Technical Report C573003-Rr

GENERALIZED STRUCTURED PROGRAMMING

Johannes J. Martin

Department of Computer Science
College of Artg and Sciences
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

J. J. Maretin

Abstract -

In an effort to eliminate some inconveniences connected with Dijkstra's
method of Structured Programmlng, a4 generalized set of bagic flow graphs
for structuring bPrograms is suggested, These Structures generate the set
of all flow graphs that can be fully decomposed by Allen and Cocke's method
of interval reduction. It will be shown that Programs composed of the
proposed basic structures have wost, if not all, of the positive charac-
terlstlcs claimed for bprograms written with the classic rules of Structured
Programming, Further, by extending Wirth's Programming language PASCAL
a set of new control constructs has been Suggested that support the pProposed

set of flow structures.

Keywords: Structured Programming, Flow graph Analysis, Theory of Programming,

Graph theory

J« J. Martin 1

Introduction

Structured Programming as defined by Dijkstra [4] produces programs

whose flow can be described by one of the basic flow graphs shown in Fig. 1.

v
___{>] -——4:QZ
I
v
v
Primitives of Structured Programming
Figure 1

Each square box in such a flow graph represents either a primitive
operation or another well structured program. Thus, Structured Programs
are recursively decomposable with respect to these basic flow graphs.

As a main characteristic each basic flow graph has only one entry point
and one exit.

Bbhm and Jacopini [2] who have investigated a very similar set of
flow graphs have demonstrated that their set, which is even slightly
simpler than Dijkstra's, is sufficient for defining all algorithms. Many
Programming Languages include control constructs (e.g. the if-then-else
or the while construct in ALGOL 60 and PL/1) that support, to some extent,
the use of the basic flow structures of Structured Programming. Wirth's
languages PASCAL[11], an ALGOL derivative, provides control constructs
for all flow graphs needed in Structured Programming (Table 1) and no -

additional ones.

J. J. Martin : 2

iﬁﬁexpression?EEgg{statement>[g}ggﬁstatement>}
'géggfexpression>of<const>:<stat9ment>
| [;<const>:<sta£ement>]* end
while<expression>do<statement>
regeat<statement>[;<statement>]*until<expression>
£g£<var.>:=<expression><sep;><expression>ggsstatement>

<sep.>::=to/downto

Table 1

Because PASCAL matches the demands of Structured Programming so completely,
the notational extensions suggested in this paper will he étated as extensions
of PASCAL.

The main assets of Structured Programs are their clarity and relative
simplicity. 1Im particular, the method of Structured Programming encourages
top down analysis [9] of problems of the development of algorithms by
stepwise refinement [10]. Programs developed in this manner are auto-
matically modular; hence, Structured Programming provides a systematic way
of modularizing. Furthermore, as Dijkstra {3,4] has pointed out, structured
programs display a simple relation between the progress of the computation
and the progress through the program text. As a result, the amount of
.information needed for determining the computational progress accomplished
at some point in a program does not depend on the length of the program
(since one does not need a trace) but only on the depth of loop nesting and
the depth of subprogram referencing at the point of interruption. A1l these

points clearly enhance the-transparency of a program.

J. J. Martin . 3

Nevertheless, many programmers feel that the method of Structured
Programming is too restrictive, In particular, since loops can have only
one exit (Fig. 1) some simple and very common program structures are
outlawed. The classic example is the search loop [6]. The search loop
either finds the item wanted, in whicﬁ Ccase some action A should be taken,
or it does not find the item, in which case an alternative action B should
be executed. Such s search loop can obviously be interpreted as.a pProgram
segment_that computesg a.condition and, by virtue of its two exits, selects
one of two consequent actions. Thus, such a loop could logically replace
a decision box in a flow chart. However, the rules of Structure Prograsming
require that decision nodes are primitive; the substitution of a decision
node by a program segment is not permitted since the flow of such a pProgram
segment would not conform with any of the four basic flow graphs. Thus,
Structured Programming, in effect, classifies conditions which are used
to control the flow of g program into two categories:

a) Simple conditions thar can be specified in condition boxes because

they can be computed by a single expression, and

b) Complex conditions that must be computed in a Program segment

that precedes the test which ultimately makes the selection because
they cannot he computed by a single expression,
This distinction causes programming steps that are motivated solely by
structural restrictions imposed by rules of style rather than by the
inherent logic of the problem to be solved. At this point, the generally
beneficial rules of Structured Prograﬁming definitely lower the understand—
ibility of a program.

Shortcomings of Structured Programming have been discussed in the

J. J. Martin ‘ 4

Lliterature, especially in some articles concerned with the elimination of
the Boto-statement [5, 7, 137. Howefer, to my kndwledge the problem has
never been stated as g problem of discrimination among simple and complex
conditions, although it seems to be this discrimination that causes the
aliedged inconveniences of goto-less or Structured Prog;amming.

In this paper we shall suggest a set of generalized flow structures
a8 a basis for structuring programs; The main idea is to have basic flow
graphs with multiple exits so that not oﬁly action nodes {square boxes)
but also decision nodes can be replaced by program segments, As a result
the artificial distinction between simple and complex conditions will disappear,

Allen and Cocke [1] have developed a method for analyzing flow graphs
which they call interval decomposition. With this wmethod, one can reduce
flow graphs that do not contain multiple entry lﬁops to a single node. We
shall be able to show that our set of basic flow structures permits the
tonstruction of exactly these flow graphs,

We shall further explain why the advantages claimed for the criginal
system of Structured Programming afe maintained by the generalized version
suggested, Finally, we shall suggest a set of new econtrol constructs (as
an extension of PASCAL) which SUpports our gemeralized set of basic flow

graphs.

Generalized Structured Programming

We define a well-structured flow graph as a graph that can be described
by one of the structures shown in Fig. 2 where the nodes represent either
primitive operations or well-structured flow graphs. The flow graphs

shown in Fig. 2 contain only two types of nodes: nodes with several entry

J. J. Martin) 5

points and one exit (later referred to as collector nodes) and nodes with

one entry point and several exits (later referred to as action nodes) .

Primitives of Gemeralized Structured Programming
Figure 2

Collector nodes do not correépond to any computational action; their
function is comparable with that of labels in programming languages. Hence,
collector nodes are mot further decomposable.

Action nodes have k > 1 exits and, thus, may occur as decision nodes
as well as single-exit action nodes.

dur structures show some resemblance to Dijkstra's sequential (2a),
selective (2b), and iterative (2¢) modes of operation. However, they are
less restrictive since the set of graphs which they generate contains the
set generated by Dijkstra's structures as a proper subset. Later we shalil
refer to our structures as forms 2a ~2¢; we shall further use the term
decomposable (reducible) restrictively for graphs that are decomposable
(reducible) with respect to our system,

Properties of Decomposable Flow Graphs

First we shall show that a graph is decomposable if it does not coutain

multiple entry loops.

J Martiﬁ .) 6

We shall consider only flow graphs with exactly one entry point. The
node R by which a flow graph is entered will be called its root.

We postulate that in all flow graphs considered, there is g path R-N
for every node N of the graph.

Definition: A loop (or strongly connected region) is a set S of nodes
such that for each pair of N,M ¢ S there is a directed path N-M.
Lemma: A flow graph that does not contain loops can be reduced to an
action node by the forms 2a and 2b. |

(Proof by induction based on 1. and 2, using the fact that the nodes
rin a loop-free graph (3.) are partially ordered.)

Definition: Flow graphs are equivalent, if they can be transformed
into each other by collapsing adjacent collector nodes or, reversely,
by splitting a collector node into two adjacent ones.l

Definition: A collector node G is a selection collector if there 4s

a node D such that every directed path C-C contains D and there is a

simple path D-C for every arc entering C.

1gince collector nodes do not Tepresent any action, this transformation

trivially does not change any essential property of the flow graph (it

is equivalent to the introduction of an additienal label for an already

labeled point in a program). However, it facilitates the creation of flow

graphs for which collector nodes can be classified into

a)
b)
c)

selection collectors
loop heads for single entry loops

loop heads for multiple entxy loops.

.Je J. Martin 7

7. Definition: A collector node that is not a selection collector is called
a loop head.

8. Lemma: Every loop contains a loop head. (Follows from 2.,3.,6.,7.)

9. Definition: A loop head 1 is therhead of an S-loop (single entry loop)
if there exist paths I-I that.ar§ disj0ined from all paths R-L except
for the no&e L. ©Nodes belong tofthe S-loop if they are contained in
such a path L-L. Other loops are.called M-loops (multiple entry loops)

10. By éplitting the loop head (5.), if necessary, we shall always make

sure that all arecs but one entering the head of an S—loop partigipate

in the‘S—loop. Thus, we shallrmake sure that only one arc enters ap

S-loop from the outside.

1l. Lemma: If an S=locop Ll contains the head of an other S~loop LZ’ all

nodes of L2 are also nodes of Ll. (Follows from 93

Note 1: Definition 9. assures that the converse of 11. is not true,

i.e. there are nodes in L1 that are not nodes of LZ.

Note 2: It follows from 11. that an S-loop is not necessarily a

proper nest of loops, say, in the FORTRAN sense. Fig. 3 gives

an example.

Example of anp S~Loop
Figure 3

J. J. Martin _ 8

12, Definition: The rump of an S=loop is the graph that consists of all
nodes of the 5-1oop but the head.

13, Lemma: The Xump of an S-Ioop is. a graph with one entry point and one
Or more exits. (Follows from 12} and 9.)

~14. Lemma; 4an S-loop that does a0t contain any loop, can be reduced to g
action node.
(Proof: The rump is a loop free graph with one entry point (13.) and,
henée, reducable because of 4. The loop head cap then be attached by
form 2¢ to form g graph with one entry point and one or more exits
because of 9. ang 10.) | |

15. Lemma: S-loops that do not contain M~loops caﬁ be reduced to 4n action node.,
(Proof; by induction based on 14., partial ordering is assured by 11.)

16. Theorem: Flow graphs that do not contain M~loops are well structured

with respect to the forms 25 - 2c.

(Proof: follows frem 4. and 15.)

1) By definition, Programs are decomposable with respect to our basic control

Jo J. Martin ' A 9

2¢c, i.e. the loop, can be analyzed by inductive reasoning., If formal
program verification is persued, we shall peed to determine one

assertion for every exit of such a basic Structure; whereas, for Dijkstra's

keep track of computed conditionsg.

2) The-relation between textugl and computational Progress is similarly
simple in both systems, .
Loop free single entry graphs have g fixed and, thus, trivial relation
between Computational progress and textual progress.
Further, zi1 loops are entered only at the ioop head for every turn
through the loop. Hence, a counter incremented. wheq the loop head is
Passed, can keep track of a loop in Progress, The Tump of a loop is

| again either g loop'free single entry graph or it contains other single

entry loops. The nunber of getrive counters depends, as in Dijkstra‘'s

System, only on trhe depth of loop nestings.

as do Dijkstra's.
There is, however, one major difference that makes manipulating ouyr

flow graphs somewhat more difficult,

one ignores the fact that the order in which concatenated actions are
associdted isg arbitrary. This ambiguity doesg not matter at glil because
it does not cause any uncertainty since the actions are fully ordered,

For our System, this very ambiguity causes somewhat of a problem:

Jd« J. Martin : 10

can (and must) indicate how he wants the operations to be grouped. The

New Control Constructs
——————=LUL Lonstructs

Before introducing the new control constructs, we should note that there
are at least two known constructs that Support, to sone extent, our system:
1) Wulf's leave feature in hig Programming language BLISS [12], and

2) The exit feature g available in ALGOL 68 [8].

(form 2c); further, the EEEE construct only permits transferring control to
the next higher block level. Contrarily, the Rew construects Suggested fully
Support our System; also, they do nog require that SLatements possesgs values,
Two types of control constructs ape considered; the first type (A) is a
generalization of existing constructs, It has been designed to facilitate

the definition of arbitrary conditions within conditiong] Statements. The

J. J. Martin) i1

second construct (B) has been added in order to completely support form 2¢c.
A) As an extension of Wirtrh'sg programming Language PASCAL, we suggest
the notion of 4 group, i,e, g compound statement with botentially

multipie exitg, These exits are exploited by inserting the group

Therefore, @ group should behaye like an expression, i.e, it should

pPossess a value, A group is‘formed by the brackets

begin - Succeeds,
2egin 2uLCeeds

begin ~ fails, or

The first two forms are uged to denote boolegn groups, i.a, groups that
can be used instead of boolean eXpressions. The last form ig non*boolean
and can be used in the £ase construct,
Examples:

(1) while begin<statement>succeeds

do<statement>
(2) case begin<statement>group‘2£
Li: <statement>

L2: <statement>

end
The value of a4 group is determined by the statements
success, i ' .
failure, or

case<const>,

J. J. Martin . 12

The statements success and failure are used in boolean groups, and the
Statement case<const> is used in non-boolean groups. These statementg transfer
control to the end of the group and assign the group the value_gggg (success -
Succeeds, failure - fails), false (sqccess - fails, failure - succeeds), or
the value of <const>.

Example:

begin repeat<statement>

until begin repeat if<condl>then success

until<cond2>; failure
fails
end
In the compiled program, the values defined by a group would usually not
materialize; instead, each branch to the end of the group would be extended

to the program part to be executed next. Since transfer of control goes

B) As a second structure,ra new loop comstruct is suggested that
combines the Lase and the while statement. Its form is
repeat Eg§g<expression§g§
Ll: <statement>

L2: <statement>

exit on

Ml: <statemeat>

M2: <statement>

end

This statement executes the statement labeled by L1 (L2, L3, etc.)
repeatedly while <expression> yieldé Ll (L2, 13, ete.), and it' terninates
the looﬁ executing the statement labeled by M1 (M2, M3, etc.) when <expressilon>
yields M1 (M2, M3, etc.). ‘ .
Summary

The set of basic flow structures identified in this paper permits the
construction of all flow graphs that do not contain multiple-entry loops.
These are the same graphs as those that can be fully reduced by Allen and
Cocke's method of interval reduction. it has been pointed out that programs
based on the desecribed system have most, if not all, of the positive char-
acteristics of Structured Programs. Further, by extending Wirth's language
"PASCAL', a set of new control constructs has been suggested that support
the ﬁrdposed set of flow structures. We might add that PASCAL extended in

this way, should not anymore contain the goto-statement.

Je J. Martin

References:

1.

10.
11,

12.

13.

lz*‘l

15.

Allen, F. E. and Cocke, J., "Graph-theoretical constructs for program

control flow analysis," IBM Research Report RC3923, July 1972,

Bohm and Jacopini, "Flow diagrams, Turing machines, and languages with
only two formation rules", CACM. 9, 3, May 1966.

Dijkstra, E. W., "Goto statement considered harmful", letter to the
Editor, CACM, 11, 3, March 1968;

Dijkstra, E. W., "Notes on structured programming", August 1969.

| Conee
Hopkins, M. E., "A case against the GOTO", ACM Annual Conference 1972.

Knuth, Floyd,"Notes on avoiding 'GOTO' statements", Technical Report
C5 148, Stanford University, January 1970.
Leavenworth, B. M., "Programming with{out) the GOTO", ACM Annual

Converence 1972.

Lindsey, C. H. and Van Der Meulen, S. G., "Informal introduction to
ALGOL 68", North-Holland Publishing Co., Amsterdam, London, 1971

Mills, H. "Top down programming in large systems", Debugging Techniques

in Large Systems (Ed. Rustin Randall) Prentice~Hall, Englewood Cliffs,

N.J. 1971.
Wirth, N. "Program development by stepwise refinement", CACM 14 (April 1971).

Wirth, N. "The programming'language Pascal' Acta Informatica, 1,35-63

Wulf, et al. "Bliss: a language for systems programming', CACM,

December 1971.

Wulf, W. A., "A case against the GOTO™, ACM Annual Conference 1972,

Wegner, Eberhard., "Tree-structured programs", CACM, 16, 11, November 1973..
Kosaraju, S. Rao., "Analysis of structured programs", Proc. of 5th

Annual ACM Symp. on Theory of Computing, May 1973,

