The Abstraction Refinement Model and
The Modification-Cost Problem*

Benjamin J. Keller and Richard E. Nance

TR 92-29

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

May 22, 1992
*Also cross-listed as Systems Research Center report SRC-92-002. This work was partially

supported by the Naval Surface Warfare Center, White Oak Detachment, through contract number
N60921-89-D-A239-0015-01.

et er e =

Abstract

A problem common to systems and software engineering is that of estimating the
cost of making changes to a system. For system modifications that include changes to
the design history of the system this is the “modification-cost” problem. A solution to
this problem is important to planning changes in large systems engineering projects.

A cost model based on the Abstraction Refinemnent Model (ARM) is proposed as a
framework for deriving solutions to the modification-cost problem. The ARM is a charac-
terization of software evolution that is also appplicable to general systems. Modifications
to systems and their design histories are described using the components of the ARM.
The cost model is defined by functions on the ARM components. The derived solution

is given by an abstract expression of the cost functions.

CR. Categories & Subject Descriptors: D.2.7 [Software Engineering]: Distribution and
Maintenance — Corrections, Documentation, Enhancement: 13.2.9 {Software Engineering]: Man-

agement — Cost estimation, Life cycle

Additional Keywords & Phrases: Systems Engineering, Design, Modification, Software Evo-

lution, Model.

CONTENTS

1 IntroduehiON . « o v v v e e e e e e e e e 1
9. Abstraction Refinement Model o oo oo o e e 1
2.1. Definitions e e e e e 2
99 Process Model . . . o o ot e 5
9.9.1. Product Construction {Development) ocoov e oo ... 6
292, Product Change (Maintenance) -« « o« oo m e 7

9.3 Abstraction Refinement and Systems Engineering -0 e oo 13
3. Cost MOdel . o v v v v e e e e 13
1 TRBUIEEON « + v o o v o o o v e e e e e e e 13
3.9, Formal Definition« v v oo v oo 14
391, Cost of Selection o o oo 15
3992 Cost of Transformation« - oo 15
393, Cost of Verification« ..o 16
3.9.4. Combining COstS . .« « v o v oo 16

3.3, Cost Of CRANGE .« « « v v o v vw oo s 17
3.3.1. Cost of Modification« oo o e 17
3.3.2. Cost of Upward Propagation« .o oo oo e 18
3.3.3. Cost of Downward Propagation- e vermme e 19
384, SUMIITIATY - « « « « « « v o oo oo oo s 20

4. DITECHIONS - « v o v o v e e e e e e e e 21
A1, ASSUMPLONS . -« o o o v v oo o m o e 21
4.1.1. System SERUCEUTE . . o« o o .o e o 21
419 Abstraction Relation« o v oo 22
4.1.3. Transformation . . - « v oo v o e am e e 22

42, Additional Factors o o v oo e o 22

1. INTRODUCTION

A modification to a complex system consisting of software, hardware, and humanware can affect
all three types of components and shift responsibilities among them. Clearly, the cost of making
modifications to existing complex systems is often very high; therefore, prediction of the cost of a
modification before its application is essential, This problem of prediction, or estimation of the cost
of a modification, is called the “modification-cost problem.”

The modification-cost problem for systems engineering is the following:

e Given a system with its complete set of documentation, and an intended modification of the

system or its documentation,

o Estimate the cost of making the change induced by the modification such that a new system

implementation is found and a new documentation set is formed.
In this problem, the complete set of documentation for a system is all documentation from require-
ments to implementation that describes the characteristics of the sysiem (i.e. a ‘design history’).

This report proposes a solution through the development of a model for estimating the cost
of the intended change. This cost model is based on the Abstraction Refinement Model {ARM),
a model of software evolution [Keller and Nance, 1992]. The ARM, used here for description of
general system evolution, is extended to reflect a different perspective on the activities of system
modification.

This solution assumes a similarity between software and systems engineering that legitimizes
the use of the ARM. For complex systems, the software engineering domain is embedded in that of
systems engineering. That fact does not imply that problems specific to software can be generalized
to systems engineering. However, as illustrated by this report, the modification-cost problem is
one that can be stated analogously for both software and general systems. Both the systems and
software engineering fields undoubtedly benefit from the identification of such common problems
and their solutions. This work is encouraged by related efforts noting the applicability of software
engineering models and frameworks to systems engineering (see [Krieder and Nance, 1991])).

Organizationally, the following section (Section 2) defines the ARM and describes its use as a
system evolution process model. Section 3 defines the cost model built upon the ARM, and Section 4

provides a discussion of the possible extensions of the cost model, and further directions.
2. ABSTRACTION REFINEMENT MODEL

The Abstraction Refinement Model (ARM) is a model of the software evolution process. The

model is first described as a means for characterizing the role of reverse engineering in software
maintenance activities [Nance et al., 1989]. The formal development of the ARM as a model of
software evolution is given in [Keller, 1990], and a less formal presentation appears in [Keller and
Nance, 1992]. The ARM is interpreted in the systems engineering domain below.

The cost model developed in this report is based on extensions to the ARM. Intuitively, the
ARM consists of three types of structures: system descriptions, system description transformations,
and an abstraction relation on the system descriptions. The system descriptions are products such as
requirements, designs or programs. The transformations when applied to these products transform
them into a different product which is possibly less abstract (or more refined). The abstraction rela-
tion indicates whether a pair of system descriptions are related in the sense that one is a realization
of the other.

Discussions of the ARM typically use the term ‘speciﬁcatioﬁ’ to mean a system description
at any level of abstraction. However, the term is more likely to be relative: for a pair of system
descriptions related by the abstraction relation, the more abstract is a specification of the other.
Also, if a is a specification of b then b is a realization of a.

The components of the ARM form the primary interest of the model, and are given more detailed
definitions below. A description of how these components can be used to represent the process of

software evolution establishes the foundation for the extension to system evolution.

2.1. Definitions.

The three basic components of the ARM have more formal representation in the model. For-
mally:

(1) system descriptions are elements of langnages,
(2) transformations are mappings on these languages, and
(3) the abstraction relation is a preorder on the elements of these languages (a preorder is a
reflexive and transitive relation).
The ARM is 2 collection of languages, called a language system, and a collection of transformations.
(The definition of the ARM here, is more general than that given in {Keller, 1990].)
A language system is a family of languages and a collection of preorders on the languages; so that

elements of one language can be related to elements of the others.! (Language systems are discussed

briefly in [Keller, 1990], but the details of their definition are unimportant for the purposes of this

1Far complex systems, a ‘language’ would consist of sublanguages for software, hardware and humanware.

report.) The interpretation of the preorders is that if a T b, then ¢ is a correct realization of b. The
act of verifying that a realizes b, is a “proof” that e b

The preorders give the language system a structure based on abstraction, and for the purposes
of this study the distinctions among languages are non-essential. Therefore, the language system is
considered to be a set L with lattice-like structure. This defines the “space” on which systems can
be defined, developed, and maintained. Note that these three terms are typically associated with
successive periods in the life of a software system: definition (requirements), development {design,
implementation, test) and maintenance. Coupling the three leads to the more descriptive term
“goftware evolution.”

Symbolically, the language system is the pair (L, C) where Lisa “language,” and T is a preorder
on [, meaning C is a relation on L such that

(1) foralll € LITI (reflexive)

(2) ifeaCband bl c then a C ¢, for a,b,c€ L (transitive).
The component L could be described as a wide-spectrum language [Neighbors, 1984; Keller, 1990],
i.e. a language in which products from requirements through implementation can be expressed.

Transformations are mappings on this structure. A transformation from a to b, denoted i : a
b, is a mapping t : L — L such that #(a) = b. This definition means that any mapping that takes
a to b is suitable to serve as the transformation from a to b. The collection of transformationis is
denoted T, and defined as 7= {1 :a — bla,be L,t: L — L}

The ARM is the pair {{L,C),T), where (L,5) is a language system (with one langnage) and
T is the set of transformations on L. A language system and set of transformations is sufficient to
describe software evolution.

As indicated above, the abstraction relation, the preorder g,.models the correctness relationship
between pairs of system descriptions. Using this order we can define the sets of realizations for a
specification. For an arbitrary set of system descriptions S C L and a system description s € L, the
collection of realizations of s in 5 is S(s]={peSirL s}. Similarly, the set of specifications of s
in S is S[s) = {p € S|p2 5}. So for any system description s € L, its specifications are L[s) and
its realizations are the members of L(s].

The collection of realizations of a system description s could be depicted as in Figure 1. Each
node in the diagram represents a system description, and the node at the top represents s. The

lines show the abstraction relation: if a node a is above and connected to a node b by a line then

R

Figure 1. Abstraction Structure of the ARM

the system description a is a specification of the system description b. These diagrams are intuitive
representations of the model, and should not be confused with the model itself. The structure of the
| diagram is based on the assumptions about (L, C} in [Keller, 1990, p.46]. These assumptions have
not been shown to be applicable to arbitrary language systems and are not used here other than for
the diagrams.

Thus far, the relationship between the abstraction relation and the transformations has been
ignored. Generally, transformations model an action on a system description either in a forward or
reverse sense. A transformation t that maps a to b is called forward if a 23 b, and reverse ifaC b
Note that a transformation need be neither correctness preserving (a J b) nor directed (forward or
reverse).-

In the discussion of software evolution, and software development in particular, the notion of
a system contert is important. Informally, this is the set of documentation produced during the
development of a system (with a few provisos). Formally, the conterst from a system description s is
a pair {SD,, T}, where

(1) SD, ={s:i € L|s=s0,0 <i< n}isaset of system descriptions, and
(2) T, ={t:s+— si41]0 i< n} is a set of transformations on SD;.
Ideally, a context is a “chain” of system descriptions and forward transformations such that s —

§L 6. 81 S and s 7 51,51 J 52, ---, 82 O sp—1, and sp—1 J $n-

[

(a) (b)

Figure 2. Diagrams of a Systems Context in the ARM: (a) in Reference to the

Abstraction Structure, and (b) Alone

The context of a system s can be diagrammed in two ways. Figure 2(a) shows the context

with respect to the rest of the model, and Figure 2(b), with just the system descriptions and

transformations.

Recall the notation for realizations. For contexts, SD,(p) is the set of realizations of p in 5D,.

Sometimes, it will be necessary to denote the system descriptions “helow” some element p € SD;

in a context € = (SD,,T;). This s denoted C|, and is (5D, 1p,T5lp}, where
(1) SD,l, ={s: € SD,|t:pw 8,1t €cl(Ty)}, where cl(T) is the collection of functions formed

by the composition of transformations in T, and

{2) T.lp is the set {t € T,|3s0,51 € SDylp,t: 50— 1}
The distinction between SD,(p] and SD;lp is that the first is the collection of realizations of p

in the context and the second is the collection of system descriptions in the context found by trans-

we want these sets to be identical, and this is the ideal context described

helds for all p € SD,. Alternatively, this is

formations on p. Clearly,
above. In this situation, the condition D], = SD; (]

the requirement that the transformations in the context yield correct results.

2.2. Process Model.

The role of the ARM as a model of the software evolution process is detailed elsewhere [Keller

o e

and Nance, 1992} and briefly described above. The elements of [are the software objects on
which the process acts. The preorder C on L models correctness between system descriptions, and
the elements of T represent the process actions. These combine freely to describe many different
approaches to software evolution in terms of the underlying process.

Diagrams play an important role in the visualization and understanding of the ARM. The two
diagrammatic forms used are shown in Figure 2. We caution that these diagrams are not the model
itself but a graphical representation of the model. (In addition to these diagrammatic forms, we
also use commutative diagrams. These diagrams are directed graphs with nodes representing objects
of some kind and edges representing “mappings” on the objects. A diagram commutes when the
“mappings” represented by two paths from the same source node to the same target node are equal.
Essentially, a commutative diagram is a graphical representation of an equation. For more detail

see [Barr and Wells, 1990, pp. 76-82].)
2.2.1. Product Construction (Development).

The “evolution” of a software product begins with definition. System definition as the precursor
to development is realized through activities that could be described as requirements engineering,
which takes the “customer’s” view of the product and transforms it into the “developer’s” view as
shown in the following diagram.

U _ﬁL 5
The developer’s view is essentially the requirements specification for the product. Alternatively, the
result of the requirements engineering activities is the context {{so}.).

Note that the ARM provides a partial representation of the requirements engineering activities.
The model only represents the space of developer’s views. Therefore, only the effect of requirements
engineering can be represented, i.e. the selection of the system description sq from L based on the
external U.

Once the requirements are stated in the developer’s terms (i.e. as an expression in L), refinement

can begin. Refinement is represented as transforming sg to some s by a transformation ¢;, as shown

by
U_@E_, 8

~
RE;\\ [tl

81

This transformation changes the context to ({sg,s1}, {t1}) (in the terminology of [Keller and Nance,
1992] t; narrows the context). The dashed arrow is intended to show an implicit requirements
engineering activity produced by first doing RF and then ;.

Following the completion of development, a context {{sq,...,sn}, {t1,... ,24}) has been con-

structed with the diagram
y —EBE

S

v\\"-..__
N Ty l.tl
AN

N
AN 51

NN, (1)

AN
N Sn—1

\, It

where sy, is the implementation-level system. One possible realization of diagram (1) in terms of the
model is shown in Figure 2(a).

Note the apparent (or irnplicit) assumption in this representation that a purely top-down ap-
proach is being taken. This is not necessarily the case. The ARM is capable of representing rapid
prototyping [Keller, 1990] and in fact diagram {1) is very similar to the description of development
through rapid prototyping by Rattray and Price [1990, p. 96]. The intended structure of a context,
however, does correspond to that produced by a top-down approach (the system descriptions form
a chain with respect to the abstraction order). Nevertheless, an iterative process could result in a
context which gives the appearance of a top-down approach {consider how proofs in mathematics
are first developed and then later refined). (See [Parnas and Clements, 1985; Lano and Haughton,
1991].) Therefore, the assumption that a context is created by the development activity places no

constraints on how this developmental activity is performed.
2.2.2. Product Change (Maintenance).

The activities that effect changes in a software system are generally termed “maintenance.”
These activities contribute to the evolution of the system. The description of maintenance given
here emphasizes how a modification might be approached, differing from [Keller and Nance, 1992]
which emphasizes description of maintenance forms.

A change initiates with a modification request from the ‘customer’ to be applied to a software
system with an existing context. The modification request is effectively a transformation M R on

the customer’s view of the system, that is to be paralleled by a change in the developer’s view of

-1

f |
S:' Si'
[i+f 1 & I" + 1‘

Sie1 Sivt l

! ¥

8.1 Sn—ll

tnl *)

8, Sn'

Figure 3. Current and Objective Contexts

the system. This perception leads to the diagram

U MR U!

W |

¢ —C

M
which indicates that the effect of making the modification M should be the same as beginning over
with the customer’s revised view and redeveloping {Yau, 1984, p. 14].

The pervading question is: How is M to be produced from transformations on the elements of
the context? The situation is described by the diagram in Figure 3, where the left side is the context
¢ and the right side is the context ¢’ 2 How a change is represented depends on the objective of the
change. If the objective is just to produce a new implementation s, then the context need not be
preserved, but if the objective is to praduce a new implementation in its contexzl, then the context
must be preserved.

If context preservation is not an objective then the general form of a change is given by Fig-
ure 4. This diagram shows (1) a horizontal transformation making the change, and (2) forward
al transformation is made

transformations producing the new implementation. If the initial horizont

at the implementation level, the need for the refinements is eliminated.

er of system descriptions despite the obvious interpretation

271t is not necessary that C and C' contain the same numb
0 < i < n, and larger by imtroducing

of Figure 3. ¢’ can be made smaller than C by letting s} = s}, for some
“invisible" system descriptions between s; and shig-

3
|
7
=
w
[l
7]
= -
v
I
n
=
w
|
)
<

-
—
e
i —

~
—

-

—
e
i

o
.

5y 5y’ $1 @ | s
f ’ i i
¢i 'v 3. ¢l' '
e ——men .
L', ‘ @ ‘ t£+1' by # Q@ ‘ t£+1.
Sivs Siel Sivs Sisl
i @ | i @ |t
Sp-1 Su-t ' S"'I Sp1 '
L v b tJ ‘ f o
Sﬂ Sn' Sn Snl
Figure 4. Non-Context Preserving Change Figure 5. Context Preserving Change

Redevelopment also gives an alternative that is not truly context preserving. The approach is to
scrap the existing system and its context and to begin over. Such an approach produces an entirely
new context and system which is unrelated to the existing context (in practice, this is probably
never accomplished so cleanly).

For context preserving approaches, the challenge is to make a change at some appropriate level
and then propagate the change throughout the context, shown in Figure 5. As before, (1) a horizontal
change is made, and (2) the result is refined to a new implementation. However the context above
the change must be made consistent with the rest (3).

This form of change corresponds in some ways-to the approach described for maintenance using
the ARM [Keller, 1990; Keller and Nance, 1992). That approach casts the goal as finding the least
common abstraction of s, and s (this is a system description « such that o is the least element of
L that satisfies s, € « and 8], C) denoted s, U s, and the least common context element.® The

task is to complete the context from the least common context element to sy, Ll s}, and refine s, Ll s/,

to sy, (see [Keller and Nance, 1992] for more details).

3In the generalization of the ARM a least common abstraction of arbitrary system descriptions is not guaranteed to

exist.

w
|
ta
@
17
]
@
o

4 ‘ t]’
8 Sy
4 i
8 8
: e
'
L 6/
i
B E
Y I 1o
Sp-1 Sp.1

t, ; ‘ tn'
8, sn'

Figure 6. Change with Coinciding Contexts

The approach here is slightly more general (and possibly more feasible). The change is made at
some level of abstraction on the system description s; (see Figure 6). The change is made (1) using
a transformation ¢ that takes s; to the new system s{. Then (2) an ancestor of s, Us;, is found in
the original context, sj = s} in Figure 6, above which the contexts coincide. The context must then
be completed from s; to s;. Finally, (3) the change must be propagated to a new implementation
8.

A possible complication in the second step is that s, U s}, has no ancestor in the context. In
this case, s; is the wrong choice for the change and in fact the change should be made to sy since
the contexts do not coincide, shown in Figure 7. The change represented here is too major (or too
“abstract”} to be made at the level of s;. In general, finding the level “closest” to the least common
context element reduces the effort involved in the context completion step {2). The case where
contexts do not coincide is best approached by changing the highest level as shown in Figure 8.

Note that propagating changes (the third activity in all diagrams) does not neceséarily mearn
discarding the context below the change. A change, a horizontal transformation, may add, delete
or modify the components of the system description to which it is applied. Provided sufficient

traceability is included in the context, the changes can be propagated through the realizations of

the system.
The idea of change propagation may be thought of in a different way. A part of the original

10

§=8, §'=sy §=5p §'=3,
e renre—————
| fu | ® oo
8, @ sy 8 s’
i N Vi f f
sl i S‘I S‘- Sl.
—————————-
bist ; @ ‘ but b ‘ @ * bel
Sl-_” Si-H'r SI+I SI'+II
i @ |t i !
s?l-f Sn.)) SJ'I-I S}t— ¥4 I
£ t l ‘ .
t.n L ' ‘ n n ' tn,
5, SMI Sn Sn‘

Figure 7. Improper Change with Figure 8. Proper Change with

Non-coinciding Contexts Non-coinciding Contexts

context with the change ¢g applied to s; is represented by the diagram

tml (2)
Sip1

In order to find the completion of the new context for diagram (2), we need to find a sl ; and
transformation #},, that takes s to s{;,. This is shown by the diagram

l

§; ———— 5
tml ltz-ﬂ)

i
Sipl T S

¢1

In mathematics, diagram (3) is called a pushout (from category theory, see Barr and Wells [1990]

for an introduction).
Diagram (3) is also very similar to one for the integration problem addressed by the HPR-

algorithm [Reps, 1991]. The integration problem is: given an original program base and two programs

11

a and b that are modifications of base, find a program a[base]b that integrates a and b so that the

changes are consistent. This is similarly diagrammed as

m
base ———— b

mzl lm’g

a ——— a[base]b
m

where my,], ma and m} are modifications on programs. Taking

(1) s; to be the base,

(2) ¢g to be my,

(3} tiy1 to be ma,

(4} $i41 to be @ and

(5) si to be b,
the task of making the change is essentially an integration problem. This suggests that the HPR-
algorithm may give a suitable tool for propagating changes in a context. Currently, however, the
algorithm is only usable for programs in a restricted langnage.

Despite the limitation of the algorithm, the analogy between integration and change propagation
suggests another approach to making changes that is shown in Figure 9. In this approach, (1) the
change is introduced through a horizontal transformation, and then propagated in both directions,
(2) and (3), through the context. (Note thait the upward propagation does not have the same
structure as the downward and maj not be performed in the same way.)

Context changes in which the context is preserved have been described in several ways. However
each consists of three subordinate activities: (1) a horizontal transformation representing the change,
(2) propagation of the change upward in the context, and (3) propagation of the change downward
in the context. When the context is not preserved, upward propagation is ignored.

The description of maintenance given above focuses on individual maintenance tasks. In the
characterization, each modification takes a context C to a context C'. (C” becomes the current

context, but it is not clear what happens to €. The two possibilities are that

(1) C is forgotten, or
(2) C is retained through some mechanism not represented by the model.

The choice between the two depends on what information is necessary for continued maintenance®

and is not relevant to this report.

4The set of documentation needed for maintenance is discussed by Nance et al. [1989, p. 24].

12

—_— | - '
S_SO_-——-—_-_ 8 —SO

31 l @ L 4
I e T
e)

————p— ¢
ti+1 } ® { t¢+l'
854t _"'S:H-I
.

1
SH-I —--—-—n———’— Sn-l

o K

1
I —

Figure 9. Compleie Context Preserving Change

2.3. Abstraction Refinement and Systems Engineering.

Although the ARM is a model of software evolution, the general form presented here can be
extended naturally to the systems engineering domain by interpreting system descriptions as combi-
nations of specifications of the software, hardware and humanware components of the system. The
abstraction order and transformations can be defined in terms of abstraction orders and transfor-
mations on the software, hardware and humanware domains. Using this interpretation, the ARM is

a model of the system evolution process similar to that described for software.

3. CosT MoDEL

The modification-cost model is developed from the Abstraction Refinement Model, described
in the prior section. The intuition behind the cost model is given first in order to motivate how the
ARM is used as a basis. Then the cost functions are defined on the ARM components, and, finally,

the functions are used to consider the cost of changes.

3.1. Intuition.

To develop the cost model from the ARM, an understanding of how activities in the system
engineering domain are represented in the model is necessary. The ARM components are the system
descriptions (L), the abstraction order (C), and the transformations (7). These components depict

the system evolution process by treating the transformations as actions on the system descriptions

13

Choose
Action

Perform
Action

il
Verify
Result

L

Figure 10. Design Step in the ARM

and the order as the means for verifying correctness of the result.

A design step in the system engineering domain can be rather complex, involving determination
and evaluation of alternatives before choosing and executing an alternative. In the ARM this step is
much simpler. Starting with a system description, a transformation is selected, the transformation is
applied, and the result verified. These three steps generate a system description, to which the steps
are iterativély applied until some stopping criterion is met. Figure 10 shows this iterative process.®
This is essentially the “basic design step” described by Lehman et al. [1984, pp. 42-44], and the
“eyolutionary process” of design of Dasgupta [1991, p. 77].

The three steps: (1) select action, (2) perform action, and (3) verify result, engender three
costs:

(1) select action: the cost of determining which transformation to apply (i.e. making a design
decision),

(2) perform action: the cost of applying the transformation, and

(3) verify result: the cost of assuring that the action taken produces the desired result.

At this point, these three components are believed to characterize sufficiently the cost of a software

development or change process.

3.2. Formal Definition.

The basis for each of the cost functions is described in the following paragraphs. The discussion

5This diagram is a representation of the three steps in the ARM, and is by nature “information-deficient.” A
methodology should provide information on how these steps ate to be achieved (see [Krieder and Nance, 1991]).

14

of costs is limited to the implications for the representation with respect to the ARM. The basis for

cost value assignment is treated in Section 4.
3.2.1. Cost of Selection.

The cost of making a design decision is the cost of selecting a transformation. This cost function
is defined as a mapping x : L — R that assigns real-valued costs to the system descriptions. So
x(a) for a € L, is the cost of deciding how to proceed from the system description a. This cost is
assumed to be independent of the last transformation applied; it is dependent only on the current
system description.

Intuitively, this cost is somehow determined by the factors:

(1) The “location” of @ in the langnage system (L,C) (i.e. how many realizations of a are there
in L, or what is |L{a]|?).?
(2) The extent to which the methodology limits the selection of transformations.
(3) The extent to which the methodology aids the selection of transformations.
The first two factors are related: the number of transformations possible from a is |L{a]|. So if the
methodology limits the selection in some way, the choice is bounded by the number of realizations.

The third factor depends on the methodology providing means to make the selection; i.e. evaluative

guidance in comparing alternatives.
3.2.2. Cost of Transformation.

The cost of a transformation is defined by a mapping 7 : T — R.. Recall that transformations
are defined as mappings that take a source to some target system deseription, so each transformation
is associated with a source-target pair. Thus when 7is applied to?:a+— b, r(t) is the cost of finding
b from a with ¢. Two transformations ¢ : @ = b and ' : @ > b can exist such that r(l) # 7).

The cost function is assumed to meet the following conditions:

(1) The cost of performing a transformation depends solely on the system description to which
it is applied.
(2) The cost of the composition of two transformation is the sum of their costs.
The second assumption, 7(t o #) = r(f) + r{t'), allows the definition of the cost function to be
completed by assigning costs to the “basic” transformations (i.e. those that cannot be decomposed).
In justification of (1) above, the transformations : a +— b and ¢ : b — c are dependent

in the sense that # depends on b, the result of ¢. It might be argued that if ¢ is misapplied it

$For a set A, |A] is the number of elements in A.

15

affects the application of #'. However, this is not the way the ARM represents the process. The
application of ¢ corresponds to some action in reality. If the action in reality is misapplied, then some -
other transformation ¢, : @ — b Tesults (in the model) and ¢’ cannot be applied unless b = &'. A
transformation ¢} : & — ¢, might exist and permit recovery, but the cost of the mishap is accounted
for by T(t1) + 7(t}) and not () + (). Note that independence among transformations suggests
the additivity of transformation costs.
3.2.3. Cost of Verification.

The cost of verification is defined by a mapping » : L x L — R. The cost of verifying “b is
a realization of a,” i.e. a 2 b, is v(a,b) which is a constant regardless of the steps taken to find
b from a. (Note that in the case of a methodology that enforces the use of correctness preserving
transformations consequently having no explicit verification step, this cost is zero).

Consider the diagram

PN
b\ /c
d

{(meaning a 2 b,e 3 ¢,b J d,c 3 d). In this case, the cost of verifying a dis v(a,d) =
v(a,c) + v(c,d) = v(a,b)+ v(b,d). A generalization of this rule is the following: for the chain
@ =by3--- 0 b, =d the cost of verification is v(a,d) = S v(biy bis).
3.2.4, Combining Costs.

The basic process step is made up of the activities select action, perform action, and verify result.
The cost of performing such a step from system description a to system description b (i.e. the cost
of implementing a by) is x(a) + 7(t) + v(a,}), the sum of the costs of selecting a transformation
t:a s b, applying t, and verifying b. The “cost” of a context is given by the cost of its components.
The cost of implementing a by d using the chain {context) a = bp A --- 3 bn = d and composite

transformation £ : @ — d is

n—1
7(8) + vla,d) + Y x(bi)-

i=0

This is probably not the actual cost of the implementation steps taken from a to b since the context
may only reflect the “logical structure” of the development and not the more probable iterative path.

(This value is probably a lower bound on the actual cost).

16

3.3. Cost of Change.

The cost model is intended to address the estimation of the cost of a change. Below, this
problem is restated and explored using the ARM as a process model.

The ARM characterization of changes, given in Section 2, focuses on the changes with respect
to the system context. The general form of such a change, shown in Figure 5, consists of (1} a
transformation ¢q which makes the change, (2) propagation of the change up the new context, and
(3) propagation of the change down the new context. The modification-cost problem needs to be

rephrased in terms of this general form.

PRrOBLEM 1 (MoODIFICATION-COST). Given a context C' = (SD,,T;) with implementation s, and
a modification ¢y from s; € SD; to s; & SD,, determine the cost of making the change induced by
¢g such that:

(1) a new implementation s;,, s; 3 s,, Is found, and

(2) a new context C’' = {(SD,, T.} is formed where s, sy, € SD;.
If the context is not of concern, then (2) can be omitted.

One possible solution is given in terms of the characterization. The cost of making the change
is the cost of propagating the change up and down the context. Of course, if context preservation is
not a goal, the cost of upward propagation is not an issue.

Formally, the cost of the change is

7(¢o) + C(C'Ly) + C(C"\C'Lsr) {4)

where

(1) 7(¢0) is the cost of the initial modification,
(2) C(C|s:) is the cost of propagating the modification downward, and
(3) C(C"\ C’ 1,+) is the cost of propagating the modification upward.

Each of these costs is considered individually in the following sections.
3.3.1. Cost of Modification.

The initial modification is represented by a transformation ¢o which takes s; to s;. The cost
of ¢y is given by T(¢p). This section presents a classification of such transformations, and then

discusses some factors that might influence their performance and cost.

17

Although not required, we assume that a modification does not have a target at a different
level of abstraction. In the ARM this is called a horizontal transformation. Let ¢q : s; — s} be a
horizontal transformation and consider the possible actions of ¢g.

If 5; = s}, then s; and s} are equivalent in terms of correctness (i.e. the modification was
probably motivated by some other objective). In this case the modification can be made using
“algebraic” rules (like the laws of programming [Hoare et al., 1987}) to manipulate the description.
The difficulty of making such a modification can vary. greatly, but the costs could be determined for
each rule.

The remaining forms of transformations ¢o produce an s} such that s; # ;. These are trans-

formations that do one or any of the following to the components of a system description:

(1) delete components,

(2) add components, and

(3) modify components.
In general, a modification causes the deletion, addition, and alteration of several components of s;.
Such a modification should correspond to a transformation that can be decomposed into transfor-
mations for each deletion, addition or alteration. Thus, the cost of this type of iransformation might
be decomposed into the costs of the component deletions, additions, and alterations. (Additional
discussion of modifications can be found in [Ramalingam and Reps, 1991].)

Earlier, the existence of an “appropriate” level for a modification is discussed. While this level
is not defined formally, it is the level at which the modification is most “natural”’ Clearly, the
ease with which a transformation is made affects its cost; therefore, the level of the transformation
is a factor. (Note that the ARM does not represent the activity of finding a modification from a
modification request. Finding the “appropriate” level for modification is part of this task, the cost

of which is not included in this model.)
3.3.2. Cost of Upward Propagation.

Similar to the case for modifications, the cost of propagating the change upward through the
context is affected by the approach taken. Unfortunately, this task is not very well understood, so
the approaches available are limited. The approach considered here is that discussed earlier in the

presentation of the ARM.

This approach begins with finding an element s of the original context such that the least

7 A more formal meaning of “appropriate” level in terms of contexts is discussed below

18

common abstraction of s; and s} is its realization (i.e. s 2 s;1s}). Then starting with s, completing

the context through s; U s} to si. This divides the task into the following steps:

ALGORITHM 1.

(1) compute s; U s,
(2) search for s € C (the original context) such that s O s; U s},
(3) complete the context from s to s; U s}, and

{4) complete the context from s; Uss} to si.

Of course, a context element s such that s J s; U s} may not exist. In which case, the search,
step 2, fails.

The meaning of this failure is that the modification should have been applied to the most
abstract element in the context. This is one sense in which a modification is not at the “appropriate”
level, the more general meaning concerns the amount of searching required to find s in the context.

An algorithm to search for s is:

ALGORITHM 2.

() letj=i—1
(2) if s; O s; U s; then stop (5= s;)
(3) otherwise, let j =j+1 and repeat the second step.

Ideally, the check in the second step should not have to be repeated. If the modification is made
at the “appropriate” level, the next highest system description should be an abstraction of both s;
and s}.

Consider the cost of this approach for each step. The cost of computing s; U s} is dependent
on the ability to perform reverse engineering {which currently is not very good). The cost of the
search for s is the cost of checking s; 2 s; U s} for every s; between s and s; in the context (an
improved search would reduce this cost). With the search algorithm described above, the cost is
O(v(sk,5: 1 51)) where v(s, s; Ui s}) is the maximum such cost. The cost for completing the context
is the sum of each transformation step required (i.e. x(a) + 7(t) + v(a,b) for each specification-

realization pair in the new context).
3.3.3. Cost of Downward Propagation.

Downward propagation of changes in a context provides three options in approaches. The first

is redevelopment from s!; the second, component-wise refinement of the modified components in sj;

3

19

and the third is use of the (integration) HPR-algorithm. The costs for each of these approaches is
described below.

Redevelopment from s} can be carried out by the same methods used originally in development.
The original context is not utilized and the cost is simply the sum of the cost of the design steps
taken (x{a) + () + v(a, b) for each step taking a to b).

Component-wise refinement requires the identification of the components of s, which are dif-
ferent from those in s; and refining them through the old context. The goal being to refine those
components that differ in some way and leave the others alone except to deal with interface changes.
The cost function has a similar form to that for pure redevelopment.

The component-wise refinement approach is similar to that of using the HPR-algorithm (for
integration). Both approaches require the identification of changes and the combination of these
with refinements. The “integration” approach would have as cost the sum of costs for each square

like
o

Sk ——u—;s'k

tk-l-l[It'k-+1

!
Sp41 =S4

B g1

from s; to s,. An estimation of this cost is that it is proportional to the computational complexity

of the algorithm to find s/, 11
3.3.4. Summary.

The cost of making a change is decomposed into the sum of three costs as indicated by equa-
tion (4):
(1) making the modification from s; to s,

(2) propagating the change upward, and
(3) propagating the change downward.

These costs are defined by the functions:

(1) cost of a modification: 7(¢g);

{2) cost of upward propagation: O(v(s, s;Us!))+7(t)+7(t’), where s is the least common context
element, ¢ : 5+ (s; i s}) and ' : (s; U s?) > si; and

(8) cost of downward propagation (taking either the redevelopment or component-wise refinement
approach): 7(t)+v(s}, 5,)+ 227, x(s}), where s/, is the implementation of s}, and ¢ : 5} — s/,.

20

4. DIRECTIONS

The cost model described in the Section 3 allows the statement of an abstract expression as a
solution to the modification-cost problem. This expression can be made usable by the assignment
of costs, or the definition of the cost functions X, ¥, and 7. Without the ability to assign values to
X, ¥ and 7, the ARM remains too abstract. Further application requires a means of defining these
functions.

The problern is that the ARM components are extreme abstractions of real systems engineering
methodology elements (operations and productions). A useable cost model needs more specific
Instantiations of, or assumptions, about the ARM components. In addition, a number of factors can
influence the cost. The model can be made more accurate by making assumptions that reflect the

influence of these factors,

4.1. Assumptions.

For the cost model to be minimally usable, the cost functions must be defined. Defining the

cost function requires the following:

(1) Making assumptions about the structure of system descriptions. In particular, the number
of different structures and the means for combining them.

(2) Making assumptions about the abstraction relation on system descriptions (i.e. what struc-
tures can be refinements of others).

(3) Determining the costs of transformations.

4.1.1. System Structure,

One approach to system structure is to assume that a system is represented by (finite) directed
graphs. In these graphs, nodes are system components and arcs indicate relationships between
components. This 1s a popular approach for system representation in tools (tools for integration
[Reps, 1991], and for maintenance [Yau, 1984]), and directed graphs have an easy extension into
categorical constructions [Rattray and Price, 1990; Burstall and Goguen, 1977].

In general, systems are typically built from a small set of atomic components or generators.
Regardless of the representation used, an assumption about these generators needs to be made. One
possibility is to assume particular sets of generators, but a more abstract approach is to assume a
finite number of types of generators. Other types of system components can then be built from the

generator types (i.e. defining a type theory [Cardelli and Wegner, 1985] for systems).

21

4.1.2. Abstraction Relation.

Two possibilities apply to assumptions about refinement, depending on how the generators are
approached. The first is to define the abstraction relation on the generators and then extend it
based on the construction of larger components. The second defines refinement types using the type
theory.

An example of refinement on types is refinement in the wide-spectrum language Extended ML
(EML) {Sannella and Tarlecki, 1986]. In EML there are two types of system descriptions: signatures
and structures. The abstraction relation is defined on EML so as to allow a system description of
each type to be realized by another system description of either type. Therefore, a signature can
be refined as either a signature or structure and a structure can also be refined as a signature or

structure. One of these refinement types, structure — signature, is counter-intuitive.
4.1.3. Transformation,

The determination of transformation cost requires experimentation. In both approaches to
defining refinement, the cost of making a refinement transformation would reflect our “experience”
with either particular or classes of transformations. For example, with EML refinements, the sig-
nature — signature type refinements might be the easiest and structure — signature type
refinements the hardest. In which case, the signature — signature refinement would be assigned
a lower, and the structure — signature refinement, a higher cost than the other types.

‘The most general approach seems o be to assign transformation costs on the basis of experience
with types of transformations. Having a small (discrete) number of refinement forms should make
cost assignment easier, indicating the advantage of formal language systems (or formal Linderstanding

of langnage systems).

4.2. Additional Factors.

Making these assumptions should help make a more usable cost model. The model is only
approximate due to cost factors that are not explicitly addressed by the ARM or the extensions
described above. A few of these factors are:

(1) How design decisions are made,

(2) How design alternatives are identified.

(3) What type of design action is taken (redevelop, reuse, propagation).
(4) How design actions are performed.

(5) How design actions are influenced by product quality.

[
L

(6) Whether the set of principles, methods or tools employed is

{1) fixed or variable,

(2) complete and sound,

(3) redundant, and

(4) correctness “preserving”.

(7) Whether the design action uses heuristics (optimizing or satisficing).

These factors affect the accuracy of the cost model, and their influence should be reflected in the

cost functions.

BIBLIOGRAPHY

Barr, M. and Wells, C. (19903, “Category Theory for Computing Science,” Prentice-Hall, London.

Burstall, R. M. and Goguen, J. A, (1977}, Putting theories together to make specifications, in
“IICAI-T7,” pp. 1045-1058.

Cardelli, L. and Wegner, P. (1985), On understanding types, data abstraction, and polymorphism,
Computing Surveys 17, 471-529.

Dasgupta, S. (1991), “Design Theory and Computer Science: Processes and Methodology of
Computer Systems Design,” Cambridge University Press, Cambridge, UK.

Hoare, C.A.R.; Hayes, 1. J.: Jifeng, H.; Morgan, C. C.; Roscoe, A. W.; Sanders, J. W.; Sorensen,
L H.; Spivey, J. M. and Sufrin, B. A. (1987), Laws of programming, Communications of the
ACM 30, 672-686.

Keller, B. J. { 1990), “An Algebraic Model of Software Evolution,” M.S. Thesis, VPI&SU.

Keller, B. J. and Nance, R. E. (1992), Abstraction Refinement: « model of software evolution,
Journal of Software Maintenance: Research and Practice {to appear).

Kreider, D. K. and Nance, R. E. (1991), Objectives, principles and attributes: g structured ap-
proach to systems engineering, Naval Surface Warfare Center Technical Digest, 22-31,

Lano, K. and Haughton, I, (1991), A specification-based approach to maintenance, Journal of
Software Maintenance: Research and Practice 3, 193-213.

Lehman, M. M ; Stenning, V. and Turski W. M. (1984), Another look at software design method-
ology, Software Engineering Notes 9, 38-53.

Nance, R. E,; Keller, B. 1. and Boldery, D. (1989), “Documentation Production Under Next
Generation Technologies,” Technical Report SRC-89-001, Systems Research Center, VPI&SU.

Neighbors, J. M. (1984), The Drace approach to consiructing software from reusable components,
IEEE Transactions on Software Enginecring SE-10, 564-574.

Parnas, D. L. and Clements, P. C. (1985), A rational design process: how and why to fake 3,
in “Formal Methods and Software Development,” vol. 2, LNCS #186, H. Ehrig, C. Floyd, M.
Nivat, J. Thatcher (eds.), pp. 80-100.

Ramalingam, G. and Reps, T. (1991), A theory of program modifications, in “TAPSOFT 91,
LNCS #494, 8, Abramsky, T.S.E. Maibaum (eds.}, Springer-Verlag, Berlin, pp. 137-152,

23

Rattray, C. and Price, D. (1990), Sketching an evolutionary hierarchical framework for knowl.
edge-based systems design, in “Computer Aided Systems Theory — EUROCAST ‘89,” LNCS ,
#410, F. Pichler, R. Moreno-Diag (eds.}, Springer—Verlag, Berlin, pp. 360~374,

Reps, T, (1991), Algebraic rroperties of program tntegration, Science of Computer Programrning
17, 139-215.

Sannella, D. T. and Tarlecki, A. (1986), Exrfended ML: an insiz’tution-independcnf framework for
Jormal program development, in “Proceedings of the Tutorial and Workshop on Category Theory
and Computer Programming,” LNCS #240.D. Pitt, S, Abramsky, A. Poigné and D. Rydeheard
(eds.), Springer-Verlag, Berlin, pp. 364-389.

Yau, §, (1984), “Methodology for Software Maintenance,” Final! Technical Report RADC-TRS3
-262, NTIS -AD-A143~763/1.

24

