

Final Report – CS 5604 Fall 2016

Solr Team

CS 5604: Information Storage and Retrieval

Instructor: Dr. Edward A. Fox

Liuqing Li, Anusha Pillai, Ke Tian, Ye Wang

{liuqing, anusha89, ketian, yewang16} @vt.edu

Virginia Polytechnic Institute and State University
Blacksburg, VA, 24061

December 7, 2016

 I

List of Contents
LIST	OF	TABLES	..	III	
LIST	OF	FIGURES	..	IV	

1	 ABSTRACT	...	1	

2	 OVERVIEW	..	2	
2.1	 MANAGEMENT	...	2	
2.2	 CHALLENGES	..	2	
2.3	 SOLUTION	DEVELOPED	...	3	
2.4	 FUTURE	WORK	...	4	

2.4.1	 Search	...	4	
2.4.2	 Custom	Ranking	..	4	
2.4.3	 Document	Recommendation	..	4	
2.4.4	 Solr	..	4	

3	 LITERATURE	REVIEW	...	5	

4	 REQUIREMENTS	..	6	

5	 DESIGN	...	8	
5.1	 GENERAL	DESIGN	..	8	
5.2	 DETAILED	DESIGN	...	9	

5.2.1	 Basic	Indexing	...	9	
5.2.2	 Incremental	Indexing	..	11	
5.2.3	 Custom	Ranking	..	12	
5.2.4	 Recommendation	...	12	

6	 IMPLEMENTATION	..	13	
6.1	 OVERVIEW	...	13	
6.2	 TIMELINE	...	13	

7	 USER	MANUAL	..	16	
7.1	 SOLR	ADMIN	INTERFACE	..	16	
7.2	 SOLR	QUERY	..	19	
7.3	 FACETED	SEARCH	..	20	
7.4	 DOCUMENT	RECOMMENDATION	...	21	

8	 DEVELOPER	MANUAL	..	24	
8.1	 BACKGROUND	..	24	

8.1.1	 HBase	..	24	
8.1.2	 Apache	Lucene	..	25	
8.1.3	 Solr	..	25	
8.1.4	 Request	Handler	...	26	

 II

8.1.5	 Search	Component	...	26	
8.1.6	 Lily	HBase	Indexer	...	27	

8.2	 TUTORIALS	FOR	BASIC	INDEXING	IN	VIRTUAL	CLOUDERA	..	28	
8.2.1	 Preparation	...	29	
8.2.2	 Import	Data	into	HDFS	and	HBase	..	31	
8.2.3	 Create	Solr	Collection	..	32	
8.2.4	 Use	Lily	Indexer	for	Data	Indexing	(Live	Mode)	..	34	
8.2.5	 Use	Lily	Indexer	for	Data	Indexing	(Batch	Mode)	...	37	

8.3	 TUTORIAL	FOR	BASIC	INDEXING	IN	HADOOP	CLUSTER	..	41	
8.3.1	 Import	Data	into	HDFS	and	HBase	..	41	
8.3.2	 Create	Solr	Collection	..	45	
8.3.3	 Use	Lily	Indexer	for	Data	Indexing	(Live	Mode)	..	47	
8.3.4	 Use	Lily	Indexer	for	Data	Indexing	(Batch	Mode)	...	49	

8.4	 TUTORIAL	FOR	INCREMENTAL	INDEXING	IN	VIRTUAL	CLOUDERA	..	50	
8.4.1	 Enable	replication	on	HBase	column	families	...	51	
8.4.2	 Register	a	Lily	HBase	Indexer	..	51	
8.4.3	 Point	a	Lily	HBase	NRT	Indexer	Service	...	52	
8.4.4	 Start	a	Lily	HBase	NRT	Indexer	Service,	and	Testing	...	53	

8.5	 TUTORIAL	FOR	INCREMENTAL	INDEXING	IN	HADOOP	CLUSTER	..	54	
8.5.1	 Enable	replication	on	HBase	column	families	...	54	
8.5.2	 Register	a	Lily	HBase	Indexer	..	55	
8.5.3	 Point	a	Lily	HBase	NRT	Indexer	Service	...	56	
8.5.4	 Start	a	Lily	HBase	NRT	Indexer	Service	and	Testing	..	57	

8.6	 TUTORIAL	FOR	CUSTOM	RANKING	..	58	
8.6.1	 Build	and	copy	jar	file	into	the	Hadoop	Cluster	..	58	
8.6.2	 Modify	the	solrconfig.xml	...	59	
8.6.3	 Update	the	instanceDir	and	reload	the	collection	..	60	
8.6.4	 Check	the	results	in	Solr	Admin	UI	..	60	

8.7	 TUTORIAL	FOR	DOCUMENT	RECOMMENDATION	...	61	
8.7.1	 Configurations	for	MoreLikeThis	request	handler	..	61	
8.7.2	 Update	the	instanceDir	and	reload	the	collection	..	64	
8.7.3	 Check	the	results	in	Solr	Admin	UI	..	64	

8.8	 TUTORIAL	FOR	FACETED	SEARCH	..	66	
8.9	 FURTHER	DISCUSSION	..	68	

8.9.1	 Search	...	68	
8.9.2	 Custom	Ranking	..	69	
8.9.3	 Document	Recommendation	..	69	
8.9.4	 Solr	..	70	

9	 REFERENCES	..	71	

APPENDIX	A	 HBASE	STRUCTURE	AND	DESCRIPTION	..	73	
	

 III

List of Tables
TABLE	1		SOLR	REQUIREMENTS	IN	FALL	2016	..	6	
TABLE	2		FIELDS	AND	ATTRIBUTES	OF	SCHEMA.XML	...	10	
TABLE	3		TIMELINE	OF	SOLR	TEAM	...	13	
TABLE	4	DASHBOARD	FUNCTIONS	WITH	EXPLANATIONS	...	16	
TABLE	5	SOLR	QUERY	PARAMETERS	WITH	DESCRIPTIONS	...	19	
TABLE	6	MLT	PARAMETERS	AND	DESCRIPTIONS	...	23	
TABLE	7	DEFAULT	SEARCH	COMPONENTS	...	27	
TABLE	8		PARAMETERS	AND	DESCRIPTIONS	FOR	MORELIKETHIS	..	63	
TABLE	9		PARAMETERS	AND	DESCRIPTIONS	FOR	MORELIKETHIS	HANDLER	...	64	
TABLE	10		PARAMETERS	AND	DESCRIPTIONS	FOR	FACETED	SEARCH	..	66	
TABLE	11		PARAMETERS	AND	DESCRIPTIONS	FOR	FIELD-VALUE	FACETING	...	66	
TABLE	12		PARAMETERS	AND	DESCRIPTIONS	FOR	RANGE	FACETING	...	67	

 IV

List of Figures
FIGURE	1	ARCHITECTURE	OF	IDEAL	AND	GETAR	...	8	
FIGURE	2	ARCHITECTURE	OF	SOLR	...	9	
FIGURE	3	SOLR	ADMIN	UI	...	17	
FIGURE	4	SOLR	LOGGING	LAYOUT	...	18	
FIGURE	5	SOLR	GRAPH	RADIAL	IN	THE	CLOUD	OPTION	..	18	
FIGURE	6	USER	GUIDE	FOR	SOLR	BASIC	QUERY	..	20	
FIGURE	7	USER	GUIDE	FOR	SOLR	FACETED	SEARCH	...	21	
FIGURE	8	USER	GUIDE	FOR	DOCUMENT	RECOMMENDATION	..	22	
FIGURE	9		ARCHITECTURE	OF	HBASE	..	24	
FIGURE	10		INTERACTION	OF	SOLR	...	25	
FIGURE	11	AN	EXAMPLE	OF	REQUEST	HANDLER	..	26	
FIGURE	12		LILY	HBASE	INDEXER	WITH	SOLR	..	28	
FIGURE	13	VERSION	CONFLICT	IN	SOLR	..	29	
FIGURE	14		INTERFACE	OF	VIRTUAL	CLOUDERA	..	29	
FIGURE	15	USER	DIRECTORY	IN	THE	HADOOP	CLUSTER	...	30	
FIGURE	16	SMALL	COLLECTION	IN	THE	HADOOP	CLUSTER	..	30	
FIGURE	17	IMPORT	LOCAL	FILES	INTO	HDFS	IN	VIRTUAL	CLOUDERA	..	31	
FIGURE	18	CREATE	A	HBASE	TABLE	IN	VIRTUAL	CLOUDERA	..	32	
FIGURE	19	IMPORT	DATA	INTO	HBASE	IN	VIRTUAL	CLOUDERA	..	32	
FIGURE	20	CREATE	A	SOLR	DIRECTORY	IN	VIRTUAL	CLOUDERA	..	33	
FIGURE	21	CUSTOMIZE	THE	SCHEMA.XML	IN	VIRTUAL	CLOUDERA	..	33	
FIGURE	22	UPLOAD	THE	CONFIGURATION	FILE	IN	VIRTUAL	CLOUDERA	...	33	
FIGURE	23	CREATE	A	SOLR	COLLECTION	IN	VIRTUAL	CLOUDERA	..	34	
FIGURE	24	VERIFY	THE	SOLR	COLLECTION	IN	VIRTUAL	CLOUDERA	..	34	
FIGURE	25	MODIFY	KEY	MORPHLINE	FILES	IN	VIRTUAL	CLOUDERA	..	35	
FIGURE	26	GENERATE	THE	INDEX	FILES	WITH	LIVE	MODE	IN	VIRTUAL	CLOUDERA	...	36	
FIGURE	27	FIX	THE	JAVA	HEAP	ERROR	IN	VIRTUAL	CLOUDERA	..	36	
FIGURE	28	GENERATE	THE	INDEX	FILES	WITH	BATCH	MODE	IN	VIRTUAL	CLOUDERA	..	37	
FIGURE	29	CHECK	THE	INDEX	FILES	IN	HDFS	IN	VIRTUAL	CLOUDERA	..	38	
FIGURE	30	MOVE	THE	INDEX	FILES	FROM	HDFS	TO	OS	IN	VIRTUAL	CLOUDERA	...	39	
FIGURE	31	CLEAN	A	SOLR	COLLECTION	IN	VIRTUAL	CLOUDERA	..	39	
FIGURE	32	VERIFY	THE	CLEAN	SOLR	COLLECTION	IN	VIRTUAL	CLOUDERA	..	40	
FIGURE	33	MOVE	THE	INDEX	FILES	FROM	OS	TO	SOLR	IN	VIRTUAL	CLOUDERA	...	40	
FIGURE	34		BASIC	INDEXING	IN	VIRTUAL	CLOUDERA	(BATCH	MODE)	..	41	
FIGURE	35	IMPORT	LOCAL	FILES	INTO	HDFS	IN	HADOOP	CLUSTER	..	42	
FIGURE	36	CREATE	A	HBASE	TABLE	IN	HADOOP	CLUSTER	..	43	
FIGURE	37	IMPORT	DATA	INTO	HBASE	IN	HADOOP	CLUSTER	..	44	
FIGURE	38		VERIFY	THE	DATA	IN	HBASE	IN	HADOOP	CLUSTER	..	44	
FIGURE	39	CREATE	A	SOLR	DIRECTORY	IN	HADOOP	CLUSTER	..	45	
FIGURE	40	CUSTOMIZE	THE	SCHEMA.XML	IN	HADOOP	CLUSTER	..	45	
FIGURE	41	UPLOAD	THE	CONFIGURATION	FILE	IN	HADOOP	CLUSTER	..	45	
FIGURE	42	CREATE	A	SOLR	COLLECTION	IN	HADOOP	CLUSTER	..	45	
FIGURE	43		REMOTE	CONNECTION	TO	SOLR	IN	HADOOP	CLUSTER	...	46	
FIGURE	44	VERIFY	THE	SOLR	COLLECTION	IN	HADOOP	CLUSTER	..	46	

 V

FIGURE	45	MODIFY	KEY	MORPHLINE	FILES	IN	HADOOP	CLUSTER	..	47	
FIGURE	46	GENERATE	THE	INDEX	FILES	WITH	LIVE	MODE	IN	HADOOP	CLUSTER	..	48	
FIGURE	47		BASIC	INDEXING	IN	HADOOP	CLUSTER	(LIVE	MODE)	...	48	
FIGURE	48	GENERATE	THE	INDEX	FILES	WITH	BATCH	MODE	IN	HADOOP	CLUSTER	..	49	
FIGURE	49	CLEAN	A	SOLR	COLLECTION	IN	HADOOP	CLUSTER	..	49	
FIGURE	50	MOVE	THE	INDEX	FILES	FROM	USER	DIRECTORY	TO	SOLR	IN	HADOOP	CLUSTER	...	50	
FIGURE	51		BASIC	INDEXING	IN	HADOOP	CLUSTER	(BATCH	MODE)	..	50	
FIGURE	52		ENABLE	HBASE	REPLICATION	IN	VIRTUAL	CLOUDERA	..	51	
FIGURE	53		REGISTER	A	LILY	HBASE	INDEXER	IN	VIRTUAL	CLOUDERA	..	52	
FIGURE	54		VERIFY	A	LILY	HBASE	INDEXER	IN	VIRTUAL	CLOUDERA	...	52	
FIGURE	55		POINT	A	LILY	HBASE	NRT	INDEXER	SERVICE	IN	VIRTUAL	CLOUDERA	...	53	
FIGURE	56		START	A	LILY	HBASE	NRT	INDEXER	SERVICE	IN	VIRTUAL	CLOUDERA	...	53	
FIGURE	57		INCREMENTAL	INDEXING	IN	VIRTUAL	CLOUDERA	...	54	
FIGURE	58		ENABLE	HBASE	REPLICATION	IN	HADOOP	CLUSTER	...	54	
FIGURE	59		REGISTER	A	LILY	HBASE	INDEXER	IN	HADOOP	CLUSTER	..	55	
FIGURE	60		VERIFY	A	LILY	HBASE	INDEXER	IN	HADOOP	CLUSTER	...	55	
FIGURE	61		POINT	A	LILY	HBASE	NRT	INDEXER	SERVICE	IN	HADOOP	CLUSTER	...	56	
FIGURE	62		START	A	LILY	HBASE	NRT	INDEXER	SERVICE	IN	HADOOP	CLUSTER	...	57	
FIGURE	63		INCREMENTAL	INDEXING	IN	HADOOP	CLUSTER	...	57	
FIGURE	64		EXTERNAL	LIBRARIES	FOR	CUSTOM	RANKING	...	58	
FIGURE	65	CODE	FRAGMENT	OF	CUSTOM	RANKING	...	58	
FIGURE	66		EXPORT	JAR	FILE	FOR	CUSTOM	RANKING	...	59	
FIGURE	67		ADD	CUSTOM	RANKING	COMPONENT	IN	SOLRCONFIG.XML	..	60	
FIGURE	68	RELOAD	THE	COLLECTION	FOR	CUSTOM	RANKING	...	60	
FIGURE	69		AN	EXAMPLE	OF	CUSTOM	RANKING	...	61	
FIGURE	70		ADD	TERMVECTORS	IN	SCHEMA.XML	FOR	RECOMMENDATION	..	62	
FIGURE	71		ADD	MLT	REQUEST	HANDLER	IN	SOLRCONFIG.XML	FOR	RECOMMENDATION	...	62	
FIGURE	72	RELOAD	THE	COLLECTION	FOR	RECOMMENDATION	..	64	
FIGURE	73		AN	EXAMPLE	OF	DOCUMENT	RECOMMENDATION	..	65	
FIGURE	74		AN	EXAMPLE	OF	FACETED	SEARCH	...	68	

 1

1 Abstract

Researchers make full use of tweet and webpage data in various research areas, such as topic
modeling, natural language processing (NLP), text mining, social networks, etc. In 2012, more
than 100 million users posted 340 million tweets every day [1]. Meanwhile, people requested
about 1.6 billion searches per day [2]. It is necessary to design some strategies to store and
retrieve such big data.

Based on the Hadoop Cluster in the Digital Library and Research Laboratory (DLRL) and the
previous work in Spring 2016, our team improved the general search infrastructure supporting the
IDEAL and GETAR projects, both supported by NSF. The main responsibility was to configure the
Basic Indexing and Incremental Indexing (Near Real Time, NRT Indexing) for tweets and web page
collections in DLRL's Hadoop Cluster. The goal of Basic Indexing was to index the big collection
that contains more than 1.2 billion tweets. The idea of NRT Indexing was to monitor real-time
changes in HBase and update the Solr results as appropriate. The main motivation behind the
Custom Ranking was to design and implement a new scoring function to re-rank the retrieved
results in Solr. Based on the text similarity, a basic document recommender was also created to
retrieve the similar documents related to a specific one. Finally, new well written manuals could be
easier for users and developers to read and get familiar with Solr and its relevant tools.

Throughout the semester we closely collaborated with the Collection Management Tweets
(CMT), Collection Management Webpages (CMW), Classification (CLA), Clustering and Topic
Analysis (CTA), and Front-End (FE) teams in getting requirements, input data, and suggestions
for data visualization. In order to accomplish our first goal, we worked with the CMT, CMW and
FE teams to coordinate the columns in HBase and fields in Solr. We created multiple field types
instead of some simple type for the real scenario. To achieve the second goal, we read the
report from the previous Solr team and the official tutorials for NRT indexing, and deployed the
functionality into the Hadoop Cluster. For the custom ranking and document recommender, we
learnt more about the Solr plugins (e.g., request handler, search component) and built our own
plugins to accomplish the task. To make a readable document, we recorded our operations step
by step and described each step in detail for users and developers.

Our work focuses on Solr, as well as other important components such as HBase, Lily Indexer,
and Morphline. Beyond these, there are also some relevant components including Hadoop
Distributed File System (HDFS) and Zookeeper. Our Solr team will present part of these
components later in this report.

 2

2 Overview

2.1 Management
Great management is the key to success, and the key to great management involves planning
and communication. To achieve success, we have created a roadmap that explains our short
and long term goals. We have decided to meet once per week to discuss our ongoing and future
planned activities, our approach towards a problem, and discuss impediments to the project. It
is during this time that we brainstorm the best possible design or implementation of a task and
we also discuss the best way to address an impediment.

Apart from these, we meet in class twice a week, where we meet with and talk to other teams.
Being the Solr team, it is important to be a strong link amongst other teams. It is important to
understand the needs of the Front-End team, incorporate their needs by writing efficient queries,
index the correct data and ensure the data model or the schema is in line with what is needed
and is modelled in such a way that indexing is simple and efficient.

Apart from the group meetings in and out of class, we maintain a Google Drive directory and
ensure that everything is documented and placed on the drive. We maintain a document file that
contains all the important information and discussions that we have either in person or via
emails and chats. We also use Google Hangout to effectively communicate within the group.

We also set up a GitHub repository to maintain our development activities and use it as our
initial content management system. The link is shown below:
https://github.com/CS5604SOLR/Dataset_for_Test

Apart from the management and planning activities, we also maintain tutorials that give
instructions on how to set up and use different systems and applications like Cloudera VM,
upload a dataset into Hadoop and HBase, set up Solr, etc. These have been included in section
8 as a part of the Developer Manual.

2.2 Challenges
Working on a project implementation with a vast number of new technologies we were not
familiar with was quite a learning curve for us. Learning Hadoop and the HDFS filesystem,
HBase, Solr, Lily Indexer and Morphline was time consuming and difficult initially but became
easier with time. Though many technologies were not needed to implement our part of the
search engine, we still needed to understand and implement them to help us understand the
system better. Since both the collection teams are still working on getting data into HBase, we
had to insert test data into HBase. The four main challenges are as follows:

1. Though the Spring 2016 Solr team did some work on the small collection, it is still a great
challenge to index the 1.2 billion tweets collection. For the big one, there are more fields and

 3

field types, so we need to take more time to discuss with other teams to create an accurate
schema file that is going to be used in the Integrated Digital Event Archive and Library (IDEAL)
[22] and Global Event and Trend Archive Research (GETAR) [23] systems. This might be an
iterative process.

2. Since the data in the HBase system will be populated by the Collections and Classification
teams we must wait for them to populate the data before we can go ahead and test the modified
schema file and indexing on the actual data.

3. Most learning is done using the Virtual Cloudera setup on our local machines. Due to memory
and processing power constraints we faced many issues in setting the VM up and ensuring it
worked fast without crashing.

4. The previous team described the custom ranking and document recommendation in their
report, but there are still some typos and we cannot follow their steps or run their codes
correctly. In this case, it took more time for us to go over the official documents instead of their
report.

2.3 Solution Developed
Most of the work that we have done revolves around learning the different technologies and
implementing a few small projects by referring to many online resources that include the web
documentation provided by Apache and tutorials provided by Java code geeks [28]. We have
also been using the book Solr in Action [4] to help us better understand Apache Solr
architecture and how to implement scalable search using it. After gaining knowledge and
confidence, we implemented a few hands-on examples that helped us build a strong foundation
towards the final design for the project. Some of the tasks that we carried out are:

1. Learning the basics and implementing small projects based on technologies like Hadoop,
HBase, Solr, and Lily Indexer to get hands on experience and gain confidence. Each of us set
up a VM in our local machines that we used to play around with and gain experience on various
technologies used. We uploaded the small collection data file into HDFS and HBase, created a
Solr collection and indexed the collection using the Lily Indexer.

2. We are now building search queries to retrieve data. This is configured in solrconfig.xml. The
request handlers that we define in this file can be used by the Front-End team. We have also
started working on the schema file for the IDEAL and GETAR systems.

3. Since our work is based on the work of last semester’s team, we first need to follow what they
had completed and then start working on our detailed tasks. These tasks include the
modification of the schema file to include additional fields, the big dataset indexing, incremental
indexing, custom ranking, document recommendation and implementation of faceted search.

 4

4. Since we are building a small portion of the entire IDEAL and GETAR systems, we are
understanding and learning the infrastructure in-depth so that we can provide a good design.

2.4 Future Work

2.4.1 Search
This semester, we overwrote the default MoreLikeThis request handler for the basic document
recommendation. It is a good approach to get familiar with the multiple request handlers in Solr.
Later, we plan to customize more request handlers to meet the search requirements of users,
such as custom weighting, results with specific fields and profanity filter.

2.4.2 Custom Ranking
Our current custom ranking function is a simple one. In the near future, our Solr team plans to
customize more search components based on more features such as the topic or cluster
probabilities. Now, we are able to write our own Java code to read various field values in HBase.
In this case, by creating or modifying the search components, more re-ranking tasks could be
done during the whole procedure.

2.4.3 Document Recommendation
The document recommendation can be divided into two types, which are the textual similarity
based recommendation and the collaborative filtering. As mentioned above, currently, we
accomplished the first approach by leveraging the MoreLikeThis plugin. As a result, it is possible
to retrieve more similar documents with a given document ID. For the future work, conceptual
similarity based recommendation that is a deeper version of the textual similarity based
recommendation could be implemented with the information provided by the CTA team.
Moreover, user logs can also be used to do the collaborative filtering job.

2.4.4 Solr
At the beginning of this semester, we planned to deploy a two-node Solr server to address the
poor response time from Hue. Fortunately, the FE team successfully connected Blacklight with
Solr so that the results can be retrieved in a short time at present. However, the FE team didn’t
test their efficient tool on the big dataset. Besides this, our data is increasing over time, so we
have to face the time cost problem soon. In this case, we still need to figure out SolrCloud and
multiple Solr nodes in Cloudera Search, and finally deploy a multiple-node Solr server in the
Hadoop Cluster.
Detailed user and developer manuals should also be well-written to describe the clear steps for
them to read and use.

 5

3 Literature Review
In this literature review, we discuss both Solr basics and the achievements of the Spring 2016
Solr team. We extend their work by adding more functionalities (e.g., similarity and
recommendation). We read their report thoroughly and point out the limitations of their project
(e.g., the absence of query recommendation). We also take points from their report for better
finding relevant documents.

The textbook Introduction to Information Retrieval [2] provides a general overview on
information retrieval systems. The concepts from the textbook provide us a solid theoretical
background on key concepts of information retrieval systems. For example, in chapter 4, we
learn how to construct indexes by using blocked sort-based indexing and single-pass in-memory
indexing. These indexing techniques help us understand Solr indexing more easily. In chapter 6,
we learn scoring, term weighting and the vector space model. These concepts help us to build
our document vector model and similarity function. Using the vector space model, we could
transform documents into vectors. Based on the relevance scores, we could compute the
similarities between two vectors.

To specifically focus on our project, we need to read more relevant materials on Solr [3]. Solr,
which is maintained by the Apache Software Foundation, provides powerful distributed indexing,
replication and load-balanced querying. To obtain a better understanding of Solr, we read Solr
in Action [4] and Lucene in Action [5]. Particularly, Solr in Action [4] provides the background
knowledge and necessary techniques to build the Solr environment and run Solr successfully.
We also read Solr Reference Guide 6.2 [6], which is released on 13 September 2016, to get the
newest update on Solr. The Solr reference guide provides detailed instructions on installing Solr
and schema file configurations. We also refer to the Solr Wiki [7] for Solr configurations and
features. Apache Lucene [8] is a high-performance, full-featured text search engine library
written entirely in Java. Solr is built on top of Apache Lucene. The book Lucene in Action [5]
covers the architecture description of Lucene. Apache Lucene provides us feasibilities to
manipulate the Solr framework and customize new features using Solr.

To set up the Solr environment, we utilize Cloudera [9] to get started with launching the Solr
environment. Cloudera is a commercial cloud-based company, which provides a well-integrated
virtual machine with Hadoop [10], HBase [11,12], ZooKeeper [13,14] and Lily Indexer [15]. By
carefully reading the manual from Cloudera, we are able to reproduce the indexing using Solr in
the virtual machine.

The Spring 2016 Solr team has already set up the Solr environment of Solr in the DLRL Hadoop
cluster with Hue UI components [16]. Their project utilized the Solr framework to index a large
set of tweets and webpages. Our project aims to extend the S16 work by adding query similarity
and recommendation. We plan to deploy similarity computation based on Apache Lucene
similarity APIs [17]. We also plan to deploy recommendation in Solr based on Solr-
recommender [18].

 6

4 Requirements
To compare with the previous team’s work, we create our requirements for this semester. Table
1 shows the detailed requirements.

Table 1 Solr requirements in Fall 2016

Some of the requirements are explained as follows:

1. Modify the schema file (working with CMT, CMW, FE). We build on the work of last
semester’s Solr team, so will modify the schema file for indexing. Because we will index the
columns in HBase provided by the CMT, CMW, CLA and CTA teams, we need to know how
they store the data in HBase, and they need to know how we will use the data. The FE team will
build an interface based on our indexing schema, so the FE team and our team also need to
cooperate with each other closely.

2. Improve the incremental indexing method. Last semester’s Solr team only implemented
incremental indexing in the virtual machine and did not implement it in the real Hadoop cluster.
We need to implement it in the real cluster. In order to make it suitable for this semester’s
HBase columns, we need to modify their schema file. We must also improve the incremental
strategy. For example, we can update the indexes only after several changes have been made,
and not re-index so frequently, or we can index the frequently queried fields first.

 7

3. Improve the current scoring function. The results are based on the scoring function. In
order to make the recall and the precision of results better, we will improve the current scoring
function. We hope that the results can be very relevant to what users are thinking.

4. Design and implement a recommendation service. We hope that when a user makes a
query, the user can see several related queries. We can use methods like query expansion to
implement this feature.

5. Work with FE to connect Blacklight with Solr in Cloudera. The FE team focuses on
Blacklight, and we will work together with them to ensure that Blacklight can make use of the
APIs that Solr provides.

 8

5 Design
An overview of the design of the IDEAL [22] and GETAR [23] systems was presented by Prof.
Fox and our GRA. We have understood that as a part of the system some initial work has been
completed towards spotting events, but currently the selection of events and the setting up of
collection methods is manual. We will build our system over the already implemented
infrastructure and design. Also from various discussions, we have understood the different parts
of this system and have also understood the significance of each. We first look at the current
design followed by our implementation changes.

5.1 General Design

Figure 1 Architecture of IDEAL and GETAR [24]

Figure 1 shows the architectural diagram of the IDEAL and GETAR infrastructure [24]. The
legend in the bottom left corner tells us the implemented parts and the new components that
were expected to be implemented this semester. Here, the data will be managed in HBase as
column families and columns, and updated with certain additional fields like the organization,
posting date, location of the tweets, etc. Solr then indexes the documents as a batch process
using the Lily Batch Indexer.

 9

5.2 Detailed Design
Figure 2 shows the brief architecture of Solr, which also presents the data flow during the whole
process. The CMT, CMW, CLA and CTA teams will collect, clean, and process the tweet and
webpage collections. The data of these collections will be imported into HDFS and shown in
HBase. Our Solr team will configure the two key files (i.e., schema.xml and solrconfig.xml) in
Solr to design our own tasks.
For the schema.xml, we leverage it to do the basic indexing and incremental indexing tasks.
During this period, to connect HBase with Solr, Lily HBase Indexer has to be applied to map the
columns in HBase into the fields in Solr.
For the solrconfig.xml, we create new plugins like request handlers and search components that
can be used for document recommendation and custom ranking. We will explain these plugins
in Chapter 8.

Figure 2 Architecture of Solr

5.2.1 Basic Indexing
The key point of basic indexing is to generate the proper schema.xml. The HBase structure has
already been established during the class (see Appendix A). As mentioned above, the
structure and data can be treated as input for our Solr team. Indexing cannot be performed on
all the data stored in HBase. We need to decide which fields should be indexed or shown to the

 10

end-user. We have worked with all the other teams, especially the Front-End team, to finalize
this. Later, we updated the schema file based on the HBase structure and the UI requirements.
Table 2 shows the fields and attributes of the schema file.

Table 2 Fields and Attributes of schema.xml

Indexed Field Name Field Type Stored Multiple Values

collection_name_s string Yes No

archive_source_s string Yes No

source_s string Yes No

screen_name_s string Yes No

created_time_dt date Yes No

language_s string Yes No

text_t text_general Yes Yes

location_s string Yes Yes

t_year_i int Yes No

t_month_i int Yes No

hashtags_s string Yes Yes

mentions_s string Yes Yes

classification_s string No No

events_s string Yes Yes

sner_people_s string Yes Yes

sner_org_s string Yes Yes

sner_loc_s string Yes Yes

t_importance_f float Yes No

 11

title_s string Yes No

author_s string Yes Yes

sub_urls_s string Yes Yes

organization_s string Yes No

fetched_time_dt date Yes No

w_importance_f float Yes No

doc_type_s string Yes No

label_list_s string Yes Yes

probability_list_f float Yes Yes

cluster_label_s string Yes Yes

doc_probability_f float Yes Yes

This was shared with the other teams so that they ensure there is a field in HBase that is
populated with the correct value as required by our team or the FE team. We also had a
discussion with our GRA about the basic indexing job for the real datasets. Since our current
schema file is much more precise than the previous one, there may have been some
improvements during the indexing process. Based on our knowledge, we have also made some
field type modifications to fit for the data format to be used by our custom ranking function and
the document recommendation.

5.2.2 Incremental Indexing
For the big dataset, it will take a great amount of time for basic indexing, which could not solve
the problem of frequent inserts, deletes, and updates, so we need to find a better way to monitor
the changes of the cells in HBase, and then update the results in Solr immediately.
After reading the documents from Cloudera, we notice that Cloudera provides a special indexer
named Lily HBase NRT Indexer. It processes a continuous stream of HBase cell updates into
the live search index. In this case, it makes the incremental indexing much easier, because our
team just needs to follow the tutorials to configure the indexer service. The detailed process will
be described in Chapter 8.

 12

5.2.3 Custom Ranking
By default, when user sends a search query, the retrieved results come back in default TF-IDF
order. Consequently, we need to modify the scoring strategy to meet our own needs or retrieve
more reasonable results. Because the CMT, CMW, CLA, and CTA teams can pre-process the
data, we may leverage their outcomes to customize the ranking function.

The above formula presents our design. The new score is the sum of four different scores,
which are the default Solr score, the importance score from the collection teams, and two
scores from the CTA team. Unfortunately, we didn’t have enough time to do the parsing job and
get those values from HBase; the final implementation is based on the top two scores. Definitely,
we are able to re-rank the query results and show the differences versus the original results.

5.2.4 Recommendation
Based on the query search by the user, a recommendation system can recommend similar
tweets or webpages. This can be done based on similarity of content or can be based on the
user click history.
Item based recommendation means the document features are used to calculate the similarities.
The similarities between a document and the other documents in the collection are computed
and the top k similar documents are identified. The ranks of the documents are computed and
returned. This has been implemented using the MoreLikeThis functionality of Solr.
User based recommendation means the user’s browsing history is extracted using the log file.
We can then compute the similarity between the responses of the users. Based on the user-
user similarity, we can rank the documents that are viewed by the top k users and display them
as recommendations.

 13

6 Implementation

6.1 Overview
We have had several discussions with Prof. Fox, our GRA and other teams during the whole
procedure to get a better understanding of our tasks. Based on the current Hadoop Cluster and
previous work, our team is aiming at improving the current infrastructure and adding more
functionalities for a better search job.

Our approach will be as follows:
1. Review the previous work. We followed the tutorials and instructions to get familiar with the
technologies.
2. Understand the data flow in the current infrastructure. It helped our Solr team know the
role in the whole situation and the input and output from other teams.
3. Collaborate with other teams. We worked with other teams to improve the current schema
file and clarify how the column families and columns are stored in HBase.
4. Basic Indexing. Index the test collection and the 1.2 billion tweets dataset in either live mode
or batch mode.
5. Incremental Indexing. Deploy the Lily HBase NRT Indexer service on both Virtual Cloudera
and the Hadoop Cluster.
6. Custom Ranking. Modify the default ranking method and establish our own custom ranking
on both Virtual Cloudera and the Hadoop Cluster.
7. Document Recommendation. Deploy the MoreLikeThis plugin to accomplish the basic
recommendation task on both Virtual Cloudera and the Hadoop Cluster.

6.2 Timeline
The timeline of our Solr team is shown below, including the task, duration, current status and
responsible member for accomplishment. Moreover, milestones and deliverables are also listed
in Table 3, that may be beneficial for other teams’ work.

Table 3 Timeline of Solr Team

Week Task Status Assigned To

1M 1 08/23 - 08/26 Set up Solr team Done All

2M 1 08/23 - 08/26 Set up Solr on local machine and
do tutorial Done All

3 1 08/23 - 08/26
Set up share folder using Google
Drive and Hangouts for instant
messaging

Done Liuqing

 14

4M 2 08/29 - 09/02 Set up a Cloudera VirtualBox VM Done All

5 2 08/29 - 09/02 Review the existing schema file Done All

6 3 09/05 - 09/09 Prepare for team presentation Done All

7 3 09/05 - 09/09
[Virtual Cloudera]
Import the original small
collection into HBase

Done Anusha, Ke

8 4 09/12 - 09/16
[Virtual Cloudera]
Create a Solr instance for the
original small collection

Done Anusha, Ke

9M 4 09/12 - 09/16

[Virtual Cloudera]
Use Lily Indexer to map columns
in HBase with fields in Solr and
make a basic query test (Live
Mode)

Done Liuqing

10 4 09/12 - 09/16
[Hadoop Cluster]
Import the original small
collection into HBase

Done Liuqing

11 4 09/12 - 09/16
[Hadoop Cluster]
Create a Solr instance for the
original small collection

Done Liuqing

12D 4, 5 09/12 - 09/23
Share the previous schema file
with relevant teams for
modification

Done All

13D 5 09/19 - 09/23

[Hadoop Cluster]
Use Lily Indexer to map columns
in HBase with fields in Solr for FE
team future test (Live Mode)

Done Liuqing

14 6 09/26 - 09/30 Update the stoplist.txt and
profanity.txt Done All

15 6 09/26 - 09/30
Divide our team into two
subgroups for the NRT and
recommender tasks

Done All

16M 6 09/26 - 09/30

[Virtual Cloudera]
Use Lily Indexer to accomplish
the offline indexing job (Batch
Mode)

Done All

 15

17M 7 10/03 - 10/07

[Virtual Cloudera]
Use Lily Indexer to accomplish
the incremental indexing job
(NRT)

Done Liuqing, Ke

18 6, 7, 8 09/26 - 10/14
Learn the knowledge of faceted
search and recommender Done Anusha, Ye

19M 8 10/10 - 10/14
[Virtual Cloudera]
Modify the schema file to make a
basic facet search query

Done Ke

20D 8 10/10 - 10/14
[Hadoop Cluster]
Use Lily Indexer to accomplish
the incremental indexing (NRT)

Postponed
(No. 29) Liuqing

21M 9 10/17 - 10/21
Design and Implement a basic
recommender Done Anusha, Ye

22 10 10/24 - 10/28
Learn the knowledge of custom
ranking function Done Liuqing

23 10 10/24 - 10/28 Further work on facet search Done Ke

24D 11 10/31 - 11/04
Create the schema.xml based on
the HBase structure Done All

25 12 11/07 - 11/11 Further work on recommender Done Anusha, Ye

26 12 11/07 - 11/11 Build custom ranking handler Done Liuqing, Ke

27M 12, 13 11/07 - 11/18
Index the big dataset (raw
tweets) Done All

28 13 11/14 - 11/18
Deploy the MoreLikeThis handler
and custom ranking component Done All

29 14 11/21 - 11/25
[Hadoop Cluster]
Use Lily Indexer to accomplish
the incremental indexing (NRT)

Done Liuqing

30 14 11/21 - 11/25 Learn about SolrCloud Done Anusha, Ye,
Ke

31M 15 11/28 - End
Index the big dataset (raw tweets
and processed data) Done Liuqing

M – Milestones D – Deliverables

 16

7 User Manual
In this section, we describe how a user without comprehensive background on Solr could utilize
Solr for query and search. How to use Solr for indexing and querying is not intuitive. The
purpose of this user manual is to provide more intuitive examples for users to work with Solr.

7.1 Solr Admin Interface
The following figure presents a Solr admin user interface. The Solr admin interface is the main
user interface when users interact with Solr. Particularly, Solr provides a list of features in a
Web interface. These features make it easy for Solr users to view Solr configuration details, run
queries and analyze document fields. However, understanding the Web interface is not an easy
problem, especially for non-savvy users. In this section, we provide detailed examples and
descriptions on how to use the Solr Web interface.

Figure 3 shows the main Solr Web interface. Table 4 provides basic functions and detailed
descriptions on monitoring the Solr interface, i.e., logging, Cloud, Core Admin, Java Properties,
and Thread Dump. These basic properties provide useful functions to facilitate the management
of the running Solr instance.

Table 4 Dashboard Functions with Explanations

Dashboard Description

Logging Showing Solr logs for debugging. The Logging page shows
recent messages logged by this Solr node.

Cloud Status information about each collection & node in the cluster

Core Admin Provides some basic functionality for managing users’
collections.

Java Properties
Easy access to one of the most essential components of a
top-performing Solr system. Users can see all the properties of
the JVM running Solr.

Thread Dump
Inspect the currently active threads on your server. Each
thread is listed and access to the stacktraces is available
where applicable.

 17

Figure 3 Solr Admin UI

Under each basic function, users could explore more detailed information about the current
state. For example, Figure 4 shows the logs with different levels. The log level starts with the
root and follows the hierarchy. The logs in different levels help users quickly identify the
suspicious component if the system fails. For example, in our project, we particularly focus on
the logs from the custom ranking. We are able to quickly identify the custom ranking logs by
following the path root->cs5604f16->solr->Customranking.

Figure 5 shows the radial graph of nodes. The "Graph (Radial)" option provides a different
visual view of each node. The visualized graph provides a more direct impression on the
dependence relations between different nodes. With the different colors, a user could easily
identify the current status of the node. For example, the node with green color demonstrates
that the node is currently active, the node with yellow color demonstrates the node is currently
down. The user could restart the Solr instance to recover the node.

 18

Figure 4 Solr Logging Layout

Figure 5 Solr Graph Radial in the Cloud Option

 19

7.2 Solr Query
Using Solr for indexing and querying is an important functionality provided by the Solr admin UI.
To efficiently utilize the Solr admin interface, we need to understand the meaning of each
parameter. Table 5 presents the query parameters and the corresponding descriptions.
Figure 6 presents the admin query interface for users. The parts labeled 1, 2, 3, and 4 relate to
the user specified query command.
In Figure 6, the user specifies “/select” as the request handler, which is used to select items
from the indexed collection. We choose the query as text_txt:happy, which is to find the keyword
“happy” in the field named as text_txt. We choose wt as json, which means the query output is
in the json format. The complete request is shown in the following link:

http://localhost:8983/solr/ideal-cs5604f16
fake_shard1_replica1/select?q=text_txt%3Ahappy&wt=json&indent=true

In the result (part 5), we obtain how many documents (doc) are found in the result, giving
statistics. For each document, we are also able to check the content in each field.

Table 5 Solr Query Parameters with Descriptions

Query Parameters Description

Qt The qt is shorthand for Request Handler. A request
handler processes requests coming to Solr.

Q Query parameters. It must be a query specified
in SolrQuerySyntax. e.g., text_txt:happy.

Fq Fq stands for Filter Query. fq is used to specify a query that
can be used to restrict the return set.

Sort
“Sort” is used to rank the returned results based on some
principles. Sorting can be done on the "score" of the
document.

Star,rows “Start” is used to paginate results from a query. When
specified, it indicates the offset in the complete result set.

Fl
Fl stands for Field List. The fl parameter can be used to
specify a set of fields to return, limiting the amount of
information in the response

Df Df stands for the default field

Wt Wt parameter selects the Response Writer that Solr should
use to format the query's response.

 20

Figure 6 User Guide for Solr Basic Query

7.3 Faceted Search
Faceted Search is a technique for accessing information organized according to a faceted field
defined in Solr. Faceted search allows users to explore a collection of information by applying
multiple filters. The parameters for faceted search are defined in Chapter 8.

Figure 7 presents the layout for faceted search. In the example, we use faceted search to
search for a range where field t_month_i is between 1 and 5. The query specification for faceted
search is t_month_i:[1 TO 5]. The faceted field is set as t_month_i. The result in part 4 shows
that 4 items match the faceted search requirement; the count of the faceted search result is 4.
Part 5 show the detailed statistics about the faceted search result. In the t_month_i field, there
are 3 items with t_month_i=3 and 1 item with t_month_i=2. The total count of the range [1,5] is
1+3=4, which is consistent with the search result. The complete faceted search request is
shown in the following link:

http://localhost:8983/solr/ideal-cs5604f16-
fake_shard1_replica1/select?q=*%3A*&wt=json&indent=true&facet=true&facet.query=t_month_
i%3A%5B1+TO+5%5D&facet.field=t_month_i

 21

Figure 7 User Guide for Solr Faceted Search

7.4 Document Recommendation
We have implemented the textual similarity based document recommendation system. This has
been implemented using the MoreLikeThis (MLT) feature provided by Solr. To make use of this
we need to make certain configuration changes. The configuration changes to be made have
been explained in the developer manual. Here we show how one can make use of the
MoreLikeThis handler in Solr for recommendation.

MLT provides us with certain parameters that can be used to configure the way in which we
want Solr to perform the recommendation. There are two approaches to recommendation. One
is proactive and the other is reactive. The proactive way is implemented using the search
handler. In this we enable MLT during search. This provides us with a set of similar items during
the search itself. Every item of the search result has a set of items that are like it.

It can be implemented using the same search handler but with more query string parameters to
be passed. A search handler can be used as follows:

In general, users use the HTTP API and not the Solr Admin UI. To see the results we will use
the Solr Admin UI.

http://quickstart.cloudera:8983/solr/ideal-cs5604f16-
fake_shard1_replica1/select?q=Twitter&fl=text_txt&wt=json&indent=true&mlt=true&mlt.fl=text_tx
t

 22

We make use of the ideal-cs5604f16-fake_shard1_replica1 core. The above URL calls the
select handler with a search query “Twitter”. By passing mlt = true we are telling the handler to
return a similar set of items for each item in the search result space. This is a little bit more time
consuming. Other parameters include mlt.fl = text_txt, which tells the handler to compute
similarity based on the text_txt field.

The reactive way is to make use of the mlt handler. This does not provide the user with the
similar items when a search query is fired but it issues another search query once the user
selects the item for which he/she wants similar items. After issuing a search query then the user
will use the ID of the item for which a similar item is needed in the mlt handler as shown below.
After issuing a search query we need items that are like the item with the
id=584872229265092608, thus we fire the query below to get similar items.

http://quickstart.cloudera:8983/solr/datatest_collection_shard1_replica1/mlt?q=id%3A%22+5848
72229265092608%22

In the URL, datatest_collection_shard1_replica1 is the core name. %3A and %22 are codes for
colon (:) and double quotation mark ("), respectively.

Figure 8 User Guide for Document Recommendation

 23

In the result, the “match” means the item set matching the given query. The “response” is the
set of similar items to the item with ID = 584872229265092608. These also are a few
parameters that can be passed along with the handler; see Table 6.

Table 6 MLT Parameters and Descriptions [26]

Parameter Description Default Value

mlt.fl The fields to use for similarity. N/A

ml.mintf
Minimum Term Frequency- the
frequency below which terms will
be ignored in the source doc.

DEFAULT_MIN_TERM_FREQ = 2

mlt.mindf

Minimum Document Frequency-
the frequency at which words will
be ignored which do not occur in
at least this many docs.

DEFAULT_MIN_DOC_FREQ = 5

mlt.minwl minimum word length below
which words will be ignored.

DEFAULT_MIN_WORD_LENGTH
= 0

mlt.maxwl maximum word length above
which words will be ignored.

DEFAULT_MAX_WORD_LENGTH
= 0

mlt.maxqt
maximum number of query terms
that will be included in any
generated query.

DEFAULT_MAX_QUERY_TERMS
= 25

mlt.qf
Query fields and their boosts.
These fields must also be
specified in mlt.fl

N/A

 24

8 Developer Manual

8.1 Background
In this section, we introduce the relevant background for the developers to know more about the
key modules in the architecture of our framework and important components that would be
deployed in the architecture. The key modules include HBase [19], Apache Lucene [8], Solr [6]
and Lily HBase Indexer [21]. These key modules help us understand the workflow of our system.

8.1.1 HBase
HBase is an open-source, non-relational, column-family-oriented, key-value-based database
management system. HBase runs on top of HDFS (Hadoop distributed file system). Typically,
an HBase system includes individual tables. Each table in HBase contains rows and columns. A
primary key has to be defined in each table. For example, we could use Twitter ID as a primary
key for each table in the tweet collections. We could use webpage ID as a primary key for
webpage collections. All the operations and access to HBase must use the predefined primary
key.

A column in the HBase table represents an attribute of an object. Using the Twitter collection as
an example, each row represents a single tweet from one user. The column represents the user
ID from the tweets, or the date, or the IP address. HBase allows for many attributes to be
grouped together into column families. The column families are widely used in HBase tables.
The elements of a column family are all stored together in HDFS.

Figure 9 Architecture of HBase

Figure 9 [19] shows the architecture of HBase. HBase is built on top of HDFS, which is a
Hadoop based file system. ZooKeeper is a centralized service for system-level configuration.
ZooKeeper is used to maintain configuration information and naming. ZooKeeper also provides

 25

distributed synchronization as well as group services. Building on top of HDFS, HBase could
provide database-related APIs for users to interact with the database.

HBase has two run modes: “standalone” and “distributed”. In standalone mode, HBase uses the
local filesystem instead of HDFS. In distributed mode, HBase requires an instance of HDFS.
The distributed mode can be further divided into pseudo-distributed- and fully-distributed-mode.
Pseudo-distributed-mode allows all the daemons and services running on a single node. Fully-
distributed-mode allows all the daemons spread across all the cluster nodes.

8.1.2 Apache Lucene
Apache Lucene is a high-performance, full-featured text search engine library. The Apache
Lucene library is implemented in Java, which supports full-text search across different platforms.
Our Solr implementation is built on top of Apache Lucene to utilize the existing searching and
querying functions. The core of Apache Lucene is called Lucene core, which provides Java-
based indexing, search technology and spellchecking. Solr is a standalone pre-configured
product, which uses Lucene APIs.

8.1.3 Solr
Apache Solr is an open source enterprise search from the Apache Lucene project. It is scalable
and supports flexible search queries (e.g., keyword search and complex query searches). In our
project, we will utilize the Solr framework to realize a list of different queries. For example, we
could use Solr to achieve keyword matching (e.g., title:foo, title:"foo" AND body:"bar"), wildcard
matching (e.g., title:foo*), and proximity matching (e.g., "foo bar"~4). Solr is highly reliable,
scalable and fault tolerant. Apache Solr is widely used for indexing.

Figure 10 Interaction of Solr [20]

 26

Figure 10 [20] shows a scenario where Solr runs alongside with other server applications. Solr
enables interactions with other applications (e.g., end user application and content management
application) by following these four steps:

1. Define a schema. The schema file in Solr explains the contents of documents that will be
indexed.

2. Deploy Solr based on a particular schema.xml.

3. Feed Solr documents for which users will search.

4. Expose search functionality in a user application.

Moreover, Solr includes two important components that are the request handler and search
component, which can be used to customize the functionalities of Solr. The two components
will be explained in the following sections.

8.1.4 Request Handler
Every request handler is defined with a name and a class. The name of the request handler is
referenced with the request to Solr, typically as a path. The primary request handler defined with
Solr by default is the "SearchHandler", which handles search queries. The request handler is
defined, and then a list of defaults for the handler are defined with a defaults list.

Figure 11 An Example of Request Handler

Figure 11 shows an example of the "select" request handler. It defines the rows parameter,
which defines how many search results to return, e.g., "10". The "echoParams" parameter
defines that the parameters defined in the query should be returned when debug information is
returned. Note also that the way the defaults are defined in the list varies if the parameter is a
string, an integer, or another type.

8.1.5 Search Component
Search components define the logic that is used by the SearchHandler to perform queries for
users. There are several default search components that work with all SearchHandlers without
any additional configuration. Table 7 shows the default search components.

 27

Table 7 Default Search Components [29]

Developers can register their own search components. However, if you register a new search
component with one of these default names, the newly defined component will be used instead
of the default.

8.1.6 Lily HBase Indexer
The Lily HBase indexer service allows users to query data stored in HBase with Search. The
indexer service will index the stream of records being added to HBase tables. By using the Lily
HBase indexer, we could easily and quickly index HBase rows into Solr.

Content stored in HBase needs to be indexed before we can search and query. There are two
types of indexers declared in Cloudera: Lily HBase Batch Indexer and Lily HBase Near Real-
time (NRT) indexer. The Lily HBase Batch Indexer can realize batch index tables in HBase by
using MapReduce jobs. On the other hand, the Lily HBase Near Real-Time (NRT) indexer is
able to process a continuous stream of HBase cell updates into live search indexers.

 28

Figure 12 Lily Hbase Indexer with Solr [21]

Figure 12 [21] shows the workflow of a Lily HBase indexer with Solr. The Lily HBase indexer will
translate data changes into Solr index updates. The Solr cloud uses the results from the Lily
HBase indexer for searching and querying.

8.2 Tutorials for Basic Indexing in Virtual Cloudera
In this section, we show how to successfully load data into our local Virtual Cloudera and realize
the indexing with Solr. By following these steps, we can easily deploy our framework in Virtual
Cloudera.

To make building and testing easier, we strongly recommend the developers install the same
version of Solr in both Virtual Cloudera and Hadoop Cluster. If you get a format error while
doing the same operation on the above machines, please check the version of Solr. Figure 13
shows the version conflict in Solr.

 29

Figure 13 Version Conflict in Solr

8.2.1 Preparation
Download Virtual Cloudera and set up the environment. We download the Virtual Cloudera
5.8 from the official website. The Solr version is compatible with the one on the Hadoop Cluster.

Figure 14 Interface of Virtual Cloudera

 30

Collect the small Twitter collection for testing. We use SSH to access the cs5604f16 data
collections in the Hadoop Cluster. Figure 15 shows how we connect to hadoop.dlib.vt.edu and
identify the test file. Specifically, we use the small_collection.tar.gz in the virtual machine for
testing.

Figure 15 User Directory in the Hadoop Cluster

Download and extract the data file in Virtual Cloudera. We use scp to download the small
Twitter collection into our Virtual Cloudera and extract it into a list of CSV files. Figure 16 shows
the extracted CSV files from the small collection. We will import them into HBase and use Solr
to index them.

Figure 16 Small Collection in the Hadoop Cluster

 31

8.2.2 Import Data into HDFS and HBase
Upload the list of CSV files into HDFS with Hadoop fs -put commands. Now, we are able to
find these files in our local HDFS. Figure 17 shows commands for putting local files into HDFS.
Obviously, we can also use similar commands to import webpage data.

Key	Command(s)	
hadoop	fs	-put	small_collection	
hadoop	fs	-put	dataset_test.csv	

Figure 17 Import Local Files into HDFS in Virtual Cloudera

Create HBase table for the test file of tweets. We use HBase shell commands to create a
table. For example, we use the “create” command to create a new table. We use the
“scan/describe” command to list existing tables in HBase. Figure 18 shows the commands to
create a HBase table.

Key	Command(s)	
create	‘small_collection’,	‘raw’	
disable	‘small_collection’	
drop	‘small_collection’	

 32

Figure 18 Create a HBase Table in Virtual Cloudera

Import CSV files into HBase tables. We run importtsv MapReduce to import the test file into
HBase tables. Figure 19 shows the command to import Twitter data files.

Key	Command(s)	
hbase	org.apache.hadoop.hbase.mapreduce.ImportTsv	-Dimporttsv.separator=,	-
Dimporttsv.columns="HBASE_ROW_KEY,raw_cf:c1,raw_cf:c2,raw_cf:c3,raw_cf:c4,raw_cf:c5,r
aw_cf:c6,raw_cf:c7,raw_cf:c8,raw_cf:c9,raw_cf:c10,raw_cf:c11,raw_cf:c12"	test	
dataset_test.csv	

Figure 19 Import Data into HBase in Virtual Cloudera

8.2.3 Create Solr Collection
Generate a Solr collection. Before using Solr for indexing, we need to generate a particular
collection to hold the index. Configuration files including schema.xml, solrconfig.xml and other
helper files for a collection are managed as part of the instance directory. Figure 20 shows how
to initialize a new Solr directory. The schema.xml file is located in $HOME/hbase-collection/conf.

Key	Command(s)	
solrctl	instancedir	--generate	$HOME/hbase_collection	
solrctl	instancedir	--create	hbase_collection	$HOME/hbase_collection	
solrctl	collection	--create	hbase_collection	

 33

Figure 20 Create a Solr Directory in Virtual Cloudera

Edit Schema file with our customization. We need to edit the schema file for multiple
requirements from other teams.

Figure 21 Customize the schema.xml in Virtual Cloudera

Upload a configuration file to ZooKeeper. We use the solrctl command to upload the
configuration file into ZooKeeper. After uploading, the configuration file is available for Solr to
use. Figure 22 shows the command we use for uploading the configuration file. We also use --
list command to verify our uploading process.

Figure 22 Upload the Configuration File in Virtual Cloudera

Create Solr collection. We then create our Solr collection using the command line as:

 34

Figure 23 Create a Solr Collection in Virtual Cloudera

Then, we can find a new collection has been built in the Solr Admin UI.

Figure 24 Verify the Solr Collection in Virtual Cloudera

8.2.4 Use Lily Indexer for Data Indexing (Live Mode)
Create a Lily Indexer configuration file. We create a Lily indexer configuration file as
morphline-hbase-mapper.xml. This XML file is referred to as the implementation of
MorphlineResultSolrMapper. The morphline configuration file explains the morphline commands
and the mapping between HBase columns and Solr indexes. Make sure that the table name and
the morphline file path are right.

Note: the morphlines.conf must be created in the directory /etc/hbase-solr/conf in the virtual
Cloudera 5.8.

 35

Figure 25 Modify Key Morphline Files in Virtual Cloudera

 36

Run HBaseMapReduceIndexer tool. We index the HBase table using MapReduce in live
mode. Figure 26 shows the command for generating the index files with live mode.

Key	Command(s)	
hadoop	--config	/etc/hadoop/conf	jar	/usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar	--
conf	/etc/hbase/conf/hbase-site.xml	-D	'mapred.child.java.opts=-Xmx500m'	--hbase-indexer-
file	[LOCAL_DIR]/morphline-hbase-mapper.xml	--zk-host	127.0.0.1/solr	--collection	
[COLLECTION_NAME]	--go-live	--log4j	[LOCAL_DIR]/log4j.properties	

Figure 26 Generate the Index Files with Live Mode in Virtual Cloudera

Note: If you get a Java heap space error, adjust the values of the mapreduce.map.java.opts
and mapreduce.reduce.java.opts in the file /etc/hadoop/conf/mapred-site.xml.

Figure 27 Fix the Java Heap Error in Virtual Cloudera

 37

8.2.5 Use Lily Indexer for Data Indexing (Batch Mode)
The live mode of Lily Indexer is simple and efficient, because it makes full use of the memory.
However, it cannot deal with big data. The batch mode of Lily indexer is helpful for indexing a
large dataset.

Create a Lily Indexer configuration file. This step is the same as the one in live mode.

Run HBaseMapReduceIndexer tool. We index the HBase table using MapReduce in batch
mode. The following command helps us to output the indexes into HDFS.

Key	Command(s)	
hadoop	--config	/etc/hadoop/conf	jar	/usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar	--
conf	/etc/hbase/conf/hbase-site.xml	-D	'mapred.child.java.opts=-Xmx500m'	--hbase-indexer-
file	[LOCAL_DIR]/morphline-hbase-mapper.xml	--zk-host	127.0.0.1/solr	--log4j	
[LOCAL_DIR]/log4j.properties	--collection	[COLLECTION_NAME]	--verbose	--output-dir	
hdfs://quickstart.cloudera/user/cloudera/cs5604f16-small-index	--overwrite-output-dir	--
shard	1		

Figure 28 Generate the Index Files with Batch Mode in Virtual Cloudera

Check the files in HDFS. If the MapReduce job goes successfully, then multiple indexing files
have already been generated in HDFS.

 38

Key	Command(s)	

hadoop	fs	-ls	/solr/cs5604f16-small/core_node1/data/index	

Figure 29 Check the Index Files in HDFS in Virtual Cloudera

Move the indexing files from HDFS to OS. Since we have already obtained those indexing
files, we can easily move them from HDFS to OS, then it is possible to transfer those files to
another machine.

Key	Command(s)	
hadoop	fs	-get	/solr/cs5604f16-small/core_node1/data/index	index-export	

 39

Figure 30 Move the Index Files from HDFS to OS in Virtual Cloudera

Clean a Solr collection. Now we try to use these offline indexing files to redo the indexing job.
Before that, we need to remove all documents from the existing Solr collection.

Key	Command(s)	
sudo	-u	hdfs	hadoop	fs	-rm	-r	-skipTrash	/solr/[COLLECTION_NAME]/core_node1/data/index	
sudo	-u	hdfs	hadoop	fs	-rm	-r	-skipTrash	/solr/[COLLECTION_NAME]/core_node1/data/tlog	

Figure 31 Clean a Solr Collection in Virtual Cloudera

 40

Figure 32 Verify the Clean Solr Collection in Virtual Cloudera

Put the offline indexing files into the Solr collection and restart the Solr service. Please
notice that we use the role Solr to put into /solr.

Key	Command(s)	
sudo	-u	solr	hadoop	fs	-put	index	/solr/[COLLECTION_NAME]/core_node1/data/	
sudo	service	solr-server	restart	

Figure 33 Move the Index Files from OS to Solr in Virtual Cloudera

 41

Note: if you get a Java heap size error, please set solr.hdfs.blockcache.enabled as false in the
solrconfig.xml and then restart the Solr service again.

Figure 34 Basic Indexing in Virtual Cloudera (Batch Mode)

8.3 Tutorial for Basic Indexing in Hadoop Cluster
The main steps of basic indexing in the Hadoop Cluster are similar to those in Virtual Cloudera,
but you should notice that the address of the Solr server and some library and configuration files
are different from the above.

8.3.1 Import Data into HDFS and HBase
In this part, we download our test file from GitHub and then put it in the HDFS in the Hadoop
Cluster.

Upload the list of CSV files into HDFS with Hadoop fs -put commands. We use SSH to
access the Hadoop Cluster and then clone the test file on GitHub to the server. After that,
assuming the files are stored in the Dataset_for_Test directory, you can use the cd command to
go to that directory and put the test file into HDFS.

Key	Command(s)	
hadoop	fs	–put	dataset_test.csv	

 42

Figure 35 Import Local Files into HDFS in Hadoop Cluster

Create HBase table for the test file of tweets. For the next step, use the HBase shell to
create a table named “test_table” in HBase.

Key	Command(s)	
create	‘test_table’,	‘raw_cf’	
disable	‘test_table’	
drop	‘test_table’	

 43

Figure 36 Create a HBase Table in Hadoop Cluster

Import CSV files into HBase tables. We run importtsv MapReduce to import the test file into
HBase tables. The following screenshot shows the command to import Twitter data files.

Key	Command(s)	
hbase	org.apache.hadoop.hbase.mapreduce.ImportTsv	-Dimporttsv.separator=,	-
Dimporttsv.columns="HBASE_ROW_KEY,raw_cf:c1,raw_cf:c2,raw_cf:c3,raw_cf:c4,raw_cf:c5,r
aw_cf:c6,raw_cf:c7,raw_cf:c8,raw_cf:c9,raw_cf:c10,raw_cf:c11,raw_cf:c12"	test_table	
dataset_test.csv	

 44

Figure 37 Import Data into HBase in Hadoop Cluster

If the whole process goes successfully, you are able to check the data in the Hue interface.

Figure 38 Verify the Data in HBase in Hadoop Cluster

 45

8.3.2 Create Solr Collection
Here, we create a Solr collection named “datatest_collection”. The following screenshots show
the steps for the process.

Key	Command(s)	
solrctl	instancedir	--generate	$HOME/datatest_collection	
solrctl	instancedir	--create	datatest_collection	$HOME/datatest_collection	
solrctl	collection	--create	datatest_collection	

Figure 39 Create a Solr Directory in Hadoop Cluster

Figure 40 Customize the schema.xml in Hadoop Cluster

Figure 41 Upload the Configuration File in Hadoop Cluster

Figure 42 Create a Solr Collection in Hadoop Cluster

 46

Now you can check the new collection in the Solr Admin UI. To start a remote connection to the
Solr server in the Hadoop Cluster, there are several approaches. For Mac OS, install Secure
Pipes and then modify the connection settings as in Figure 43.

Figure 43 Remote Connection to Solr in Hadoop Cluster

For other systems, use SSH to connect to the Solr server in the Hadoop Cluster.

Key	Command(s)	
ssh	-L	9983:solr2.dlrl:8983	[username]@hadoop.dlib.vt.edu	

Figure 44 Verify the Solr Collection in Hadoop Cluster

 47

8.3.3 Use Lily Indexer for Data Indexing (Live Mode)
Create a Lily Indexer configuration file. This step is the same as the one in Virtual Cloudera.

Figure 45 Modify Key Morphline Files in Hadoop Cluster

Run HBaseMapReduceIndexer tool. After that, we can index the data with the command
below. [LOCAL_DIR] and [COLLECTION_NAME] should be replaced with the correct names,
and notice the address of the server is different from the one in Virtual Cloudera (i.e.,
127.0.0.1/solr).

Key	Command(s)	
hadoop	--config	/etc/hadoop/conf	jar	/opt/cloudera/parcels/CDH/lib/hbase-solr/tools/hbase-
indexer-mr-1.5-cdh5.6.0-job.jar	--conf	/etc/hbase/conf/hbase-site.xml	-D	
'mapred.child.java.opts=-Xmx1024m'	--hbase-indexer-file	[LOCAL_DIR]/morphline-hbase-
mapper.xml	--zk-host	
node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181,node4.dlrl:2181,solr2.dlrl:2181/solr	--
collection	[COLLECTION_NAME]	--go-live	--log4j	[LOCAL_DIR]/log4j.properties	

 48

Figure 46 Generate the Index Files with Live Mode in Hadoop Cluster

Now you can do a query search in the Solr Admin UI.

Figure 47 Basic Indexing in Hadoop Cluster (Live Mode)

 49

8.3.4 Use Lily Indexer for Data Indexing (Batch Mode)
In batch mode, the Lily Indexer generates the index, and then we need to copy the generated
index to the collection index directory in HDFS.

Create a Lily Indexer configuration file. This step is the same as the one in live mode.

Run HBaseMapReduceIndexer tool. We index the HBase table using MapReduce in batch
mode. The following command helps us to output the indexes into HDFS.

Key	Command(s)	
hadoop	--config	/etc/hadoop/conf	jar	/opt/cloudera/parcels/CDH/lib/hbase-solr/tools/hbase-
indexer-mr-1.5-cdh5.6.0-job.jar	--conf	/etc/hbase/conf/hbase-site.xml	-D	
'mapred.child.java.opts=-Xmx3000m'	--hbase-indexer-file	[LOCAL_DIR]/morphline-hbase-
mapper.xml	--zk-host	
node1.dlrl:2181,node2.dlrl:2181,node3.dlrl,node4.dlrl:2181,solr2.dlrl:2181/solr	--log4j	
[LOCAL_DIR]/log4j.properties	--collection	[COLLECTION_NAME]	--verbose	--output-dir	
[OUTPUT_DIR]	--overwrite-output-dir	--shards	1	

Figure 48 Generate the Index Files with Batch Mode in Hadoop Cluster

Clean a Solr collection. Now we try to use these offline indexing files to redo the indexing job.
As mentioned above, we need to remove all documents from the existing Solr collection. The
Solr should be turned off for a more stable process.

Key	Command(s)	
sudo	-u	hdfs	hadoop	fs	-rm	-r	-skipTrash	/solr/ideal-cs5604f16-1204/core_node1/data/index	

Figure 49 Clean a Solr Collection in Hadoop Cluster

Put the offline indexing files into the Solr collection and restart the Solr service. Please
notice that we use the role Solr to put into /solr.

 50

Key	Command(s)	

sudo	-u	solr	hadoop	fs	-cp	/user/cs5604f16_solr/cs5604f16-solr-index-120416/results/part-
00000/data/index	/solr/ideal-cs5604f16-1204/core_node1/data/	

Figure 50 Move the Index Files from User Directory to Solr in Hadoop Cluster

After the copying is finished, we need to restart Solr. Then, we can check the collection in the
Solr Admin UI.

Figure 51 Basic Indexing in Hadoop Cluster (Batch Mode)

8.4 Tutorial for Incremental Indexing in Virtual Cloudera
Now we know that we can use the Lily Indexer for data indexing in both live mode and batch
mode. To index a small size of data, live mode is a simpler and more efficient approach.
However, it cannot deal with big data. Instead of using the live mode, the batch mode is a good
choice to index a huge amount of data, though it is complex and takes more time. Therefore,
there are some limitations while applying the batch mode of Lily indexer. Specifically, people
need to apply frequent inserts, updates, and deletes to HBase table cells. If we still use the
batch mode to index all the data, it seems an endless job. In this case, Lily HBase NRT indexer
can be used to process a continuous stream of HBase cell updates into live search indexes.

 51

Our incremental indexing job is based on the basic indexing. The following steps present how to
deploy the NRT indexer in Virtual Cloudera.

8.4.1 Enable replication on HBase column families
Ensure that cluster-wide HBase replication is enabled. Use the HBase shell to define column-
family replication settings. For every existing table, set the REPLICATION_SCOPE on every
column family that needs to be indexed.

Key	Command(s)	
disable	‘test’	
alter	'test',	{NAME	=>	'raw_cf',	REPLICATION_SCOPE	=>	1}	
enable	‘test’	

Figure 52 Enable HBase Replication in Virtual Cloudera

8.4.2 Register a Lily HBase Indexer
Once the content of the Lily HBase Indexer configuration XML file is satisfactory, register it with
the Lily HBase Indexer Service.

Key	Command(s)	
hbase-indexer	add-indexer	--name	Indexer_NRTIndexer	--indexer-conf	
[LOCAL_DIR]/morphline-hbase-mapper.xml	--connection-param	solr.zk=localhost:2181/solr	--
connection-param	solr.collection=[COLLECTION_NAME]	--zookeeper	localhost:2181	
hbase-indexer	list-indexers	

 52

Figure 53 Register a Lily HBase Indexer in Virtual Cloudera

Verify that the indexer was successfully created as follows:

Figure 54 Verify a Lily HBase Indexer in Virtual Cloudera

8.4.3 Point a Lily HBase NRT Indexer Service
Configure individual Lily HBase NRT Indexer Services with the location of a ZooKeeper
ensemble that is used for the target HBase cluster. This must be done before starting Lily
HBase NRT Indexer Services. Add the following property to /etc/hbase-solr/conf/hbase-indexer-

 53

site.xml. Remember to replace hbase-cluster-zookeeper with the actual ensemble string as
found in the hbase-site.xml configuration file.

Key	Command(s)	
sudo	vim	/etc/hbase-solr/conf/hbase-indexer-site.xml	

Figure 55 Point a Lily HBase NRT Indexer Service in Virtual Cloudera

8.4.4 Start a Lily HBase NRT Indexer Service, and Testing
Now, we can restart the indexer service and manually insert some records into HBase. The
incremental data can be indexed and retrieved from the Solr Admin UI.

Key	Command(s)	
sudo	service	hbase-solr-indexer	restart	

Figure 56 Start a Lily HBase NRT Indexer Service in Virtual Cloudera

 54

Figure 57 Incremental Indexing in Virtual Cloudera

8.5 Tutorial for Incremental Indexing in Hadoop Cluster
To configure the incremental indexing in the Hadoop Cluster is similar to the process in Virtual
Cloudera. Since the commands are a bit different, we follow the same steps to make the
procedure much more clear.

8.5.1 Enable replication on HBase column families
Ensure that cluster-wide HBase replication is enabled. Use the HBase shell to define column-
family replication settings. For every existing table, set the REPLICATION_SCOPE on every
column family that needs to be indexed.

Key	Command(s)	
disable	'ideal-cs5604-fake'	
alter	'ideal-cs5604-fake',	{NAME	=>	'tweet',	REPLICATION_SCOPE	=>	1}	
alter	'ideal-cs5604-fake',	{NAME	=>	'clean-tweet',	REPLICATION_SCOPE	=>	1}	
alter	'ideal-cs5604-fake',	{NAME	=>	'tweet-topic',	REPLICATION_SCOPE	=>	1}	
alter	'ideal-cs5604-fake',	{NAME	=>	'tweet-cluster',	REPLICATION_SCOPE	=>	1}	
alter	'ideal-cs5604-fake',	{NAME	=>	'webpage',	REPLICATION_SCOPE	=>	1}	
enable	'ideal-cs5604-fake'	

Figure 58 Enable HBase Replication in Hadoop Cluster

 55

8.5.2 Register a Lily HBase Indexer
Once the content of the Lily HBase Indexer configuration XML file is satisfactory, register it with
the Lily HBase Indexer Service.

Key	Command(s)	
hbase-indexer	add-indexer	--name	NRTindexer	--indexer-conf	~/ideal-cs5604f16-fake-
morphline/morphline-hbase-mapper.xml	--connection-param	
solr.zk=node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181,node4.dlrl:2181,solr2.dlrl:2181/solr	-
-connection-param	solr.collection=ideal-cs5604f16-fake	--zookeeper	
node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181,node4.dlrl:2181,solr2.dlrl:2181	

Figure 59 Register a Lily HBase Indexer in Hadoop Cluster

Verify that the indexer was successfully created as follows:

Figure 60 Verify a Lily HBase Indexer in Hadoop Cluster

 56

8.5.3 Point a Lily HBase NRT Indexer Service
Configure individual Lily HBase NRT Indexer Services with the location of a ZooKeeper
ensemble that is used for the target HBase cluster. This must be done before starting Lily
HBase NRT Indexer Services. Add the following property to /etc/hbase-solr/conf/hbase-indexer-
site.xml. We need to modify the above file in HeadNode. Remember to replace hbase-cluster-
zookeeper with the actual ensemble string as found in the hbase-site.xml configuration file.

Key	Command(s)	
sudo	vim	/etc/hbase-solr/conf/hbase-indexer-site.xml	

Here, we need to complete one more step. In the Cloudera Manager, we need to overwrite the
same morphlines.conf into the Key-Value Store Indexer.

Figure 61 Point a Lily HBase NRT Indexer Service in Hadoop Cluster

 57

8.5.4 Start a Lily HBase NRT Indexer Service and Testing
Now, we need to restart the indexer service through Cloudera Manager and manually insert
some records into HBase. The incremental data can be indexed and retrieved from the Solr
Admin UI.

Figure 62 Start a Lily HBase NRT Indexer Service in Hadoop Cluster

Figure 63 Incremental Indexing in Hadoop Cluster

 58

8.6 Tutorial for Custom Ranking

8.6.1 Build and copy jar file into the Hadoop Cluster
To build the jar file, we need to create a Java project in Virtual Cloudera through Eclipse. Then,
based on the developer’s requirement, some dependent libraries should be imported into the
same project. For the current custom ranking function, we import the following libraries that are
shown in Figure 64.

Figure 64 External Libraries for Custom Ranking

After doing that, we can design and implement our own Search Component. The importance
value of each tweet could be caught and added to the original Solr score. The jar file will be
exported after finishing the coding job.

Figure 65 Code Fragment of Custom Ranking

 59

Figure 66 Export JAR File for Custom Ranking

Then we use the scp command to copy the jar file into the Hadoop Cluster (HeadNode and Solr
node).

8.6.2 Modify the solrconfig.xml
We have to modify the solrconfig.xml to locate the jar file and create a new search component
for the custom ranking.

 60

Figure 67 Add Custom Ranking Component in solrconfig.xml

8.6.3 Update the instanceDir and reload the collection
Since the solrconfig.xml has been modified, we need to update the instanceDir to let ZooKeeper
configure it in the Hadoop Cluster.

Key	Command(s)	
solrctl	instancedir	--update	ideal-cs5604f16-fake	~/ideal-cs5604f16-fake	
solrctl	collection	--reload	ideal-cs5604f16-fake	

Figure 68 Reload the Collection for Custom Ranking

8.6.4 Check the results in Solr Admin UI
Finally, we can use the “/custom” request handler to retrieve the results based on our custom
ranking function.

 61

Figure 69 An Example of Custom Ranking

8.7 Tutorial for Document Recommendation

8.7.1 Configurations for MoreLikeThis request handler
The MLT request handler needs addition and modification to schema.xml.

The MLT request handler use the stored term vectors of specified fields to compute similarity
[26]. If no term vectors of fields are configured to be stored, MLT will generate term vectors,
which takes time, so it is better to configure fields to store term vectors. Add a termVectors
attribute to the field that you want to store term vectors, and set the attribute to “true”. In the
configuration example below, the field named cat is configured to store term vectors, and in the
process of indexing, the term vectors of the “text” field will be stored.

 62

Figure 70 Add TermVectors in schema.xml for Recommendation

To make Solr able to handle an MLT request, you need to add a request handler configuration
to solrconfig.xml. The online Apache Solr Reference Guide [27] explains how to add a request
handler in solrconfig.xml.

Figure 71 Add MLT Request Handler in solrconfig.xml for Recommendation

 63

The name attribute of requestHandler defines how you use the HTTP API. For example, in the
configuration above, the name attribute is “/mlt”, so in the HTTP API, you can use this request
handler like http://localhost:8983/solr/mlt?..., The name before the question mark is the same as
the name attribute. Inside the requestHandler element, there is a child element “lst”, whose
name attribute is “default”. “Lst” actually mean “list”, and a lst with name attribute “defaults”
defines the default parameters for the request handler. These default parameters can be
overridden by the parameters given by a request using the HTTP API.

Table 8 explains the common parameters that can be used for MLT. Table 9 explains the
parameters for the MoreLikeThisHandler.

Table 8 Parameters and Descriptions for MoreLikeThis [26]

Parameter Description

mlt.fl
The fields to use for similarity. NOTE: if possible, these should
have a stored TermVector

mlt.mintf Minimum Term Frequency - the frequency below which terms
will be ignored in the source doc.

mlt.mindf Minimum Document Frequency - the frequency at which words
will be ignored which do not occur in at least this many docs.

mlt.minwl Minimum word length below which words will be ignored.

mlt.maxwl Maximum word length above which words will be ignored.

mlt.maxqt Maximum number of query terms that will be included in any
generated query.

mlt.maxntp Maximum number of tokens to parse in each example doc field
that is not stored with TermVector support.

mlt.boost [true/false] Set if the query will be boosted by the interesting
term relevance.

mlt.qf
Query fields and their boosts using the same format as that
used in DisMaxQParserPlugin. These fields must also be
specified in mlt.fl.

 64

Table 9 Parameters and Descriptions for MoreLikeThis Handler [26]

Parameter Description

mlt.match.include Should the response include the matched document? If false,
the response will look exactly like a normal /select response

mlt.match.offset
By default, the MoreLikeThis query operates on the first result
for 'q'

mlt.interestingTerms

One of: "list", "details", "none" -- this will show what
"interesting" terms are used for the MoreLikeThis query. These
are the top tf/idf terms. NOTE: if you select 'details', this shows
you the term and boost used for each term. Unless
mlt.boost=true, all terms will have boost=1.0

8.7.2 Update the instanceDir and reload the collection
After we change the configurations in schema.xml and solrconfig.xml, we need to do some
operations on Solr to make the changed configurations take effect.

First we need to update the instance directory. Use the command below. In the command, we
assume the instance name is datatest_collection and the instance path is
/home/cloudera/datatest_collection. Then we can reload the collection to invoke the MLT.

Figure 72 Reload the Collection for Recommendation

8.7.3 Check the results in Solr Admin UI

We can use the previous command to rebuild the index. Then, we can test the MoreLikeThis
request handler in the Solr Admin UI.

Key	Command(s)	
solrctl	instancedir	--update	datatest_collection	/home/cloudera/datatest_collection	
solrctl	collection	--reload	datatest_collection	

 65

First, we use the /select request handler to get the document list. From the response, we can
know a document’s ID. Then we use the first returned document to do the MoreLikeThis
operation. We change the request handler from /select to /mlt. Then in the query box, we write
the ID of the document for which we want to do recommendation. Next we execute the query
and get the recommendation response.

Figure 73 An Example of Document Recommendation

 66

8.8 Tutorial for Faceted Search
Faceted search [25], also called faceted navigation or faceted browsing, is a technique for
accessing information organized according to a faceted field defined in Solr. Faceted search
allows users to explore a collection of information by applying multiple filters.

Faceting is the arrangement of search results into categories based on indexed terms.
Searchers are presented with the indexed terms, along with numerical counts of how many
matching documents were found for each term. Facet queries only provide information (count of
documents) and do not change the result documents. Faceting makes it easy for users to
explore search results, narrowing in on exactly the results they are looking for. Table 10
presents some facet parameters and descriptions for the faceted search.

Table 10 Parameters and Descriptions for Faceted Search [25]

Parameter Description

facet If set to true, enables faceting.

facet.query Specifies a Lucene query to generate a facet count.

Usually, we focus on two types of faceted search that are Field-Value Faceting and Range
Faceting. For Field-Value Faceting, it is important to remember that "term" is a very specific
concept. As shown in Table 11, several parameters can be used to trigger faceting based on the
indexed terms in a field.

Table 11 Parameters and Descriptions for Field-Value Faceting [25]

Parameter Description

facet.field Identifies a field to be treated as a facet.

facet.prefix
Limits the terms used for faceting to those that begin with
the specified prefix.

facet.contains
Limits the terms used for faceting to those that contain the
specified substring.

facet.sort Controls how faceted results are sorted.

facet.limit
Controls how many constraints should be returned for each
facet.

facet.offset
Specifies an offset into the facet results at which to begin
displaying facets.

 67

facet.mincount
Specifies the minimum counts required for a facet field to be
included in the response.

facet.missing
Controls whether Solr should compute a count of all
matching results which have no value for the field, in
addition to the term-based constraints of a facet field.

facet.method
Selects the algorithm or method Solr should use when
faceting a field.

facet.exists
Caps facet counts by one. Available only for
facet.method=enum as performance optimization.

Range Faceting can be used on any date field or any numeric field that supports range queries.
This is particularly useful for stitching together a series of range queries for things like prices.
Range Faceting is preferred over Date Faceting. Table 12 shows some parameters for Range
Faceting.

Table 12 Parameters and Descriptions for Range Faceting [25]

Parameter Description

facet.range Specifies the field to facet by range.

facet.range.start Specifies the start of the facet range.

facet.range.end Specifies the end of the facet range.

facet.range.gap
Specifies the span of the range as a value to be added to
the lower bound.

facet.range.other
Specifies counts for Solr to compute in addition to the
counts for each facet range constraint.

Based on our test file, we use the field ‘screen_name_s’ as the example to prove the feasibility
of the faceted search. After the schema file is determined for our Hadoop Cluster, our faceted
search will be able to support more functionalities. The following screenshot of schema.xml
shows the modification of our tested schema file.

The following screenshot shows the query for a Field-Value Search. Especially, we set the facet
as true to support the faceted search and the faceted field represents the field we are interested.

By default, the results are the sorted constraints by count (highest count first). The screenshot
shows the result from the faceted search. From the results, we can find that the user whose
screen name is QuoVadls posted 1141 tweets.

 68

Figure 74 An Example of Faceted Search

8.9 Further Discussion

8.9.1 Search
Solr provides multiple flexible functionalities for developers to design their own request handlers
and search components. You can find more details about request handler in Section 8.1 or the
following link:

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+
SolrConfig

 69

Also, more explanations about these plugins could be found in solrconfig.xml and it is easy to
modify the default setting to build a new plugin.

For the custom weighting, the default "select" request handler can be modified. And we can set
different weights on different fields so that while calculating the tf-idf value, Solr will select the
customized formula instead of the default one.

For the specific results, a new request handler could be established but based on the "select"
handler. The default value for the retrieved results is a star (*), which means all stored fields will
be shown in the result list. It can be replaced by some specific fields with our needs. An
example has been presented in the custom ranking part. After using our custom scoring function,
we only show the default score and new score through the Solr Admin UI.

By leveraging the request handler, we are also able to deal with the profanity issue in the results.
One possible way is to create one column (e.g., profanity_tag) to tag whether the record
contains profanity terms or not. Then, we can add “profanity_tag = false” to the default search
field to achieve our goal.

8.9.2 Custom Ranking
At present, we created a simple custom scoring function by adding the importance value
provided by the CMT team into the original tf-idf score. The CMT team took multiple features
(e.g., followers_count, list_count, friends_count) into consideration and calculated the value.
The formula is shown below with the red color.

For the future work, our team need to extract the values from the topic and cluster fields, then
add the topic score and cluster score into the current formula. After updating or optimizing the
custom scoring function, we are able to build a topic-based or cluster-based ranking function.

Moreover, we know that the custom ranking is based on the Solr search components, which is
used to process the search results. It is possible for us to extend these plugins to achieve some
sub-goals during the query search process, like counting or filtering.

8.9.3 Document Recommendation
Recommendation can be of various types.
For the textual similarity based recommendation, it has been implemented as a basic version
this semester. Conceptual similarity based recommendation and collaborative filtering have not
been implemented this semester but can be implemented in the future. Conceptual similarity
can be based on the probability of the document belonging to a cluster label that is provided by

 70

the CTA team. Research needs to be done on using dynamic custom ranking to search for
items that can be recommended based on the cluster labels they are tagged to. The probability
can be the boosting factor to a label. Thus, all items with a high probability of a cluster label will
be grouped as similar.

For the collaborative filtering, it involves studying the behavior of a user and making use of the
previous history of the same user or many other users to predict the results. This can be
implemented using the data collected by Blacklight which records the search query fired, the
result set returned, and the click history of the user that determines and provides us information
on the similarity between the results obtained and the user’s information need. The log file
generated can be read by a program that grabs information required to compute query-user-
click history similarity and display results based on the information.

8.9.4 Solr
For our previous plan, a two-node Solr server should be deployed into our Hadoop Cluster. The
reason is the Hue is mainly designed for data analysis, but turns to be weak in searching. More
Solr nodes might speed up the searching process. With the help of the FE team, our Solr in the
Hadoop Cluster could be connected with the Blacklight, which is a well-designed user interface
and has been tested with a standalone Solr. So now while sending a search query, users will
get the search results in a short time.

Unfortunately, there was not enough time for the FE team to test the Blacklight with the big
dataset, we still need to evaluate the time cost of the efficient tool. For the 1.2 billion tweets
collection, it takes about 8 seconds for Solr to make a response. Though the current time cost
seems tolerable, it is easy to see that with the continual increase of data, we have to face the
time issue soon. Therefore, to figure out SolrCloud or multiple Solr nodes in Cloudera Search
should be planned and we need to deploy a multiple-node Solr server in the Hadoop Cluster.

Additionally, though we tried to make our current user and developer manuals more clear and
readable, those documents could be improved with more details and more functionalities in the
future.

 71

9 References
[1] Wikipedia, https://en.wikipedia.org/wiki/Twitter, 2016
[2] Manning, Christopher D et al. Introduction to Information Retrieval. Cambridge University
Press, 2009.
[3] Solr 6.2.0, https://lucene.apache.org/Solr/, 2016.
[4] Grainger, Trey, Timothy Potter, and Yonik Seeley. Solr in Action. Manning, 2014.
[5] McCandless, Michael, Erik Hatcher, and Otis Gospodnetic. Lucene in Action: Covers
Apache Lucene 3.0. Manning Publications Co., 2010.
[6] Apache Solr Reference Guide Covering Apache Solr 6.2.
https://www.apache.org/dyn/closer.cgi/lucene/Solr/ref-guide/apache-Solr-ref-guide-6.2.pdf, 2016.
[7] Integrating Solr, Solr Wiki, Apache Wiki. https://wiki.apache.org/Solr/IntegratingSolr, 2016.
[8] Apache Lucene, Lucene Core, http://lucene.apache.org/core/, 2016.
[9] Cloudera, Inc. Cloudera QuickStart. http://www.Cloudera.com/content/Cloudera/en/-
documentation/core/latest/topics/quickstart.html, 2016.
[10] Hadoop Essential: The HBase Data Model.
https://www.safaribooksonline.com/library/view/Hadoop-
essentials/9781784396688/ch05s04.html, 2016.
[11] Big Data: An Introduction to HBase. http://www.stratapps.net/intro-HBase.php, 2016.
[12] Getting Started with HBase. http://HBase.apache.org/book.html#_get_started_with_HBase,
2016
[13] ZooKeeper 3.4 documentation. https://zookeeper.apache.org/doc/trunk/, 2016
[14] ZooKeeper service architecture.
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html, 2016
[15] Cloudera Documentation: Using the Lily HBase Batch Indexer for Indexing
http://www.Cloudera.com/documentation/archive/search/1-3-0/Cloudera-Search-User-
Guide/csug_HBase_batch_indexer.html, 2016.
[16] Hue UI with IDEAL and GETAR collections, Virginia Tech,
http://Hadoop.dlib.vt.edu:8888/accounts/login/?next=/, 2016.
[17] Apache Lucene similarity scoring API,
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/Similarity.html,
2016.
[18] Solr recommender, https://github.com/pferrel/Solr-recommender, 2016.
[19] Apache HBase, http://zhangjunhd.github.io/2013/02/25/apache-hbase.html, 2016.
[20] Solr Interaction, https://cwiki.apache.org/confluence/display/solr/A+Quick+Overview, 2016
[21] Lily HBase Indexer with Solr,
http://www.slideshare.net/romannikitchenko/hbasecrazydances, 2016.
[22] Edward A Fox, Kristine Hanna, Andrea L Kavanaugh, Steven D Sheetz, Donald J
Shoemaker, III: Small: Integrated Digital Event Archiving and Library (IDEAL), NSF grant IIS -
1319578, 2013-2016.
[23] Edward A Fox, Donald Shoemaker, Chandan Reddy, Andrea Kavanaugh, III: Small:
Collaborative Research: Global Event and Trend Archive Research (GETAR), NSF grant IIS -
1619028, 2017-2019.

 72

[24] Data flow diagram in IDEAL and GETAR,
https://canvas.vt.edu/courses/28455/files/folder/F2016/Tutorials?preview=1566514, 2016.
[25] Solr Faceting, https://cwiki.apache.org/confluence/display/solr/Faceting, 2016.
[26] MoreLikeThis in Solr, https://cwiki.apache.org/confluence/display/solr/MoreLikeThis
[27] How MoreLikeThis works? http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-
lucene/
[28] Java Code Geeks: Solr Tutorial for beginners,
https://examples.javacodegeeks.com/enterprise-java/apache-solr/apache-solr-tutorial-
beginners/, 2016
[29] RequestHandler and SearchComponents in Solr,
https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+
SolrConfig, 2016

 73

Appendix A HBase Structure and Description
The table below shows the structure and description of our tweets and webpages collections. Our current table name is ideal-
cs5604f16. The column families include tweet, clean-tweet, webpage, doc-type, tweet-topic and tweet-cluster. The "tweet" family
contains multiple columns that are extracted from the raw tweets. The "clean-tweet" family is to show more rich information about
tweets. The features of the webpages are stored in the "webpage" family. With the help of the CTA team, tweet clusters and topic are
created and saved in the relevant column families. The "description" column presents the meaning of each column in each column
family. More details are shown as examples.

HBase KEY_ID: Tweet: collection_id + tweet_id Webpage: uuid

Table Column Family Column Description Example

ideal-
cs5604f1

6
tweet

collection-id number of the collection 651

collection-name name of the collection electricity

tweet-id tweet’s unique identifier 299755872668758016

archive-source twitter API’s type twitter-search, twitter-stream

source platform’s type Android, iPhone

text tweet’s original text
I can't believe it was a Virginia Tech
student that posted that yik yak
today. Just so disappointing !

screen-name tweeter’s username FiremanDave32

user-id user’s unique identifier 385665827

created-timestamp created-time (UNIX time) 1428951621

created-time created-time (readable) Mon Apr 13 19:00:21
+0000 2015

 74

language tweet’s main language en

geo-type point / polygon point

geo-0 latitude 43.02099179

geo-1 longitude -80.44612986

url original URL in tweet
<a href=”
http://twittercounter.com”>The Visitor
Widget

to-user-id unique identifier of the reply-to user 0

profile-img-url image URL from the user profile
http://a0.twimg.com/profile_images/3
149217853/0026816c03013356b569
a8775af351fb_normal.jpeg

clean-tweet

clean-text-solr
1. no porngraphic URLs, hashtags.
2. inappropriate plaintext, e.g. fuck,
 redacted as f***

[clean text for Solr and FE]

clean-text-cla

1. no porngraphic hashtags
2. regular hashtags
3. inappropriate plaintext, e.g. fuck,
 redacted as f***
4. all URLs removed
5. stop words removed
6. text lemmatized
7. remove # or @ symbol from
 mentions or hashtags

[clean text for CLA]

clean-text-cta

1. no porngraphic hashtags
2. regular hashtags
3. inappropriate plaintext, e.g. fuck,
 redacted as f***
4. all URLs removed
5. stop words removed
6. text lemmatized
7. remove @ symbol only from

[clean text for CTA]

 75

 mentions, but keep #

rt tag for the retweets 0 / 1

geo-location readable location from Google API Blacksburg, Virginia

created-year year extracted from the created-time 2015

created-month month extracted from the created-time 11

hashtags tweet’s hashtags #hurricane

mentions tweet’s mentions @VT

long-url extended URL

http://www.roanoke.com/news/arrest-
made-in-threatening-virginia-tech-yik-
yak-post/article_4743fe59-023c-
5b26-bebd-662594f7d6ca.html (from
http://t.co/KEe6gpOMoT)

classification-label label of each tweet hurricane

real-world-events list of the real world events Hurricane Sandy; Hurricane Arthur

sner-people extract names from each tweet Obama; Jimmy

sner-organizations extract organizations from each tweet Virginia Tech

sner-locations extract locations from each tweet New York; London

tweet_importance The importance value for each tweet 0-1

webpage

collection-id number of the collection 651

collection-name name of the collection electricity

html raw HTML of webpage [raw HTML text]

 76

tweet-ids unique identifiers of the tweets that
contains the URL of this webpage 593392960886145024

language webpage’s main language en

url full url of the webpage http://www.roanoke.com/news

title extract title from the webpage Student arrested after threatening
Virginia Tech Yik Yak post

author/publisher extract author from the webpage Tom LoBianco and Pamela Brown,
CNN

created-time extract created-time from the webpage Mon Apr 13 19:00:21
+0000 2015

clean-text
clean-text-profanity clean text with no profanity [clean HTML text]

sub-urls sub urls in the webpage

domain-name extract the domain name from the
webpage http://www.fs.fed.us/

domain-location extract the country name from the
webpage us

organization-name extract the organization name from the
webpage with the help of © Cable News Network

fetched-timestamp fetched time (readable) Mon Apr 13 19:00:21
+0000 2015

event a list of events in the webpage Hurricane Matthew; Flood

classification-tag identify whether the webpage has been
previously classified or not 0 / 1

webpage_importance The importance value of each webpage [0 - 1]

doc-type doc-type type of the document tweet / webpage

tweet-topic label-list 1. labels generated by LDA model
2. extract the top two labels from each

Signed,students; event,excited;
today,register; april,thanks;

 77

 topic community,little

probability-list each value presents the probability of the
tweet belongs to a certain topic

0.29112; 0.01820; 0.12435; 0.02572;
0.54058

tweet-cluster
cluster-label label of the tweet’s cluster NAACP stories

doc-probability the probability of the doc in the cluster 0.55167194

