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ABSTRACT The compressive sensing (CS) theory shows that real signals can be exactly recovered from very
few samplings. Inspired by the CS theory, the interior problem in computed tomography is proved uniquely
solvable by minimizing the region-of-interest’s total variation if the imaging object is piecewise constant or
polynomial. This is called CS-based interior tomography. However, the CS-based algorithms require high
computational cost due to their iterative nature. In this paper, a graphics processing unit (GPU)-based parallel
computing technique is applied to accelerate the CS-based interior reconstruction for practical application in
both fan-beam and cone-beam geometries. Our results show that the CS-based interior tomography is able
to reconstruct excellent volumetric images with GPU acceleration in a few minutes.

INDEX TERMS Computed tomography, compressed sensing, parallel computing, graphics processing unit,
interior tomography.

I. INTRODUCTION
The x-ray computed tomography (CT) has been an indispens-
able imaging modality relying on multiple x-ray projections
of the subject to reconstruct a two dimensional (2D) or three
dimensional (3D) distribution of the attenuation coefficients
within the subject [1]. Although it is proud of high spatial
and temporal resolution [2], CT radiation accounts for a large
portion of the ionizing radiation to the population that cannot
be underestimated. The patients undergo a CT scan were
estimated to be 60 million in 2002 in the United States, which
occupied nearly 75% of the radiation exposure and almost
15% of the imaging procedures [3]. The widely accepted
As LowAs Reasonably Achievable (ALARA) principle urges
the medical community to reduce the unnecessary radiation
hazard as much as possible [4], [5]. Reducing the x-ray flux
towards the detector and decreasing the amount of x-ray paths
across the whole object supporting are two common strategies
to avoid extra radiation. The former is usually achieved by
controlling the operating current, voltage or exposure time but
leading to high projection noise and the latter may produce
few-view, limited-angle or truncated projection problems [6].

Conventional iterative reconstruction algorithms are
immune to noisy projections in some extent. However, for
the highly ill-posed reconstruction problem, additional reg-
ularization is necessary for unique and stable solutions.
Interestingly, the compressive sensing (CS) theory shows
that a real signal can be accurately recovered with an

overwhelming probability from the amount of data or mea-
surements far less than the Shannon-Nyquist sampling theo-
rem claimed [7], [8]. The l0 norm minimization is the basic
paradigm of CS based signal recovering. Because of the
NP-hard characteristic of the l0 norm minimization, it is
usually relaxed to the l1 norm optimization with solid theoret-
ical supports [9], [10]. Many algorithms have been proposed
to solve the l1 norm optimization problem, such as interior
point method [11], gradient projection method [12] and some
dedicated algorithms for the CS-based optimization [16].
In the medical imaging field, the total variation (TV, l1 norm
of discrete gradient transform (DGT) of an image) has been
widely adopted as a regularization item. The conventional
simultaneous algebraic reconstruction technique (SART)
framework can be applied for CS-based image reconstruc-
tion by adding the TV regularization item [14]–[16]. The
TV minimization is achievable either by using the steepest
decent (SD) method or by using the soft-threshold filtering
(STF) method. Many other TV minimization methods or
applications were also reported, such as PICCS (prior image
constrained compressed sensing) algorithm [17], CS based
interior tomography in SIR (statistical iterative reconstruc-
tion) [18], and improved TV method in an ASD-POCS
framework [19].
Narrowing down the x-ray beam to focus on a region-

of-interest (ROI) is a representative method for dose reduc-
tion nominated as interior scan and the corresponding
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reconstruction is the interior problem. Because the inte-
rior problem is generally non-uniquely solvable, the interior
scanning is unable to be applied for quantitative analysis
based applications in clinics. However, limited by the high
resolution detector size and the radiation dose reduction
expectation, the interior scan is commonly desirable for
many practical applications, such as cardiac CT [20] and
Nano-CT [4]. Inspired by the CS theory, the interior problem
has been proved uniquely and stably solvable by minimizing
the ROI’s TV provided that the imaging object inside the
ROI is piecewise constant [21], [22]. This knowledge regular-
ized CT reconstruction algorithm is called CS-based interior
tomography and the key is to minimize the TV of the ROI
inside the imaging object.

The high computational cost (arithmetic operation and
memory bandwidth) of the CS-based signal recovering
algorithms hinders the sequential implementations of the
iterative algorithms been applied in clinics especially for
cone-beam spiral CT reconstruction [16]. Both the projec-
tion and backprojection processes are categorized as sin-
gle instruction multiple data (SIMD) [23] computing model.
The SIMD model is quite suitable for parallelization with-
out too much complicated communication, synchronization
or mutual lock mechanisms. Initially, parallel image recon-
struction algorithms were implemented on clusters [24]. Cell
processors were also applied in general purpose parallel
computing [25]. Very recently, Intel released the Intel MIC
(Intel Many Integrated Core) architecture products [26], and
software engineers can run their codes on MIC with little
or no additional workload. In early years, researchers began
to accelerate their algorithms with graphics processing unit
(GPU) when its programming interface was published for
general purpose computing. Before GPU was programmable
for general purpose computing, general algorithms were
dedicatedly camouflaged as graphical operations such as tex-
ture mapping for parallel acceleration. Analytical reconstruc-
tion algorithms were benefited enormously from GPU [27].
Nowadays, two groups of programming interfaces for general
computing in GPU have been developed. One is based on
computer graphics languages, such as OpenGL [28], CG [29],
HLSL [30], etc. The other is dedicated for high perfor-
mance GPU computing, such as CUDA [23], OpenCL [31],
Brook [32], etc. The CUDA (Compute Unified Device
Architecture) [33]–[35] is rapidly exploited in many fields
including medical imaging [35]. Comparing with other
general GPU computing interfaces, the CUDA has higher
performance and is easier to master and more flexible. There-
fore, we choose CUDA to implement the CS-based interior
reconstruction in GPU. For higher performance, the shared
memory, texture memory and constant memory are applied
for their high bandwidth and caching mechanism in our
implementation.

In this paper, the SART and ordered-subset (OS)-SART
reconstruction frameworks with TV minimization are imple-
mented in GPU computing to make the CS-based inte-
rior tomography practical. In section II, the CT imaging

model is reviewed with a concise SART-type reconstruction
framework and the STF method. In section III, the imple-
mentation details are given. Section IV demonstrates the
numerical results in 2D fan-beam and 3D cone-beam geome-
tries. The SD and STF based TV minimization methods are
compared in terms of reconstruction accuracy and speed.
In section V, we discuss some related issues and conclude this
paper.

II. ALGORITHM DESIGN
A. IMAGING MODEL
A 2D or 3D digital image can be expressed as f =

(
fi,j,k

)
∈

RN , where N = I × J for a 2D image and N = I × J × K
for a 3D image. I , J and K are image pixel number in length,
width and height dimensions. In this paper, both fi,j,k and fn
are applied for convenience. Therefore, a CT system can be
modeled as

p = Af . (1)

Each component of the vector p ∈ RM is a measured
datum, where M is the total measurements (the product of
the projection number and the detector cell number), and
A ∈ RM

× RN is the system matrix. Typically, the nth pixel
is viewed as a rectangular area with a constant value fn, and
the mth projection datum pm can be viewed as the summation
of all the weighted pixel values involving the mth x-ray.
Lots of discrete models have been proposed to calculate the
entries ofA, such as linear interpolation method, grid method,
distance-driven method [36], Siddons’ method [37], area
integral method [38], footprint method [39], etc. To balance
the speed and accuracy, the Siddons’ method is adopted as
the projection model and the pixel-driven method is adopted
as the backprojection model in our experiments. Siddons’
algorithm takes the length of the mth x-ray penetrating the
nth rectangular pixel/voxel as the element am,n of the system
matrix A. An additive noise e ∈ RN is assumed, and the
imaging process is finally modeled as

p = Af + e. (2)

B. SART AND OS-SART
The SART-type solution for Eq. (2) is expressed as [40]

f (l+1)n = f (l)n +
λ(l)

a+n

M∑
m=1

am,n
am+

(
pm − Amf (l)

)
, (3)

where a+n =
∑M

m=1 am,n > 0, am+ =
∑N

n=1 am,n > 0, Am is
the mth row of A, l is the iteration index and 0 < λ(l) < 2 is a
free relaxation parameter. For simplicity, let3+N ∈ RN

×RN

be a diagonal matrix with3+Nn,n =
1
a+n

and3M+
∈ RM

×RM

be a diagonal matrix with3M+
m,m =

1
am+

, Eq. (3) is rewritten as

f (l+1)
= f (l)

+λ(l)3+NAT3M+(p− Af (l)). (4)

The ordered subset (OS) approach accelerates the con-
vergence of SART by one to two orders of magnitude with
the cost of inducing image bias [41], [42]. The projection
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data is divided into T disjoint subsets Bt =
{
it1, . . . , i

t
B(t)

}
,

where (t = 1, 2, . . . ,T ), is the subset index of the projec-
tion. The union of these subsets covers the whole projection
set. We have Bi ∩ Bj = ∅ (i 6= j, i, j ∈ {1, 2, . . . ,T }) and⋃T

t=1 Bt = {1, 2, . . . ,M}. These subsets alternatively partic-
ipate the iterations. The OS-SART is represented as [35]

f (l+1)n = f (l)n + λ
(l)
∑
m∈Bt

am,n∑
m′∈Bk am′,n

(pm − Amf (l))
am+

, (5)

where t = (l mod T )+ 1. For every sub step in one iteration,
it is suggested that the selected subset should be with the
greatest possible angular distance from the previously used
subset [41]. In our applications in this paper, the subset size
is set as the detector cell number in one view. Meanwhile,
the fast weighting technology in the FISTA (fast iterative
shrinkage-thresholding algorithm) is applied to further accel-
erate the SART-type algorithms with a constant step size [43].

C. CS-BASED IMAGE RECONSTRUCTION
To further reduce the projections, the CS-based signal recon-
struction method is combined with the OS-SART. The
paradigm for CS-based signal recovering is a constrained
l0 norm minimization problem defined as

x̂ = argxmin ‖x‖0 , s.t. y = 8x, (6)

where x is a sparse signal, y is the observed data and 8 is the
sensing matrix. To address the NP-hard problem and suppress
noise, Eq. (6) is usually modified as

x̂ = argxmin ‖x‖1, s.t. ‖y−8x‖22 ≤ ε, (7)

where ε is the measurement error. For a sparser solution, the
lp norm minimization is also investigated. Generally speak-
ing, the smaller the p is, the less measurements are needed for
accurate reconstruction [44]. Actually, most of the signals in
reality are far-fetched sparse, and the l1 norm minimization
paradigm is prohibited to be applied straightforwardly in
medical image reconstruction. Usually, a sparse transform
will be employed first to transform the non-sparse signal to
an appropriate sparse domain. Assuming 9 being the sparse
transform, the CS-based CT image reconstruction paradigm
can be finally expressed as

f̂ = argf min ‖9f ‖1, s.t. ‖p− Af ‖22 ≤ ε. (8)

D. DGT-BASED SPARSITY AND STF
The objective function ‖9f ‖1 in Eq. (8) can be defined as
‖f ‖TV if 9 is the discrete gradient transform (DGT) and
the image object satisfy the piecewise constant assumption,
where ‖·‖TV denotes the l1 norm of the DGT. The so-called
Neumann condition [45] on the boundary is also assumed.
With an appropriate Lagrange multiplier σ , the problem
Eq. (8) can be rewritten as:

f̂ = argf min
(
‖p− Af ‖22 + σ ‖f ‖TV

)
. (9)

Because the two items in Eq. (9) are convex, they can
be alternatively minimized to yield an accurate solution.

While the OS-SART can be used to minimize ‖p− Af ‖22,
the conventional SD method can be employed to min-
imize the TV term. However, the SD based TV mini-
mization sometimes over-enhances the edge regions and
generates Gibbs-effects-like artifacts, and the step size
needs to be carefully selected to find the minimum value
and guarantee fast convergence. The STF (soft threshold
filtering) is an alternative choice to minimize TV. Let
Z =

{
ζ γ
}
γ∈0

be a basis in RN . f can be linearly expressed
as f =

∑
γ∈0〈f , ζ γ 〉ζ γ . Let us define an objective function

with positive weights � =
{
ωγ
}
γ∈0

4�,q (f ) = ‖p− Af ‖22 +
∑
γ∈0

2ωγ
∣∣〈f , ζ γ 〉∣∣q, q ∈ [0, 2].

(10)

When q = 1, finding the sparest solution of 4�,1 is equiv-
alent to Eq.(9) for DGT [14]. To find the sparse solution of
4�,1, we can recursively minimize4�,1 in a STF framework

f̂
(l+1)
= S�,1

(
f̂
(l)
+ AT

(
p− Af̂

(l)))
, (11)

where f̂
(l)

is the intermediate image and

S�,1 (x) =
∑

γ∈0
Sωγ ,1

(
〈x, ζ γ 〉

)
ζ γ (12)

is the functional that performs a soft threshold filtering. It has
been proved by Daubechies et al in [15] that Eq.(11) is
convergent. In Eq.(12), Sωγ ,1 is defined as

Sωγ ,1(x) =

 x − ωγ , if x ≥ ωγ
0, if |x| < ωγ
x + ωγ , if x ≤ −ωγ .

(13)

However, because the DGT is non-invertible and violates
the restricted isometrics property (RIP [7], [46]), the STF
method is prohibited to be directly applied for TV minimiza-
tion. This problem can be addressed by constructing a pseudo
inverse of DGT [14], [16].

III. GPU ACCELERATION
A. PARALLELIZATION STRATEGY
For the CS-based interior tomography algorithm, the pro-
jection, backprojection, DGT, pseudo inverse transform, soft
threshold filtering and finding the optimal threshold can be
parallelized. Some constants (such as all the trigonometric
values of the view angles, coordinates of the source position,
aligned voxel coordinates and the detector coordinates in x, y
and z directions, etc.) can be pre-calculated and symbolically
mapped to constant memory to achieve higher caching effi-
ciency. However, this symbolical linking is optional because
it costs almost the same clock cycles as fetching the data from
the constant memory to calculate the coordinates correspond-
ing to the current voxel or detector cells on the fly.

The on-board device memory usually is sufficient for
fan-beam reconstruction unless storing the whole system
matrix A. Sometimes, it is also possible to compactly store A
in the device memory when the image and the projection data
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are not too large. We compactly stored a 180,000 × 65,536
sparse matrix A in COO (Coordinate list, which stores a list
of (row, column, value) tuples) format in CPU. The system
matrix is transfer to the CSR (Compressed Sparse Row) for-
mat after it is loaded into the device memory. The projection
process occupies 6.23ms with cuSPARSE (NVIDIA CUDA
Sparse Matrix library). Actually, the whole program spent
2.26 seconds including reading matrix to the main memory
and transferring to the device memory, etc. Even though a
large device memory is provided, the storing of systemmatrix
has to be gingerly designed to be fully compacted and the
computational efficiency should be kept. Assuming that the
image to be reconstructed is square, if the symmetry of 2D/3D
scanning is fully utilized; only the first eighth of the scanning
angles needs to be considered when the scanning range is
[0, 2π ]. The symmetrical relationship between image indices
and sinogram indices are defined as follows:

(i, j) → (θ, t)

(R-j, i) → (θ + π/2, t)

(R-i, R-j) → (θ + π, t)

(j, R-i) → (θ + 3π/2, t)

(R-j, R-i) → (π/2− θ,T − t)

(i, R-j) → (π − θ,T − t)

(j, i) → (3π/2− θ,T − t)

(R-i, j) → (2π − θ,T − t) (14)

where i, j represents the pixel indices of the image, θ is the
current projection angle that can be easily transferred to the
angle index, t is the index of the detector element and T is the
detector resolution, and R is the image resolution in length or
width direction. The pairs (i, j) and (θ, t) satisfy the Radon
transform relationship. In cone-beam geometry, not only the
scanning range but also the projection symmetry on the upper
and downer parts of the detector can be utilized if there is
no offset. However, these symmetrical based tricks are not
adopted here due to detector offset need to be considered in
practical applications.

Typically, a sinogram is divided into adjoining sub-blocks
in fan-beam case for parallel projection. Each sub-block
corresponds to one thread block in CUDA and the threads
in one block can be configured discretionarily. The thread
block is divided into (px × py) threads, where px addresses
the detector indices and py addresses the projection angle
indices with built-in variables in CUDA. On one hand, suffi-
cient threads are required to accurately reconstruct the image
object. On the other hand, it wastes computational resource
if more threads are allocated than what are needed. It is opti-
mal that the detector cell and the projection angle numbers
are divisible by px and py, respectively. The thread number
being multiple of 32 in one block is sensible because the
GPU executes 32 threads as a warp simultaneously. Fully
occupying 1024 threads in one block is not optimal in Fermi
architecture. The maximum warps for one multiprocessor in
Fermi architecture is 48 that implies 1536 threads can be

executed simultaneously. If the threads block is configured
with fully 1024 threads, 1/3 of the computation resource will
be idle. In the Kepler architecture, the maximum warp num-
ber increases to 64 in one multiprocessor. Therefore, 2048
threads can be executed simultaneously. Without considering
the backward compatible for earlier GPUs, 1024 threads fill
up one threads block in Kepler architecture and 512 threads
are configured in Fermi architecture.

B. PROJECT AND BACKPROJECTION MODELS
Siddons’ algorithm is adopted as the projection model.
An element am,n of system matrix A is computed as the
length of mth x-ray passing through nth pixel/voxel for a
2D/3D image. In conventional CPU and GPU based imple-
mentations, additional memories are pre-allocated to store the
parameters representing the intersections between an x-ray
and the boundary box of each pixel/voxel. The pre-assigned
memory should be at least (Nx + Ny + Nz + 3) × SD bytes
in cone-beam geometry, where Nx ,Ny and Nz are the pixel
numbers of the volume in length, width and height dimen-
sions respectively, and SD is the data size of each voxel.
This may cause trouble for the CUDA programming with
GK104 chip because it is banned to dynamically allocate
device memory in the executing kernel. It is required to
recompile the program if the image resolution changes and
it also has to be implemented with macros to allocate the
constant memory for storing the parameters. Although the
constant expression feature in C++11 standard can solve this
problem with the key word ‘‘constexpr’’, this feature is not
supported in Microsoft Visual Studio 2012 compiler. There-
fore, a modified Siddons’ algorithm without pre-assigning
memory was applied [47]. This algorithm first calculates the
intersections of the compact support of the 2D/3D image and
the current x-ray path, which is similar to the clipping algo-
rithm in computer graphics [48]. Beginning with the incident
point, the algorithm calculates the intersection points for each
pixel/voxel for its weighting coefficient ai,j. Iteratively, the
exit point of the current pixel/voxel is set as the incident point
of its neighbor pixel/voxel and this process will be repeated
until the current incident point is the exit point located on
the boundary of the object. After the current intersection
point arrives at the exit point on the compact support, the
innate ordered intersection parameters are all generated and
the weighting for these intersection voxels can be calculated.

The pixel/voxel driven model is adopted to implement
backprojection operation. For a given projection angle, map-
ping a point in the world coordinate to its corresponding
detector index can be simplified to a geometrical transform
matrixM in flat-panel detector case. This matrix can be con-
structed as follows. A homogeneous coordinate is assumed
in our transform. The source and detector positions are both
counterclockwisely rotated to make the source on the positive
direction of Y axis with a rotation matrix Rθ , and the source
is moved to the origin of the world coordinate by multiply-
ing a matrix Td . After a perspective transform with Pd , the
transformed object point is projected to its shadow on the
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FIGURE 1. Boundary box based backprojection process. (a) The
backprojection is more accurate with higher computational cost when
the detector size is small. (b) The backprojection degenerates to the
pixel/voxel driven method with more computational cost when the
detector size is large.

detector. Finally, the shadow index on the detector can be
easily calculated with two matrices Tm and Su. For concise,
the offset of the detector, which can be easily integrated
into the matrix multiplication in Tm is not considered in this
derivation. Therefore, the matrices chain can be expressed as
(15) shown at the bottom of the page, where ux and uz are
detector element size, mx and mz are minimum coordinate of
the detector at the initial position, D is the source to detector
distance, d is the source to iso-center distance and θ is the cur-
rent view angle. Because the ray-driven projectionmodelmis-
matches the pixel/voxel driven backprojection process which
means the system matrix in backprojection is not exactly the
transpose of the projection system matrix. This mismatch
will induce artifact with the increase of iteration number.
Therefore, amethod similar to Li et al. [49] is adopted tomake
the projection and backprojection match. The projection of
a voxel on a plane can only be a convex polygon such as
hexagon, pentagon or quadrilateral. The ray passing through
the voxel must be inside its convex polygon shadow. First, for
every voxel the boundary convex polygon is calculated. Then,
the rectangle boundary box is calculated from the minimum
and maximum projection coordinates of the voxel. Only the
detector cells inside the boundary rectangular are considered
as demonstrated in Figure 1. However, if the boundary rect-
angular is not large enough to contain multiple detector cells,
it has no advantage over the simple pixel driven method but
needs more computational complexity. When the detector
resolution in pitch direction is the same as or smaller than
the object resolution in the height dimension, some of the
pixels in different slices will never be penetrated by any

cone-beam x-ray in projection process. This will result in
serious artifacts. To suppress this artifact, when the detector
resolution is insufficient for high resolution reconstruction,
we have to compromise the backprojection model to solve
the model mismatching problem. Due to the specificity of
this algorithm, a single thread is mapped to the vertex of a
voxel instead of a single voxel. It is readily appreciated that
8 adjacent voxels share one vertex in three directions, and
the redundant coordinate computing will occur if one thread
response for one voxel updating. Therefore, the shared mem-
ory is applied to minimize latency caused by reading the same
data from global memory multiple times and unnecessary
computing. The thread block for backprojection is allocated
as (8, 8, 8) and the thread index addresses current vertex.
Because only the first 7 indices in each dimension response to
the voxel updating, each thread block can update 343 voxels.

C. PARALLELIZATION OF TV MINIMIZATION
In 3D case, a general lp norm of DGT is defined as

Lp
(
D(f )

)
=

 K∑
k=1

J∑
j=1

I∑
i=1

∣∣D (fi,j,k)∣∣p
 1

p

, (16)

where

D( fi,j,k )

=

√
( fi+1,j,k−fi,j,k)2+( fi,j+1,k−fi,j,k)2+( fi,j,k+1−fi,j,k )2.

(17)

when p = 1, Eq.(16) degenerates to the TV. For an individual
DGT value D

(
fi,j,k

)
at the position (i, j, k), it involves four

values (fi+1,j,k , fi,j+1,k , fi,j,k+1 and fi,j,k ) which are sporadi-
cally stored in device global memory. Initially, this suggests
each thread calculates one DGT value in position (i, j, k)
with a simple kernel function. Therefore, the threads config-
urations in fan-beam and cone-beam cases are the same as
the configurations in the corresponding backprojection cases,
respectively. In fact, the DGT is not intensive in arithmetic
computation but in memory bandwidth. If all the data are
stored in the global memory, every thread has to read 4 dis-
continuous data from the global memory and adjacent threads
in one block have to read the same data which generate
latency. Therefore, the volume is divided into overlapped sub-
volumes with size 8×8×8. For one thread block, its indexed

M = Su · Tm · Pd · Td · Rθ

=

 1/ux 0 0
0 1/uz 0
0 0 1

 1 0 −mx
0 1 −mz
0 0 1

 −D0
0

0
0
1

0
−D
0

0
0
0



1 0 0 0
0 1 0 −d
0 0 1 0
0 0 0 1




cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1


=

 (mx · sin θ − D cos θ )/ux
mz · sin θ/uz
− sin θ

−(cos θ · mx + D sin θ )/ux
−mz · cos θ/uz

cos θ

0
−D/uz

0

d · mx/ux
d · mz/uz
−d

 , (15)
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FIGURE 2. The thread configurations in fan-beam reconstruction.
(a) represents one thread block configuration for backprojection and DGT.
(b) represents one thread block configuration for TV descent direction
calculation and pseudo-inverse of DGT.

sub-volume is copied to the shared memory. In fan-beam
case, similar strategies is applied, the image is divided into
32 × 32 overlapped sub-image, and for one thread block the
corresponding sub-image is loaded into shared memory as
shown in Figure 2. Because the value in last index of the
sub image is the first index of its adjoining sub image, if
the thread in each block is allocated as (tx , ty) and the image
size is (Nx ,Ny) in fan-beam case, the block number for DGT

is
(⌊

Nx+tx−2
tx−1

⌋
,
⌊
Ny+ty−2
ty−1

⌋)
. Similarly, the block number in

3D case can be calculated using a similar formula.
Finding an optimal threshold after DGT is an indispensable

step to accelerate the convergence of the STF, which can be
achieved by dichotomy in GPU. The Thrust library is applied
for this implementation [48]. We first copied the discrete
gradient image d̂

(l)
to d̂

(l)
c and then d̂

(l)
c is ascending sorted.

The prior knowledge of the intermediate discrete gradient
image can be estimated from the roughly reconstructed image
by the classical FBP approach. The soft-threshold filtering is
applied with respect to each component according to Eq. (13).
The pseudo inverse transform will be applied to inversely
transform the image from the DGT to image domain, which is
implemented in GPU according to Eqs. (3.8) to (3.11) in [14].
The memory bandwidth problem can also be solved by the
shared memory similar to the DGT implementation. Different
from the DGT transform, the inverse threshold filtering needs
more shared memory. In 2D case, the thread block is also
configured with size (32, 32). Considering that the inverse
transform in position (i, j) relates to all its adjacency pixels,
only 30× 30 pixels in the center of the sub image can be cal-
culated by the current thread block as in Figure 2. Therefore
the block number should be

(⌊
Nx+tx−3
tx−2

⌋
,
⌊
Ny+ty−3
ty−2

⌋)
if the

image resolution is Nx × Ny and the threads configuration in
one block is (tx , ty). The block number for 3D pseudo inverse
transform can be calculated in a similar fashion.

D. OVERALL PSEUDO-CODES
Combining the OS-SART and STF, the CS-based interior
tomography can be implemented as the following pseudo-
codes:
S0: Initializing l = 0, f̂

(l)
= 0 and estimating ωγ0;

S1: Updating l ← l + 1 and performing OS-SART to
update f̂

(l)
;

S2: Performing DGT from f̂
(l)

to d̂
(l)

corresponding
to 〈f̂ , ζ γ 〉 in Eq.(13);

S3: Performing soft-threshold filtering from d̂
(l)

to d̃
(l)

using Eq. (14);
S4: Performing pseudo inverse DGT to obtain f̃

(l)
; [14]

S5: Updating f̂
(l)
←f̃

(l)
;

S6: If the stopping criteria are met, output the result;
otherwise go to S1.

IV. NUMERICAL EXPERIMENTS
A. PLATFORM CONFIGURATION AND
GEOMETRY PARAMETERS
The SART and OS-SART algorithms are implemented in
GPU for both fan-beam and cone-beam geometries with
CUDA/C++ language. For the CS-based interior tomogra-
phy, the TV regularization is applied with the aforementioned
SD and STF methods. All the experiments are tested on a
high-performance workstation configured as follows. Two
Intel Xeon CPUs are configured with core clock frequency
3.10GHz. Each CPU contains 16 cores. The memory size
is 32GBs. The operating system is Microsoft Windows 7
(64-bits Professional version). For GPU computing, NVIDIA
Tesla K10 is used including 2 GK104s. Each GPU contains
1536 CUDA cores, and the GPU clock frequency is 745MHz.
The device memory clock frequency is 2500MHz and the bus
width is 256 bit. The device memory for each GPU is 3GB.
For cone-beam reconstruction, the system geometry is con-

figured as in Table 1. The system geometry in fan-beam
reconstruction is the same as the central slice parameters in
cone-beam geometry. In table 1, CATCEmeans that the value
will be different in different groups of experiments and it will
be clarified in the experiments. In the numerical simulations,
Poisson noise is assumed [51] and the photon number for each
detector element is 104.

B. RECONSTRUCTION TIME COMPARISON
Because the CUDA kernels return immediately after they are
called, the general timer function cannot be applied to test
the performance of a kernel. We imitated the examples in
CUDA SDK to test the reconstruction time in fan-beam and
cone-beam cases. Visual Profiler 6.0 is also applied for more
detailed analysis.
The OS-SART algorithm for fan-beam reconstruction with

STF based TVminimization is tested in double floating preci-
sion. To investigate the relationships among image resolution,
view number and the GPU based reconstruction speedup,
the image resolution varies from 2562 to 20482, the detector
resolution varies from 300 to 2400, and the view number
changes from 17 to 360. The total iteration is 50. As sum-
marized in Table 2, when the view number is smaller, the
speed up is more significant. Larger view numbers or smaller
subset sizes indicate more projection and backprojection calls
in one sub-loop. When the view number increases, the pro-
jection and backprojection change back and forth frequently
especially when the subsets are the same size as that of one
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TABLE 1. Cone-beam reconstruction geometry configuration for numerical simulations and clinical dataset.

TABLE 2. The computational cost for STF-based TV minimization in an OS-SART framework with a modified Shepp-Logan phantom. A comparison is
presented between CPU (Intel Xeon 3.1GHz, single core usage) and GPU (NVIDIA, Tesla K10, single GPU usage) after 50 iterations.

projection view. Meanwhile, the GPU-computing is suitable
for CS-based interior reconstruction especially when only
a few projections are available. With the improvement of
the image resolution, the speedup is more obvious. This is
because when the image is small, the projection and back-
projection generally are more bandwidth intensive instead of
computing intensive.

The SD-based TV minimization in the OS-SART frame-
work is also tested to compare with the STF-based algorithm
with image resolution 10242 and 20482 in fan-beam geom-
etry. The bar chart in Figure 3 shows the speedup results.
The reconstruction time between the OS-SART and the other
two TV regularization based algorithms are minimal, and the
STF-based TV minimization algorithm runs a little bit faster
than the SD-based TV minimization.

A single-floating-precision 5123 modified 3D Shepp-
Logan phantom is applied to test the speedup performance in

cone-beam geometry with the OS-SART algorithm plus TV
regularization. A detector resolution of 6002 and 100 views
are applied. The computational cost for the STF-based and
the SD-based TV minimization in the OS-SART framework
are respectively 1665.46 and 1791.33 seconds after 85 iter-
ations. For one iteration step, the computational costs in
different algorithms are listed in Table 3. The sum of pro-
jection, backprojection and regularization time is not exactly
the same as the total time because other time is needed for
data loading from disk, data transfer, functions calling and
so on. The computational cost is relatively small to find the
optimal threshold ωγ0 in the OS-SART with STF-based TV
minimization. With more detailed analysis, the GPU utiliza-
tion for the projection and backprojection steps are both
100.0%, the utilization to find the optimal threshold ωγ0
including filtering is 100.0%, while the occupation rate for
DGT is only 75%.

VOLUME 2, 2014 763



R. Liu et al.: GPU-Based Acceleration for Interior Tomography

FIGURE 3. Bar charts of the computational cost for different GPU-based reconstruction methods in fan-beam geometry. The left
column is for image size 1024 × 1024 and the right column is for image size 2048 × 2048 after 50 iterations. For the top row bar
charts, the vertical axis represents the reconstruction time and the unit is second. The bottom row is the speedup comparison
between CPU and GPU. The abscissa indicates different projection number used in reconstruction. The left vertical axis is the
reconstruction time (in seconds, drawn in logarithmic scale), and the right vertical axis is for the speedup factor in the bottom charts.

TABLE 3. The computational cost for the projection, backprojection and TV minimization steps in OS-SART, OS-SART with SD-based TV minimization, and
OS-SART with STF-based TV minimization.

A single-floating-precision 5122 × 256 image volume is
also reconstructed with the OS-SART. The projection geom-
etry is in Table 1 except that the detector resolution changes to
1024× 512 and the views increases to 360. An iteration num-
ber 10 is applied for this study. The total reconstruction time
is 423.20 seconds. In one iteration, 42.3 seconds are needed
to project the 5122 × 256 image volume to 1024 × 512 ×
360 projections and to backproject the projections. From the
performance comparison with different reconstruction scales
in image resolution, detector resolution and views, we can see
that the performance of boundary box based backprojection

is largely influenced by the detector resolution. To further
accelerate the reconstruction, the dataset is divided into two
smaller ones and distributed to dual GPUs evenly. Except
the same geometry configuration, both the volumetric image
and the raw projections are halved. An iteration number 30
is assumed. There is no data redundancy to guarantee an
accurate reconstruction since the symmetry of circular cone-
beam scanning geometry. While the computational cost is
583.46 seconds for single Kepler GK104, the computational
cost is reduced to 289.85 seconds with two Kepler GK104s.
The GUPS (Giga-updates per second) is also tested for the
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FIGURE 4. Image volume reconstructed from a patient data set by the OS-SART algorithm. (a)-(c) are
the transverse, sagittal and coronal planes, respectively. The display window is [−1000HU, 2500HU].
(d)-(f) are the corresponding difference images of (a)-(c) related to the ones reconstructed by the FDK
method in a narrow display window. (g)-(i) are three pseudo-color volumetric rendering in different
observation positions, which are generated by the NVIDIA CUDA SDK under the license EULA (the
NVIDIA end user license agreement).

backprojection step. On average, it takes 7.39 seconds for the
backprojection step to update 5123 image from 360 views
in once iteration. This implies that for each view it spends
20.52ms and the GUPS is 6.09.

The recently released unified memory technique in CUDA
6.0 creates a pool of managed memory that is shared between
CPU and GPU. It bridges the CPU-GPU gap. This tech-
nique makes the programming convenient without consid-
ering the data transfer among devices. At the same time,
it simplifies the huge volumetric reconstruction when the
GPU device memory is insufficient. As the documentation
suggested, the raw projection data and the volume to be recon-
structed are both declared with key word ‘‘__managed__’’.
We implemented a miniature of the projection and back-
projection with unified memory technique. The performance
from one view with the same geometry configuration makes
us a little frustrating. Projecting a 5122 × 256 volume to
1024× 512 detector takes 214.312ms (22.5% of the time)
and backprojecting the same data costs 736.69ms (77.5% of
the time). It needs more complicated implementation details
to accelerate the performance which will be an extension of
our work.

Under the approval of the institutional review board of
Wake Forest University Health Sciences, a clinical patient

dataset is also reconstructed with the configuration in Table 1.
To fully utilize all the GPU resources in our device, three
GK104 chips including two Tesla K10s and one GeForce
GTX 670 are all occupied. This configuration can be
approximately viewed as cone-parallel geometry because the
divergence angle is small enough to be ignored and the pro-
jection data can be evenly distributed to three GPUs without
data redundancy. When only SART is used to reconstruct the
image volume, the total computational cost for 160 iterations
is 1268.46 seconds. This means 7.93 seconds are needed for
one iteration on average. On the other hand, if only one core is
applied in CPU implementation, 884.07 seconds are required
for one iteration. Therefore, GPU implementation can accel-
erates the reconstruction more than 110 times in this case.
The ordered subset technique is also applied to accelerate
the convergence. The projection is divided into 50 subsets
and each subset contains 44 views. Totally, 536.12 seconds
are required for 40 iterations which guarantee a promising
result as shown in Figure 4, and 13.40 seconds are needed for
one iteration. This is caused by the following reason: when
the subset number increases, although it can accelerate the
convergence with more projection and backprojection pro-
cesses to traverse all the projection views, it will slow down
the execution in one loop. The interior scan is simulated by
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FIGURE 5. Image volume reconstructed from a truncated data set by the
OS-SART plus TV regularization algorithm. The image matrix size is
52 × 512 × 64. (a)-(c) are the transverse, sagittal and coronal planes,
respectively. The display window is [−1000HU, 2500HU]. (d)-(e) are two
pseudo-color volumetric rendering in different observation positions,
which are generated by the NVIDIA CUDA SDK under the license EULA
(the NVIDIA end user license agreement).

truncating 43.7% of the clinical dataset as in Table 1. Because
only the interior part is illuminated due to the projection
truncation, the FOV is reduced to 2302mm2. The projection is
divided into 22 subsets for the OS-SART. The computational
cost is 161.203 seconds in total for 20 iterations. This means
that ∼2.5 minutes can give promising interior reconstruction
results as shown in Figure 5.

C. IMAGE QUALITY
First, the image quality of interior reconstruction is eval-
uated with a modified Shepp-Logan phantom in fan-beam
geometry. The iteration number is 30. Some representa-

tive interior reconstruction results are shown in Figure 6.
The images reconstructed by the OS-SART from few view
projections show serious artifacts inside the internal ROI.
The SD-based and STF-based TV minimizations have sim-
ilar performance after decades of iterations. The slight dif-
ferences between SD-based and STF-based TV minimiza-
tions can be seen from the reconstructions of highly sparse
views.
Another group of reconstruction comparison is based on

the clinical patient dataset. The sinogram for the central slice
in Figure 5 is extracted and uniformly downsampled from
2200 to 180 views. The iterations number is also 30. The inte-
rior parts of the reconstruction results are shown in Figure 7.
The RMSE (root-mean-square deviation) is calculated for the
ROI indicated by the red circle in Figure 7(a) to quantitatively
evaluate the image quality. While the RMSE of Figure 7(b) is
88.28HU, the RMSE of figure 7(c) is 79.81HU. The SSIM
(the structural similarity index) is calculated to evaluate the
similarity [52]. The SSIM for the STF-based OS-SART is
0.9140 while the SSIM for the SD-based OS-SART is 0.8723.
The two quantitative measurements show that the STF-
based OS-SART outperforms the SD-based OS-SART in this
study.
In cone-beam geometry, a 5123 single floating preci-

sion modified Shepp-Logan phantom is reconstructed from
72 views. The detector resolution is 6002 with the simula-
tion configuration summarized in Table 1. The reconstructed
results in transverse, sagittal and coronal planes are shown
in Figure 8. The SSIM on these three planes are 0.9587,
0.9850 and 0.9690, respectively in the STF-based reconstruc-
tion method. In the SD-based reconstruction method, the
corresponding SSIM values are 0.9279, 0.9226 and 0.9029,

FIGURE 6. Representative results reconstructed from truncated local projections for a modified Shepp- Logan
phantom after 30 iterations. Form left to right columns, the images are reconstructed form 17, 21, 72,180 and
360 projections, respectively. From top to bottom rows, the images are reconstructed by the OS-SART, OS-SART
plus steepest descent and OS-SART plus soft-threshold filtering for TV minimization, respectively. The display
window is [0, 1].
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FIGURE 7. Reconstructed results of a cardiac region from clinical projections. (a) is the reference image, (b) is
reconstructed by the SD-based TV minimization, and (c) is reconstructed by the STF-based TV minimization. For
(a) to (c), the display window is [−1000HU, 1800HU]. (d) and (e) are the corresponding difference images of (b)
and (c) related to (a), respectively, and the display window is [−2400HU,400HU ].

FIGURE 8. Representative results of the OS-SART with SD-based TV minimization (the top row images) and the
OS-SART with STF-based TV minimization (the bottom row images) in transverse (left column), sagittal (middle
column) and coronal (right column) views. The display window is [0,1]. The subfigures (a-1) and (d-1) are the
magnified parts of (a) and (d). (a-2) and (d-2) are the error images of (a-1) and (d-1) in reference to the original
phantom. It can be seen that the STF-based OS-SART can keep more fine details than the SD-based OS-SART.

respectively. Therefore, the STF-based reconstruction keeps
more fine structures in the volume and the residual errors are
smaller.

For the clinical patient dataset, it can be easily observed
from Figure 4 that the differences are really small between
the images reconstructed by the OS-SART and FBP algo-
rithm. Moreover, as shown in Figure 7, the STF-based TV
minimization provides better reconstruction result compared

to the SD-based TV minimization for interior tomogra-
phy. To validate the convergence of the STF-based OS-
SART algorithm, 50 views are uniformly sampled from
the sinogram of the central slice to reconstruct an image
of 2562. Figure 9 shows the reference and seven interme-
diate images with respect to different iteration numbers.
From images (b) to (h), the image quality improves grad-
ually with the increase of the iteration number. However,
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FIGURE 9. Interior reconstruction results from 50 projections after different iterations. The image size is
256 × 256. (a) is the reference image reconstructed by the FBP method from 2200 global projections. (b) to (h)
are the reconstructed images from 50 projections after 10, 20, 100, 200, 500, 1000 and 5000 iterations,
respectively.

FIGURE 10. Reconstruction error curve with respect to iterative number. The errors are computed in reference to
region marked by the red circle in image (a) in Fig. 9. Two subfigures inside the main figure are the local
amplifications of the main curve.

when the iterations number is sufficient large (e.g. 200), the
image quality becomes stable. From the convergence curve in
Figure 10, one can see that the reconstruction error (the sum
of pixel error squares) decreases rapidly in the first decades
of iterations, reaches the minimizer after 130 iterations,
then increases a little bit and finally becomes stable after
200 iterations.

V. CONCLUSION
The x-ray CT is one of the most important imaging modalities
for non-destructive diagnosis and image-guided intervention
despite the potential radiation risks. To reduce the radiation
dose, we have implemented the CS-based interior reconstruc-
tion in GPU for fan-beam and cone-beam reconstruction in

this paper. The TV regularization is adopted in our work by
incorporating the SD or STFmethods. These twomethods are
both implemented and compared. To test the reconstruction
performance, we performed several groups of experiments
with different reconstruction parameters from simulated and
real datasets in both fan-beam and cone-beam geometries.
The GPU parallel computing can be used to boost the

CS-based interior tomography for practical applications.
We implemented the CS-based interior tomography in GPU
devices for fast reconstruction. Our experimental results
show that the OS-SART with STF-based TV minimization
method runs slightly faster than the SD-based TV minimiza-
tion and reconstruct promising results in fan-beam geometry
using one GPU for acceleration. In the cone-beam geom-
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etry experiments, the STF-based method outperforms the
SD-based method for few-view projections. Comparing with
the CPU-based implementation in fan-beam geometry, the
speedup is higher when the views are smaller or the image
resolutions are larger in cone-beam case, and the reconstruc-
tion speedup with real data is obvious. Therefore, the GPU
parallelization is suitable for CS-based interior tomography
especially for large-scale volumetric reconstruction. By ana-
lyzing the timeline in cone-beam reconstruction, it is found
that the projection and backprojection operations dominate
the reconstruction cost in the STF-based method. In the near
future, we will optimize the implementation and investigate
other projection and backprojection models for possible high-
efficient GPU implementation to further reduce the com-
putational cost. Other regularization methods will also be
studied with implementations in GPU to further decrease
the number of views for interior reconstruction. The unified
memory technique will be studies to deal with the very large
volumetric reconstruction cases.

It is not surprising that the STF-based OS-SART outper-
forms the SD-based OS-SART. The SD-based TV minimiza-
tion requires tentatively choosing the parameters such as the
descent steps and the descent iteration numbers. It is more
likely to find the minimum solution with small steps while
the convergence is inferior and the descent iteration number
influences the reconstruction speed. On the other hand, the
deficiency of STF is its convergence rate. To accelerate the
convergence, it is necessary to choose the optimized thresh-
old which is related to dichotomy. The searches range from
several times to dozens of times. Actually, there are no too
much visual differences between the results reconstructed by
the SD-based OS-SART and the STF-based OS-SART. The
RMSE and SSIM show that the reconstruction results are
comparable with more iterations. For a clinical volumetric
reconstruction, several minutes should give promising inte-
rior reconstruction results in a realistic setting.
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