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Variance reduction techniques are often underused in simulation stiwlidgs
article we indicate how certain ones can be efficiently employed when analyzing
gueuing modelsThe first technique considered is that of dynamic stratified sam-
pling; the second is the utilization of multiple control variagtédse third concerns

the replacement of random variables by their conditional expectations when trying
to estimate the expected value of a sum of random variables

1. INTRODUCTION

There are many standard variance reduction techniques used in sim(gagdRoss

[11]) and many of them have been used to estimate the performance of queuing
systemgsee Glynn and Iglehal8], LavenbergMoeller, and WelcH 4], and Wilson

and Pritskef13,14]). Moreover these techniques can often be simultaneously em-
ployed to further improve the simulation resuklathough this idea has appeared in
the literaturg(see Avramidis and Wilsofi] and McGeocli6]), its use can often be
strengthened

*This work was done when Kyle Lin was at the Department of Industrial Engineering and Operations
ResearchUniversity of California Berkeley
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In Section 2we introduce a new idea callelynamic stratificationContrary to
the traditional stratified samplindn which we divide the original problem into
strata and run each of them a predetermined number of tiweesequentially allo-
cate each additional run to the stratum yielding the largest estimated variance re-
duction based on the latest stratum variance estimates

In Section 3we illustrate the use of multiple control variabl@scomputational
drawback of this well-knownbut underusedechnique arises when there are cor-
relations between the control variablese Fishmaf2], Lavenberg and Welc[5],
and Nelsorj7]). However in some casesiseful control variables are independent
and in these casgbie computation grows linearly as the number of control variables
increases

If we want to estimate the expected value of the sum of the delays of the first
customersthen a useful technique is to use an estimator that replaces an actual delay
by its conditional expectatiggiven the minimal amount of information that is needed
to compute this conditional expectatidVhereas it was shown by Ross[@®] that
the sum of these conditional expectations has a smaller variance than does the sum
of the actual delayst is not clear that these replacements should still be made when
additional variance reduction techniques are to be implementetherical data
relating to this issue are presented in Section 4

2. DYNAMIC STRATIFICATION

Suppose that we want to use simulation to estinkgdt& |. Let Y be a discrete ran-
dom variable with known probabilitigg = P{Y =i}, >, p = 1, which is corre-
lated withX, and suppose that it is easy to simulate the valu® obnditional on
Y =i for eachi.

If we plan to don simulation runsthen it can be shown that rather than simu-
latingnindependent copies ofand using the average obtained as an estimanear
obtains a similarly unbiased estimator but with smaller variance by dginof the
simulations conditional ol =i, letting 6; be the average of the runs conditional on
Y =1, and using

as the estimator d[ X ] (see RosEl1]). We call the preceding therestratification
estimatorHowever one can often do much better by a different choice of the num-
ber of times to do each of the conditional simulation rundeed if we simulaten;

runs conditional orY = i, then the variance of the estimator is

m 2 2
P o

’

i=1

where

o= Var(X|Y=1i).



VARIANCE REDUCTION IDEAS 483
Subject to the constrai¥;", n; = n, the optimal(variance minimizingchoice(see
Rubinstein12]) is to let
Pi oi

=no—.
2P0
J

If we let W denote a random variable that is equalstowith probability p;, i =
1,...,m, then the variance of the estimator that uses the values given.4g.Exjis

<E pi0i>2 _E2W]

b
n n

n; (2.2)

whereas the value of the stratified estimator that usesnp, i =1,...,m, is
pi oy
Z L E[W?)

n n

ThereforeVar(W)/nis the additional variance reduction beyond prestratification that

is obtained by letting the number of runs be given by@d.). The difficulty with the
preceding solutiorhoweveris that the quantities;? are unknownWhereas a com-
mon approach is to run a small preliminary simulation to estimate the quamwtitjes
i=1,...,m and then use Eq2.1) with the estimates substituting for the conditional

variances to determine thme, we propose an apparently new approach that we call

dynamic stratificationit is described as follows
1. Foragiven integek, dok runs conditional ofy =i for eachi =1,...,m. Let

6, ands? be respectively the sample mean and sample variance of the values

of X obtained on th& runs conditional orY = i. Setn; = k for all i.
2. Repeat Steps 3-6 for a total ot~ mktimes

3. Let
1 1
b = i22 - - .
pS(ni ni+1>

by = maxb;.

4. Letj be such that

5. SimulateX conditional onY = j. Let the simulated value be
6. Reset values

2=nj_1 24 L (6, — x)2
3 n; 3 n+1"" ’
':n10j+x
o1
n=n+1



484 S. M. Ross and K. Y. Lin

At the end of the simulatigry; is the sample mean of conditional onY =i (or
stratumi ), and the estimator is given y{" ; p; 6;. Since the number of runs and the
sample variance of each stratum ar@ands? respectivelythe variance of the esti-
mator can be approximated by

SZ

n;

E p?
=1

Remark: The rationale for the dynamic stratification approach comes from the fact
that the problem of minimizing

can be solved sequentiallgpecifically let H(n) be the minimal value of the pre-
ceding wher>Z, n; = n, and suppose than;,...,n%) is one set of values yielding
H(n). Then because of convexity of the functions

2

_ p? o,
fi(k) = T

it can be showrisee the Appendixthat if j is such that
fi () = f(nf +1) = max{ fi(n) — fi(n + 1)},
then

H(n+1) =f(n"+1) + > fi(n).
i#]

Since the reset values in Step 6 are equal to the new sample mean and sample
variance for those runs conditional ¥ j, it follows that at each stephe dynamic
stratification algorithm chooses the simulation run that yields the largest estimated
improvement

For an illustration of the precedingonsider a queuing system in which cus-
tomers arrive according to a Poisson process with iatnd suppose thator a
specified timet, we are interested iE[X], the expected value of the sum of the
delays in the queue of all customers that arrive by timeetting N(t) denote the
number of arrivals by timg we can choose integer valugesn both sides dE [ N(t)] =
At and use dynamic stratification by simulating the arrival process conditional on
N(t) = n. For instanceif At = 10Q we can write

135

E[X]= D E[X|N(t)=i]p + E[X|N(t) < 65]P(64)

i=65

+ E[X|N(t) > 135|P(135),
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where

B ef’\t()\t)i

J
. P(j)= _EOpi, P(j)=1-P(j);
that is in essencewe break up the simulation problem into 73 strata,atdeach
stage we use the dynamic stratification algorithm to decide which stratum to sim-
ulate The arrival process conditional d(t) = i can be simulated by generating
independent unifornf0,1) random numbers and then sorting thésae Ros§10]).
Thejth sorted value multiplied bythen gives the time of thigh arrival The sorting
step can be eliminated by generating 1 random numberb,,...,U;;, and then

taking the natural log of each onEhe time of thgth arrival j =1,...,i, would be
given by

- j
t i log(u,) tlog < I1 Uk)
k=1 k=1

i+1

kz log(Uy) Iog<i+l_[l Uk>
=1 k=1

The arrival process conditional dfi(t) < 65 (or N(t) > 135 can be simulated by
first using the discrete inverse transform algorithm to generate the valNétpf
conditional onN(t) < 65(or N(t) > 135) and then using the preceding to generate
the arrival timesTable 1 gives the simulation results for estimating the expected
value of the total delay of all customers who arrivetly 100 in anM/M/1 queue
with A = p=1, based on 1 million runs

The additional work needed for dynamic stratification compared to prestratifi-
cation is Steps 3 and #However their computational complexities are 1 and g
(construct an ordered list &f and insert the updatelg] each timg, respectively
Both of these are negligible when each run involves generating hundreds of random
numbers

TaBLE 1. Total Delay of the Customers
Arriving by t = 100 for anM/M/1 Queue
A=p=1

Estimated Variance
of Estimator

Raw estimator 285
Prestratification a6l
Dynamic stratification a2
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The dynamic stratification approach can also be efficiently employed when the
arrival process is a nonhomogeneous Poisson process with intensity fuh@tjon
The simulation of the condition&bn the number of arrivals by tinteg arrival pro-
cess can be effected by using the result that the unordered set of arrival times are
i.i.d. (independent and identically distributestcording to the distribution function

fox)n(y) dy

fotuy) dy

We can still use dynamic stratification on the arrival process even when we are
interested in the expected value of the sum of the delays in the queue of thre first
customergor just the expected delay of custonmrgy for some specified. If the
arrival process is a homogeneous Poisson protiess we can use thdg, the time
of therth arrival is gamma distributed with parametdrsa). We can then specify
intervals

F(x) = , O=x=t.

(O’ tl)7 (t17 t2)9 LR (tmfb tm)’ (tm,OO)

with E[T, ]=r/A being in one ofthe intervals near the middied let stratumbe con-
ditional on the event that liesin(t_4, t;), wheret, = 0 andt,,,, 1 = c0. The values of
p; are easily computed and the simulation of the arrival process conditiodalyn
ing in a specified interval can be effected by first generating the valtiggifen that
it lies in that intervalthe rejection method with a uniform distribution can be yYsed
If T, = s, we then generate the arrival times by generating and then orderitigini-
forms thejth of these multiplied b gives the simulated time of thj¢h arrival
Another way of using a dynamic stratification approach relating to arrivals when
we are interested in the sum of delays of the firsistomers is to do the simulation
conditional onN(r/)). To accomplish thisfirst generate the value of this random
variable say its generated valuens Then generate thenarrival times conditional
onN(r/A) = m. If r = m, take the first of these as the arrival procedsm <r, take
these as the firgsharrival times and then generate an additionat mexponentials
with rate), sayYi,...,Y,_n. Thekth, m< k=, arrival time should be set equal to
Ty, where

r
Tm+1: X +Y1,
Toti = Tovica H Y5, i=2,....,r—m

Table 2 gives the simulation results for estimating the expected value of the total
delay of the first 100 customers for &f/M/1 queue withA = u =1 based on 1
million runs

The use of dynamic stratification breaks up a simulation problem into stata
efficiently do the simulationadditional variance reduction techniques should be
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TaBLE 2. Total Delay of the First 100 Customers for
anM/M/1 QueugA =pu=1

Estimated Variance
of Estimator

Raw estimator 85
Dynamic stratification omN(r/A) 0.130
Dynamic stratification ofT, 0.128

utilized in obtaining the final estimators in the straféis is indicated in the fol-
lowing section

3. MULTIPLE CONTROL VARIATES

Consider a queuing system in which the arrival process is a renewal process and
the customer service times have known probability distributidret D;, i =
1,...,n + 1, denote the delay in queue of customeand suppose that we are
interested in using simulation to estimaé& D], whereD is a linear combina-
tion of the D;. (For instanceD might be the sum of all the delaysr the delay

of customem + 1.) Also, let A; be the interarrival time between customeand

i +1, and letS be the service time of customelSinceD is usually an increasing
function of the service times and a decreasing function of the interarrival times
the quantity>;(S — A;), is often proposed as a control varigsee Ripley8]).
However since it is not clear that equal weight should be given to the amounts by
which XL, § and X[, A, exceed their known meani would be better to use
both of these sums as control variatesleed it would be even better to use all

2n random variable#\,, S,, ..., A, S, as control variateshat is we should con-
sider an estimator of the form

D+ _:21ai(Ai —E[A] +_:21bi(3 —E[S]),

where the best values of the constamtandb; are to be determined by the simula-
tion. It should be noted that when the sequence of random variahl&s, ..., A,, S,
is independenthe determination of these constants only requires covariance esti-
mations between individual ones of these random variabledDaritherefore to
minimize the variance of the estimatone should set
Cov(D, A)
a=-——-""—",
' Var(A;)
b - _ Cov(B.S)
T var(s)
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TaBLE 3. Total Delay of the First 100
Customers for aM/M/1 Queuer = pu=1

Estimated Variance

Control Variate of Estimator
Raw estimator 185
2UA 0.138
2.5 0.105
P(S-A) 0.060
2A andXP, S 0.057
A4,...,Ag 0.130
S,..., S 0.091
ALSL, ..., A9, Sy 0.037

Then the minimized variance is

" Cov¥(D,A) Cov?(D,S)
Var(D)—i:Z1 Var(A,) _Zl Var(S)

In practice we can estimate V&D), Cov(D, A;), and CovD, §) from the simula-
tion and use them to estimadg b;, and the variance of the estimatdable 3 gives
simulation results for estimating the expected value of the total delay of the first 100
customers for atM/M/1 queue having mean interarrival and mean service times
both equal to 1thatis D = 3 °9D;.

One can see that individually using all tAeandS as control variates results in
a variance approximately 60% of that obtained by usiit@ — A;) and one-fifth of
that of the raw estimatolMoreover the only additional work of using eaéh andS§
as a control variable is to keep track of the sample meadofS, and also
Cov(A;,D),Cov(S, D). This is very little work compared to generating the whole
process

The estimated correlation coefficients of the total d&degndA; (S) are plotted
in Figure 1(Fig. 2). From the figureswe can see that the correlation coefficient
betweerD and§ is approximately a unimodular function inwhich increases and
has its peak arounid= 20 and then decreases towardriiuitively the correlation
betweer§ andD decreases inwheni is large because the larger the valueigthe
fewer is the number of customers that will arrive after hitowever consider the
first customey although there are 99 customers behind Hine system is empty
when he arrives an8§, plays a role only if it is greater thaf,. On the other hand
when customer 20 arrivei is more likely that a line is already ther®o S, affects
the total delay more tha®, does

Remark: Technically speakingour controlled estimators are not unbiased since
they involve estimators od; andb; rather than the actual constanttowever we
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i i
Ficure 1. The estimated correlation FIGURE 2. The estimated correlation
coefficient betweer; and> 0D, coefficient betweerg and3 2 D;.

should gain almost all of the benefit of using the theoretical best constaats
variance estimators are estimates of the idealized situation where the best constants
rather than estimators of them are used

Suppose now that the arrival process is a Poisson process and that we have made
use of the dynamic stratification approach of SectioM&uming that there are
enough simulations done conditionaloarrivals we recommend using each of the
r service times as a control variabléthere are not that many runs conditionalon
arrivals then it would not be possible to accurately estimate all of the needed co-
variances betweeb andS, i =1,...,r, and so we recommend the single control
variable>_; S in this caseThe simulation results of this strategy are compared in
Table 4

Now let us return to the problem in whidb is the sum of the delays of all
customers that arrive by a fixed timeWhen not stratifyingthe natural control

TABLE 4. Total Delay of the first 100 Customers for an
M/M/1 Queuer =p=1

Dynamic Control Estimated Variance
Stratification Variate of Estimator
OnN(r/A) none 0130
OnN(r/A) 215 0.051
OnN(r/A) Sy, S 0.036

onT, None 0128

onT, 2.5 0.049

onT, S, St 0.034

aUseX®, S instead for those strata where the number of runs is less than 1000
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TAaBLE 5. Total Delay of the Customers liy= 100 for an
M/M/1 Queugr =pu=1

Dynamic Control Estimated Variance
Stratification Variate of Estimator

No None 0285

No N(t) 0.169

No SNty 0.078

No N(t) andZNY 'S 0.077

Yes None QL42

Yes s 0.054

Yes S,...,S.,2 0.034

aUseX!~1§ instead for those strata where the number of runs is less than 1000

variables aré(t), the number of arrivals by timgand> NV S, the total service

time of the arrivals by timéexcept the last on&Of coursewe can use both of them
at the same timebut not much improvement is expected because of the strong cor-
relation between the two of therhen stratifying orN(t), the variance in each
stratum lies mainly in the service process we suggest usirg},...,S_,0r>_1 S
as control variables for the stratui{(t) = r, depending on whether the number of
runs in a stratum is enough to accurately estimate(Soi).

Table 5 gives the simulation results for estimating the expected value of the
total delay of all the customers that arrive by 100 for anM/M/1 queue with
A = p =1 based on 1 million runs

Although we reduce most of the variance in the arrival process by stratify-
ing N(t), we can still utilize a control variable related to arrivals conditional on
N(t) = r. Intuitively, D will be smallest when the arrivals are spread oather than
being clumped in place&or instanceif we are interested in the sum of the delays
of all arrivals by timet and the interarrivalg; have been generated conditionalron
arrivals by timet, then the quantityi_, A? + (t — X{_; A;)% which is minimized
when ther arrivals are equally spacgid a good choice for a control variablgince
eachA; andt — >{_; A, have in this casethe same distribution as the smallest order
statistic of a set of i.i.d. uniform (0, t) random variablest follows that

2t2
(r+21)(r+2)

EL_}ZA?+ <t— i_ilAiﬂ 2

42

E[A?] =

and therefore

1 We can compute the expectation of this control variable sBiemdN(t) — 1 are independent
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Another possibility for a control variable for the arrival process is to divide the
interval (0, t) into, say k subintervalslet|; denote the number of threarrivals that
are in subintervai, and then us&_, |2 as a control variable

When applying>!_, A2 + (t — 3/_; A))2 or 3, 12 along with dynamic strat-
ification in the model described in Tablethe estimated variance of the estimators
are 0142 and 0140 (divide the whole interval int& = 10 subintervals with equal
length), respectivelyThe improvement over just using dynamic stratification is thus
rather minimal However since the arrival process and the service process are in-
dependentwe can us&,,...,S_;and> A2+ (t— 311 A)Z (or 3K, 12) at the
same time and the reduction in variance is additive

4. CONDITIONAL ESTIMATOR

To estimateE[>_;D;] in a G/M/k (or G/G/1) queue Ross[9] showed that
L E[D;|H;] is a better estimator thal;_, D;, whereH; is the history of the
process up to the moment that customenrives and the minimal information
needed to compute the conditional expectatidor examplein a G/G/1 queue
with mean service time/{, H; = {R; ands}, whereR,; is the number of customers
in the system and is the age of the customer in service when custonagrives
Let Sdenote the service time of the customer in service when custbareives

then

D H] = s

"
+ E[S—s|S> s]I{R, > 0}.
If it is not easy to comput&[S — s|S > s], we can letH; also include the actual
remaining service time of the customer being served
Now, suppose we want to estimate the expected total delay of the first 100
customers for aiM/M/1 queueThe conditional estimator of the delay of customer
i is given by

Ri
E[DiIR]= H

In addition to the conditional estimatave use control variables suggested in Sec-
tion 3. In Table § we compare the estimated variances of the two estimators when
we use them together with different choices of control varigllased on 1 million
runs
Itis noted in Table 6 that although the variances in column 2 are always smaller

than those in column,we gain more from the control variabl&when we use

29D, since the correlation betwe&nand>,>) D; is stronger than that betwe&n
andS "2 E[D; R ]. In fact, whenu gets smallerit may be the case that it is better
to not use the conditional estimat@able 7 gives an example of when it is the best
strategy to us&,° D, and allA;, § as control variableg he reason that[", D; is

n

preferable oveRi_; E[D;|R; ] when using control variables involving service time
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TaBLE 6. Total Delay of the First 100
Customers for aM/M/1 Queuer = pu=1

Estimated Variance of Estimator

Control Variate SH9D, SIED; R ]
None Q185 Q145
Aq,...,Ag 0.130 Q090
S,..., S 0.091 Q084
ALSs...,Ace Se 0037 Q029

is that>"; D; is more correlated witl§ than>,{_; E[D;|R; ] is. If we want to take
advantage of the conditional expectatiare have to sacrifice the stronger correla-
tion between>{_, D; and the service timend sometimes it is not worth it

Acknowledgment
This research was supported by the National Science Foundation grant DMI-9901053 with the University
of California

References

1. Avramidis A.N. & Wilson, JR. (1996. Integrated variance reduction strategies for simulat@m-
erations Researc4: 327-346

2. FishmanG.S. (1989. Monte Carlg control variateand stochastic orderin&IAM Journal on Sci-
entific and Statistical Computing0: 187-204

3. Glynn, PW. & Iglehart, D.L. (1988. Simulation methods for queue&n overview Queueing Sys-

tems3: 221-256
4. LavenbergS.S., Moeller, T.L., & Welch, PD. (1982. Statistical results on control variables with

application to queueing network simulatidbperations ResearcB0: 182-202

TABLE 7. Total Delay of the First 100
Customers for aiM/M/1 Queuer =1, u= 0.5

Estimated Variance of Estimator

Control Variate 20D 9EID|R]
None 1549 Q874
As,..., Ag 1.261 0586
S;,..., So 0.297 Q318

AL Sy, ..., Agg, Sog 0.009 Q030




[ee]

10.
11
12
13

14

VARIANCE REDUCTION IDEAS 493

. LavenbergS.S. & Welch, PD. (1981). A perspective on the use of control variables to increase the

efficiency of Monte Carlo simulationd/anagement Scien@¥: 322—-335

. McGeoch C. (1992. Analyzing algorithms by simulatiarvariance reduction techniques and sim-

ulation speedup®ACM Computing Survey®4(2): 195-212

. Nelson B.L. (1990. Control variate remedie©perations ResearcB8: 974-992
. Ripley, B.D. (1987). Stochastic simulatioNew York: Wiley.
. Ross S.M. (1988. Simulating average delay—Variance reduction by conditionRrgbability in

the Engineering and Informational Scien@s309-312

Ross S.M. (1996. Stochastic proces@nd ed New York: Wiley.

Ross S.M. (1997). Simulation 2nd ed Boston Academic Press

Rubinstein R.Y. (1996. Simulation and the Monte Carlo methddew York: Wiley.

Wilson, JR. & Pritsker, A.A.B. (1984). Experimental evaluation of variance reduction techniques for
gueueing simulation using generalized concomitant variabasagement Scien@8: 1459-1472
Wilson, JR. & Pritsker, A.A.B. (1984). Variance reduction in queueing simulation using generalized
concomitant variableslournal of Statistical Computation and Simulatib®& 129-153

APPENDIX

Let f;(n;) be convex functions defined on nonnegative integersl, ..., m. For some pos-
itive integern, consider the problem

minz f.(n)

st. n; are nonnegative integers ag n, = n.
i

Let H(n) denote the minimal value of the preceding and suppgo$e..,n;,) is one set of
values such that

H(n) = éfi(nm. (A.2)
Lemma A.1: If jis such that
i) = (0 + 1) = max{ f(nf) — fi(n} + 1)}, (A.2)
then
Hn+1) = fi(n + 1) + > fi(n). (A.3)

i#]

Proor: We prove by contradictigrthat s if Eq. (A.3) is not trugthen we show that EGA.1)
would not have been true by presentiifyg, ..., fi,,) such that

Efi(ﬁi)<2fi(ni*)-
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Suppose there exist§y, ..., i) such that

D) <fi(n+1) + > fi(n).
i i#]
Consider two cases
L np>n'+1Leth =nfori#jandf =n —1 Then
Z fi(A) = 2 fi(R) + f(Ry — 1) — (7))
<fi(n' +1) +§jfi(ni‘) +h(n—1) — (")
=fi(n"+1) + ; fi(n) +f,(n7) = f(n + 1)
17]

= E fi(nf),

where the first inequality comes from the assumptimd the second comes from

the fact that; > n* + 1 andf; is convex
2. mj=n/+ 1. In this casethere must exist somesuch that, = ng + 1. Let i = i; for

i # kandf, =n,— 1. Then
z fi(hy) = E fi() + (M — 1) — fi ()
<fi(n*+1) + E fi(n®) + f(nd) — f(ng + 1)
i
=fi +1) + X fi(n) +f(n) —fi(n" +1)
i#j

where the second inequality follows because of the jnayselected in Eq(A.2).

Thereforethe proof is complete n





