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INTRODUCTION

For the forest manager and forest mensurationist

the yield table is a familiar and useful concept. There

are too many types and formats of yield tables to enumerate

here, but they all possess one common property: a tabu—

lation of some preferred volume measurement classified

by useful and measurable forest stand attributes, notably

age and site quality. Degrees of sophistication are
x

apparent upon inspecting a typical collection of yield

tables, for example, one might only tabulate cubic foot

volume while another might tabulate board foot, cubic

foot and cord volume. Indeed, they all attempt to

relate volume to some elementary measures of stand

structure, where stand structure here means measurable

attributes that indicate volume, value, quality or

associated factors. These tables have been developed

for the primary and expressed purpose of aiding the

forester in making growth and yield projections and

predictions.

A widely used measure of stand structure is the

stand table, which tabulates diameter frequencies by

useful stand variables, such as, age and site index.

Aided by these diameter frequencies, the forester can

obtain estimates of timber quality and value because
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of the positive relationship of diameter with quality.

Obviously, increasing complexity of an associated yield

table, makes construction of accompanying stand tables

extremely involved. Imagine a tabulation of diameter

frequencies by stand age and site index, and then add

a third variable, say density, and note the increased

complexity of the analysis and tabulation.

In addition to indicating quality, a sufficiently

developed stand table could possibly be used to estimate

volume and totally replace the conventional yield table.

Conceptually, using diameter frequency distributions in

timber management is attractive for intensive management.

The associated mapping of stand variables and detailed

record keeping, gives the manager a logical and precise

technique for making either inventory estimates or

decision oriented predictions.

To resolve the problems of complexity associated

with the tabular model of the stand table, an obvious

alternative is a mathematical model. If it was possible

to specify a mathematical approximation of the tabular

model, then the stand table concept might more easily

include a wider range of stand variables, and serve as

a more flexible tool for making growth and yield pro-

jections. The mathematical model is especially appealing

from the analysis and calulation point of view because of

the wide acceptance and availability of high speed computers.
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OBJECTIVE

The objective of the study was to obtain a

mathematical approximation for the distributions of

breast height diameters of naturally regenerated, even-

aged, pure Virginia pine. Problems associated with the

objective fall into three general categories: (l)

selection of a frequency estimator, and the estimation

of the required parameters, (2) testing the predicted

frequencies against observed frequencies, and (3)

association of predicted frequencies with useful and

identifying properties of the forest stands, such as,

site quality, stand density and age.
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LITERATURE REVIEW

The concept of mathematical approximation of the

frequency distributions of tree diameters is not new.

The first efforts in American forestry, Meyer (1928,

1930), Schnur (1934), Schumacher (1928), attempted to

fit the Gram-Charlier types A and B and Pearsonian

Types I and III curves to even-aged species.

More recently, Hurst (1957) fitted five types of

curves to four groups of observed diameter frequency

distributions of Shorea Leprosula by the method of

moments. The four groups represented four permanent

plots, each plot being initially treated by a different

silvicultural method and each plot measured at three

successive and equal time intervals, thus resulting in

twelve diameter frequency distributions. He investigated

the parameters from each curve for correlation with time

and silvicultural treatment. His analysis indicated

that the Pearson three parameter type I curve did the

best job of both fitting the data and producing para-

meter estimates that were significantly correlated with

time and treatment.

Clutter and Bennett (1965) developed a model for

describing the frequency distribution of the diameters

in planted slash pine, using as their model the following

modification of the beta distribution:
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_ (a+6+1)! a _ 6f"‘1) ‘°«"‘“""161 "1‘l xi) ·°i"1-$1

¤ 0 , otherwise

where:

Di”Dminxi coded tree diameter
max min

Di ¤ uncoded diameter

Dmax
• estimated maximum diameter in the stand

Dmin ¤ estimated minimum diameter in the stand.

Di ”
DminThe equation xi ¤ 5~———;gT;-—— is used merely to code

max min

tree diameters (Di) so all diameters of the stand fall

in the range of the beta distribution (Ojxiil). Dmax
and Dmin were estimated by multiple regression equations

of age, number of trees per acre and site index at 25

years of age, and therefore, represent the average

maximum or minimum diameter for a given combination of

the three variables.
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TECHNIQUES AND PROCEDURES

The data for this study were obtained from the

Southeastern Forest Experiment Station, Forest Service,

United States Department of Agriculture. They consist

of 161 plots of Virginia pine, located in the Piedmont

of Maryland, Virginia, North Carolina and South Carolina.

The plots were either l/10 acre or 1/4 acre in size,

depending on the density of the stand being sampled.

Although plots containing 10 percent Virginia pine or

more were originally measured, only "pure" stands with

80 percent or more Virginia pine were used in this

analysis. The number of plots was further reduced by

excluding those whose diameter distributions had been

disturbed, e.g., plots which had been burned or partially

cut. Only 51 plots were ultimately accepted.

The apparent ability of the beta distribution to

describe diameter distributions of planted slash pine

prompted its use as a plausible hypothesis for a similar

test in the natural stands of Virginia pine under con-

sideration here. In general, the procedure will consider:

(1) methods of estimating the population parameters a

and ß from observed plot frequencies, (2) tests of

goodness of fit of the predicted frequencies, and (3)

methods appropriate to using the distribution for growth

and yield projections.
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Two methods of estimating population parameters

are plausible, the method of moments and the method of

maximum likelihood. Sometimes, they yield identical

estimators, but for a and B of the beta distribution

the two methods produce different estimators. The

question logically arises as to which method to use.

This can best be answered by investigating the merits

of the two methods as they apply to the beta distri-

bution.

In general, maximum likelihood estimates of

distribution parameters have certain theoretical

properties that make them more desirable than moment

estimates. The variance of maximum likelihood estimates

will always be at least as small as the variance of

moment estimates of the same distribution parameter.

Also, for large samples, a maximu likelihood estimator

is asymptotically normally distributed and possesses

minimum asymptotic variance among all asymptotically

normally distributed estimators. Although maximum

likelihood estimators possesstheoretically desirable

properties not associated with moment estimators, the

possibility exists that there are some practical

criteria that might justify using moment estimates.

If it appears plausible to use the beta distribution

for the frequency estimator, one naturally asks if diameter
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at breast height is beta distributed. This question can

best be answered by using the familiar chi—square good-

ness of fit test. Chi—square stipulates that expected

frequencies must be calculated with maximum likelihood
·

estimates of the parameters, although it is worthwhile

to point out that this restriction is sometimes ignored

and moment estimates are used. The expected frequencies

are obtained by multiplying the number of trees per acre

times the integral of each coded, 1-inch diameter class.

Once the distribution is defined and justified,

its use as a tool for growth and yield projection

requires evaluation of the correlation between the

constants of the distribution and the stand variables

which comprise the forester's control, notably age,

site and density. The constants of interest for the

beta distribution are the two parameters, a and ß, and

the limits of its range, 0 and 1. It is apparent that

correlation of any useful and measurable stand variable

with these constants would enable the forester to pre-

dict diameter distributions from the natural conditions

encountered in managing a species.

In the earlier work aimed at using mathematical

approximations for growth and yield projections, the

researchers attempted to correlate stand variables to

the distribution parameters. If high correlation



12

appeared, they could then specify a particular distri-

bution that was related to the stand variables they

considered, by estimating the distribution parameters

from the relationship they found. The difficulty with

this approach has been finding frequency estimating

functions that were sufficiently flexible to describe

a wide variety of frequency distributions and at the

same time possess distribution parameters that reflected

properties in the diameter distribution that are related

to the stand variables.

One would justly and logically expect to find

correlation between stand variables and the maximum

(Dmax) and minimum (Dmin) diameter of a stand of trees.

For example, one would generally expect Dmax and Dmin
to increase with increasing age. If this type of

relationship could be described mathematically, then

a forester could estimate the range (Dmin to Dmax) for

various combinations of stand variables and code the

predicted range to the range of the beta distribution

(0 to 1) by:

thus resulting in a useful tool for predicting diameter

distributions. This would enable the forester to make
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growth projections by evaluating volume estimates over

time. He would also be able to evaluate yield in terms

of volume, quality, value, profit, costs, etc., for

different but feasible combinations of controlling stand

variables.
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RESULTS

Estimating Parameters bx Moments

Moment estimates of the parameters of the beta

distribution are obtained by equating the population

moments to the sample moments. The first and second

population moments are (see Mood, 1963:114):

01+1“1 " mm
‘**¤· 2*

A
B (¤+1)(a+2)“2

(¤+ß+ä)Z¤+ß+ä) (eq' 3)

where a and B are the unknown population parameters.

The nää sample moment is (see Elderton, 1953:15):

n n nmh ¤ (fl xl + fz x2 + ~•• + fi xi)/n (eq. 4)

where:

fi ¤ number of trees in the iää l—inch diameter class

xi ¤ mid—point value of iää l—inch diameter class

k
n ¤ Z fi ¤ total number of trees per acre

i¤1

k ¤ the number of 1-inch diameter classes.
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Solving the first and second population moments (eq. 2

and 3) for a and B, and equating

ml = ul

mz ’“ “2

results in the following moment estimates of the parametersz

Zmi — ml m2 - m2
oz ¤= ··————-——-——-——--7-—-·——— (eq. 5)

mz - ml

m + m m + 2m
B „ .L,..L (€q_ 6)

where ml and m2 are calculated by eq. 4 from the observed

diameter frequency distributions.

Estimating Parameters by Maximum Likelihood Using
Newton·RaEhson Technique

Maximum likelihood estimates of the parameters of

the beta distribution are those estimates which maximize

the likelihood function:

k af. Bf.
+6+1 1L X 1‘1'X) 1

' (eq' 7)

O < q < ev,

0 < B < •¤. X
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For easier arithmetic, the likelihood function is often

expressed as:

k k
log L = a Zi-1 fi log xi + B

2181
fi log (1-xi)

+ n(log (¤+B+l)! - log ul — log B!) (eq. 8)

Di —
Dminwhere xi = ö-——gyj5——— . To find the maximum likelihood

max min

estimates of a and 6, one takes the partial derivative

of log L (eq. 8) with respect to a and with respect to

B, equates the derivatives to zero and solves for a and

B. The derivatives are:

k2 log L 8 2 log r(¤+ß+2)8a *181% log xi *
“( Ga ?mTVm‘:1T*· (eq- 9*

k2 lgg L _ 2 log r(¤+ß+2)aß “ *181% l°q(* *1* + “( aß i~‘z;¢rm?:1T*·
(eq. 10)

Because of the difficulty in solving for ¤ and B in the

two equations above, it is desirable to use an approxi—

mation that can be solved more easily (see Sokolnikoff,

l939:3l9—32l). The approximations of the derivatives

are:

2 221oqL 21oqL 2 1oqL 2 1oqL 83a a+A¤
R

Ba ¤,8+
38 8

BAG + öaöß a,BA8 0

6+Aß '

(eq. ll)
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and

2 281ggL S 81oqL 8 10qL 8 10 L Saß ¤+A« as q,ß + aeaß
e,ß^“ + E ' q,ß^ß O

8+Aß
aß

(eq. 12)

where:

Bi?-9-Ile [
k

z 1e x r( +6+2) — ?i9är( +1))ae i_1 1 g 1 ae ° ae °
(eq. 13)

k

- [ 1 zi 1og(1—xi) + ¤(?-%%9r(e+ß+2) (eq. 14)‘i•l ·

— äägi r(ß+1))

8210
L 8210 8210——~—§— ¤ P(a+8+2) -

——~§2 r(¤+l)) (eq. 15)
Ba Bd 8a

8210 L 8210 821 (eq. 16)
88 3B 88

and ·

2 2 2

·- (eq. 17)

The first and second derivatives of the logarithm of the

gamma function in equations 13 and 17 above are called
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the digamma and trigamma respectively (see Pairman, 1919).

The infinite series expansion formulas for the digamma

and trigamma fcr different ranges of the values of the

argument are given in the appendix. "Argument" in the

above sentence means different values of a and B or

combinations of a and B and some constant. For example,

the argument for log P(a+ß+l), is the linear combination

~ a+B+l. It is also important to realize that the

derivative of a function of a function, i.e., f[g(x)]

is obtained as follows:

d f[gw)l d f[gw)l _ d gw)
x = g x x °

Therefore,

5% log log P(a+B+2) (eq. 18)

32 32 32
-7 log r(¤+s+2)

-
———2- log r(¤+ß+2) ¤ 3-;-ä-E log r(¤+6+2).

Ba 38
(eq. 19)

In order to start this iterative technique of

calculating maximum likelihood estimates, it is necessary

to define initial values of the parameters, call them

ao and Bo, such that:

0 < ao < ¤,

0 < Bo < ···.
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For this project, it was convenient to use the moment

estimates of a and ß as the initial values (starting

points). The process is started by equating:

al = ao

B1 = Bo

and solving the following two equationsz

3210 L 3210 L 31o L—~——%— Aa + —$~—2— AB ¤ — ———2— (eq. 20)a3ß 3a3a a,ß a,8 a,B

3210 L 3210 L 310 L——ä~B-5-E- Aa + ——-—%- AB = — —-—ä%· (eq. 21)
¤,B 3B ¤,B a,ß

for the two unknowns Aal and ABl, using al and Bl wherever
there is an a and B in the equations. The second iteration

will yield Aaz and AB2 where the values of a and B in

equations 19 and 20 are a2 and 82, where:

az = al + Aal

32 = Bl + ABl.
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The iää iteration will yield the answers Aai and Aßi

with:

ci = ai_1 + Aai_l

The process is continued until Asi and Aßi both obtain

some predetermined small value. In other words, the

value of Asi and Aßi theoretically converge to zero,

consequently the process must be terminated. Practically,

the values of Ani and Aßi will not converge to absolute

zero, but rather, the inaccuracies of the estimating

procedure caused convergence to cease at values of the

order 0.00000049 to 0.000000049.

The theoretical absolute convergence of the technique

is obvious if one inspects the equations used. Clearly,

the Taylor series approximation to the derivatives in

equations ll and 12 have been equated to zero in equations

20 and 21, thus, it follows that if the derivatives are

to equal zero, Aai and Aßi must vanish. As already

pointed out, absolute convergence did not occur, the

reason being the inability of the divergent infinite

series expansion approximations of the digamma and tri—

gama to give better than 8 place accuracy.
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Maximum Likelihood Estimates by Two Other Techniques

Two additional techniques for finding maximum like-

lihood estimates were investigated in this project. For

a visual conception of how these two methods work, it

helps to think of the likelihood function (eq. 8) as a

function of its parameters a and B. This function can

be pictured as a surface in three dimensions with an

¤—axis, a ß—axis and a likelihood axis. The maximum

likelihood estimates are the values of a and 6 that

correspond to the highest (maximum) point on the likeli-

hood surface. Thus, both techniques are simply "brute

force" techniques of finding the highest point on the

conceptualized likelihood surface.

The first technique evaluates the logarithm of the

likelihood (eq. 8) at each point in a grid of values

of a and 8 located around and initial pair of values

in the ¤B—plane. The point corresponding to the largest

value of the likelihood function is used as the center

point of a second grid of points which is reduced in

size and has the points closer together. This process

is continued until the points in the grids obtain some

predetermined distance between them.

The second technique is basically the same idea,

except it alternately varies a and B. The process is
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started by first choosing initial values of a and B.

Then allow one of the parameters to increment its value

over a range around the initial value. The value of the

parameter being varied is then held fixed at the point

where the largest likelihood was calculated while the

other parameter is varied in a similar manner. As the

process continues, the range and increment of the para-

meters are reduced. Both of these techniques, plus the

Newton—Raphson method, worked, and assuming programing

for all three was relatively efficient, the Newton-

Raphson method appeared to be the fastest.

Comparison of the estimates of a and ß by moments

and maximum likelihood show that differences were

relatively small (Table l). Both the moment estimates

and maximum likelihood estimates are asymptgtically

normally distributed for large samples, thus it is

reasonable to assume for this work that the estimates

of a and B are approximately normally distributed.

Therefore, an additional comparison of the two methods

might be the asymptotic variances, best calculated by:

(aisgäöz
and 1;

ca 722Bä - 2. ——s„l——
1¤1
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Table 1. Estimates of Alpha and Beta

Alpha Beta

Plot Mom. Est. Ma. Li. Es. Mom. Est. Ma. Li. Es.

1 3.003 2.700 2.204 1.909 I
2 2.798 2.528 6.206 5.646 I
3 0.787 0.887 1.965 2.068
4 1.076 0.962 1.068 0.990 I
5 0.893 0.887 0.785 0.793
6 1.854 1.761 3.001 2.782 I
7 1.029 0.847 1.892 1.668
8 0.792 0.808 0.884 0.884
9 1.639 1.751 6.991 7.122 I

10 2.202 2.104 4.428 4.236
IÄ 11 2.665 2.714 4.277 4.249

12 2.268 2.232 2.730 2.669
13 1.842 1.649 2.450 2.128
14 1.131 1.183 0.264 0.300
15 1.042 0.944 1.596 1.436
16 1.124 0.984 1.145 1.033
17 1.660 1.585 1.818 1.760
18 1.899 1.873 2.186 2.113
19 0.888 0.921 1.049 1.019
20 1.012 1.009 1.826 1.786
21 2.248 2.244 2.062 2.076
22 2.423 2.555 5.551 5.683
23 1.489 1.554 3.682 3.722

I 24 1.742 1.677 1.742 1.729
I 25 1.563 1.554 3.297 3.248
I 26 1.361 1.423 2.788 2.841
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Table 1. Continued.

Alpha Beta

Plot Mom. Est. Ma. Li. Es. Mom. Est. Ma. Li. Es.

27 0.823 0.936 1.864 1.993
28 0.944 0.858 0.780 0.794
29 0.644 0.748 2.680 2.867
30 0.569 0.583 1.314 1.356
31 1.955 1.706 2.110 1.913
32 0.618 0.664 0.926 0.937
33 1.650 1.535 2.649 2.480
34 1.369 1.343 1.672 1.614
35 0.529 0.504 1.028 1.036

I 36 1.111 1.164 2.727 2.658

I
37 0.795 0.872 3.321 3.472
38 1.669 1.439 2.805 2.509

I 39 0.923 0.990 2.267 2.306

I 40 0.968 0.946 2.384 2.316
“

41 1.249 1.109 2.849 2.618
42 0.407 0.297 0.638 0.680
43 0.484 0.515 1.919 1.940
44 2.280 2.168 1.978 1.845

I
45 1.866 1.769 2.570 2.413

I 46 0.843 0.856 1.107 1.104
I 47 1.323 1.463 4.392 4.576

I
48 0.554 0.615 1.613 1.697
49 1.100 1.057 2.508 2.447

I 50 1.434 1.454 3.185 3.101

I 51 0.851 0.927 1.679 1.682
I
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where

Ei ¤ an estimate of a for the iää plot

· thBi ¤ an estimate of B for the i—— plot

T 51 _
¤ =X ai/51

i=l

A
B =·Z Bi/51 (Table 2).

i•1

Generating Expected Frequencies

The expected frequenceis were obtained by multiplying

the integral for each coded 1-inch diameter class of the

beta distribution times the number of trees expected or

desired per acre. Since the integral of the beta distri-

bution can not be obtained in closed form except for

integer values, of q and 5, it is necessary to use a

method of numerical integration (see Adams and White,

1961:554-555). The integral is equal to the area under

the curve and is calculated by suming the areas of very

narrow trapazoids. Since the beta distribution as it is

used here, is a probability density, the entire integral

from 0 to 1 will equal 1. The width of the trapaziods

used in the project was approximately equal to 0.01.
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Table 2.

Asymptotic Variances

Moment Max. Like.

Alpha 0.41627 0.36409

I
Beta 5 1.88753 1.85824
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The method seems good for approximating the integral

of the beta distribution. The worst answer out of 102

integrations was 0.997. The absolute value of most of

the errors was in the range 0.0001 to 0.000001.

Chi-Sguare Goodness of Fit

The chi-square values indicate that diameter at

breast height is not beta distributed (Table 3). It is

of interest to note that chi-square values were also

calculated using the moment estimates of the parameters

and the resulting statistics were very close to the ones

using the maximum likelihood estimates. Although theo-

retically this is not a sound comparison, it does give

one an intuitive feeling that the two methods do not

differ drastically.

Sstimation of Dmax and Dmin

Initial plotting of the minimum diameter on stand

variables age, site index and number of trees per acre

suggested that the correlation would be slight. This

indication plus the fact that 44 of the 51 plots had

minimum diameters of one or two inches discouraged

further trials. Since Virginia pine stands within the

age range of the variable typically contain small trees

in intermediate and surpressed crown classes, the low

correlation was not surprising.
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Table 3. Chi—Square Values

Plot Chi—Square Plot Chi-Square d . f . * 1

1 148.21 4 27 107.94 6

2 20086.33 10 28 73.38 6

3 137.30 5 29 7.38 3

4 18.35 6 30 78.59 4

5 11.86 6 31 44.30 6

6 203.44 6 32 30.12 4

7 84.86 6 33 42.75 9

8 31.08 5 34 33.95 2

9 506020.33 8 35 36.07 5

10 206.84 2 36 180.28 11

11 263.33 3 37 37.68 3

12 43.55 5 38 102.82 6

13 191.91 7 39 37.40 8

14 34.55 4 40 18.90 5

15 47.76 4 41 73.14 6

16 28.49 5 42 54.06 5

17 58.64 7 43 47.06 7

18 49.75 3 44 92.07 7

19 42.90 5 45 92.80 4

20 12.18 4 46 8.72 3

21 97.67 5 47 673.54 5

22 1108.59 5 48 5.38 3

23 260.70 6 49 36.16 3

24 26.64 3 50 678.34 3

25 85.80 5 51 216.39 3

26 59.15 7

* Deqrees of freedom
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Similar plotting of maximum diameter exhibited a

slight curvilinear response to density as measured by

number of trees per acre and interactions of age with

density and age with site index. A multiple regression

analysis was run, therefore, according to the model:

Y - Bo + Blxl + äzxz + 63x3 + B4x4 + 65x5 + 66x6

where

Y ¤ maximum tree diameter

X1 = number of trees per acre

X2 = age

X3 = site index
X4 = XlX2

X5 ¤ X2X3
X6 “

l°g1oX1

The resulting equation produced an R2 of 0.615, where:

R2 Sum of sguares of regression‘
ITota sum o squares

That is, the regression of the Xi's explained 61.5 percent

of the variation of Ü. Although this is significant for

many problems in forestry, it is not high enough for this

problem because only a few of the 51 estimates fell into

the observed diameter classes.
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DISCUSSION

This project has failed to produce a mathematical

approximation for the diameter frequency distributions

of natural stands of Virginia pine. It has, however,

defined some of the problem areas that must be resolved

before a technique of this type can be used as a pre-

diction and decision making tool for these and similar

stands. It also has given an indication of the relative

importance of the problems involved.

The most important single contribution has been the

successful application of the Newton-Raphson technique

to obtaining maximum likelihood estimates of the para-

meters of the beta distribution. Heretofore, a solution

of this kind for a and ß has not been available. Of the

three methods for finding maximum likelihood estimates,

the Newton-Raphson technique appeared to be more efficient

than either of the "brute force" methods, in that for

equal decimal precision, it produced answers more rapidly

than the others.

A comparison of the parameter estimates calculated

by moments and by maximum likelihood, indicated that the

two techniques produced estimates that were not drastically

different. But it is equally clear that the comparison

does not reflect the full impact of the differences upon

any other alternative criterion such as plot volume.
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Lacking a clear definition of a preferred criteria,

Table 4 below, compares observed and expected frequencies

for selected plots covering a range of the stand variables

in age, site and density. Apparently, although not con-

clusively, the manner of estimation has only a trivial

effect upon estimated frequencies. If the effect persists

with other criteria, the moment estimates might be

preferred simply because they are easier to calculate.

As with the earlier work (e.g. Meyer and Hurst,

op. cit.), the most difficult problem has been associating

the constants of distributions with stand variables which

can be controlled or measured in the normal course of

management. The earlier workers concentrated more

specifically on the association of distribution para-

meters with stand variables. For planted slash pine,

Clutter and Bennett (op. cit.) developed a different

approach which limited the diameters to a predictable

range (Dmin to Dmax) and coded the diameters from 0 to 1,

so the beta distribution could be used. In effect, the

procedure suggests that the parameters, a and 6, may be

constant over the range of stand variables, and that the

ultimate utility and flexibility of the distribution as

a prediction device may depend upon the correlation of

Dmin and Dmax with age, site, density, etc. Intuitively,
this hypothesis appears supportable for young planted
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Table 4. Expected and Observed Frequencies

Plot 1 I Plot 7 {

-

Frequencies Frequencies

Dbh Observe Moment Max.Li. I Dbh Observe Moment Max.Li. =
0.5 10 9 11 0.5 68 45 54
1.5 30 95 101 1.5 96 111 116
2.5 360 269 263 2.5 104 144 141
3.5 420 420 400 3.5 136 149 142
4.5 450 424 414 4.5 184 132 126
5.5 160 254 269 5.5 128 104 98

E 6.5 90 48 61 6.5 44 64 65
, 7.5 8 28 32

8.5 12 5 6

{ Plot 20 |_ Plot 27
E’ Frequencies Frequencies
{Dbh Observe Moment Max.Li.

I Dbh Observe Moment Max.Li
{ 0.5 0.5

1.5 1.5 40 93 82
2.5 56 71 70 2.5 280 191 186
3.5 172 164 162 3.5 230 224 226

{
{ 4.5 220 192 191 4.5 160 216 223

5.5 156 171 171 5.5 170 184 189
6.5 116 120 122 6.5 180 136 139

A
7.5 52 58 60 7.5 70 84 83

8.5 16 11 12 8.5 30 37 35
· 9.5 10 6 6
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Table 4. Continued.

SPlot 40 Plot 48 Ä

Frequencies Frequencies :

Dbh Observe Moment Max.Li. I Dbh Observe Moment Max.Li.
0.5

1.5 1.5 390 390 375
2.5 90 78 87 2.5 540 560 566

Ä3.5 200 213 216 3.5 540 499 510
S4.5 240 270 263 4.5 340 351 356

5.5 270 256 248 5.5 180 179 176
6.5 220 199 194 6.5 30 39 36

S 7.5 150 126 126
I

Q8.5 40 60 64
9.5 0 18 20

§10.5 10 2 2
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pine largely because such stands are very homogeneous.

However, natural stands are not so homogeneous and

typically display changes in skew with age. Thus, the

failure of correlation to exist between the parameters

and stand variables used in this analysis might be due

to the small sample and the restricted ranges of the

stand variables.

The second category of problems mentioned in the

introduction is the comparison of expected frequencies

with observed frequencies. Chi—square goodness of fit

was used to test if the ”actual" diameter distributions

were beta distributed. By "actual" diameter distributions,

is meant that the range of diameters was not estimated

by Dmin and Dmax, but rather, the observed values were
used. Although most of the chi~square values were

highly significant, one should not conclude that the

beta distribution is not potentially useful. Before

drawing conclusions, one should investigate the effect

of a larger plot size would have on the chi—square values.

A question of greater importance one should ask is, if

chi—square is really the proper test to use for this

problem being considered? If the model is to be used

to predict volume, value, etc., then it logically follows

that the model should be tested for its precision in

estimating those quantities. Also, the model should be
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tested in its entirety, i.e., with the estimates of Dmin
and Dmax rather than the observed values.

Estimation of the range (Dmin to Dmax) could not be

obtained for the Virginia pine data used in this analysis.

An estimate of Dmin was not attempted because 86 percent

of the plots had their minimum diameters in the one and

two inch diameter classes. This response was not sur-

prising, for it seems to be a property of natural stands

of Virginia pine to retain small, suppressed trees. To

eliminate this problem, it may be necessary to establish

some criteria which could be used to determine the trees

to be measured and those not to be measured. It might be

desirable to simply truncate the distribution because of

a lack of interest in trees smaller than some threshold

diameter.

It is surprising that the upper limit of the range,

Dmax, displayed no correlation with stand variables, for

it is to be expected that tree diameter is functionally

related to age, to site and to stand density. Again,

the small sample and limited range of age, site and

density seemed to be causing the difficulty.



36

CONCLUSIONS

Although the research reported here has not satisfied

its primary objective of a mathematical expression of

diameter distributions in natural stands of Virginia pine,

several constructive conclusions and recomendations are

possible. All of them are offered with the perspective

that research in the interest of advancing growth and

yield techniques in forestry is needed, that the study

has been exploratory to begin with, and that the con-

tributions presented here, however conclusive or trivial,

are the beginnings of a foundation for further research

work.

Certain deficiencies in the study are apparent, if

not obvious. The major deficiency in the statement of

the problem and its conclusion is the lack of a rigorous

criterion, or criteria, for judging the success of a

fitted distribution. Chi—square was used in this project

to test the success of the model, but as the work pro-

gressed, it became increasingly clear that chi-square

was not the best criterion for the purpose of this work.

It is the utilitarian purpose of the model that more

aptly determines its success, for it is the ability to

describe with sufficient precision the attributes of

the forest stand that justly determines whether or not

the model is useful. Therefore, Validation of the model
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should be connected with the forester's interest in

volume, value, quality, cost estimation, return, profit

and any other attributes useful in management of timber.

By far the most important deficiency appears in

imperfections of the data. Although the data were

originally collected to study the growth and silvi—

cultural characteristics of natural Virginia pine in

the mid—Atlantic states, two problems pertaining to

this research are distinguishable. First, plots were

measured in stands containing as little as 10 percent

Virginia pine, while for this project it was necessary

to have "pure“ stands which are defined as those having

80 percent or more Virginia pine. Second, plots should

be located in stands that are previously selected on the

basis of possessing undisturbed distributions, and

sufficiently cover the range of the stand variables.

Elimination of plots from the original 161 because of

contamination with other species and disturbances of the

distributions resulted in a sample of only 51 plots.

This is a plausible reason for the surprisingly low

correlation of the maximum tree diameter with age, site,

and density.

A second fault in the data was the lack of information

on crown position of the trees. The prolonged period of

establishment of natural stands and the relatively short



38

life of Virginia pine results in stands that retain

suppressed and intermediate trees. This may explain,

at least in part, why the minimum tree diameter was not

related to the stand variables. A ossible solution to

the problem would be to admit to analysis only those

trees in the dominant and codominant crown classes.

There is also the unresolved problem of what plot

size to use. The heterogeneity or clumpling of trees

of similar sizes in natural stand of Virginia pine

suggests that a larger plot might better represent

the diameter distributions.
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APPENDIX

Pairman (1919) published in Tracts for Computers, a

set of tables for the digamma and trigamma for arguments

. ranging from 0 to 20. The formulas are divergent infinite

series expansions that converge slightly before diverging,

thus giving an approximation. Eight place accuracy was

claimed for the tables, but to obtain eight place accuracy

for the smaller values of the argument, it was necessary

to use a recursive equation. Investigation of the formulas

developed by Pairman showed that the following ranges of

the argument and the corresponding formulas give at least

eight place accuracy. The formulas for the digamma and

trigamma for an argument between 20 and 60 were found in

The British Association for the Advancement of Science

Mathematical Tables; Volume 1, (1951).

Digamma:

Range of argument 0 to 1

d d _ 1 _ 1 _ 162 l°g *" " 621°9

9**3**where

(·l)IB6 1 1 °° 1:—— log (x+3)! = log (x+4) — —(-——) + X
———————-—

dx 2 x+4
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Range of argument 1 to 2

ää log xi = ää log (x+2)l —
äéä

— §%I

where

·· (-1)*6d 1 1 r—— log (x+2)l = log (x+3) ~ —(———) + Z --—-—-—-
dx 2 x+3 r¥1 2r(x+3)2r

Range of argument 2 to 3

ää log xl = éä log (x+1)l —
iéi

where

2
1-

d 1 1 ° (-1) Br
1og (x+1)l ¤ log (x+2) - ( ) + Za* 7 *+2 1-1 2r(x+2)är

Range of argument 3 to 20

-· (-1)*6d 1 1 r—— log xl ¤ log (x+1) — —( ) + X
—-————7—~d* 2 *+1 1-1 2:(x+1) *

Range of argument 20 to 60

ai log xl =
-1; l0g(x(x+]_)) + E

cu (*1):*1Br
(1-X

2 r=l 2r-l x2r—1 (x+l)2r—1
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Trigamma:

Range of argument 0 to 1

2 2d d 1 1 1log xl ¤ 1og(x+3)! + ~———— + —————— + ———~—-ax2 ax2 (x+2)2 (x+2)2 (x+l)2
I

where

ax2 **4 2 4x+4>2

r=lRangecf argument 1 to 2

2 2d d 1 1log xl = log(x+2)l + ————~— + ————-—dx2 ax2 (x+2)2 (x+l)2

where

2 „ (_Ur+1B
d l 1 l rlog(x+2)l ¤ ——— + (——————) + Z

—~ax2 **3 2 (x+a>2 r=l (x+6)2”*I

Range of argument 2 to 3

·
2 2d d 1——¥log xl ¤ —-¥log(x+1)l + ———~

dx dx
(x+1;§

where

+1 ·

dx x+ 2 (x+2) r¤1 (x+2) r+l
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Range of 3 to 20

r+l

..,¤21¤¤ =<· - gi: + %<-J--? + E
”dx

(x+1) r¤l (x+l)

Range of 20 to 60

-5***216.; xl -
lx}- + —-L-> + [

Q (-l):-B xi- - -—-2-1
3)

dx 2 x x+1 ssl r x2r (x+l) r

The Br's in the above formulas are Bernoullian numbers,

the first twelve of which are:

Bl = 0.16666667 B7 = 1.16666667
B2 ¤ 0.03333333 B8 = 7.0921569
B3 = 0.02380952 B9 = 54.971178
B4 ¤ 0.03333333 B10 = 529.12424

' B5 = 0.07575758 B11 = 6,192.1232
B6 - 0.25311355 B12 = 86,580.253



ABSTRACT

Reported here is an attempt to specify a mathematical

model that might supplement and eventually replace the

yield table for making growth and yield projections for

natural Virginia pine. The model used for these natural

stands was similar to the one developed by Clutter and

Bennett (1965) for planted slash pine. Although a

workable model was not derived, some of the problem

associated with the approach have been defined. In

addition to defining the problems associated with the

approach, a new technique for finding maximum likeli-

hood estimates of a and B was developed.




