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Optimal Dynamic Pricing

for Two Perishable and Substitutable Products

Feng Li

ABSTRACT

This thesis presents a dynamic pricing model where a seller offers two types of a generic

product to a random number of customers. Customers show up sequentially. When a

customer arrives, he will —depending on the prices—either purchase one unit of type 1

product or one unit of type 2 product, or will leave empty-handed. The sale ends either

when the entire stock is sold out, or when the customers are exhausted. The seller’s task

is to post the optimal prices for the two product types to each customer to maximize the

expected total revenue. We use dynamic programming to formulate this problem, and

derive the optimal policy for special cases. For general cases, we develop an algorithm to

approximate the optimal policy and use numerical examples to demonstrate the efficiency

of the algorithm.

Finally, we apply the results to a continuous-time model where customers arrive ac-

cording to a Poisson process. We develop a heuristic policy and use numerical examples to

show the heuristic policy is very effective.
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Chapter 1

Introduction

Dynamic pricing, in general, is to dynamically adjust the product price, as the fixed inven-

tory is depleted, to maximize the expected revenue stream over a finite planning horizon.

Demand in the process is stochastic and price sensitive. Items left unsold at the end of

horizon are disposed with little salvage value. Inventory is not replenishable, and unsatis-

fied demand is lost with no penalty cost. The objective is to find a dynamic pricing policy

that maximizes expected revenue. Dynamic pricing has been introduced by Kincaid and

Darling (1963). It is now widely practiced in capacity-constrained service industries such

as airlines, hotels, rental cars, and seasonal fashion goods. Interested readers are referred

to van Ryzin and McGill (1999) for a thorough discussion of the model’s motivation and

its role in revenue management.

Product variety is an important factor in dynamic pricing. Carrying a range of models

for a generic product type makes the problem of forecasting and inventory management

at the retailer level much more difficult. Since the models within a generic product type

are substitutable products, each model will potentially compete with and hurt the sale of

1
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other models. Each consumer will weigh the improved performance offered by a higher

quality model against the low price charged for a lower quality model, and will then make

a choice as to which model to buy. Thus, the possibility exists that a customer who prefers

a product with a high quality level will choose to purchase a product with low quality

level because of its lower price. This phenomenon is known in the marketing literature

as cannibalization. Overall, the prices of products interact with the quality levels of the

products in a complex way to determine the consumer’s purchasing behavior and hence

the retailer’s profit.

In this thesis, we propose a dynamic pricing model in this situation where a seller sells

given inventories of two perishable products, to a random number of customers over a finite

time horizon. We assume that the two products are quality-differentiated, but of the same

generic type (for instance, two different computer processors or two air tickets of different

departure times, but with the same departure place and destination). Customers show

up sequentially, and will either purchase an item or leave empty-handed. The sale ends

either when the entire stock is sold out, or when the customers are exhausted. The seller’s

objective is to maximize the total expected revenue by choosing different prices of the two

stocks for each coming customer. In the end of this thesis, we will apply results from this

model to continuous-time problems where customers arrive according to a general point

process.

1.1 Research Objectives

There are three objectives in our research:
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1. To find the structural properties of optimal pricing policies in the model.

2. To develop algorithms that compute the optimal policy for special cases, and to

approximate it in general by tight bounds.

3. To apply results from this model to draw insights to continuous-time dynamic pricing

problems.

1.2 Literature Review

There is an extensive literature on dynamic pricing at the operational, revenue management

decision level. Miller (1968) studied a finite horizon, continuous-time Markov decision

process where only finitely many actions (prices) are allowed. Littlewood (1972) posed

a stochastic two-fare, single-leg problem in the airlines. Weatherford and Bodily (1992)

gave a review of research on revenue management, where they adopt the term perishable

asset revenue management to describe this class of problems. Gallego and van Ryzin

(1994) proposed a model where customers arrive in accordance with a Poisson process,

whose reservation prices are identical and independently distributed (i.i.d.). The retailer

is allowed to change the price in real-time in order to maximize the expected total revenue

when the sale concludes. In this model, the optimal policy can be shown in closed form

only when the reservation price is exponentially distributed, but not in general. The

authors studied the structural properties and proposed the fixed price heuristic policy,

which is asymptotically optimal as the expected sales volume tends to infinity. However,

this heuristic can not address adequately the situation when inventory is relatively small

compared to the number of customers.
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Several studies analyzed dynamic pricing policies in the case of product variety. Ay-

din and Ryan (1999) considered a retailer’s production line selection and pricing problem

under cannibalization and stochastic utility. They used Multinomial logit model (MNL)

to describe customer discrete choice and showed that the profit margins of all models

are equal at optimality under the assumption that initial inventories of the n given sub-

stitutable models are unlimited. Gallego and van Ryzin (1997) studied a multiproduct

problem where demand for each product is a stochastic point process with an intensity

that is a function of the vector of prices for products and the time at which these prices

are offered. An upper bound on the optimal expected revenue is established by analyzing

a deterministic version of the problem.

The pricing models are related to, but different from, another type of better known and

extensively studied model, which we refer to as the multiclass yield management models.

These models, which were initially constructed for the airline seat allocation problem, allow

the same items to be sold at different prices at the same time due to market segmentation.

Customer choice behavior is an important phenomenon within revenue management

systems (previously called yield management). Yet there are few models or methodologies

available to exploit this phenomenon. The only theoretical models and methods that

partially address choice behavior issues are dynamic pricing models, such as those studied

by Bitran et al. (1998), Feng and Gallego (1995) and Gallego and van Ryzin (1994), (1997).

While these models allow demand depend on the current price, they assume only one

product is sold at one price at any point in time. Thus, customers face a binary choice; to

buy or not to buy. In reality, airlines offer many fares simultaneously and customers choose

among them based on whether or not they can meet various restrictions (e.g. Saturday
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night stay, minimum-stay and maximum-stay). The MNL is both a theoretically sound

and empirically well-tested model of consumer choice behavior. It is the most widely used

discrete choice model in practical applications. Jain, Vilcassim and Chintagunta (1994)

cite three major reasons for the use of the MNL model. They are: (1) conceptual appeal,

since the MNL model is grounded in economic theory; (2) analytical tractability and ease

of econometric estimation; (3) excellent empirical performance as measured by model fit

and other criteria.

Lin (2002) took a different approach modeling the arrival process of customers from

those proposed in the literature. He assumed that the total number of customers is a non-

negative integer-valued random variable instead of a Poisson arrival process. Customers

arrive sequentially, while the seller knows the distribution of the total number of customers.

Given an initial stock, the objective in his paper is to choose different prices for each arriving

customer in order to maximize the total expected revenue. He formulated the optimality

equation and derived the structural properties of the optimal policy and the optimal value

function. The basic model has a wide range of applications to the continuous time dynamic

pricing models where the arrival process is a general point process. The optimal policy in

this model is well approximated in general.

This thesis is an extension to Lin’s paper, where two given models are going to be

considered in the basic model. We can foresee that the cannibalization problem exists,

since these two models are substitutable. We use the MNL to handle the consumer choice

behavior in this case in Chapter 2.



Chapter 2

The Mathematical Model

Consider a seller that has two types of products, say type 1 and type 2, to sell to a random

number of customers. The customers show up sequentially, while the seller has to choose a

price P = (p1, p2), possibly different for each arriving customer. Based on the prices, each

arriving customer will immediately decide whether he buys one unit of type 1 product, one

unit of type 2 product, or leaves empty-handed.

2.1 The Customer Choice Process

We use the multinomial logit model (MNL) to describe consumer discrete choice, and we

assume the utility of product i for each customer is

Ui = αi − βpi + Zi, i = 1, 2,

while the utility of no purchase is

U0 = Z0.

6
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The parameter αi models product i ’s quality, brand image, etc.; pi denotes the price of

product i , while β is the price response coefficient. The random variables Zi , i= 1, 2,

model the idiosyncratic preference of each customer, and are independent and identically

distributed Gumbel random variables with the following distribution function

FZi(z) = exp(−(e−
z
µ

+γ)) i = 1, 2,

where µ is a scale parameter and γ is Euler’s constant, which is approximately equal to

0.5772. Each customer will independently make the decision that yields the highest utility.

Let (p1, p2) denote the price vector. Then it can be shown (see Mahajan, S. and van Ryzin,

G. (1999)) that a customer will buy one unit of product i with probability

qi(p1, p2) = P{Ui = max
j=0,1,2

Uj} =
eαi−βpi

∑2
j=0 eαj−βpj

i = 1, 2, (1)

where we have defined α0−βp0 ≡ 0 and interpreted product 0 as the no-purchase decision.

In addition, we have let µ = 1 without loss of generality. Given αi and β, we can see that,

once we choose a price vector (p1, p2), we could get the corresponding probability vector

Q=(q1,q2) from the MNL model. Without loss of generality, we assume the salvage value

of any unsold item is zero.

Let M(P) ≡ P · Q = (p1, p2)
(q1

q2

)
= p1q1 + p2q2 be the expected revenue collected

from the arriving customer when the seller uses the policy (p1, p2). We interpret the

seller’s decision as choosing the price vector P. It is noted that the policy P→ ∞, i.e.,
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p1 → ∞ and p2 → ∞, corresponds to the case when the seller decides not to sell to a

particular customer. From Equation (1), M(∞,∞) = 0. Since limP→∞ M(P)= 0, the

expected revenue tends to zero as the prices go to infinity. Also when P = (0, 0), we have

M(0, 0) = 0. This also implies M(P) is continuous and bounded in [0,∞).

Lemma 2.1 There is a one-to-one correspondence between P and Q in the MNL model.

Proof: From Equation (1), we see that Q is a function of P, and it is sufficient to show

that P is also a function of Q. Suppose otherwise that there exist P and P̄ such that

qi(P)= qi(P̄) for i = 0, 1, 2.

Let

K =
n∑

j=0

eαj−βpj j = 0, 1, 2,

and by Equation (1), we have

K =
1

1−∑n
j=0 qj

.

We can see that K is the same for the two different price vectors. Hence, again by Equa-

tion 1, we have that terms of eαi−βpi , i = 0, 1, 2 for the two price vectors are all the same.

Also, because function eαi−βpi is strictly decreasing as pi increases, we know with certainty

that the two different price vectors are actually the same. That is,

eαi−βpi = eαi−βp̄i ⇒ pi = p̄i i = 1, 2.

The proof is completed. 2

From Lemma 2.1, we can interpret the seller’s decision as choosing the probability of

successfully selling one item Q, or as choosing the price vector P. In the rest of the paper,
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we will alternately refer to them as the policy of the seller.

Suppose a seller starts with s1 and s2 items for type 1 and 2 respectively, and let X

denote the number of customers. Knowing the distribution of X , we name its probability

mass function as pX(i) = P (X = i), i = 0, 1, 2, . . .. In the beginning of the sale, the

seller simply waits for the first customer to show up. With probability pX(0), no customer

shows up, so the sale ends and the total revenue is equal to zero. On the other hand with

probability 1−pX(0), the first customer does show up, so the seller sets a product price and

lets the customer decide if he/she wants to purchase an item. After the first customer leaves,

the seller waits for the second customer. With probability pX | X≥1(1) = pX(1)/(1−pX(0)),

there are no more customers and the sale ends, while with probability 1 − pX | X≥1(1),

the second customer does show up and the sale continues. Knowing pX , we say a seller’s

stationary policy is p(i, j, k) with the interpretation that he has i items and j items for type

1 and type 2, respectively, when (and if) the kth customer shows up, where k = 1, 2, . . . ,∞,

i = s1, s1 − 1, . . . , 0 and j = s2, s2 − 1, . . . , 0. Note that k might not go to ∞, it depends

on the distribution of X . Let Π denote the class of all stationary policies. For a given a

policy π ∈ Π, denote the expected total revenue by Jπ(s1, s2, pX ). It is worth noting that

the first two arguments s1, s2 in the function Jπ(s1, s2, pX ) are nonnegative integers, while

the last argument X represents a probability distribution.

2.2 Formulation of the Optimal Policy

Since the expected revenue received from each arriving customer is bounded and we made

the assumption that E[X] is finite, it follows that the expected total revenue is bounded

by E[X]×max
P∈R+2 M(P), and is therefore finite.
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As it is well known (see Ross (1983)) that a stationary policy suffices to be optimal for

this type of control problem, the seller’s objective is to find a policy π ∈ Π that maximizes

the expected total revenue. Let

J(s1, s2, pX) ≡ max
π∈Π

Jπ(s1, s2, pX)

denote the optimal expected total revenue that can be generated in state (s1, s2, pX), i.e.,

if the seller starts with s1, s2 items and the probability mass function of the number of

customers is pX .

Since it can never hurt to have more items, or more customers, we summarize the

monotonicity of the optimal value function J(·, ·, ·) in the following lemmas.

Lemma 2.2 J(s1, s2, pX) increases in s1 and in s2.

Proof: Suppose there are two sellers: seller 1 and seller 2. Seller 1 is in state (a, b, pX)

and seller 2 is in state (c, b, pX), where c > a, and couple each customer’s preference for

the two sellers. Let seller 1 use the optimal policy. Upon arrival of a new customer, let

seller 2 simply follow seller 1’s policy. Then we know that seller 2’s total revenue is equal

to that of seller 1. Since, by definition, J(c, b, pX) is generated by using the optimal policy,

we have that J(c, b, pX) ≥ J(a, b, pX).

The same approach can be used for other cases. 2

Lemma 2.3 J(s1, s2, pX) increases in X in the regular stochastic sense; that is, if Y ≥st

X, i.e., P{Y > i} ≥ P{X > i} for all i ≥ 0, then J(s1, s2, pY ) ≥ J(s1, s2, pX).

Proof: Suppose there are two sellers: seller 1 and seller 2. Seller 1 is in state (a, b, pX) and
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seller 2 is in state (a, b, pY ). Because Y ≥st X, we can couple X and Y such that X ∼ X̄,

Y ∼ Ȳ , and P{Ȳ ≥ X̄} = 1. In addition, we couple each customer’s preference for the

two sellers. Let seller 1 use the optimal policy. Upon arrival of a new customer, let seller

2 follow seller 1’s policy, until seller 1 sells out his inventory (denoted event E).

Consider two cases:

1. Event E occurs: When E occurs, seller 2 also sells out his inventory. The total

revenue generated by seller 1 is equal to that generated by 2.

2. Event E never occurs: Then seller 1 must exhaust his customers, at which point the

total revenue generated by seller 1 is equal to that generated by 2 and seller 2 still

might have future customers. Therefore, the additional revenue generated by seller

2 is greater than or equal to 0.

We see that for each sample path, seller 2 does not actually use his optimal policy. But seller

2’s total revenue is no less than that of seller 1. Hence, the lemma in turn is proved. 2

To formulate the optimality equation, first note that the seller does not have to make a

decision in state (s1, s2, pZ), since it may be the case that Z takes on the value 0. If on the

other hand, a new customer shows up, the first thing the seller needs to do is update the

distribution of the number of future customers, which is X ∼ (Z − 1 | Z ≥ 1). Knowing

Z ≥ 1, the state becomes (s1, s2, p(Z | Z≥1)), or equivalently, (s1, s2, p1+X). Hence, after

updating the distribution of the number of future customers to X, the seller needs to

choose P for the arriving customer to maximize the expected total revenue collected from
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this customer and onward. The optimality equation is

J(s1, s2, p1+X) = max
p1,p2

q1(p1 + J(s1 − 1, s2, pX))

+q2(p2 + J(s1, s2 − 1, pX)) + (1− q1 − q2)J(s1, s2, pX)

= max
p1,p2

{
M(P)− q1(J(s1, s2, pX)− J(s1 − 1, s2, pX))

−q2(J(s1, s2, pX)− J(s1, s2 − 1, pX)) + J(s1, s2, pX)
}

, (2)

where (see Equation (1))

q1 = q1(p1, p2)and q2 = q2(p1, p2),

for s1 ≥ 1 and s2 ≥ 1, with boundary conditions J(0, 0, ·) = 0.

Define

P(s1, s2, pX) = arg max
p1,p2

{
M(P)− q1(J(s1, s2, pX)− J(s1 − 1, s2, pX))

−q2(J(s1, s2, pX)− J(s1, s2 − 1, pX))
}

.

Also, when s2= 0, the optimality equation becomes

J(s1, 0, p1+X) = max
p1

{
q1(p1,∞)(p1 + J(s1 − 1, 0, pX)) + (1− q1(p1,∞))J(s1, 0, pX)

}
,

and when s1= 0, it becomes

J(0, s2, p1+X) = max
p2

{
q2(∞, p2)(p2 + J(0, s2 − 1, pX)) + (1− q2(∞, p2))J(0, s2, pX)

}
,
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where

q1(p,∞) =
eα1−βp

1 + eα1−βp

and

q2(∞, p) =
eα2−βp

1 + eα2−βp
.

Define

M1(p) = pq1(p,∞) =
peα1−βp

1 + eα1−βp

and

M2(p) = pq2(∞, p) =
peα2−βp

1 + eα2−βp
.

Hence,

J(s1, 0, p1+X) = max
p1

{
M1(p1)− q1(p1,∞)(J(s1, 0, pX)− J(s1 − 1, 0, pX)) + J(s1, 0, pX)

}

and

J(0, s2, p1+X) = max
p2

{
M2(p2)− q2(∞, p2)(J(0, s2, pX)− J(0, s2 − 1, pX)) + J(0, s2, pX)

}
.

Correspondingly, we define

p1(s1, 0, pX) = arg max
p1

{
M1(p1)− q1(p1,∞)(J(s1, 0, pX)− J(s1 − 1, 0, pX))

}
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and

p2(0, s2, pX) = arg max
p2

{
M2(p2)− q2(∞, p2)(J(0, s2, pX)− J(0, s2 − 1, pX))

}
.

Lemma 2.4 M1(p) and M2(p) have only one global maximum on [0,∞) respectively.

Define them as p∗1 and p∗2 correspondingly, such that M1(p∗1) = maxp M1(p), M2(p∗2) =

maxp M2(p).

Proof: We know

M1(p) = pq1(p,∞) =
peα1−βp

1 + eα1−βp
.

Taking the first derivative, we have

M ′
1(p) = −eα1−βp(βp− 1− eα1−βp)/(1 + eα1−βp)2 = 0.

Since eα1−βp is always greater than 0, the solution must satisfy

βp− 1 = eα1−βp. (3)

We can see that βp − 1 is a strictly increasing function of p, while eα1−βp is a strictly

decreasing one. Also, when p = 0, βp − 1 = -1, while eα1−βp = eα1 > 0. Therefore, there

is only one solution to M ′
1(p) = 0, denoted as p∗1.

When p < p∗1, βp−1−eα1−βp < 0, so we have M ′
1(p) > 0, which means M1(p) is strictly

increasing. When p > p∗1, βp− 1− eα1−βp > 0, so we have M ′
1(p) < 0, which means M1(p)
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is strictly decreasing. Overall, M1(p) has only one global maximum at p∗1.

The proof is the same for M2(p). 2

Lemma 2.5 For given α1, α2 and β, M(P) has only one global maximum on R+2
, i.e.,

p1 ∈ [0,∞) and p2 ∈ [0,∞), define it as P∗, such that M(P∗) = maxp1,p2 M(P).

Proof: We know

M(P) = p1q1 + p2q2 =
p1e

α1−βp1 + p2e
α2−βp2

1 + eα1−βp1 + eα2−βp2
.

Let K = 1 + eα1−βp1 + eα2−βp2 and take the first derivative on M(P), we then have

∂M

∂p1
=

eα1−βp1

K2
{eα1−βp1 + (1 + βp2 − βp1)eα2−βp2 + 1− βp1},

∂M

∂p2
=

eα2−βp2

K2
{eα2−βp2 + (1 + βp1 − βp2)eα1−βp1 + 1− βp2}.

Letting ∂M
∂p1

= ∂M
∂p2

= 0, and because eα2−βp2

K2 > 0, we have that

eα1−βp1 + (1 + βp2 − βp1)eα2−βp2 + 1− βp1 = 0, (4)

and

eα2−βp2 + (1 + βp1 − βp2)eα1−βp1 + 1− βp2 = 0. (5)
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Therefore,

β(p1 − p2)(1 + eα1−βp1 + eα2−βp2) = 0.

Since β > 0 and 1 + eα1−βp1 + eα2−βp2 > 0, we have p1 = p2.

Setting p1 = p2 = p∗ in Equation (4) or (5), we obtain the only solution of ∂M
∂P = 0

from the equation:

1 + eα1−βp∗ + eα2−βp∗ = βp∗. (6)

Next, we take the second derivative to obtain the Hessian matrix H(P).

∂2M

∂p2
1

=
1

(1 + eα1−βp1 + eα2−βp2)3
{βeα1−βp1 [−2− 4eα2−βp2 + βp1 − 2eα1−βp1

−βp1e
α1−βp1+α2−βp2 + βeα1−βp1+α2−βp2p2 − βeα1−βp1p1

+βp1e
2α2−2βp2 − 2eα1−βp1+α2−βp2 − 2e2α2−2βp2 + 2βp1e

α2−βp2

−βeα2−βp2p2 − βe2α2−2βp2p2]},
∂2M

∂p2
2

=
1

(1 + eα2−βp2 + eα1−βp1)3
{βeα2−βp2 [−2− 4eα1−βp1 + βp2 − 2eα2−βp2

−βp2e
α2−βp2+α1−βp1 + βeα2−βp2+α1−βp1p1 − βeα2−βp2p2

+βp2e
2α1−2βp1 − 2eα2−βp2+α1−βp1 − 2e2α1−2βp1 + 2βp2e

α1−βp1

−βeα1−βp1p1 − βe2α1−2βp1p1]},
∂2M

∂p1∂p2
=

−βeα1−βp1p1 + eα1−βp1

(1 + eα1−βp1 + eα2−βp2)2
βeα2−βp2
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+
−βeα2−βp2p2 + eα2−βp2

(1 + eα1−βp1 + eα2−βp2)2
βeα1−βp1

+
2[eα1−βp1p1 + eα2−βp2p2]
(1 + eα1−βp1 + eα2−βp2)3

β2eα1−βp1eα2−βp2 .

When p1 = p2 = p∗, we have

∂2M

∂p2
1

=
−eα1−βp∗

p∗
,

∂2M

∂p2
2

=
−eα2−βp∗

p∗
,

∂2M

∂p1∂p2
= 0.

Hence, H(p∗, p∗) is negative definite(ND), and we know that (p∗, p∗) is a local maximum.

Next, we first find a region where the maximum point of the outside of the region is

less than some points within the region and also (p∗, p∗) is the unique maximum of the

region. Therefore we in turn prove our argument.

In the following two equations

M(p∗, p∗) = M1(p∗1) +
p2e

α2−βp2

1 + eα2−βp2
,

M(p∗, p∗) = M2(p∗2) +
p1e

α1−βp1

1 + eα1−βp1
,

p∗, p∗1 and p∗2 are known. (For instance, p∗1 is derived by Equation (3).) Hence, we can solve

the two equations. Note that there are two solutions to each of them (see Lemma 2.4), and

we choose the correspondingly larger ones as solutions and denote them as p̄1 and p̄2.

Now we prove that in the region {(p1, p2), p1 ≥ p̄1 or p2 ≥ p̄2}, we have M(P) <

M(p∗, p∗).
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Case 1: When {(p1, p2), p1 ≥ p̄1}, we know

M(p1, p2) =
p1e

α1−βp1 + p2e
α2−βp2

1 + eα1−βp1 + eα2−βp2
<

p1e
α1−βp1

1 + eα1−βp1
+

p2e
α2−βp2

1 + eα2−βp2

≤ M2(p∗2) +
p̄1e

α1−βp̄1

1 + eα1−βp̄1
= M(p∗, p∗).

Case 2: When{(p1, p2), p2 ≥ p̄2}, we know

M(p1, p2) =
p1e

α1−βp1 + p2e
α2−βp2

1 + eα1−βp1 + eα2−βp2
<

p1e
α1−βp1

1 + eα1−βp1
+

p2e
α2−βp2

1 + eα2−βp2

≤ M1(p∗1) +
p̄2e

α2−βp̄2

1 + eα2−βp̄2
= M(p∗, p∗).

Also, we can see that in {(p1, p2), p1 = 0 and p2 ≤ p̄2} and {(p1, p2), p2 = 0 and

p1 ≤ p̄1}, then M(P) < M(p∗, p∗).

Now we only need to show that M(p∗, p∗) is the global maximum in the region P =

{(p1, p2), p1 ≤ p̄1 and p2 ≤ p̄2}. Knowing that this region is a compact set and M(P) is

continuous and differentiable on the set, there exists a maximum. Given again that (p∗, p∗)

is the only solution of ∂M
∂P = 0 and on the boundary, all M(P) < M(p∗, p∗), we know that

if there is a point with a value larger than M(p∗, p∗), then there must be at least a point

that satisfies ∂M
∂P = 0 besides (p∗, p∗). Hence M(p∗, p∗) is the global maximum. The proof

is completed. 2



Chapter 3

Optimal Policy for Special Cases

3.1 When the Number of Customers Is Deterministic

Consider the case when the seller knows the exact number of customers. We say it is in

state (s1, s2, n) if there are s1, s2 items in stock, and n customers waiting in line. Let

ω(s1, s2, n) = (ω1, ω2) denote the optimal policy, where ω1 is the optimal price for product

1, ω2 is the optimal price for product 2, and R(s1, s2, n) be the maximized expected total

revenue in state (s1, s2, n), respectively.

The optimality condition for R(s1, s2, n) is

R(s1, s2, n) = max
p1,p2

{M(P)− q1(p1, p2)(R(s1, s2, n− 1)−R(s1 − 1, s2, n− 1))

−q2(p1, p2)(R(s1, s2, n− 1)−R(s1, s2 − 1, n− 1))}+ R(s1, s2, n− 1),

for s1 ≥ 1, s2 ≥ 1 and n ≥ 1, with the following boundary conditions.
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Condition 1:

R(0, s2, 1 + n) = q2(∞, p2)(p2 + R(0, s2 − 1, n)) + (1− q2(∞, p2))R(0, s2, n)

and

R(s1, 0, 1 + n) = q1(p1,∞)(p1 + R(s1 − 1, 0, n)) + (1− q1(p1,∞))R(s1, 0, n).

Condition 2:

R(·, ·, 0) = R(0, 0, ·) = 0,

R(s1, s2, n) = R(n, s2, n) for s1 ≥ n,

R(s1, s2, n) = R(s1, n, n) for s2 ≥ n,

and

R(s1, s2, n) = R(n, n, n) = nM(P∗) for s1, s2 ≥ n.

Letting n = 1, with these boundary conditions, we have the following results.

1. When s1 ≥ 1 and s2 ≥ 1, then R(s1, s2, 1) = R(1, 1, 1) = M(P∗).
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2. When s1 = 0 and s2 ≥ 1, then R(0, s2, 1) = R(0, 1, 1) = M1(p∗1).

3. When s1 ≥ 1 and s2 = 0, then R(s1, 0, 1) = R(1, 0, 1) = M2(p∗2).

4. When s1 = s2 = 0, then R(0, 0, 1) = 0.

Therefore, we know all the optimal revenues and policies for n = 1. Next, we can let

n = 2, and we can determine all the optimal revenues and optimal policies by the optimality

condition above. Then we can solve them for n = 3, 4, . . .. So in this way, all R(s1, s2, n)

and ω(s1, s2, n) can be solved recursively (see Table 10 through 15 in the Appendix for

examples) .

3.2 When the Number of Customers Is Geometric

Consider the case when X, the number of customers, has a geometric distribution with the

following probability mass function.

P{X = i} = (1− λ)iλ, i = 0, 1, . . . ,

where 0 < λ < 1. Since X is memoryless, i.e. (X − 1 | X ≥ 1) ∼ X, we can compute

J(s1, s2, pX) by conditioning on whether X = 0 or X ≥ 1. That is,

J(s1, s2, pX) = (1− pX(0))J(s1, s2, pX | X≥1) + pX(0) · 0

= (1− λ) J(s1, s2, p1+X).
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Note that we use (X | X ≥ 1) to denote a nonnegative integer-valued random variable that

takes on the value i with probability P{X = i | X ≥ 1}, i = 0, 1, . . .. Together with the

optimality equation (2), we have

λ

1− λ
J(s1, s2, pX) = max

p1,p2
M(P)− q1(p1, p2)(J(s1, s2, pX)− J(s1 − 1, s2, pX))

− q2(p1, p2)(J(s1, s2, pX)− J(s1, s2 − 1, pX)). (7)

For s1 = 0, while s2 ≥ 1, with boundary conditions J(0, 0, ·) = 0, we also have

λ

1− λ
J(0, s2, pX) = max

p2
q2(∞, p2)(p2 + J(0, s2 − 1, pX))− q2(∞, p2)J(0, s2, pX)

and for s2 = 0, while s1 ≥ 1,

λ

1− λ
J(s1, 0, pX) = max

p1
q1(p1,∞)(p1 + J(s1 − 1, 0, pX))− q1(p1,∞)J(s1, 0, pX).

Let s1 = s2 = 1, we have

λ

1− λ
J(1, 1, pX) = max

p1,p2
M(P)− q1(p1, p2)(J(1, 1, pX)− J(0, 1, pX))

− q2(p1, p2)(J(1, 1, pX)− J(1, 0, pX)), (8)

λ

1− λ
J(0, 1, pX) = max

p2
q2(∞, p2)(p2 + J(0, 0, pX))− q2(∞, p2)J(0, 1, pX)

= max
p2

q2(∞, p2)p2 − q2(∞, p2)J(0, 1, pX)
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and

λ

1− λ
J(1, 0, pX) = max

p1
q1(p1,∞)(p1 + J(0, 0, pX))− q1(p1,∞)J(1, 0, pX)

= max
p1

q1(p1,∞)p1 − q1(p1,∞)J(1, 0, pX).

Note that as J(1, 0, pX) and J(0, 1, pX) both increase from zero to infinity (as do the

left hand sides of the preceding equations), the right hand sides of the preceding equations

decrease from M(P∗) to zero. Therefore, we can solve J(1, 0, pX), J(0, 1, pX), P(1, 0, pX)

and P(0, 1, pX). Based on these and Equation (8), next we can solve J(1, 1, pX) and

P(1, 1, pX). We then plug s1 = 2 and s2 = 2 into Equation (7) and in the same way, we

can solve J(2, 1, pX), J(1, 2, pX), P(2, 1, pX) and P(1, 2, pX). Based on these, next we can

solve J(2, 2, pX) and P(2, 2, pX). As a result, J(s1, s2, pX) and P(s1, s2, pX), s = 1, 2, . . .,

can be solved recursively (see Table 1 for example).

3.3 When the Number of Customers Is Bounded

Consider the case where X is bounded by xmax, i.e. P{xmax ≥ X} = 1. Define the failure

rate function of X as follows

rX(k) ≡ P{X = k | X ≥ k} k = 0, 1, . . . , xmax.

That is, when the kth customer arrives, the probability that he is the last one is rX(k),

and in particular, rX(xmax) = 1. Since X is bounded, the boundary conditions can be set

up properly. As a result, the optimal policy can be computed using backward dynamic
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programming.

We illustrate the procedures as follows. Consider a seller with s1, s2 items for product

1, 2 and the number of customers is distributed as X. Suppose that immediately after the

seller deals with the kth customer, the inventory is down to i and j for products 1 and 2

respectively. Therefore, the seller is in state (i, j, (pX−k |X≥k)). The optimality equation

can be formulated upon conditioning on whether X = k or not. For i, j ≥ 1 and k ≥ 0,

J(i, j, (pX−k |X≥k)) = P

{
X = k |X ≥ k

}
× 0 + P

{
X ≥ k + 1 |X ≥ k

}

×max
p1,p2

{
q1

(
p1 + J(i− 1, j, (pX−k−1 |X≥k+1))

)

+q2

(
p2 + J(i, j − 1, (pX−k−1 |X≥k+1))

)

+(1− q1 − q2)J(i, j, (pX−k−1 |X≥k+1))
}

=
(

1− rX(k)
)

max
p1,p2

{
q1

(
p1 + J(i− 1, j, (pX−k−1 |X≥k+1))

)

+q2

(
p2 + J(i, j − 1, (pX−k−1 |X≥k+1))

)

+(1− q1 − q2)J(i, j, (pX−k−1 |X≥k+1))
}

.

The boundary conditions are

J(0, 0, ·) = J(·, ·, (pX−xmax |X≥xmax
)) = 0.

Consequently, the optimal policy can be solved recursively (see Tables 2 and 3 for

example).
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Table 1: Optimal revenue and policy when the number of customers follows a geometric
distribution (α1 = 1, α2 = 2, β = 1).

λ J(5, 10, pX) q1 q2 p1 p2

0.05 17.5026 0.13627 0.34322 2.34018 2.41644
0.10 9.8712 0.14336 0.37972 2.20198 2.22791
0.15 6.4814 0.14428 0.38926 2.17346 2.18094
0.20 4.6283 0.14443 0.39198 2.16624 2.16779
0.25 3.4828 0.14448 0.39275 2.16405 2.16404
0.30 2.7115 0.14452 0.39296 2.16324 2.16298
0.35 2.1588 0.14455 0.39301 2.16290 2.16269
0.40 1.7438 0.14457 0.39302 2.16274 2.16262
0.45 1.4209 0.14457 0.39302 2.16266 2.16260
0.50 1.1626 0.14458 0.39301 2.16263 2.16260
0.55 0.9512 0.14458 0.39301 2.16261 2.16260
0.60 0.7751 0.14458 0.39301 2.16261 2.16260
0.65 0.6260 0.14458 0.39301 2.16260 2.16260
0.70 0.4983 0.14458 0.39301 2.16260 2.16260
0.75 0.3875 0.14458 0.39301 2.16260 2.16260
0.80 0.2907 0.14458 0.39301 2.16260 2.16260
0.85 0.2052 0.14458 0.39301 2.16260 2.16260
0.90 0.1292 0.14458 0.39301 2.16260 2.16260
0.95 0.0612 0.14458 0.39301 2.16260 2.16260
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Table 2: Optimal revenue and policy when the number of customers follows a binomial
distribution (α1 = 1, α2 = 4, β = 1, xmax = 20, p = 0.60).

k J(2, 5, pX−k|X>=k) q1 q2 p1 p2

20 0 0.03279 0.65870 3.24146 3.24146
19 0.1564 0.03279 0.65870 3.24146 3.24146
18 0.3479 0.03279 0.65870 3.24147 3.24146
17 0.5859 0.03279 0.65870 3.24150 3.24146
16 0.8857 0.03279 0.65871 3.24156 3.24146
15 1.2686 0.03279 0.65870 3.24161 3.24148
14 1.7633 0.03280 0.65865 3.24138 3.24169
13 2.4072 0.03287 0.65842 3.23998 3.24258
12 3.2445 0.03308 0.65768 3.23510 3.24540
11 4.3197 0.03367 0.65573 3.22202 3.25277
10 5.6612 0.03499 0.65135 3.19314 3.26926
9 7.2588 0.03760 0.64286 3.14001 3.30099
8 9.0478 0.04203 0.62858 3.05891 3.35379
7 10.9212 0.04857 0.60769 2.95696 3.43023
6 12.7679 0.05688 0.58083 2.85142 3.52796
5 14.5094 0.06600 0.54995 2.76112 3.64093
4 16.1089 0.07468 0.51740 2.69786 3.76228
3 17.5596 0.08196 0.48509 2.66444 3.88631
2 18.8692 0.08737 0.45426 2.65756 4.00903
1 20.0508 0.09089 0.42552 2.67154 4.12793
0 21.1187 — — — —

Table 3: Optimal revenue and policy when the number of customers follows a binomial
distribution (α1 = 1, α2 = 4, β = 1, xmax = 20, p = 0.60).

J(2, 5, p1+X) q1 q2 p1 p2

22.0867 0.09277 0.39909 2.70061 4.24156



Chapter 4

Structural Properties

By Lemma 2.3, J(s1, s2, pX) increases as X becomes stochastically larger. However, the

optimal policy need not have such a monotonic property in X. In this section, we use

examples with a deterministic number of customers to demonstrate how the shape of the

optimal policy depends on the following two factors:

1. The difference between α1 and α2.

2. The difference between s1 and s2.

Example 1: α1 = α2, s1 = s2

We can see from Figure 1 that without factors 1 and 2, the optimal policies are monotonic.

When n ≥ 5 (see section 3.1 for details), q1 and q2 both decrease and p1 and p2 both

increase as n (the number of customers) increases. (Please see Table 10 in Appendix for

original data.)
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Figure 1: Optimal policy is monotonic with α1 = α2 = 2, s1 = s2 = 5.

Example 2: α1 6= α2, s1 = s2

Figure 2 shows that when n ≥ 5, as n increases, q2 decreases and p2 increases all the way,

while q1 increases first and then decreases, and p1 decreases first and then increases. Our

explanation to this phenomenon is that before the two type products begin to compete

for customers (in this case, it is when the number of customers is no greater than the

inventory), the products are sold at the same price. That implies product 2 ( the product

with a higher quality) will have a larger chance to be sold. If we still sell them at same

price when competition for customers happens, then we know for sure that more likely

customers will compete for product 2, because they have a better opportunity to buy it.

Hence, in order to make full use of this competition so that the seller can obtain more

revenue, the seller should increase the price for product 2. If the difference of the two

quality parameters is large enough, the price of product 1 should also decrease in order to
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Figure 2: Optimal prices with α1 = 1, α2 = 8 and s1 = s2 = 5.

decrease the probability of no sale. We can conjecture that if the two quality parameters are

slightly different, their prices might both increase when competition for customers starts

(a similar example is case 1). (Please see Table 11 in Appendix for original data.)

Example 3: α1 = α2, s1 6= s2

From Figure 3, we can see that when n ≥ 3, as n increases, q1 decreases and p1 increases

all the way, while q2 increases first and then decreases, and p2 decreases first and then

increases. Our explanation of this phenomenon is that because the quality parameters

are the same, the two products are the same products. When competition for customers

happens, the price of product 1 (the one with a lower initial inventory) will increase because

of competition, while the price of the other one should correspondingly decrease because

of competition. Even though they are the same products, this is how MNL model denotes
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Figure 3: Optimal prices with α1 = α2 = 2, s1 = 3 and s2 = 8.

competition. (Please see Table 12 in Appendix for original data.)

Example 4: α1 6= α2, s1 6= s2

Figure 4 shows clearly the effect of both of the two factors. We see that when n ≥ 4,

as n increases, q1 decreases first, then increases and finally decreases again; q2 increases

first and then decreases. We can explain this phenomenon with similar arguments from

previous examples.

Figure 5 shows that when we make the difference of quality parameters large enough,

factor 1 becomes more significant and finally it dominates factor 2. We see that although

there is a difference of initial inventories, there is no decreasing behavior of q1 at the

beginning, which does happen in Figure 4.

Figure 6 shows that when the difference of initial inventories becomes large enough,
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Figure 4: Optimal policy with α1 = 1, α2 = 2, s1 = 4 and s2 = 8.
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Figure 5: Optimal policy with α1 = 1, α2 = 8, s1 = 4 and s2 = 8.
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Figure 6: Optimal policy with α1 = 1, α2 = 2, s1 = 4 and s2 = 10.

factor 2 becomes more significant and finally it dominates factor 1. We see that although

there is a difference in the quality parameters, there is no increasing behavior of q1 all the

way, which does happen in Figure 4. (Please see Tables 13, 14 and 15 in Appendix for

original data.)

Finally, we make the following remark on the structural property of the optimal policies.

First, the optimal policy need not to be monotonic in the total number of customers, as we

can see from the counterexamples shown. Second, factors 1 and 2 will only be in effect at

certain areas. In the long run, the increasing behavior of pX will finally dominate, which

means that q1 and q2 will both have a decreasing tail as X keeps stochastically increasing.



Chapter 5

Optimal Policy for General Cases

In this section we study the case when X does not fall into the special cases in Section

3. Specifically, we assume X is unbounded and does not have a geometric tail. Lin

(2002) proposes, in his paper, an efficient way to approximate the optimal policy in general

cases using the results derived from previous special cases. We bound the optimal policy

by following his approach. In most cases, the bounds can be made tighter by exerting

computational effort, and the optimal policy can be approximated numerically.

Suppose the seller has s1 and s2 items for product 1 and 2 for sale, and the number

of customers is distributed as X, with a given probability mass function P{X = j} = pj ,

j = 0, 1, . . .. Choose a positive integer xmax and define XL by truncating X at xmax with

the following probability mass functions,

P{XL = j} =





pj , j = 0, . . . , xmax − 1

∑∞
i=xmax

pi, j = xmax

0, j ≥ xmax + 1.
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Since XL is bounded, we can solve J(s1, s2, pXL
) and p(s1, s2, pXL

) using the results in

Section 3.3. In addition since X ≥st XL, Lemma 2.3 implies that

J(s1, s2, pX) ≥ J(s1, s2, pXL
).

To get the bound from the other side, we consider the case where X has the property

that there exists a positive integer k and ε > 0 such that

inf
j≥k

rX(j) ≥ ε. (9)

That is, we assume the failure rate of X is bounded below when X is large. Note that

this is a weaker condition than that X has an increasing failure rate when j is large, and

can accommodate most practical problems (for instance, poisson, binomial and negative

binomial). Choose xmax ≥ k and define

rmin ≡ inf
j≥xmax

rX(j) > 0.

Define XU with the following failure rate function,

rXU
(j) =





rX(j) j = 0, . . . , xmax − 1

rmin j ≥ xmax.

Since XU ≥st X, therefore Lemma 2.3 implies that

J(s1, s2, pXU
) ≥ J(s1, s2, pX).
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Furthermore, J(s1, s2, pXU
) and p(s1, s2, pXU

) can be computed since XU −xmax|XU ≥

xmax has a geometric distribution with parameter (or failure rate) rmin > 0.

An example of XL and XU is as shown in Table 4.

Table 4: The probability mass function of XL and the failure rate function of XU , when
xmax = 5 and X follows a Poisson distribution with λ = 3.

i 0 1 2 3 4 5 6 7 · · ·
pX(i) 0.0498 0.1494 0.2239 0.2241 0.1681 0.1008 0.0504 0.0216 · · ·
pXL

(i) 0.0498 0.1494 0.2239 0.2241 0.1681 0.1847
rX(i) 0.0490 0.1572 0.2789 0.3884 0.4763 0.5457 0.6007 0.6447 · · ·
rXU

(i) 0.0490 0.1572 0.2789 0.3884 0.4763 0.5457 0.5457 0.5457 · · ·

Theorem 5.1 Assuming Equation (9) holds, then as xmax →∞, we have that

1. J(s1, s2, pXU
)− J(s1, s2, pXL

) → 0.

2. p1(s1, s2, pXU
)− p1(s1, s2, pXL

) → 0.

3. p2(s1, s2, pXU
)− p2(s1, s2, pXL

) → 0.

Proof : Suppose a seller is in state (s1, s2, pXL
) and uses the policy as if he were in

state (s1, s2, pXU
). The difference between J(s1, s2, pXU

) and the expected total revenue

this seller can generate is no more than

P{X ≥ xmax}M(P ∗)(
1

rmin
− 1),

because pXL
(i) = pX(i) = pXU

(i) for i < xmax, and conditional on XU ≥ xmax, the

random variable XU − xmax follows a geometric distribution with parameter rmin. On



36

the other hand, the expected total revenue generated by this seller is a lower bound on

J(s1, s2, pXL
), because by definition J(s1, s2, pXL

) is the optimal value function in state

(s1, s2, pXL
). Therefore,

J(s1, s2, pXU
)− J(s1, s2, pXL

) ≤ P{X ≥ xmax}M(P ∗)(
1

rmin
− 1).

Because

P{X ≥ xmax}M(P ∗)(
1

rmin
− 1) → 0,

as xmax →∞, part (a) follows. From the definition of optimal policy, we have

P(s1, s2, pXL
) = arg max

p1,p2

{
M(P)− q1(J(s1, s2, pXL

)− J(s1 − 1, s2, pXL
))

−q2(J(s1, s2, pXL
)− J(s1, s2 − 1, pXL

))
}

and

P(s1, s2, pXU
) = arg max

p1,p2

{
M(P)− q1(J(s1, s2, pXU

)− J(s1 − 1, s2, pXU
))

−q2(J(s1, s2, pXU
)− J(s1, s2 − 1, pXU

))
}

.

Parts (b) and (c) then follow because from part (a), J(s1, s2, pXU
)−J(s1, s2, pXL

) → 0,

J(s1 − 1, s2, pXU
)− J(s1 − 1, s2, pXL

) → 0 and J(s1, s2 − 1, pXU
)− J(s1, s2 − 1, pXU

) → 0,

as xmax →∞.

The proof is completed. (See Tables 5 and 6 for example.) 2
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Theorem 5.2 As xmax →∞, we have that

1. J(s1, s2, pX)− J(s1, s2, pXL
) → 0.

2. J(s1, s2, pXU
)− J(s1, s2, pX) → 0.

3. pi(s1, s2, pXU
)− pi(s1, s2, pX) → 0 i = 1, 2.

4. pi(s1, s2, pX)− pi(s1, s2, pXL
) → 0 i = 1, 2.

Proof : Because of

J(s1, s2, pXL
) ≤ J(s1, s2, pX) ≤ J(s1, s2, pXU

),

and Theorem 5.1, parts (a) and (b) hold.

From the definition of an optimal policy, we have

P(s1, s2, pX) = arg max
p1,p2

{
M(P)− q1(J(s1, s2, pX)− J(s1 − 1, s2, pX))

−q2(J(s1, s2, pX)− J(s1, s2 − 1, pX))
}

.

Parts (c) and (d) then follow because from parts (a) and (b), J(s1, s2, pXU
)−J(s1, s2, pX) →

0, J(s1, s2, pX) − J(s1, s2, pXL
) → 0, J(s1 − 1, s2, pXU

) − J(s1 − 1, s2, pX) → 0, J(s1 −

1, s2, pX)− J(s1− 1, s2, pXL
) → 0, J(s1, s2− 1, pXU

)− J(s1, s2− 1, pX) → 0 and J(s1, s2−

1, pX)− J(s1, s2 − 1, pXU
) → 0, as xmax →∞.

The proof is completed. 2
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Table 5: Optimal Revenue and Policy when the number of customers follows a Poisson
distribution (α1 = 1, α2 = 2, β = 1, λ = 20).

xmax J(5, 10, pXL
) J(5, 10, pXU

) q1(5, 10, pXL
) q1(5, 10, pXU

) q2(5, 10, pXL
) q2(5, 10, pXU

)
1 2.32520302 205.38433525 0.14458 0.00000 0.39301 0.00001
2 3.48780448 173.30223982 0.14458 0.00002 0.39301 0.00005
3 4.65040546 147.19317325 0.14458 0.00013 0.39301 0.00027
4 5.81300325 125.34502738 0.14458 0.00056 0.39301 0.00116
5 6.97557552 106.81450622 0.14457 0.00187 0.39302 0.00395
6 8.13804444 91.00383875 0.14454 0.00521 0.39304 0.01108
7 9.30020256 77.50739928 0.14447 0.01218 0.39310 0.02615
8 10.46156385 66.04380099 0.14432 0.02417 0.39321 0.05240
9 11.62109384 56.41343541 0.14407 0.04111 0.39338 0.09014

10 12.77674307 48.45893315 0.14372 0.06095 0.39363 0.13532
11 13.92476709 42.03012004 0.14327 0.08068 0.39389 0.18164
12 15.05895550 36.96316910 0.14280 0.09796 0.39403 0.22380
13 16.17002511 33.07599709 0.14237 0.11169 0.39388 0.25910
14 17.24547592 30.17517694 0.14209 0.12186 0.39324 0.28702
15 18.27012095 28.06857293 0.14203 0.12903 0.39198 0.30828
16 19.22732738 26.57834952 0.14220 0.13389 0.39003 0.32404
17 20.10081993 25.55036004 0.14256 0.13712 0.38743 0.33549
18 20.87673767 24.85836327 0.14304 0.13923 0.38432 0.34366
19 21.54553262 24.40373809 0.14352 0.14062 0.38088 0.34939
20 22.10329735 24.11238239 0.14394 0.14154 0.37732 0.35332
21 22.55222999 23.93042270 0.14424 0.14216 0.37387 0.35595
22 22.90015792 23.81983211 0.14439 0.14258 0.37069 0.35767
23 23.15926790 23.75452036 0.14440 0.14286 0.36793 0.35876
24 23.34435643 23.71709762 0.14431 0.14305 0.36566 0.35943
25 23.47097944 23.69632214 0.14415 0.14318 0.36389 0.35983
26 23.55384496 23.68516027 0.14398 0.14326 0.36260 0.36006
27 23.60568155 23.67936177 0.14381 0.14331 0.36170 0.36018
28 23.63666825 23.67645078 0.14367 0.14333 0.36111 0.36025
29 23.65437203 23.67503891 0.14356 0.14335 0.36075 0.36028
30 23.66404509 23.67437734 0.14348 0.14336 0.36054 0.36029
31 23.66910412 23.67407777 0.14343 0.14336 0.36042 0.36030
32 23.67163972 23.67394664 0.14340 0.14337 0.36036 0.36031
33 23.67285919 23.67389111 0.14339 0.14337 0.36033 0.36031
34 23.67342276 23.67386834 0.14338 0.14337 0.36032 0.36031
35 23.67367339 23.67385931 0.14337 0.14337 0.36031 0.36031
36 23.67378079 23.67385583 0.14337 0.14337 0.36031 0.36031
37 23.67382520 23.67385453 0.14337 0.14337 0.36031 0.36031
38 23.67384294 23.67385405 0.14337 0.14337 0.36031 0.36031
39 23.67384980 23.67385389 0.14337 0.14337 0.36031 0.36031
40 23.67385237 23.67385383 0.14337 0.14337 0.36031 0.36031
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Table 6: Optimal Revenue and Policy when the number of customers follows a Poisson
distribution (α1 = 1, α2 = 2, β = 1, λ = 20) (continued).

p1(5, 10, pXL
) p1(5, 10, pXU

) p2(5, 10, pXL
) p2(5, 10, pXU

)
2.16260 13.79803 2.16260 14.07498
2.16260 11.66867 2.16260 11.94062
2.16260 9.93863 2.16260 10.20507
2.16260 8.49440 2.16260 8.75468
2.16261 7.27425 2.16259 7.52756
2.16289 6.24033 2.16255 6.48574
2.16347 5.36848 2.16245 5.60494
2.16459 4.64277 2.16227 4.86910
2.16643 4.05075 2.16196 4.26571
2.16912 3.57929 2.16156 3.78161
2.17262 3.21295 2.16131 3.40147
2.17668 2.93496 2.16167 3.10873
2.18090 2.72875 2.16330 2.88726
2.18482 2.57911 2.16689 2.72248
2.18812 2.47271 2.17296 2.60175
2.19074 2.39835 2.18177 2.51453
2.19297 2.34709 2.19320 2.45234
2.19525 2.31209 2.20686 2.40858
2.19806 2.28831 2.22208 2.37821
2.20172 2.27224 2.23804 2.35748
2.20626 2.26143 2.25383 2.34358
2.21150 2.25422 2.26863 2.33449
2.21706 2.24947 2.28176 2.32868
2.22252 2.24641 2.29278 2.32509
2.22749 2.24449 2.30152 2.32294
2.23171 2.24332 2.30807 2.32170
2.23504 2.24263 2.31271 2.32101
2.23750 2.24224 2.31581 2.32064
2.23921 2.24203 2.31776 2.32045
2.24032 2.24191 2.31892 2.32035
2.24099 2.24186 2.31958 2.32031
2.24138 2.24183 2.31993 2.32029
2.24160 2.24182 2.32011 2.32028
2.24171 2.24181 2.32020 2.32027
2.24176 2.24181 2.32024 2.32027
2.24179 2.24181 2.32026 2.32027
2.24180 2.24181 2.32026 2.32027
2.24181 2.24181 2.32027 2.32027
2.24181 2.24181 2.32027 2.32027
2.24181 2.24181 2.32027 2.32027
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There are some cases where the assumption in Equation (9) is not satisfied. For such

special cases, we can often define XU by considering the characteristics of X, so that

the upper-bound of J(s1, s2, pX) and the upper-bound of p(s1, s2, pX) can be computed

accordingly. Note that as xmax increases, XL increases and XU decreases, both in the

regular stochastic sense. Therefore, the bounds can be made tighter by choosing a larger

value of xmax, and the optimal policy can be approximated numerically. In general, the

result is satisfactory if xmax À s and P{X > xmax} ≈ 0.



Chapter 6

Applications to Continuous-Time Models

The generic model proposed has many applications in continuous-time dynamic pricing

models where the customers arrive according to a general point process. In this section, we

consider a continuous-time model where customers arrive according to a Poisson process

for the ease of illustration. However, the methods proposed in this section are applicable

to many other demand arrival processes including nonhomogeneous Poisson process, and

the stochastic processes that do not have independent increments.

We first show a heuristic policy that is easy to compute and implement for the continuous-

time model, and then an upper-bound for the optimal expected revenue in the continuous-

time model. Finally, we give a numerical example.

6.1 Heuristic and Upper Bound

Consider a seller that sells s1, s2 items in the time interval [0, T ]. The customers arrive

in accordance with a Poisson process with rate λ, while the interaction between the seller

and customers is the same as in the generic model.

41



42

Note that at time 0, the total number of customers in [0, T ] follows a Poisson distri-

bution with mean λT . Let Nm denote a Poisson random variable with mean m, then a

reasonable policy is to use P(i, j, NλT − k|NλT ≥ k) if the inventory is (i, j) when the kth

customer shows up. This policy yields the expected total revenue equal to J(s1, s2, NλT ),

and is called the arrival-order-based policy (AOB) (see Lin (2002)), because it sets the

product price based on the order each customer arrives without considering the arrival

time of each customer.

Consider that at any time t ∈ [0, T ], the additional number of customers that will

show up in the time interval (t, T ] has a Poisson distribution with mean λ(T − t). There-

fore, when a customer shows up at time t, with (s1, s2) in inventory, we use the policy

P(s1, s2, Nλ(T−t)), and it is called the future-distribution-based heuristic (FDB) (see Lin

(2002)).

For a problem with a large value of s1, or s2, or λT , real-time implementation of the

FDB policy may raise computational issues. In this case, we could construct a three-

dimensional table of P(s1, s2, Nm) for different s1, s2 and m. The FDB policies can then

be quoted from this table and be computed using linear interpolation when necessary. (See

Table 8 as a part of the three-dimensional table of P(s1, s2, Nm).)

An upper-bound on the optimal expected total revenue in the continuous-time model

can be derived by supposing that the seller, at time 0, has the ability to know the exact

number of future customers by time T . Certainly the seller has nothing to lose with this

ability, and therefore the optimal expected total revenue with this ability is an upper-bound

of that in the original problem. By conditioning on the number of customers and using
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Table 7: Optimal policy of P(s1, s2, N40) where N40 represents a Poisson random number
of customers with mean = 40.

s1 s2 J(s1, s2, N40) q1 q2 p1 p2

0 0 0.00000 0.00000 0.00000 ∞ ∞
0 1 4.55349 0.00000 0.02783 ∞ 5.55349
0 2 8.36651 0.00000 0.05511 ∞ 4.84164
0 3 11.72562 0.00000 0.08185 ∞ 4.41744
0 4 14.74751 0.00000 0.10803 ∞ 4.11104
0 5 17.49564 0.00000 0.13363 ∞ 3.86924
0 6 20.00978 0.00000 0.15864 ∞ 3.66838
0 7 22.31711 0.00000 0.18304 ∞ 3.49589
0 8 24.43736 0.00000 0.20681 ∞ 3.34429
1 0 3.60588 0.02645 0.00000 4.60588 ∞
1 1 8.11005 0.02624 0.02769 4.58518 5.53133
1 2 11.87244 0.02603 0.05482 4.56426 4.81939
1 3 15.17959 0.02582 0.08139 4.54312 4.39511
1 4 18.14818 0.02562 0.10738 4.52178 4.08867
1 5 20.84166 0.02541 0.13278 4.50026 3.84688
1 6 23.29982 0.02521 0.15757 4.47859 3.64607
1 7 25.54985 0.02501 0.18172 4.45679 3.47369
1 8 27.61152 0.02482 0.20522 4.43489 3.32227
2 0 6.47774 0.05220 0.00000 3.89902 ∞
2 1 10.93164 0.05176 0.02755 3.87859 5.50898
2 2 14.64245 0.05131 0.05454 3.85797 4.79695
2 3 17.89669 0.05087 0.08095 3.83718 4.37262
2 4 20.81103 0.05043 0.10676 3.81624 4.06617
2 5 23.44892 0.04999 0.13196 3.79518 3.82440
2 6 25.85019 0.04955 0.15654 3.77403 3.62368
2 7 28.04205 0.04911 0.18046 3.75281 3.45145
2 8 30.04432 0.04868 0.20370 3.73156 3.30025
3 0 8.90296 0.07725 0.00000 3.48030 ∞
3 1 13.30571 0.07654 0.02743 3.46021 5.48647
3 2 16.96405 0.07582 0.05427 3.43999 4.77437
3 3 20.16452 0.07511 0.08053 3.41966 4.35002
3 4 23.02377 0.07439 0.10617 3.39925 4.04357
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Table 8: Optimal policy of P(s1, s2, N40) where N40 represents a Poisson random number
of customers with mean = 40 (continued).

s1 s2 J(s1, s2, N40) q1 q2 p1 p2

3 5 25.60528 0.07368 0.13119 3.37878 3.80186
3 6 27.94890 0.07297 0.15556 3.35829 3.60127
3 7 30.08190 0.07226 0.17926 3.33782 3.42922
3 8 32.02416 0.07155 0.20225 3.31742 3.27830
4 0 10.99917 0.10157 0.00000 3.17993 ∞
4 1 15.34997 0.10055 0.02731 3.16029 5.46385
4 2 18.95508 0.09953 0.05402 3.14058 4.75171
4 3 22.10104 0.09851 0.08013 3.12084 4.32736
4 4 24.90451 0.09748 0.10561 3.10109 4.02095
4 5 27.42900 0.09645 0.13046 3.08137 3.77935
4 6 29.71441 0.09542 0.15464 3.06173 3.57891
4 7 31.78809 0.09438 0.17813 3.04222 3.40711
4 8 33.67001 0.09335 0.20089 3.02288 3.25651
5 0 12.83092 0.12512 0.00000 2.94481 ∞
5 1 17.12910 0.12376 0.02719 2.92573 5.44119
5 2 20.68035 0.12240 0.05378 2.90667 4.72904
5 3 23.77121 0.12102 0.07975 2.88766 4.30472
5 4 26.51839 0.11964 0.10509 2.86874 3.99840
5 5 28.98546 0.11824 0.12977 2.84997 3.75694
5 6 31.21237 0.11684 0.15377 2.83139 3.55672
5 7 33.22657 0.11543 0.17707 2.81307 3.38522
5 8 35.04816 0.11402 0.19962 2.79507 3.23501
6 0 14.43928 0.14787 0.00000 2.75137 ∞
6 1 18.68430 0.14614 0.02708 2.73299 5.41856
6 2 22.18122 0.14438 0.05356 2.71473 4.70644
6 3 25.21662 0.14261 0.07940 2.69663 4.28219
6 4 27.90727 0.14081 0.10460 2.67874 3.97601
6 5 30.31678 0.13900 0.12913 2.66114 3.73475
6 6 32.48522 0.13717 0.15297 2.64387 3.53481
6 7 34.44017 0.13532 0.17609 2.62702 3.36367
6 8 36.20187 0.13346 0.19844 2.61066 3.21394



45

R(s1, s2, n) defined in Section 3.1, this upper-bound is equal to

∞∑

k=0

R(s1, s2, n) eλT (λT )k

k!
. (10)

6.2 A Numerical Example

This section presents a numerical example where α1 = 1, α2 = 2, β = 1 and λ = 1

person/min. We compare the optimal revenues in Table 9 with different values of s1, s2

and T , as well as the upper bound in Equation (10). As shown in Table 9, the expected

revenue is about 98% of the upper bound, and it is in turn very close to the optimal

expected revenue. Also we can see that, in the case where the number of customers is not

relatively large compared with the inventory, the myopic policy is almost as good as the

optimal policy, but it works poorly when the number of customers is much larger than the

inventory. While the FDB heuristic works well enough all the time.

Table 9: Expected Revenues for Poisson Arrival Processes.

T s1 s2 Myopica/U.B. AOB/U.B. FDB/U.B. FDBb Upper Bound
40 6 8 0.7629 0.9763 0.9833 35.9589 36.5707
40 8 6 0.7517 0.9778 0.9791 34.0357 34.7600
40 3 4 0.5985 0.9743 0.9843 23.0393 23.4057
40 4 3 0.5934 0.9749 0.9856 22.1238 22.4475
20 6 8 0.9732 0.9824 0.9836 21.9671 22.3239
20 8 6 0.9341 0.9869 0.9884 21.1107 21.3584
20 3 4 0.7861 0.9717 0.9844 16.9378 17.2068
20 4 3 0.7759 0.9731 0.9885 16.1654 16.3538

aIn this case, it is that q1=0.1446, q2=0.3930.

bSimulation results with 99.75% confidence interval ± 0.1.



Chapter 7

Conclusions

In this thesis, we propose a dynamic pricing model where a seller offers two models and

the customers arrive sequentially. The seller adjusts the price for each customer in order

to maximize the expected total revenue. We find some structural properties of the opti-

mal policy, and develop algorithms to compute it when the distribution of the number of

customers is deterministic, geometric, or bounded. In the general case, we can approxi-

mate the optimal policy. This model has many applications in continuous-time dynamic

pricing problems where the customers arrive according to a general point process. Upon

the arrival of each customer, the seller can first identify the distribution of the number of

future customers and then use the future-distribution-based heuristic, which considers only

the distribution of the number of future customers, but not the functional forms of their

arrival times. The model also gives an upper bound for various dynamic pricing problems.

Finally, we present some insights into the case of three or more substitutable products.

The phenomenon of cannibalization in this case will become more complicated for each pair

of the different products will compete with each other.
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Without loss of generality, we assume that the seller has n different models of a generic

product type and any of them is substitutable for the others. Let J(·, ·, · · · , ·), p(·, ·, · · · , ·)

denote the optimal expected total revenue and the optimal policy respectively. Since it can

never hurt to have more items, or more customers, we summarize the monotonicity of the

optimal value function J(·, ·, · · · , ·) in the following lemma.

Lemma 7.1 J(s1, s2, · · · , sn, pX) increases in any of s1, s2, · · · , sn, and X in the regular

stochastic sense, that is, if Y ≥st X, i.e., P{Y > i} ≥ P{X > i} for all i ≥ 0, then

J(s1, s2, · · · , sn, pY ) ≥ J(s1, s2, · · · , sn, pX).

Proof: Same approach as in Lemma 2.2 and 2.3. 2

For n ≥ 2, there are cases that optimal policies have no monotonicity property when

X stochastically increases.

We give our explanation as follows. For the multiproduct case, MNL model factors in

not only the difference of product quality parameters, but also the difference of the initial

inventories, which affects optimal policies jointly as X stochastically increases. As a result,

optimal policies show significantly different behaviors in distinct cases. Furthermore, we

can expect that the effect of the difference of product quality and initial inventories will

disappear when X becomes stochastically large enough. In the long run, the probability of

selling any given model will decrease because there are relatively enough future customers

compared with the total inventory of products . When initial inventories are fixed, optimal

policies have monotonicity tails as X becomes stochastically large enough. When X is

stochastically large enough compared with the total initial inventories, it makes sense that

the optimal prices for each product will all keep increasing when we still keep stochastically
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increasing X.
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Table 10: Optimal Revenue and Policy when the number of customers is deterministic (α1

= 2, α2 = 2, β = 1, s1 = 5, s2 = 5).

n R(s1, s2, n) q1 q2 p1 p2

1 1.3748 0.2895 0.2895 2.3748 2.3748
2 2.7496 0.2895 0.2895 2.3748 2.3748
3 4.1245 0.2895 0.2895 2.3748 2.3748
4 5.4993 0.2895 0.2895 2.3748 2.3748
5 6.8741 0.2895 0.2895 2.3748 2.3748
6 8.2476 0.2893 0.2893 2.3758 2.3758
7 9.6168 0.2890 0.2890 2.3789 2.3789
8 10.9775 0.2882 0.2882 2.3852 2.3852
9 12.3247 0.2870 0.2870 2.3951 2.3951

10 13.6531 0.2853 0.2853 2.4091 2.4091
11 14.9560 0.2829 0.2829 2.4286 2.4286
12 16.2242 0.2796 0.2796 2.4555 2.4555
13 17.4479 0.2751 0.2751 2.4913 2.4913
14 18.6183 0.2696 0.2696 2.5358 2.5358
15 19.7295 0.2632 0.2632 2.5877 2.5877
16 20.7789 0.2560 0.2560 2.6449 2.6449
17 21.7665 0.2484 0.2484 2.7057 2.7057
18 22.6942 0.2406 0.2406 2.7681 2.7681
19 23.5654 0.2328 0.2328 2.8311 2.8311
20 24.3838 0.2250 0.2250 2.8936 2.8936
21 25.1535 0.2175 0.2175 2.9549 2.9549
22 25.8785 0.2102 0.2102 3.0147 3.0147
23 26.5627 0.2031 0.2031 3.0727 3.0727
24 27.2096 0.1964 0.1964 3.1287 3.1287
25 27.8224 0.1900 0.1900 3.1828 3.1828
26 28.4041 0.1839 0.1839 3.2350 3.2350
27 28.9573 0.1781 0.1781 3.2852 3.2852
28 29.4843 0.1726 0.1726 3.3336 3.3336
29 29.9874 0.1673 0.1673 3.3802 3.3802
30 30.4684 0.1624 0.1624 3.4251 3.4251
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Table 11: Optimal Revenue and Policy when the number of customers is deterministic (α1

= 1, α2 = 8, β = 1, s1 = 5, s2 = 5).

n R(s1, s2, n) q1 q2 p1 p2

1 5.3279 0.0008 0.8412 6.3279 6.3279
2 10.6559 0.0008 0.8412 6.3279 6.3279
3 15.9838 0.0008 0.8412 6.3279 6.3279
4 21.3118 0.0008 0.8412 6.3279 6.3279
5 26.6397 0.0008 0.8412 6.3279 6.3279
6 30.4888 0.0044 0.7894 4.8491 6.6577
7 33.3012 0.0158 0.7219 3.8124 6.9876
8 35.5059 0.0344 0.6536 3.2047 7.2607
9 37.3408 0.0563 0.5910 2.8349 7.4840

10 38.9349 0.0783 0.5362 2.5941 7.6700
11 40.3617 0.0988 0.4891 2.4280 7.8286
12 41.6653 0.1172 0.4487 2.3098 7.9669
13 42.8725 0.1330 0.4140 2.2259 8.0902
14 43.9999 0.1460 0.3839 2.1689 8.2024
15 45.0579 0.1564 0.3577 2.1339 8.3062
16 46.0532 0.1640 0.3348 2.1169 8.4034
17 46.9908 0.1693 0.3146 2.1147 8.4950
18 47.8747 0.1725 0.2967 2.1239 8.5818
19 48.7086 0.1740 0.2807 2.1421 8.6642
20 49.4958 0.1742 0.2663 2.1670 8.7425
21 50.2398 0.1733 0.2533 2.1967 8.8169
22 50.9437 0.1716 0.2415 2.2298 8.8878
23 51.6106 0.1693 0.2308 2.2652 8.9552
24 52.2433 0.1666 0.2210 2.3021 9.0195
25 52.8446 0.1636 0.2119 2.3398 9.0807
26 53.4168 0.1604 0.2036 2.3778 9.1392
27 53.9622 0.1571 0.1959 2.4159 9.1950
28 54.4829 0.1537 0.1887 2.4537 9.2483
29 54.9808 0.1503 0.1821 2.4910 9.2994
30 55.4575 0.1470 0.1758 2.5278 9.3484
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Table 12: Optimal Revenue and Policy when the number of customers is deterministic (α1

= 2, α2 = 2, β = 1, s1 = 3, s2 = 8).

n R(s1, s2, n) q1 q2 p1 p2

1 1.3748 0.2895 0.2895 2.3748 2.3748
2 2.7496 0.2895 0.2895 2.3748 2.3748
3 4.1245 0.2895 0.2895 2.3748 2.3748
4 5.4915 0.2848 0.2927 2.3942 2.3670
5 6.8436 0.2759 0.2989 2.4323 2.3522
6 8.1769 0.2643 0.3071 2.4834 2.3333
7 9.4897 0.2514 0.3162 2.5423 2.3128
8 10.7822 0.2382 0.3256 2.6051 2.2925
9 12.0552 0.2253 0.3348 2.6692 2.2732

10 13.3102 0.2131 0.3435 2.7330 2.2555
11 14.5481 0.2017 0.3514 2.7953 2.2403
12 15.7684 0.1914 0.3582 2.8558 2.2289
13 16.9684 0.1821 0.3634 2.9150 2.2239
14 18.1423 0.1737 0.3663 2.9740 2.2277
15 19.2832 0.1661 0.3668 3.0340 2.2417
16 20.3841 0.1592 0.3649 3.0954 2.2658
17 21.4399 0.1528 0.3608 3.1581 2.2989
18 22.4470 0.1469 0.3549 3.2216 2.3392
19 23.4043 0.1413 0.3478 3.2852 2.3846
20 24.3120 0.1361 0.3397 3.3485 2.4336
21 25.1719 0.1312 0.3312 3.4108 2.4847
22 25.9861 0.1265 0.3223 3.4717 2.5367
23 26.7573 0.1221 0.3133 3.5310 2.5889
24 27.4885 0.1180 0.3044 3.5885 2.6407
25 28.1825 0.1141 0.2956 3.6440 2.6916
26 28.8420 0.1103 0.2871 3.6977 2.7415
27 29.4697 0.1068 0.2788 3.7494 2.7901
28 30.0680 0.1035 0.2708 3.7993 2.8373
29 30.6391 0.1003 0.2632 3.8473 2.8832
30 31.1851 0.0974 0.2558 3.8936 2.9276
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Table 13: Optimal Revenue and Policy when the number of customers is deterministic (α1

= 1, α2 = 2, β = 1, s1 = 4, s2 = 8).

n R(s1, s2, n) q1 q2 p1 p2

1 1.1626 0.1446 0.3930 2.1626 2.1626
2 2.3252 0.1446 0.3930 2.1626 2.1626
3 3.4878 0.1446 0.3930 2.1626 2.1626
4 4.6504 0.1446 0.3930 2.1626 2.1626
5 5.8129 0.1445 0.3931 2.1630 2.1625
6 6.9753 0.1444 0.3932 2.1643 2.1623
7 8.1371 0.1440 0.3934 2.1669 2.1619
8 9.2983 0.1434 0.3938 2.1712 2.1611
9 10.4581 0.1427 0.3943 2.1772 2.1605

10 11.6153 0.1419 0.3946 2.1841 2.1611
11 12.7677 0.1412 0.3942 2.1912 2.1643
12 13.9119 0.1408 0.3928 2.1975 2.1716
13 15.0441 0.1408 0.3902 2.2030 2.1840
14 16.1597 0.1412 0.3862 2.2084 2.2022
15 17.2539 0.1417 0.3808 2.2150 2.2263
16 18.3219 0.1421 0.3743 2.2245 2.2562
17 19.3590 0.1423 0.3668 2.2380 2.2915
18 20.3617 0.1422 0.3585 2.2561 2.3313
19 21.3274 0.1416 0.3497 2.2789 2.3749
20 22.2544 0.1406 0.3405 2.3061 2.4213
21 23.1423 0.1391 0.3312 2.3370 2.4696
22 23.9913 0.1373 0.3218 2.3708 2.5190
23 24.8024 0.1352 0.3126 2.4068 2.5689
24 25.5769 0.1329 0.3035 2.4444 2.6187
25 26.3165 0.1305 0.2947 2.4830 2.6681
26 27.0231 0.1279 0.2861 2.5221 2.7167
27 27.6986 0.1252 0.2779 2.5614 2.7644
28 28.3447 0.1226 0.2700 2.6005 2.8110
29 28.9635 0.1199 0.2623 2.6394 2.8565
30 29.5566 0.1173 0.2550 2.6777 2.9007
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Table 14: Optimal Revenue and Policy when the number of customers is deterministic (α1

= 1, α2 = 8, β = 1, s1 = 4, s2 = 8).

n R(s1, s2, n) q1 q2 p1 p2

1 5.3279 0.0008 0.8412 6.3279 6.3279
2 10.6559 0.0008 0.8412 6.3279 6.3279
3 15.9838 0.0008 0.8412 6.3279 6.3279
4 21.3118 0.0008 0.8412 6.3279 6.3279
5 26.6397 0.0008 0.8412 6.3279 6.3279
6 31.9677 0.0008 0.8412 6.3279 6.3279
7 37.2956 0.0008 0.8412 6.3279 6.3279
8 42.6236 0.0008 0.8412 6.3279 6.3279
9 47.1179 0.0020 0.8160 5.4943 6.4997

10 50.7098 0.0060 0.7762 4.5918 6.7290
11 53.6246 0.0138 0.7307 3.9149 6.9489
12 56.0686 0.0252 0.6844 3.4440 7.1425
13 58.1824 0.0387 0.6401 3.1152 7.3103
14 60.0563 0.0530 0.5990 2.8814 7.4568
15 61.7481 0.0669 0.5616 2.7138 7.5868
16 63.2948 0.0797 0.5277 2.5953 7.7044
17 64.7210 0.0906 0.4972 2.5145 7.8125
18 66.0433 0.0997 0.4697 2.4632 7.9131
19 67.2740 0.1067 0.4450 2.4351 8.0075
20 68.4225 0.1120 0.4226 2.4247 8.0965
21 69.4969 0.1156 0.4023 2.4279 8.1809
22 70.5040 0.1179 0.3839 2.4412 8.2608
23 71.4499 0.1191 0.3670 2.4620 8.3366
24 72.3403 0.1195 0.3515 2.4881 8.4087
25 73.1800 0.1191 0.3373 2.5179 8.4771
26 73.9736 0.1183 0.3242 2.5504 8.5422
27 74.7252 0.1171 0.3120 2.5845 8.6042
28 75.4383 0.1156 0.3007 2.6196 8.6633
29 76.1163 0.1139 0.2902 2.6553 8.7197
30 76.7620 0.1120 0.2804 2.6910 8.7735
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Table 15: Optimal Revenue and Policy when the number of customers is deterministic (α1

= 1, α2 = 2, β = 1, s1 = 4, s2 = 10).

n R(s1, s2, n) q1 q2 p1 p2

1 1.1626 0.1446 0.3930 2.1626 2.1626
2 2.3252 0.1446 0.3930 2.1626 2.1626
3 3.4878 0.1446 0.3930 2.1626 2.1626
4 4.6504 0.1446 0.3930 2.1626 2.1626
5 5.8129 0.1445 0.3931 2.1630 2.1625
6 6.9753 0.1444 0.3932 2.1643 2.1623
7 8.1371 0.1440 0.3934 2.1669 2.1619
8 9.2983 0.1434 0.3938 2.1712 2.1611
9 10.4584 0.1426 0.3944 2.1775 2.1601

10 11.6171 0.1415 0.3952 2.1857 2.1588
11 12.7742 0.1402 0.3962 2.1958 2.1571
12 13.9290 0.1387 0.3972 2.2076 2.1556
13 15.0809 0.1371 0.3982 2.2206 2.1546
14 16.2284 0.1355 0.3988 2.2342 2.1549
15 17.3697 0.1341 0.3989 2.2478 2.1576
16 18.5022 0.1328 0.3982 2.2613 2.1635
17 19.6224 0.1318 0.3965 2.2749 2.1734
18 20.7264 0.1309 0.3938 2.2892 2.1881
19 21.8100 0.1301 0.3899 2.3050 2.2077
20 22.8691 0.1293 0.3850 2.3231 2.2323
21 23.8999 0.1284 0.3792 2.3439 2.2613
22 24.8996 0.1274 0.3726 2.3677 2.2944
23 25.8660 0.1261 0.3653 2.3944 2.3307
24 26.7979 0.1247 0.3577 2.4236 2.3695
25 27.6949 0.1230 0.3498 2.4550 2.4101
26 28.5571 0.1213 0.3417 2.4881 2.4519
27 29.3852 0.1193 0.3336 2.5225 2.4944
28 30.1802 0.1173 0.3256 2.5578 2.5371
29 30.9435 0.1152 0.3176 2.5936 2.5797
30 31.6764 0.1131 0.3098 2.6296 2.6219
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