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ABSTRACT. A study is made of the properties on X which characterize when Cﬂ(X)
is a k-space, where Cﬂ(X) is the space of real-valued continuous functions on X
having the topology of pointwise convergence. Other properties related to the

k-space property are also considered.
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1. INTRODUCTION.

If X is a topological space, the notation C(X) is used for the space of all
real-valued continuoug functions on X. One of the natural topologies on C(X) is
the topology of pointwise convergence, where subbasic open sets are those of the
form

Tx,v] = {f € CX)|E(x) € V}
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for x € X and V open in the space of real numbers, R, with the usual topology.
The space C(X) with the topology of pointwise convergence will be denoted by
Cﬂ(X).

For a completely regular space X, Cﬂ(X) is first countable, in fact metriz-
able, if and only if X is countable [2]. The purpose of this paper is to show
to what extent this result can be extended to properties more general than first

countability, such as that of being a k-space. Throughout this paper all spaces

will be assumed to be completely regular T,-spaces.

We first recall the definitions of certain generalizations of first count-
ability. The space X is a Fréchet space if whenever x € Ac X, there exists a

sequence in A which converges to x. The space X is a sequential space if the

open subsets of X are precisely those subsets U such that whenever a sequence
converges to an element of U, the sequence is eventually in U. Also X is a k-
space if the closed subsets of X are precisely those subsets A such that for
every compact subspace K< X, A N K is closed in K. Finally X has countable
tightness if whenever x € Iy < X, there exists a countable subset B £ A such that

X € B. The following diagram shows the implications between these properties.

first countable
Fréchet ————— sequential ———————= k-space

countable tightness

We will show that the Fréchet space, sequential space, and k-space proper-
ties are equivalent for C“(X). In order to characterize these properties for
Cn(x) in terms of internal properties of X, we will need to make some additional
definitions. Let %(X) be the set of all nonempty finite subsets of X. A collec-

tion U of open subsets of X is an open cover for finite subsets of X if for every

A € F(X), there exists a U € |4 such that A ¢ U. 1If {un} is a sequence of collec-

tions of subsets of X, a string from {U,} is a sequence {U,} such that Up € Up
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for every n € N (N is the set of natural numbers). In addition, we will say

that {Unl is residually covering if for every x € X, there exists an N € N such

that for all n > N, x € Un.
THEOREM 1. The following are equivalent.

(a) Cﬂ(X) is a Fréchet space.

(b) cn(x) is a sequential space.

(c) Cﬂ(X) is a k-space.

(d) Every sequence of open covers for finite subsets of X has a residually
covering string.

PROOF. (d) = (a). Suppose that every sequence of open covers for finite
subsets of X has a residually covering string. Let F be a subset of Cﬂ(X), and
let f be an accumulation point of F in Cn(X). Then for every n € N and A =
{xl, . .,xk} € %(X), we may choose an

£y a EFNT x5 (£Gep) -% L E(x)) +%)]] N Tx s (£Gx) -?11 s E(x) +§)]] .
Also define U(n,A) = {x € X| Ifn,A(x) - f®| < %}, which is an open subset of X.
Then for each n € W, define un = {U(n,A)lA €%(X)}, which is an open cover for
finite subsets of X. Now {un} has a residually covering string {U(n,An}, so
that for every n € N, we may define fn = fn,An'

We wish to establish that {fn1 converges to f in Cﬂ(X). So let x € X, and
let ¢ > 0. There is an N€ N with N > % such that for every n > N, x € U(n,An).
But then if n > N,

15000 = £0] = 5, 4 @) = £00)] <ispce.
Therefore {fn(x)} converges to f(x) for every x € X, so that {fn] converges to f
in Cn(X). Hence Cﬁ(X) must be a Fréchet space.

(c) = (d). Suppose X has a sequence {un} of open covers for finite subsets
such that no string from {un1 is residually covering. Let vy = ul, and for each

n>1, let Vn be an open cover for finite subsets of X which refines both Vn-l
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and un. For every n € N and A € ¥(X), let U(n,A) € 1/n such that A ¢ U(n,A), and
let fn,A € C(X) be such that fn,A(A) = {%}, fn’A(X\U(n,A)) = {n}, and
fn,A(X) c [%,n]. Then define
F = {fn’Aln € N and A € 5(X)1,
and also define F* = i\{cc)’( in cn(x), where <, is the constant zero function.

First we establish that F* is not closed in Cﬂ(X) by showing that <, is an
accumulation point of F in Cﬂ(X). To do this, let W=[T xl,Vl:[] Nn...nL xk,VkI]
be an arbitrary basic neighborhood of L in Cﬂ(X). If A = {xl, A xk} and
n € N such that % € Vl n.. .nd, then fn,A € WNF.

We will then obtain that Cn(X) is not a k-space, as desired, if we can show
that the intersection of F* with each compact subspace of cn(x) is closed in that
compact subspace. To this end, let K be an arbitrary compact subspace of Cn(X).
Then for every x € X, the orbit {f(x)lf € K} is bounded in R. For every x € X,
define M(x) = sup {f(x)lf € K}, and also for every m € N, define Xm =
{x € X|M(x) < m}. Note that X = J {Xm|m € N1}, and that for every m, X X .q°

Suppose, by way of contradiction, that for every m, n € N, there exists a
k >nand V € Vk such that Xm c V. We define, by induction, a string {Un] from

{un}. First there exists a k., > 1 and Vl € Vk such that X. ¢ V.. For each

1 1 1 1
i=1,..., kl, choose Ui € ui so that V1 [=4 Ui' Now suppose km and Ul’ e ,Ukm
have been defined. Then there exists a km_'_1 > km + 1 and Vm_,_1 € Vkm+1 such that

. i = + .. .

Xm_'_1 c Vm_‘_1 For each i km 1, s km+1’ choose Ui € ui so that Vm_'_1 c Ui

This defines string {Un}, which we know to not be residually covering. Let

x € X be arbitrary. There is an m € N such that x € Xm. Let n > km. There is

a j>msuch that k, . +1 <n<k . Thenx € X <X, cV, U . But this says
j-1 j ™ j j n

that {Un'¥ is residually covering, which is a contradiction.

We have just established that there exist m, n € N such that for every

k > n and for every V € Vk’ Xm ¢ V. Then define M = max {m,n}, let X € X be



K-SPACE FUNCTION SPACES 705

arbitrary, and define W = [ xo,(-i, -&)]] , which is a neighborhood of <5 in
C (X). Suppose f € WNF. Then there exists a k € N and A € ¥(X) such that
o

f=f Since 1 < f(xo) < l, then k > M > n. Thus Xm ¢ U(k,A), so that there

k,A" k M
exists an X € Xm\U(k,A). But then f(xl) =k>M>m> M(xl), so that f ¢ K.
Therefore WNFNK = g, so that ¢ is not an accumulation point of F¥NK in K.
o

Hence F¥*NK must be closed in K. Since K was arbitrary, we obtain that Cn(X)
is not a k-space. M

THEOREM 2. C (X) has countable tightness if and only if every open cover

m

for finite subsets of X has a countable subcover for finite subsets of X.

PROOF. Suppose that every open cover for finite subsets of X has a count-
able subcover for finite subsets of X. Let F be a subset of C (X), and let f

o

be an accumulation point of F in Cn(X). Then for each n € N and A = {xl,...,xk'}
€ F(X), choose

f LEFNT x,,(f(x )-l f(x )+l)]]n eoon %, (£(x )-l f(x )+l)]] .

n,A 1’ 17 n’ 17 'n k> k’ n’ k’ n
Also let U(n,A) = {x € X| lfn A(x) - £(x)| <%}, which is an open subset of X.
’

Then for each n € W, {U(n,A)'A € %(X)1 is an open cover for finite subsets of
X. So for each n € N, there exists a sequence {A(n,i)'iE N1} from %(X) such
that {U(n,A(n,i))h’. € N1 is a cover for finite subsets of X. Then define G =
{fn,A(n,i)ln’l € N1

To see that £ € G, let W =[] xl,Vl:ﬂ Nn...nt xk,VkI] be a neighborhood of

1
) = E >

f in cn(x). Let A = {x . xk}, and choose n € N so that (f(x

1 3
f(xj) +%) c Vj for each j = i, ..., k. Then there is an i € N such that
. 1

A € U(n,A(n,i)). So for each x € A, 'fn,A(n,i)(x) -fx)| < ~, and hence
fn,A(n,i) € w.
Conversely, suppose that Cﬂ(X) has countable tightness, and let U be an

open cover for finite subsets of X. For each A € %(X), let U(A) € U be such

that A ¢ U(A). Also for each n € N and A € $(X), let fn A € C(X) be such that
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fn,A(A) = {%T, fn’A(X\U(A)) = {n}, and fn,A(x) c [%,n]. Then define F =
[fn’Aln € N and A € %(X)1.

Since the constant zero function, cos is an accumulation point of F, then
there is a countable subset G of F such that <, € G. There are sequences
{n;} € N and (A} € %(X) so that G = {fni’Ai |ie w3,

To see that {U(Ai)li € N} is a cover for finite subsets of X, let A =
{xi, e e, xkl € %(X). Then there exists an i € N such that fni’Ai E][xi,
-1,1)Tn.. .n[ka,(-l,l)ﬂ . But this means that A ¢ U(Ai)’ so that
{U(Ai)li € N} is indeed a cover for finite subsets of X. M

Let us now give names to the two properties of X which are expressed in
Theorems 1 and 2. We will call X k-countable whenever Cn(X) is a k-space, and
we will call X T-countable whenever Cﬂ(X) has countable tightness. We state
some immediate facts about these properties.

PROPOSITION 3. Every countable space is k-countable.

PROPOSITION 4. Every k-countable space is t-countable.

PROPOSITION 5. Every w-countable space is Lindelof.

PROOF. Let lee r-countable, and let U be an open cover of X. Let ¥ be the
family of all finite unions of members of W. Then ¥ is an open cover for finite
subsets of X, so that it has a countable subcover lp for finite subsets of X.
Each member of Iy is a finite union of members of W, so that since |y covers X,
then U has a countable subcover. ™M

This means that if Cn(X) has countable tightness, X must be Lindelof. 1In
particular, Cn(Qo) does not have countable tightness, where Qo is the space of
countable ordinals with the order topology. This is in contrast to Cﬂ(ﬂ), which
we see from the next proposition has countable tightness, where (O = Qo U {w11-

PROPOSITION 6. If X' is Lindelof for every n € N, then X is T-countable.

PROOF. Let X' be LindelSf for every n € N, and let U be an open cover for

finite subsets of X. For each n € N, let Up = {Un [=4 XnIU € u}. Since u is an
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open cover for finite subsets of X, then each un is an open cover of Xn. So for
each n € N, U has a countable subcollection Vn such that {Un|U € an covers Xn.
But then U {Vn|n € N} is a countable subcollection of U which is a cover for
finite subsets of X. [

COROLLARY 7. Every compact space is t-countable, and every separable metric
space is r-countable.

We now examine some properties of k-countable spaces.

PROPOSITION 8. Every closed subspace of a k-countable space is k-countable.

PROOF. Let X be a k-countable space, and let Y be a closed subspace of X.
Let {Vn} be a sequence of open covers for finite subsets of Y. For each n € N,
let u, = {VLJ(X\Y)|V € Vn}, which is an open cover for finite subsets of X. Now
{un} has a residually covering string {anJ(X\Y)}, where each Vn € Vn. But then
{Vn] is a residually covering string from {an. D

PROPOSITION 9. Every continuous image of a k-countable space is k-countable.

PROOF. Let X be k-countable, and let f:X -+ Y be a continuous surjection.
Let {Vn} be a sequence of open covers for finite subsets of Y. For each n € W,
let un = {f’l(V)|V € an, which is an open cover for finite subsets of X. Now
{unl has a residually covering string {f-l(vn)}, where each Vn € Vn. But then
{an is a residually covering string from {an. O

In the next proposition, we use the term covering string, by which we mean
a string which is itself a cover of the space.

PROPOSITION 10. If X is k-countable, then every sequence of open covers of
X has a covering string.

PROOF. Let {un} be a sequence of open covers of X. For each n € N, let
v = {Unu. . .\|Un+k+1\kem and each Uieui},

n

which is an open cover for finite subsets of X. Thus {Vn} has a residually

covering string {Vn}. Now V1 = UIL;.. JlUk for some kl € N. Also Vk +1
1 1
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. e UUk for some k2 € N with k, > kl' Continuing by induction, we can

U +1V 2

1 2
define an increasing sequence {ki} such that each Vk +1 =Uk 41U - UUk .
i i i+l
This defines U for each n € N. To see that {Un} is a covering string from {un}

let x € X. Then there exists an N € N such that for all n > N, x € Vn' Since

> N. Then x € V.

{ki] is increasing, there is some i such that k ki+1 =

i
Uk.+1U' .. UUk, ,» so that x is indeed in some Un' (]
i i+l
We next give an important example of a space which is not k-countable.
EXAMPLE 11. The closed unit interval, I, is not k-countable.
PROOF. For each n € W, let un be the set of all open intervals in I having
diameter less than l—n . Suppose {un} were to have a covering string {Un}. Then
2

since I is connected, there would be a simple chain {Un s o v oy Unk} from 0 to 1.
1

That is, 0 € Un , 1€ Unk, and for each 1 < i < k - 1, there is a t:iGUn.ﬁUl_l .

1 i i+l
But then
1< |1-tk_1|+|tk_1-tk_2 +...+ tz-t1|+|t1|
1 1 1 1

< + +...+T+T

2E 2 k-1 22 1
S%+1_2+"‘+'L12<1'

2 2

This is a contradiction, so that {un'} cannot have a covering string. Therefore,
by Proposition 10, I is not k-countable. [

The next three results are consequences of Example 11.

EXAMPIE 12. The Cantor set, K, is not k-countable.

PROOF. Since there exists a continuous function from K onto I, then K
cannot be k-countable because of Proposition 9 and Example 11. (O

Our next proposition then follows from Example 12 and Proposition 8.

PROPOSITION 13. No k-countable space contains a Cantor set.

PROPOSITION 14. Every k-countable space is o-dimensional.
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PROOF. Let X be k-countable, let x € X, and let U be an open neighborhood
of x in X. Since X is completely regular, there exists an f € C(X) such that
f(x) =0, £(X\U) = {1}, and £(X)  I. -Since I is not k-countable by Example 11,
and since f(X) is k-countable by Proposition 9, then there exists a t € I\f(X).
Thus [0,t) n £(X) is both open and closed in f(X), so that f-l([O,t)) is an
open and closed neighborhood of x contained in U. (O

With all these necessary conditions which k-countable spaces must satisfy,
one might wonder whether there exists an uncountable k-countable space. This is
answered by the next two examples.

We will call a space X virtually countable if there exists a finite subset
F of X such that for every open subset U of X with F ¢ U, it is true that X\U
is countable. Notice that a first countable virtually countable space is
countable.

PROPOSITION 15. Every virtually countable space is k-countable.

PROOF. Let F be a finite subset of X such that every open U in X with
F ¢ U has countable complement, and let {un} be a sequence of open covers for

finite subsets of X. First let Uy € ul be such that F ¢ U.. Then X\U1 is

1
countable; say X\U1 = {xll’ X195 Xqgs - .}. Let U2 € u, be such that

Fy {xll} < UZ' Now X\U2 is also countable; say X\U2 = {x21, Xyps Xpgs o ¢ ..

Let U3 € u3 be such that F U {x Continuing by induction,

11° *12° %211 < U3¢
we may define string {Un} from {un} such that for each n, Un = X\{xnl,xnz,

xn3’ ...} and

Fulxggs o oo oXpps Xopo v o o®g pps oo oo % 1l
To see that every element of X is residually in {Un}, let x € X. If x € ﬁlUn,
n=
-
then x is residually in {Un}. If x ¢ n01 Un’ then let i be the first integer

such that x ¢ Ui‘ Then x = xij for some j, so that for every n > 1 + j, x€ Un'

Therefore x is residually in {Un}. |
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EXAMPLE 16. The space of ordinals, (), which are less than or equal to the
first uncountable ordinal is k-countable.

PROOF. It is easy to see that () is virtually countable. [J

EXAMPLE 17. The Fortissimo space, ¥, is k-countable, where F is R with
the following topology: each {t} is open for t # 0, and the open sets containing
0 are the sets containing O which have countable complements. Also Fz is not
Lindelof, which shows that the converse of Proposition 6 is not true.

PROOF. Obviously F is virtually countable. However, an alternate proof
can be obtained from known properties of this space. 1In particular, it follows
from [1] that Cﬂ(l"‘) is homeomerphic to a y-product of copies of R, and from
(3] that a y-product of first countable spaces is a Fréchet space. [

The spaces in the previous two examples are not first countable. This
raises the following question.

QUESTION 18. 1Is every first countable k-countable space countable?

One well studied example of an uncountable first countable space which is
also a o-dimensional Lindelof space and which does not contain a Cantor set is
the Sorgenfrey line. However, in our last example we show that this space is
not k-countable, and in fact is not even r-countable.

EXAMPLE 19. The Sorgenfrey line, S, is not s-countable. This shows that
the converse of Proposition 5 is not true.

PROOF. For each A € %(S), let §(A) = %min {|la-a’| |a,a’ € A, with a#a’},
and let U(A) = y{fa,a+5(A))|a€A}. Then define U = {U(K)lAE&'(S)}, where & =
Ay{-ala€A}. Clearly u is an open cover for finite subsets of S. Then
{U2|U€u1 is an open cover of Sz. But each Uz, for U € U, intersects the set
{(x,y) € Szlx +y = 0% on a finite set, so that {U2|U € u} has no countable sub-
cover of Sz. Therefore no countable subcollection of U can cover all doubleton

subsets of S. M
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