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(ABSTRACT) 

Research has established that correlations exist between bending and tension, and bending and 

compression strength of lumber. Because of this correlation, improvement in bending strength may 

be realized from proofloading in tension or compression. 

The data utilized in a reliability analysis was from Galligan et al. ( 1986) that characterized the 

properties of 2-inch softwood dimension lumber with regressions and probability distributions. 

Randomly selected groups of 2 by 4 i650f-i.5E Hem-fir and No.2 KD Southern Pine were evalu-

ated for bending strength. One group from each species was selected as a control and tested in 

bending. The other groups were proof1oaded in tension and compression at two stress levels and 

the survivors were tested in bending to failure. 

Based on the concept of equal reliability and utilizing the load distributions from Thurmond 

( 1986), the tensile and compressive proofloaded strength distributions were compared to the con-

trol. The probability of failure for the control group is found, then with an iterative approach, the 

bending strength values of the proofloaded sample distribution are artificially altered by a factor K 

until the probabilities of failure for the proofloaded and control groups are similar. The K is a shift 

factor relating the amount the proofloaded strength distribution must be shifted on the x-axis to 

give the same reliability as the control. 



Simple 5th percentile comparisons, the advanced first order second moment (AFOSM) and 

numerical integration analysis methods were used to evaluate increases in allowable bending 

strength from proofloading in tension and compression. Proofloading in tension or in compression 

both produced significant increases in allowable bending strength for the Hem-fir grade. 

Proofloading in tension to a target 15 percent breakage level, or 2,838. psi, yielded for the survivors 

an increase of 72 percent in allowable bending strength. The allowable bending strength increased 

60 percent due to a compressive proofloading to a target 15 percent breakage level. 

The allowable bending strength increased as the proofloading level increased for both tension 

and compression proofloading with the Hem-fir grade. The southern pine visual stress grade did 

not show a consistent trend between proofloading level and improvement in allowable bending 

strength. The lack of a trend between proofloading level and allowable bending strength was at-

tributed to possible sampling error. 

The fifth percentile analysis method, the AFOSM method and numerical integration method 

were compared. For lumber strength comparisons, a simple fifth percentile analysis was not the 

preferred method. The AFOSM method and the numerical integration method provided identical 

results in terms of their application in adjusting allowable bending stresses. It was not possible to 

show that the approximate AFOSM method can be used exclusively in lieu of the numerical inte-

gration method for reliability calculations. 
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INTRODUCTION 

Lumber, like other building materials, has a great degree of variability in its strength. Knots and 

associated grain deviations, general grain slope, end splits, seasoning checks, and moisture content 

are just a few of the characteristics which cause strength variability. Lumber has a statistical dis-

. tribution associated with its ultimate strength in bending, another for tension parallel-to-grain, and 

yet another for compression parallel-to-grain. It is these three strength distributions which are of 

major concern for structural design and the fifth percentiles are used to derive the allowable design 

strength values. 

The main mechanical properties of lumber for structural design purposes are modulus of 

elasticity in bending (MOE), bending strength or modulus of rupture (MOR), tensile strength 

parallel-to-grain, shear strength, and compressive strength parallel and perpendicular to the grain. 

The stiffness property of MOE is positively correlated to all the other strengths in a positive way. 

Research has established correlations between bending and tension, and bending and compression 

' strengths. The purpose of this research is not to determine the magnitude of these correlations but 

to utilize the fact that they exist. 
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Proof testing or proofloading is a process of applying a load to a specimen with the purpose of 

ensuring the strengt~ is greater than a desired level. Any specimen, not of the pre-set strength level 

will be broken and therefore excluded from the sample. By excluding the weaker specimens, the 

strength distribution of the remaining specimens will be shifted to the right and have less variance 

than the strength distribution for the original group. The objective of the research is to determine 

the increase in allowable bending strength of lumber when proof tested at various levels in tension 

and compression. 

The research objective can be accomplished by using differential reliability and the appropriate 

mathematical and statistical methods. A probability of failure for the proofloaded and the control 

distributions can be found and compared. When calculating probability of failure, the lower tail 

of the strength distribution is of major concern. The impact of the variability of lumber strength 

on the probability of failure makes it important to utilize the best statistical tools available for the 

analysis of lumber properties. 

Reliability analysis as defmed by Suddarth et al. ( 1978) consists of comparing mathematically 

associated load and resistance distributions to produce a probability of failure. The advantage of 

such an approach is that precision of the estimated probability of failure is limited only by data and 

not by mathematical procedures. Confidence in the probability of failure is greater when more is 

known about the true load and true resistance distributions, thus emphasizing the importance of 

good data bases for both load and resistances. 

These analyses quantify any improvement in bending strength due to proof testing at various 

levels in tension and compression. The probability of failure for a control sample is found, then 

with an iterative approach, the bending strength values of the proofloaded sample distribution are 

artificially altered by a factor K until the probabilities of failure for the proofloaded and control 

lumber are similar. This K is a shift factor demonstrating the amount the proofloaded lumber 

strength values must be shifted to give the same probability of failure as the control. The loads used 
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in this study to determine the probability of failure are the recommended snow and floor live load 

distributions from Thurmond et al. ( 1986). Using the three load cases derived by Thurmond et al. 

(1986), K factors are found that quantify the effect of proofloading in one stress mode on bending 

strength of the proof tested survivors. The K factor chosen is the one which provides the most 

conservative improvement of bending strength due to the proofloading treatment. 
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LITERATURE REVIEW 

2.1 Engineering and Probability 

A basic goal of structural engineering is to develop an optimum economic balance between 

economy and safety. There are many uncertainties in design for both loads and resistances. The 

variability of material properties provides uncertainties concerning the strength or resistance of a 

structure. Magnitude and location of loads and assumptions in stress analysis produce uncertainties 

in determining the loads on a structure. Theory used for modeling loading and performing struc-

tural analysis also adds a dimension of uncertainty. Uncertainties can be divided into two types, 

' statistical as exemplified by the variability of wind or snow loads and nonstatistical such as intuitive 

judgement and simplifying assumptions. 

The purpose of most engineering analyses is to provide information for the purpose of decision 

making. Because uncertainties exist in almost all engineering decision making, the contribution of 

probability theory provides a unified framework for the modeling of these uncertainties, and for 

LITERATURE REVIEW 4 



their systematic analysis and updating in terms that are meaningful and suitable for the quantitative 

evaluation of risk. Proof testing to determine if a product meets a desired level of strength is one 

way to decrease risk by eliminating any of the product which does not meet a desired strength level. 

2.2 Proofloading Applications 

Proofloading has applications in many fields. Johnson ( 1980) discusses examples found in lit-

erature such as the glass for Skylab and the steel fabrication industry. Within the wood science area, 

finger-joints for glulam timber have been proofloaded to ensure strength. Process variables such 

as joint cutting, adhesive application, joint assembly and curing are all critical in beam streni,>th for 

glulam lumber. Eby (1981) states that proofloading end-joints is an effective method to assure that 

beam strength meets an assigned value. He also describes the development of a machine for 

proofloading glulam lumber in bending and getting building code acceptance for proof testing by 

the glulam industry. 

Australia began to use commercial proof grading of structural timber as early as 1981 with the 

use of continuous proof testing machines described by Wooster ( 1981). These machines have the 

capacity of 1000-2000 pieces a day. A constant bending moment is applied to the lumber as it 

passes through the machine. Because of the relatively low cost of the machine and its ease of use, 

1 many mills are using it along with visual grading to control variability in lumber grades. Leicester 

( 1982) discusses how the difficulties associated with visual grading due to slope of grain and species 

identification can be compensated for with the proof testing procedure. 

Optimum cost-benefit proof levels for commercial in-line production were proposed by Bechtel 

(1983). He found the optimum proofloading level may break as much as 10 percent of the lumber 
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tested. His method required the knowledge of the lower tail of the strength distribution a priori 

or from test data to .determine the optimum test load value. He also noted that the more tightly 

dispersed the strength distribution the fewer pieces will be broken at the optimum level. For ma-

chine stress rated (MSR) graded lumber the modulus of elasticity (MOE) can be used to set the 

proofloading level. The correlation between MOE and strength properties allows the optimum 

proofloading level to be set before proofloading begins. 

2.3 Damage From Prootloading 

The concern of damage due to proofloading is a valid one. The added cost from broken pieces 

and the possible damage to the remaining pieces have the potential of making proofloading unde-

sirable. Added cost from pieces that arc broken and any possible damage must be offset by the 

increase in the strength distribution of the surviving pieces . In a publication by Freas ( 1949), he 

discussed the use of high proofloads on specimens of ladder stock. His conclusions made many 

skeptical of proofloading and caused a long delay in the research of proofloading to ensure strength 

kvels . More recent research experiments shed valuable insight into the theory of why and when 

damage occurs. 

Studies concerned with the theoretical aspects of damage during loading yielded results consist-

ent with experimental studies. Schaffer ( 1973) investigated Douglas-fir to determine bond rupture 

as a function of time during tensile loading at various temperatures. When tests on I by 1/8 inch 

strips of clear Douglas-fir were performed at room temperature, failure of all bonds occurred in 

approximately 7.7 seconds; at 7.5 seconds, 98 percent of the bonds were unbroken, and at 7.0 sec-

onds no bonds were broken. From these results he concluded that unless the load is very close to 

the failure load, little or no damage occurred. 
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Gerhards ( 1979) proposed a linear cumulative damage theory that relates to proofloading. The 

theoretical relation indicates that loads that do not cause failure may have little effect on residual 

strength. From his theory a very small percentage may be weakened, and the remaining pieces will 

have a residual strength equal to their original strength. 

More recent research on modeling wood damage accumulation from stochastic loads was con-

ducted by Corotis and Sheehan ( 1986). Little significant damage accumulation occurred when us-

ing realistic structural designs and load models. In research by Gerhards and Link ( 1987) a ramp 

bending load was applied to a constant level to specimens of 2 by 4 Douglas-fir for a duration of 

4.65, 33.9 and 220 days. Surviving specimens were loaded to failure in bending. All failed at ramp 

loads higher than the constant load, except for one specimen having a long, moderate slope-of-grain 

split. The long load duration could be considered to be equivalent to a proofloading of a very long 

duration. It was concluded that a long load duration test does not cause damage which will result 

in failure below the level of the original constant load. 

In an experiment using reverse proofloading in bending oflumber by Marin and Woeste(l981), 

2 by 4 No. 2 Dense KD Southern Pine did not show any significant damage due to proofloading 

at the approximate fifth percentile, or 3366 psi. In another experiment by McLain and Woeste 

(1986) 2 by 6 Dense Select Structural, No. I Dense, and No. 2 Dense KDIS Southern Pine were 

proofloaded in tension at 1.6 to 2.0 times the published rate. That research resulted in the con· 

clusion that damage in surviving lumber due to the proof load used was nonexistent or at worst 

minimal. 

Woeste et al. (1987) conducted a research experiment with 2 by 4 No. 2 Dense KD Southern 

Pine using both single and reverse bending proofloads. No damage due to the proofloading was 

detected. 
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Only relatively low levels of proofloading are of interest for commercial applications. Based on 

published research it_ is valid to assume there is no appreciable damage to surviving lumber due to 

proof loading in tension or bending at these low load levels. 

2.4 Loading Rates For Proof Testing 

The rate of loading for proof testing is a critical issue for commercial applications. Using the 

ASTM D 198-84 rates for loading each specimen, the cost associated with proofloading would be 

prohibitive due to the amount of time required. Spencer ( 1979) published work on the rate of 

loading effect in bending for 2 by 6 No. 2 and better grade Douglas-fir lumber. He found the rate 

of loading effect was dependent on the strength of the lumber. DeBonis et al. ( 1980) tested the rate 

of loading effect in bending on 2 by 4 No. 2 KD Southern Pine. Both Spencer ( 1979) and DeBonis 

et al. ( 1980) reported that the inherently stronger specimens showed an increasing strength for in-

creased rates of stressing. For the weaker specimens the differences were not great and in a few cases 

strength decreased as the loading rate was increased. 

Gerhards et al. ( 1984) found that for 2 by 6 Douglas-fir meeting the visual requirements of 

tension lamination for glulam beams when tested in tension at rates IO to 25 times the ASTM rate, 

the weaker strength lumber appeared lowered in strength and the stronger lumber appeared to gain 

' strength. They concluded that caution should be used when writing standards for faster rates of 

loading in tension. McLain and Woeste ( 1986) used 2 by 6 No . 2 KD Southern Pine proofloaded 

in tension to establish a rate of loading adjustment factor for a rate 20 times the ASTM standard. 

They defmed a rate adjustment curve for testing at the faster rate showing an increase in strength 

as the specimen strength increased. A load rate increase applied to all the lumber strengths as op-

posed to the average and stronger pieces of the Gerhards et al. ( 1984) experiment using Douglas-fir. 
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Bender et al. ( 1987) studied 2 by 10 No. 2 KD Southern Pine in tension. He proposed a rate ad-

justment curve to relate stress levels between the faster rate and the ASTM load rate. These ad-

justments will allow commercial applications using proofloading in tension to have confidence with 

the results at rates faster than the ASTM-0198 rate. 

2.5 Correlations of Lumber Strength Properties 

The major structural properties of lumber are modulus of elasticity in bending (MOE), bending 

strength or modulus of rupture (MOR), tensile strength parallel-to-grain, shear strength, and 

compressive strength parallel and perpendicular to the grain. The stiffness property of MOE is 

correlated to tensile strength, bending strength, and compressive streni,>ths in a positive way. Hoyle 

( 1966) conducted research on the correlation between MOE and strength properties such as bending 

strength and tension strength parallel-to-grain. His research led the way for machine stress grading 

of lumber. Research publications on the correlation of MOE with bending, tension and com-

pression since Hoyle ( 1966) are too numerous to survey. Recently Galligan et al. ( 1986) published 

comprehensive regressions of bending, tension and compression strength on E for various sizes and 

grades of southern pine, Hem-fir and Douglas-fir. Machine stress rated (MSR) lumber has become 

widely used and the process is based on these correlations in important commercial species. 

The effect of the correlation between bending and tension or between bending and compression 

is very important because of their implications in truss design. For example the loads causing 

bending stress may simultaneously cause tension stress. Research by Suddarth et al. (1979) on a 

single element member subject to combined bending and tensile stress suggest that the degree of 

correlation between bending and tension strength has the effect of making the load capacity more 

variable. 
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The degree of correlation is difficult to detennine when both properties are measured by de-

structive means. When a specimen is broken in bending to detennine bending strength, the tensile 

strength parallel-to-grain can not be found for that specimen. In other words, the specimen cannot 

be broken twice. A non-destructive means of estimating correlations of these strength properties 

is by the use of statistical and mathematical methods. Jolmson and Galligan (1983) used a basic 

approach which depends upon identifying the correlation between the residuals in two regressions 

used to predict two strength properties from the same prediction variable MOE. This approach 

based on the correlation of residuals also utilized information gained from proofloading. The cor-

relation between the residuals of bending and tension can be thought of as conditional correlation 

between bending and tension. Because bending and tension cannot be observed on a single speci-

men, large samples of 2 by 4 l.5E-1650f MSR Hem-fir and No. 2 KD Southern Pine lumber were 

. randomly subdivided so they could be tested in various failure modes and proofload levels. One 

set each was tested exclusively in bending, tension and compression and the remaining sets were 

proofloaded in tension or compression with survivors failed in bending. Target proofload levels 

were set at 5 and 15 percent of the bending failure level. 

Evans et al. ( 1984) used a simulation procedure involving proofloading a specimen in one failure 

mode and then failing the survivors in another mode to determine the effect of the error and vari-

ance of the correlation estimate of strength properties as a function of proofloading levels. The 

correlation between tension and bending is necessary for using an increased design value in bending 

' derived from proofloading in tension. 
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2.6 Probability Distributions of Lumber Properties 

Information about a lumber population is found through lumber sampling. The probability 

distribution that most closely fits a sampling is ar. estimate of the distribution for the population 

sampled. As the sample size increases, confidence that the distribution estimate represents the 

population is increased. Galligan et al. ( 1986) suggests that a sample size of at least 80 specimens 

is needed to determine a distribution that closely resembles the population distribution. 

At the present, ASTM D 2915-84 provides a standard method for evaluating allowable proper-

ties for grades of structural lumber which uses either nonparametric or parametric methods. 

Haberman and Ethington (1975) and Warren (1974) discuss nonparametric methods for establish-

ing lumber allowable stresses. They found that, in addition to being conservative, the results are 

dramatically influenced by the true underlying strength distribution. Due to these limitations re-

sulting from using a nonparametric approach, parametric methods are the better choice. Also the 

calculations needed for reliability-based design methods can be readily made from parametric dis-

tributions. Because reliability is strongly influenced by the distribution extremes it is important that 

an appropriate distribution is selected to model the data. 

Lumber properties data are commonly modeled by normal, lognormal, or 3-parameter Weibull 

' distributions. The normal is symmetrical and has well defined properties allowing calculation of 

confidence intervals, but it extends to negative values which are not representative of strength data. 

The lognormal is nonnegative and lends itself to easy calculation of various statistics. It is positive 

skewed and has limited flexibility. The 3-parameter Weibull is very flexible, accounting for 

symmetricalness and positive or negative skewness. It can be fitted to many diverse distributions 

through selection of its three parameters: location, scale, and shape. Its disadvantage is its com-

plexity; however, a value for any percentile of the distribution can be found with hand calculations. 
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To detennine if a distribution fits the sample data, a number of tests can be performed such as 

the Chi-square test, the Kolmogorov-Smirnov test and others described by Law and Kelton ( 1982). 

The Chi-square test is essentially a comparison of the data histogram with a fitted density function 

and can be used on any type distribution. Another way to distinguish between distributions is by 

using the maximum log-likelihood values calculated for the distributions of interest. Dumonceaux 

et al. ( 1973) derived a likelihood ratio test for discriminating between models with unknown lo-

cation and scale parameters. Dumonceaux and Antle ( 1973) used this ratio test to construct a hy-

pothesis test to discriminate between the lognonnal and Weibull distributions. 

Galligan et al. ( 1986) used the Chi-square goodness-of-fit test and visual assessment to select the 

distribution best describing the data. In cases where the Chi-square and visual assessment did not 

provide an obvious best choice, the distribution with the maximum log-likelihood value was cho-

sen. 

2.7 Probability Distributions For Loads 

Uncertainties in loads can come from inherent randomness, transfonnations of loads into load 

effects, and in the representation of a 3-dimensional structure by a series of members and con-

nections. Roof loads and live loads in residential housing were analyzed by Thurmond ( 1982). 

I le dctennined a method by which the loads could be used with lumber strengths to compare 

contrasting lumber data sets based on the concept of equal reliability. All loads were maximum 

lifetime loads with the design life assumed to be fifty years. 

Snow loads are often the major load considered in the design of roofs. Thurmond et al. ( 1984) 

found that load parameters for the maximum lifetime roof load for numerous locations follow a 
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lognormal distribution with a ratio of mean snow load to nominal snow load of 0.69 and a coeffi-

cient of variation equal to 0.44. The nominal snow load was the design snow load for the roof. 

The nominal dead load for the roof was the design dead load. The dead load distribution was as-

sumed to be lognonnal with a coefficient of variation of 0.1. 

Thurmond et al. ( 1984) analyzed past research to determine the distribution which best models 

the live loads in residential housing. He found that live loads in residential housing follow the Ex-

treme Value Type I distribution with ratios of the mean live load to nominal live load of 0.94 and 

0.73 with respective coefficients of variation of 0.21 and 0.19. The reason for two load cases, both 

of which are based on the research by Chalk and Corotis ( 1980), was due to different methods of 

combining load parameters. Thurmond et al. ( 1986) suggest that the two cases used for reliability 

analysis purposes will account for the shortcomings due to limited load survey information and 

knowledge about the actual load combinations. 

The dead load for residential housing is defined as the weight of the structure and all perma-

nently fixed equipment. The mean dead load depends on the type of structure and its use. 

Thurmond et al. ( 1984) recommended that the mean dead load be calculated for each application 

to determine the ratio of mean dead load to nominal dead load. 

To determine the probability of failure for a given load and strength distribution, the distrib-

utions must be compatible and have the same units. Thurmond et al. ( 1984) employed a process 

to create compatibility. The design loads were assumed equal to the allowable design strength at 

a design point. The load distribution was therefore positioned relative to the design point by the 

mean load to nominal load ratio. The dead load and live load must be represented in the correct 

proportion to the total load. The equations used to determine the parameters of the total load 

distribution for a bending member are: 
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where: 

µT = mean total lifetime load, psf 

QT = coefficient of variation of the total lifetime load 

Dn = nominal dead load, psf, design value 

Ln = nominal live load, psf, design value 

Tn = total nominal load (Dn + Ln) , psf 

D /Dn = normalized mean of the dead load distribution 

L /Ln = normalized mean of the maximum lifetime live load distribution 

µ 0 mean dead load 

no = coefficient of variation of the dead load 

µL = mean maximum lif ctime live load 

QL = coefficient of Variation of the live load 

Fb = the adjusted allowable design value 

LDF = load duration factor 

[I] 

[2] 

The total load is the sum of the dead and live loads. Because the live load has significantly more 

variability than the dead load, Thurmond ( 1982) showed the total load can also be described by the 

distribution for the live load. Thus, for residential construction, the total load is approximately a 

Extreme V aluc Type I distribution for floors and a lognormal distribution for roofs . 
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2.8 Reliability . Concepts and Analyses 

Since engineering designs are formulated under varying degrees of uncertainty, safety factors 

based on past experience and judgement have been used to manage uncertainty under a 

deterministic format. The detenninistic format has a number of limitations. It does not result in 

consistent risk, uncertainties cannot be quantified, and the actual level of risk is undefined. Early 

design methods used the fifth percentile of the strength distribution to maintain an acceptable level 

of reliability. "Normal duration" lumber design values are based on a fifth percentile with a general 

adjustment factor of 2.1 for bending and tension, and 1.9 for compression. A load duration factor 

of 1.33 for wind, 1.15 for snow, 1.0 for live and 0.9 for permanent loads allows for variations in 

end-use conditions. Deterministic methods use adjustment factors to account for varying distrib-

utions which impact on reliability. 

Probabilistic methods for wood design were introduced by Bonnicksen and Suddarth ( 1966) 

with significant additional contributions by Zahn ( 1977). With the probabilistic approach, loads 

and resistances are treated as random variables, distributions are obtained from available data, and 

the design can be based on "acceptable" risk or probability of failure. The probability of failure is 

defmed as an event were the resistance or strength (R) is less than the load (S). 

Pr= Prob (R < S) [3] 

For load and strength distributions which are continuous and mutually independent, the prob-

ability of failure equation is: 

Pr = J 00 

[ J s fR(r)dr ] f5(s)ds 
-oo -oo 

[4] 

where: 
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fR (r) is the probability density function of the resistance distribution. 

f5 (s) is the probability density function of the load distribution. 

The theoretical limits of integration are negative to positive infmity, however, the strength dis-

tribution can not be nonnegative so the lower limit of that integration would be zero. 

A calculated probability of failure, although not an exact representation of structural safety, can 

be used as a benclunark for comparing various designs or loads and resistance combinations. The 

systematic comparison of the probability of failure of one design situation to the probability of 

failure of a second design was named differential reliability by Suddarth et al. ( 1978). Thurmond 

et al. ( 1986) used a K factor which provides a quantitative comparison of the strength distributions . 

. By changing the parameters of a distribution, strength values can be shifted up or down the x-axis 

without changing the distribution shape. The amount of shift in strength on the x-axis which yields 

approximately the same probability of failure for a comparison case as the benclunark provides the 

K factor. 

Reliability methods can accommodate design procedures at varying levels. Theft-Christensen 

and Baker ( 1982) describe three levels. Level- I is a semi probabilistic method where partial safety 

factors are used. Load and resistance factors are obtained from reliability analyses but the overall 

format is deterministic. Level-2 is an approximate probabilistic method. Safety checks are per-

formed at selected points of the failure boundary. It is assumed that the distributions are approxi-

mate, and the resistance and load are independent. Two methods of this approximate probabilistic 

method are the first order second moment (FOSM) and the advanced first order second moment 

(AFOSM) methods. Ellingwood et al. ( 1980) used approximate probabilistic methods to establish 

minimum design loads for building code requirements. Level-3 is an exact numerical method for 

evaluation of the actual distributions. .By using numerical integration on the resistance and load 

distributions a probability of failure can be found. 
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The approximate methods use the first and second moment of the governing function, which 

represents the mean-value and variance that are used to characterize uncertainty of the variables and 

the linearizations performed for the analysis. A limit state equation, which is continuous and 

linearized at some point is used. 

[5] 

where: 

g (Xi, X2, ... , X~) is the governing function and 

(Xi, X2, ... , X~) identifies the point of linearization. 

The mean value of the random variable is used as the linearization point and the reliability index 

is computed independent of probability distributions in the FOSM method. Therefore, the index 

is dependent only on the central tendency and dispersion of the limit state function. The accuracy 

for this mean value method is not as good as when the actual distributions are taken into consid-

eration. Two shortcomings of the FOSM method are that errors are introduced when 

g (Xi, X2, ... , X~) is nonlinear and the mean point is some distance from g (Xi, X2, ... , X~) = 0. 

Also the FOSM method is not invariant, that is beta is dependent on the algebraic formulation of 

g (Xi, X2, ... , X~). For example, given g(A,P,R) = 0, the axial stress equation, P/A - R = 0, will 

give different results than the force equation, P - Rx A= 0 . 

The advanced first order second moment (AFOSM) method linearizes the limit state function 

at a point on the failure surface, and it also takes into account the distribution of the variable. The 

problem of invariance is circumvented because the first-order approximations are evaluated at a 

design point on the failure surface (Ang and Tang, 1984). Hasofcr and Lind ( 1974) transform the 

Xi variables to reduced variables X; with zero mean and unit standard deviation by the equation 
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[6] 

Th.is transformation yields a limit state equation of 

[7] 

The reliability index, P, is defined as the shortest distance between the g1(x1, x2, ••• , xn) = 0 surface 

and the origin. The point on the surface where the shortest distance occurs is called the design 

point. The design point is found by solving the following equations; 

where: 

Ll = 2:( dgl )2 
dx.; 

<X; 's are the direction cosines which arc adjusted to minimize beta. 

p is a relative measure of reliability. 

[8] 

[9] 

[10] 

An advantage of this AFOSM method is that nonnormal variables can be transformed into 

equivalent normal variables thru the design point X; on the failure surface. Rackwitz and Fiessler 
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( 1976) used the first_ and second moment of the normal variable such that at point X;, the probability 

density function (pdf) and cumulative density function (cdf) of the original and approximating 

normal variable are the same. The formulas for the standard deviation and the mean of the ap· 

proxirnating normal distribution are shown here. 

where: 

N 
O'j = 

<P [ <I>-1 { Fi(x;)}J 

fi(xt) 

-N x <I>-1 { F x } N Xj = Xj - j(Xj ) O'j 

o-~ = the standard deviation of the approximating normal distribution 

Xfl = the mean of the approximating normal distribution 

f1 = the non-normal pdf of X; 

F1 = the non-normal cdf of X; 

<P = the standard normal density function 

<I> = the standard normal cumulative density function 

[ 11] 

[12] 

This transformation to normal equivalents is done by approximating the distribution of Xi by 

a normal distribution at the design point xi on the failure surface. Using these normalized pa-

rameters for the resistance and load distributions, an approximation of the true probability of failure 

is found. 
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ANALYTICAL PROCEDURE 

3.1 Lumber Used 

This reliability analysis uses data from a report by Galligan et al. ( 1986) that characterizes the 

properties of 2-inch softwood dimension lumber with regressions and probability distributions. A 

machine stress rated (MSR) grade of 2 by 4 l.5E-1650f Hem-fir a visual grade of 2 by 4 No. 2 KD 

Southern Pine were chosen because they are common in house trusses. The Hem-fir was collected 

at a production mill in the Cascade range of Washin6>1on and the southern pine in Oklahoma. The 

testing was done at Washington State University after moisture content stabilized to 12 plus or 

minus 2 percent. For each species, selection was made at random to make uniform groups for 

predetermined testing. For each species, groups of 80 pieces were broken in bending, tension, and 

compression. Two groups of 120 pieces each for both species were proofloaded in tension with 

target breakages of 5 and 15 percent. Likewise, two groups of 120 pieces each for both species were 

proofloadcd in compression with target breakages of 5 and 15 percent. The groups of 120 pieces 

were failed in bending after proofloading to estimate the correlation of lumber strength properties. 

The same ten groups of lumber as described for strength correlation determination were used 

as part of this reliability analysis . The groups from each species where 80 pieces were broken in 
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bending were used -to establish the bending strength distributions of the controls. This control 

group and the four proofloaded groups of each species were used to determine the effect of 

proofloading on bending strength. 

The data files were identified as follows: 

CNBH - The CoNtrol Bending Hem-fir. 

TSH - Proofloading in Tension at the target 5 percent breakage Hem-fir. 

TISH - Proofloading in Tension at the target 15 percent breakage Hem-fir. 

CSI-1 - Proofloading in Compression at the target 5 percent breakage Hem-fir. 

CISI-1 - Proofloading in Compression at the target 15 percent breakage Hem-fir. 

CNBS - The CoNtrol Bending Southern Pine. 

TSS - Proofloading in Tension at the target 5 percent breakage Southern Pine. 

TISS - Prootloading in Tension at the target 15 percent breakage Southern Pine. 

CSS - Proofloading in Compression at the target 5 percent breakage Southern Pine. 

Cl SS - Proofloading in Compression at the target 15 percent breakage Southern Pine. 

Table 3.1 is a summary of the lumber groups used in the reliability analysis showing the total 

pieces in the group, the number and percent broken by proofloading, and the number of remaining 

pieces broken in bending. 

3.2 Distribution Selection 

Lognormal and 3-parameter Weibull distributions were fitted to each data set to determine 

which distribution best describes the bending strength for each of the 10 groups of lumber. The 

Chi-square goodness-of-fit test at the 5 percent level was first conducted. If neither distribution 
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Table 3.1 Summary of the lumber groups used in the reliability analysis listing the sample size, 
number and percent broken by proofloading and the number of remaining pieces broken 
in bending. · 

2 by 4 1650f-l.5E Hem-fir 

T5H TISH C5H Cl SH CNBH• 

Sample size 120 120 120 120 80 

Pieces broken in 
proolloading 9 16 10 29 

Percent broken in 
proofloading 7.5 13.3 8.3 24.2 

Remaining pieces 
broken in bending 111 104 110 91 

2 by 4 No. 2 KD Southern Pine 

T5S Tl5S css Cl5S CNBS• 

Sample size 120 120 120 120 80 

Pieces broken in 
proofloading 8 18 6 16 

Percent broken in 
proofloading 6.7 15.0 5.0 13.3 

Remaining pieces 
broken in bending 112 102 114 104 

"' The bending controls were not proof tested. 
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was rejected, then the maximum log-likelihood value was used to choose between the lognormal 

and 3-parameter Weibull distributions, as suggested by Galligan et al. (1986). An overlay of the 

fitted distribution on the histogram of the data was also used for a visual assessment of the fit. 

Visual assessment is discussed and recommended by Law and Kelton ( 1982). A summary of the 

Chi-square goodness-of-fit test and maximum log-likelihood values for each group is shown in 

Tables 3.2 and 3.3. The distribution chosen as best describing the data is the 3-parameter Weibull 

distribution for each of the Hem-fir groups and the lognormal distribution for each of the southern 

pine groups. Tables 3.2 and 3.3 also gives the parameters of the selected distributions. Figures 1 

through I 0 are the plotted histogram with the best fitting distribution superimposed on each of the 

10 data sets. 

The maximum log-likelihood calculations do not take into account the number of distribution 

parameters, therefore, for equal log-likelihood values, the lognormal distribution is preferred be-

cause it has one less parameter than the 3-parameter Weibull distribution. For the two cases, ten-

sion proofloading at 5 percent and compression proofloading at 5 percent, the Chi-square 

goodness-of-fit test rejected the 3-parameter Weibull distribution even with the maximum log-

likelihood value showed a 1 or 2 point advantage. The southern pine data from the control and 

tension proofloading at 15 percent both fit the lognormal and 3-parameter Weibull distributions 

equally well based on the Chi-square test, visual assessment, and nearly equal log-likelihood values. 

Therefore, the lognormal distribution was chosen for these two groups because for all other groups 

of southern pine, the lognormal distribution was selected. 

3.3 Fifth Percentile Analysis 

The fifth percentile value for each group of lumber was calculated from the distribution best 

representing the data. The following formulas yield the fifth percentile value for the 3-parameter 

Weibull and lognormal distributions: 
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Table 3.2 Summary of the Chi-square goodness-of-fit test and the maximum log-likelihood values 
for the Hem-fir groups. Also listed are the distributions selected and their paramenters. 

2 by 4 1650f-l.5E Hem-fir 

TSH TISH CSH Cl5H CNBH 

Sample size 111 104 110 91 80 

Chi-square ex = (.05) 
Weibull FTR• FTR FTR FTR FTR 
Lognormal FTR FTR FTR FTR FTR 

Log-likelihood 
Weibull -207 -198 -224 -171 -164 
Lognormal -210 -201 -227 -174 -169 

Distribution selected Weibull Weibull Weibull Weibull Weibull 

Parameters 
Location, µ (ksi) 2.539 3.660 2.207 2.285 0.375 

Scale, G (ksi) 4.282 3.640 4.851 5.050 6.388 

Shape, ~ 2.590 l.975 2.421 3.114 3.284 

• Failed to reject, FTR. 
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Table 3.3 Summary of the Chi-square goodness-of-fit test and the maximum log-likelihood values 
for the southern pine groups. Also listed are the distributions selected and their 
paramenters. 

2 by 4 No. 2 KD Southern Pine 

TSS TlSS css CISS CNBS 

Sample size 112 102 114 104 80 

Chi-square °' = (.05) 
Weibull Rejected FTR Rejected Rejected FTR 
Lognormal, LN FTR• FTR FTR FTR FTR 

Log-likelihood 
Weibull -190 -170 -205 -184 -144 
Lognormal, LN -192 -171 -206 -181 -144 

Distribution selected LN LN LN LN LN 

Parameters 
Scale, A. (ksi) 1.233 1.392 1.459 1.412 1.353 

Shape, ( 0.394 0.323 0.345 0.339 0.379 

• Failed to reject, FTR. 
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Figure 1. Histogram with a 3-parameter Weibull distribution overlay for the Hem-fir bending 

control data. 
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Figure 2. Histogram with a 3-parametcr Weibull distribution overlay for the tension proofloa<ling 

Hem-fir at a S percent target level. 
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Figure 3. Histogram with a 3-parameter Weibull distribution overlay for the tension proofloading 

Hem-fir at a 15 percent target level. 
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Figure 4. Histogram with a 3-parameter Weibull distribution overlay for the compressive 

proofloading Hem-fir at a 5 percent target level. 
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, Figure 5. Histogram with a 3-parametcr Weibull distribution overlay for the compressive 

proofloading I !cm-fir at a 15 percent target level. 
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, Figure 6. Histogram with a lognormal distribution overlay for the southern pine bending control 

data. 
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Figure 7. I listogram with a lognormal distribution overlay for the tension proofloading southern 

pine at a 5 pi.:rccnt target level. 
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Figure 8. I listogram with a lognonnal distribution overlay for the tension proofloading southern 

pine at a 15 percent target level. 
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Figure 9. Histogram with a lognonnal distribution overlay for the compressive proofloa<ling 

southern pine at a 5 percent target level. 
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Figure 10. Histogram with a lognormal distribution overlay for the compressive proolloading 

southern pine at a 15 percent target level. 
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3-parameter Weibull: 

where: 

Lognormal: 

where: 

I 
x.os = µ + (j ( ln .05)'7 

µ = location parameter 

a = scale parameter 

11 = shape parameter 

x.05 =exp [,{ - 1.645 CJ 

A = scale parameter 

C = shape parameter 

Table 3.4 lists the fifth percentile values for each group. 

3.4 Loads 

[13] 

[14] 

To determine probability of failure, appropriate load distributions must be calculated to be used 

with the resistance or strength distributions. Because the data base is from 2 by 4 lumber, which 

is routinely used in residential truss fabrication, residential housing loads are selected to use with 

roof and floor truss analyses. 

Thurmond et al. ( 1986) recommended using three load cases. The following equations were 

used to determine the parameters of the distributions for the recommended load cases. 
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Table 3.4 Summary of the fifth percentile results for both Hem-fir and southern pine. 

Fifth percentile, ksi. 

Fifth percentile, ksi. 

ANALYTICAL PROCEDURE 

2 by 4 1650f-1.5E Hem-fir 

TSH 

3.90 

TISH 

4.47 

CSH 

3.63 

2 by 4 No. 2 KD Southern Pine 

TSS 

1.79 

TISS 

2.36 

css 

2.43 

Cl SH 

4.23 

Cl5S 

2.35 

CNBH 

2.96 

CNBS 

2.07 
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[15] 

[16] 

where: 

µT = mean total lifetime load, psf 

QT = Coefficient of Variation of the total lifetime load 

on = nominal dead load, psf, design value 

Ln nominal live load, psf, design value 

T n total nominal load (On+ Ln) , psf 

0 /On = normalized mean of the dead load distribution 

L /Ln = normalized mean of the maximum lifetime live load distribution 

µ 0 = mean dead load 

no = coefficient of variation of the dead load 

µL = mean maximum lifetime live load 

QL = coefficient of Variation of the live load 

Fb = allowable normal duration bending stress 

LO F = load duration factor 

To derive Fb the fifth percentile of the data from a ten minute test was divided by 1.6 to convert 

to a ten year normal duration and 1.3 to provide for safety. The product of these adjustments is 

the more familiar 2.1 adjustment factor which can be found in ASTM 0245-81 (ASTM, 1987). 

The recommended snow and live loads, based on research by Thurmond et al.( 1986) are shown 

in Table 3.5. In addition to these loads, the ratio of mean dead load to nominal dead load must 
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Table 3.5 Recommended snow and floor live load distributions for the reliability analyses of 
lumber properties data from Thunnond et al. ( 1986). 

Load 

Snow 

Load A 

Load D 

ANALYTICAL PROCEDURE 

Distribution 

Lognormal 

Extreme Value Type I 

Extreme Value Type I 

0.69 

0.94 

0.73 

0.44 

0.21 

0.19 
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be determined for each application. The coefficient of variation of the dead load was assumed to 

be 0.10 as suggested by Thurmond et al. ( 1986). 

The total lifetime load is equal to the sum of two random variables, live plus dead. Thurmond 

et al. ( 1986) found for reliability comparisons the resulting distribution to be approximated by the 

lognormal distribution due to the lognormal snow load having a large coefficient of variation and 

the dead load having a relatively small coefficient of variation. Likewise, for Extreme Value Type 

I live loads and lognormal dead loads the resulting distribution was found to be approximated by 

the Extreme Value Type I distribution due to the Extreme Value Type I live load having a large 

coefficient of variation and the dead load having a relatively small coefficient of variation. 

For these analyses, the mean dead loads are calculated using a "typical" residential construction. 

The results are shown in Table 3.6, where the mean dead load for the top and bottom chords is 

calculated as 1/2 the total truss weight. The pad and carpet weight was calculated for a 12 oz. pad 

and a carpet with total weight of 45 oz. per square yard. Publications by Lumbermate Company, 

Anon. ( 1983) and Anon. ( 1986) along with the American Institute of Timber Construction ( 1985) 

were used for most weight estimates. 

Timber Truss Housing Systems, Inc. of Roanoke, Virginia provided seven single story resi-

' dential floor plans ranging from 950 to 2600 square feet for use in determination of the dead weight 

due to interior walls. The average of the seven residences contained 96 linear feet of wall per 1000 

square feet of space. For interior walls with 24" o.c. studs weighing 1.3 psf., plus gypsum board 

weighting 2.0 psf. on each side, the total wall weight is calculated at 5.3 psf. Dead load for the 

interior walls is calculated by multiplying the weight of the wall surface by wall height and length 

per square foot. This results in a dead load of 4.1 psf. for the floor area in "typical" residential 

housing due to interior walls. 
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The reliability ~alyses use the strength data from each species group with the load data for the 

roof top and bottom chords. Likewise, the floor truss top chord with Load A and D from 

Thurmond ( 1986) and the floor truss bottom chord are also used with the strength data. 

The control fifth percentile for Hem-fir and 20-10-10 loading for the roof were used to determine 

µ1 , the mean total lifetime load in ksi. The following values were used in equations 15 and 16 for 

calculating µT and nT for the roof truss top chord. 

Fb = 2.96/2.l = l.41 ksi 

Dn = 10 psf, Sn= 20 psf, Tn = 30 psf 

D/Dn = 5.3/10 = 0.53 from Table 3.6 

L/Ln = 0.69 from Table 3.5 for snow loads 

LD F = l.15 for snow loads 

The appropriate load for the roof 4/12 W-truss top chord is lognormal with parameters, µ1 equal 

to l.033 ksi and QT equal to 0.319. 

For calculating µ1 for the roof truss bottom chord there is no snow or live load portion; there-

fore, the following equation and values were used for calculating µ1 and n1 for the roof truss bot-

tom chord. 

µr = µo = (D/D0 ) Fb (LDF) 

Q 1 = 0.10 , the assumed dead load coefficient of variation from Thurmond et al. ( 1986) 

Fb = 2.96/2.l = 1.41 ksi 

D/Dn = 5.1/10 = 0.51 from Table 3.6 

LDF = 1.15 for snow loads 
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The appropriate load distribution for the roof truss bottom chord was lognormal with parameters, 

µT equal to 0.828 kSi and .nT equal to 0.10. 

The floor truss was evaluated under 40-10-5 loading using Load A and Load D from Thurmond 

et al. ( 1986). Calculation of the parameters of the total lifetime load distribution associated with 

Load A requires using equation 15 and 16 with the following values: 

Fb = 2.96/2. l = 1.41 ksi 

L/Ln = 0.94 from Table 3.5 

D/Dn = 8.1/ 10 = 0.81 from Table 3.6 

Dn = 10 psf, Ln = 40 psf, Tn = 50 psf 

LDF = 1.0 for live loads 

For Load A the floor truss top chord total lifetime load distribution was Extreme Value Type I 

with parameters, µT equal to 1.290 ksi. and nT equal to 0.174. 

The total lifetime load distribution parameters associated with Load D were calculated in the 

same way except L/Ln equals 0. 73 from Table 3.5. For Load D the floor truss top chord load 

distribution was Extreme Value Type I with parameters, µT equal to 1.053 and nT equal to 0.15. 

The floor truss bottom chord total lifetime load distribution parameters were calculated in the 

same way as the roof truss bottom chord using D/Dn equal to 0.66 from Table 3.6. Table 3.7 is a 

summary of load distributions, their mean and coefficient of variation for each loading case for 

Hem-fir. 

The values for southern pine were computed in the same way as those for Hem-fir, only the fifth 

percentile value was 2.07 ksi and thus Fb equals 0.986 ksi . A summary of the total lifetime load 
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Table 3.6 The mean dead loads assumed for a residential roof and floor system. 

Roof truss top chord 

2 X 4 top chord - 1.3 psf 

1/2 inch plywood - 1.5 psf 

235# asbestos shingles - 2.5 psf 

Total - 5.3 psf Nominal = 10 psf 

Roof truss bottom chord 

2 X 4 bottom chord - 1.3 psf 

1/2 inch gypsum board - 2.0 psf 

6 inch glass wool insulation • 1.8 psf 

Total - 5.1 psf Nominal = 10 psf 

Floor truss top chord 

2 X 4 top chord - 1.3 psf 

3/4 inch T &G plywood • 2.3 psf 

Pad and carpet • 0.4 psf 

Interior walls · 4. lpsf 

Total· 8.1 psf Nominal = 10 psf 

Floor truss bottom chord 

2 X 4 bottom chord - 1.3 psf 

l /2 inch gypsum board • 2.0 psf 

Total - 3.3 psf Nominal = 5.0 psf 
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Table 3.7 Summary of load distributions, their mean and coefficient of variation for each loading 
case used with the Hem-fir data. 

Roof truss 

Top chord 

Bottom chord 

Floor truss 

Top chord 
Load A 

Load D 

Bottom chord 

ANALYTICAL PROCEDURE 

Load distribution 

Lognormal 

Lognormal 

Load distribution 

Extreme Value Type I 

Extreme Value Type I 

Lognormal 

µ (ksi) 

l.033 

0.828 

µ (ksi) 

l.290 

l.053 

0.932 

n 

0.319 

0.100 

n 

0.174 

0.150 

0.100 
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distributions, their mean and coefficient of variation for each loading case using southern pine are 

found in Table 3.8. 

These load distributions were used with the control bending strength distributions to determine 

a benchmark probability of failure for each species. The proofloaded bending strength distributions 

were then used with the same load distributions to compare with the benchmark probability of 

failure . 

When analyzing a truss chord a combination of stresses will be present. For example bending 

and tension stresses are present in the lower chord of a roof or floor truss under gravity loads. The 

question here is how will the combined stresses affect reliability analyses of lumber properties. 

The bending stress contribution to the combined stress index ( CSI ) in the chords of a floor 

truss can be found using research from Suddarth et al. ( 1981 ). A "typical" parallel floor truss, shown 

in Suddarth et at. (1981), was used to determine the percent of the CSI value attributed by bending · 

stress. The equivalent column length to depth ratio in the chords of the truss did not exceed that 

for a short column in a highly stressed member; therefore, J equals 0 and Equation 18 was used 

to determine the percent of the total load effect resulting from the bending stress, fb. 

where: 

CSI = combined stress index 

fb = M/S = stress at extreme fiber in bending, psi 

M = applied moment , in-lb 

S = section modulus, in3 

Pb' = design value for extreme fiber in bending adjusted for slenderness, psi 

J = factor using I./d, the slenderness ratio 
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Table 3.8 Summary of load distributions, their mean and coefficient of variation for each loading 
case used with southern pine data. 

Roof truss 

Top chord 

Bottom chord 

Floor truss 
Top chord 

Load A 

Load D 

Bottom chord 
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Load distribution 

Lognormal 

Lognormal 

Load distribution 

Extreme Value Type I 

Extreme Value Type I 

Lognormal 

µ (ksi) 

0.722 

0.578 

µ (ksi) 

0.901 

0.735 

0.651 

0.319 

0.100 

n 

0.174 

0.150 

0.100 
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f0 = stress .in compression parallel to grain, psi 

F c' = design value for compression parallel to grain adjusted for 10 /d, psi 

When CSI is known and J equals 0 the percent contribution of bending stress to stress inter-

action can be found using fb and Fb' because CSI is the sum of bending and compressive ratios. 

Under a 40-10-5 psf loading, the floor truss 2 by 4 top chord analyzed had the following values: 

fb = M/S = 323/1.31 = 247 psi 

Fb' = 1850 psi 

J = 0 

Using equation 18 the bending stress contribution was 0.133 or 15.0 percent of the CSI value for 

the top chord. Likewise, under 40-10-5 psi loading the floor truss bottom chord had a CSI of 1.057 

and a moment 179 in-lb. All other values were the same as those for the top chord. Therefore, for 

the floor truss bottom chord the bending stress contribution was 0.074 or 7.0 percent of the CSI 

value. 

In a typical 4/ 12 W-truss under 20-10-10 psf loading, 55 percent of the stress interaction, CSI, 

will be contributed by bending stress for the top chord. This fact may not convert directly to a 

percentage of allowable bending stress used for a particular design because of the term J times fc 

subtracting from Fb in the CSI equation. Yet often the panel point CSI controls where J equals 

0. Thus it was a good assumption for these reliability analyses to use 55 percent of the load as a 

typical amount of bending stress in the top chord. Using the same approach, 50 percent of the total 

stress interaction was attributed to bending stress in the bottom chord. Table 3.9 lists the percent 

of load due to bending stress in each chord. 

The partial loads will be used in the reliability analyses to detennine a new set of K factors . 

The K factors from the partial loads are likely to be smaller than those were full bending loads were 
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Table 3.9 The percent of bending stress contribution to the CSI value for both 
both top and bottom chords in roof and floor trusses. 

Roof truss 

Top chord 

Bottom chord 

Floor truss 

Top chord 

Bottom chord 

ANALYTICAL PROCEDURE 

Percent of bending stress contribution 

55 

50 

Percent of bending stress contribution 

15 

7 
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used. The larger K factor from full bending loads result in a smaller shift on the x-axis. When 

evaluating the increase of bending strength due to proofloading, the largest K factor was used in 

each reliability analyses to provide the most conservative case. 

3.5 AFOSM Method 

The AFOSM method was used with the selected distributions and design point to fmd a reli-

ability index, p, for each control group. Beta is calculated from the AFOSM method so the cor-

responding probability of failure can be found in a standard normal distribution table. The original 

load and resistance distributions are "normalized" at the design point to find a normal distribution 

which approximates the original distributions' tail. To do this a normal distribution is found having 

the same probability density function (pdf) and cumulative density function (cdf) at the design point 

as the distribution being approximated. The normal distribution has two parameters and, because 

there are two equations, it is possible to fmd the parameters of a unique normal distribution which 

approximates the tail of the actual distribution. The parameters for the approximating normal 

distribution can be found using the following steps when either a 3-parameter Weibull or Extreme 

Value Type I distribution is being approximated. 

1) Calculate if! the pdf value at the design point. 

2) Calculate 'l' the cdf value at the design point. 

3) Calculate <1>- 1, the standard inverse normal, at 'I'. 

4) 
1.0 - [<J>-1('1')]2 
r:::-::- exp ( 2.0 ) 

if! v2.0 rr 

When the distribution is lognormal fmding the normal parameters is more direct. 
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where: 

uN = ' + Design Point 

µN = Design Point "' { 1.0 -ln ( Design Point ) + A. } 

uN = the standard deviation for the normal curve that approximates the tail of the 

given distribution. 

µN = the mean for the nonnal curve that approximates the tail of the given 

distribution. 

' = the shape parameter for the log for the lognormal curve to be approximated by 

a normal curve. 

A. = the scale parameter for the lognormal curve to be approximated by a normal 

curve. 

There are two ways for making lumber comparisons by the AFOSM method. One approach 

would be to calculate a minimum {J for both the control case and proofloading case, thereby al-

lowing the design point to be determined by p. In general, the two design points reached both 

having a minimum p will not be equal. For this approach the normal approximation of the load 

for the control case will not be the same as for the proof1oading case. Simply stated for one case, 

the total floor load having an Extreme Value Type I distribution will have an approximating normal 

distribution for the control different from the proofloaded case because of the two different design 

points being used. 

Another approach for making lumber comparisons with the AFOSM method is to use the same 

design point for both the control and the proofloaded case. The desirable feature of this approach 

is that the approximated normal load distributions in both cases, control and proofloading treat-

ment, are identical. The disadvantage of a single design point for lumber comparisons is that 

minimum {J values are not compared. In this research the choice was made to use identical load 

distributions in the comparisons. 
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The design points used in this lumber reliability analysis were found by taking the fifth percentile 

of the control bending strength distribution, dividing it by the general adjustment factor of 2.1 and 

multiplying by a load duration factor of 1.15 for total roof snow load and 1.0 for total floor load. 

The design points for roof snow load were 1.621 ksi for Hem-fir and 1.134 ksi for the southern pine, 

1.410 ksi and 0.986 ksi for total floor load respectively. These design points were used in the 

AFOSM method to determine a p value for calculating probability of failure. 

Figures 11, 12, 13, and 14 graphically illustrate the AFOSM method, where the tails of two 

distributions are approximated by the normal curves. Computer programs were used to calculate 

P for any load and resistance combination with loads following lognormal or Extreme Value Type 

I distributions and resistances following lognormal or 3-parameter Weibull distributions. Computer 

programs are given in the Appendix. The design point, defined in the preceding paragraph, was 

used by the AFOSM method for the calculation of P. P was calculated from the normal approxi-

mations and a corresponding probability of failure found in a standard normal table. To compare 

the proofloaded cases to the control, K factors were used. Using the p for the control group, the 

parameters of the proofloaded group were adjusted such that the distribution was shifted to the right 

or left until a near equal p was found. 

The transformation needed to shift the distribution on the x-axis is of the form Y = KX. The 

statistics of Y, given Xis lognormal, follows by using the log transformation and expectation 

lnY = lnX + lnK 

E(ln Y) = E(ln X) + E(ln K) 

Thus 

..l.y ..l.x + In K 
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Load 

1.8 

0.6 

~---R:..;;:e.::s is tan ce 

0 ·i.o 6.0 9.0 12.0 
MOR 1000 P.S.J. 

Figure 11. Extreme Value Type I load distribution and 3-parameter Weibull distribution 

used to show details of the AFOSM method. 
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J.8 

0.6 

0 ·i.o J.0 
HOR 

2.0 3.0 4.0 
JOOO P .S. J. 

Figure 12. The Extreme Value Type I load distribution and the normal distribution with a tail to 

the right of the design point which approximates the Extreme Value T ype I distribution 

tail. 

ANALYTICAL PROCEDURE 53 



0.3 

0. J 

0.0 
0.0 3.0 

HOR 
6.0 9.0 

1000 P.S.I. 

Figure 13. The 3-parameter Weibull resistance distribution and the normal distribution with a tail 

to the left of the design point which approximates the 3-parameter Weibull distribution 

tail. 
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Figure 14. The normal distributions used to calculate beta. They both have overlapping tails 

which approximate the original Extreme Value Type I and 3-parameter Weibull dis-

tributions. 
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To shift the lognormal curve, Ax was changed by the amount In Kand C was held constant since 

the shape of the distribution is not changed. To show the shape doesn't change, equation (191 can 

be used with the rule for the variance of a linear function as 

var (In Y) = var (In X) + var (In K) [22] 

C~ = Ck + o [23] 

Shifting the 3-parameter Weibull distribution up or down the x-axis, does not change the shape 

parameter of the distribution and it can be shown the parameters µ and u are altered by the product 

of K. Therefore, the 3-parameter Weibull distribution was shifted by changing µ byµ times K, a 

by a times K, and 11 the shape parameter was left unchanged. The Appendix contains the com-

puter programs used for calculating K-factors given the desired {J, the design point, and the pa-

rameters of the load and resistance distributions. 

3.6 Numerical Integration Method 

The probability of failure can be defined mathematically by a double integral when the load and 

strength distributions are continuous and mutually independent as 

Pr= J 00 

[ J s fR(r)dr ] f5(s)ds 
-oo -oo 

[24] 

where: 

fR (r) = the probability density function of the resistance distribution 

fs (s) = the probability density function of the load distribution 
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When the double integral of fR (r) and fs(s) cannot be solved using standard integration methods 

Equation 24 can be evaluated using numerical techniques. Differential reliability described by 

Suddarth et al. ( 1978), was used to determine a probability of failure for each group. After finding 

the probability of failure for the control with a predetermined load, the parameters of the 

proofloaded groups were adjusted by a K factor until a similar probability of failure was found. 

Computer programs used to solve the double integral and calculate K factors for the numerical in-

tegration method were from Thurmond ( 1982). The K factors found with this method were com-

pared with the K factors from the AFOSM method. The results from both the AFOSM and 

numerical integration method were also compared to the fifth percentile analysis and differences 

noted in the next section. 
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RES UL TS AND DISCUSSION 

4.1 Fifth Percentile Results 

The fifth percentile value for each proofloaded case was compared to the control fifth percentile 

value. Table 4.1 is a summary of the ftfth percentile values for both I-lem-fi.r and southern pine. 

Since allowable bending stresses are based on the fifth percentile, these results imply the NOS 

specified bending strength value for l 650f-1.5E Hem-fir could be increased 32 percent provided the 

lumber was proof tested to 2,61 l. psi in tension as was the T5I-I case. It must be noted the 32 

percent increase is subject to sampling error since it was found from the ratios of two fifth percentile 

estimates. 

All proofloading cases for I Icm-ftr showed an increase in bending strength over the control. 

As both tension and compression proofloading levels were increased, the fifth percentile of the 

' bending strength also increased. The largest bending strength increase for Hem-fir was a 51 percent 

increase due to tension proofloa<ling for the T 151-1 case. The smallest bending strength increase 

was a 22 percent increase due to compression proofloading for the C5H case. 
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Table 4.1 Summary of the fifth percentile results for both Hem-fir and southern pine using 
the control as a benchmark. 

2 by 4 1650f-1.5E Hem-fir 

TSH TISH CSH Cl SH CNBH 

Fifth percentile, ksi. 3.90 4.47 3.63 4.23 2.96 

Ratio of the fifth 
percentile to control 1.32 1.5 I l.23 1.43 

2 by 4 No. 2 KO Southern Pine 

TSS T!SS css Cl SS CNBS 

Fifth percentile, ksi. 1.79 2.36 2.43 2.35 2.07 

Ratio of the fifth 
percentile to control .86 1.14 1.17 1.13 
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The No. 2 KD Southern Pine results were not as consistent, in that increasing the proofload 

level in either tension or compression did not always increase the bending fifth percentile. For ex-

ample, the control sample CNDS had a fifth percentile value greater than the fifth percentile value 

for the T SS case. Also, the CI SS case had a fifth percentile value less than the fifth percentile value 

for the css case, the reverse of what would be expected. 

The lack of a uniform trend between the proofloading and the resulting fifth percentile value 

could be due to the greater variability of southern pine population sampled. The bending strength 

coefficient of variation for the control No. 2 KD Southern Pine was 0.406 versus 0.310 for the 

1650f-l.5E MSR Hem-fir. The variability of the fifth percentile estimate generally increases with 

increasing variance of the underlying population. Thus for the southern pine the sampling error 

of the fifth percentile could have dominated over the proofloading effect on bending strength. 

4.2 Hem-fir Integration lVlethod Results 

The numerical integration method of analysis was used for each control and proofloaded case. 

Figure 15 graphically compares the distributions from the Hem-fir data control and tension 

proofloading treatments. The left tails of the tension prootloaded cases were shifted to the right 

of the control with the greatest shift associated with the largest proofload level. Likewise, Figure 

16 shows the Hem-fir distributions for the control and compression proofloading cases. The left 

tails of the compression proofloads were also shifted to the right of the control similar to the tension 

proofload cases. Figures 17 and 18 graphically compare the distributions of the southern pine 

control case along with the resulting distributions from the tension and compression proofloading 

treatments, respectively. The left tails of the tension proofloadcd cases are shifted to the right of 

the control for the larger proofload level. However, the distribution curve for the smaller proofload 

level lies to the left of the control curve, indicating most likely a large sampling error. In the com-

pression proofload cases both were shifted to the right of the control, however the smaller 
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Figure 15. Hem-fir bending strength distributions for control and tension proofloading at 

the 5 and 15 percent levels. 
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Figure 16. Hem-fir bending strength distributions for control and compressive proofloa<ling 

at the 5 and 15 percent levels. 
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Figure 17. Southern pine bending strength distributions for control and tension proofloading 

at the 5 and 15 percent levels. 
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Figure 18. Southern pine bending strength distributions for control and compressive proofloading 

at the 5 and 15 percent levels. 
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proofloading level was shifted more to the right than the larger proofloading level. Again, this 

mixed outcome suggests a large sampling error. 

Probabilities of failure and K factors were found using a full bending stress load where the loads 

were lognormal and Extreme Value Type I shown in Table 3.5. The bending strength data from 

the control and proofloaded samples were adjusted for load duration by dividing the test machine 

data by 1.6 to convert to a normal duration of lO years. The results are sununarized in Table 4.2. 

The benchmark probability of failure for the roof truss top chord was found using the lognormal 

load distribution having parametersµ equal 1.032 ksi and n equal 0.319. The resulting probability 

of failure was 0.501 x 10-2 found in Table 4.2. The roof truss top chord K factors are found using 

the same load distribution parameters as for the benchmark case. Each proofloaded distribution 

is shifted on the x-axis by a K factor to yield a similar probability of failure. 

K factors can be used to shift either loads or resistances. To demonstrate this fact the floor load 

A for the T5H case was shifted by the reciprocal of K instead of the strength distribution being 

shifted by the K factor. The same probability of failure resulted. Using the example T5H with the 

live load A for the floor truss top chord, the allowable bending stress was multiplied by the recip-

rocal of K equal to 1.493 and used in equation 15 and 16 which provided the Extreme Value Type 

I load parameters, 

= lQ_( 81) 2· 964 ( 1.0) ( 1.493) + jQ_( 94) 2· 964 ( 1 0) ( 1 493) µT 50 • 2.1 50 . 2.1 . • 

µT = 0.341 + J.585 = J.926 ksi 

and 

) (0.341 x 0.1)2 + (l.585 x 0.21)2 

.{lT = J.926 0.174 
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Table 4.2 Integration method results for Hem-fir. Reference probability of failure for the control 
group and K-factors for the proofloaded groups are listed for each loading case. 

2 by 4 1650f-I.5E Hem-fir 

T51-I TISH C5H Cl5H CNBH 

Load case K-factor K-factor K-factor K-factor Pr 

Roof top chord 
µ = l.032 .Q= 0.319 0.645 0.560 0.695 0.600 0.501x10-2 

Roof bottom chord 
µ = 0.827 .Q=0.10 0.435 0.345 0.495 0.430 0.106 x 10-2 

Floor load A 
µ = l.288 .Q=0.174 0.670 0.580 0.725 0.625 0.148X 10-1 

floor load D 
µ = l.051 n=o.1s 0.590 0.500 0.650 0.560 0.626X 10-2 

Floor bottom chord 
µ = 0.930 .Q=0.10 0.520 0.420 0.585 0.505 0.344 x 10-2 

Minimum l/ K value l.49 1.72 1.38 1.60 
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This load was used with the following T5H data parameters adjusted by 1/ 1.6 for conversion from 

a I 0 minute test value to a 10 year duration. 

µ = 2.539/ l.6 = l.587 

(1 = 4.282/ l.6 = 2.676 

,, = 2.590 

The resulting probability of failure from the shifted load distribution was 0.1487 x 10-1 which was 

the same as found when the resistance distribution was shifted on the x-axis to find the K factor. 

Thus the minimum allowable increase for bending stress, Fb, is the reciprocal of K shown in Table 

4.2. 

The MSR 1650f-l.5E Hem-fir results show that as proofloading levels were increased in tension 

or compression the allowable bending strength also increased. For MSR Hem-fir lumber it appears 

as few as 80 specimens can be used to define the increase in allowable bending strength due to 

tension or compression proofloading. However, 200 specimens would be a more appropriate 

sample size since 200 is generally recognized by the research community as necessary for allowable 

stress or fifth percentile determination. 

The percentages of bending stress contribution to the CSI value for the top and bottom chords 

given in Table 3.9 were used to calculate a percentage of the total load to be used with each 

proofload case. When using a percentage of the load the K factors all decreased as shown in Table 

4.3. In each case a lower K factor or greater shift on the x-axis was required to yield the same 

probability of failure as the control. 

The design process requires a conservative choice for design values when more than one out-

come is present. For purposes of defining a permissible increase in allowable bending stresses due 

to a tension or compression proofloading treatment, the larger K factor from each proofloading case 
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Table 4.3 Integration method results for Hem-fir. Reference probability of failure for the control 
group and K-factors for the proofloaded groups are listed. The loads were calculated 
from the total load using the percent of bending stress contribution to the CSI value. 

2 by 4 1650f- l.5E Hem-fir 

TSH TISH CSH Cl5H CNBH 

Load case K-factor K-factor K-factor K-factor Pr 

Roof top chord 
µ = 0.568 il= 0.319 0.495 0.420 0.545 0.465 0.353 x 10-3 

Roof bottom chord 
µ = 0.414 ,Q=0.10 0.270 0.200 0.300 0.275 0.153X 10-4 

Floor load A 
µ = 0.193 U= 0.174 0.265 0.210 0.305 0.265 0.687 x 10-1 

Floor load D 
µ = 0.158 n= 0.15 0.240 0.185 0.270 0.240 0.173X 10-8 

Floor bottom chord 
µ = 0.065 U=0.10 •• •• •• • • 0 

Minimum l/K value 2.02 2.38 1.83 2.17 

• • Indicates no comparison made because the extremely small loads used resulted in a nearly 
zero probability of failure. 
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must be chosen since the reciprocal of K is the amount by which the Pb value for the tested lumber 

, can be increased and subsequently used in design. 

4.3 Southern Pine Integration Method Results 

Table 4.4 is a summary for 2 by 4 No. 2 KD Southern Pine showing the benchmark probability 

of failures for the control and the K factors for the proofloaded cases under roof and floor loads. 

The K factor for the T5S case is larger than 1.0 indicating the the allowable bending strength for 

the TSS case was less than the control. The ClSS case had a K factor greater than the C5S case. 

Thus, the increased compression proofloading level for the Cl5S case did not produce bending 

strength improvements above the C5S case. The lack of a trend between the proofloading level and 

K factors could indicate the sampling error is dominate over the strength benefiting effect of 

proofloading in both tension and compression. Thus, based on the visual grade of 2 by 4 No. 2 

KD Southern Pine, 80 specimens was clearly inadequate. A sample size of 200 may be adequate, 

however, there is no assurance of useful results even with 200. 

Using a percent of the load equal to the percent of bending stress contribution to the CSI value 

the probability of failure and K factors were calculated for each loading condition. The resulting 

K factors shown in Table 4.5 are lower for the smaller loads than when the full load was used, ex-

cept in the case when the original K factor was greater than 1.0. Thus, if an increase in allowable 

bending strcnf,>th was present, the full loading cases provided the most conservative increases in al-

lowable bending strength to be used in design. 
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Table 4.4 Integration method results for southern pine. Reference probability of failure for 
the control group and K-factors for the proofloaded groups are listed for each loading 
case. 

2 by 4 No. 2 KD Southern Pine 

T5S Tl5S C5S Cl5S CNBS 

Load case K-factor K-factor K-factor K-factor Pr 

Roof top chord 
µ =0.722 !l=0.319 1.165 0.855 0.835 0.865 0.219XI0-2 

Roof bottom chord 
µ = 0.578 !l=0.10 1.195 0.775 0.790 0.805 0.289 X 10-4 

Floor load A 
µ = 0.901 n= 0.174 1.170 0.860 0.840 0.870 0.822X 10-2 

Floor load D 
µ = 0.735 !l=0.15 1.175 0.835 0.825 0.850 0.171 x J0-2 

Floor bottom chord 
µ = 0.651 !l=0.10 1.180 0.800 0.805 0.830 0.388 x 10-3 

Minimum l/K value .84 1.16 1.19 1.15 
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Table 4.5 Integration method results for the southern pine. Reference probability of failure for 
the control group and K-factors for the proofloaded groups are listed. The loads were 
calculated from the total load using the percent of bending stress contribution to the CSI 
value. 

2 by 4 No. 2 KD Southern Pine 

T5S Tl5S C5S Cl5S CNBS 

Load case K-factor K-factor K-factor K-factor Pr 

Roof top chord 
µ = 0.397 n= o.319 1.180 0.810 0.810 0.835 0.237 x J0-4 

Roof bottom chord 
µ = 0.289 n= 0.10 1.220 0.705 0.740 0.755 0.354X 10-s 

Floor load A 
µ = 0.135 n= o.t74 0.915 0.595 0.605 0.620 0.109X 10- 10 

Floor load D 
µ=0.110 Q= 0.15 0.800 0.520 0.530 0.540 0.124X 10-12 

Floor bottom chord 
µ = 0.046 n= 0.10 •• •• •• •• 0 

Minimum l /K value 0.82 1.23 1.23 1.20 

• • Indicates no comparison made because the extremely small loads used resulted in a nearly 
zero probability of failure . 
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4.4 Design Values 

Design values based on these reliability analyses show that the Hem-fir and southern pine do 

not provide similar results. The effect of the correlation between tension and bending, and com-

pression and bending found in the tail of the distribution require a much larger sample size for the 

southern pine to yield consistent results. 

For discussion purposes assume the sampling errors to be acceptable. The amount of increase 

in allowable bending strength due to proofloading was the reciprocal of K. Also, assuming the 

experimental lumber was representative of the population of 2 by 4 1650f- l.5E Hem-fir, lumber 

proofloaded in tension to 2,611. psi could claim an allowable bending stress, Fb, increased by the 

factor l.49 or from 1,650. to 2,458. psi. Likewise, the same type lumber proofloaded to 2,857. psi 

could claim an allowable bending stress increase by the factor I. 72 or from .1,650. to 2,838. psi. 

Figure 19 graphically shows the two proofloading levels used in this study and the allowable 

bending strength increases for the Hem-fir grade assuming a linear relationship. The tension 

proofload levels below 2,611. psi, no increase in Fb would be recommended. For tension proofload 

levels above 2,857. psi, a fixed increase in Fb equal to I. 72 would be recommended. Figure 19 and 

the increase in Fb values shown are only for demonstration purposes, the values reported are not 

reliable estimates for the population of 1650f- l.5E Hem-fir. 

The tension proofloading levels of interest for future research are those levels lying between the 

lowest level for economic feasibility and the maximum stress level in the lumber producing forces 

at the joints beyond which can not be transferred using toothed metal truss plates. By using these 

maximum and minimum proofloading levels along with at least one other intermediate 

proofloading level, a nonlinear trend, if present, can be defined for allowable bending strength in-

creases over the range tested. 
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Figure 19. A demonstration of allowable bending strength increases for a 2 by 4 1650f-l.5E 

Hem-fir sample corresponding to various tension proofloading levels in psi. Values 

reported are not reliable estimates for the population of 1650f- l.5E Hem-fir. 
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4.5 AFOSM Method Results 

As discussed earlier a design point is needed at which to perform the calculations necessary to 

determine a beta value using the AFOSM method. The design points used were 1.621 ksi for 

Hem-fir and l.134 ksi for the southern pine. These design points do not provide a minimum beta, 

but they are appropriate points for comparing the AFOSM method with the numerical integration 

method used. 

The AFOSM method requires calculation of the probability density function (pdf) and the cu-

mulative density function (cdf) at the design point. The 3-parametcr Weibull distribution provided 

the best fit for all groups of l650f-l.5E Hem-fir data. For the design point, 1.621 ksi, the 

3-parameter Weibull fits of the proofloaded cases had location parameters above the design point; 

therefore, no normal distribution could be approximated for that point. Thus, no K factors were 

found for comparison with the integration method. 

The lognormal distribution provided the best fit for all groups of No. 2 KO Southern Pine data 

groups. The lognormal distribution range is from zero to infinity so each case could be evaluated 

by the AFOSM method using the design point of l.134 ksi . A beta value was first found for the 

control, and then a K factor was used to shift the proofloaded cases on the x-axis to find a nearly 

equal beta value. The results shown in Table 4.6 show that tension proofloading for the T5S case 

did not provide an increase in allowable bending strength over the control. However, the Tl5S case 

had an increase of 19 percent in allowable bending strength over the control. The compression 

proofloaded groups show a minimum increase in allowable bending strength for the Cl 5S case of 

15 percent and a 19 percent increase in allowable bending strength for the CSS case. 

The minimum reciprocal of K values of Table 4.6 were identical to those found using the nu-

merical integration method in T able 4.4 to two significant fi gures. Table 4. 7 lists the probability 
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Table 4.6 AFOSM method results for southern pine. Reference beta value for the control 
group and K factors for proofloaded groups are listed for each loading case. 

2 by 4 No. 2 KD Southern Pine 

T5S Tl5S C5S Cl5S CNBS 

Load case K-factor K-factor K-factor K-factor p 

Roof top chord 
µ =o.n2 n=0.319 1.170 0.855 0.840 0.865 2.849 

Roof bottom chord 
µ = o.578 n= 0.10 1.200 0.775 0.790 0.810 4.022 

Floor load A 
µ = o.901 n = 0.174 1.165 0.860 0.840 0.870 2.428 

Floor load D 
µ = 0.735 n=o.15 1.175 0.835 0.825 0.855 3.003 

Floor bottom chord 
µ = 0.651 n=o.10 1.185 0.805 0.810 0.830 3.361 

Minimum l /K value .83 1.16 1.19 1.15 
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Table 4.7 A comparison of the probability of failures from the AFOSM and the 
numerical integration method. 

Hem-fir P, using AFOSM P, using integration 

Roof top chord 0.474X 10-2 0.510 x l0-2 

Roof bottom chord 0.853 x 10-3 0.106X l0-2 
/ 

Floor Load A 0.128 x 10-1 0.148X 10- 1 

Floor Load D 0.424X 10-2 0.626 x 10-2 

Floor bottom chord 0.279 x 10-2 0.344 x 10- 2 

Southern pine Pr using AFOSM P, using integration 

Roof top chord 0.219 x l0-2 0.219X 10-2 

Roof bottom chord 0.289 x 10-4 0.289 x 10-4 

Floor load A 0.759 x 10-2 0.822 x 10-2 

Floor load D 0.135 x 10-2 0.171x10-2 

Floor bottom chord 0.388 x 10-3 0.388 x 10-3 
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of failure from each load condition for both the AFOSM method and the mathematical integration 

method. Although the probability of failures for each load case were not always equal to 3 signif-

icant figures in each method, they were of the same magnitude. For example, comparing the 

probability of failure for the two methods of the floor load D case, a ratio of 1.27 was found. 

However, the K factors that resulted from using the two methods are identical in tenns of their 

application in allowable stress adjustment. In fact, for all cases, either method provided similar K 

factors. Therefore, for this particular lumber reliability analysis, the AFOSM and numerical inte-

gration methods are equivalent. It would be desirable to generalize and recommend the AFOSM 

method for use in future lumber analyses due to computational ease. However, due to a limited 

number of comparisons involving different loadings and lumber strength data, more research com-

parisons using the AFOSM method and integration method are necessary before the AFOSM 

method can be used alone and become a standard method. 

RESULTS AND DISCUSSION 77 



SUMMARY AND CONCLUSIONS 

The reliability study utilized the data from a report by Galligan et al. ( 1986) that characterizes 

the properties of 2-inch softwood dimension lumber with regressions and probability distributions. 

Ten randomized groups of both 2 by 4 !650f-l.SE Hem-fir and No. 2 KD Southern Pine were 

formed. One group from each species was broken in bending, with the remaining groups broken 

in bending after proofloading in tension or compression. 

The purpose of this study using the Galligan data was to identify an improvement in bending 

strength from tension or compression proofloading, due to the correlations that exist between ten-

sion and bending, and between compression and bending. Based on the concept of equal reliability, 

and utilizing the load distributions from Thurmond et al. ( 1986), the tension and compression 

proofloaded strength distributions were compared to the control. The control strength distributions 

for each species where all pieces were tested in bending were used to establish a benchmark prob-

ability of failure. Using a K factor adjustment the strength distributions of the proofloadcd groups 

were shifted on the x-axis until a probability of failure approximately equal to the benclunark 

probability of failure resulted. 
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A fifth percentile, numerical integration and the advanced first order second moment (AFOSM) 

methods were used to analyze the data. The fifth percentile values were calculated for the the 

controls and each proofloading case. The Hem-fir fifth percentile values for the proofloading cases 

were greater than the control fifth percentile and the difference between the proofloading cases and 

control increased as the proofloading levels increased. The southern pine fifth percentile of bending 

strength for the tension proofloading at the 5 percent target breakage level was less than the control 

fifth percentile value. Also, the compression proofloading at the target 15 percent breakage case 

had a bending strength fifth percentile value less than bending stren1:,>th fifth percentile for com-

pression proofloading at the target 5 percent level. These mixed results for southern pine indicate 

a sampling problem. 

For the numerical integration method utilized with the three load distributions recommended 

by Thurmond et al. ( 1986), the Hem-fir grade showed a significant increase in allowable bending 

strength due to the proofloading in both tension and compression, with additional increases as the 

level of proofloading was increased. Using the most conservative loading case from an implemen-

tation standpoint, proofloading in tension at the target 5 percent level of breakage resulted in a 49 

percent increase in allowable bending strength. At the target 15 percent breakage level, a 72 percent 

increase in allowable bending strength resulted. Compressive proofloading at the target 5 percent 

breakage level provided a 38 percent increase in allowable bending strength, and at the target 15 

percent breakage level a 60 percent increase in allowable bending strength. 

The southern pine results were more variable in that increasing the proofload level in either 

tension or compression did not always increase the allowable bending strength. For the case of 

tension proofloading at a target 5 percent breakage, the allowable bending strength was calculated 

to be 16 percent below the control which was identified as a sampling problem. However, tension 

proofloading at a target 15 percent breakage showed an increase of 16 percent in allowable bending 

strength. The compression proofloading at a target 5 percent breakage resulted in a 19 percent in-

crease in allowable bending strength. The compressive proofloa<ling at a target 15 percent breakage 
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resulted in a 15 percent increase in allowable bending strength, or 4 percent less than the increase 

from the lower proofloading level. It is believed the sampling error for southern pine dominated 

over the effect of proofloading on the bending strength causing the mixed results. Because of the 

mixed results with the visually graded southern pine, much larger sample sizes are recommended 

for future research. 

The AFOSM method was used on all the control data resulting in probabilities of failure of the 

same magnitude as those obtained using the integration method. Using the AFOSM method on 

the southern pine resulted in K factors , equal to two significant figures, to those found using the 

numerical integration method. It was concluded that both methods provided identical results in 

terms of their application to allowable stress adjustment. 

The AFOSM method is desirable over the numerical integration method due to its computa-

tional ease. Since, a limited number of comparisons involving diflerent loadings and lumber 

strength data were conducted, more research comparisons are necessary before making a recom-

mendation for using only the AFOSM method in reliability analyses. The fifth percentile analysis 

does not take into account the interaction of the load and resistance distributions. Therefore, the 

results are less accurate than the AFOSM and numerical integration methods in terms of providing 

equal safety levels upon the use of the resulting stress adjustment factor. 

From this study there is good evidence that bending strcfib>th and tension strength of the re-

spective distribution tails are correlated, as well as bending and compression distribution tails. The 

sample sizes in this study were inadequate to quantify the amount of an allowable bending strength 

increase due to prooftesting. However, the results from the limited sample sizes used provide jus-

tification for a comprehensive study using much larger sample sizes. 

In the event the truss fabrication industry implements tension proofloading, allowable bending 

strength benefits due to the tension proofloading could be used in truss design. The cost associated 
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with the tension proofloading could therefore be offset, not only by the increase in the allowable 

tension stress, F1, but also by the increase in the allowable bending strength, Fb. 
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APPENDIX 

Computer Programs to Calculate Beta Values 

c::••••••••++++++++++••····························••++++++++++++++++++++• 
c:: 
C:: BLNLN BETA CALCULATION 
c:: 
c:: 
C:: ADVANCED FIRST ORDER SEC::OND MOMENT METHOD 
c:: 
C:: USING LOGNORMAL LOAD .AND RESISTANCE DISTRIDUTIONS 
c:: 
c:: 
c::••••••++++++••························································· 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 
c:: 

THIS PROGRAM C::ALC::ULATES THE REUABILITY INDEX, BETA, WHEN THE 
LOAD FOLLOWS A LOGNORMAL DISTRIBUTION AND THE RESISTANCE 
DISTRIBUTION IS ALSO LOGNORMAL. INPUT PARAMETERS ARE THE MEAN 
AND C.O.V. FOR THE LOAD AND TllE MEAN AND STANDARD DEVIATION OF 
THE LOGS FOR THE RESISTANCE DISTRIBUTION. 

CARD l -- SPECIFY DESIGN POINT TO USE ... 
(Fl0.4) -- 'DESIGN POINT' IS THE VALUE ON THE X-AXIS 

USED FOR THE BETA C::ALCULATIONS (K.S.I.) 

C::ARD 2 -- SPECIFY LOAD MEAN, COV, AND STRENGTH STATISTICS 
(5FI0.4) -- 'MEAN' IS THE MEAN OF THE LOAD DISTRIBUTION 

(K.S.I.) 

APPENDIX 

-- 'C::OV' IS THE COEFFIC::IENT OF VARIATION FOR 
TJIE LOAD 

-- 'RMU' IS THE MEAN OF THE LOGS FOR LOGNOR-
MAL CURVES (K.S.I.) 

-- ' RSIG' IS THE STD. DEV. OF THE LOGS FOR 
THE RESISTANCE DISTRIBUTION (K.S.l.) 
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c ..................... + + •••••••••••••• +++•••• + •• +. + ••• + +++•+++ + ++ +. + + +. + +++ + ++ 
c 

REALMEAN 
c 
C READ IN THE INPUT PARAMETERS AS LISTED IN THE USER'S GUIDE c 

READ(l,12)DPT 
12 FORMAT(FI0.4) 

READ( I, 13)MEAN ,COY ,RMU,RSIG 
13 FORMAT(4FI0.4) 

WRITE(2,l) 
l FORMAT(/,ISX,'LOAD DISTRIBUTION -- LOGNORMAL',/) 

WRITE(2,4) 
4 FORMAT(l2X,'RESISTANCE DISTRIBUTION -- LOGNORMAL',///) 

c 
C CALL SUBROUTINE TO FIND THE PARAMETERS OF THE LOAD 
c 

c 

CALL PARLN(MEAN,COV,ALAM,VARLN) 
WRITE(2,5) DPT 

5 FORMAT(SX,'I. DESIGN POINT ....... = ',F8.4,//) 
SQVAR=VARLN"'*.5 
WRITE(2,8) MEAN,ALAM,COV,SQVAR,RMU,RSIG 

8 FORMAT(4X,'II . LOADING STATISTICS ... MEAN LOAD = ',FI0.4,SX, 
l 'LAMBDA =',F8.4,/, 
2 4X,' LOAD C.O.V. = ',F8.4,5X, 
3' ZETA = ',f8.4,///, 
4 3X,'III. RESISTANCE STATISTICS ... LAMBDA = ',F8.4,/, 
5 3X,' ZETA = ',F8.4,//) 

C CALCULATE THE STANDARD DEVIATION FOR NORMALLY DISTRIBUTED 
c 

c 
RSDN = DPT+RSIG 
QSDN = DPT+SQV AR 

C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

RMN = DPT+(l.0-ALOG(DPT)+ RMU) 
QMN = DPT+(l.0-ALOG(DPT)+ ALAM) 

c 
C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN**2+ QSDN··w•.s 
RALF = -(RSDN/DELT A) 
QALF = QSDN/DELT A 

C CALCULATEBETA 
c 
c 
c 
c 

BETA= (QMN-RMN)/(RALF+RSDN-QALF"'QSDN) 

WRITE(2,9)BET A 
9 FORMAT(4X,'IV. RESULTING BETA .......... = ',Fl2.8) 
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STOP 
END 

c:······································································· c 
C SUBROUTINE PARLN(MEAN,COV,MNLN,VARLN) c: 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE PARLN(MEAN,COV,MNLN,VARLN) 
DOUBLE PRECISION MEAN,COV,MNLN,VARLN 
MNLN = o.s•DLOG((MEJ\N••2)/((COV .. 2) + 1.)) 
VARLN = DLOG((COV .. 2) +I.) 
RETURN 
END 
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c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
C BElLN BETA CALCULATION c 
c 
C ADVANCED FIRST ORDER SECOND MOMENT METHOD c 
C EXTREME TYPE I LOAD AND LOGNORMAL RESISTANCE DISTRIBUTIONS c 
c 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM CALCULATES THE RELIABILITY INDEX, BETA, WHEN THE 
LOAD FOLLOWS AN EXTREME TYPE f DISTRIBUTION AND THE RESISTANCE 
DISTRIBUTION IS LOGNORMAL. INPUT PARAMETERS ARE THE MEAN AND 
C.O.V. OF THE LOAD AND THE MEAN AND STANDARD DEVIATION OF THE 
LOGS FOR THE RESISTANCE DISTRIBUTION. 

CARD I -- SPECIFY DESIGN POINT TO USE ... 
(FI0.4) -- 'DESIGN POINT' IS THE VALUE ON THE X-AXIS 

USED FOR THE BETA CALCULATIONS (K.S .I.) 

CARD 2-- SPECIFY LOAD MEAN, COY, AND STRENGTH STATISTICS 
(5Fl0.4) -- 'MEAN' IS THE MEAN OF THE LOAD DISTRIBUTION 

(K.S.I.) 
-- 'COY' IS TIIE COEFFICIENT OF VARIATION FOR 

THE LOAD 
-- 'RMU' IS THE MEAN or THE LOGS FOR LOGNOR-

MAL CURVES (K.S.I.) 
-- 'RSIG' IS THE STD. DEV. or THE LOGS FOR 

THE RESISTANCE DISTRIBUTION (K.S.I.) 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

REAL MEAN,COV,A,B 
c 
C READ IN THE INPUT PARAMETERS AS LISTED IN THE USER'S GUIDE 
c 

READ( I, 12)DPT 
12 FORMAT(FI0.4) 

READ( I, 13)MEAN ,COV,RMU,RSIG 
13 FORMAT(4FI0.4) 

WRITE(2,l) 
l FORMAT(/,ISX, 'LOAD DISTRIBUTION -- EXTREME TYPE I' ,/) 

WRITE(2,4) 
4 FORMAT(l5X,'RESISTANCE DISTRIBUTION -- LOGNORMAL',// /) 

c 
C CALCULATE THE PARAMETERS OF THE LOAD 
c 

STD= cov•MEAN 
A= STD/ I .283 
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c 

B = MEAN-0.577•A 
Pl=3.1415927 
WRITE(2,5) DPT 

5 FORMAT(SX,'1. DESIGN POINT ....... = ',F8.4,//) 
WRITE(2,8) MEAN,A,COV,B,RMU,RSIG 

8 FORMAT(4X, ' ll. LOADING STATISTICS ... MEAN LOAD = ',F8.4,5X, 
l 'ALPHA = ',F8.4,/, 
2 4X,' LOAD C.O.V. = ', F8.4,5X, 
3' BETA =',F8.4,///, 
4 3X,'III. RESISTANCE STATISTICS ... LAMBDA = ',F8.4,/, 
5 3X,' ZETA = ' ,F8.4,//) 

C CALCULATE VALUES FOR CDF AND PDF AT THE DESIGN POINT 
c 
c 
c 

FDQ = EXP(-((DPT-B)/A)-EXP(-((DPT-B)/A)))/A 

FCQ =EXP(-EXP(-(DPT-B)/A)) -

C CALCULATE THE INVERVE NORMAL FUNCTION AT FCQ 
c 

CALL MDNRIS(FCQ,Y,IER) 
IF (IER.EQ.O) GO TO 20 
WRITE(2,59)1ER 

59 FORMAT(SX, 'ERROR CODE FROM IMSL IS ',14/) 
c 
C CALCULATE THE NORMAL DENSITY FUNCTION PARAMETERS 
c 

20 QSIGN = ( l.0/(FDQ•(2.0+Pl)++ .5))+EXP(-(Y••2;2.0)) 
QMUN= DPT-QSIGN•Y 
FCQND = (l.O/(QSIGN•(2•PI)+• .S))•EXP(-((DPT-QMUN)/QSIGN)••2;2.0) 

c 
C CALCULATE THE STANDARD DEVIATION FOR NORMALLY DISTRIBUTED 
c 

c 
RSDN = DPT+RSIG 
QSDN = QSIGN 

C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

c 
RMN = DPT+(l-ALOG(DPT) + RMU) 
QMN = QMUN 

C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN++2 + QSDN••2)•• .s 
RALF = -(RSDN /DELTA) 
QALF = QSDN/ DELT A 

C CALCULATE BETA 
c 
c 
c 
c 

BETA= (QMN-RMN)/(RALf+RSDN-QALf+QSDN) 
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WRITE(2,9)BET A 
9 FORMAT(4X,' IV. RESULTING BETA ..... ..... =',Fl2.8) 

STOP 
END 

I I 
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c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
C BLNW BETA CALCULATION 
c 
c 
C ADVANCED FIRST ORDER SECOND MOMENT METHOD 
c 
C USING LOG NORMAL LOAD AND WEIBULL RESISTANCE DISTRIBUTIONS 
c 
c 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
C THIS PROGRAM CALCULATES THE RELIABILITY INDEX, BETA, WHEN THE 
C LOAD FOLLOWS A LOGNORMAL DISTRIBUTION AND THE RESISTANCE 
C DISTRIBUTION IS WEIBULL. INPUT PARAMETERS ARE THE MEAN AND 
C C.O.V. OF THE LOAD AND THE LOCATION, SCALE, AND SHAPE 
C RESISTANCE PARAMETERS. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CARD I ·· SPECIFY DESIGN POINT TO USE .. . 
(FI0.4) ·· ' DESIGN POINT' IS THE VALUE ON THE X-AXIS 

USED FOR THE BETA CALCULATIONS (K.S.I.) 

CARD 2 .. SPECIFY LOAD MEAN, COY, AND STRENGTH STATISTICS 
(5FI0.4) ·- ' MEAN' IS THE MEAN or THE LOAD DISTRIBUTION 

(K.S.I.) 
-- 'COY' IS THE COEf'F'ICIENT OF VARIATION FOR 

THE LOAD 
-- 'RMU' IS TIIE LOCATION PARAMETER FOR THE 

WEIBULL CURVE (K.S .I.) 
-- ' RSIG' IS THE SCALE PARAMETER f'OR TIIE 

WEIBULL RESISTANCE DISTRII3 UTION (K.S.I.) 
-- ' RETA, IS THE SIIAPE PARAMETER FOR TIIE 

WEIBULL RESISTANCE DISTRIBUTION (K.S.l.) 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
REAL MEAN 

c 
C READ IN THE INPUT PARAMETERS AS LISTED IN TIIE USER'S GUIDE 
c 

READ(I ,12)DPT 
12 FORMAT(FI0.4) 

READ(I ,13)MEAN ,COV,RM U, RSIG,RET A 
13 FORMAT(5FJ0.4) 

WRITE(2,l) 
1 FORMAT(/,15X, 'LOAD DISTRIBUTION -- LOGNORMAL',/) 

WRITE(2,4) 
4 FORMAT(I5X, 'RESISTANCE DISTRII3UTIO N -·WEIBULL',//) 

c 
C CALL SUBROUTINE TO FIND THE PARAMETERS OF TI-IE LOAD 
c 
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I I 

I 

c 

CALL PARLN(MEAN ,COV,ALAM,V ARLN) 
PI= 3.1415927 
WRITE(2,5) D.PT 

5 FORMAT(5X,'I. DESIGN POINT ....... = ',F8.4,/) 
SQV AR= V ARLN • • .5 
WRITE(2,8) MEAN ,ALAM,COV,SQV AR,RMU ,RSIG,RET A 

8 FORMAT(4X,'II. LOADING STATISTICS ... MEAN LOAD = ',F8.4,5X, 
1 'LAMBDA =',F8.4,/, 
2 4X,' LOAD C.O.V. = ',F8.4,5X, 
3' ZETA = ',F8.4,///, 
4 3X,'III. RESISTANCE STATISTICS ... LOCATION= ',F8.4,/, 
5 3X,' SCALE = ',F8.4,/, 
6 3X,' SHAPE = ',F8.4,//) 

C CALCULATE PDF AND CDF AT THE DESIGN POINT FOR THE 
C RESISTANCE DISTRIBUTION 
c 

c 
c 

FDR=(RETA/RSIG)•((DPT-RMU)/RSIG)++(RETA-1.0)*EXP(-((DPT-RMU)/RSIG 
&)++RETA) 

FCR = 1-EXP(-((DPT-RMU)/RSIG)++RETA) 

C STEP 3 
c 

CALL MDNRIS(FCR,Y,IER) 
IF (IER.EQ.O) GO TO 20 
WR ITE(2, 153)IER 

153 FORMAT(SX,'ERROR CODE FROM IMSL IS ',14/) 
c 
C DETERMINE PARAMETERS FOR A NORMAL CURVE 
c 

20 RSIGN = (1.0/(FDR •(2•PI)** .5))*EXP(-(Y++2)/2) 
RMUN= DPT-RSIGN+Y 
FCRND = ( 1/(RSIG N +(2.o•PI)++ .5))+EXP( -((DPT -RMUN)/RSIG N)++2/2.0) 

c 
C CALCULATE THE STANDARD DEVIATION FOR NORMALLY DISTRIBUTED 
c 

c 
RSDN = RSIGN 
QSDN = DPT+SQV AR 

C CALCULATE TIIE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

RMN = RMUN 
QMN = DPT+( 1.0-ALOG(DPT) +ALAM) 

c 
C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN++2+ QSDN .. 2)++.5 
RALF = -(RSDN/DELTA) 
QALF = QSDN/DELT A 

C CALCULATEBETA 
c 
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c 
c 
c 

BETA=(QMN-RMN)/(RALF*RSDN-QALF"'QSDN) 

WRITE(2,9)BET A 
9 FORMAT(4X,' IV. RESULTING BETA ... .. ..... =',Fl2.8) 

STOP 
END 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
C SUBROUTINE PARLN(MEAN,COV,MNLN,VARLN) 
c c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE PARLN(MEAN,COV,MNLN ,V ARLN) 
DOUBLE PRECISION MEAN,COV,MNLN,VARLN 
MNLN = 0.5*DLOG((MEAN++2)/((COV++2) +I.)) 
VARLN=DLOG((Cov••2)+ I.) 
RETURN 
END 
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c••••••••••••••••••••••················································· c 
C B IW 
c 
c 
c 
c 
c 

ADVA 

XTR M TYP - 1 

M M II 

D \! ·IO R · I T TI 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

r: R 

F Tl l • 

c •••••••••••••••••••••••••••••••••••••• ••• ••• ••••••••••••••••••••••••••• 
c 

REAL ME/\ ,COY, ,B 
c 
C READ 11 THE I P T P RAMETER 
c 

RE D( l ,12)DPT 
12 f-O RMAT(r: l0.5) 

R D( l , lJ) l · \ :'>i,CO ,R I ,R IG,R ·T \ 
13 f-QR , I T(SFl0.5) 

\ RITE(2, lll ) 

I T ·DI N TI! · L ·R' GLIDE 

111 FO RMAT(/, lSX ,'LOAD 0 1 T RII3 T IO l -- -, TRE. I TYP I' ,/) 
\ RITE(2, l l4) 

114 FOR IAT( l5X ,'R - I TA CE DI TR[[3 ·1 -- \ - II3 L' ,///) 
c 
c c LC L TE T HE p R ' !ET R or: T r I . D 
c 

APPEN DI X 94 



c 

STD= COV•MEAN 
A= STD/1.283 
B = MEAN-0.577*A 
PI=3.1415927 
WRITE(2,5) DPT 

5 FORMAT(5X,'I. DESIGN POINT ....... = ' ,F8.4,//) 
WRITE(2,8) MEAN,A,COV,B,RMU,RSIG,RET A 

8 FORMAT(4X,' II. LOADING STATISTICS ... MEAN LOAD = ',F8.4,5X, 
1 'ALPHA =·',F8.4,/, 
2 4X,' LOAD C.O.V. = ',F8.4,5X, 
3' BETA = ',F8.4,///, 
4 3X,'III . RESISTANCE STATISTICS ... LOCATION = ',F8.4,/, 
5 3X,' SCALE = ',F8.4,/ , 
6 3X,' SHAPE = ',F8.4,// /) 

C CALCULATE VALUES FOR THE CDF'S AND PDF'S AT THE DESIGN POINT 
c 

c 

FDQ = EXP(-((DPT-B)/A)-EXP(-((DPT-B)/A)))/A 
FDR = (RET A/ RSIG) "'(((DPT-RMU)/ RSIG) • "'(RETA-1.0))+EXP(-(((DPT-RMU) 

&/RSIG)++RET A)) 

FCQ = EXP(-EXP(-(DPT-B)/A)) 
FCR = 1-EXP(-((DPT-RMU)/RSIG)"""RETA) 
WRITE(2,67)FDR,FCR 

67 FORMAT(5X, 'FDR = ',Fl0.5,' FCR = ',Fl0.5/) 
c 
C CALCULATE TI-IE INVERVE NORMAL FUNCTION AT FCQ 
c 

CALL MDNRIS(FCR ,YR,IER) 
IF (IER.EQ.O) GO TO 20 
WRITE(2,59)IER 

20 CALL MDNRIS(FCQ,YQ,IER) 
IF (IER.EQ.O) GO TO 30 
WRITE(2,59)IER 

59 FORMAT(5X, 'ERROR CODE FROM IMSL IS ', I4) 
c 
C CALCULATE THE NORMAL DENSITY FUNCTION PARAMETERS MU AND SIGMA 
c 

30 RSIGN = ( 1.0/(FDR "'(2.0"'PI)++.S))*EXP(-(YR ++2/2.0)) 
RMUN=DPT-RSIGN•YR 
QSIGN = ( 1.0/(FDQ +(2.0*PJ)++.5))*EXP(-(YQ+•2/2.0)) 
QMUN = DPT-QSIGN*YQ 
FCRND = ( 1.0/( RSIG N *(2•PI)++ .5))+EXP(-((DPT-RMUN)/ RSIGN)• *2/2.0) 
WRITE(2,68)YR,FCRND 

68 FORMAT(5X,' YR = ', Fl0.6, ' FCRND = ' ,Fl0.6/) 
c 
C CALCULATE THE STANDARD DEVIATION FOR NOR.MALLY DISTRIBUTED 
c 

RSDN = RSIGN 
QSDN = QSIGN 
WRITE(2,230)RSIGN,QSIGN 

230 FORMAT(SX,'RSIGN = ' ,Fl0.5,' QSIGN = ' ,Fl0.5/) 
c 
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C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE c 
RMN = RMUN 
QMN = QMUN 
WRITE(2,240)RMUN,QMUN 

240 FORMAT(SX,' RMUN = ',FJ0.5,' QMUN = ',FJ0.5/) 
c 
C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN++2+ QSDN**2)**.5 
RALF = -(RSDN/DELT A) 
QALF = QSDN/DELT A 

C CALCULATEBETA 
c 
c 
c 
c 

BETA= (QMN-RMN)/(RALf+RSDN-QALF*QSDN) 

WRITE(2,9)BETA 
9 FORMAT(4X,'IV. RESULTING BETA .......... =',FJ2.8) 

STOP 
END 
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Computer Programs to Calculate K Factors 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
C KBLNLN K-FACTOR CALCULATION COMPARING BETAS FROM THE 
c 
c 
C ADVANCED FIRST ORDER SECOND MOMENT METHOD 
c 
C USING LOGNORMAL LOAD AND RESISTANCE DISTRIBUTIONS 
c 
c 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
C THIS PROGRAM CALCULATES THE K-FACTOR COMPARING BETA WHEN THE 
C LOAD FOLLOWS A LOGNORMAL DISTRIBUTIO N AND THE RESISTANCE 
C DISTRIBUTION IS ALSO LOGNORMAL. INPUT PARAMETERS ARE THE MEAN 
C AND C.O.V. OF THE LOAD AND THE MEAN AND STD. DEV. OF THE LOGS 
C FOR THE RESISTANCE PARAMETERS. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CARD I -- SPECIFY BETA AND DESIGN POINT AND INITIAL K-FACTOR ... 
(3FI0.6) -- 'BETAK' VALUE USED FOR COMPARISION 

-- 'DESIGN POINT' IS THE VALUE ON THE X-AXIS 
USED FOR THE BETA CALCULATIONS (K.S.I.) 

-- 'FK' INITIAL K-FACTOR 

CARD 2 -- SPECIFY LOAD MEAN, COV, AND STRENGTH STATISTICS 
(SFI0.4) -- 'MEAN' IS THE MEAN OF THE LOAD DISTRIBUTION 

(K.S.I.) 
-- 'COV' IS THE COEFFICIENT OF VARIATION FOR 

THE LOAD 
-- 'RMU' IS TIIE MEAN OF THE LOGS FOR THE 

LOGNORMAL CURVE (K .S.I.) 
-- ' RSIG' IS THE STD. DEV. OF TIIE LOGS FOR 

THE RESISTANCE DISTRIBUTIO N (K.S.l.) 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

REAL MEAN 
c 
C READ IN THE INPUT PARAMETERS AS LISTED IN THE USER'S GUIDE 
c 

READ( I, 12)BET AK,DPT,FK 
12 FORMAT(3FI0.6) 

READ(l ,13)MEAN,COV,RMU,RSIG 
13 FORMAT(4FI0.4) 

WRITE(2,l) 
1 FORMAT(/ ,ISX,'LOAD DISTRIBUTION -- LOGNORMAL' ,/) 

WRITE(2,4) 
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4 FORMAT(l2X,'RESISTANCE DISTRIBUTION -- LOGNORMAL',///) c 
C FIND THE PARAMETERS OF THE LOAD 
c 

c 

ALAM= 0.5+LOG((MEAN++2)/((COV+•2) + l.O)) 
VARLN= LOG((COV++2) + 1.0) 
SQVAR=VARLN**.5 
PI= 3.1415927 
WRITE(2,5) DPT,BETAK,FK 

5 FORMAT(SX,'I. INPUT VALUES .. .... DESIGN POINT = ',F 10.4,/, 
1 SX,' TARGET BETA = ',FI0.4,/, 
2 5X,' INITIAL K = ',Fl0.4,1/) 
WRITE(2,8) MEAN,ALAM,COV,SQVAR,RMU,RSIG 

8 FORMAT(4X,'II. LOADING STATISTICS ... MEAN LOAD = ' ,Fl0.4,5X, 
1 'LAMBDA = ',F8.4,/, 
2 4X,' LOAD C.O.V. = ',F8.4,5X, 
3' ZETA =',F8.4,///, 
4 3X,'III. RESISTANCE STATISTICS ... LAMBDA= ',F8.4,/, 
5 3X,' ZETA = ',F8.4,//) 
WRITE(2,9) 

9 FORMAT(/,8X,' ',// 
1 ,8X,' K-FACTOR BETA ',/ 
2 ,8X, ' ',/) 

C INITILIZE THE STARTING PARAMETERS 
c 

c 

NPASS= l 
GO TO 30 

20 NPASS = NPASS + 
FK=FK+ .005 

C INCREMENT RESISTANCE PARAMETETERS 
c 

30 RKMU = RMU + LOG(FK) 
c 
C FIND BETA WITH CHANGED PARAMETERS 
c 
C CALCULATE THE STANDARD DEVIATION FOR NORMALLY DISTRIBUTED 
c 

c 
RSDN = DPT'"RSIG 
QSDN = DPT+SQV AR 

C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

RMN = DPT+( 1.0-ALOG(DPT) + RKMU) 
QMN = DPT"'( l.0-ALOG(DPT) +ALAM) 

c 
C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN**2+ QSDN++2)++.5 
RALF = -(RSDN/ DELTA) 
QALF = QSDN/ DELTA 
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C CALCULATE BETA 
c 

BETA=(QMN-RMN)/(RALF+RSDN-QALF+QSDN) 
c 
C CHECK TO SEE IF BET AK IS GREATER THAN BET A 
c 

IF (BETAK.LT.BETA) GO TO 50 
WRITE(2,33)FK,BET A 

33 FORMAT(IOX,F6.3,5X,Fl0.7) 
GO TO 20 

50 IF (NPASS.EQ.l) GO TO 60 
c 

c 
WRITE(2,33)FK,BET A 
GO TO 70 

60 WRITE(2,43) 
43 FORMAT(IOX,'INITIAL K-FACTOR TOO LARGE') 
70 CONTINUE 

STOP 
END 
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c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
C KBElLN K-FACTOR CALCULATION COMPARING BETAS FROM THE c 
c 
C ADVANCED FIRST ORDER SECOND MOMENT METHOD c 
C USING EXTREME TYPE I LOAD AND LOGNORMAL RESISTANCE DISTRIBUTIONS 
c 
c 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c 
C THIS PROGRAM CALCULATES THE K-FACTOR COMPARING BETA WHEN THE 
C LOAD IS A EXTREME TYPE I DISTRIBUTION AND TIIE RESISTANCE 
C DISTRIDUTION IS LOGNORMAL. INPUT PARAMETERS ARE THE MEAN 
C AND C.O.V. OF THE LOAD AND THE MEAN AND STD. DEV. OF THE LOGS 
C FOR THE RESISTANCE PARAMETERS. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CARD 1 -- SPECIFY BETA AND DESIGN POINT AND INITIAL K-FACTOR ... 
(3Fl0.6) -- 'BETAK' VALUE USED FOR COMPARISION 

-- 'DESIGN POINT' IS THE VALUE ON THE X-AXIS 
USED FOR THE BET A CALCULATIONS (K.S.I.) 

-- 'FK' INITIAL K-FACTOR 

CARD 2 -- SPECIFY LOAD MEAN, COY, AND STRENGTH STATISTICS 
(5Fl0.4) -- 'MEAN' IS THE MEAN OF THE LOAD DISTRII3UTION 

(K.S.I.) 

REAL MEAN 

-- 'COY' IS THE COEFFICIENT OF VARIATION FOR 
THE LOAD 

-- 'RMU' IS THE MEAN OF THE LOGS FOR THE 
LOGNORMAL CURVE (K.S.I.) 

-- 'RSIG' IS THE STD. DEV. OF THE LOGS f'OR 
THE RESISTANCE DISTRIBUTION (K.S.l.) 

C READ IN TIIE INPUT PARAMETERS AS LISTED IN TIIE USER'S GUIDE 
c 

READ(l,12)BETAK,DPT,FK 
12 FORMAT(3F 10.6) 

READ(I,13)MEAN,COV,RMU,RSIG 
13 FORMAT(4F 10.4) 

WRITE(2, I) 
1 f'ORMAT(/,12X,'LOAD DISTRIBUTION -- EXTREME TYPE!',/) 

WRITE(2,4) 
4 FORMAT(l2X, ' RESISTANCE DISTRIBUTION -- LOGNORMAL',///) 

c 
C FIND THE PARAMETERS OF THE LOAD 
c 
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STD= COV"'MEAN 
A= STD/ 1.283 
B = MEAN-0.577"' A 
PI=3.1415927 
WRITE(2,5) DPT,BETAK,FK 

5 FORMAT(SX,'I. INPUT VALUES ...... DESIGN POINT =',FI0.4,/, 
1 5X,' TARGET BETA = ',FJ0.4,/, 
2 5X,' INITIALK =',FI0.4,//) 
WRITE(2,8) MEAN,A,COV,B,RMU,RSIG 

8 FORMAT(4X,'II. LOADING STATISTICS ... MEAN LOAD = ',Fl0.4,5X, 
1 'ALPHA = ',F8.4,/, 
2 4X,' LOAD C.O.V. = ' ,F8.4,5X, 
3 'BETA =',F8.4,///, 
4 3X,'III. RESISTANCE STATISTICS ... LAMBDA = ',F8.4,/, 
5 3X,' ZETA = ',F8.4,//) 
WRITE(2,9) 

9 FORMAT(/,8X,' ',// 
1 ,SX,' K-FACTOR BETA ',/ 
2 ,8X,' ',/) 

c 
C INITILIZE THE STARTING PARAMETERS 
c 

c 

NPASS= I 
GO TO 30 

20 NPASS = NPASS + 
FK=FK+.005 

C INCREMENT RESISTANCE PARAMETETERS 
c 

30 RKMU = RMU + LOG(FK) 
c 
C FIND BETA WITH CHANGED PARAMETERS 
c 
C CALCULATE VALUES FOR CDF AND PDF AT THE DESIGN POINT 
c 
c 
c 

FDQ = EXP(-((DPT-B)/A)-EXP(-((DPT-B)/A)))/A 

FCQ = EXP(-EXP(-(DPT-B)/A)) 

C CALCULATE THE INVERVE NORMAL FUNCTION AT FCQ 
c 

CALL MDNRIS(FCQ,Y,IER) 
IF (IER.EQ.O) GO TO 200 
\VRITE(2,59)IER 

59 FORMAT(SX, 'ERROR CODE PROM IMSL IS ',14/) 
c 
C CALCULATE THE NORMAL DENSITY FUNCTION PARAMETERS 
c 
200 QSIGN = ( !.0/(FDQ"'(2.0"'PI)++.5))"'EXP(-(Y++2/2.0)) 

QMUN= DPT-QSIGN+Y 
c 
C CALCULATE THE STANDARD DEVIATION POR NORMALLY DISTRIBUTED 
c 
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c 
RSDN = DPT+RSIG 
QSDN = QSIGN 

C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

c 
RMN = DPT+( 1-ALOG(DPT) + RKMU) 
QMN = QMUN 

C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN++2+ QSDN++2) 0 .5 
RALF = -(RSDN/ DELTA) 
QALF = QSDN/DELTA 

C CALCULATE BETA 
c 

BETA= (QMN-RMN)/(RALPRSDN-QALF"'QSDN) 
c 
C CHECK TO SEE IF BETAK IS GREATER THAN BETA 
c 

IF (BETAK.LT.BETA) GO TO 50 
WRITE(2,33)FK,BET A 

33 FORMAT(lOX,F6.3,lOX,FI0.7) 
GO TO 20 

50 IF (NPASS.EQ. l) GO TO 60 
c 

c 
WRITE(2,33)FK,BET A 
GO TO 70 

60 WRITE(2,43) 
43 FORMAT(IOX,' INITIAL K-FACTOR TOO LARGE') 
70 CONTINUE 

STOP 
END 
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c+•••••••••••++++++••+++++++++++++••++++++++++•••••••••••••+++++•••••••• 
c 
C KBLNW K-FACTOR CALCULATION COMPARING BETAS FROM THE 
c 
c 
C ADVANCED FIRST ORDER SECOND MOMENT METHOD 
c 
C USING LOG NORMAL LOAD AND WEIBULL RESISTANCE DISTRIBUTIONS 
c 
c 
c•••••••••••••••••••••••••••••••••••••+++++++••••••••••••••••••••••••••• 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM CALCULATES THE K-FACTOR COMPARING BETA WHEN THE 
LOAD FOLLOWS A LOGNORMAL DISTRIBUTION AND THE RESISTANCE 
DISTRIBUTION IS WEIBULL. INPUT PARAMETERS AND THE MEAN 
AND C.O.V. OF THE LOAD AND THE LOCATION, SCALE, AND 
SHAPE RESISTANCE PARAMETERS. 

CARD I -- SPECIFY BETA AND DESIGN POINT AND INITIAL K-FACTOR ... 
(JFI0.6) -- 'BETAK' VALUE USED FOR COMPARISION 

-- 'DESIGN POINT' IS THE VALUE ON THE X-AXIS 
USED FOR THE BETA CALCULATIONS (K.S.I.) 

-- 'FK' INITIAL K-FACTOR 

CARD 2 -- SPECIFY LOAD MEAN, COY, AND STRENGTH STATISTICS 
(5FI0.4) -- 'MEAN' IS TIIE MEAN OF THE LOAD DISTRIBUTION 

(K.S.I.) 
-- 'COY' IS THE COEFFICIENT OF VARIATION FOR 

THE LOAD 
-- 'RMU' IS THE LOCATION PARAMETER FOR THE 

WEIBULL CURVE (K.S.I.) 
-- ' RSIG' IS TllE SCALE PARAMETER FOR THE 

WEIBULL RESISTANCE DISTRll3UTION (K.S .I.) 
-- ' RETA, IS TIIE SIIAPE PARAMETER FOR TIIE 

WEIBULL RESISTANCE DISTRIBUTION (K.S.I.) 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

REAL MEAN 
c 
C READ IN THE INPUT PARAMETERS AS LISTED IN THE USER'S GUIDE 
c 

READ(l,12)BETAK,DPT,FK 
12FORMAT(JF10.6) 

READ(l,IJ)MEAN,COV,RMU,RSIG,RET A 
13 FORMAT( SF 10.4) 

WRITE(2,I) 
I FORMAT(/,14X,'LOAD DISTRIBUTION -- LOGNORMAL',/) 

WRITE(2,4) 
4 FORMAT(l2X,'RESISTANCE DISTRIBUTION·· WEIBULL'.///) 

c 
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C FIND THE PARAMETERS OF THE LOAD 
c 

ALAM= 0.5"'LOG((MEAN°2)/((COV..,.2) + 1.0)) 
VARLN = LOG((COV"""2) + 1.0) 
SQVAR=VARLN ..... 5 
PI=3.1415927 
WRITE(2,5) DPT,BET AK,FK 

5 FORMAT(5X,'I. INITIAL VALUES ...... . DESIGN POINT = ',Fl0.6,/, 
1 5X,' TARGET BETA = ',FI0.6,/, 
2 5X,' INITIAL K VALUE = ' ,F6.3//) 
WRITE(2,8) MEAN,ALAM,COV,SQVAR,RMU,RSIG,RETA 

8 FORMAT(4X,'II. LOADING STATISTICS ... MEAN LOAD = ',FI0.4,5X, 
1 'LAMBDA = ',F8.4,/, 
2 4X,' LOAD C.O.V. = ',F8.4,5X, 
3' ZETA =',F8.4,///, 
4 3X,'III. RESISTANCE STATISTICS .. . LOCATION = ',F8.4,/, 
5 3X,' SCALE = ',F8.4,/ , 
6 3X,' SHAPE = ',F8.4,//) 
WRITE(2,23) 

23 FORMAT(/,8X,' ',// 
2 ,8X,' K-FACTOR BETA ',/ 
3 ,8X,' ',/) 

c 
C INITILIZE THE STARTING PARAMETERS 
c 

NPASS= 1 
GO TO 30 

20 NPASS = NPASS + 
FK=FK+ .005 

c 
C INCREMENT RESISTANCE PARAMETETERS 
c 

30 RKSIG= RSIG*FK 
RKMU= RMU+fK 

c 
C FIND BETA WITH CHANGED PARAMETERS 
c 
C CALCULATE PDF AND CDF AT THE DESIGN POINT FOR THE 
C RESISTANCE DISTRIBUTION 
c 

FDR= (RETA/RKSIG)+((DPT-RKMU)/ RKSIG)**(RET A- I .O)"'EXP(-((DPT-RKMU)/ 
&RKSIG)++RETA) 

c 
FCR = 1-EXP(-((DPT-RKMU)/RKSIG)++RETA) 

c 
C STEP 3 
c 

CALL MDNRIS(FCR,Y,IER) 
IF (IER.EQ.O) GO TO 200 
WRITE(2, I 53)IER 

153 FORMAT(5X,'ERROR CODE FROM IMSL IS ',14/) 
c 
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C DETERMINE PARAMETERS FOR A NORMAL CURVE 
c 
200 RSIGN = ( 1.0/(FDR "'(2"'PI) ... 5))"'EXP(-(Y"'"'2)/2) 

RMUN = DPT-RSIGN+Y 
FCRND = (l /(RSIGN•(2.0+PJ)++ .S))"'EXP(-((DPT-RMUN)/ RSIGN)• •2/2.0) 

c 
C CALCULATE THE STANDARD DEVIATION FOR NORMALLY DISTRIBUTED 
c 

RSDN = RSIGN 
QSDN = DPT•sov AR 

c 
C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

RMN = RMUN 
QMN = DPT+( 1.0-ALOG(DPT) +ALAM) 

c 
C CALCULATE THE DELTA AND ALPHAS 
c 

c 

DELTA= (RSDN+•2+ QSDN••2)+• .S 
RALF = -(RSDN/ DELTA) 
QALF = QSDN/DELTA 

C CALCULATE BETA 
c 
c 
c 
c 

BETA= (QMN-RMN)/(RALF+RSDN-QALF•QSDN) 

C CHECK TO SEE IF BETAK IS GREATER THAN BETA 
c 

IF (BETA.GT.BETAK) GO TO 50 
WRITE(2,33)FK,BET A 

33 FORMAT(IOX,F6.3,12X,FI0.7) 
GO TO 20 

c 
C CHECK TO SEE IF INITIAL K IS TOO LARGE 
c 

50 IF (NPASS.EQ. I) GO TO 60 
c 

WRITE(2,33)FK,BET A 
GO TO 70 

c 
60 WRITE(2,43) 
43 FORMAT(IOX,'INITIAL K-fACTOR TOO LARGE') 
70 CONTINUE 

STOP 
END 
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(:+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c: 
C: KBEIW K-FAC:TOR CALCULATION COMPARING BETAS FROM THE c: 
c: 
C: ADVANC:ED FIRST ORDER SEC:OND MOMENT METHOD 
c: 
C: USING EXTREME TYPE I LOAD AND WEIBULL RESISTANCE DISTRIBUTIONS c: 
c: c: + + + +. +++++ ++ ++ + + + + + + + + ••• +. +++ + ••• +. + + + + + + ••• +++ ...... + + ++ + + + + + + + + + + + ++ ++++ 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c: 
c 
c 
c 
c 
c 
c 

THIS PROGRAM CALCULATES THE K-FACTOR COMPARING BETA WHEN THE 
LOAD IS EXTREME TYPE I DISTRIBUTION AND TIIE RESISTANCE 
DISTRIBUTION IS WEIBULL. INPUT PARAMETERS AND THE MEAN 
AND C.O.V. OF THE LOAD AND THE LOCATION, SCALE, AND SHAPE 
RESISTANCE PARAMETERS. 

CARD I -- SPECIFY BETA AND DESIGN POINT AND INITIAL K-FACTOR ... 
(3FI0.6) -- 'BETAK' VALUE USED FOR COMPARISION 

-- 'DESIGN POINT' IS THE VALUE ON THE X-AXIS 
USED FOR THE BET A CALCULATIONS (K.S.I.) 

-- 'FK' INITIAL K-FACTOR 

CARD 2 -- SPECIFY LOAD MEAN, COY, AND STRENGTH STATISTICS 
(5Fl0.4) -- 'MEAN' IS THE MEAN OF THE LOAD DISTRIBUTION 

(K.S.l.) 
-- 'COY' IS TIIE COEFFICIENT OF VARIATION FOR 

THE LOAD 
-- 'RMU' IS TIIE LOCATION PARAMETER FOR THE 

WEIBULL CURVE (K.S.l.) 
-- 'RSIG' IS TllE SCALE PARAMETER FOR THE 

WEIBULL RESISTANCE DISTRIBUTION (K.S.I.) 
-- 'RETA, IS THE SHAPE PARAMETER FOR THE 

WEIBULL RESISTANCE DISTRIBUTION (K.S.I.) 

c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 

REALMEAN 
c 
C READ IN THE INPUT PARAMETERS AS LISTED IN THE USER'S GUIDE 
c 

READ(l,12)BETAK,DPT,FK 
12 FORMAT(3FI0.6) 

READ(l,13)MEAN,COV,RMU,RSIG,RETA 
13 FORMAT(SFI0.4) 

WRITE(2,l) 
I FORMAT(/,12X,'LOAD DISTRIBUTION -- EXTREME TYPE I' ,/) 

WRITE(2,4) 
4 FORMAT(12X,'RESISTANCE DISTRIBUTION -- WEIBULL',/ //) 

c 
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C FIND THE PARAMETERS OF THE LOAD c 
STD= COV*MEAN 
A= STD/ l.283 
B = MEAN-0.577* A 
PI=3.1415927 
WRITE(2,5) DPT,BETAK,FK 

5 FORMAT(5X,'I. INITIAL VALUES ....... DESIGN POINT = ',Fl0.6,/, 
1 5X,' TARGET BETA =',FI0.6,/, 
2 5X,' INITIAL K VALUE = ',F6.3//) 
WRITE(2,8) MEAN,A,COV,B,RMU,RSIG,RETA 

8 FORMAT(4X,' II. LOADING STATISTICS ... MEAN LOAD = ',FI0.4,5X, 
I ' LAMBDA = ',F8.4,/, 
2 4X,' LOAD C.O.V. = ',F8.4,5X, 
3' ZETA =',F8.4,///, 
4 3X,'III. RESISTANCE STATISTICS ... LOCATION =',F8.4,/, 
5 3X,' SCALE = ',F8.4,/, 
6 3X,' SHAPE = ',F8.4,//) 
WRITE(2,23) 

23 FORMAT(/,8X,' ',// 
2 ,8X, ' K-FACTOR BETA ',/ 
3 ,8X,' ',/) 

c 
C INITILIZE THE STARTING PARAMETERS 
c 

NPASS= I 
GO TO 30 

20 NPASS = NPASS + 
FK=FK+.005 

c 
C INCREMENT RESISTANCE PARAMETETERS 
c 

c 
30 RKSIG= RSIG*PK 

RKMU= RMU*FK 

C FIND BETA WITH CHANGED PARAMETERS 
c 
C CALCULATE VALUES FOR TI-IE CDF'S AND PDF'S AT THE DESIGN POINT 
c 

FDQ = EXP(-((DPT-B)/A)-EXP(-((DPT-B) /A)))/A 
FDR = (RETA/ RKSIG)+((DPT-RKMU)/ RKSIG)++(RETA-1 .0)+EXP(-((DPT-RKMU)/ 

&RKSIG)++RET A) 
c 

FCQ = EXP(-EXP(-(DPT-B)/A)) 
FCR = 1-EXP(-((DPT-RKMU)/RKSIG)**RETA) 

c 
C CALCULATE THE INVERVE NORMAL FUNCTION AT FCQ 
c 

CALL MDNRIS(FCR,YR,IER) 
IF (IER.EQ.O) GO TO 200 
WRITE(2,59)IER 

200 CALL MDNRIS(FCQ,YQ,IER) 
IF (IER.EQ.O) GO TO 300 
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WRITE(2,59)IER 
59 FORMAT(5X, 'ERROR CODE FROM IMSL IS ' ,I4) c 

C CALCULATE THE NORMAL DENSITY FUNCTION PARAMETERS MU AND SIGMA c 
300 RSIGN = ( 1.0/(FDR •(2.0+PI)++.5))•EXP(-(YR ++2/2.0)) 

RMUN= DPT-RSIGN+YR 
QSIGN = (1.0/(FDQ•(2.0•PI)++.5))+EXP(-(YQ++2/2.0)) 
QMUN= DPT-QSIGN•YQ 
FCQND = ( l .0/(QSIGN+(2•PI)+• .5))•EXP(-((DPT-QMUN)/QSIGN)••2/2.0) 

c 
C CALCULATE THE STANDARD DEVIATION FOR NORMALLY DISTRIBUTED 
c 

c 
RSDN = RSIGN 
QSDN = QSIGN 

C CALCULATE THE MEAN FOR A NORMALLY DISTRIBUTED VARIABLE 
c 

c 
RMN = RMUN 
QMN = QMUN 

C CALCULATE THE DELTA AND ALPHAS 
c 

DELTA= (RSDN••2+ QSDN••2)++.S 
RALF = -(RSDN/ DELTA) 
QALF = QSDN/ DELTA 

c 
C CALCULATE BETA 
c 

BETA= (QMN-RMN)/(RALf+RSDN-QALf+QSDN) 
c 
C CHECK TO SEE IF BET AK IS GREATER THAN BET A 
c 

IF (BETA.GT.BETAK) GO TO 50 
WRITE(2,33)FK ,BET A 

33 FORMAT(IOX,F6.3, 12X,F 10.7) 
GO TO 20 

c 
C CHECK TO SEE IF INITIAL K IS TOO LARGE 
c 

50 IF (NPASS.EQ . l) GO TO 60 
c 

c 
WRITE(2,33)FK,BETA 
GO TO 70 

60 WRITE(2,43) 
43 FORMAT(!OX, ' INITIAL K-FACTOR TOO LARGE') 
70 CONTINUE 

STOP 
END 
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