

suggests driving risk may eventually return to the same level as that in pre-crash period.

The primary data is from 100-Car Naturalistic Driving Study (NDS). Safety-related events,

such as near-crashes (NCs) and safety-critical incidents (SCIs) were recorded. They represent

undesired safety conditions to be avoided, thus are used as measurement of driving risk. We

evaluate the influence of crashes on the intensity of SCIs and NCs by treating SCIs and NCs

as counting processes.

There have been few references on the inference of smoothing parameters for time-varying

effects. In this chapter, we use Gaussian frailty model for recurrent events to accommodate

correlation among events within subject. Penalized B-spline is used to approximate time-

varying coefficient. Variance components and smoothing parameters are estimated jointly

by maximizing profile likelihood. We propose to estimate time-varying coefficient through

regular frailty model by reparameterization. Besides easy implementation, it allows us to

make systematic inference on all components, including smoothing parameters. The reason of

using spline other than kernel-weighted partial likelihood is the unique double time systems

in the 100-Car data. Crashes occur at different time points across subjects. It motives

evaluation crash influence as a function of time after crash. On the other hand, baseline

intensity may change over study time, which is another time system.

The remainder of this Chapter is organized as follows. Section 4.2 introduces the time-

varying coefficient model and estimation procedure. In Section 4.3 we discuss inference

of coefficients and variance components, following by hypothesis tests. We illustrate the

method in Section 4.4 by applying it to 100-Car data. Simulation studies, including model

performance in finite samples and comparisons between alternative penalty matrices, are

summarized in Section 4.5. Finally, we conclude with discussion in Section 4.6.
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4.2 Time-varying coefficient model

In a longitudinal study, suppose individual i is observed over [0, Ti], i = 1, · · · ,m, where

t = 0 indicates start of the event process. Let ni be the total number of events individual i

encounters during the observed time period. All time points, 0 < ti,1 < · · · < ti,ni
≤ Ti, are

recorded. We consider event times are independent of Ti. We formulate intensity function

by a semiparametric function including both time-dependent coefficients and time-constant

coefficients as follows:

λi

[
t | zi(t),xi,wi,γ

]
= λ0(t) exp

[
z′i(t)β(t) + x′i(t)α+w′iγ

]
. (4.1)

λ0(t) is a nonparametric baseline function. zi(t) and xi(t) are two vectors of time-varying

(or constant) explanatory variables with dimension p and q respectively. Coefficients β(t)

is a vector composed by p functions of times, β(t) = (β1(t), · · · , βp(t))′. α(t) is a vector of

time-constant coefficients. wi explains the correlation structure among events for subject i.

γ is a vector of random effects following N (0,Σ(θ)). θ is a vector of unknown parameters

of variance components. Model (4.1) adapts various study designs because one can specify

a flexible covariance structure. One special case is shared frailty model, where each element

of γ independently follow N (0, θ
1
2 ).

Following Yu et al. [22] the loglikelihood, conditional on covariates and frailty terms, is

presented below:

lc

[
λ0(·),α,β(·) | γ

]
=

m∑
i=1

li

[
λ0(·),α,β(·) | γ

]
=

m∑
i=1

{ ni∑
j=1

[
logλ0(tij) + zi(tij)

′β(tij) + xi(tij)
′α+w′iγ

]
− Λ0(Ti) exp

[
zi(Ti)

′β(Ti) + xi(Ti)
′α+w′iγ

]}
,

(4.2)

where Λ0(t) =
∫ t
0
λ(u)du. Estimation of β(t) and α requires marginal log likelihood after

integrating out frailty terms:

lm = log

∫ m∏
i=1

Li

[
λ0(t),β(t),α | γ

]
× f(γ)dγ

= log

∫
1

(2π)
m
2 |Σ(θ)| 12

exp

{
m∑
i=1

li

[
λ0(·),α,β(·) | γ

]
− γ

′Σ(θ)−1γ

2

}
dγ.

(4.3)

38



It involves formulation of nonparametric time-varying coefficients and integration over frailty

terms. In the next two subsections, we shall first discuss how to construct penalized B-spline

estimates of β(t). Then we introduce approximation for marginal likelihood.

4.2.1 Penalized B-Spline estimation with alternative penalty matrices

We consider penalized B-spline to estimate time-varying coefficients. B-splines, introduced

by DeBoor [8], is a popular type of regression splines consisting several piecewise polynomial

functions. Time-varying coefficient βl(t), l = 1, · · · , p is approximated by standard B-spline

basis functions with dimension d. Curry and Schoenberg [7] implied any spline function can

be written as a unique linear combination of the elements in the basis Bk(t), k = 1, · · · , d.

The expression of βl(t) is given as:

βl(t) =
d∑

k=1

ηlkBk(t) = B(t)′ηl. (4.4)

Let η = (η′1, · · · ,η′p)′. After replacing the scalar covariate βl(t) by d-dimensional vector,

model (4.1) turns into:

λi

[
t|zi(t),xi,wi,γ

]
= λ0(t) exp

[
zi(t)

′ ⊗B(t)′η + x′i(t)α+w′iγ
]
. (4.5)

It doesn’t include time-varying coefficient anymore. Once basis functions are determined,

B(t) and η take place of β(·) as unknown parameter and can be analyzed by standard

procedure.

Dimension d is the summation of number of knots n and order r. n and r are of choice

by researchers and have influence on the result. Higher order and more knots give more

flexibility to better approach the true function. The downside of many knots and high order

is overfitting. Cubic splines (order 4) has been widely used among literatures [11, 22] and

is adopted in this study. In terms of knots selection, a widely used technique is to use

a relatively large number of knots and add a penalty term for each spline function (e.g.

Gray [11], Lin and Zhang [14], O’Sullivan [15], Yu et al. [22]). It gives penalized marginal

likelihood:

lpm = lm

[
λ0(t),α,η,θ

]
− 1

2

p∑
l=1

λlη
′
lPηl, (4.6)

where λ = (λ1, · · · , λp) is a vector of smoothing parameters to control the tradeoff between

the goodness of fit and the smoothness of the estimated functions. Smaller smoothing pa-

rameter place less constrain and the estimated coefficient function is more flexible. P is
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a nonnegative definite smoothing matrix. There are two types of P being commonly ap-

plied, one is second derivative of basis functions P =
∫
B(2)(t)B(2)(t)′dt [15]. With this,

ηlPηl is the second derivative of the fitted curve. The other one is proposed by Eilers

and Marx [9] as finite differences of the coefficients of adjacent B-splines. For example,

η′Pη =
d∑
l=3

(ηl − 2ηl−1 + ηl−2)
2 is the order of two penalty terms. The corresponding P is


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

...
...

...
. . .

...

0 0 · · · 1 −2 1

 . (4.7)

A strong connections has been derived between these two alternatives. Eilers and Marx [9]

showed using a difference penalty on the coefficients simplified the procedure of maximization

penalized likelihood. Comparison between them is conducted through simulation study in

Section 4.5.

4.2.2 Double penalized partial likelihood and parameter estimation

With normally distributed frailties, there is no closed form for (4.6). We borrowed the idea

of Laplace approximation from Breslow and Clayton [3], Ripatti and Palmgren [16], and Yu

et al. [22]. The penalized marginal loglikelihood is approximated as:

lpm ≈ −
1

2
log|Σ(θ)| − log|K ′′(γ̃)|+ lc

[
λ0(·),α,η | γ̃

]
− 1

2
γ̃ ′Σ(θ)−1γ̃ − 1

2

p∑
l=1

λlη
′
lPηl, (4.8)

where K(γ) = −lc
[
λ0(·),α,η | γ

]
+ 1

2
γ ′Σ(θ)−1γ. γ̃ is the solution to the first derivative

K ′(γ) = 0 and K ′′(·) is the second derivative of K(·) with respect to γ.

If θ is fixed, the first term of (4.8) is constant with respect to α,η. Ripatti and Palmgren

[16] showed through simulation study that ignoring the second term in (4.8) resulted some

information loss, but not too much to influence the estimation precision. It did simplify

estimation procedure. Furthermore, if γ and η are considered as fixed effects parameters,

(4.8) is double penalized log likelihood. The first term put penalty on extreme values of γ

and the second is for penalizing smoothness of the time-varying coefficients functions. lpm is

then approximated by
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lpm ≈ lc

[
λ0(·),α,η | γ̃

]
− 1

2
γ̃ ′Σ(θ)−1γ̃ − 1

2

p∑
l=1

λlη
′
lPηl. (4.9)

The first term of (4.9) is full log likelihood for a Cox model with given frailty terms. It

can be maximized using penalized fixed effects partial likelihood (PPL). Double penalized

partial likelihood (DPPL) is of form:

m∑
i=1

ni∑
j=1

{
zi(tij)

′ ⊗B(tij)
′η + xi(tij)

′α+w′iγ

− log
∑
k∈Rrij

exp
[
zk(tij)

′ ⊗B(tij)
′η + xk(tij)

′α+w′kγ
]}
− 1

2
γ ′Σ(θ)−1γ − 1

2

p∑
l=1

λlη
′
lPηl.

(4.10)

The parameter estimate is obtained by maximizing (4.10). Note that smoothing parameters

λl, l = 1, · · · , p shall be specified. Detail of smoothing parameter estimation is discussed in

section 4.3. Differentiating 4.10 with respect to (α′,η′,γ ′)′ yields estimating equations as

below:

m∑
i=1

ni∑
j=1

zi(tij)⊗B(tij)−
exp

[
zi(tij)

′ ⊗B(tij)
′η + x′i(tij)α+w′iγ

]
zi(tij)⊗B(tij)∑

k∈Rrij

exp
[
zk(tij)′ ⊗B(tij)′η + xk(tij)′α+w′kγ

] −
p∑
l=1

λlPηl = 0

m∑
i=1

ni∑
j=1

xi(tij)−
exp

[
zi(tij)

′ ⊗B(tij)
′η + x′i(tij)α+w′iγ

]
xi(tij)∑

k∈Rrij

exp
[
zk(tij)′ ⊗B(tij)′η + xk(tij)′α+w′kγ

] = 0

m∑
i=1

ni∑
j=1

wi −
exp

[
zi(tij)

′ ⊗B(tij)
′η + x′i(tij)α+w′iγ

]
wi∑

k∈Rrij

exp
[
zk(tij)′ ⊗B(tij)′η + xk(tij)′α+w′kγ

] − Σ(θ)−1γ = 0

(4.11)

Estimating equations in (4.11) can be solved by Newton-Raphson algorithm or other nu-

merical methods. After obtaining η̂, time-varying coefficient β̂l(t) is estimated by η̂′lB(t).

Baseline intensity function estimation is:

λ̂0(t) =

∑m
i=1 Yi(t)dNi(t)∑m

i=1 Yi(t) exp
[
zi(t)′ ⊗B(t)′η̂ + x′i(t)α̂+w′iγ̂

] , (4.12)

where Yi(t) is a process recording whether subject i is at risk at time t.
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4.2.3 Stratified time-varying coefficient model

In some studies, it is likely that subjects are sampled from subgroups of individuals with

varying intensity functions. An effective way to accommodate this situation is to stratify

the baseline functions into strata. It is assumed that baseline functions vary among strata

while coefficients remain the same. The stratification model is of the following form:

λri

[
t | zri(t),xri,wri,γ

]
= λ0r(t) exp

[
z′ri(t)β(t) + x′ri(t)α+w′riγ

]
, (4.13)

where r = 1, · · · , R indicates stratum level. i = 1, · · · ,mr represents the i-th subject in

stratum r. λ0r(t) is the baseline function for stratum r.

The estimating procedure for the stratified model is maximizing stratified DPPL:

R∑
r=1

mr∑
i=1

nri∑
j=1

{
zri(trij)

′ ⊗B(trij)
′η + xri(trij)

′α+w′riγ

− log
∑
k∈Rrij

exp
[
zk(tij)

′ ⊗B(trij)
′η + xk(trij)

′α+w′kγ
]}
− 1

2
γ ′Σ(θ)−1γ − 1

2

p∑
l=1

λlη
′
lPηl.

(4.14)

We estimate each baseline intensity using subjects of that stratum through form of below:

λ̂0r(t) =

∑mr

i=1 Yri(t)dNri(t)∑mr

i=1 Yri(t) exp
[
zri(t)′ ⊗B(t)′η̂ + x′ri(t)α̂+w′riγ̂

] . (4.15)

4.3 Statistical inference

In this section, first we show the maximum DPPL estimator is not an unbiased estimator.

But in some cases, bias converges to 0. In addition, we propose to estimate the DPPL

estimators by fitting a frailty model. Frailty model representation provides a foundation

for joint estimation procedure of smoothing parameters and variance component. It makes

estimation procedure implemented easily by existing techniques.

4.3.1 Asymptotic distribution of maximum DPPL estimator

To approximate the distribution of the estimator, two additional assumptions beyond regu-

larity conditions are required: the knots locations and number of parameters are held fixed

as the sample size n increases; the family of models include the true distribution [11]. We
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write the two penalty terms in (4.10) in a matrix format:

DPPL = PL− 1

2
ϕ′



0 0 · · · 0 0

0 λ1P · · · 0 0
...

...
. . .

...
...

0 0 · · · λpP 0

0 0 · · · 0 Σ(θ)−1


ϕ, (4.16)

where ϕ = (α′,η′,γ ′)′. We use R to denote the big penalty matrix for convenience. In

general, as n increases, the magnitude of the contribution from the partial likelihood increase

while the P is fixed. Thus the smoothing parameter λ will also need to increase at a rate of

O(n) to keep the degree of smoothing the same.

Let ϕ0 be the vector of true unknown parameters and ϕ̂ be the maximum DPPL esti-

mator. For given λ and Σ(θ), score function and second derivative matrix are

Sp(ϕ) =
d

dϕ
dppl = S(ϕ)−Rϕ (4.17)

Hp(ϕ) =
d2

dϕdϕ′
dppl −R = H(ϕ)−R, (4.18)

where S(ϕ) is the score function of partial likelihood without penalty and H(ϕ) is the second

derivative matrix without penalty. Using standard arguments based on first-order expansion,

under mild regularity conditions, it can be seen that:

√
n(ϕ̂−ϕ0) ≈ −Hp(ϕ0)

−1Sp(ϕ0). (4.19)

And

√
nSp(ϕ0)

n

d−→ N(−Rϕ0√
n
, I(ϕ0))

−Ip(ϕ0)

n

p−→ I(ϕ0) +
R

n
,

where I(ϕ0) is the Fisher information matrix for partial likelihood. With above asymptotic

convergence, the asymptotic distribution of the maximum DPPL estimator is given below:

√
n(ϕ̂−ϕ0)

d−→ N

{
−
[
I(ϕ0) +

R

n

]−1Rϕ0√
n
,
[
I(ϕ0) +

R

n

]−1
I(ϕ0)

[
I(ϕ0) +

R

n

]−1}
. (4.20)

The estimation bias of time-varying coefficients depends on λlPηl. There are two special

cases where bias is negligible. The first case is λlPηl = 0. This indicates the penalty
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functions do not induce any bias in the estimate. The covariance matrix can be estimated

by −Hp(ϕ̂)−1H(ϕ̂)Hp(ϕ̂)−1. The second case is when λlPηl is not 0 but the amount of

smoothing is decrease as n −→ ∞. The covariance matrix can be estimated similarly as the

first case.

4.3.2 The frailty model representation

Lin and Zhang [14] showed connection between generalized additive mixed model and gen-

eralized linear mixed model by reparameterizing the spline coefficients as a combination of

fixed and random effects. Using similar idea, we propose to rewrite ηl in (4.5) as

ηl = 1β0l + bβ1l + Aal, (4.21)

where 1 is a vector of 1 with length d and A = L(L′L)−1. L is a d × (d − 2) full row rank

matrix satisfying P = LL′. b is a d× 1 vector that satisfies b′1 = 0 and b′A = 0. In another

word, b is the orthogonal complement of the space composed by 1 and A. Using the identity

η′lPηl = a′lal, DPPL (4.10) turns into:

m∑
i=1

ni∑
j=1

{
zi(tij)

′ ⊗B(tij)
′η + xi(tij)

′α+w′iγ

− log
∑
k∈Rrij

exp
[
zk(tij)

′ ⊗B(tij)
′η + xk(tij)

′α+w′kγ
]}
− 1

2
γ ′Σ(θ)−1γ − 1

2
a′Λ−1a,

(4.22)

where a = (a′1, · · · ,a′p)′ and Λ = diag
(

1
λ1
I, · · · , 1

λp
I
)

.

Plugging equation (4.21) into (4.1), (4.22) suggests that the maximum DPPL estimator

can be obtained by fitting the following frailty model:

λi

[
t | x∗′i (t),w∗

′

i ,γ
∗
]

= λ0(t) exp
[
x∗
′

i (t)β +w∗
′

i γ
∗
]
, (4.23)

where x∗i (t) =
(
xi(t)

′, zi(t)
′ ⊗ B(t)′I ⊗ 1, z′i ⊗ B(t)′I ⊗ b

)′
, and w∗i =

(
zi(t)

′ ⊗ B(t)′I ⊗

A, w′i

)′
. β =

(
α′, β′0, β

′
1

)′
is a vector of coefficients, with β0 = (β01, · · · , β0p)′ and β0 =

(β11, · · · , β1p)′. γ∗ =
(
a′, γ ′

)′
. a and γ are independent random effects with distributions

a ∼ N (0,Λ) and γ ∼ N (0,Σ(θ)). The maximum DPPL estimator β̂l(t) is calculated as

B(t)′1β̂0l + B(t)′bβ̂1l + B(t)′Aâl, which is a linear combination of the maximum penalized

partial likelihood estimator of the fixed effect and the random effects â in Ripatti and

Palmgren [16] .
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4.3.3 Inference on smoothing parameter and variance component

Statistical inference the nonparametric functions βl(t) relies on the estimation of smoothing

parameter and the inference on variance parameter θ. In the previous section, we estimated

time-varying coefficients as a linear combination of fixed effect and random effects. Smooth-

ing parameters λ was treated as extra variance components. Thus inference on smoothing

parameters can be conducted similarly to variance component in frailty model. Plugging

maximum DPPL estimators into (4.6) results profile likelihood function for θ and λ:

l ≈ −1

2
log|Λ| − 1

2
log|Σ(θ)| − 1

2
log |K ′′(γ̂∗)| − 1

2
γ̂Σ(θ)−1γ̂ − 1

2
âΛ−1â, (4.24)

where K was derived in 4.2.2. Here we propose to use K ′′DPPL(γ̂∗) = (∂2DPPL)/(∂γ∗∂γ∗
′
).

Estimating equations of θ and λ can be derived by taking the first derivative of (4.24). The

corresponding Fisher information matrix can be derived by differentiating (4.24) twice and

taking the expectation with respect to γ∗
′
, similar to equation (8) in Ripatti and Palmgren

[16].

In this Chapter, we focus on the frailties that are i.i.d with N (0, θ
1
2 ). Thus Σ(θ) is a

diagonal matrix with elements θ. wi is a sparse vector has value 1 at position of its order

and 0 elsewhere. w′iγ turns to be γi. Solutions to estimating equations are:

θ̂ =
γ̂ ′γ̂ + tr(K

′′−1
DPPL(γ̂))

m

λ̂l =
d− 2

âl
′âl + tr(K

′′−1
DPPL(âl))

, l = 1, · · · , p.
(4.25)

where K
′′−1
DPPL(γ̂) is the submatrix of K

′′−1
DPPL corresponding to γ. K

′′−1
DPPL(â) is the remaining

submatrix of K
′′−1
DPPL. Variance is estimated by the inverse of estimated Fisher information

matrix:

V ar(θ̂) = 2θ̂2
[
m+

tr(K
′′−1
DPPL(γ̂)K

′′−1
DPPL(γ̂))

θ̂2
− 2tr(K

′′−1
DPPL(γ̂))

θ̂2

]−1
V ar(λ̂l) = 2λ̂2l

[
3(d− 2) + λ̂2l tr

(
K
′′−1
DPPL(âl)K

′′−1
DPPL(âl)

)]−1
.

(4.26)

4.3.4 Computation

The maximization of DPPL is done in two steps. First, an initial value for θ and λ is

guessed. (4.11) is solved using the Newton-Raphson technique or other numerical methods

by given θ and λ. Then γ̂ and â are fixed at the values obtained and (4.25) is solved to find

a new value for θ and λ. The two steps are iterated until convergence. Once convergence is
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achieved, the cumulative baseline hazard can be estimated using (4.12), which is the same

as the Andersen-Gill [2] model with an offset of estimated random effects.

4.3.5 Test of time-varying coefficient

The objective of this subsection is to elaborate three tests of particular interest: test for

no effect, test for time-fixed effect, and test for linear time-varying effect. We start with a

general linear hypothesis test:

H0 : C(α′,η′)′ = 0, Ha : C(α′,η′)′ 6= 0 (4.27)

where (α′,η′)′ is the combined time-fixed coefficients and time-varying coefficients. C is a

matrix with full row rank R. Gray [11] suggested a Wald test statistic of the form:

[C(α′,η′)′]′(CI−1p C ′)−1[C(α′,η′)′], (4.28)

where Ip = −Hp is negative penalized hessian matrix. Under H0, the distribution of the test

statistic is asymptotically
R∑
l=1

µlZ
2
l , (4.29)

where Zl’s are independent standard normal random variables and µl’s are the eigenvalues

of the matrix (CI−1p C ′)−1CV C. Thus the generalized degrees of freedom of the test statistic

is defined as:

df = trace[(CI−1p C ′)−1CV C], (4.30)

where V = −H−1p HH−1P . We shall reject the null hypothesis if the test statistic exceeds

critical value.

In the case of testing no effect, for example: the l-th covariate doesn’t have effect on the

intensity function, we are seeking evidence against H0 : βl(t) = 0. This null hypothesis can

be represented as:

H0 : ηl = 0, Ha : ηl 6= 0. (4.31)

C matrix for this test is an identity matrix.

Another hypothesis that is often of interest is constant effect. For example, the l-th

covariate has the same magnitude of effect βl on the intensity function over time. The

formatted hypothesis H0 : βl(t) = c where c is some constant and Ha : βl(t) 6= c can be
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further represented as:

H0 : ηl,1 = · · · = ηl,d

Ha : at least one ηl,i is not the same as others.
(4.32)

C matrix for this test is a (d− 1)× d matrix as follows:
1 0 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

 . (4.33)

The last hypothesis is for linearity of time-varying coefficient. For instance, in order to

test whether the effect of l-th covariate is a linear function over time, we can formated the

null hypothesis as H0 : βl(t) = c0 + c1t, where c0 and c1 are some constant numbers. It is

more convenient if we test on the first derivative of βl(t) as a constant number as:

H0 :
∂B(t)′

∂t
η = c (4.34)

DeBoor [8] gives a simple formula for derivatives of B-splines:

h
d∑
i=1

ηliB
′
i(t, 3) = −

d−1∑
i=1

4ηi+1Bi(t, 2), (4.35)

where h is the difference between two consecutive knots. 4ηi+1 = ηi+1−ηi is the difference of

two successive coefficients. Bi(t, 2) is a B-spline function of second order at value t. By using

this relationship, the null hypothesis (4.34) is equivalent as testing 4ηl,1 = · · · = 4ηl,d−1. In

this case C is a (d− 2)× d matrix as follows:
1 −2 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −2 1

 . (4.36)

Of all the above three test, it is essentially the same to conduct a test on (β0l, β0l, al).

The corresponding C matrix needs to be multiplied by
(
1 b A

)
.
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4.4 Application to 100-Car Naturalistic Driving Study

Figure 4.1: Data collection structure.

In this section, we apply the time-varying coefficient model to the 100-Car Naturalistic Driv-

ing Study (NDS). The objective is to evaluate the pattern of crash influence on driving risk

over time. Data collection structure is shown in Figure 4.1. Each horizontal line represents

record of one driver. Drivers are subject to different numbers of crashes, NCs, and SCIs at

different time points throughout study. Thus, it is important to record all timestamps. We

focus on the actual driving time. Non-driving time when the vehicle is not in use has been

excluded. SCIs and NCs are treated as two counting processes and evaluated separately. The

process of SCIs is explained here; a similar setting is used for NCs. Each driving period is

divided into two phases based on its relationship with crashes: before the first crash (coded

as 0) and between the first and second crash (coded as 1). Since this is a one-year study,

there are only 12 drivers had two crashes. After careful review, only 4 of them had NCs after

second crash. Thus we consider to evaluate the first crash effect only. Observations after

second crashes are treated as censored. Driving period is taken into account as a covariate,

working as an external and independent factor on SCI/NC intensity. To account for poten-

tial confounding and interacting effects, gender and age of the driver when first enrolled in

the study are evaluated as time-fixed covariates. For SCI/NC, final model is given below:

λri(t) = λr0 exp
[
β1Gri + β2Age2ri + β3(t− cri)Iri(t) + β4(t− cri)GriIri(t) + γri

]
, (4.37)

where Gri = 1 for male driver and 0 for female driver. β3(t− cri) is crash influence on female

driver and β3(t− cri) + β4(t− cri) is crash influence on male driver.

Estimated crash influence on male drivers and female drivers are presented in Figure 4.2.

In addition to time-varying model, we also fit a naive frailty model by taking crash influence

as a time-fixed coefficient. As it shows from top two plots, SCI intensity drops after crash
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for male drivers and gradually increase after 200 hours. On contrary, SCI intensity stays

the same after crash and then decrease after 200 hours for female drivers. Both effects are

consistent with results from constant coefficient model. In the bottom two plots, male drivers

experience lower driving risk after 50 hours of crash till 150 hours. No significant change

after that. For female drivers, there is no significant decrease in NC intensity after crash. In

summary, driving risk of male drivers tend to decrease after crash first and then increase.

But we have not found similar pattern for female drivers. Compared with the naive analysis,

the time-varying coefficient analysis provides more information.

(a) Estimated crash influence on SCI male drivers (b) Estimated crash influence on SCI female drivers

(c) Estimated crash influence on NC male drivers (d) Estimated crash influence on NC female drivers

Figure 4.2: Crash influence on SCI and NC: β̂(t), solid; 95% pointwise confidence interval,

dashed; fixed effect estimation, dotted.

4.5 Simulation study

In this section, we conduct a simulation study to evaluate the performance of the proposed

method. We simulate intensity models in two scenarios. Details will be provided later in
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Table 4.1: Parametric coefficient estimates of time-varying model applied to 100-Car NDS

Risk factor Estimates SE Intensity rate ratio p-value

NC
Gender -0.173 0.118 0.811 0.144

Age -0.007 0.004 0.992 0.084

σ2 0.437 0.101

SCI
Gender -0.180 0.056 0.841 .001

Age -0.009 0.002 0.993 < .001

σ2 0.968 0.145

this section. In each scenario, we examine both estimation precision and power of test for

time-varying coefficient.

4.5.1 Simulation setup

The simulation procedure were designed to mimic the 100-Car Data. It consists generating

censor time, crash time and events time for each subjects as described below.

1. Censor time is set as 4 for each subject.

2. For each subject, we generate a crash time ci based on the following intensity function:

λi(t) =
1

2
, t ≤ 4. (4.38)

1
2

was selected based on the relationship between crash time and study period from 100-

Car data, where we observed one crash in every 150 hours of driving and the average

study time was around 300. The above intensity function assumes subjects performing

similarly, without any discrepancy among subgroups (for example, gender difference).

Crash intensity was restricted to be constant over time and crashes were considered to

occur independently. If one subject had ci that was greater than censor time, ci would

be censored. We used a time-varying indicator function, Ii(t) = (t > ci), to denote the

relationship between time t and crash time.

3. Recurrent events time are then generated from the following intensity function:

λri(t) = crt
kr−1 exp

[
β1x1ri+β2x2ri+β3(t−cri)Iri(t)+β4(t−cri)x1riIri(t)+γri

]
, (4.39)

where:

(a) r = 1 or 2 indicats stratum level. r = 1 represents no-crash group and r = 2

represent one-crash group.
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(b) Baseline intensity functions follow Weibull distribution, where two parameters c

and r play a critical role. They may vary from stratum to stratum, as denoted

by cr and kr. kr > 1 indicates an increasing rate over time. kr = 1 refers to a

constant rate, and kr < 1 means a decreasing rate.

(c) cri is the crash time generated in the previous step.

(d) x1ri is a binary covariate, with 50% probability to be 0/1.

(e) x2ri is a continuous covariate following uniform distribution from −1 to 1.

(f) Iri is considered a time-varying binary covariate. It takes a value of 1 when t is

larger than the crash time.

(g) β1 and β2 are time-fixed effects, with value of 0.5, −0.3 respectively.

(h) β3(t − cri) and β4(t − cri) are two time-varying effects. Since cri’s are different

across subjects, we focus evaluating those effects as functions of time after crash.

(i) γri ∼ N(0, σ), r = 1, or2; i = 1, · · · , nr are independent frailty terms. In most

settings, σ is set as 0.5, representing a moderate heterogeneity.

Two scenarios will be mainly discussed in this section. In the first scenario, interac-

tion effect in (4.39) is not included, thus there is only one time-varying coefficient. In the

second scenario, both time-varying effects are included and estimated. In order to cover

a certain range of parameter space, 6 different settings of baseline parameters and sam-

ple size combinations are explored in each scenario. Within each setting, 500 realizations

are generated and two models are implemented: a stratified time-varying coefficient model

and a non-stratified model. Because of space limits, we only provide results from stratified

time-varying coefficient model and selected settings.

4.5.2 Simulation result

4.5.2.1 Recurrent event model with one time-varying effect

In the first setting of one time-varying effect model, we generated time-varying coefficient

β3(t) = 4
1+exp(−t) − 3 as shown in left panel of Figure 4.3. It is a logistic function gradually

increasing from −0.9 to 0.9 over time period (0, 4). We set the scale and shape parameters as

c = (1, 1.5) and k = (1, 0.9). It indicates a constant rate of 1 event per time unit for subjects

in stratum I. Subjects in stratum II experience decreasing rate over time. We generated

data from 50 subjects which yields about 9 events per subject. Figure 4.3 shows simulation

results over 500 replications. In the left panel, the solid red line is the true logistic function.

The circles are average estimating effects based on second-corder difference penalty matrix
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as mentioned in subsection 4.2.1 and the triangles are estimated effects based on second-

order derivative penalty matrix. Both provides very precise estimation. Pointwise empirical

coverage probability (CP) of two types of penalty matrices are compared in the right panel.

Again, there performance are close with CP slightly less than nominal value 95%.

(a) Varying coefficient estimation (b) Pointwise empirical CP

Figure 4.3: Simulation results for logistic function from stratified data

To examine the performance of the proposed method when true effect has a stronger

curvature, in the second setting, we set the effect to be (t2− t)× I(t < 2) + 0× I(t >= 2) as

shown in the left panel of Figure 4.4. In the range of (0, 2), it decreases first and increases

to 0 and maintain 0 after 2. This function is selected because of out the hypothesis: crash

effect decreases first and then increase. Simulation result shows close agreement between

estimated effect and true function. Pointwise empirical CP is slightly smaller than 95%.

(a) Varying coefficient estimation (b) Pointwise empirical CP

Figure 4.4: Simulation results for piecewise polynomial function from stratified data
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Table 4.2 lists results of time-fixed coefficients, variance component, and smoothing pa-

rameter from various settings. In setting I, the bias of two time-fixed coefficients are −0.02

and 0.01, which are about 4% and 3%. The empirical coverage probabilities of 95% confi-

dence intervals using the estimated standard error both are 94%, which are close to nominal

value. Bias for variance component σ2 is −0.02 (8% bias). The estimated standard derivation

of β1, β2, and σ2 (SEM) are close to the empirical standard derivations (SE).

Table 4.2: Simulation results for parametric coefficients estimates in time-varying coefficient

model
Parameter True value Mean Bias SE % SEM4 CP∗

Setting I: logistic function

β1 0.5 0.48 -0.02 0.18 0.18 94%

β2 -0.3 -0.29 0.01 0.17 0.16 94%

θ 0.25 0.23 -0.02 0.06 0.08 92%

λ 38

β1 0.5 0.44 -0.06 0.29 0.29 94%

β2 -0.3 -0.30 0.00 0.27 0.26 94%

θ 1 0.84 -0.16 0.21 0.21 81%

λ 97

Setting II: Piecewise polynomial function

β1 0.5 0.48 -0.02 0.2 0.19 94%

β2 -0.3 -0.29 0.01 0.17 0.17 94%

θ 0.25 0.23 -0.02 0.08 0.09 92%

λ 14

β1 0.5 0.5 0 0.29 0.30 94%

β2 -0.3 -0.31 -0.01 0.27 0.27 94%

θ 1 0.85 -0.15 0.21 0.22 83%

λ 17

%: Empirical standard error

4: Mean of standard error

*: Coverage probability

Table 4.3 presents power of proposed tests in subsection 4.3.5 under difference true func-

tions. When true effect is a logistics function, power of test for no effect and constant effect

is above 99%.
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Table 4.3: Empirical power/ type I error of tests for covariate effects

Null hypothesis

True function No effect Constant Linear

Logistic 99% 99% 98%

Piecewise Polynomial 98% 88% 84%

4.5.2.2 Two additive time-varying effect model

In the first setting of two time-varying effects model, we generated time-varying coefficients

using previous piecewise polynomial function and logistic function. Baseline intensity func-

tions are set to be difference across strata with c = (1, 1.5) and k = (1, 0.9). Each replication

is simulated from 50 subjects.

In the left panel of Figure 4.5, we observe close agreement between the true functions

and average estimates for both coefficients. As given on the right panel, pointwise empirical

coverage probabilities are close to 95% nominal value.
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(a) Varying coefficient estimation for first effect (b) Pointwise empirical CP for first effect

(a) Varying coefficient estimation for second effect (b) Pointwise empirical CP for second effect

Figure 4.5: Setting I: simulation results for two time-varying coefficient functions from strat-

ified data

Table 4.4 lists the simulation results for time-fixed coefficients, variance component, and

smoothing parameters from various settings. Bias of two time-fixed coefficients are small

(from 4% to 10%). The empirical coverage probabilities of 95% confidence intervals using

the estimated standard error are 94% and 93%. Bias of variance component σ2 is small (4%

bias) when true standard deviation is small. It becomes larger (23%) when true standard

deviation is larger. The estimated standard derivation of σ2 (SEM) is close to the empirical

standard derivation (SE).
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Table 4.4: Simulation results for parametric coefficients estimates in two effects model

Parameter True Mean Bias SE% SEM4 CP∗

Setting I: n = 100, θ = 0.25

β1 0.5 0.48 -0.02 0.16 0.16 95%

β2 -0.3 -0.29 0.01 0.11 0.11 96%

θ 0.25 0.24 -0.01 0.03 0.06 99%

λ (3.5, 3.4)

Number of events per subject 8

Setting II: n = 50, θ = 0.25

β1 0.5 0.48 -0.02 0.25 0.23 94%

β2 -0.3 -0.29 -0.01 0.17 0.16 93%

θ 0.25 0.24 -0.01 0.07 0.08 95%

λ (7.4, 6)

Number of events per subject 8

Setting III: n = 50, θ = 1

β1 0.5 0.45 -0.05 0.34 0.31 92%

β2 -0.3 -0.28 0.02 0.26 0.25 94%

θ 1 0.77 -0.23 0.20 0.20 68%

λ (5.5, 4.8)

Number of events per subject 11

%: Empirical standard error

4: Mean of standard error

*: Coverage probability

Table 4.5 presents power of proposed test in subsection 4.3.5 under difference true func-

tions. When true effect is a polynomial function, power of test for no effect and constant

effect are about 78%. However, power for linear effect is 47%. The test for whether two

coefficients model are equal has power about 87%. When true effect is constant at 0 , type

I error for no effect and constant effect is about 14%, which is much higher than nominal

value 5%.
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Table 4.5: Empirical power/ type I error of tests for covariate effects

Null hypothesis

Setting True function No effect Constant Linear Equality

n = 50, σ = .5
Polynomial 78% 78% 47%

87%
Logistic 99% 98% 37%

n = 50, σ = .5
Constant 0 14% 14% 14%

90%
Logistic 99% 99% 37%

n = 50, σ = .5
Constant -1 88% 10% 11%

99%
Logistic 99% 98% 40%

n = 50, σ = .5
Logistic 97% 97% 39%

9%
Logistic 99% 98% 41%

4.6 Conclusion and discussion

In this Chapter, we evaluated both time-varying and time-fixed effects in recurrent events

model. Gaussian frailty terms are incorporated to accommodate correlation within sub-

ject. Penalized B-spline is adopted to approximate time-varying coefficient. We proposed

to use regular frailty model framework to estimate time-varying coefficient by expressing

time-varying coefficients as a linear combination of fixed effect and random effects. The

smoothing parameter associated with time-varying coefficients is then treated as an extra

variance component. We estimate nonparametric functions and jointly estimated smoothing

parameters and variance component by using marginal partial likelihood. We studied the

asymptotic distribution of proposed estimates. Penalty terms introduce bias to the estima-

tion. But the bias is close to zero if sample size is relatively large. We used Wald-type test

for several popular test: no effect, constant effect, linear effect, and equivalence test between

two time-varying effects.

The simulation study indicates small bias of the proposed model and relatively good

coverage probability for both time-fixed effects and time-varying effects. Power of tests vary

from settings to settings. If the true function is similar to the one tested (e.g., true function

is logistic and test function is linear), test is not very powerful. If they are quite different, we

observed high power around 95%. We also compared two types of penalty matrices and did

not find one is uniformly better than the other. Simulation study also demonstrated that

the stratified frailty model is capable of accommodating possible variation among groups
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without losing power to test for effects of interest. If subjects behave differently among

various levels, aggregating them together will mask the effect at the individual level. We

also observed robust performance of the stratified frailty model when subjects are not from

different levels.

We applied the model to evaluate influence of crashes on driving risk using 100-Car NDS

data. SCIs and NCs are used as markers for driving risk. Driving risk of male drivers tend

to decrease after crash first and then increase. But we did not find similar for female drivers.

Compared with the time-fixed model, the time-varying coefficient analysis provided deeper

insight of the data. These findings provide crucial information for understanding drivers’

response to dramatic driving events and can be critical for development safety education

programs and safety counter measures.

There are a couple of limitations of this study. First, the individual driver risk variation

might be confounded with the observed effect. Second, the study is based on a relative

small number of crashes with mild crash severity. With larger NDS data sets becoming

available, such as the Second Strategic Highway Research Program (SHRP 2) Naturalistic

Driving Study, more concrete evidence will be available on the influence of crashes on driver

behavior and potentially the influence of crashes by severity.
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Chapter 5 Multi-type Recurrent Event Model with Time-varying

Coefficients

5.1 Introduction

It is common to observe different types of events occur simultaneously in a study. For

example, in 100-Car NDS, there are three types of incidents related with driving risk from

most to least severe: Crash, Near Crash, and Safety Critical Incident. In other field such

as clinical study, it often involves patients who are exposed to different types of diseases

that are possibly recurrent. Previous studies have been focused on single type recurrent

event. For study includes more than one type, we model each type independently. This

made interpretation clear and easy. But correlation across varied events is informative and

potentially affect the legitimate of analysis. How to incorporate all types at the same time

and borrow information from each other becomes an appealing topic.

In the context of multivariate recurrent event data, Cai and Schaubel [3] proposed a

class of semi-parametric marginal means/rates models, with a general relative risk form on

the censored event processes of interest. Wang et al. [12] and Zhu et al. [14] developed

approaches with an arbitrary structure for both the relationship between recurrent events

and the terminal event and the effect of covariates on the terminal event. In these studies,

dependency between events is considered but not of interest. Frailty provides a convenient

tool to incorporate dependence and heterogeneity. Sankaran and Anisha [10] extended shared

frailty model to recurrent event data with multiple cases for gap time distributions. In

Mazroui et al. [7], two types of recurrent events with dependent terminal event were jointly

modeled.

Reference on evaluating time-dependent coefficients in multi-type recurrent event data is

limited. Sun et al. [11] proposed marginal modeling approach and estimating equation based

inference procedures. In the context of unobserved heterogeneity and dependence, there is no

existing model to our best knowledge. Motivated by this, we propose a general frailty model

which jointly analyze multiple types of recurrent events with both time-varying and time-

fixed effects. Relationship among different types of events can be assessed from frailty terms.

We use penalized B-spline to approximate time-varying coefficient. Variance components and

smoothing parameters are estimated jointly by maximizing profile likelihood. We propose to

estimate time-varying coefficient through multivariate frailty model by reparameterization.

Besides easy implementation, it allows us to make systematic inference on all components.
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The remainder of this Chapter is organized as follows. Section 5.2 introduces multi-

type time-varying coefficient model and estimation procedure. In Section 5.3 we discuss

inference of coefficients and variance components, followed by detailed hypothesis tests. We

illustrate the method in Section 5.4 by applying it to 100-Car data. Simulation studies,

including model performance in finite samples and power of statistical tests, are summarized

in Section 5.5. Section 5.6 is devoted to concluding remarks and discussion.

5.2 Multi-type recurrent event model with time-varying coeffi-

cients

Assume there are K different types of recurrent events for each individual i, i = 1, · · · ,m.

All types of events are observed till a censoring time Ti. In the present study, we assume a

noninformative censor that is independent of any event process. Let n
(k)
i be the total number

of k-th type of events individual i encounters during the observed time period. Every time

to event, 0 < t
(k)
i1 < · · · < t

(k)

in
(k)
i

≤ Ti, are recorded. This series of occurrence is treated as a

counting process. An indicator function, Yi(t) = I(t ≤ Ti), represents whether or not subject

i is at risk at time t. Continuous assumption holds for all types of processes. This requires

two events, no matter of the same type or different types, do not happen at the same time.

We model the intensity functions of recurrent events through a multivariate frailty model.

It accomondates both time-dependent coefficients and time-constant coefficients as follows:

λ
(k)
i

[
t | α(k),β(k)(t),γ

]
= λ

(k)
0 (t) exp

[
x′i(t)α

(k) + z′i(t)β
(k)(t) +w

(k)′

i γ
]
, k = 1, · · · , K,

(5.1)

where λ
(k)
0 (t) is a nonparametric baseline function for k-th type of counting process. xi(t)

and zi(t) are two vectors of time-dependent (or constant) covariates with dimension q and p

respectively. α(k) is a vector of time-constant coefficient associated with xi(t). Coefficients

β(k)(t) is a vector composed by p functions, β(k)(t) =
(
β
(k)
1 (t), · · · , β(k)

p (t)
)′

. Note that

the covariates could be different for various types of events. Without loss of generality, we

assume they are the same. In the situation of different covariates, we can define a bigger

set of covariate matrix and new vector of covariates. For example, if the covariates for

the first type is x1
i = (xi1, xi2)

′, for the second type is x2
i = (xi3, xi4)

′, a comprehensive

vector is defined as xi = (xi1, xi2, xi3, xi4)
′. Assume γ is a vector of frailty terms following

multivariate normal distribution with mean 0 and covariance Σ(θ). Other choices, such as

gamma distribution, can be derived similarly. The expression of w
(k)
i and distribution of γ

are the key to correlation design. Taking two types of recurrent events with shared frailty
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intensity function [4] as an example, model (5.1) has a specific form as below:

λ
(1)
i

[
t | α(1),β(1)(t),γ

]
= λ

(1)
0 (t) exp

[
x′i(t)α

(1) + z′i(t)β
(1)(t) + ui

]
λ
(2)
i

[
t | α(2),β(2)(t),γ

]
= λ

(2)
0 (t) exp

[
x′i(t)α

(2) + z′i(t)β
(2)(t) + vi

]
.

(5.2)

ui and vi account for the unobserved heterogeneity, the inter-recurrence dependencies, and

the dependency between different event types of subject i. Assuming all subjects are indepen-

dent, each set of (ui, vi)
′ is a realization of multivariate normal distribution with covariance:

Σi =

(
θ ρ

√
θη

ρ
√
θη η

)
. Thus Σ(θ) = Σi ⊗ Im. Im is an identity matrix of length m and

θ = (θ, η, ρ)′. To be more specific, γ = (u1, · · · , um, v1, · · · , vm)′, w
(1)
1 = (1, 0, · · · , 0)′, and

w
(2)
1 = (0, · · · , 0, 1, 0, · · · , 0)′. Shared frailty model is a special case that has been widely

studied [7, 13]. As a matter of fact, model (5.1) is very general and adapts various study

designs since one can specify a flexible covariance structure.

One thing we like to note is that processes are jointly dependent through frailties only.

Recurrent events are conditionally independent once frailty terms are given. Based on this,

conditional loglikelihood is presented below:

lc

[
λ0(·),α,β(·) | γ

]
=

K∑
k=1

m∑
i=1

l
(k)
i

[
λ
(k)
0 (·),α(k),β(·)(k) | γ

]

=
K∑
k=1

m∑
i=1

{ n
(k)
i∑
j=1

[
logλ

(k)
0 (t

(k)
ij ) + zi(t

(k)
ij )′β(k)(t

(k)
ij ) + x′i(t

(k)
ij )α(k) +w

′(k)
i γ

]
− Λ

(k)
0 (Ti) exp

[
zi(τi)

′β(k)(τi) + xi(τi)
′α(k) +w

(k)′

i γ
]}
,

(5.3)

where Λ
(k)
0 (t) =

∫ t
0
λ
(k)
0 (u)du. For convenience, we use λ0(·), α, β(·) to incorporate all the

parameters associated with different types. It is not hard to find that (5.3) is the summation

of all individual log likelihood by type. But marginal likelihood which is necessary for

estimation of β(t) and α can not be calculated from addition. We need to integrate out

frailty terms:

lm = log

∫ K∏
k=1

m∏
i=1

L
(k)
i

[
λ
(k)
0 (·),α(k),β(k)(·) | γ

]
× f(γ)dγ

= log

∫
1

(2π)
m
2 |Σ(θ)| 12

exp

{
K∑
k=1

m∑
i=1

l
(k)
i

[
λ
(k)
0 (·),α(k),β(k)(·) | γ

]
− γ

′Σ(θ)−1γ

2

}
dγ.

(5.4)
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It involves formulation of nonparametric time-varying coefficients and integration over frailty

terms. In the next two subsections, we shall first discuss how to construct penalized B-spline

estimates for β(t) and introduce approximation for marginal likelihood.

5.2.1 Penalized B-Spline estimation

In this subsection, we illustrate how to use penalized B-spline to approximate time-varying

coefficients. Here we continue to use spline basis function that was introduced in Sec-

tion 4.2.1. The expression of β
(k)
l (t) is given below:

β
(k)
l (t) = B(t)(k)

′
η
(k)
l . (5.5)

B(t)(k) collects spline basis functions of k-th event. If time-varying coefficients across types

span on similar scale, it is easier to have a universal spline basis for all. Replacing the scalar

covariate β
(k)
l (t) by d-dimensional vector, model (5.1) turns into:

λ
(k)
i

[
t | α(k),η(k),γ

]
= λ

(k)
0 (t) exp

[
zi(t)

′ ⊗B(t)(k)
′
η(k) + x′i(t)α

(k) +w
(k)′

i γ
]
, (5.6)

where η(k) = (η
(k)′

1 , · · · ,η(k)′
p )′. It does not include time-varying coefficient anymore. Once

basis functions are defined, η takes place of β(·) as unknown parameter and can be analyzed

by standard procedure. Among literatures about B-splines, a popular technique is to intro-

duce a penalty term to control smoothness of the estimated functions. Penalized marginal

loglikelihood is of the following form:

lpm = lm

[
λ0(t),α,η,θ

]
− 1

2

K∑
k=1

p∑
l=1

λ
(k)
l η

(k)′

l P (k)η
(k)
l . (5.7)

λ
(k)
l is a smoothing parameter. Smaller smoothing parameter places less constraint and make

estimated coefficient function more flexible. P (k) is a nonnegative definite smoothing matrix.

A common choice of P (k) is second derivative of basis functions P (k) =
∫
B(k)(2)(t)B(k)(2)(t)′dt

[8]. For convenience of future reference, we denote λ(k) = (λ
(k)
1 , · · · , λ(k)p )′.

5.2.2 Double penalized partial likelihood

With normally distributed frailties, there is no closed form for (5.7). We borrowed the idea

of Laplace approximation from Breslow and Clayton [2], Ripatti and Palmgren [9], and Yu
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et al. [13]. The penalized marginal loglikelihood is approximated as:

lpm ≈ −
1

2
log|Σ(θ)| − log|K ′′(γ̃)|+ lc

[
λ0(·),α,η | γ̃

]
− 1

2
γ̃ ′Σ(θ)−1γ̃ − 1

2

K∑
k=1

p∑
l=1

λ
(k)
l . (5.8)

K(γ) = −lc
[
λ0(·),α,η | γ

]
+ 1

2
γ ′Σ(θ)−1γ. γ̃ is the solution to the first derivative K ′(γ) = 0

and K ′′(·) is the second derivative of K(·) with respect to γ.

If θ is fixed, the first term in (5.8) is constant with respect to α,η. Ripatti and Palmgren

[9] showed through simulation study that ignoring the second term in (5.8) resulted some

information loss, but not too much to influence the estimation precision. It did simplify

estimation procedure. In addition, if γ and η are considered as fixed effects parameters,

(5.8) is a double penalized log likelihood. The first term put penalty on extreme values

of γ and the second is for penalizing smoothness of the time-varying coefficients functions.

Maximizing lpm is equivalent to maximizing:

lc

[
λ0(·),α,η | γ̃

]
− 1

2
γ̃ ′Σ(θ)−1γ̃ − 1

2

K∑
k=1

p∑
l=1

λ
(k)
l η

(k)′

l P (k)η
(k)
l . (5.9)

Conditional log likelihood can be maximized by partial likelihood (PPL). Finally, we derive

parameters by maximizing double penalized partial likelihood (DPPL) as below:

K∑
k=1

m∑
i=1

n
(k)
i∑
j=1

{
zi(t

(k)
ij )′β(k)(t

(k)
ij ) + xi(t

(k)
ij )′α(k) +w

(k)′

i γ

− log
∑
r∈R(k)

ij

exp
[
zr(t

(k)
ij )′β(k)(t

(k)
ij ) + xr(t

(k)
ij )′α(k) +w(k)′

r γ
]}

− 1

2
γ ′Σ(θ)−1γ − 1

2

K∑
k=1

p∑
l=1

λ
(k)
l η

(k)′

l P (k)η
(k)
l .

(5.10)

Note that smoothing parameters λl, l = 1, · · · , p need to be specified beforehand. Detail of

smoothing parameter estimation is discussed in Section 5.3.

5.2.3 The frailty model representation

Lin and Zhang [6] proposed to fit generalized additive mixed model by generalized linear

mixed model. The key idea is to estimate spline coefficients as a combination of fixed and
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random effects. Using similar idea, we propose to rewrite η
(k)
l in (5.6) as

η
(k)
l = 1β

(k)
0l + b(k)β

(k)
1l + A(k)a

(k)
l , (5.11)

where 1 is a vector of 1 with length d; A(k) = L(k)(L(k)′L(k))−1. L(k) is a d × (d − 2) full

rank matrix satisfying P (k) = L(k)L(k)′ . b(k) is a d × 1 vector that satisfies b(k)
′
1 = 0 and

b(k)
′
A(k) = 0. In another word, b(k) is the orthogonal complement of the space composed by

1 and A(k). Using the identity η
(k)′

l P (k)η
(k)
l = a

(k)′

l a
(k)
l , Equation (5.10) turns into:

K∑
k=1

m∑
i=1

n
(k)
i∑
j=1

{
x∗i (t

(k)
ij )′α∗(k) +w

∗(k)′
i γ∗

− log
∑
r∈R(k)

ij

exp
[
x∗r(t

(k)
ij )′α∗(k) +w∗(k)

′

r γ∗
]}
− 1

2
γ∗
′
Σ∗−1(θ)γ∗.

(5.12)

where x∗i (t)
′ =

(
xi(t)

′, zi(t)
′ ⊗ B(t)′I ⊗ 1, z′i ⊗ B(t)′I ⊗ b(k)

)
; w

∗(k)′
i =

(
zi(t)

′ ⊗ B(t)′I ⊗

A(k), w
(k)′

i

)
. α∗(k) =

(
α(k)′ , β

(k)′

0 , β
(k)′

1

)′
is a vector of time-fixed coefficients, where β

(k)
0 =

(β
(k)
01 , · · · , β

(k)
0p )′ and β

(k)
1 = (β

(k)
11 , · · · , β

(k)
1p )′. γ∗ =

(
a′, γ ′

)′
is a vector of random effects.

a′ =
(
a
(1)′

1 , · · · ,a(K)′
p

)
follows a multivariate normal distribution with center 0 and covari-

ance matrix Λ = Diag
(

1

λ
(1)
1

Id−2, · · · , 1

λ
(K)′
p

Id−2

)
.

Eqatuion (5.12) suggests that the maximum DPPL estimator can be obtained by fitting

the following frailty model:

λ
(k)
i

[
t | α∗(k),γ∗

]
= λ

(k)
0 (t) exp

[
x∗
′

i (t)α∗(k) +w∗
′

i γ
∗
]
. (5.13)

Each individual time-varying coefficient β̂l(t) can be calculated by:

B(k)(t)′1β̂
(k)
0l +B(k)(t)′b(k)β̂

(k)
1l +B(k)(t)′A(k)âl

(k). (5.14)

It is a linear combination of the Ripatti and Palmgren [9] maximum penalized partial likeli-

hood estimator of the fixed effect and the random effects.
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5.2.4 Maximum DPPL estimation

The estimated parameters are obtained by Newton-Raphson algorithm. Taking first deriva-

tive of equation (5.12) with respect to (α∗
′
,γ∗

′
)′ yields score functions as below:

∂DPPL

∂α∗′
=

K∑
k=1

m∑
i=1

n
(k)
i∑
j=1

x∗i (t
(k)
ij )−

exp
[
x∗i (t

(k)
ij )′α∗(k) +w

∗(k)′
i γ∗

]
x∗i (t

(k)
ij )∑

r∈R(k)
ij

exp
[
x∗r(t

(k)
ij )′α∗(k) +w

∗(k)′
r γ∗

]
∂DPPL

∂γ∗′
=

K∑
k=1

m∑
i=1

n
(k)
i∑
j=1

w∗i −
exp

[
x∗i (t

(k)
ij )′α∗(k) +w

∗(k)′
i γ∗

]
w∗i∑

r∈R(k)
ij

exp
[
x∗r(t

(k)
ij )′α∗(k) +w

∗(k)′
r γ∗

] − Σ∗(λ,θ)−1γ∗,

(5.15)

where Σ∗(λ,θ) = Diag(Λ,Σ). Note that the first score function is combination of estimating

equations of fixed effects across types. Fitting K frailty models is a easy approach. However

the second score function is more complicated because of correlation matrix. Given all

parameters, baseline intensity function estimate is:

λ̂
(k)
0 (t) =

∑m
i=1 Yi(t)dN

(k)
i (t)∑m

i=1 Yi(t) exp
[
x∗r(t

(k)
ij )′α̂∗(k) +w

∗(k)′
r γ̂∗

] , (5.16)

where N
(k)
i (t) is a process counting the number of type k event happen to subject i before

time t.

5.3 Statistical inference

5.3.1 Inference on smoothing parameter and variance component

Statistical inference of nonparametric functions β
(k)
l (t) relies on the smoothing parameters

and variance parameter θ. In the previous section, we estimated time-varying coefficients as

a linear combination of fixed effect and random effects. Smoothing parameters were treated

as extra variance components. Thus inference on smoothing parameters can be conducted

similarly to that on variance component in multivariate frailty model. Plugging maximum

DPPL estimators into (5.8) results profile likelihood function of θ and λ:

l(θ,λ) ≈ −1

2
log|Λ| − 1

2
log|Σ(θ)| − 1

2
log |K ′′(γ̂∗)| − 1

2
γ̂Σ(θ)−1γ̂ − 1

2
âΛ−1â, (5.17)
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where K was derived in 5.2.2. Here we propose to use K ′′DPPL(γ̂∗) = (∂2DPPL)/(∂γ∗∂γ∗
′
)

instead of K ′′. Estimating equations of θ and λ is derived by taking the first derivative

of (5.17). The corresponding Fisher information matrix can be derived by differentiat-

ing (5.17) twice and taking the expectation with respect to γ∗
′
, similar to equation (8) in

Ripatti and Palmgren [9].

Estimating equations of θ is a series of nonlinear functions:

1

2

[
tr(Σ∗−1

∂Σ∗

∂θi
+ tr

(
K
′′−1
DPPL

∂Σ∗−1

∂θi

)
+ γ̂∗′

∂Σ∗−1

∂θi
γ̂∗
]

= 0, (5.18)

where i denotes each parameter in θ. Solving nonlinear equations in (5.18) results estimations

of the parameters. In the present study, we focus on the case of two types of recurrent event

and the intensity function of each type is a shared frailty model (See Section 5.2 for detailed

form of w
(k)
i , γ, and Σ(θ)). With some derivation, simplified estimating equations are:

(1− ρ2)m− tr(A)

θ
+ ρ

tr(B + C)

2
√
θη

− u
′u

θ
+ ρ

u′v√
θη

= 0

(1− ρ2)m− tr(D)

η
+ ρ

tr(B + C)

2
√
θη

− v
′v

η
+ ρ

u′v√
θη

= 0

(1− ρ2)m− tr(A)

θ
− tr(D)

η
+

(1 + ρ2)tr(B + C)

2ρ
√
θη

− u
′u

θ
− v

′v

η
+

(1 + ρ2)u′v

ρ
√
θη

= 0

(5.19)

where A is the upper left block of submatrix of K
′′−1
DPPL corresponding to u; B is the upper

right block; D is the lower right block corresponding to v. In terms of estimating λ, random

effects associated with time-varying effects are independent of Σ(θ), solution to its score

function at 0 is more straightforwards and expressed as:

λ̂
(k)
l =

d− 2

âl
(k)′âl

(k) + tr
(
K
′′−1
DPPL(âl

(k))
) , (5.20)

where K
′′−1
DPPL(âl

(k)) is the submatrix of K ′′DPPL corresponding to a
(k)
l . Variance is estimated

by the inverse of observed information matrix:

1

2

[
tr(Σ∗−1

∂Σ∗

∂θ
Σ∗−1

∂Σ∗

∂θ
+Σ∗−1

∂2Σ∗

∂2θ
)+tr(K

′′−1
DPPL

∂Σ∗−1

∂θ
K
′′−1
DPPL

∂Σ∗−1

∂θ
)−tr(K ′′−1DPPL

∂2Σ∗−1

∂2θ
)
]

(5.21)
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5.3.2 Computation

The maximization of DPPL is carried through two steps. First, an initial value for θ is

assigned. Solve (5.15) using the Newton-Raphson algorithm. Second, update variance pa-

rameters and smoothing parameters by (5.18) and (5.20) under current estimated α̂∗ and γ̂∗.

The two steps are iterated until convergence. Once convergence is achieved, the cumulative

baseline hazard can be estimated using (5.16), which is the same as that of a Andersen and

Gill [1] model with an offset of estimated random effects.

5.3.3 Statistical Test

The objective of this subsection is to elaborate tests that are commonly of interest. Test pro-

cedures are similar to that of 4.3.5. In addition to the test for each time-varying coefficient,

equivalence of time-varying coefficients across various event types is examined. A similar

test is applied on checking equivalence of time-fixed effects. General linear hypothesis test

starts from:

H0 : C(α∗
′
,γ∗

′
)′ = 0, Ha : C(α∗

′
,γ∗

′
)′ 6= 0, (5.22)

where C is a matrix with full row rank R. We continue to use Wald test statistic suggested

by Gray [5]: [
C(α∗

′
,γ∗

′
)′
]′

(CI−1p C ′)−1
[
C(α∗

′
,γ∗

′
)′
]
, (5.23)

And the generalized degrees of freedom of the test statistic is:

df = trace
[
(CI−1p C ′)−1CV C

]
, (5.24)

where V = −H−1p HH−1P . Large test statistic which exceeds critical value signify evidence

against null hypothesis.

If the objective is testing no effect or a constant effect on a single covariate on type k, C

matrix is set up similarly to that of 4.3.5 Equivalence of time-varying coefficients across types

can be set up similarly. For instance, consider a study with two types of event (k = 1, 2). To

examine whether the effect of l-th covariate is the same, we can format the null hypothesis

as H0 : β
(1)
l (t) = β

(2)
l (t). In this case C is a d× 2d matrix of the following form:

1 · · · 0 −1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 0 0 · · · −1

 . (5.25)

We want to point out that for all the above four tests, it is essentially the same to conduct
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a test on (β0l, β0l, al). The corresponding C matrix shall be multiplied by
(
1 b(k) A(k)

)
.

5.4 Application to 100-Car Naturalistic Driving Study

In this section, we apply the proposed model to the 100-Car Naturalistic Driving Study

(NDS). The objective is to evaluate the pattern of crash influence on driving risk measured

by NC and SCI simultaneously over time. Previous research has shown driving risk is reduced

after crash, with amount of decrease varies over time and across gender. But it didn’t take

correlation between SCI and NC into consideration. Exploratory data analysis shows high

NC rate coincides with high SCI rate. A numerical description of the association is desired.

We are also interested in equality of crash influence on SCI and NC.

Figure 5.1: Data collection structure.

Data collection structure shown in Figure 5.1 incorporate crash-related incidents of all

types. Each horizontal line represents record of one driver. SCIs and NCs aretreated as two

types of processes that may be correlated. Each driving period was divided into two phases

based on its relationship with crashes: before the first crash (coded as 0) and between the

first and second crash (coded as 1). Since this was a one-year study, there were only 12

drivers had two crashes. After careful review, only 4 of them had NCs after second crash.

Thus we considered to evaluate the first crash effect only. Observations after second crashes

are treated as censored. Driving period was taken into account as a covariate, working as an

external and independent factor on SCI/NC intensity. To account for potential confounding

and interacting effects, gender and age of the driver when first enrolled in the study were
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also evaluated as time-fixed covariates. For NC, SCI, and Crash, final model is given below:

λ
(1)
i (t) =λ

(1)
0 exp

[
β
(1)
1 Gi + β

(1)
2 Agei + β

(1)
3 (t− ci)Ii(t) + β

(1)
4 (t− ci)GiIi(t) + ui

]
λ
(2)
i (t) =λ

(2)
0 exp

[
β
(2)
1 Gi + β

(2)
2 Agei + β

(2)
3 (t− ci)Ii(t) + β

(2)
4 (t− ci)GiIi(t) + vi

]
λ
(3)
i (t) =λ

(3)
0 exp

[
β
(2)
1 Gi + β

(2)
2 Agei

]
.

(5.26)

λ
(k)
i (t), k = 1, 2, 3 denote intensity functions of NC, SCI, and crash respectively. Gi = 1

for male driver and 0 for female driver. β
(k)
3 (t − ci) is crash influence on female driver;

β
(k)
3 (t − ci) + β

(k)
4 (t − ci) is crash influence on male driver. Influence of crash on its own

intensity is not included since it is a rare event. Neither is there frailty terms associated

with crash intensity. Number of participants experienced crash is 33. Introducing an extra

set of frailty terms fro crash concerns the author regarding to estimation precision.
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(a) Influence on SCI for female drivers (b) Influence on SCI for male drivers

(a) Influence on NC for female drivers (b) Influence on NC for male drivers

Figure 5.2: Crash influence on SCI and NC: β̂(t), solid; 95% poitwise confidence interval,

dashed.

Estimated crash influences on male drivers and female drivers are presented in Figure 5.2.

As we can see from top two plots, SCI intensity drops after crash for male drivers and

gradually increase after 200 hours. On contrary, SCI intensity increases after crash and then

decrease after 200 hours. Both effects are consistent with results from constant coefficient

model. In the bottom two figures, male driver experience lower driving risk after crash till

120 hours later. No significant change after that. For female drivers, there was no significant

decrease in NC intensity. In summary, driving risk of male drivers tend to decrease after

crash and then increase. But we did not find similar influence pattern for female drivers.

Table 5.1 presents time-fixed effects estimation. On average, male driver is associated with
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lower SCI/NC intensity, around 0.8 times of the rate of female drivers. As age increases,

driving risk slightly decreases, with intensity rate ratio 0.99. Correlation ρ is 0.64, indicating

a relatively large positive association between SCI and NC.

Table 5.1: Parametric coefficient estimates of 100-Car NDS
Risk factor Estimates SE Intensity rate ratio p-value

NC
Gender -0.23 0.102 0.79 0.025

Age -0.01 0.003 0.99 < .001

θ1 0.68 0.09

SCI
Gender -0.32 0.031 0.73 < .001

Age -0.02 0.001 0.98 < .001

θ2 1.26 0.14

ρ 0.64 0.07

5.5 Simulation study

In this section, we conduct a simulation study to evaluate the performance of the proposed

method. We simulate intensity models in multiple settings. In each setting, we examine

both estimation precision and power of test for time-varying coefficients.

5.5.1 Simulation setup

The simulation procedure is designed to mimic the 100-Car Data. It consists generating

censor time, crash time and events time for each subjects as described below:

1. Censor time is set as 4.

2. For each subject, generate a crash time Ci based on the following intensity function:

λi(t) =
1

2
exp

[
β
(3)
1 x1i + β

(3)
2 x2i

]
, t ≤ 4. (5.27)

1
2

is selected based on the relationship between crash time and study period from 100-

Car data. This intensity function assign distinct rates according to covariates x1 and

x2. If one subject has Ci greater than 4, Ci shall be censored. We use a time-varying

indicator function, Ii(t) = (t > Ci), to denote the relationship between time t and

crash time.
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3. Recurrent events time are generated from the following intensity functions:

λ
(1)
i (t) = c(1)tk

(1)−1 exp
[
β
(1)
1 x1i + β

(1)
2 x2i + β

(1)
3 (t− Ci)Ii(t) + ui

]
λ(2)r (t) = c(2)tk

(2)−1 exp
[
β
(2)
1 x1i + β

(2)
2 x2i + β

(2)
3 (t− Ci)Ii(t) + vi

] (5.28)

where:

(a) Baseline intensity functions follow Weibull distribution, where two parameters c

and r play a critical role. They may vary from stratum to stratum, as denoted

by cr and kr. kr > 1 indicates increasing rate over time, kr = 1 refers to constant

rate, and kr < 1 denotes decreasing rate.

(b) Ci is the crash time generated in the previous step.

(c) x1i is a binary covariate, with 50% probability to be 0/1.

(d) x2i is a continuous covariate following U(−1, 1) distribution.

(e) Ii is considered a time-varying binary covariate. It takes a value of 1 when t is

larger than the crash time.

(f) β
(k)
1 and β

(k)
2 are time-fixed effects.

(g) β
(k)
3 (t− ci) is time-varying effect. Since ci’s are different across subjects, we focus

evaluating those effects as functions of time after crash.

(h) ui and vi are two dependent frailty terms. They follow multivariate normal dis-

tribution with center 0 and covarance matrix

(
θ ρ

√
θη

ρ
√
θη η

)
.

In order to cover a certain range of parameter space, 6 different settings of baseline

parameters and covariates’ effects are explored. Within each setting, 200 realizations are

generated and three models are implemented: a multi-type recurrent event model with time-

varying coefficient, an independent stratified time-varying recurrent event model on each

type, and a non-stratified independent model. Because of space limits, we only provide

results from selected settings.

5.5.2 Simulation result

In the first setting we generate time-varying coefficient from:

β2
3(t) =(t2 − t)× I(t < 2) + 0× I(t >= 2)

β1
3(t) =

4

1 + exp(−t)
− 3,

(5.29)
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as shown in left panel of Figure 5.3. Scale and shape parameters of baseline functions are

c1 = 1.5, c2 = 3, k1 = k2 = 1. It describes a constant type-I rate of 1.5 and type-II 3 events

per time unit. Finite sample size is 50 subjects which yields about 15 events per subject in

total. Correlation matrix between ui and vi is

(
0.5 0.3

0.3 0.25

)
.

Figure 5.3 shows simulation results over 200 replications. Dashed black dots refer to true

functions. The black solid curves are average estimating effects from multi-type recurrent

event model. Blue and red dashed curves are estimation from separated stratified and non-

stratified model by modeling two events independently. All of them provide estimation close

to true values It is not too surprising to find lager bias close to the right end since there is only

2 time units after crash available on average. The pointwise empirical coverage probability

(CP) are compared. Again, they perform similarly with CP slightly vary around 95%. Mean

square error of time-varying coefficients estimation comparison favors multi-type model with

smaller values.
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(a) Varying coefficient estimation

(b) Pointwise empirical CP and MSE

Figure 5.3: Simulation result: positive correlation.

To examine the performance of the proposed method under negative correlation or

stronger heterogeneity (e.g. larger variance of ui and vi), we further consider covariance

matrix to

(
0.5 −0.3

−0.3 0.25

)
and

(
1 0.5

0.5 0.5

)
.

Figure 5.4 shows simulation results of negative correlation. Again, they perform similarly
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with CP slightly vary around 95%. Mean square error of time-varying coefficients estimation

comparison favors multi-type model with smaller values.

(a) Varying coefficient estimation

(b) Pointwise empirical CP and MSE

Figure 5.4: Simulation result: negative correlation.

Table 5.2 lists results of time-fixed coefficients, variance component, and smoothing pa-

rameter from various settings. In both settings, the bias of time-fixed coefficients are all
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Table 5.2: Simulation results for parametric coefficients estimates in one time-varying effect
model

Parameter True value Mean Bias SE % SEM4 CP∗

Setting I: positive correlation

β1
1 1 1.05 0.05 0.28 0.26 96%

β2
2 -1 -0.98 0.02 0.22 0.23 95%

β2
1 1 1.04 0.04 0.22 0.19 91%

β2
2 -1 -0.97 0.03 0.15 0.17 96%

β3
1 1 1.03 0.03 0.27 0.25 95%

β3
2 -1 -1.04 -0.04 0.20 0.22 97%

θ1 0.5 0.49 -0.01 0.12 0.07 74%

θ2 0.25 0.27 0.02 0.07 0.04 71%

ρ 0.85 0.79 -0.06 0.09 0.13 98%

λ (6, 33)

Setting II: negative correlation

β1
1 1 1 0.00 0.26 0.26 92%

β2
2 -1 -1.01 -0.01 0.23 0.23 96%

β2
1 -0.5 -0.49 0.01 0.19 0.22 96%

β2
2 0.5 0.49 -0.01 0.19 0.2 95%

β3
1 1 1.03 0.03 0.27 0.25 94%

β3
2 -1 -1.05 -0.05 0.22 0.22 95%

θ1 0.5 0.44 -0.06 0.13 0.08 65%

θ2 0.25 0.26 0.01 0.09 0.05 63%

ρ -0.85 -0.7 0.15 0.19 0.21 94%

λ (19, 65)

%: Empirical standard error

4: Mean of standard error

*: Coverage probability

small (≤ 5%). The empirical coverage probabilites of 95% confidence intervals using the es-

timated standard error are around 95%. Bias for variance component θ is 8%. The estimated

standard derivations of θ (SEM) is smaller than empirical ones (SE).

In Table 5.3, there lists power/ type I error of proposed tests in subsection 5.3.3 under

difference true functions. When true effect is not constant, power of test for no effect

(85% 99%) is larger than that of constant effect (55% 99%). Test for equality of time-varying

coefficients are reasonably well. In terms of test for fixed effect, under null hypothesis that

all three sets of fixed effects are the same, type I error varies from 3% to 10%. The power

to detect different effect of 1.5 is 100%.
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Table 5.3: Empirical power/ type I error of tests for time-varying and time-fixed effects

True value Null hypothesis

No effect Constant Equivalence

Setting I: Piecewise Polynomial; logistic (91%, 100%) (64%, 98%) 93%

Setting II: Piecewise Polynomial; logistic (85, 99%) (53, 99%) 81%

β1 = β2 β2 = β3 β1 = β3

Setting I: β1 = β2 = β3 = (1,−1) (8%, 8%) (10%, 3%) (7%, 4%)

Setting II: β1 = β3 = (1,−1);β2 = (−0.5, 0.5) (100%, 100%) (10%, 5%) (100%, 100%)

5.6 Conclusion and discussion

In this Chapter, we propose a general platform for multi-type recurrent event data with both

time-fixed and time-varying coefficients. Relationship among different types of events are

assessed through correlated frailty term. It provides researchers insight of the relationship.

Penalized B-spline was adopted to approximate time-varying coefficients. Writing extra

penalties brought by variance components and smoothing parameters are estimated jointly by

maximizing profile likelihood. Besides easy implementation, it allows us to make systematic

inference on all components.

Application result indicates that male drivers tend to drive safer after crash with lower

intensity rate of NC and SCI. The amount of decrease diminishes gradually over time. On

contrary, female drivers do not show such pattern. Gender discrepancy is consistent between

NC and SCI. Intensity rate of male drivers is about 0.8 times of that of female drivers. Older

drivers more safe than younger drivers. Correlation confirms a strong positive association

between two types of crash-related events.

Simulation result reveals good performance of the proposed model for both time-varying

and time-fixed coefficients. Estimation almost captures true functions with small bias in the

positive correlation. In the case of negative associate, we observe a larger bias. Comparison

of estimation among three models do not imply outperformance of multi-type model. But

MSE of multi-type models is uniformly smaller than single type which provide more precise

estimation. Another interesting finding is that the smoothing parameter estimated in multi-

type model is smaller than that from separated models. This agrees with larger bias and

smaller variance.

One limitation of current study is computation. With larger number of subjects and/or

more types of events in a study, computation load explodes dramatically. For a three-events

model with 100 subjects, the size of hessian matrix is over 300 × 300. Estimation proce-
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dure involves many times of inverse larger hessian matrix thus require more time. Future

implementation of the proposed model will benefit very much from simplified algorithm.

80



Bibliography

[1] P. K. Andersen and R. D. Gill. Cox’s Regression Model for Counting Processes: A

Large Sample Study. The Annals of Statistics, 10(4):1100–1120, 1982.

[2] N. Breslow and D. Clayton. Approximate inference in generalized linear mixed models.

Journal of the American Statistical Association, 88:9–25, March 1993.

[3] J. Cai and D. E. Schaubel. Marginal means/rates models for multiple type recurrent

event data. Lifetime Data Anal., 10(2):121–138, 2004.

[4] R. J. Cook and J. F. Lawless. The statistical analysis of recurrent events. Statistics for

biology and health. Springer, 2007.

[5] R. J. Gray. Flexible methods for analyzing survival data using splines, with applications

to breast cancer prognosis. Journal of the American Statistical Association, 87(420):

942–951, 1992.

[6] X. Lin and D. Zhang. Inference in generalized additive mixed modelsby using smoothing

splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61

(2):381–400, 1999.

[7] Y. Mazroui, S. Mathoulin-Plissier, G. MacGrogan, V. Brouste, and V. Rondeau. Mul-

tivariate frailty models for two types of recurrent events with a dependent terminal

event: Application to breast cancer data. Biometrical Journal, 55(6):866–884, 2013.

ISSN 1521-4036.

[8] F. O’Sullivan. Nonparametric estimation of relative risk using splines and cross-

validation. SIAM Journal on Scientific and Statistical Computing, 9(3):531–542, 1988.

[9] S. Ripatti and J. Palmgren. Estimation of multivariate frailty models using penalized

partial likelihood. Biometrics, 56(4):1016–1022, 2000.

[10] P. G. Sankaran and P. Anisha. Shared frailty model for recurrent event data with

multiple causes. Journal of Applied Statistics, 38(12):2859–2868, 2011.

[11] L. Sun, L. Zhu, and J. Sun. Regression analysis of multivariate recurrent event data

with time-varying covariate effects. Journal of Multivariate Analysis, 100(10):2214 –

2223, 2009.

81



[12] M.-C. Wang, J. Qin, and C.-T. Chiang. Analyzing recurrent event data with informative

censoring. Journal of the American Statistical Association, 96(455):1057–1065, 2001.

[13] Z. Yu, L. Liu, D. M. Bravata, L. S. Williams, and R. S. Tepper. A semiparametric

recurrent events model with time-varying coefficients. Statistics in Medicine, 32(6):

1016–1026, 2013.

[14] L. Zhu, J. Sun, X. Tong, and D. Srivastava. Regression analysis of multivariate recurrent

event data with a dependent terminal event. Lifetime Data Analysis, 16(4):478–490,

2010.

82



Chapter 6 General Conclusions

This chapter summarizes the major conclusions and contributions of this dissertation and

suggests some possible future research direction.

6.1 Conclusion and Contribution

In this dissertation, different methodologies have been proposed in the content of recurrent

events and applied to 100-Car NDS. Although the research was motivated by a transportation

safety research question, the methodologies developed are general and can be applied to a

wide spectrum of research fields.

In Chapter 2, the influence of crash was evaluated on drivers’ distraction behavior. Dis-

traction behavior was measured by secondary driving tasks. Crash influence on driving

behavior was evaluated with a count-based approach using a mixed binomial regression

model. The results indicate that drivers’ engagement in moderate and complex secondary

tasks tends to be lower after crashes, especially within a 15-hour driving time window. This

decreasing effect tends to diminish over time.

Chapter 3 provides the first systematic study of crash influence on driving risk in the

context of recurrent event model. Four semi-parametric recurrent event models were imple-

mented and compared. Cox-Snell residual plots suggested that stratified frailty model fitted

the data best. The results suggest that crashes have a positive effect on driver behavior with

lower SCI intensity after crashes. Drivers might either learn from the crashes experience or

be more attentive while driving.

The objective of Chapter 4 is to estimate time-varying coefficient, which was approxi-

mated by penalized B-spline. Variance components and smoothing parameters were esti-

mated jointly by maximizing profile likelihood. We proposed to link time-varying coefficient

model to a regular frailty model. This created an easy access to new approach and statisti-

cal inference for smoothing parameters. In addition, we studied the asymptotic distribution

and conducted statistical tests. Application results showed driving risk of male drivers tend

to decrease after crash first and then increase. Similar pattern was not found for female

drivers. These findings provide crucial information for understanding drivers’ response to

dramatic driving events and can be critical for development safety education programs and

safety counter measures.

In Chapter 5 I proposed a general platform of multi-type recurrent event models with
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time-varying coefficients. The chapter focuses on two types of recurrent events, each in a

shared frailty model. Relationship among different types of events was assessed from frailty

terms. In terms of time-varying crash influence, results from multi-type model were similar

to that in Chapter 4. A positive correlation was found between two types of crash-related

events.

6.2 Future Work

Since there was no closed form for marginal likelihood given normally distributed frailty

terms, Laplace approximation was adopted to achieve a close estimation. Another widely-

used technique handling unobserved random effects is E-M algorithm. In the future, it is of

interest to implement the EM algorithm and compare the results.

Regarding to time-varying coefficient model, model selection is worth future research.

In a study with many potentially time-varying coefficients, quickly and correctly identifying

them is essential. Large degrees of freedom is often in demand to estimate considerable

time-varying coefficients. It could lead to identifiability issue. How to solve this problem is

an appealing question.

Comparing time-varying coefficient in the context of recurrent event and frequency is

another future topic. Similar to the study in Chapter 2, an alternative of examining time-

varying coefficient is to divide study period into several intervals and model the occurrence in

each period. It would be interesting to know which performs better in certain circumstances.

Computational issue affects future implementation of multi-type recurrent event model.

With larger number of subjects and/or more types of events in a study, computation load

increase substantially. Estimation procedure involves many times of optimization of a large

amount of parameters thus require substantial computing resources. Future implementation

of the proposed model for large data will benefit from simplified algorithm.

Lastly, application of this dissertation is based on a relative small number of crashes

with mild crash severity. With larger NDS data sets becoming available, such as the Second

Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study, more concrete

evidence will be available on the influence of crashes on driver behavior and potentially the

influence of crashes by severity.
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