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APPLYING VARIANCE REDUCTION
IDEAS IN QUEUING SIMULATIONS
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E-mail: ross@ieor.berkeley.edu

KYYYLLLEEE Y. LIIINNN*
Grado Department of Industrial and Systems Engineering

Virginia Tech
Blacksburg, VA 24061
E-mail: kylin@vt.edu

Variance reduction techniques are often underused in simulation studies+ In this
article, we indicate how certain ones can be efficiently employed when analyzing
queuing models+ The first technique considered is that of dynamic stratified sam-
pling; the second is the utilization of multiple control variates; the third concerns
the replacement of random variables by their conditional expectations when trying
to estimate the expected value of a sum of random variables+

1. INTRODUCTION

There are many standard variance reduction techniques used in simulation~see Ross
@11# ! and many of them have been used to estimate the performance of queuing
systems~see Glynn and Iglehart@3# , Lavenberg,Moeller, and Welch@4# , and Wilson
and Pritsker@13,14# !+Moreover, these techniques can often be simultaneously em-
ployed to further improve the simulation results; although this idea has appeared in
the literature~see Avramidis and Wilson@1# and McGeoch@6# !, its use can often be
strengthened+

*This work was done when Kyle Lin was at the Department of Industrial Engineering and Operations
Research, University of California, Berkeley+
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In Section 2,we introduce a new idea calleddynamic stratification.Contrary to
the traditional stratified sampling, in which we divide the original problem into
strata and run each of them a predetermined number of times, we sequentially allo-
cate each additional run to the stratum yielding the largest estimated variance re-
duction based on the latest stratum variance estimates+

In Section 3,we illustrate the use of multiple control variables+A computational
drawback of this well-known, but underused, technique arises when there are cor-
relations between the control variables~see Fishman@2# , Lavenberg and Welch@5# ,
and Nelson@7# !+ However, in some cases, useful control variables are independent,
and in these cases, the computation grows linearly as the number of control variables
increases+

If we want to estimate the expected value of the sum of the delays of the firstn
customers, then a useful technique is to use an estimator that replaces an actual delay
by its conditional expectation,given the minimal amount of information that is needed
to compute this conditional expectation+Whereas it was shown by Ross in@9# that
the sum of these conditional expectations has a smaller variance than does the sum
of the actual delays, it is not clear that these replacements should still be made when
additional variance reduction techniques are to be implemented+ Numerical data
relating to this issue are presented in Section 4+

2. DYNAMIC STRATIFICATION

Suppose that we want to use simulation to estimateE @X # + Let Y be a discrete ran-
dom variable with known probabilitiespi 5 P$Y5 i %, (i51

m pi 5 1, which is corre-
lated withX, and suppose that it is easy to simulate the value ofX conditional on
Y5 i for eachi+

If we plan to don simulation runs, then it can be shown that rather than simu-
latingn independent copies ofX and using the average obtained as an estimator, one
obtains a similarly unbiased estimator but with smaller variance by doingnpi of the
simulations conditional onY5 i, lettingui be the average of the runs conditional on
Y5 i, and using

(
i51

m

pi ui

as the estimator ofE @X # ~see Ross@11# !+We call the preceding theprestratification
estimator+ However, one can often do much better by a different choice of the num-
ber of times to do each of the conditional simulation runs+ Indeed, if we simulateni

runs conditional onY5 i, then the variance of the estimator is

(
i51

m pi
2si

2

ni

,

where

si
2 [ Var~X6Y5 i !+
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Subject to the constraint(i51
m ni 5 n, the optimal~variance minimizing! choice~see

Rubinstein@12# ! is to let

ni 5 n
pi si

(
j

pj sj

+ (2.1)

If we let W denote a random variable that is equal tosi with probability pi , i 5
1, + + + ,m, then the variance of the estimator that uses the values given by Eq+ ~2+1! is

S(
i

pi siD2

n
5

E2 @W#

n
,

whereas the value of the stratified estimator that usesni 5 npi , i 5 1, + + + ,m, is

(
i

pi si
2

n
5

E @W2#

n
+

Therefore,Var~W!0n is the additional variance reduction beyond prestratification that
is obtained by letting the number of runs be given by Eq+ ~2+1!+The difficulty with the
preceding solution, however, is that the quantitiessi

2 are unknown+Whereas a com-
mon approach is to run a small preliminary simulation to estimate the quantitiessi

2,
i 51, + + + ,m, and then use Eq+ ~2+1! with the estimates substituting for the conditional
variances to determine theni , we propose an apparently new approach that we call
dynamic stratification; it is described as follows:

1+ For a given integerk, dok runs conditional onY5 i for eachi 51, + + + ,m+ Let
ui andsi

2 be respectively the sample mean and sample variance of the values
of X obtained on thek runs conditional onY5 i+ Setni 5 k for all i+

2+ Repeat Steps 3–6 for a total ofn 2 mk times+
3+ Let

bi 5 pi
2si

2S 1

ni

2
1

ni 1 1D+
4+ Let j be such that

bj 5 max
i

bi +

5+ SimulateX conditional onY5 j+ Let the simulated value bex+
6+ Reset values

sj
2 5

nj 2 1

nj

sj
2 1

1

nj 1 1
~uj 2 x!2,

uj 5
nj uj 1 x

nj 1 1
,

nj 5 nj 1 1+

VARIANCE REDUCTION IDEAS 483



At the end of the simulation, ui is the sample mean ofX conditional onY 5 i ~or
stratumi !, and the estimator is given by(i51

m pi ui + Since the number of runs and the
sample variance of each stratum areni andsi

2 respectively, the variance of the esti-
mator can be approximated by

(
i51

m

pi
2

si
2

ni

+

Remark: The rationale for the dynamic stratification approach comes from the fact
that the problem of minimizing

(
i51

m pi
2si

2

ni

can be solved sequentially+ Specifically, let H~n! be the minimal value of the pre-
ceding when(i51

m ni 5 n, and suppose that~n1
*, + + + , nm

* ! is one set of values yielding
H~n!+ Then, because of convexity of the functions

fi ~k! [
pi

2si
2

k
,

it can be shown~see the Appendix! that if j is such that

fj ~nj
*! 2 fj ~nj

*1 1! 5 max
i

$ fi ~ni
*! 2 fi ~ni

*1 1!%,

then

H~n 1 1! 5 fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*!+

Since the reset values in Step 6 are equal to the new sample mean and sample
variance for those runs conditional onY5 j, it follows that at each step, the dynamic
stratification algorithm chooses the simulation run that yields the largest estimated
improvement+

For an illustration of the preceding, consider a queuing system in which cus-
tomers arrive according to a Poisson process with ratel, and suppose that, for a
specified timet, we are interested inE @X # , the expected value of the sum of the
delays in the queue of all customers that arrive by timet+ Letting N~t ! denote the
number of arrivals by timet,we can choose integer valuesnon both sides ofE @N~t !#5
lt and use dynamic stratification by simulating the arrival process conditional on
N~t ! 5 n+ For instance, if lt 5 100, we can write

E @X # 5 (
i565

135

E @X6N~t ! 5 i # pi 1 E @X6N~t ! , 65#P~64!

1 E @X6N~t ! . 135# OP~135!,
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where

pi 5
e2lt~lt ! i

i!
, P~ j ! 5 (

i50

j

pi , OP~ j ! 5 1 2 P~ j !;

that is, in essence, we break up the simulation problem into 73 strata and, at each
stage, we use the dynamic stratification algorithm to decide which stratum to sim-
ulate+ The arrival process conditional onN~t ! 5 i can be simulated by generatingi
independent uniform~0,1! random numbers and then sorting them~see Ross@10# !+
Thejth sorted value multiplied byt then gives the time of thejth arrival+ The sorting
step can be eliminated by generatingi 1 1 random numbersU1, + + + ,Ui11 and then
taking the natural log of each one+ The time of thejth arrival, j 5 1, + + + , i, would be
given by

t (
k51

j

log~Uk!

(
k51

i11

log~Uk!

5

t logS)
k51

j

UkD
logS)

k51

i11

UkD
+

The arrival process conditional onN~t ! , 65 ~or N~t ! . 135! can be simulated by
first using the discrete inverse transform algorithm to generate the value ofN~t !
conditional onN~t ! , 65 ~or N~t ! . 135! and then using the preceding to generate
the arrival times+ Table 1 gives the simulation results for estimating the expected
value of the total delay of all customers who arrive byt 5 100 in anM0M01 queue
with l 5 µ5 1, based on 1 million runs+

The additional work needed for dynamic stratification compared to prestratifi-
cation is Steps 3 and 4+ However, their computational complexities are 1 and logm
~construct an ordered list ofbi and insert the updatedbj each time!, respectively+
Both of these are negligible when each run involves generating hundreds of random
numbers+

Table 1. Total Delay of the Customers
Arriving by t 5 100 for anM0M01 Queue,

l 5 µ5 1

Estimated Variance
of Estimator

Raw estimator 0+285
Prestratification 0+161
Dynamic stratification 0+142
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The dynamic stratification approach can also be efficiently employed when the
arrival process is a nonhomogeneous Poisson process with intensity functionl~t !+
The simulation of the conditional~on the number of arrivals by timet ! arrival pro-
cess can be effected by using the result that the unordered set of arrival times are
i+i+d+ ~independent and identically distributed! according to the distribution function

F~x! 5

E
0

x

l~ y! dy

E
0

t

l~ y! dy

, 0 # x # t+

We can still use dynamic stratification on the arrival process even when we are
interested in the expected value of the sum of the delays in the queue of the firstr
customers~or just the expected delay of customerr !, for some specifiedr+ If the
arrival process is a homogeneous Poisson process, then we can use thatTr , the time
of therth arrival, is gamma distributed with parameters~r,l!+We can then specify
intervals

~0, t1!, ~t1, t2!, + + + , ~tm21, tm!, ~tm,`!

with E @Tr #5r0l being in one of the intervals near the middle,and let stratumi be con-
ditional on the event thatTr lies in~ti21, ti !,wheret050 andtm115`+ The values of
pi are easily computed and the simulation of the arrival process conditional onTr ly-
ing in a specified interval can be effected by first generating the value ofTr given that
it lies in that interval~the rejection method with a uniform distribution can be used!+
If Tr 5s,we then generate the arrival times by generating and then orderingr 21 uni-
forms; the jth of these multiplied bysgives the simulated time of thejth arrival+

Another way of using a dynamic stratification approach relating to arrivals when
we are interested in the sum of delays of the firstr customers is to do the simulation
conditional onN~r0l!+ To accomplish this, first generate the value of this random
variable, say its generated value ism+ Then, generate themarrival times conditional
onN~r0l! 5 m+ If r # m, take the firstr of these as the arrival process; if m, r, take
these as the firstmarrival times, and then generate an additionalr 2 mexponentials
with ratel, sayY1, + + + ,Yr2m+ Thekth,m, k # r, arrival time should be set equal to
Tk, where

Tm11 5
r

l
1 Y1,

Tm1i 5 Tm1i21 1 Yi , i 5 2, + + + , r 2 m+

Table 2 gives the simulation results for estimating the expected value of the total
delay of the first 100 customers for anM0M01 queue withl 5 µ 5 1 based on 1
million runs+

The use of dynamic stratification breaks up a simulation problem into strata+ To
efficiently do the simulation, additional variance reduction techniques should be
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utilized in obtaining the final estimators in the strata+ This is indicated in the fol-
lowing section+

3. MULTIPLE CONTROL VARIATES

Consider a queuing system in which the arrival process is a renewal process and
the customer service times have known probability distributions+ Let Di , i 5
1, + + + , n 1 1, denote the delay in queue of customeri and suppose that we are
interested in using simulation to estimateE @D# , where D is a linear combina-
tion of theDi + ~For instance, D might be the sum of all the delays, or the delay
of customern 1 1+! Also, let Ai be the interarrival time between customersi and
i 1 1, and letSi be the service time of customeri+ SinceD is usually an increasing
function of the service times and a decreasing function of the interarrival times,
the quantity(i51

n ~Si 2 Ai !, is often proposed as a control variate~see Ripley@8# !+
However, since it is not clear that equal weight should be given to the amounts by
which (i51

n Si and(i51
n Ai exceed their known means, it would be better to use

both of these sums as control variates+ Indeed, it would be even better to use all
2n random variablesA1,S1, + + + ,An,Sn as control variates; that is, we should con-
sider an estimator of the form

D 1 (
i51

n

ai ~Ai 2 E @Ai # ! 1 (
i51

n

bi ~Si 2 E @Si # !,

where the best values of the constantsai andbi are to be determined by the simula-
tion+ It should be noted that when the sequence of random variablesA1,S1, + + + ,An,Sn

is independent, the determination of these constants only requires covariance esti-
mations between individual ones of these random variables andD+ Therefore, to
minimize the variance of the estimator, one should set

ai 5 2
Cov~D,Ai !

Var~Ai !
,

bi 5 2
Cov~D,Si !

Var~Si !
+

Table 2. Total Delay of the First 100 Customers for
anM0M01 Queue, l 5 µ5 1

Estimated Variance
of Estimator

Raw estimator 0+185
Dynamic stratification onN~r0l! 0+130
Dynamic stratification onTr 0+128
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Then, the minimized variance is

Var~D! 2 (
i51

n Cov2~D,Ai !

Var~Ai !
2 (

i51

n Cov2~D,Si !

Var~Si !
+

In practice, we can estimate Var~D!, Cov~D,Ai !, and Cov~D,Si ! from the simula-
tion and use them to estimateai , bi , and the variance of the estimator+ Table 3 gives
simulation results for estimating the expected value of the total delay of the first 100
customers for anM0M01 queue having mean interarrival and mean service times
both equal to 1; that is, D 5 (i51

100 Di +
One can see that individually using all theAi andSi as control variates results in

a variance approximately 60% of that obtained by using(~Si 2 Ai ! and one-fifth of
that of the raw estimator+Moreover, the only additional work of using eachAi andSi

as a control variable is to keep track of the sample mean ofAi , Si , and also
Cov~Ai ,D!,Cov~Si ,D!+ This is very little work compared to generating the whole
process+

The estimated correlation coefficients of the total delayD andAi ~Si ! are plotted
in Figure 1~Fig+ 2!+ From the figures, we can see that the correlation coefficient
betweenD andSi is approximately a unimodular function ini, which increases and
has its peak aroundi 5 20 and then decreases toward 0+ Intuitively the correlation
betweenSi andD decreases ini wheni is large, because the larger the value ofi, the
fewer is the number of customers that will arrive after him+ However, consider the
first customer; although there are 99 customers behind him, the system is empty
when he arrives andS1 plays a role only if it is greater thanA1+ On the other hand,
when customer 20 arrives, it is more likely that a line is already there, soS20 affects
the total delay more thanS1 does+

Remark: Technically speaking, our controlled estimators are not unbiased since
they involve estimators ofai andbi rather than the actual constants+ However, we

Table 3. Total Delay of the First 100
Customers for anM0M01 Queue, l 5 µ5 1

Control Variate
Estimated Variance

of Estimator

Raw estimator 0+185
(i51

99 Ai 0+138
(i51

99 Si 0+105
(i51

99 ~Si 2 Ai ! 0+060
(i51

99 Ai and(i51
99 Si 0+057

A1, + + + ,A99 0+130
S1, + + + ,S99 0+091
A1,S1, + + + ,A99,S99 0+037
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should gain almost all of the benefit of using the theoretical best constants+ Our
variance estimators are estimates of the idealized situation where the best constants
rather than estimators of them are used+

Suppose now that the arrival process is a Poisson process and that we have made
use of the dynamic stratification approach of Section 2+ Assuming that there are
enough simulations done conditional onr arrivals,we recommend using each of the
r service times as a control variable+ If there are not that many runs conditional onr
arrivals, then it would not be possible to accurately estimate all of the needed co-
variances betweenD andSi , i 5 1, + + + , r, and so we recommend the single control
variable(i51

r Si in this case+ The simulation results of this strategy are compared in
Table 4+

Now let us return to the problem in whichD is the sum of the delays of all
customers that arrive by a fixed timet+ When not stratifying, the natural control

Figure 1. The estimated correlation
coefficient betweenAi and(i51

100 Di +
Figure 2. The estimated correlation
coefficient betweenSi and(i51

100 Di +

Table 4. Total Delay of the first 100 Customers for an
M0M01 Queue, l 5 µ5 1

Dynamic
Stratification

Control
Variate

Estimated Variance
of Estimator

On N~r0l! none 0+130
On N~r0l! (i51

99 Si 0+051
On N~r0l! S1, + + + ,S99

a 0+036
On Tr None 0+128
On Tr (i51

99 Si 0+049
On Tr S1, + + + ,S99

a 0+034

aUse(i51
99 Si instead for those strata where the number of runs is less than 1000+
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variables areN~t !, the number of arrivals by timet, and(i51
N~t !21 Si , the total service

time of the arrivals by timet except the last one+1 Of course,we can use both of them
at the same time, but not much improvement is expected because of the strong cor-
relation between the two of them+ When stratifying onN~t !, the variance in each
stratum lies mainly in the service process, so we suggest usingS1, + + + ,Sr21 or(i51

r21 Si

as control variables for the stratumN~t ! 5 r, depending on whether the number of
runs in a stratum is enough to accurately estimate Cov~Si ,D!+

Table 5 gives the simulation results for estimating the expected value of the
total delay of all the customers that arrive byt 5 100 for anM0M01 queue with
l 5 µ 5 1 based on 1 million runs+

Although we reduce most of the variance in the arrival process by stratify-
ing N~t !, we can still utilize a control variable related to arrivals conditional on
N~t ! 5 r+ Intuitively, D will be smallest when the arrivals are spread out, rather than
being clumped in places+ For instance, if we are interested in the sum of the delays
of all arrivals by timet and the interarrivalsAi have been generated conditional onr
arrivals by timet, then the quantity(i51

r Ai
2 1 ~t 2 (i51

r Ai !
2, which is minimized

when ther arrivals are equally spaced, is a good choice for a control variable+ Since
eachAi andt 2(i51

r Ai have, in this case, the same distribution as the smallest order
statistic of a set ofr i+i+d+ uniform ~0, t ! random variables, it follows that

E @Ai
2# 5

2t 2

~r 1 1!~r 1 2!

and therefore

EF(
i51

r

Ai
2 1St 2 (

i51

r

AiD2G 5
2t 2

r 1 2
+

1 We can compute the expectation of this control variable sinceSi andN~t ! 2 1 are independent+

Table 5. Total Delay of the Customers byt 5 100 for an
M0M01 Queue, l 5 µ5 1

Dynamic
Stratification

Control
Variate

Estimated Variance
of Estimator

No None 0+285
No N~t ! 0+169
No (i51

N~t !21 Si 0+078
No N~t ! and(i51

N~t !21 Si 0+077
Yes None 0+142
Yes (i51

r21 Si 0+054
Yes S1, + + + ,Sr21

a 0+034

aUse(i51
r21 Si instead for those strata where the number of runs is less than 1000+
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Another possibility for a control variable for the arrival process is to divide the
interval~0, t ! into, say, k subintervals, let l i denote the number of ther arrivals that
are in subintervali, and then use(i51

k l i
2 as a control variable+

When applying(i51
r Ai

2 1 ~t 2 (i51
r Ai !

2 or (i51
k l i

2 along with dynamic strat-
ification in the model described in Table 5, the estimated variance of the estimators
are 0+142 and 0+140 ~divide the whole interval intok 5 10 subintervals with equal
length!, respectively+The improvement over just using dynamic stratification is thus
rather minimal+ However, since the arrival process and the service process are in-
dependent, we can useS1, + + + ,Sr21 and(i51

r Ai
2 1 ~t 2 (i51

r Ai !
2 ~or (i51

k l i
2! at the

same time and the reduction in variance is additive+

4. CONDITIONAL ESTIMATOR

To estimateE @(i51
n Di # in a G0M0k ~or G0G01! queue, Ross @9# showed that

(i51
n E @Di 6Hi # is a better estimator than(i51

n Di , whereHi is the history of the
process up to the moment that customeri arrives and the minimal information
needed to compute the conditional expectation+ For example, in a G0G01 queue
with mean service time 10µ, Hi 5 $Ri ands%, whereRi is the number of customers
in the system ands is the age of the customer in service when customeri arrives+
Let S denote the service time of the customer in service when customeri arrives;
then,

E @Di 6Hi # 5
~Ri 2 1!1

µ
1 E @S2 s6S. s# I $Ri . 0%+

If it is not easy to computeE @S2 s6S. s# , we can letHi also include the actual
remaining service time of the customer being served+

Now, suppose we want to estimate the expected total delay of the first 100
customers for anM0M01 queue+ The conditional estimator of the delay of customer
i is given by

E @Di 6Ri # 5
Ri

µ
+

In addition to the conditional estimator, we use control variables suggested in Sec-
tion 3+ In Table 6, we compare the estimated variances of the two estimators when
we use them together with different choices of control variables, based on 1 million
runs+

It is noted in Table 6 that although the variances in column 2 are always smaller
than those in column 1, we gain more from the control variablesSi when we use

(i51
100 Di since the correlation betweenSi and(i51

100 Di is stronger than that betweenSi

and(i51
100 E @Di 6Ri # + In fact, whenm gets smaller, it may be the case that it is better

to not use the conditional estimator+ Table 7 gives an example of when it is the best
strategy to use(i51

100 Di and allAi , Si as control variables+ The reason that(i51
n Di is

preferable over(i51
n E @Di 6Ri # when using control variables involving service time
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is that(i51
n Di is more correlated withSi than(i51

n E @Di 6Ri # is+ If we want to take
advantage of the conditional expectation, we have to sacrifice the stronger correla-
tion between(i51

n Di and the service time, and sometimes it is not worth it+
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APPENDIX

Let fi ~ni ! be convex functions defined on nonnegative integers, i 5 1, + + + ,m+ For some pos-
itive integern, consider the problem

min(
i

fi ~ni !

s+t+ ni are nonnegative integers and(
i

ni 5 n+

Let H~n! denote the minimal value of the preceding and suppose~n1
*, + + + , nm

* ! is one set of
values such that

H~n! 5 (
i51

m

fi ~ni
*!+ (A.1)

Lemma A.1: If j is such that

fj ~nj
*! 2 fj ~nj

*1 1! 5 max
i

$ fi ~ni
*! 2 fi ~ni

*1 1!%, (A.2)

then

H~n 1 1! 5 fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*!+ (A.3)

Proof: We prove by contradiction; that is, if Eq+ ~A+3! is not true, then we show that Eq+ ~A+1!
would not have been true by presenting~ [n1, + + + , [nm! such that

(
i

fi ~ [ni ! , (
i

fi ~ni
*!+
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Suppose there exists~ Sn1, + + + , Snm! such that

(
i

fi ~ Sni ! , fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*!+

Consider two cases:

1+ Snj . nj
*1 1+ Let [ni 5 Sni for i Þ j and [nj 5 Snj 2 1+ Then,

(
i

fi ~ [ni ! 5 (
i

fi ~ Sni ! 1 fj ~ Snj 2 1! 2 fj ~ Snj !

, fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*! 1 fj ~ Snj 2 1! 2 fj ~ Snj !

# fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*! 1 fj ~nj

*! 2 fj ~nj
*1 1!

5 (
i

fi ~ni
*!,

where the first inequality comes from the assumption, and the second comes from
the fact that Snj . nj

*1 1 andfj is convex+
2+ Snj # nj

*11+ In this case, there must exist somek such that Snk $ nk
*11+ Let [ni 5 Sni for

i Þ k and [nk 5 Snk 2 1+ Then,

(
i

fi ~ [ni ! 5 (
i

fi ~ Sni ! 1 fk~ Snk 2 1! 2 fk~ Snk!

, fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*! 1 fk~nk

*! 2 fk~nk
*1 1!

# fj ~nj
*1 1! 1 (

iÞj

fi ~ni
*! 1 fj ~nj

*! 2 fj ~nj
*1 1!

5 (
i

fi ~ni
*!,

where the second inequality follows because of the wayj is selected in Eq+ ~A+2!+

Therefore, the proof is complete+ n
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