
RESEARCH ARTICLE

OM-FBA: Integrate Transcriptomics Data
with Flux Balance Analysis to Decipher the
Cell Metabolism
Weihua Guo, Xueyang Feng*

Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, United States of America

* xueyang@vt.edu

Abstract
Constraint-based metabolic modeling such as flux balance analysis (FBA) has been widely

used to simulate cell metabolism. Thanks to its simplicity and flexibility, numerous algo-

rithms have been developed based on FBA and successfully predicted the phenotypes of

various biological systems. However, their phenotype predictions may not always be accu-

rate in FBA because of using the objective function that is assumed for cell metabolism. To

overcome this challenge, we have developed a novel computational framework, namely

omFBA, to integrate multi-omics data (e.g. transcriptomics) into FBA to obtain omics-guided

objective functions with high accuracy. In general, we first collected transcriptomics data

and phenotype data from published database (e.g. GEO database) for different microorgan-

isms such as Saccharomyces cerevisiae. We then developed a “Phenotype Match” algo-

rithm to derive an objective function for FBA that could lead to the most accurate estimation

of the known phenotype (e.g. ethanol yield). The derived objective function was next corre-

lated with the transcriptomics data via regression analysis to generate the omics-guided

objective function, which was next used to accurately simulate cell metabolism at unknown

conditions. We have applied omFBA in studying sugar metabolism of S. cerevisiae and

found that the ethanol yield could be accurately predicted in most of the cases tested

(>80%) by using transcriptomics data alone, and revealed valuable metabolic insights such

as the dynamics of flux ratios. Overall, omFBA presents a novel platform to potentially inte-

grate multi-omics data simultaneously and could be incorporated with other FBA-derived

tools by replacing the arbitrary objective function with the omics-guided objective functions.

Introduction
Cell metabolism is regulated over multiple levels with the participation of various types of cell
components[1], e.g., gene expression via transcription process and the protein synthesis via
translation and post-translational modification (Fig 1), which mystifies genotype-phenotype
correlations. Since the phenotype is the net result of these interactions, it is immensely
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important to unveil the different cell components and their interactions, not only for an inte-
grated understanding of physiology, but also for the practical applications of biological systems
as cell factories[2–4]. High-throughput omics data provides quantitative readouts of these cell
components, including the cell’s DNA sequence (i.e., genomics[5, 6]), mRNA expression (i.e.,
transcriptomics[7]), metabolite abundance (i.e., metabolomics[8, 9]), protein composition (i.e.,
proteomics[10–12]), and in vivo enzyme activities (i.e., fluxomics[13, 14]). This valuable bio-
logical information enables the identification and quantification of individual components of a
biological system, and we are now facing the challenge of understanding the interactions
among these components[1, 15] by appropriately analyzing and interpreting the omics data.

Metabolic modeling is the computational approach widely used for modeling complex met-
abolic networks and predicting cell phenotype based on the stoichiometric constraints of meta-
bolic reactions. One of the most commonly used approaches is flux balance analysis (FBA)
[16], in which a genome-scale metabolic model is supplied in the form of a stoichiometric
matrix that conveys the molecularity of each metabolite in each reaction. This is then followed
by the identification of an arbitrary objective function to optimize, due to the underdetermined
FBA system. Since the early 1990s, FBA has been widely used to simulate cell phenotypes with
tremendous success because of its genome-scale estimation and fast computation speed [16–
18]. However, the arbitrary objective function remains problematic and sometimes leads to
inaccurate phenotype predictions [16, 19]. To integrate the FBA approach with the omics data,
several FBA-derived algorithms have been developed for phenotype prediction with one or two
types of omics data. These algorithms can be broadly classified into two categories [20, 21]: 1)
the switch approach (e.g., GIMME[22] and iMAT[23]), which turns reaction fluxes on or off

Fig 1. Complex interactions of various components in cell metabolism.Multi-omics data has provided the quantitative readouts of these components,
which helps us to elucidate the interactions among the multi-layer regulations.

doi:10.1371/journal.pone.0154188.g001
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based on threshold gene expression levels, and 2) the valve approach (e.g., E-Flux[24] and
PROM[25]), which regulates reaction fluxes based on relative gene/protein expressions. One of
the fundamental limitations for all of these approaches is that all make the underlying assump-
tion that gene transcription is linearly correlated with the flux of the reactions that they encode
[26]. This correlation has been found to be inaccurate by many physiological studies of cells
[21, 27, 28]. In addition, most of these algorithms can integrate transcriptomics only or tran-
scriptomics and proteomics only [27, 29]. To our best knowledge, no algorithm can simulta-
neously integrate multi-omics data for phenotype prediction so far. Therefore, to intently
overcome the ill-defined assumptions of the genotype-phenotype correlation and to potentially
integrate multi-omics data for phenotype prediction, we develop a novel FBA-derived algo-
rithm, omFBA, to correlate the genotype, e.g., transcriptomics data, with the phenotype, e.g.,
growth rate and product yields, by using an omics-guided objective function.

In general, we implemented a proof-of-concept study for this novel algorithm, omFBA, to
accurately predict the phenotype of a model eukaryotic microorganism, Saccharomyces cerevi-
siae, by integrating the transcriptomics data with FBA via the omics-guided objective function
(Fig 2). We first collected the transcriptomics data, i.e., exponential fold changes of gene
expression levels, and the corresponding phenotype data, i.e., ethanol yields, from the GEO
database and previous publication [30]. We randomly separated the datasets into two equal
parts: one part was used to develop the omics-guided objective function; and the other part was
used to validate the omics-guided objective function by applying the transcriptomics data to
predict cell phenotypes and comparing them with the observed phenotypes. We found that
omFBA accurately predicted the ethanol yields in most of the cases tested (>80%) and pro-
vided valuable insights of yeast metabolism such as the key flux ratios that were consistent with
previous 13C-MFA studies [31–33]. In sum, the novel algorithm we developed in this study,
omFBA, could accurately predict cell phenotypes, and more importantly, provide in-depth
understanding of the interactions between transcriptomics and phenotypes, which could be
extended for various cell components to help achieve better understanding of cell metabolism.

Results

Overview of omFBA algorithm
To develop and validate omFBA algorithm as a novel approach to integrate transcriptomics
data with FBA via omics-guided objective function, we have designed a computational plat-
form with four modules: 1) transcriptomics-phenotype data collection, 2) “phenotype match”
algorithm, 3) omics-guided objective function in FBA, and 4) phenotype data validation. In
brief, in Module 1, we collected the transcriptomics-phenotype correlated data from a pub-
lished study[30], curated the data based on p-value, smoothed the data, and randomly sepa-
rated all the datasets into two equal parts, i.e., training and validation datasets, for the
development and validation of omFBA algorithm, respectively. In Module 2, we developed the
“phenotype match” algorithm by first using a dual objective function, with unknown weighting
factors assigned to minimizing overall enzyme usage and maximizing ethanol yield, to simulate
the cell phenotype; then searched for the “phenotype matched” weighting factors that could
lead to the best fitting of cell phenotypes in the training datasets; and finally, quantitatively cor-
related these “phenotype matched” weighting factors with the transcriptomics data from the
training datasets via multivariate regression. Next in Module 3, we applied such empirical cor-
relation between the transcriptomics data and the “phenotype matched” weighting factors in
the dual objective function in FBA, together with the transcriptomics data from validation
datasets, to derive the omics-guided objective function. We then used this omics-guided objec-
tive function in the genome-scale metabolic model of S. cerevisiae to predict the ethanol yields
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and to provide in-depth biological insights, e.g., key flux ratios. In Module 4, we compared our
predicted ethanol yields that were derived from transcriptomics data with the observed ones in
the validation datasets for evaluation of the prediction accuracy of omFBA algorithm. We also
validated the biological insights implicated by the omFBA algorithm by comparing them with
the experimental discoveries from 13C-metabolic flux analysis (13C-MFA). To ensure our algo-
rithm is statistically reliable, we have repeated the Module 1~4 for 40 times by randomly
assigning different training and validation datasets. The detailed development of each module
was shown in the following sections.

Module 1: transcriptomics-phenotype data collection
We have collected the transcriptomics-phenotype correlated data from a published study[30],
in which Ronen and Botstein studied transcriptomics responses of S. cerevisiae for the substrate
shift from the unfavorable galactose to favorable glucose at low and high concentrations (i.e.,
0.2 g/L and 2g/L, respectively) at different time points. The transcriptomics responses were
measured by microarray and represented by the fold changes of gene expression levels of all
the detectable genes (>6300 genes) after the substrate shift. We collected all these data from
the GEO database (GSE4158) as the “big” gene pool for omFBA algorithm by running the
GEO2R web tool [34]. Comparing to this “big” gene pool, a “small” gene pool was also defined
by Ronen and Botstein [30], who selected a small set of genes that could play deciding roles in
determining the yeast metabolic responses to substrate shift. We also extracted transcriptomics
data of the same genes from the paper as the “small” gene pool to implement the omFBA algo-
rithm for evaluating the impacts of transcriptomics data on the omFBA algorithm. The

Fig 2. Scheme of omFBA algorithm. Four modules are designed to implement omFBA algorithm: 1) transcriptomic-phenotype data collection (Step 1~2), 2)
“phenotype match” algorithm (Step 3~5), 3) omics-guided objective function in FBA (Step 6~7), and 4) phenotype data validation (Step 8).

doi:10.1371/journal.pone.0154188.g002

Omics-Integrated FBA

PLOSONE | DOI:10.1371/journal.pone.0154188 April 21, 2016 4 / 20



glucose-based ethanol yields were selected as phenotype in this study, since no other phenotype
but ethanol yield was provided in the experimental data (S2 Table).

The p-values of all transcriptomics data were also collected to reflect the data quality. To fil-
ter the low-quality data, we selected the cutoff p-value as 0.95, the same cutoff value used in the
published paper [30]. That is to say, we only used the genes that had differentiated expression
level with p<0.95 to develop omFBA. The corresponding phenotype data, i.e., ethanol yields,
was collected and calculated from the Fig 1 of the published paper, which showed the fermenta-
tion profiles after the substrate shift. We found only 8 time points were available with p-value-
filtered transcriptomics data and the corresponding phenotype data, which captured the
dynamics of transcriptional responses and phenotype changes but were not enough for devel-
oping omFBA algorithm. We have used a prebuilt function namely ‘csaps’ in MATLAB to
smooth the kinetic profile of gene expression data and phenotype data, based on the raw data
of gene expression and phenotype at the 8 time points. In general, we used cubic smoothing
spline to provide a smoothed curve with 1000 points to capture the shape of the temporal gene
expression and phenotype. In this case, we could overcome the limitation of lacking gene
expression data for training our OM-FBA algorithm while still maintaining the high fidelity of
the kinetic profile of gene expression and phenotype. We randomly chose 500 datasets as the
training datasets while the remaining 500 datasets were used for model validation.

Module 2: “phenotype match” algorithm
Using the training datasets developed in Module 1, we developed the “phenotype match”
algorithm as a bi-level FBA algorithm to find the optimal objective function that leads to
accurate simulations of the observed phenotypes. To achieve this, we first selected a dual
objective function that included two items: minimizing overall enzyme usage (i.e., min

P
v2i )

and maximizing ethanol yield (i.e., max vEtOH), indicating the trade-off between the overall
enzyme activities and the ethanol production. The similar dual objective function was previ-
ously applied to successfully predict growth kinetics of Shewanella oneidensis [35]. The
weighting factors of these two items were unknown. However, by fine-tuning the weighting
factors, we could match the phenotype predicted by FBA with the observed phenotype very
well. As shown in Fig 3, a good fitting was observed from the carbon metabolism shift in both
low and high glucose conditions, which proved that it is feasible for the “phenotype match”
algorithm to find the suitable objective functions in FBA. In addition, we correlated the
observed ethanol yields with the phenotype-matched weighting factors in front of minimiz-
ing overall enzyme usage for both low and high glucose conditions, and found that a negative
correlation was discovered between the weighting factors and ethanol yields. In general,
when the weighting factor of minimizing overall enzyme usage increased, the ethanol pro-
duction decreased, which was consistent with trade-off between the overall enzyme activities
and the ethanol production. We found the fluxes towards biomass formation were zero when
using the bi-level optimization for minimizing enzyme usage and maximizing ethanol pro-
duction. This is consistent with the experimental data since no significant change was found
in cell number and size (10%) during the glucose pulse experiments [30]. In comparison, we
have also implemented the FBA by applying two commonly used objective functions: maxi-
mizing the growth rate, and maximizing the ethanol yield (S1 Fig). The simulated ethanol
yield was 0.11 g ethanol/g glucose when maximizing the growth rate, which underestimated
the ethanol production in the real experiments. The simulated ethanol yield was 0.51 g etha-
nol/g glucose when maximizing the ethanol yield, which overestimated the ethanol produc-
tion in the real experiments.
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With this appropriately selected dual-objective function and the phenotype-matched
weighting factors, we next calculated the correlation coefficients between these weighting fac-
tors and the transcriptomics data for each gene in both the “big pool” and the “small pool”,
respectively. We ranked all of the genes based on the correlation coefficients, and picked the
top 3 genes with the highest absolute values of the correlation coefficients as the genetic mark-
ers (Fig 4). We then applied the multiple linear regression approach to quantitatively correlate
the phenotype-matched weighting factors and the expression levels of the genetic markers. The
regression equation, which represents the quantitative correlation of the transcriptomics and
the phenotype, was calculated and used next in Module 3 to derive the omics-guided objective
function.

Fig 3. “Phenotypematch” algorithm for low and high glucose conditions. The simulated and observed ethanol yields matched well for low (A) and high
(B) glucose conditions, respectively. Negative correlations between the weighting factors of minimizing the overall enzyme usage and the observed ethanol
yield were found for low (C) and high (D) glucose conditions.

doi:10.1371/journal.pone.0154188.g003
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Module 3 and 4: application and validation of omics-guided objective
function
With the regression equation derived in Module 2 to connect the expression levels of the
genetic markers and the weighting factors used in the dual objective function of FBA, we could
use the transcriptomics data in the validation datasets to derive the so-called “omics-guided
objective function” for phenotype prediction. In general, we collected the expression levels of
the genetic markers in each of the validation datasets, applied the regression equation to derive
the weighting factors for the dual objective function, and then used the dual objective function
in a well-established genome-scale metabolic model, iND750 [36, 37], to predict the ethanol
yields.

We derived the omics-guided objective function for both the “big pool” and “small pool” of
genes, respectively, in both low and high glucose conditions. For each of the 500 validation
datasets, we checked the predicted ethanol yield and the observed ones. As mentioned previ-
ously, we randomly assigned the 1000 datasets into 500 training datasets and 500 validation
datasets, and repeated this procedure for 40 times to make sure our predictions were

Fig 4. Correlation between phenotype-matched weighting factors and gene expressions. The absolute values of the correlation coefficients in one of
the training datasets were ranked from high to low (only the top 30 genes were shown here). The top 3 genes were chosen as the genetic markers to derive
the omics-guided objective function (blue bars).

doi:10.1371/journal.pone.0154188.g004
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statistically reliable. As shown in Fig 5, we found that for all of the 40 rounds of predictions, we
could obtain 80~85% (Fig 5C) and 47~63% (Fig 5D) match (i.e.,<5% difference) between the
predicted and observed ethanol yields when using the “big pool” of genes for deriving the
omics-guided objective function to simulate glucose metabolism at low and high concentra-
tions, respectively. When using the “small pool” of genes, 67~77% (Fig 5C) and 20~25% (Fig
5D) match (i.e.,<5% difference) between the predicted and observed ethanol yields were
observed for glucose metabolism at low and high concentrations, respectively. In addition, we
also plotted the raw data of ethanol yields (i.e., the 8 datasets that were originally collected
from Ronen and Botstein ‘s work) versus the predicted ones in low (Fig 5A) and high (Fig 5B)
glucose conditions and found that using either “big pool” or “small pool” of genes could lead to
good fittings (R2>0.80). It is also worth noting that the prediction accuracy for the low and
high glucose condition was different. While at least 65% match with the experimental data
could be achieved at low glucose condition, only 60% match at best could be achieved at high
glucose condition. We have examined the reason for the difference of the prediction between
low and high concentration data. We found that at the low glucose condition, ~10% of the
genes had strong correlations with phenotype-matched weighting factors with the absolute
value of the correlation coefficient> 0.9 (S2 Fig). However, at the high glucose condition,<1%
of the genes had strong correlations with phenotype-matched weighting factors with the abso-
lute value of the correlation coefficient> 0.9. Therefore, the poor correlation between gene
expression and the phenotype-matched weighting factors could account for the lower match at
the high glucose condition.

Since the accuracy of omFBA was not satisfactory (<60% matches) when using “small pool”
of genes to predict yeast metabolism in low and high glucose condition, we next tried to investi-
gate the factors that could affect the omFBA prediction. One factor that could potentially affect
the omFBA prediction is the noisy gene expressions, which is notoriously known by biologists
for decades [38–41]. To examine the impact of the variability of transcriptomics data on the
omFBA algorithm, we chose three different cutoff p-values, i.e., 0.05, 0.67, and 0.95, to repre-
sent different variability levels of the transcriptomics data for the genes in the “small pool”. By
filtering the transcriptomics data using the selected cutoff p-values, we re-ran omFBA for 40
times and compared the prediction accuracy in p = 0.05, 0.67 and 0.95, respectively. As shown
in Fig 6, the prediction accuracy for ethanol yields under both low and high glucose conditions
dramatically increased when we chose a smaller cutoff p-value, with>60% ethanol yields in
the validation datasets could be well matched (<5% difference) with the observed ethanol
yields at p = 0.05. This clearly suggested that the quality of transcriptomics data could be a
deciding factor for accurate prediction of cell metabolism when using omFBA. With the break-
throughs in high-throughput, high-accuracy analytical methods for omics analysis, we envision
the demand for high-quality omics data would be well met in very near future.

Overall, omFBA could predict the ethanol yields solely from the transcriptomics data via
the development of “omics-guided objective function”. It is interesting to notice that using “big
pool” of genes led to much better accuracy than using “small pool” of genes, indicating that
there were still many unknown regulons in S. cerevisiae that played pivotal roles in controlling
yeast metabolism but have not yet been fully studied. In addition to the accurate predictions of
the phenotypes, omFBA could also provide valuable biological insights, e.g., dynamics of flux
ratios, to unravel the intracellular metabolic rewiring. Here in this study, we selected and calcu-
lated four key flux ratios, namely PGI/G6PDH2, FBA/TKT1, ENO/PPCK, and PYK/PDC,
which controlled the flux distribution in the central metabolism (Fig 7). To study the key meta-
bolic responses to the substrate shift in S. cerevisiae, we have correlated these key flux ratios
with the “phenotype matched” weighting factors, observed ethanol yields, and the ratios of cor-
responding gene expressions. We found clear trends between the key flux ratio and the ethanol
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production. In general, when the ethanol production was increased, the ratios of glycolysis to
the pentose phosphate pathways were decreased, while the ratios of glycolysis to the futile cycle
and the fermentation pathway were increased. Such observations were consistent with the pre-
vious 13C-MFA studies on yeast metabolism [32, 33, 42] (Table 1). However, no correlations
between the flux ratios and gene expression ratios were observed for either low or high glucose
concentration. Such poor correlation between gene expression and metabolic fluxes has been
proved by previous reports [31], and emphasized the merit of developing novel algorithm like
omFBA that does not rely on the assumption of correlated gene expression and metabolic
fluxes. Since the growth rates from 13C-MFA studies were not exactly the same as what we
observed in this study because of the different experimental set-up, e.g., culture mode (batch
culture or chemostate) and growth condition (medium, sugar concentration), we did not
directly compare the growth rate between our studies and the 13C-MFA studies.

Fig 5. Prediction accuracy of omFBA algorithm.Direct comparison of the predicted and observed ethanol yields in low (A) and high (B) glucose
conditions. The omFBA algorithm was repeated for 40 times and the percentage of matched predictions of omFBA algorithm were calculated and ranked for
low (C) and high (D) glucose conditions.

doi:10.1371/journal.pone.0154188.g005
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Discussion

Comparison between omFBA algorithm and the “Big Data” regression
approach
With the abundance of transcriptomics-phenotype datasets, a natural question one may ask is
how good (or bad) is omFBA when compared to regression approach using the “big data”. In
brief, we could also design an algorithm using the “big data” to directly correlate the ethanol
yields and the transcriptomics data in the training datasets and apply the regression equation
to predict the ethanol yields solely from the transcriptomics data in the validation datasets,
similarly as we did for omFBA. In fact, we have implemented such “Big Data” regression
approach (S1 Dataset and S3 Fig) and found that the ethanol yields could indeed be accurately
predicted (e.g., 82–90% matches when using “big pool” of genes in low glucose concentration,
and 80–85% matches when using “big pool” of genes in high glucose concentration, S4 Fig).
Comparing omFBA to the “Big Data” regression approach, we found that the prediction accu-
racy of omFBA was similarly good. When comparing the genetic markers used by omFBA and

Fig 6. Effect of cutoff p-value on omFBA prediction using “small pool” of genes. Three cutoff p-values, i.e., 0.05, 0.67, and 0.95, were used to filter the
transcriptomics data. For each cutoff p-value, we re-ran the omFBA algorithm for 40 times and calculated the percentage of matches between the predicted
and the observed ethanol yields in the validation datasets.

doi:10.1371/journal.pone.0154188.g006
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the “Big Data” regression approach (S1 Table), we indeed found some genes were used as the
genetic markers in both approaches (S5 Fig), which could explain the good fittings generated
from both approaches. However, one distinct advantage of omFBA compared to “Big Data”
approach is the capability to provide valuable and reliable biological insights, such as the

Fig 7. Key flux ratio analysis. Four key flux ratios (PGI/G6PDH2, FBA/TKT1, ENO/PPCK, and PYK/PDC) were selected to be correlated with phenotype-
matched weighting factors, observed ethanol yields, and the ratios of the corresponding gene expression levels for low and high glucose condition. All the
values of the ratios were exponential. Abbreviations: PGI, glucose-6-phosphate isomerase; G6PDH2, glucose 6-phosphate dehydrogenase; FBA, fructose-
bisphosphate aldolase; TKT1, transketolase; ENO, enolase; PPCK, phosphoenolpyruvate carboxykinase; PYK, pyruvate kinase; PYRDC, pyruvate
decarboxylase.

doi:10.1371/journal.pone.0154188.g007

Table 1. Key flux ratios compared with previous studies using 13Cmetabolic flux analysis.

Flux ratioa Correlation with increased ethanol yields Corresponding genes Correlation with gene expression ratios

omFBA Previous studies [32, 33, 42] omFBA Previous studies[31]

PGI/G6PDH2 Positive Positive YBR196C/YNL241C No correlationb No correlation

FBA/TKT1 Positive Positive YKL060C/YPR074C No correlation No correlation

ENO/PPCK Negative Negative YGR254W/YKR097W No correlation No correlation

PYK/PYRDC Negative Negative YAL038W/YLR044C No correlation No correlation

PGI, glucose-6-phosphate isomerase; G6PDH2, glucose 6-phosphate dehydrogenase; FBA, fructose-bisphosphate aldolase; TKT1, transketolase; ENO,

enolase; PPCK, phosphoenolpyruvate carboxykinase; PYK, pyruvate kinase; PYRDC, pyruvate decarboxylase.
aAll the abbreviations were from the iND750 model.
bNo correlation was defined as the cases in which the correlation coefficient (absolute value) was smaller than 0.2.

doi:10.1371/journal.pone.0154188.t001
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dynamics of flux ratios as shown in Fig 7. Rather than simply fitting the cell phenotypes,
omFBA also provides a way to investigate the complex gene-flux-phenotype cross talking by
developing the omics-guided objective functions. Such information is particularly useful since
it could decipher the interactions of various cell components and rationally guides the meta-
bolic engineering of organisms.

In this study, we chose the top 3 genes whose expression levels were most correlated with
the phenotype-matched weighting factors as our important factors. Because little is known
about how exactly the genetic markers influenced the phenotype-matched weighting factors, it
is possible that some genetic markers, which played important roles in affecting phenotype-
matched weighting factors but had expression levels not well correlated with the phenotype-
matched weighting factors, could be left out (i.e., omitted-variable bias). However, we would
like to emphasize that purpose of this proof-of-concept study is not to develop a “perfect”
model to completely decipher the mechanism of how gene expression and cell phenotype are
linked. Instead, this study offered a novel route to explore the possibility of using transcrip-
tomics data to predict some of the metabolic behaviors (e.g., ethanol production).

Prerequisites of omFBA algorithm
It is worth noting that one of the prerequisites for developing omFBA algorithm is the abun-
dant, curated, and correlated omics-phenotype datasets, which, unfortunately, are not often
available. Currently, many of the database constructed only collected one type of omics data,
e.g., Gene Expression Omnibus (GEO)[34, 43–45], the European Bioinformatics Institute
(EBI)[46, 47], and Many Microbe Microarrays Database (M3D)[48] for collecting gene expres-
sion data; and from the Proteomics DB[49] for collecting proteomics data. Although thousands
of datasets are enabled for users to query for omics analysis (e.g., transcriptomics analysis),
these datasets cannot provide the details about the phenotype such as cell growth rate, and
hence, have limited applications in elucidating the correlations between transcriptomics and
phenotype of microorganisms. To overcome this challenge, we have done some preliminary
studies to construct the correlated omics-phenotype database, namely integrated Transcrip-
tomic And Phenotype (iTAP) database [50], to collect the transcriptomics-phenotype corre-
lated data. Despite the fact that the phenotype data was never reported in a standardized
format and the curation of correlated transcriptomics–phenotype datasets was extremely
tedious and time-consuming, till now, we have successfully correlated 57 and 143 datasets of
transcriptomics and phenotype for E. coli and S. cerevisiae, respectively. As the first of its kind,
the iTAP database was suitable for omFBA to provide sufficient data and allow the direct phe-
notype prediction from the transcriptomics analysis. We are planning to use more datasets
from the iTAP database that we constructed to apply omFBA. However, one challenge in
extending omFBA to other studies is the incompleteness of the meta-data. Basically, when we
constructed the iTAP database, we found that many of the studies only reported the data that
was most interested to the authors, e.g., growth rates alone, and left out the rest of the valuable
information such as glucose consumption rates and ethanol production rates. The paper pub-
lished by Ronen and Botstein was so far the most complete meta-data we could find. Therefore,
we used this database to prove the concept of omFBA. It is also worth mentioning that while
only transcriptomics data was used in this study, the platform of omFBA can be easily extended
to include all types of omics data because of using the regression analysis to derived omics-
guided objective function. For example, when using the multi-omics datasets (e.g., transcrip-
tomics, proteomics, metabolomics datasets), we can follow the similar flowchart of omFBA in
this study to rank the top cell components, e.g., gene expression, protein synthesis, metabolite
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concentration, that are highly correlated with the weighing factors in the “phenotype matched”
objective function, and then used such connection to simulate cell phenotypes.

In summary, we have developed a novel FBA-derived algorithm, omFBA, to integrate the
transcriptomics data into FBA via the omics-guided objective function for the accurate predic-
tion of phenotypes and the in-depth simulation of biological insights. Compared to the “Big
Data” regression approach, omFBA could achieve the similarly good predication but is supe-
rior in uncovering novel biological insights such as dynamics of metabolic flux ratios. The
quality of transcriptomics data was found to be an important factor that affected the omFBA
prediction. Although the transcriptomics-phenotype correlated datasets required by omFBA
are still limiting, we envision that such challenge could be overcome by efforts such as the con-
struction of iTAP database. With the correlated omics-phenotype data, omFBA algorithm
could be a powerful approach to link genotype and phenotype and unravel the mysteries of
cell metabolism.

Methods and Models

Transcriptomics and phenotype data collection
To develop the omFBA algorithm, we have selected a published paper with the transcrip-
tomics-phenotype correlated data [30]. In the paper, Ronen and Botstein studied transcrip-
tomics responses (i.e., the fold changes of gene expression levels) of S. cerevisiae at different
time points after the shift of the substrates in chemostat, namely, from the unfavorable galac-
tose to favorable glucose in low and high concentrations (i.e., 0.2 g/L and 2 g/L, respectively).

The transcriptomics data, i.e., the exponential fold changes of gene expression levels with p-
values, was obtained by running the GEO2R web tool [34] with the control group set as T = 0 h
(i.e., the starting time for the substrate shift). These transcriptomics data for all the time points
have been collected as the “big” gene pool for the development of omFBA. In addition, the
transcriptional analysis by Ronen and Botstein [30] indicated that a small set of genes could
play deciding roles in determining the yeast metabolic responses to substrate shift. Therefore,
we also extracted transcriptomics data of the same genes from the paper as a “small” gene pool,
which could examine the impact of the pool size of the transcriptomics data on the omFBA.
The p-value of the transcriptomics data tested the statistical significance level of the fold
changes and was used to quantify the data quality. In the original published paper, the author
selected 0.95 as the p-value cutoff value to remove the low-quality data [30]. To develop the
omFBA algorithm, we followed the same cutoff value to filter the transcriptomics data in low
quality by ignoring this gene in the database.

The phenotype data, i.e., ethanol yield (w/w), has been calculated based on the glucose and
ethanol concentrations for the whole time courses, i.e., from 0 to 240 minutes, extracted from
figures of the original paper. We have ignored the time points in the stationary phase of both
low and high concentration datasets during the development of omFBA algorithm.

After removing the time points in stationary phase, we found only 8 time points were avail-
able with p-value-filtered transcriptomics data and recalculated phenotype data, which cap-
tured the dynamics of transcriptional responses and phenotype changes but were not enough
for developing omFBA algorithm. We then smoothed both transcriptomics and phenotype
data at a linear space including 1000 points by using the prebuilt function, i.e., “csaps”, in
MATLAB (Step 2, Fig 2). Based on these 1000 points, we randomly selected 500 points as the
training dataset for the development of omFBA algorithm. The other 500 points have been
used to validate and evaluate the omFBA algorithm.

Omics-Integrated FBA

PLOSONE | DOI:10.1371/journal.pone.0154188 April 21, 2016 13 / 20



Phenotype match algorithm
We developed the “phenotype match” algorithm to fine-tune FBA for accurate prediction of
the phenotype data with a selected dual objective function in a bi-level FBA algorithm. The
dual objective function includes two items: minimizing the overall enzyme usage and maximiz-
ing the ethanol yield, which reflects the trade-off between the overall enzyme activities and the
ethanol production. The following mathematical equation was used to represent the dual
objective function:

mincj
X

v2i � ð1� cjÞvEtOH ð1Þ

where, vi was all the fluxes in the genome-scale metabolic model; vEtOH was the flux of the etha-
nol exchange; cj was the phenotype-matched weighting factor for data point j of training data-
set. This dual-objective function has been applied to a bi-level FBA algorithm as the inner
objective function:

min ðYsim;j � Yobs;jÞ2

s:t:

mincj �
P

v2i � ð1� cjÞ � vEtOH
s:t:

S � v ¼ 0

lb � vi � ub

2
66666664

3
77777775

0 � cj � 1

ð2Þ

where, Ysim,j and Ysim,j were the simulated and observed ethanol yields (w/w) from inner FBA
problem and training dataset, respectively. The outer objective function in this algorithm was
minimizing the variance between the simulated ethanol yields and the observed ethanol yields
from the training dataset by tuning the weighting factor of the dual-objective function. The
stoichiometric matrix and boundary conditions were derived from the BiGG database [37],
iND750[36], a genome-scale metabolic model of S. cerevisiae. To evaluate whether or not dif-
ferent metabolic models would affect the phenotype-matched weighting factors, we chose
another genome-scale metabolic model of S. cerevisiae (iMM904 [51]), and re-ran our pheno-
type-match algorithm. We found that the weighting factors derived from the original model
(i.e., iND750) and the new model (i.e., iMM904) were highly correlated (S6 Fig), with R2>0.99.
Also, both model used almost the same gene-protein-pathway mapping. Therefore, we con-
cluded that the network reconstruction would not significantly, if not at all, affect the omFBA.
The inner FBA problem, as a quadratic optimization problem, was solved by the prebuilt
solver, “quadprog”, in MATLAB. The outer optimization problem was solved by the “grid
search” algorithm by using an in-house MATLAB algorithm with step-wise search in a range
of the weighting factor ([0, 1.00]) with 10−4 for each step.

Next, we calculated the correlation coefficients between the phenotype-matched weighting
factors and the transcriptomics data for each gene. We selected the top 3 genes with the highest
absolute values of correlation coefficients as the genetic markers. To prevent over-fitting the
data, we applied F-test (one-tail with cutoff p-value = 0.10) [52] to determine if we should
accept (or reject) a new genetic marker in the linear regression model that used the “genetic
markers” to fit phenotype-matched weighting factors. We found that when using top 3 instead
of top 2 “genetic markers” in the linear regression model, the fitting became significantly
improved, e.g., p-value was 0.09 (< cutoff p-value) for low concentration glucose condition
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using big gene pool. In other word, the introduction of the top 3 “genetic markers” was neces-
sary to improve the model fitting and the data was not over-fitted.

We then quantitatively correlated the phenotype-matched weighting factors and the expres-
sion levels of the genetic markers using the multiple linear regression approach in MATLAB
(“regress” command), which was shown in eq 3:

c1

..

.

cj

..

.

c500

2
6666666664

3
7777777775
¼

G#1
t1 G#2

t1 G#3
t1 1

..

. ..
. ..

. ..
.

G#1
tj G#2

tj G#3
tj 1

..

. ..
. ..

. ..
.

G#1
t500 G#2

t500 G#3
t5001 1

2
6666666664

3
7777777775

a1

a2

a3

b

2
66664

3
77775 ð3Þ

where, cj was the phenotype-matched weighting factors of training dataset j; G#1
tj ; G

#2
tj ; G

#3
tj

were the expression levels of the three genetic markers in training dataset j, respectively; and
a1, a2, a3, b were the regression coefficients for the genetic markers and the linear part,
respectively.

Omics-guided objective function in FBA
With the regression equation derived from the “phenotype match” algorithm, we then used the
transcriptomics data from the validation datasets to derive the omics-guided weighting factors:

com1

..

.

comj

..

.

com500

2
66666666664

3
77777777775
¼

G#1
v1 G#2

v1 G#3
v1 1

..

. ..
. ..

. ..
.

G#1
vj G#2

vj G#3
vj 1

..

. ..
. ..

. ..
.

G#1
v500 G#2

v500 G#3
v500 1

2
6666666664

3
7777777775

a1

a2

a3

b

2
66664

3
77775 ð4Þ

where cj
om was the simulated omics-guided weighting factors of dataset j; G#1

vj ; G
#2
vj ; G

#3
vj were

the transcriptomics data of three genetic markers, respectively, of dataset j from the validation
dataset; and a1, a2, a3, b were the regression coefficients for the genetic markers and the linear
part, respectively, which were determined in the “phenotype match” algorithm.

We then input these simulated omics-guided weighting factors into the dual-objective func-
tion to set up the omics-guided objective functions in a genome-scale metabolic model of S. cer-
evisiae, iND750:

mincomj �
X

v2i � ð1� comj Þ � vEtOH ð5Þ

s:t:

S � v ¼ 0

lb � vi � ub

2
6664

3
7775

comj determined

ð6Þ

The ethanol yields could be predicted by solving this problem via the same quadratic solver,
“quadprog”, in MATLAB. The flux ratios PGI/ZWF1, FBA/TKL, ENO/PCK, and PYK/PDC,
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were calculated to represent the key metabolic responses, i.e., glycolysis to oxidative pentose
phosphate pathway (PP pathway), reductive PP pathway, futile cycle, and the fermentation
pathway, respectively, in yeast metabolism. The variances of fluxes were obtained by flux vari-
ance analysis. The calculation of the variances of flux ratios were following the formula to cal-
culate the combinational standard deviation [53].

R ¼ F1

F2

;
SDR

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSDF1

F1

Þ2 þ SDF2

F2

� �2
s

ð7Þ

where, R is the key flux ratio, F1 and F2 are the flux values, SD is the standard deviation of the
flux.

Comparison of prediction accuracies and genetic markers of big data
and omFBA algorithm
To evaluate the prediction accuracy of omFBA algorithm, we have compared the predicted eth-
anol yields to the observed ones from the validation dataset. We considered a prediction as a
“matched” prediction if the relative error (er) between the predicted and the observed ethanol
yield was smaller 5%, as shown below:

er ¼
Ypred;j � Yobs;vj

Yobs;vj

�����
������ 100% � 5% ð8Þ

where, Ypred,vj and Yobs,vj are the predicted and observed ethanol yields (w/w) from the
omFBA, respectively.

Supporting Information
S1 Dataset. MATLAB codes and input data to implement the omFBA and big data
approaches.
(ZIP)

S1 Fig. Comparison of FBA prediction using dual objective function and the commonly
used objective function.
(TIF)

S2 Fig. Correlation coefficient (absolute value) between gene expression and phenotype-
matched weighting factors at low glucose condition and high glucose condition.
(TIF)

S3 Fig. Scheme for “Big Data” approach. In general, we directly correlated the transcrip-
tomics and the phenotype data from the training dataset using regression analysis. Based on
this regression equation derived, we applied the transcriptomics data from validation dataset to
predict the phenotype, and compared the predictions and observations to evaluate the predic-
tion accuracy. To start, we used the same training and validation datasets for big data approach
as the ones we used for omFBA. We next calculated the absolute value of correlation coeffi-
cients between the transcriptomics data of each gene and the ethanol yields, and ranked them
to find the top 3 genes with highest absolute values of correlation coefficients as the genetic
markers. The transcriptomics data of these genetic markers have been used for multiple linear
regressions to connect the gene expression with ethanol yield. Then, based on the regression
equation, the ethanol yields were predicted from the transcriptomics data in validation dataset.
Finally, the predicted ethanol yields were compared to the observed ethanol yields in the
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validation dataset. We repeated the “Big Data” regression approach for 40 times to make sure
our predictions were statistically reliable.
(TIF)

S4 Fig. Prediction accuracy of “Big Data” approach.Direct comparison of the predicted and
observed ethanol yields in low (A) and high (B) glucose condition. The “Big Data” algorithm
was repeated for 40 times and the proportions of matched predictions of “Big Data” algorithm
were calculated and ranked for low (C) and high (D) glucose conditions.
(TIF)

S5 Fig. Venn diagram for genetic markers identified by omFBA and “Big Data” using
either “big pool” or “small pool” of genes for low and high concentration conditions. Top
10 genes with the highest absolute values of correlation coefficients were extracted from S1
Table and shown in this figure.
(TIF)

S6 Fig. Correlation of phenotype-matched weighting factors derived from two genome-
scale metabolic models of S. cerevisiae: iMM904 and iND750.
(TIF)

S1 Table. Function of genetic markers identified by omFBA and big data algorithms.
(XLSX)

S2 Table. Original datasets from iTAP database used in this study.
(XLSX)
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