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ABSTRACT We propose a protein interaction network for the regulation of DNA synthesis and mitosis that emphasizes the 
universality of the regulatory system among eukaryotic cells. The idiosyncrasies of cell cycle regulation in particular organisms 
can be attributed, we claim, to specific settings of rate constants in the dynamic network of chemical reactions. The values of 
these rate constants are determined ultimately by the genetic makeup of an organism. To support these claims, we convert the 
reaction mechanism into a set of governing kinetic equations and provide parameter values (specif ic to budding yeast, fission 
yeast, frog eggs, and mammalian cells) that account for many curious features of cell cycle regulation in these organisms. Using 
one-parameter bifurcation diagrams, we show how overall cell growth drives progression through the cell cycle, how cell-size 
homeostasis can be achieved by two different strategies, and how mutations remodel bifurcation diagrams and create unusual 
cell-division phenotypes. The relation between gene dosage and phenotype can be summarized compactly in two-parameter 
bifurcation diagrams. Our approach provides a theoretical framework in which to understand both the universality and 
particularity of cell cycle regulation, and to construct, in modular fashion, increasingly complex models of the networks 
controlling cell growth and division. 

INTRODUCTION 

The cell cycle is the sequence of events by which a cell rep­
licates its genome and distributes the copies evenly to two 
daughter cells. In most cells, the DNA replication-division 
cycle is coupled to the duplication of all other components of 
the cell (ribosomes, membranes, metabolic machinery, etc.), 
so that the interdivision time of the cell is identical to its mass 
doubling t ime (1 ,2). Usually mass doubling is the slower pro­
cess; hence, temporal gaps (G 1 and G2) are inserted in the 
cell cycle between S phase (DNA synthesis) and M phase 
(mitosis). During G1 and G2 phases, the cell is growing and 
''preparing' ' for the next major event of the DNA cycle (3). 
' 'Surveillance mechanisms'' monitor progress through the cell 
cycle and stop the cell at crucial " checkpoints" so that 
events of the DNA and growth cycles do not get out of order 
or out of balance (4,5). In particular, in protists (for sure) and 
metazoans (to a lesser extent), cells must grow to a critical 
size to start S phase and to a larger size to enter mitosis. 
These checkpoint requirements assure that the cycle of DNA 
synthesis and mitosis will keep pace with the overall growth 
of cells (6). Other checkpoint signals monitor DNA damage 
and repair, completion of DNA replication, and congression 
of replicated chromosomes to the metaphase plate (7). 

Eukaryotic cell cycle engine 

These interdependent processes are choreographed by a com­
plex network of interacting genes and proteins. The main 
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components of this network are cyclin-dependent protein 
kinases (Cdk's), which initiate crucial events of the cell cycle 
by phosphorylating specific protein targets. Cdk's are active 
only if bound to a cyclin partner. Yeasts have only one es­
sential Cdk, which can induce both S and M phase de­
pending on which type of cyclin it binds. Because Cdk 
molecules are always present in excess, it is the availability 
of cyclins that determines the number of Cdk/cyclin com­
plexes in a cell (8). Cdk/cyclin complexes can be down­
regulated a), by inhibitory phosphoryation of the Cdk subunit 
and b), by binding to a stoichiometric inhibitor (cyclin­
dependent kinase inhibitor (CKI)) (9). 

Some years ago Paul Nurse (10) proposed, and since then 
many experimental studies have confirmed, that the DNA 
replication-division cycle in all eukaryotic cells is controlled 
by a common set of proteins interacting with each other by a 
common set of rules. Nonetheless, each particular organism 
seems to use its own peculiar mix of these proteins and inter­
actions, generating its own idiosyncrasies of cell growth and 
division. The ''generic'' features of cell cycle control concern 
these common genes and proteins and the general dynamical 
principles by which they orchestrate the replication and par­
titioning of the genome from mother cell to daughter. The 
peculiarit ies of the cell cycle concern exactly which parts of 
the common machinery are functioning in any given cell 
type, given the genetic background and developmental stage 
of an organism. We formulate the genericity of cell cycle 
regulation in terms of an "underlying" set of nonlinear 
ordinary differential equations with unspecified kinetic param­
eters, and we attribute the peculiarities of specific organisms 
to the precise settings of these parameters. Using bifurcation 
diagrams, we show how specific physiological features of 
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the cell cycle are determined ultimately by levels of gene ex­
pression. 

Mathematical modeling of the cell cycle 

The dynamic properties of complex regulatory networks 
cannot be reliably characterized by intuitive reasoning alone. 
Computers can help us to understand and predict the be­
havior of such networks, and differential equations (DEs) 
provide a convenient language for expressing the meaning of 
a molecular wiring diagram in computer-readable form (11). 
Numerical solutions of the DEs can be compared with ex­
perimental results, in an effort to determine the kinetic rate 
constants in the model and to confirm the adequacy of the 
wiring diagram. Eventually the model, with correct equa­
tions and rate constants, should give accurate simulations of 
known experimental results and should be pressed to make 
verifiable predictions. This method has been used for many 
years to create mathematical models of eukaryotic cell cycle 
regulation (12-29). The greatest drawback to DE-based 
modeling is that the modeler must estimate all the rate 
constants from the available data and still have some 
observations "left over" to test the model. In the case of 
cell cycle regulation, very few of these rate constants have 
been measured directly (30,31) although the available data 
provide severe constraints on rate constant values (15,32). 
To complement the important but tedious work of parameter 
estimation by data fitting, we need analytical tools for 
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characterizing the parameter-dependence of solutions of DEs 
and for associating a model's robust dynamical properties to 
the physiological characteristics of living cells. 

Bifurcation theory and regulatory networks 

Bifurcation theory is a general tool for classifying the at­
tractors of a dynamical system and describing how the quali­
tative properties of these attractors change as a parametervalue 
changes. Bifurcation theory has been used successfully to un­
derstand transitions in the cell cycle by our group (33-37) and 
by others (12,26,38). In this article, we use bifurcation theory 
to examine a generic model of eukaryotic cell cycle controls, 
bringing out the similarities and differences in the dynamical 
regulation of cell cycle events in yeasts, frog eggs, and mam­
malian cells. To understand our approach, the reader must be 
familiar with a few elementary bifurcations of nonlinear DEs 
and how they are generated by positive and negative feedback 
in the underlying molecular network. For more details, the 
reader may consult the Appendix to this article and some 
recent review articles (36,37). 

MATERIALS AND METHODS 

In Fig. 1 we propose a general protein interaction network for regulating 
cyclin-dependent ldnase activities in eukacyotic cells. (Fig. 1 uses "generic" 
names for each protein; in Table 1 we present the common names of each 
component in specific cell types: budding yeast, fission yeast, frog eggs, and 

FIGURE 1 Wiring diagram of the 
generic cell-cycle regulatory network. 
Chemical reactions (solid lines), regu­
latory effects (dashed lines); a protein 
sitting on a reaction arrow represents an 
enzyme catalyst of the reaction. Regu­
latory modules of the system are dis­
tinguished by shaded backgrounds: (1) 
exit of M module, (2) Cdh 1 module, (3) 
CycB transcription factor, (4) CycB 
synthesis/degradation, (5) G2 module, 
(6) CycB inhibition by CK1 (also 
includes the binding of phosphorylated 
CycB, if that is present), (7) CK1 

transcription factor, ( 8) CK1 synthesis/ 
degradation, (9) CycE inhibition by 
CKI, (10) CycE synthesis/degradation, 
(11) CycE/A transcription factor, (12) 
CycA inhibition by CKI, (13) CycA 
synthesis/degradation. Open-mouthed 
PacMan represents active form of reg­
ulated protein; gray rectangles behind 
cyclins represent their Cdk partners. 
We assume that all Cdk subunits are 
present in constant, excess amounts. 
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TABLE 1 Protein name conversion table and modules used for each organism 

In Fig. 1 Budding yeast Fission yeast Xenopus embryo Mammalian cells Function 

CycB Cdc28/Clb 1,2 Cdc2/Cdcl3 Cdc2/CycB Cdc2/CycB Mitotic Cdk/cyclin complex 
CycA Cdc28/Clb5,6 Cdc2/Cig2 Cdkl,2/CycA Cdkl,2/CycA S-phase Cdk/cyclin complex 
CycE Cdc28/Clnl,2 Cdk2/CycE Cdk2/CycE G 1/S transition inducer Cdk/cyclin 
CycD Cdc28/Cln3 Cdc2/Puc1 Cdk4,6/CycD Cdk4,6/CycD Starter Cdk/cyclin complex 
CKI Sicl Rum1 Xicl p27 Kipl Cdk/cyclin stoichometric inhibitor 
Cdh1 Cdh1 Ste9 Fzr hCdh1 CycB degradation regulator with APC 
Wee1 Swe1 Wee1 Xwee1 hWee1 Cdk/CycB inhibitory kinase 
Cdc25 Mih1 Cdc25 Xcdc25 Cdc25C Cdk/CycB activatory phosphatase 
Cdc20 Cdc20 Slp1 Fizzy p55 Cdc CycB, CycA degradation regulator with APC 
Cdc14 Cdc14 Clp1/Flp1 Xcdc14 hCdc14 Phosphatase working against the Cdk's 
TFB Mcm1 Mcm CycB transcription factor 
TFE Swi4/Swi6 Mbp 1/Swi6 Cdcl0/Res1 XE2F E2F CycE/A transcription factor 

(SBF+MBF in budding yeast) 
TFI Swi5 CKI transcription factor 
APC APC APC APC APC Anaphase promoting complex 
Active 1, 2, 3, 4, 6, 7, 8, 1, 2, 4, 5, 6, 8, 1, 4, 5 1, 2, 3, 4, 6, 8, 9, Modules of Fig. 1, used for 

modules 1~ 11, 1~ 13, (5*) 11, 12, 13 10, 11, 12, 13, (5*) simulation of organism 

*Module 5 is not introduced into the first version of budding yeast and mammalian models. 

mammalian cells.) Using basic principles of biochemical kinetics, we trans­
late the generic mechanism into a set of coupled nonlinear ordinary differ­
ential equations (Supplementary Material, Table SI) for the temporal dynamics 
of each protein species. Although the structure of the DEs is fixed by the 
topology of the network, the forms of the reaction rate laws (mass action, 
Michaelis-Menten, etc.) are somewhat arbitrary and would vary from one 
modeller to another. We use rate laws consistent as much as possible with 
our earlier choices (15,18,25,39-41). In addition, most of the parameter values 
for each organism (Supplementary Material, Table SIT) were inherited from 
earlier models. 

For numerical simulations and bifurcation analysis of the DEs, we used 
the computer program XPP-AUT (42), with the "stiff" integrator. 
Instructions on how to reproduce our simulations and diagrams (including 
all necessary .ode and .set files, and an optional SBML version of the model) 
can be downloaded from our website (43). 

All protein concentrations in the model are expressed in arbitrary units 
(au) because, for the most part, we do not know the actual concentrations of 
most regulatory proteins in the cell. Hence, all rate constants capture only the 
timescales of processes (rate constant units are min- 1

) . For each mutant, we 
u se the same equations and parameter values except for those rate constants 
that are changed by the mutation (e.g., for gene deletion we set the synthesis 
rate of the associated protein to zero) . 

RESULTS 

A generic model of cell cycle regulation 

Since the advent of gene-cloning teclmologies in the 1980s, 
molecular cell biologists have been astoundingly successful 
in unraveling the complex networks of genes and proteins 
that underlie major aspects of cell physiology. These results 
have been collected recently in comprehensive molecular 
interaction maps (44-48). In the same spirit , but with an eye 
toward a computable, dynamic model, we collected the most 
important regulatory "modules" of the Cdk network. Our 
goal is to describe a generic network (Fig. 1) that applies 
equally well to yeasts, frogs, and humans. We do not claim 
that Fig. 1 is a complete model of eukaryotic cell-cycle con-

trols , only that it is a starting point for understanding the 
basic cell-cycle engine across species. 

Regulatory modules 

The network, which tracks the three principal cyclin families 
( cyclins A, B, and E) and the proteins that regulate them at the 
G1-S, G2-M, and M-G1 transitions, can be subdivided into 13 
modules. (Other, coarser subdivisions are possible, but these 
13 modules are convenient for describing the similarities and 
differences of regulatory signals among various organisms.) 

Modules 4, 10, and 13: synthesis and degradation of 
cyclins B, E, and A. Cyclin E is active primarily at the G1-S 
transition, cyclin A is active from S phase to early M phase, 
and cyclin B is essential for mitosis. 

Modules 1 and 2: regulation of the anaphase promoting 
complex (APC). The APC works in conjunction with Cdc20 
and Cdh1 to ubiquitinylate cyclin B, thereby labeling it for 
degradation by proteasomes. The APC must be phosphor­
ylated by the mitotic CycB kinase before it will associate 
readily with Cdc20, but not so with Cdhl. On the other hand, 
Cdh1 can be inactivated by phosphorylation by cyclin­
dependent kinases. Cdc14 is a phosphatase that opposes Cdk 
by dephosphorylating and activating Cdhl. 

Module 8: synthesis and degradation of CKI (cyclin­
dependent kinase inhibitor). Degradation of CKI is promoted 
by phosphorylation by eyeliD-dependent kinases and inhib­
ited by Cdc14 phosphatase. 

Modules 6, 9, and 12: reversible binding of CKI to cyclin/ 
Cdk dimers to produce catalytically inactive trimers (stoi­
chiometric inhibition). 

Modules 3, 7, and 11: regulation of the transcription 
factors that drive expression of cyclins and CKI. TFB is ac­
tivated by cyclin B-dependent kinase. TFE is activated by 
some cyclin-dependent kinases and inhibited by others. TFI 
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is inhibited by cyclin B-dependent kinase and activated by 
Cdc14 phosphatase. 

Module 5: regulation of cyclin B-dependent kinase by 
tyrosine phosphorylation and dephosphorylation (by Wee1 
kinase and Cdc25 phosphatase, respectively). The tyrosine­
phosphorylated form is less active than the unphosphory­
lated form. Cyclin B-dependent kinase phosphorylates both 
Weel (inactivating it) and Cdc25 (activating it), and these 
phosphorylations are reversed by Cdc14 phosphatase. 

The model is replete with positive feedback loops (CycB 
activates TFB, which drives synthesis of CycB; CycB acti­
vates Cdc25, which activates CycB; CKI inhibits CycB, which 
promotes degradation of CKI; Cdh1 degrades CycB, which 
inhibits Cdh1), and negative feedback loops (CycB activates 
APC, which activates Cdc20, which degrades CycB; CycB 
activates Cdc20, which activates Cdc14, which opposes CycB; 
TFE drives synthesis of CycA, which inhibits TFE). These 
complex, interwoven feedback loops create the interesting 
dynamical properties of the control system, which account for 
the characteristic features of cell cycle regulation, as we in­
tend to show. 

The model (at present) neglects important pathways that 
regulate, e.g., cell proliferation in metazoans (retinoblastoma 
protein), mitotic exit in yeasts (the FEAR, MEN, and SIN 
pathways), and the ubiquitous DNA-damage and spindle as­
sembly checkpoints. We intend to remedy these deficiencies in 
later publications, as we systematically grow the model to in­
clude more and more features of the control system. 

Role of cell growth 

In yeasts and other lower eukaryotes, a great deal of evidence 
shows the dominant role of cell growth in setting the tempo 
of cell division (2,49-52). In somatic cells of higher eu­
karyotes there are many reports of size control of cell-cycle 
events (e.g., (53-55)), although other authors have cast 
doubts on a regulatory role for cell size (e.g., (56,57)). For 
embryonic cells and cell extracts, the activation of Cdk1 is 
clearly dependent on the total amount of cyclin B available 
(58,59). To create a role for cell size in the regulation of Cdk 
activities, we assume, in our models, that the rates of syn­
thesis of cyclins A, B, and E are proportional to cell "mass". 
The idea behind this assumption (see also Futcher (60)) is 
that cyclins are synthesized in the cytoplasm on ribosomes at 
an increasing rate as the cell grows. The cyclins then find a 
Cdk partner and move into the nucleus where they perform 
their functions. Presumably the effective, intranuclear con­
centrations of the cyclin-dependent kinases increase as the 
cell grows because they become more concentrated at their 
sites of action. Other regulatory proteins in the network, we 
assume, are not compartmentalized in the same way, so their 
effective concentrations do not increase as the cell grows. 
This basic idea for size control of the cell cycle was tested 
experimentally in budding yeast by manipulating the ''nu­
clear localization signals" on cyclin proteins (8). As pre-
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dieted by the model, cell size is larger in cells that exclude 
cyclins from the nucleus and smaller in cells that over­
accumulate cyclins in the nucleus. A recent theoretical study 
by Yang et al. (61) may shed light on how cell size couples to 
cell division without assuming a direct dependence of cyclin 
synthesis rate on mass, but, for this article, we adopt the as­
sumption as a simple and effective way to incorporate size 
control into nonlinear DE models for the control of cyclin­
dependent kinase activities. 

For simplicity, we assume that cell mass increases ex­
ponentially (with a mass doubling time (MDT) suitable for 
the organism under consideration) and that cell mass is 
exactly halved at division. Our qualitative results (bifurca­
tion diagrams, etc.) are not dependent on these assumptions. 
Cell growth may be linear or logistic, and cell division may 
be asymmetric or inexact-it doesn't really matter to our 
models. The important features are that "mass" increases 
monotonically as the cell grows (driving the control system 
through bifurcations that govern events of the cell cycle) and 
that mass decreases abruptly at cell division (resetting the 
control system back to a G1-like state-unreplicated chro­
mosomes and low Cdk activity). 

Equations and parameter values 

The dynamical properties of the regulatory network in Fig. 
1 can be described by a set of ordinary differential equations 
(Supplementary Material , Table Sl), given a table of pa­
rametervalues suitable for specific organisms (Table SII). For 
each organism we analyze the effects of physiological and 
genetic changes on the transitions between cell cycle phases, 
in terms of bifurcations of the vector fields defined by the DEs 
(for background on dynamical systems, see the Appendix). 

Frog embryos: Xenopus laevis 

To validate our equations and tools, we first verified our 
earliest studies of bifurcations in the frog-egg model. The 
combination of modules 1, 4, and 5 of Fig. 1 was used to 
recreate the bifurcation diagram of Borisuk and Tyson (33); 
see Supplementary Material , Fig. Sl. Our bifurcation pa­
rameter, ''cell mass'', can be interpreted as the rate constant 
for cyclin B synthesis. For small rates of cyclin synthesis, the 
control system is arrested in a stable "interphase" state with 
low activity of CycB-dependent kinase. For larger rates of 
cyclin synthesis, the model exhibits spontaneous limit cycle 
oscillations, which begin at a SNlPER bifurcation (long 
period, fixed amplitude). Eventually, as the rate of cyclin 
synthesis gets large enough, the oscillations are lost at a Hopf 
bifurcation (fixed period, vanishing amplitude). Beyond the 
Hopf bifurcation, the control system is arrested in a stable 
''mitotic" state with high activity ofCycB-dependent kinase. 
These types of states of the control system are reminiscent of 
the three characteristic states of frog eggs: interphase arrest 
(immature oocyte), metaphase arrest (mature oocyte), and 
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spontaneous oscillations (fertilized egg). For more details, 
see Novak and Tyson (18) and Borisuk and Tyson (33). 

Fission yeast: Schizosaccharomyces pombe 

Wild-type cell cycle 

The fission yeast cell cycle network, composed of modules 1, 2, 
4, 5, 6, 8, 11, 12, and 13, is described in Fig. 2 in terms of a one­
parameter bifurcation diagram (Fig. 2A) and a simulation (Fig. 
2 B). In the simulation, we plot protein levels as a function of 
cell mass rather than time, but because mass increases expo­
nentially with time, one may think of the lower abscissa as e~'-1• 
We present the simulation this way so that we can ''lift it up'' 
onto the bifurcation diagram: the gray curve in Fig. 2 A is 
identical to the solid black curve (actCycB) in Fig. 2 B. In Fig. 
2 A, a stable, G1-like, steady state exists at very low level of 
actCycB (active Cdk/CycB dimers ). This steady state is lost at a 
saddle-node bifurcation (SN1) at cell mass= 0.8 au. Between 
SN1 and SN2 (at cell mass= 2.6 au), the control system has a 
single, stable, steady-state attractor with an intermediate 
activity (~0.1) of cyclin B (an S/G2-like steady state). The 
other steady-state branches are unstable and physiologically 
unnoticeable. For mass >2.6 au, the only stable attractor is 
a stable limit cycle oscillation. This branch of stable limit 
cycles is lost by further bifurcations at very large mass (of 
little physiological significance for wild-type cells). 

The gray trajectory in Fig. 2 A represents the path of a 
growing-dividing yeast cell projected onto the bifurcation 
diagram. Let us pick up the trajectory of a growing cell at 
mass = 2.2 au, where the cell cycle control system has been 
captured by the stable S/G2 steady state. As the cell continues 
to grow, it leaves the S/G2 state at SN2 and prepares to enter 
mitosis. At cell mass > 2.6, the only stable attractor is a limit 
cycle. This limit cycle, which bifurcates from SN2, has 
infinite period at the onset of the bifurcation (hence, the onset 
point is commonly called a SNIPER-saddle-node-infinite­
period-bifurcation). Because the limit cycle has a very long 
period at first, and the cell enters the limit cycle at the place 
where the saddle-node used to be, the cell is stuck in a 
semistable transient state (where the gray trajectory "over­
shoots" SN2). As the cell grows, it eventually escapes the 
semistable state (at cell mass~ 3), and then actCycB increases 
dramatically (note the log-scale on the ordinate), driving the 
cell into mitosis. Because the control system is now captured 
by the stable limit cycle, actCycB inevitably decreases and the 
cell is driven out of mitosis. We presume that the cell divides 
when actCycB falls below 0.1; hence, cell mass is halved 
(3.4 --+ 1.7), and the control system is now attracted to the 
S/G2 steady state (the only stable attractor at this cell mass). 
The newly divided cell makes its way to the S/G2 attractor by 
a circuitous route that looks like a brief G1 state (very low 
actCycB) but is not a stable and long-lasting G1 state. This 
transient G1 state is characteristic of wild-type fission yeast 
cells (62). 
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FIGURE 2 One-parameter bifurcation diagram (A) and cell-cycle trajec­
tory (B) of wild-type fission yeast. Both figures share the same abscissa. 
Notice tl1at cell mass is just the logarithm of age, because we assume that 
cells grow exponentially between birth (age = 0) and division (age= MD1). 
The gray cwve in panel A (a "cell-cycle trajectory" for MDT= 120 min) is 
identical to tl1e solid black cwve in panel B. Key to panel A: solid line, stable 
steady state; dashed line, unstable steady state; solid circles, maJdma and 
minima of stable oscillations; open circles, maJdma and minima of unstable 
oscillations; SNl (saddle-node bifurcation that allllihilates the Gl steady 
state), SN2 (saddle-node bifurcation that annihilates the G2 steady state), 
and HBl (Hopf bifurcation on the S/G2 branch of steady states that gives 
rise to endoreplication cycles). SN2 is a SN1PER bifurcation; i.e., it gives 
way to stable periodic solutions of infinite period (at the bifurcation point). 
The other (unmarked) bifurcation points in this diagram are not pertinent to 
cell-cycle regulation. 

Overshoot of a SNIPER bifurcation point (as in Fig. 2A) is 
a common feature of our cell cycle models, and recent 
experimental evidence (63) confirms this prediction in frog 
egg extracts. These authors located the position of the 
steady-state SN bifurcation in a nonoscillatory extract and 
then showed that during oscillations the Cdk-regulatory 
system overshoots the SN point by twofold or more. 

The one-parameter bifurcation diagram in Fig. 2 A is a 
compact way to display the interplay between the DNA 
replication-segregation cycle (regulated by Cdk/CycB activity) 
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and the growth-division cycle (represented on the abscissa 
by the steady increase of cell mass and its abrupt resetting at 
division). The very strong "cell size control" in late G2 
phase of the fission yeast cell cycle, which has been known 
to physiologists for 30 years (52), is here represented by 
growing past the SNIPER bifurcation, which eliminates the 
stable S/G2 steady state and allows the cell to pass into and 
out of mitosis (the stable limit cycle oscillation). 

A satisfactory model of fission yeast must account not 
only for the phenotype of wild-type cells but also for the un­
usual properties of the classic cdc and wee mutants that 
played such important roles in deducing the cell-cycle 
control network. Mutations change the values of specific rate 
constants, which remodel the one-parameter bifurcation 
diagram and thereby change the way a cell progresses 
through the DNA replication-division cycle. For example 
(Fig. 3 A), for a weer mutant (reduce Weel activity to 10% 
of its wild-type value) SN2 moves to the left of SNl and the 
infinite-period limit cycle now bifurcates from SNl. Hence, 
the cell cycle in weer cells is now organized by a SNIPER 
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bifurcation at the Gl/S transition: weer cells are about half 
the size of wild-type cells, they have a long Gl phase and 
short G2, and slowly growing cells pause in Gl (unreplicated 
DNA) rather than in G2 (replicated DNA). 

In the Supplementary Material (Fig. S2) we present 
bifurcation diagrams for four other fission yeast mutants 
(cig26., cig26. rumlli, weelli cdc256., weelli rumlli), to 
confirm that our "generic" version is indeed consistent with 
the known physiology of these mutants. Because they have 
been described in detail elsewhere (37), we turn our attention 
instead to some novel results. 

Endorepficating mutants 

On the wild -type bifurcation diagram (Fig. 2 A) we can notice 
a very small oscillatory regime at the beginning of the S/G2 
branch of steady states (labeled as HBl, at cell mass= 0.79). 
This stable periodic solution is a consequence of a negative 
feedback loop whereby Cig2 inhibits its own transcription 
factor, CdclO, by phosphorylation (64). (In the generic 
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FIGURE 3 One-parameter (A) and two-parameter (B) 
bifurcation diagrams for mutations at the weel locus in 
fission yeast Panel A should be interpreted as in Fig. 2. 
Key to panel B: dashed black line, locus ofSN1 bifurcation 
points; solid black line, locus of SN2 bifurcation points; 
red line, locus of HBl bifurcation points; black bars, 
projections of the cell-cycle trajectories in Figs. 2 A and 3 A 
onto the two-parameter plane. Within regions of stable 
limit cycles, the color code denotes the period of oscilla­
tions. Notice that the period becomes very long as the limit 
cycles approach the locus of SNIPER bifurcations. The 
limit cycles switch their allegiance from SN2 to SNl 
at Weel activity -0.07 (by a complex sequence of 
codimension-two bifurcations that are not indicated here). 
Notice that weel + overexpressionleads to large cells, size­
controlled at the G2-to-M transition, but weel deletion 
leads to small cells (half the size of wild-type), size­
controlled at the G 1-to-S transition. 
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nomenclature, Cig2 is ''CycA" and CdclO is ''1FE'' .) The 
negative feedback loop can generate oscillations if there is 
positive feedback in the system as well, which is provided by 
the Cdk inhibitor (CKI). As CycA slowly accumulates, it is at 
first sequestered in inactive complexes with CKI, but 
eventually CycA saturates CKI and active (uninhibited) 
Cdk/CycA appears. ActCycA phosphorylates CKI, which 
labels CKI for proteolysis ( 65). As CKI is degraded, actCycA 
rises even faster because it is released from the inactive com­
plexes. At this point the negative feedback turns on and CycA 
synthesis is blocked. With no synthesis but continued de­
gradation, CycA level drops, which allows CKI to come 
back (provided there is no other Cdk activity that can 
phosphorylate CKI and keep its level low). CKI comeback 
returns the control system toGl. In wild-type cells, the CycA­
TFE-CKI interactions cannot create stable oscillations be­
cause CycB takes over from CycA and keeps CKI low in G2 
andM phases. ButifCycB is absent (as in cdcl 311 mutants of 
fission yeast), then CKI and CycA generate multiple rounds of 
DNA replication without intervening mitoses (called "endor-
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eplication"), precisely the phenotype of cdcl 311 mutants 
(66). 

In Fig. 4 A we show the bifurcation diagram of cdc1311 
cells. Over a broad range of cell mass, large amplitude stable 
oscillations of Cdk/CycA (from a SNIPER bifurcation at 
SNl) drive multiple rounds of DNA synthesis without in­
tervening mitoses. Because this negative feedback loop also 
exists in metazoans, it may explain the core mechanism of 
developmental endoreplication (67). 

Mutant analysis on the genetics-physiology plane 

In our view, genetic mutations are connected to cell pheno­
types through bifurcation diagrams. Mutations induce 
changes in parameter values, which may change the nature 
of the bifurcations experienced by the control system, which 
will have observable consequences in the cell's physiology. 
Mutation-induced changes in parameter values may be large 
or small: e.g., the rate constant for CycB synthesis = 0 in a 
cdc 1311 cell, but a weelts ("temperature sensitive") mutant 

4 

6 

FIGURE 4 One-parameter (A) and two-parameter (B) 
bifurcation diagrams for mutations at the cdcl3 locus in 

fission yeast. Panels A and B should be interpreted as in 
Fig. 3. cdcl3 + overexpression has little effect on cell-cycle 
phenotype, but cdcl3 deletion prevents mitosis and 
permits endoreplication. 
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may cause only a minor change in the catalytic activity of 
Weel kinase. Whether these changed parameter values 
cause a qualitative change in bifurcation points on the one­
parameter diagram (Figs. 2 A and 3 A), or merely a 
quantitative shift of their locations, depends on whether the 
parameter change crosses a bifurcation point or not. In 
principle, we can imagine a sequence ofbifurcation diagrams 
(and associated phenotypes) connecting the wild-type cell to a 
mutant cell as the relevant kinetic parameter changes con­
tinuously (up or down) from its wild-type value. This the­
oretical sequence of morphing phenotypes can be captured on 
a two-parameter bifurcation diagram, where cell mass con­
tinues to stand in for the physiology of the cell cycle (growth 
and division) and the second parameter is a rate constant that 
varies continuously between 0 (the deletion mutant) and some 
large value (the overexpression mutant). Plotted this way, the 
two-parameter bifurcation diagram spans the entire range of 
molecular biology from genetics to cell physiology! (For 
more details on two-parameter bifurcation diagrams, see the 
Appendix.) 

To illustrate this idea, we first consider wee] mutations. 
On the two-parameter bifurcation diagram in Fig. 3 B we 
follow the loci of bifurcation points (SNI, SN2, and HB 1) 
from their position in wild-type cells ("Weel activity" = 
0.5) in the direction of overexpression (>0.5) or deleterious 
mutation ( < 0.5). The one-parameter bifurcation diagrams of 
wild-type (Fig. 2 A) and wee] - (Fig. 3 A) cells are cuts of this 
plane at the marked levels of Weel activity. For over­
expression mutations, the SNIPER bifurcation moves toward 
larger cell mass, and the heavy bar shows where the 
simulation of 2 X wee]+ cells projects onto the genetics­
physiology plane. Clearly, the size of wee] op cells increases 
in direct proportion to gene dosage (68). As Weel activity 
decreases below 0.5, e.g ., in a heterozygote diploid cell 
(activity = 0.25) or in weelts mutants, the SNIPER bifur­
cation moves toward smaller cell mass. Eventually, the SNI 
and SN2 loci cross, and the infinite-period oscillations switch 
from SN2 to SNI by a short but complicated sequence of 
codimension-two bifurcations (not shown on the diagram). 
Because SNI is not dependent on Weel activity, the critical 
cell size at the SNIPER bifurcation drops no further as Weel 
activity decreases. 

The two-parameter bifurcation diagram for cyclin B 
(Cdc13) expression (Fig. 4 B) shows how mitotic cycles 
are related to endoreplication cycles. As Cdc13 synthesis rate 
decreases from its wild-type value (0.02 min-\ there is a 
dramatic increase of the critical cell mass for mitotic 
oscillations (the SNIPER bifurcation associated with SN2). 
In addition, endoreplication cycles appear at the intersection 
of HBI and SNI (by a sequence of codimension-two bifu­
rcations, which we are not focusing on here). At first appear­
ance, the endoreplication cycles have a very long period, but 
as Cdc13 synthesis rate decreases further, the period of 
endoreplication cycles decreases and the range of these oscil­
lations increases. 

Biophysical Journal 90(12) 4361-4379 

Csikasz-Nagy et al. 

The two-parameter bifurcation diagrams in Figs. 3 and 4 
are incomplete: they do not show all loci of codimension-one 
bifurcations or any of the characteristic codimension-two 
bifurcations. Examples of more complete two-parameter bifu­
rcation diagrams can be found in the Supplementary Material 
(Fig. S3) and on our web site (69). 

Budding yeast: Saccharomyces cerevisiae 

Our generic model of the budding yeast cell cycle is based on 
a detailed model published recently by Chen et al. (15). The 
generic model bypasses details of the mitotic exit network 
(MEN) in Chen's model, assuming instead that Cdc20 
directly activates Cdc14. We had to change some parameters 
compared to Chen et al. (15) because of this and other minor 
changes in the network. We found these new parameter 
values by fitting simulations of wild-type and some mutant 
cells (15). 

Wifd-type cells 

One-dimensional bifurcation diagrams of wild-type cells 
created by the full model (15) and by our generic model 
(Fig. 5, A and B) look very similar. Both figures show a stable 
G 1 steady state that disappears at a SNIPER bifurcation 
(GI-S transition at cell mass = 1.13 au) , giving rise to 
oscillations that correspond to progression through S/G2/M 
phases. There is no attractor representing a stable G2 phase 
in wild-type budding yeast cells. The green, red, and blue 
curves superimposed on the bifurcation diagram are ''cell 
cycle trajectories" at mass doubling time of 150, 120, and 90 
min, respectively (MDT = ln2/ JL, where JL = specific growth 
rate). Notice that cells get larger as MDT gets smaller (as JL 
increases). For simplicity , we are neglecting the asymmetry 
of division of budding yeast in these simulations. 

Two ways to achieve size homeostasis 

Fig. 5 A shows that the relation of the cell cycle trajectory to 
the SNIPER bifurcation point depends strongly on MDT. At 
slow growth rates (MDT 2:: 150 min), newborn cells are 
smaller than the size at the SNIPER bifurcation; hence the 
Cdk-control system is attracted to the stable Gl steady state 
(seen more clearly in Fig. 5 B than in Fig. 5 A), and the cell is 
waiting until it grows large enough to surpass the SNIPER 
bifurcation. Only then can the cell commit to the S/G2/M 
sequence. This is a mathematical representation of the classic 
notion of' 'size control" to achieve balanced cell growth and 
division (49,50,52,70). At faster growth rates , however, 
newborn cells are already larger than the critical size at the 
SNIPER bifurcation, and they do not linger in a stable G 1 
state, waiting to grow large enough to start the next chromo­
some replication cycle. How then is cell-size homeostasis 
achieved, if the classic " sizer" mechanism is inoperative? 



Generic Model of Cell-Cycle Regulation 

1 0 1 r---~----------------, 

10° 

10' ' 

10'2 

10'3 

10'4 

101 cdhl LJ 

c 

2 3 4 

4369 

10° B 
M.DT = 10'' 

I~U 1tll~ 
10'2 

120min 
90 min 

10'3 

10'4 

10'5 

0 2 3 

101 sicl LJ 

D 
100 

= 10'1 

"' .... 
~ 10'2 
" "' 

~~· 

'~t = 
10'3 h 

o--------------------- 10° 

10' 1 

10'2 

w ·-············ r::: -------------
············ \ ... 

~"---" ... 

4 FIGURE 5 One-parameter bifurcation dia­
grams of budding yeast cells. (A) Wild-type 
(this article), (B) wild-type (Chen's 2004model 
(15)), (C) cdhlll (ka~~1p = ka~~1pp = 0), (D) ckill 
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key to diagrams. (A, B, and D) TI1e large­
amplitude, stable limit cycles arise from 
SNIPER bifurcations; (C) they arise from a 
subcritical Hopf bifurcation followed by a 
cyclic fold bifurcation. Simulations are consis­
tent with observed phenotypes: cdhlll and ckill 
are viable; cdc201l and cdcl41l are inviable 
(blocked in late mitosis), with much higher 
activity of cyclin B-dependent kinase in 
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Fig. 6 shows the relationship between limit cycle period 
and distance from the SNIPER bifurcation. For mass <1.13, 
there is no limit cycle; the stable attractor is the G1 steady 
state. For mass slightly> 1.13, the limit cycle period is very 
long, approaching infinity as mass approaches 1.13 from 
above. Depending on l\IDT, the cell cycle trajectory finds a 
location on the cell-mass axis such that the average cell­
cycle-progression time (time spent in G1/S/G2/M) is equal to 
the mass doubling time. For l\IDT = 90 min (bottom curve in 
Fig. 6), the cell is born at mass = 2 and divides at mass = 4, 
spending its entire lifespan in the oscillatory region, with an 
average cell-cycle-progression time of 90 min. As l\IDT 
lengthens to 120 min (second curve from bottom), the cell 
cycle trajectory shifts to smaller size, so that the average cell­
cycle-progression time can lengthen to 120 min. Still slower 
growth rates (l\IDT 2::: 150 min) drive the newborn cell into 
the "sizer" domain, where the Cdk-control system can wait 
indefinitely at the stable G1 state until the cell grows large 
enough to surpass the SNIPER bifurcation. Notice that cell­
size homeostasis is possible in the "oscillator" domain 
because of the inverse relationship between oscillator period 
and cell mass close to a SNIPER bifurcation. 

Cell cycles that visit the "sizer" domain (top two curves in 
Fig. 6) show "strong" size control, i.e., interdivision time is 

2 3 4 

2 3 4 

strongly negatively correlated to birth size, and cell size at the 
size-controlled transition point (G 1 to Sin Fig. 6) shows little or 
no dependence on birth size (1, 2). Cell cycles that live wholly in 
the ''oscillator'' domain (bottom two curves in Fig. 6) show 
"weak" size control, i.e., interdivision time is weakly neg­
atively correlated to birth size and there is no clear ''critical 
size'' for any cell cycle transition. Nonetheless, such cycles still 
show balanced growth (interdivision time = mass doubling 
time) because the cell cycle trajectory settles on a size interval 
for which the average oscillatory period is identical to the cell's 
mass doubling time. Balanced growth and division is a con­
sequence of the steep decline in limit cycle period with 
increasing cell size past the SNIPER bifurcation. 

As Fig. 6 demonstrates, for cells in the "oscillator" 
domain, our model predicts a positive correlation between 
growth rate and average cell size (faster growing cells are 
bigger). This correlation is a characteristic and advantageous 
feature of yeast cells: rich media favor cell growth, poor 
media favor cell division (50,71). Although itis satisfying to 
see our model explain this correlation in an ''unforced'' way, 
we note that our interpretation of the dependence of cell size 
on growth rate is predicated on the assumption that one can 
vary mass doubling time without changing any rate constants 
in the Cdk-control system (i.e., without changing the location 
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FlGURE 6 Achieving balanced grow1h at different growth rates. (Upper 
panel) Bifurcation diagram of the budding yeast network (same as Fig. 5 A). 
(Lower panel) Period of the oscillatory solutions. Cell cycle trajectories at 
different MDT (solid curves) are displayed at the corresponding period 
(dashed lines). Background shading shows the "sizer" and "oscillator" 
regimes of cell cycle regulation. Slowly growing cells spend part of their cell 
cycle in a stable G 1-arrested state, until they grow large enough to surpass 
the SNIPER bifurcation and enter S/G2/M; these cells exhibit' 'strong'' size 
control. Rapidly growing cells are large enough to stay always in the 
oscillatory regime, maintaining balanced growth and division by finding an 
average cell-cycle time = MDT. These cells display "weak'' size controL 

of the bifurcation points in Fig. 6). Unfortunately, this 
assumption is probably incorrect because changes in growth 
medium (sugar source, nitrogen source, etc.) likely induce 
changes in gene expression that move the SNIPER bifurca­
tion points, with poorer growth medium favoring smaller 
size for completion of the cell cycle (see, e.g., (49,50)). We 
have yet to sort out all the complications of size regulation in 
yeast cells. In the meantime, Fig. 6 provides a useful par­
adigm for understanding "strong" and "weak" size control 
in eukaryotes. 

Mutants of G1 phase regulation 

In this section we present bifurcation diagrams for a few of 
the most important and interesting mutants described in great 
detail by numerical simulations in Chen et al. (15). We start 
with mutants missing the components that stabilize the G1 
phase of the cell cycle: either Cdh1 (an activator of CycB 
degradation) (Fig. 5 C) or Sic1 (a cyclin B-dependentkinase 
inhibitor) (Fig. 5 D). In both cases the mutant cells are viable 
and apparently have a short G1 phase (72-74). On the 
bifurcation diagrams, however, a stable G1 steady state 
exists only at very small cell size. In both mutants, the cell 
cycle trajectory is operating in the "oscillator" domain of 
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the size-homeostasis diagram, and consequently these mu­
tant cells are expected to exhibit "weak" size control. In 
these cases, the G1 phase of the cell cycle is a transient state, 
as described above, and the START transition (G1-to-S) is 
governed by an oscillator not a sizer. Furthermore, if these 
mutant cells are grown from spores (i.e., very small size 
initially), they will execute START at a much smaller size than 
they do under normal proliferating conditions. 

Two-parameter bifurcation diagrams (genetic-physiology 
planes) for both SICJ and CDHJ are presented in the Sup­
plementary Material (Fig. S3 ). The two types of mutations 
have quite a similar effect on cell physiology. 

Mutants of mitotic exit regulation 

Although both cdc20ts and cdcl4ts mutants block mitotic exit, 
cdc20ts arrests at the metaphase-anaphase transition (75), 
whereas cdcl4ts arrests in telophase (76,77). Hence, exit from 
mitosis must be a two-stage process (30), with two different 
stable-steady states in which the control system can halt. The 
one-parameter bifurcation diagrams (Fig. 5, E and F) reveal 
these two stable steady states. For cdc20ts the steady state 
has very large CycB activity (~60 au), whereas the cdcl4ts 
mutant arrests in a state of much lower CycB activity ( ~2 au). 
Also, in the second case a damped oscillation is seen on the 
simulation curve. These effects all derive from the fact that 
if Cdc20 is inoperable, then cyclin degradation is totally 
inhibited, whereas if Cdc14 is not working, then Cdc20 can 
destroy some CycB-not enough for mitotic exit, but enough 
to create a stable steady state oflower CycB activity (30). The 
corresponding two-parameter bifurcation diagrams of cdc20ts 
and cdcl4ts mutants (Supplementary Material, Fig. S3, C and 
D) are also qualitatively similar. 

Lethality that depends on growth rate 

To bind effectively to Cdc20, proteins of the core APC need 
to be phosphorylated (78). H these phosphorylation sites are 
mutated to nonphosphorylable alanine residues (the mutant is 
calledAPC-A), then Cdc20-mediated degradation ofCycB is 
compromised, although the APC-A cells are still viable. We 
assume that APC-A has a constant activity that is 10% of the 
maximum activity of the normally phosphorylated form of 
APC in conjunction with Cdc20. Furthermore, we assume that 
APC-A has full activity in conjunction with Cdh1, in accord 
with the evidence (78). In simulations (Fig. 7 A), APC-A cells 
are viable and large. Because these mutant cells are delayed in 
exit from mitosis, the period of the limit cycle oscillations 
beyond the SNIPER bifurcation is considerably longer than in 
wild-type cells. Hence, they cycle in the ''oscillator" regime 
even at MDT > 150 min. 

Double mutant cells, APC-A cdhl Ll, are lethal at fast 
growth rates but partially viable at slow growth rates (30). 
Our bifurcation diagram (Fig. 7 B) shows a truncated 
oscillatory regime ending at a cyclic fold bifurcation at cell 
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mass = 3.6. Simulations show that at MDT= 150 min cells 
stay within the small oscillatory regime, but faster growing 
cells (MDT = 120 min) grow out of the oscillatory regime 
and get stuck in mitosis. Mutations of APC core proteins also 
show growth rate-dependent viability, e.g., apcl0-22 is 
viable in galactose (slow growth rate) but inviable in glucose 
(fast growth rate) (79). 

The same dependence of viability on growth conditions 
was reported for CLB2db6. clb56. mutant cells (CycB 
stablized, CycA absent) (30,80), and is illustrated in our 
bifurcation diagram (Fig. 7 D). In addition to these mutants, 
which are defective in cyclin degradation, Cross (30) found 
that the double mutant clb26. cdhll:l. also shows growth rate­
dependent viability. fu our model these cells are viable at 
MDT = 200 min, but lethal at MDT = 120 min (Fig. 7 C). 

All of these mutations interfere with the negative feedback 
loop of CycB degradation. Weak negative feedback creates 
long-period oscillations that are stable attractors only at 
relatively small cell mass; at large mass the activity of CycB­
dependent kinase is so strong that the mutant cells arrest in 
mitosis. Fast growing cells cannot find a period of oscillation 
that balances their MDT, so they overgrow the oscillatory 
region and get stuck in mitosis. These results suggest that 
other mutants affecting the negative feedback loop should 
be reinvestigated to see if viability depends on growth rate 
(for example, APC-A sicll:l. and cdc2ots pdsll:l.). 

Cells that show this sensitivity to growth rate are also 
likely to be sensitive to random noise in the control system. 
Using a model similar to ours, Battogtokh and Tyson (34) 
showed that, for control systems operating close to a bi­
furcation to the stable M-like steady state, cells might get 
stuck in mitosis after a few cycles if a little noise is added to 
the system. This effect would show up as partial viability of a 
clone at intermediate growth rates. 

2 

2 3 

3 4 5 

4 

M 

6 

FlGURE 7 One-parameter bifurcation dia­
grams of budding yeast mutants defective in 
cyclin degradation. (A) APC-A ([APCP] = 0.1 
au, constant value), (B) APC-A cdhl a ([APCP] = 
0.1 au, ko~~1p = ko~~1pp = 0), (C) clb26. cdhl6. 
(k,bp = 0.0015 min \ k,bpp = 0.015 min \ 
ko~~1p = ko~~1pp = 0), (D) CLB2db6. clb56. (kdbpp 
= 0.03 min 1, kdbppp = k,.p = k,.pp = 0). 
Notation as in Fig 2. (A, B, and D) The large­
amplitude, stable limit cycles arise from 
SNIPER bifurcations; (C) they arise from a 
subcritical Hopf bifurcation followed by a 
cyclic fold bifurcation (inset). All these muta­
tions compromise one or more of the negative 
feedback signals that promote exit from mito­
sis. The latter three show growth rate depen­
dence of viability: slowly growing cells are 
viable, but rapidly growing cells become stuck 
in M phase. 

Incorporation of the morphogenetic checkpoint 

fu modeling the budding yeast cell cycle so far, we have 
assumed that the G2 module of Cdk phosphorylation 
(module 5 in Fig. 1) plays no role during normal cell 
proliferation (81), but recently this view was challenged by 
Kellogg (82). fu any event, all agree that the G2 module is 
necessary for the ''morphogenesis checkpoint'' in budding 
yeast, which arrests a cell in G2 if the cell is unable to pro­
duce a bud (81). It is a simple job to "turn on" module 5 in 
our generic version of the budding yeast cell cycle and to re­
produce most of the results in Ciliberto et al. (83 ); see Sup­
plementary Material, Fig. S4. 

Mammalian cells 

Many groups have modeled various aspects of the molecular 
machinery controlling mammalian cell cycles (22,26,84,85), 
including us (41). In this article, we insert parameter values 
from Novak and Tyson (41) into our generic model to simulate 
a "generic mammalian cell" (Fig. 8). As expected the bifur­
cation diagram of the mammalian cell (Fig. 8 B) is very similar 
to the budding yeast cell (there is no G2 module in either 
model). This yeast-like proliferation is observed in mammalian 
cells in early development and in malignant transformation, 
when the cell's main goal is rapid reproduction. 

It has been recently discovered that mouse embryos 
deleted of all forms of CycD (86), deleted of both forms of 
CycE (87), or deleted of both Cdk4 and Cdk6 (88) can 
develop until late stages of embryogenesis and die from causes 
unrelated to the core cell cycle machinery. Mice lacking Cdk2 
are viable (89), and mouse embryo fibroblast from any of these 
mutants proliferate normally. Our model is expected to re­
produce these results. fudeed, simulation of CycE-deleted 
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cells show almost no defect in proliferatioo with a cell division 
mass 1.2 times wild-type cells (Supplementary Material, Fig. 
S5 C). The absence ofCycD has a greater effect on the system, 
creating cycles with a division mass 3.6 times wild-type (Fig. 
8 C). If we eliminate both CycD and CycE, we find that cells 
leave G1 phase at a mass equal to 5 times wild-type division 
mass (Fig. 8 D), which might be lethal for cells. These results 
are related to the corresponding experiments in budding yeast, 
where clnr (CycD) and clnr clnT (CycE) mutants are 
viable but larger than wild-type (90), whereas the combined 
mutation is lethal (91). 

From Chow et al. (92) we lmow that, although phospho­
rylation of Cdk2 (in complexes with CycE or CycA) plays no 
major role in unperturbed proliferation of HeLa cells, 
phosphorylation of Cdkl!CycB by Wee1 plays a role in 
normal cell cycling. These reactions (module 5 in Fig. 1) are 
easily added to the model, as we did in the previous section on 
budding yeast For the parameter values chosen, the bifurca­
tion diagram (Fig. 8 F) exhibits stable G1 and G2 steady 
states. The cell cycle trajectories in Fig. 8, E and F, are 
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computed for cells proliferating at MDT= 24 h, that operate 
in the "oscillator" region of the size homeostasis curve 
(Fig. 6). More slowly proliferating cells (MDT= 48 h) pause 
in the stable G1 state until they grow large enough to surpass 
the SNIPER bifurcation at cell mass ~ 1. At all growth rates, 
there is a transient G2 state on the trajectory (the flattened re­
gions of the red and blue curves at [actCycB] ~ 0.01-0.1). 

With the G2-regulatory module in place, our model is now 
set up for serious consideration of the major checkpoint con­
trols in mammalian cells: 1), restriction point control, by 
which cyclin D and retinoblastoma protein regulate the 
activity of transcription factor E; 2), the DNA-damage 
checkpoint in G1, which upregulates the production of CKI; 
3), the unreplicated-DNA checkpoint in G2, which activates 
Wee1 and inhibits Cdc25; and 4), the chromosome mis­
alignment checkpoint in M phase, which silences Cdc20. 
Building appropriate modules for these checkpoints and 
wiring them into the generic cell cycle engine will be topics 
for future publications and will provide a basis for modeling 
the hallmarks of cancer (93 ). 
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FIGURE 9 Attractors and their bifurcations. (A-C) Examples of vector fields in a three-dimensional state space. Solid arrows, vector field; dashed arrows, 
simulation results; solid circles, stable steady state; open circles, unstable steady state; dotted circle, stable limit cycle. (D) The transitions (bifurcations) 
between the vector fields of panels A-Care represented on a one-parameter bifurcation diagram. Solid line, locus of stable steady states; dashed line, locus of 
unstable steady states, black dots, maximum and minimum values of response variable on a periodic orbit; SN =saddle-node, HB = Hopf bifurcation. The 
light gray cunre indicates a simulation of the response of the control system for a slow increase in signal strength. At SN2, the system jumps from the OFF state 
to the oN state, and at HB it leaves the steady state and begins to oscillate with increasing amplitude. Within the region of bistability, the control system can 
pemist in either the OFF state or the ON state, depending on how it was prepared (a phenomenon called "hysteresis''). 

DISCUSSION 

We propose a protein interaction network for eukaryotic cell 
cycle regulation that 1), includes most of the important 
regulatory proteins found in all eukaryotes, and 2), can be 
parameterized to yield accurate models of a variety of specific 
organisms (budding yeast, fission yeast, frog eggs, and 
mammalian cells). The model is built in modular fashion: 
there are four synthesis-and-degradation modules (' '4, 8, 10, 
13"), three stoichiometric binding-and-inhibition modules 
("6, 9, 12"), three transcription factor modules ("3, 7, 11 "), 
and three modules with multiple activation-and-inhibition 
steps ("1, 2, 5"). This modularity assistsustocraftmodelsfor 
specific organisms (where some modules are more important 
than others) and to extend models with new modules em­
bodying the signaling pathways that impinge on the under­
lying cell cycle engine. 

To describe the differences in regulatory networks in yeasts, 
frog eggs, and mammalian cells, we subdivided the generic 
wiring diagram (Fig. 1) into 13 small modules. From a different 
point of view (36,37) we might lump some of these modules 
into larger blocks: bistable switches and negative feedback 
oscillators. One bistable switch creates a stable G1 state and 
controls the transition from G1 to S phase. It is a redundant 
switch, created by interactions between B-type cyclins and 

their G1 antagonists: CKis (stoichiometric inhibitors) and 
APC/Cdh1 (proteolyticmachinery).EitherCKiorCdh1 can be 
knocked out genetically, and the switch may still be functional 
to some extent A second bistable switch creates a stable G2 
state and controls the transitions from G2 toM phase. I tis also a 
redundant switch, created by double-negative feedback be­
tween Cdk/CycB and Wee1 and positive feedback between 
Cdk/CycB and Cdc25. A negative feedback loop, set up by the 
interactions among Cdk/CycB, APC/Cdc20, and Cdc14 phos­
phatase, controls exit from mitosis. A secood negative feed­
back loop, between CycA and its transcription factor, plays a 
crucial role in endoreplication. These regulatory loops are 
responsible for the characteristic bifurcations that (as our 
analysis shows) control cell cycle progression in normal cells 
and misprogression in mutant cells. 

The many different control loops in the "generic" model 
can be mixed and matched to create explicit models of spe­
cific organisms and mutants. In this sense, there is no ''ideal'' 
or ''simplest'' model of the cell cycle. Each organism has its 
own idiosyncratic properties of cell growth and division, de­
pending on which modules are in operation, which depends 
ultimately on the genetic makeup of the organism. Lethal 
mutations push the organism into a region of parameter space 
where the control system is no longer viable. 

Biophysical Journal 90(12) 4361-4379 
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To deepen our understanding of the similarities and 
differences in cell cycle regulation in different types of cells, 
we analyzed our models of specific organisms and mutants 
·with bifurcation diagrams. To show how cell growth drives 
transitions between cell cycle phases (G 1/S/G2/M), we employ 
one-parameter bifurcations diagrams, where stable steady 
states correspond to available arrest states of the cell cycle (late 
Gl, late G2, metaphase) and saddle-node and SNIPER bifur­
cation points identify critical cell sizes for leaving an arrest 
state and proceeding to the next phase of the cell cycle. In this 
view, cell cycle "checkpoints" (also called "surveillance" 
mechanisms) (4,5) respond to potential problems in cell cycle 
progression (DNA damage, delayed replication, spindle 
defects) by stabilizing an arrest state, i.e., by putting off the 
bifurcation to much larger size than normal (18,37,40,84,94). 

The most important type of bifurcation, we believe, is a 
"SNIPER" bifurcation, by which a stable steady state (G1 or 
G2) gives rise to a limit cycle solution that drives the cell into 
mitosis and then back toG 1 phase. At the SNIPER bifurcation, 
the period of the limit cycle oscillations is initially infinite but 
drops rapidly as the cell grows larger. SNIPER bifurcations are 
robust properties of nonlinear control systems with both 
positive and negative feedback. Not only are they commonly 
observed in one-parameter bifurcation diagrams of the Cdk 
network, but they persist over large ranges of parameter var­
iations, as is evident from our two-parameter bifurcation 

Second 
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I 
I 

------tifT·-· 
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diagrams. For example, in Figs. 3 B and 4 B, SNIPER 
bifurcations are observed over the entire range of gene ex­
pression for wee] and cdc 13 in fission yeast. The same is true 
for SJCJ gene expression in budding yeast (Supplementary 
Material, Fig. S3 B), but not so for CDC20 and CDC14 genes 
(Fig. S3, C and D). In the latter cases, the SNIPER bifurcation 
is lost for low levels of expression of these essential (''cdc'') 
genes, and the mutant cells become arrested in late mitotic 
stages, as observed. Although SNIPER bifurcations are often 
associated with robust cell cycling in our models, they are not 
necessary for balanced growth and division, as is evident in our 
simulation of cdhl Ll mutants of budding yeast (Fig. 5 C and 
Supplementary Material, Fig. S3 A), where the stable oscilla­
tions can be traced back to a subcritical Hopf bifurcation. 

The SNIPER bifurcation is very effective in achieving a 
balance between progression through the cell cycle (interdivi­
sion time (IDT)) and overall cell growth (mass doubling time 
(MDT)). Cell size homeostasis means that IDT =MDT. In Fig. 
6 we show that cell size homeostasis is a natural coo sequence of 
the eukaryotic cell cycle regulatory system, and that it can be 
achieved in two dramatically different ways: by a "sizer" 
mechanism (characteristic of slowly growing cells) and an 
"oscillator" mechanism (employed by rapidly growing cells). 
In the sizer mechanism, slowly growing cells are "captured" 
by a stable steady state, either a G1-like steady state (as in 
budding yeast) or a G2-like steady state (as in fission yeast). 

I 

2 

., . 
! ~ 3 
~ -- ~~ -~ -------------------------------
: ':. ......... H13 (b) 

:::: :::~<~:~:::~~~~~;~~~,~ (p) :::: 
codimension one bifurcations: 
SNIPER - sadd le-node-infinite-period 

HB (b)- subcri tical Hopf 

HB (p} - supercri tical Hopf 

SL- saddle-loop 
CF - cyclic-fold 
SN - sadd le-node 

codimension two bifurcations: 

SNL • saddle-node-loop 

d A13 • degenerate Hopf 

TB • Takens-Bogdanov 

...... 
6 

First parameter c--=:~------ · 
......... ··· ... 

FIGURE 10 An illustrative (hypotl1etical) two-parameter bifurcation diagram with one-parameter cuts (1-6). See Table 2 for the nomenclature of 
codimension-one and codimension -two bifurcation points. 
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To progress further in the cell cycle, these sizer-controlled 
cells must grow large enough to surpass the critical size at the 
SNIPER bifurcation. In the oscillator mechanism, rapidly 
growing cells persist in the limit cycle regime (with cell mass 
always greater than the critical size at the SNIPER bifurcation), 
finding a specific combination of average size and average 
limit-cycle period such that IDT = MDT. In the oscillator 
regime, cells are unable to arrest in G 1 or G2 phase because 
they are too large. To arrest, they must undergo one or more 
divisions, without intervening mass doubling, so that they be­
come small enough to be caught by a stable steady state, or the 
SNIPER bifurcation point must be shifted to a larger size (by a 
surveillance mechanism), to arrest the cells in G 1 or G2. 

One-parameter bifurcations diagrams succinctly capture the 
dependence of the cell eye le engine ( Cdk/CycB activity) on cell 
growth and division (cell mass changes). By superimposing cell 
cycle trajectories on the one-parameter bifurcation diagram, we 
have shown how SNIPER bifurcations orchestrate the balance 
between cell growth and progression through the chromosome 
replication cycle. In a two-parameter bifurcation diagram, we 
suppress the display of Cdk/CycB activity (i.e., the state of the 
engine) and use the second dimension to display a genetic 
characteristic of the control system (i.e., the level of expression 
of a gene, from zero, to normal, to overexpression). On the two­
parameter diagram we see how the orchestrating SNIPER 
bifurcations change in response to mutations, and consequently 
how the phenotype of the organism (viability (mviability and cell 
size) depends on its genotype. The two-parameter bifurcation 
diagram can be used not only to obtain an overview of known 
phenotypes but also to predict potentially unusual phenotypes 
of cells with intermediate levels of gene expression. 

Our model is freely available to interested users in three 
forms. From the web site (69) one can download .ode and .set 
files for use with the free software XPP-AUT. From an .ode file 
one can easily generate FORTRAN or C++ subroutines, or 
port the model to Matlab or Mathernatica. Secondly, one can 
download an SBML version of the model from the same web 
site for use with any software that reads this standard format. 
Thirdly, we have introduced the model and all the mutant 
scenarios discussed in this article into JigCell, our problem­
solving environment for biological network modeling (95- 97). 
The parameter sets in the JigCell version of budding yeast and 
fission yeast are slightly different from the parameter sets 
presented in this article. The revised parameter values give 
better fits to the phenotypic details of yeast mutants. JigCell is 
especially suited to this sort of parameter twiddling to optimize 
the fit of a model to experimental details. 

APPENDIX: A DYNAMICAL PERSPECTIVE ON 
MOLECULAR CELL BIOLOGY 

A molecular regulatory network, such as Fig. 1, is a set of chemical and 
physical processes taking place within a living cell. The temporal changes 
driven by these processes can be described, at least in a first approximation, 
by a set of ordinary differential equations derived according to the standard 
principles of biophysical chemistry (36). Each differential equation 
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describes the rate of change of a single time-varying component of the 
network (gene, protein, or metabolite-the state variables of the network) in 
terms of fundamental processes like transcription, translation, degradation, 
phosphorylation, dephosphorylation, binding, and dissociation. The rate 
of each step is determined by the current values of the state variables and 
by numerical values assigned to rate constants, binding constants, Michaelis 
constants, etc. (collectively referred to as parameters). 

Given specific values for the parameters and initial conditions (state 
variables at time = 0), the differential equations determine how the 

regulatory network will evolve in time. T he direction and speed of this 
change can be represented by a vector field in a multidimensional state space 
(Fig. 9 A). A numerical simulation moves through state space always 
tangent to the vector field. Steady states are points in state space where the 
vector field is zero. If the vector field close to a steady state points back 
toward the steady state in all directions (Fig. 9 B), then the steady state is 
(locally) stable; if the vector field points away from the steady state in any 

direction (near the open circles in Fig. 9, A and C), the steady state is 
unstable. If the vector field supports a closed loop (Fig. 9 C), then the system 
oscillates on this periodic orbit, also called a limit cycle. The stability of a 
limit cycle is defined analogously to steady states. Stable steady states and 
stable limit cycles are called attractors of the dynaruical system. To every 
attractor is associated a domain of attraction, consisting of all points of state 
space from which the system will go to that attractor. 

As parameters of the system are changed, the number and stability of 
steady states and periodic orbits may change, e.g., going from Fig. 9, A to B, 
or from Fig. 9, B to C. Parameter values where such changes occur are called 
bifurcation points (98,99). At a bifurcation point, the system can gain or lose 
a stable attractor, or undergo an exchange of stabilities. In the case of the cell 
cycle, we associate different cell cycle phases to different attractors of the 
Cdk-regulatory system, and transitions between cell cycle phases to bifurca­
tions of the dynaruical system (37). 

To visualize bifurcations graphically, one plots on the ordinate a re­
presentative variable of the dynamical system, as an indicator of the system's 
state, and on the abscissa, a particular parameter whose changes can induce 
the bifurcation (Fig. 9 D). It is fruitful to think of changes to the parameter as 

a signal imposed on the control system, and the stable attractors (steady 
states and oscillations) as the response of the network (100). For the cell 
cycle control system, the clear choice of dynaruic variable is the activity of 
Cdkl/CycB (the activity of this complex is small in G1, modest in S/G2, and 
large in M phase). As bifurcation parameter, we choose cell mass because 
we consider growth to be the primary driving force for progression through 
the cell cycle. For each fixed value of cell mass, we compute all steady-state 
and oscillatory solutions (stable and unstable) of the Cdk-regulatory net­
work, and we plot these solutions on a one-parameter bifurcation diagram 
(Fig. 9 D). 

Following standard conventions, we plot steady-state solutions by lines : 
solid for stable steady states and dashed for unstable. For limit cycles, we 
plot two loci: one for the maximum and one for the minimum value of Cdk1/ 
CycB activity on the periodic solution, denoting stable limit cycles with 
solid circles and unstable with open circles. A locus of steady states can fold 

back on itself at a saddle-node (SN) bifurcation point (where a stable steady 
state--a node-and an unstable steady state-a saddle--come together and 
annihilate one another). Between the two SN bifurcation points in Fig. 9 D, 
the control system is bistable (coexistence of two stable steady states, which 
we might call OFF and ON) . To the left and right of SN2 in Fig. 9 D, the state 
space looks like Fig. 9, A and B, respectively. A locus of steady-state 
solutions can also lose stability at a Hopf bifurcation (HB) point, from which 
there arises a faruily of small amplitude, stable limit cycle solutions (Fig. 9 
D). A Hopf bifurcation converts state space Fig. 9 B into Fig. 9 C. For 
experimental verification of these dynamical properties of the cell cycle 
control system in frog eggs, see recent articles by Sha et al. (94) and 
Pomerening et al. (63, 101). 

Positive feedback is often associated with bistability of a control system. 
For example, if X activates Y andY activates X, then the system may persist 
in a stable "oFF" state (X low andY low) or in a stable "oN" state (X high 

Biophysical Journal 90(12) 4361-4379 
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TABLE 2 Definitions and examples of codimension-one and -two bifurcations 

Full name Abbreviation 

Saddle-node SN 

Supercritical Hopf HBsup 

Subcritical Hopf HBsub 

Cyclic-fold CF 

Saddle-node infinite-period SNlPER 

Saddle-loop SL 

Full name Abbreviation 

Saddle-node loop SNL 

Degenerate Hopf dHB 

Takens-Bogdanov TB 

CUSP CUSP 
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Codimension-one bifurcations 

From/to 

3 steady states 

1 stable steady state 

1 unstable steady state 

No oscillatocy solutions 

3 steady states 

To/from 

1 steady state 

Unstable steady state + small amplitude, stable 
limit cycle 

Stable steady state + small amplitude, unstable 
limit cycle 

1 stable oscillation + 1 unstable oscillation 

Unstable steady state + large amplitude 
oscillation 

Unstable steady state (saddle) Unstable steady state + large amplitude 
oscillation 

Codimension-two bifurcations 

From/to To/from 1D example 

SN + SL SNlPER ........ ........... 

HBsup HBsub + CF 
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andY high). Similarly, if X inhibits Y andY inhibits X (double-negative 
feedback), the system may also persist in either of two stable steady states 
(X high andY low, or X low andY high). Typically, bistability is observed 
over a range of parameter values (ksNl < k < ksN2 ). Negative feedback (X 
activates Y, which activates Z, which inhibits X) may lead to sustained 
oscillations of X, Y, and Z, for appropriate choices of reaction kinetics and 
rate constants. These oscillations typically arise by a Hopf bifurcation, with a 
stable steady state fork < kHB giving way to stable oscillations fork > kHB. 

In Table 2 we provide a catalog of common codimension-one bifurca­
tions (bifurcations that can be located, in principle, by changing a single 
parameter of the system). From a one-parameter bifurcation diagram, 
properly interpreted, one can reconstruct the vector field (see lines A, B, and 
C in Fig. 9 D), which is the mathematical equivalent of the molecular wiring 
diagram. There are only a small number of common codimension-one 
bifurcations (see Table 2); hence, there are only a few fundamental signal­

response relationships from which a cell must accomplish all the complex 
signal processing it requires. Of special interest to this article is the SNIPER 
bifurcation, which is a special type of SN bifurcation point: after annihilation 
of the saddle and node, the remaining steady state is unstable and surrounded 
by a stable limit cycle of large amplitude. At the SN bifurcation point, the 
period of the limit cycle is infinite (SNIPER= saddle-node infinite-period). 
As the bifurcation parameter pulls away from the SNIPER point, the period 
of the limit cycle decreases precipitously (see, e.g., Fig. 6). 

To continue this process of abstraction, we go from a one-parameter 
bifurcation diagram to a two-parameter bifurcation diagram (Fig. 10). As the 
two parameters change simultaneously, we follow loci of codimension-one 
bifurcation points in the two-parameter plane. For example, the one­
parameter diagram in Fig. 9 D corresponds to a value of the second 
parameter at level 6 in Fig. 10. As the value of the second parameter 
increases, we track SNl and SN2 along fold lines in the two-parameter 
plane. Between these two fold lines the control system is bistable. We also 
track the HB point in the two-parameter diagram for increasing values of the 
second parameter. We find that, at characteristic points in the two-parameter 
plane, marked by heavy "dots" in Fig. 10, there is a change in some qual­
itative feature of the codimension-one bifurcations. Because two parameters 
must be adjusted simultaneously to locate these "dots", they are called 
codimension-two bifurcation points. In Fig. 10 (and Table 2) we illustrate 
the three most common codimension-two bifurcations: degenerate Hopf 
(dHB), saddle-node-loop (SNL), and Takens-Bagdanov (TB). From a two­

parameter bifurcation diagram, properly interpreted, one can reconstruct a 
sequence of one-parameter bifurcation diagrams (see lines I - 6 in Fig. 10), 
which are the qualitatively different signal-response characteristics of the 
control system. There are only a small number of generic co dimension-two 
bifurcations; hence, there are limited ways by which one signal-response 
curve can morph into another. These constraints place subtle restrictions on 
the genetic basis of cell physiology. 

In the one-parameter bifurcation diagram, we choose as the primary 
bifurcation parameter some physiologically relevant quantity (the "signal") 
that is inducing a change in behavior (the "response") of the molecular 
regulatory system. In the two-parameter diagram, we propose to use the 
second parameter as an indicator of a genetic characteristic of the cell (the 
level of expression of a particular gene, above and below the wild-type 
v alue ) with bearing on the signal-response curve. In this format, the two­
parameter bifurcation diagram provides a highly condensed summary of the 
dynamical links from a controlling gene to its physiological outcome (its 
phenotypes). The two-parameter diagram captures the sequence of dynam­
ically distinct changes that must occur in carrying phenotype of a wild-type 
cell to the observed phenotypes of deletion mutants (at one extreme) and 
overexpression mutants (at the other extreme). In between, there may be 
novel, physiologically distinct phenotypes that could not be anticipated by 
intuition alone. Examples of this analysis are provided in Figs. 3 and 4, in the 
Supplementary Material, and on our website. 

For alternative explanations of bifurcation diagrams, one may consult the 
appendix to Borisuk and Tyson (33) or the textbooks by Strogatz (99) or 
Kaplan and Glass (102). 

4377 

SUPPLEMENTARY MATERIAL 

An online supplement to this article can be found by visiting 
BJ Online at http://www.biophysj.org. 
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