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Delay is one of the key parameters that are utilized in the optimization of traffic signal timings.

Furthermore, delay is a key parameter in computing the level of service provided to motorists at

signalized intersections.  Delay, however, is a parameter that is difficult to estimate because it

includes the delay associated with decelerating to a stop, the stopped delay and the delay

associated with accelerating from a stop.  While many methods and software are currently used

to estimate the delay incurred by motorists as they approach a signalized intersection, very little

research has been conducted to assess the consistency of delay estimates among the various

analytical and simulation approaches.  In an attempt to systematically evaluate and demonstrate

the assumptions and limitations of different delay estimation approaches, this chapter compares

the delay estimates from numerous models for an undersaturated signalized intersection

considering uniform and random arrivals.  Specifically, the chapter compares a theoretical

vertical queuing analysis model, the queue-based models used in the 1994 and 2000 versions of

the Highway Capacity Manual, the queue-based model in the 1995 Canadian Capacity Guide for

Signalized Intersections, a theoretical horizontal queuing model derived from shock wave

analysis, and the delay estimates produced by the INTEGRATION microscopic traffic simulation

software.

The results of the comparisons when considering uniform arrivals indicate that all delay models

produce identical results under such traffic conditions, except for the estimates produced by the

INTEGRATION software, which tends to estimate slightly higher delays than the other

approaches.  These differences are attributed to two factors.  First, the INTEGRATION model

computes the delay associated with a constrained vehicle deceleration and acceleration, while the

analytical approaches assume instantaneous unconstrained vehicle deceleration and acceleration

levels. Second, the INTEGRATION model, unlike the analytical queuing and shock wave
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analysis models, captures the discrete nature of traffic flow, causing the delay estimates

computed by model to be sensitive to the departure times of vehicles.  The results of the

comparisons for scenarios assuming random arrivals also indicate that the delay estimates

obtained by a micro-simulation model like INTEGRATION are consistent with the delay

estimates computed by the analytical approaches.

4.1 INTRODUCTION

4.1.1 OVERVIEW OF QUEUING THEORY

A primary objective in operational problems involving flow is to ensure that the average capacity

can handle the average flow, so that persistent traffic jams do not occur.  However, because of

fluctuations in demand and service times, merely guaranteeing that highway capacity can handle

traffic demand on the average does not preclude the formation of transient or even permanent

bottlenecks.

Queuing theory was developed in order to describe the behavior of a system providing services

for randomly arising demands.  It originated in a paper written by A. K. Erlang in 1909 on the

problem of congestion in telephone traffic.  In later works Erlang observed that telephone

systems were characterized by Poisson inputs, exponential holding times, and multiple service

channels.  Over the past four decades, much research into queuing theory has been conducted,

particularly in the field of operations research.  In order to characterize the performance of a

queuing system, a number of input parameters are required including:

(a) the distribution of arrivals;

(b) the input source, whether finite or infinite;

(c) the queue discipline, whether first-in-first-out, priority, or random selection;

(d) the channel configuration, that is, the number of channels and whether the channels

are in series or in parallel; and

(e) the distribution of service times for each channel.
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Input and service-time distributions may be of any form, however the science of queuing theory

has been developed around three special types of distributions: deterministic D, random M, and

Erlang Ea.  Using this terminology, an M/D/1 model denotes a single-channel queue (parameter

1) with a random (Poisson) distribution of arrivals (parameter M) and a deterministic distribution

of service times (parameter D).

A queuing system is said to be in state n if it contains exactly n items (n > 0), including those

items in queue and those in service.  If the arrival rate q is less than the service rate C, stability

exists in the system and there is a finite time-independent probability of the queue being in any

state.  However, if the ratio of flow rate to service rate is greater than unity, the state of the

waiting line increases in length and is no longer independent of time.

Using standard queuing theory, the average number of vehicles in a system assuming an infinite

source can be computed using Equation 4.1.  The relationship results in an infinite number of

vehicles at a volume-to-capacity (v/c) ratio (denoted as ρ) of 1.0.  The average delay within the

system is computed using Equation 4.2 by dividing the expected number of vehicles by the

channel capacity (C), which again tends to infinity at a v/c ratio of 1.0.
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4.1.2 SIGNIFICANCE OF DELAY AS A MEASURE OF EFFECTIVENESS

Vehicle delay is perhaps the most important parameter used by transportation professionals to

measure the performance of signalized intersections.  The importance of this parameter is evident

in the fact that it is utilized in both the design and the evaluation of traffic signalized

intersections.  As an example, delay minimization is frequently used as a primary optimization

criterion when determining the operating parameters of traffic signals at both isolated and

coordinated signalized intersections.  In another example, the Highway Capacity Manual (HCM)
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uses the average delay incurred by vehicles on approaches to signalized intersections as a

criterion for determining the level of service provided to motorists by the traffic signals (TRB,

1998).  Delay is frequently used as an optimization and evaluation criterion because it is a

measure of performance that a driver can directly relate to.  Moreover, delay is a criterion whose

meaning is easily comprehended by both traffic professionals and the general public.  However,

delay is also a parameter that is not easily determined.  On this subject, Teply (1989) indicated

that a perfect match between delay measured in the field and analytical formulas could not be

expected.  In addition, while various models have been proposed for estimating delays at

signalized intersections (Hurdle, 1984; Akcelik, 1988; Teply 1989; Akcelik and Rouphail, 1993),

very little research has been concerned with the issue of consistency of delay estimates from one

model to the other.  In one study, McShane and Roess (1990) suggested that the delay models

derived from queuing analysis and shock wave analysis yield different results when both applied

to the analysis of a bottleneck.  Using a simple numerical example, they demonstrated that the

use of a model derived from queuing analysis may underestimate the overall magnitude of delays

when compared to the estimates produced by a model derived from shock wave analysis.  Nam

(1998) and Chin (1996) have demonstrated similar findings.  The analysis presented in this

chapter, however, will demonstrate that the queuing theory and shock wave analysis do indeed

provide identical results in terms of vehicle delay.  Furthermore, the chapter demonstrates that

the computation of delay using car-following without an explicit delay formulation results in

similar delay estimates compared to analytical formulations.  Furthermore, the chapter presents

the assumptions, limitations, and strengths of each of the delay estimation approaches.

4.1.3 OBJECTIVES AND LAYOUT OF THE CHAPTER

The objectives of the chapter are twofold. First, the chapter describes the assumptions,

limitations, and strengths of the different delay computation methods. Second, the chapter

demonstrates the consistency and/or inconsistency between the different methods in terms of the

approach and the computed delays for undersaturated fixed-time signalized intersections

assuming uniform and random arrivals.
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In order to achieve this goal, the chapter first presents some background material on vehicle

delay attributed to traffic signal operations at signalized intersections.  This presentation is then

followed by a description of the various delay models that are compared in the chapter.  These

models include a vertical theoretical delay model based on queuing analysis, the delay models

used in the HCM 1994 (TRB, 1994), 1995 Canadian Capacity Guide for Signalized Intersections

(ITE, 1995), and the HCM 2000 (TRB, 1998), a horizontal theoretical delay model based on

shock wave analysis, and six delay estimates produced by the INTEGRATION microscopic

traffic simulation software (Van Aerde, 1998).  Following these descriptions, comments are

made regarding the consistency of delay estimates from one model to the other for the case of an

undersaturated signalized intersection.  The comparison of delay estimates for the case of a

congested intersection is the subject of a forthcoming chapter.

4.2 DELAYS AT SIGNALIZED INTERSECTIONS

The delay experienced by a vehicle approaching a signalized intersection approach is defined as

the difference between the travel time experienced by the vehicle in order to traverse the

intersection and the travel time that would have been experienced by the same vehicle in the

absence of the traffic signal.  To illustrate this definition, Figure 4.1 shows the speed profile of a

vehicle stopping at a traffic signal before accelerating to its desired speed after the traffic signal

turns green.  The profile, which was generated using the INTEGRATION microscopic simulation

software, indicates that the vehicle enters the intersection approach link after 783 seconds of

simulation and starts to decelerate after 900 seconds of simulation to come to a complete stop at

916 seconds. Once the traffic signal turns green, the vehicle accelerates and attains its desired

speed of 60 km/h at 947 seconds. Knowing that 32 seconds is normally required by a vehicle to

travel across the simulated intersection and that it took the simulated vehicle a total of 212

seconds to do so, it can be determined that the vehicle incurred in this case a 180-second delay.

As indicated in the figure, this delay graphically corresponds to the area between the line

indicating the vehicle free-flow speed and the actual speed profile of the vehicle.

Mathematically, this delay can be computed from instantaneous speed measurements  using

Equation 4.3.
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where:

T = duration of the vehicle’s trip,

uf = vehicle speed under free-flow conditions,

u(t) = instantaneous speed at time t.
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Figure 4.1: Simulated Speed Profile of a Vehicle Crossing a Signalized Intersection

Figure 4.1 also illustrates the notion of deceleration delay, stopped delay and acceleration delay.

Typically, transportation professionals define stopped delay as the delay incurred by a vehicle

when fully immobilized, while deceleration and acceleration delay are the delay incurred by a

moving vehicle when it is either decelerating or accelerating.  In some studies, stopped delay also

includes any delay incurred by the vehicle while it is moving at an extremely low speed (e.g. less
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than 5 km/h).  Specifically, the 1995 Canadian Capacity Guide for Signalized Intersections

(CCG) defines stopped delay as any delay incurred by a vehicle traveling at a speed lower than

the average pedestrian speed (ITE, 1995).

To better illustrate the distinction between deceleration, stopped and acceleration delay, consider

Figures 4.2 and 4.3, which illustrate the trajectory and selected speed profiles of a series of

vehicles arriving at a signalized intersection within a 60-second cycle at a rate of 720 veh/h.  This

rate corresponds to an arrival rate of 15 vehicles per 60 seconds, or 5 vehicles per second.  As

was the case in Figure 4.1, these figures were created using output from the INTEGRATION

model.  In Figure 4.2, it can be observed that vehicles 1 through 8 come to a complete stop, either

as a direct consequence of the display of a red signal indication or because at least one vehicle is

queued at the intersection stop line.  All these vehicles thus incur deceleration, stopped and

acceleration delay.  In the figure, it can also be observed that vehicles 9 through 11, which reach

the intersection near the end of the queue dissipation, only experience deceleration and

acceleration delay as they only need to slow down to maintain a safe distance with the vehicles

ahead.  Finally, the last vehicle (vehicle 12) to reach the intersection before the return of the red

interval experiences no delay, as this vehicle joins the platoon of previously queued vehicles after

they have started to move at free-flow speed.

While most of the delay experienced by motorists at signalized intersections is directly caused by

the signal operation, a fraction of the delay is attributable to the time required by individual

drivers to react to changes in the signal display and to accelerate from a stop to their desired

speed.  This delay in vehicle departures is termed start-up lost time.  As an example, Figure 4.4

illustrates the variation in the time interval between successive stop line cross times for each of

the 12 simulated vehicle arrivals of Figure 4.2.  The figure demonstrates that the first vehicle

started moving across the stop line 4.3 seconds after the green initiation.  The second, third, and

fourth vehicles then followed with respective headways of 3.0, 2.7 and 2.4 seconds.  Following

these vehicles, the headway then tends to the 2-second saturation flow rate headway, which

corresponds to a saturation flow rate of 1800 veh/h.  In the case of Figures 4.2 and 4.3, it should

be noted that the longer headways that are simulated for the first four simulated vehicles are not
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caused by delayed reactions from drivers, but are the result of constrained vehicle accelerations.

This is due to the fact that the INTEGRATION model assumes instantaneous reaction times.  As

with many simulation models, true delayed reaction time is take into consideration by simulating

effective signal timings.
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The start up lost time is conceptually illustrated in Figure 4.5 by the delayed increase in the

vehicle departure rate at the beginning of the green interval.  Assuming that the demand is high

and that vehicles are queued at the end of the green interval, field observations also indicate that

vehicles continue to depart at the saturation flow rate during a portion of the amber interval.  This

utilization of the green interval is termed the end-gain.  The portion of the cycle length that

involves flow at saturation flow rate is termed the effective green, which is computed using

Equation 4.4.

es TTGg +−= (4.4)

where:

g = effective green time (seconds),

G = displayed green time (seconds),

Ts = start-up lost time (seconds),

Te = end-gain (seconds).

The delay function for vehicle arrivals at a signalized approach is non-linear.  This is illustrated

in Figure 4.6.  Specifically, the figure illustrates the analytical delay relationship as a function of

the v/c ratio.  As mentioned earlier, standard queuing theory would indicate that delay tends to

infinity as the v/c ratio tends to 1.0 because it assumes an infinite analysis period.  Instead, field

observation indicates that delay is finite at v/c ratios in excess of 1.0 because oversaturation delay

is not the product of an infinite demand, but the product of a high demand followed, at some

point in time, by a lower demand that allows the congestion to dissipate.

The randomness of vehicle arrivals results in a delay function that tends to a uniform delay model

at low v/c ratios and a deterministic oversaturation delay model at high v/c ratios (in excess of

1.3).  At v/c ratios in the range of 0.8 to 1.2, the stochastic nature of traffic arrivals results in

significantly higher delays than estimated by standard deterministic queuing models.  In this

range of v/c ratios, the non-linear relationship between delay and the v/c ratio means that the

marginal delay associated with an increase in demand is higher than the one associated with a
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decrease in demand.  This causes the delay associated with random arrivals to be higher than the

delay associated with uniform arrivals.
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4.3 MICROSCOPIC SIMULATION DELAY MODELS

Microscopic simulation models are commonly used to evaluate alternative traffic-improvement

projects prior to their field implementation.  A key factor in the use of a simulation tool is its

validity, or consistency with standard traffic flow theory.  Unfortunately, the analytical approach

to traffic flow theory is typically limited in scope and, furthermore, requires simplifying

assumptions.  Consequently, an analysis of these simplifying assumptions and limitations

together with their impacts on the accuracy of the analytical approaches should be accounted for

while validating simulation models.

Microscopic traffic simulation models have the ability to track individual vehicle movements

within a simulation environment.  Vehicle behavior is usually modeled utilizing car-following,

lane-changing and gap-acceptance logic.  As a result, these models can compute the delay

incurred by vehicles without the need for analytical delay formulas.  In addition, by constraining

the vehicle deceleration and acceleration capabilities, micro-simulation models can capture the

deceleration and acceleration components of the delay, a factor that is beyond the scope of the

current state-of-the-practice analytical approaches.

This section describes how delay is computed within the INTEGRATION software. Furthermore,

this section describes the different delay outputs that are provided by the model. Subsequent

sections will compare the delay estimates from the INTEGRATION model to standard traffic

flow theory.  The objective of the comparison is twofold. First, the comparison will demonstrate

the validity of the simulation software within the scope of the state-of-the-art analytical

approaches. Second, the comparison will demonstrate the assumptions and limitations of the

state-of-the-art analytical approaches.

In the analysis presented in the chapter, the INTEGRATION software is used to estimate delays

at an approach to a fixed-time signalized intersection.  This model features an integrated dynamic

traffic simulation and traffic assignment model.  As indicated in Table 4.1, the current version of

the model allows delay estimates to be produced based on second-by-second vehicle trackings
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using Equation 4.3. Depending on the output file analyzed, the model offers the opportunity to

directly compare delay estimates at the individual vehicle, link, and network levels.

Table 4.1: INTEGRATION Delay Estimation Outputs

Output File Delay Estimate Delay Formula

File 10 Total travel on individual links Total link travel time – Total link free flow travel time

File 11 Average delay on individual links
Sum of travel times experienced by vehicles on link – Sum

of free flow link travel times

File 12
Average delay on individual links in time

interval t

Sum of travel times experienced by vehicles on link in

interval t – Sum of free flow link travel times in interval t

File 15
Network delay experience by individual

probe vehicles

Time taken to complete a network trip – Free flow travel

time along network path

File 16
Link delay experienced by individual

probe vehicles
Time taken to travel along a link – Link free flow travel time

Summary File Average vehicle network delay
Sum of individual network travel times – Sum of network

free flow travel times

4.4 VERTICAL QUEUING ANALYSIS DELAY MODELS

Current state-of-the-practice queuing models rely on two critical simplifying assumptions in

computing the delay incurred by vehicles arriving at signalized intersections.  The first

assumption establishes the hypothesis that vehicles can decelerate and accelerate instantaneously.

Figure 4.7 illustrates the effect of this assumption on projected vehicle trajectories and speed

profiles.  When analyzing the two diagrams, it can first be observed that the assumption of

instantaneous acceleration and deceleration attempts to estimate the overall delay incurred by a

vehicle by converting a portion of the deceleration and acceleration delay to stopped delay.

Consequently, the resulting delay estimates cannot directly be categorized as stopped,

deceleration or acceleration delay.  The second assumption assumes that vehicles queue

vertically, which means that vehicles travel the full length of an approach link before stopping.

These two assumptions result in an underestimation of the delay and the maximum queue size as

vehicles are assumed to arrive at the end of the queue later than they would in reality.
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Deterministic queuing models assume a basic cumulative arrival and departure pattern, as

illustrated in Figure 4.8.  In the diagram, the arrival curve represents the number of vehicles that

would have reached the intersection if traffic were not stopped by the signal operation.  The

departure curve, on the other hand, represents the number of vehicles that actually depart from

the intersection.  As a result, the vertical distance between the arrival and departure curves

represent the number of vehicles that have not been able to cross the intersection and that have

therefore joined the stop line queue, while the horizontal distance represents the time that a

particular vehicle spends waiting in queue.

In Figure 4.8, three distinct periods can be identified regarding queue size evolution within a

cycle length.  The first period corresponds to the interval during which the departure curve is

horizontal.  This period corresponds to the portion of the cycle length during which the traffic

signal is red and no traffic can cross the stop line, which results in a growth in the queue size.

The second period corresponds to the first portion of the green phase during which the queue is

being served and traffic leaves the intersection at the saturation flow rate.  For undersaturated

conditions the queue is always served before the traffic signal turns red again.  In the last period,

which only occurs in undersaturated operations, both the cumulative arrival and departure curves

overlap, indicating that all arriving traffic is able to cross the stop line without incurring any

delay, i.e., that the queue that formed during the previous red interval has completely dissipated.

In Figure 4.8 the total delay incurred by traffic within a cycle length can be estimated by

calculating the area between the arrival and departure curves.  To better understand how delay is

computed from the queuing diagram, Figure 4.8 can be reconstructed to illustrate the queue size

evolution within a single cycle length, as illustrated in Figure 4.9.  In this diagram, it can be

observed that the maximum queue size is assumed to occur immediately before the start of the

effective green time.  It is also observed that the time required to clear the queue is taken as a

function of the difference between the rate at which vehicles arrive at the back of the queue and

the rate at which they discharge across the stop line.  Based on these observations, Equations 4.5
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and 4.6 can be derived to calculate the total and average delays incurred by vehicles at an

undersaturated fixed-time signalized approach.
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where:

D = total delay at signalized approach (seconds),

d = average delay per vehicle (seconds),

r = effective red interval duration (seconds),

g = effective green interval duration (seconds),

C = traffic signal cycle time (seconds),

S = saturation flow rate (vehicles/hour of green),

c = capacity (S×g/C) (vehicles/hour),

X = arrival to capacity ratio (unitless), and

q = arrival flow rate (vehicles/hour).

Since Equations 4.5 and 4.6 assume uniform vehicle arrivals, both equations only estimate

uniform delay.  It is also observed that both equations define the signal operation in terms of an

effective red interval duration instead of an actual red duration.  In both equations, the effective

red interval constitutes the remainder of the cycle length.
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4.5 CAPACITY GUIDE MODELS

Numerous efforts have been devoted to the development of delay estimation models that would

take into account both the deterministic and random aspects of traffic behavior.  Following the

work of Webster and Cobbe (1966), a number of stochastic delay models that attempt to account

for these components have been developed using queuing analysis principles (Hurdle, 1984;

Akcelik, 1988; Teply, 1989; Akcelik and Rouphail, 1993 among numerous publications).  These

models all share the same basic assumptions. First, they implicitly consider that vehicles can

decelerate and accelerate instantaneously.  Second, they all assume that vehicles queue vertically.

Finally, it is usually assumed that the relation of delay to the arrival pattern is deterministic and

that a Poisson distribution can describe the process by which vehicles arrive at an intersection.

The HCM 1994, the Canadian Capacity Guide (CCG) 1995, and the HCM 2000, as these models

are among the most widely used in North America, were used for comparison to assess the

consistency.  Those capacity guide models already described in Chapter 2
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4.6 HORIZONTAL SHOCK WAVE DELAY MODELS

The flow of traffic is similar to the flow of a compressible fluid.  The first successful attempts at

demonstrating the consistency between the flow of traffic and the flow of a compressible fluid

were made by Lighthill and Whitham (1955) and Richards (1956), who demonstrated the

existence of traffic shock waves and proposed a first theory of one-dimensional waves that could

be applied to the prediction of highway traffic flow behavior.  The main postulate of their theory

was that there exists some functional relation between traffic volume and traffic density and that

this relation could be used to describe the speed at which a change in traffic flow characteristics

propagates either upstream or downstream.

The shock wave model proposed by Lighthill, Whitham and Richards is computed using

Equations 4.7 and 4.8.  The first equation defines the relation between volume, density and speed

that was developed using fluid dynamics theory and reflects the hypothesis that traffic can be

considered as a compressible fluid, as illustrated in Figure 4.10.  Using Equation 4.8, the second

equation then describes the speed at which a change in traffic characteristics, or shock wave,

propagates along a roadway.

iii ukq ⋅= (4.7)
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where:

SWij = speed of shock wave between zones i and j (meters/second),

qj = traffic flow in zone i (vehicles/second),

ki = traffic density in zone i (vehicles/meter),

ui = traffic speed in zone i (meters/second).
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 si = Traffic speed in zone i
 qi = Traffic Flow in zone i
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q3 > q2

Figure 4.10: Traffic Flow Characteristics Upstream a Traffic Signal

Shock wave theory can be used to analyze flow at signalized intersections.  For instance, Rorbech

(1968) applied the shock wave theory of Lighthill and Whitham to investigate queue formation

on intersection approaches at the beginning of red intervals.  Stephanopoulos et al. (1979) further

investigated the dynamics of queue formation and dissipation at isolated intersections using the

flow conversation principle of Equation 2.13.  In another example, Michalopoulos et al. (1980)

analyzed traffic dynamics between signalized intersections and demonstrated the existence of

shock waves caused by the traffic signal operation that periodically propagates downstream of an

intersection.  Michaloploulos et al. (1981a, 1981b) further developed a real-time control

algorithm based on shock wave theory that minimizes total intersection delay at isolated

intersections subject to constraints regarding maximum queue lengths on individual approaches.

The main difference between shock wave and queuing analysis models is in the way vehicles are

assumed to queue at the intersection stop line.  While queuing analysis assumes vertical queuing,

shock wave analysis considers that vehicles are queued horizontally one behind each other, i.e.,

that each vehicle occupies a physical space.  This treatment allows shock wave delay models to

capture more realistic queuing behavior.  Consider for example the diagram of Figure 4.11,

which illustrates the formation and dissipation of queue of a vehicles through shock wave

analysis.  In the figure, it can first be observed that the shock wave theory still assumes

instantaneous decelerations and accelerations.  This is illustrated by the sharp angles along the



82

vehicle paths.  More importantly, it can be observed that while the maximum number of queued

vehicles still occurs at the end of the red interval, the maximum reach of the back of queue is

now correctly modeled to occur later, as it usually happens in reality.

In addition to queue formation and dissipation, Figure 4.11 illustrates the shock waves that are

created by the traffic signal operation.  The fist wave that is created, SWI, is associated with the

back of queue.  This wave defines the boundary between incoming traffic and queued vehicles.

It can further be observed that this wave corresponds to the line identifying the back of queue in

the time-space diagram of Figure 4.2.  Two other waves generated by the signal operation are

produced when the signal turns green.  The first wave, SWR, moves downstream from the stop

line and is associated with the front of the surge of vehicles that leave the intersection at

saturation flow rate at the beginning of the green interval.  The second wave, SWR, moves

upstream of the stop line and divides the vehicles stopped in the queue from those that have

started to accelerate forward.  The last wave, SWN, defines the end of the platoon of vehicles

leaving the intersection at saturation flow rate.

In Figure 4.11, the total travel time spent by all vehicles going through the intersection can be

estimated using Equation 4.9.  Since delay represents the added travel time caused by the traffic

signal operation, the total delay incurred by traffic within one signal cycle at the intersection of

Figure 4.11 can be estimated by comparing the total travel time in scenarios with and without

traffic signals.  The resulting calculations are summarized in Equation 4.10.
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Figure 4.11: Graphical Illustration of Shock Wave Analysis

∑
=

=
C,B,Ai

ii kA TT (4.9)

[ ]∑
=

−==
C,B,Ai

Ciisignalsno signalswith )kk(ATT-TT D (4.10)

where: 

TT = travel time,

Ai = surface area of area i,

ki = traffic density in area i.

Based on Equation 4.10, Equations 4.11 and 4.12 can be derived for determining the total delay

caused by the signal operation and the average delay experienced by vehicles going through the

intersection.

 )]kk()tt()kk(r[
x
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m −⋅++−⋅⋅=
2

(4.11)
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where: 

xm = maximum spatial extent of queue (kilometers),
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tm = time for maximum extent of queue (seconds),
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,

tc = time to clear queue (seconds),

= xm / SWN,

r = red interval (seconds),

kj = jam density (vehicles/kilometer),

ka = approach density (vehicles/kilometer),

kd = discharge density (vehicles/kilometers),

q = arrival rate (vehicles/hour),

C = cycle length (seconds).

Similar to the vertical queue analysis model, the horizontal shock wave analysis model defined

by Equations 4.11 and 4.12 only estimates uniform delay.  There is no account for the

incremental delay caused by the randomness of traffic flow.

4.7 TEST SCENARIOS

In order to evaluate the consistency of delay estimates among the various analytical and

INTEGRATION simulation delay models presented in the chapter, delay evaluations were

carried out for the example of Figure 4.12 using the INTEGRATION traffic simulation software

and the analytical models of Sections 4.4, 4.5 and 4.6.  For ease of comparison, the example

features a single intersection approach leading traffic to a signalized intersection operated in

fixed-time with 30-second effective green and red intervals.  The example further includes a one-
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kilometer exit link to allow INTEGRATION to capture the delay incurred by vehicles while

accelerating away from the intersection.  In order to ensure consistency with the analytical

procedures a constant demand was loaded a time 13 minutes in order to ensure that vehicles

arrived at the intersection after 15 minutes of simulation.  The demand was loaded for 15 minutes

followed by a 15 minutes period of no demand, in order to clear any remaining queues.  Figure

4.13 illustrates the demand that was simulated.  This demand scenario is consistent with the

assumptions of the Canadian Capacity Guide (1995) and the Highway Capacity Manual (1994,

2000).

Using the above settings, two sets of ten test scenarios were developed to estimate delays in a

range of traffic conditions.  The first set considers uniform arrivals, while the second set adds

randomness to the arrival process.  Within each set, all scenarios are identical, except for the

vehicle arrival rate.  Arrival rates are varied to produce v/c ratio on the intersection approach

varying from 0.1 to 1.0.  No congested scenarios were considered in this study, as oversaturation

is the subject of a forthcoming chapter.

2 km 1 km

Signal Operation

• Cycle time: 60 seconds
• Effective red interval : 30 seconds
• Effective green interval: 30 seconds

Simulation Parameters

• Load time: 15 minutes
• Simulation time: 30 minutes
• Saturation flow: 1800 veh/h
• Free-flow speed: 60 km/h

Figure 4.12: Delay Evaluation Scenario
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Figure 4.13: Demand Graph for the Simulation Model

4.8 TEST RESULTS

4.8.1 CONSISTENCY OF OVERALL DELAYS ESTIMATES UNDER UNIFORM ARRIVALS

Table 4.2 and Figure 4.14 provides the results of the delay estimations that were carried out for

the scenarios considering uniform arrivals only.  For this set of scenarios, Equations 4.6 and 4.12

were used to calculate the overall delay with the vertical queue analysis and horizontal shock

wave models, respectively.  For the three capacity guide delay models, only the first term of

Equations 2.4, 2.8 and 2.12 in Chapter 2 was used, as the remaining portions of these equations

were developed to specifically take into account the randomness of vehicle arrivals and the

probability of temporary signal cycle oversaturation due to this randomness.  The results

predicted by Equation 2.4 were also multiplied by 1.3 to convert the estimated stopped delay into

overall delay.

The results of Table 4.2 indicate that all the delay models produce similar delay estimates when

applied to analyze the delay caused to uniform traffic flows at undersaturated pretimed signalized
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intersections.  In this case, the similarly of the results between the theoretical queuing analysis

and the three capacity guide models was expected since the later models were derived from

queuing analysis.  For the INTEGRATION delay models, it is observed that there is a general

agreement with the other models despite some added variability and the fact that the simulation

models produces slightly higher delay estimates.

Table 4.2: Overall Delay Estimates under Uniform Arrivals

v/c Ratio
Delay Model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vertical Queuing Analysis 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

Horizontal Shock Wave Analysis 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

HCM 1994 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

HCM 2000 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

CCG 1995 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

INTEGRATION File 10 9.51 8.09 10.07 9.41 10.98 11.08 12.93 12.58 15.19 15.12

INTEGRATION File 11 9.40 7.90 10.00 9.30 10.90 10.90 12.80 12.50 15.00 15.00

INTEGRATION File 12 9.40 7.90 10.00 9.30 10.90 10.90 12.80 12.50 15.00 15.00

INTEGRATION File 15 9.60 8.21 10.19 9.51 11.09 11.17 13.04 12.72 15.32 15.27

INTEGRATION File 16 9.60 8.21 10.18 9.49 11.09 11.17 13.05 12.73 15.33 15.27

INTEGRATION Summary File 9.50 8.04 10.10 9.38 11.00 11.10 12.95 12.58 15.22 15.11
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Figure 4.14: Overall Delay Estimates under Uniform Arrivals

The variability of delay estimates with INTEGRATION is attributed to the fact that the

simulation model only allows integer numbers of vehicles to go across an intersection while the

analytical delay models consider average hourly flow rates that often yield fractional average

vehicle arrivals within a single signal cycle.   For example, an average vehicle arrival rate of 810

vehicles per hour translates into one arrival every 4.44 seconds and in 13.5 arrivals in every 60-

second cycle.  In this case, an assumed average arrival rate of 13.5 vehicles per cycle would thus

be used by the analytical models to calculate delays over a 60-second cycle, while the

INTEGRATION model would average delays from simulated cycles considering 13 arrivals and

cycles considering 14 arrivals.

4.8.2 SENSITIVITY OF DELAY UNIFORM ESTIMATES TO ARRIVAL PATTERNS

At an intersection, vehicles do not always arrive at exactly the same time relative to the

beginning of the green and red intervals.  While the overall number of arriving vehicles may be
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the same from one cycle to another, there could be substantial variability in the cyclic arrival

patterns.  As an example, Table 4.3 computes the delay associated with three arriving flows for

the example of Figure 4.12.  In all three cases, the vehicles arrive at the intersection with a 5-

second headway and leave at saturation during the effective green interval with a 2-second

headway.  The only difference between the arriving flows in the first two signal cycle is the offset

in the time at which each vehicle is assumed to arrive relative to the start of the effective green

interval.  In the second cycle, all the vehicles reach the intersection stop line one second later

than their corresponding vehicle in the first cycle.  In the third cycle, the vehicle arrivals are

offset by four seconds relative to arrivals in the first cycle.  This offset causes the last arriving

vehicle to cross the intersection stop line one second before the end of the effective green

interval.  As it can be observed a one-second offset in arrival times is sufficient in this case to

cause a 6.1-percent reduction in the estimated delays, while a four-second offset further results in

a 23.6-percent total delay reduction.

Table 4.3: Sensitivity of Delay Estimates to Various Arrival Patterns

Cycle 1 Cycle 2 Cycle 3
Vehicle

Arrival Departure Delay Arrival Departure Delay Arrival Departure Delay

1 0 30 30 1 30 29 4 30 26

2 5 32 27 6 32 26 9 32 23

3 10 34 24 11 34 23 14 34 20

4 15 36 21 16 36 20 19 36 17

5 20 38 18 21 38 17 24 38 14

6 25 40 15 26 40 14 29 40 11

7 30 42 12 31 42 11 34 42 8

8 35 44 9 36 44 8 39 44 5

9 40 46 6 41 46 5 44 46 2

10 45 48 3 46 48 2 49 49 0

11 50 50 0 51 51 0 54 54 0

12 55 55 0 56 56 0 59 59 0

Total Delay 165 Total Delay 155 Total Delay 126

Average Delay 13.75 Average Delay 12.92 Average Delay 10.50



90

If delay calculations were made using the vertical queue analysis model of Equation 4.6, the

estimated average delay would be 12.5 seconds for all cycles.  An identical estimate would also

be obtained with the horizontal shock wave delay model.  In both cases, there would be no

sensitivity to the arrival pattern as there is no change in the variables used to compute the delays.

While the time at which vehicles arrive at the intersection stop line is varying from one cycle to

the other, the arrival rate, departure rate, traffic densities and signal timings remain the same.

The above results clearly demonstrate the sensitivity of delay estimates to the assumed arrival

patterns.  They also demonstrate the potential variability of delay estimates between delay models

that explicitly consider vehicle arrival patterns in their calculation and models that do not.  Such

difference accounts for most of the differences in delay estimates observed in Figure 14 between

the delay estimated by micro-simulation with INTEGRATION and the analytical delay models.

4.8.3 COMPARISON OF ACCELERATION AND STOPPED DELAY ESTIMATES

The consistency of delay estimates between some of the analytical delays models and the micro-

simulation delay estimates from INTEGRATION can be further assessed by comparing the ratio

of stopped delay to overall delay obtained with each model.  Among the models evaluated in this

study, such comparison is only possible between INTEGRATION and the CCG 1995 model.

Comparison is not possible with the HCM 2000 as there is no relation of stopped to overall delay

provided in the manual.  While a fixed ratio of stopped to overall delay is provided in HCM

1994, this ratio cannot be used for analyses with the HCM 2000 delay model as this model is

totally different than the one used in the HCM 1994.  Comparison are also not possible with the

vertical queue analysis model and the horizontal shock wave analysis models as both models

were developed assuming instantaneous accelerations and decelerations.

The ratios of stopped to overall delay assumed in the CCG 1995 delay model were given in Table

2.3 of Chapter 2.  To estimate the same ratio for the simulated delays in INTEGRATION,

manual calculations must be made.  As an example, consider Figure 4.15, which illustrates the

delay obtained under uniform arrivals for a v/c ratio of 0.80. By summing the delays incurred by

vehicles while traveling at a speed lower than that of a pedestrian (5 km/h), which is the criterion
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defining stopped delay in the CCG 1995, it is found that 54.9 percent of the total simulated delay

could be considered as stopped delay.  The ratio that has been estimated compares very favorably

with the 56-percent stopped to overall delay ratio assumed in the CCG 1995 delay model for

similar traffic conditions.
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Figure 4.15: Stopped and Overall Delay for Arriving Vehicles in Typical Signal Cycle

4.8.4 OVERALL DELAYS ESTIMATES WITH RANDOM ARRIVALS

Table 4.4 and Figure 4.16 reports the results of the delay estimations that were carried out for the

example of Figure 4.12 using the random arrival scenarios.  For this set of scenarios, Equations

4.6 and 4.12 were again used to calculate the overall delay predicted by the vertical queue and

horizontal shock wave analysis models.  However, contrary to the previous analysis, all the terms

of Equations 2.4, 2.8 and 2.12 were used in this case to calculate the overall delays predicted by

the three capacity guide models. Similarly to the previous analysis, the stopped delay estimates

produced by the HCM 1994 model were again multiplied by 1.3 to obtain the corresponding

overall delay and allow a direct comparison of its delay estimates with other models.  In addition,

the delays reported for the INTEGRATION simulation model are in this case the average of the

delays reported by ten replications of the test example.  Replications were made for this set of

scenarios to account for the stochastic variability of the simulation processes within

INTEGRATION.
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The results of Table 4.4 and Figure 4.16 indicate that there is a general agreement between the

simulation delays from INTEGRATION and the delays predicted by the HCM 1994, CCG 1995

and HCM 2000 models when these models are applied to the analysis of undersaturated flows at

signalized intersections.  As it can be observed, all four models predict small increases in delay

with increasing demands at low v/c ratios and significantly larger increases as traffic approaches

saturation (v/c ratio of 1.0).  Similarly, it can be observed that there is a general disagreement

between the delays predicted by the four previously mentioned models and the delays predicted

by the vertical queue analysis and the horizontal shock wave analysis models, as these two

models predict much smaller delay increases as traffic approaches saturation.  This disagreement

was expected, as both the vertical queue analysis and horizontal shock wave analysis models only

assume uniform vehicle arrivals.  Since both models ignore the potential for additional delays

that arises from the probability of having temporary oversaturation caused by surges of arriving

vehicles, it is normal for these two theoretical models to predict lower delays, especially at high

v/c ratios where the impact of arrival surges is more prominent.

Table 4.4: Overall Delay Estimates under Stochastic Arrivals

v/c Ratio
Delay Model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Vertical Queuing Analysis 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

Horizontal Shock Wave Analysis 7.89 8.33 8.82 9.38 10.00 10.71 11.54 12.50 13.64 15.00

HCM 1994 7.89 8.35 8.90 9.59 10.50 11.78 13.75 17.23 24.79 44.99

HCM 2000 8.12 8.83 9.68 10.70 11.98 13.67 16.05 19.89 27.42 45.00

CCG 1995 8.12 8.83 9.68 10.70 11.98 13.67 16.05 19.89 27.42 45.00

INTEGRATION File 10 10.18 9.06 10.02 11.53 12.51 12.75 13.72 17.37 22.07 37.84

INTEGRATION File 11 10.10 9.00 9.90 11.40 12.40 12.70 13.60 17.20 21.00 37.70

INTEGRATION File 12 10.01 9.85 9.67 10.49 12.73 12.33 13.61 18.23 25.93 48.62

INTEGRATION File 15 10.30 9.17 10.13 11.63 12.62 12.86 13.84 17.49 22.21 37.99

INTEGRATION File 16 10.30 9.16 10.12 11.63 12.62 12.86 13.85 17.49 22.16 38.00

INTEGRATION Summary File 10.24 9.17 10.16 11.72 12.77 13.09 14.15 17.94 22.81 38.78
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Figure 4.16: Overall Delay Estimates under Stochastic Arrivals

A more detailed analysis of the diagram of Figure 4.16 further reveals that the delays that are

predicted by the HCM 2000 model are higher than those predicted by the 1994 model in the

undersaturated domain.  These higher delays reflect the changes that were made to the second

term of Equation 2.12 in the HCM 2000 model to allow it to produce delay estimates that are

asymptotic to the deterministic oversaturation delay model of Figure 4.6.  The fact that the 1994

HCM model was not asymptotic to this model was considered as a weakness by many

researchers (Akcelik, 1988; McShane and Roess, 1990; Fambro et al., 1997) and was one of the

major arguments that lead to its replacement.  While the changes introduced in the model

resulted in the prediction of more suitable lower delays in the oversaturation domain

(Engelbrecht, 1997), they also caused the model to predict higher delays in the undersaturation

domain.  These changes were caused by the need to define a single continuous mathematical

expression that could be used to estimate the added delay due to the randomness of vehicle

arrivals in both undersaturated and oversaturated traffic conditions.
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Figure 4.16 also indicates that the delays predicted by INTEGRATION are generally consistent

to those predicted by the CCG 1995 and HCM 2000 models.  This conclusion is further

supported by the diagrams of Figure 4.17, which superimpose the delays predicted by the two

capacity guide models to the those obtained with each of the ten replications that were conducted

with the INTEGRATION model.  As it can be observed in Figure 4.17, the both delays estimated

by the CCG 1995 and the HCM 2000 models fall within the simulated results under all v/c ratios.

This result thus clearly indicates that there is a consistency in this example between the simulated

and analytical delays.  Also, the diagram of Figure 4.18, which conducted the same procedure for

two-lane delays, derives the same conclusion.

In Figures 4.16, 4.17 and 4.18, the non-uniform trend of increasing delays with increasing v/c

ratios for the INTEGRATION simulation model is in part attributable to the stochastic nature of

the simulation processes within traffic simulation model.  Similar to the uniform scenario results,

some variability is also attributable to the fact that the INTEGRATION results are sensitive to

the actual vehicle arrival times at the test intersection while the delay estimates from the capacity

guide models are not.  As it was shown in Table 4.3, a small offset in vehicle arrival times could

have a significant impact on the simulated delays.  In the case of the capacity guide delays, this

impact does not exists as the delays are calculated within these models on the basis of average

hourly arrival and departure rates.  Finally, similar to the uniform scenarios, another source of

variability is the fact that the capacity guide delay models are not constrained to consider only

integer number of arrivals and departures within a signal cycle while INTEGRATION has to

respect such a constraint.
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Figure 4.17: Simulation Results of INTEGRATION for Single Lane

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

v/c Ratio

Ov
er

all
 V

eh
icl

e D
ela

y (
se

co
nd

s)

Simulation Results of INTEGRATION

INTEGRATION Mean Delay

HCM 2000 and 1995 CCG Delay Models

Figure 4.18: Simulation Results of INTEGRATION for Two-Lane
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4.9 SUMMARY AND CONCLUSIONS

This chapter compared the delay estimates predicted by analytical and simulation models for the

case of an undersaturated signalized intersection.  The models that were compared are a

theoretical vertical queue analysis model, the queue-based models used in the HCM 1994, the

CCG 1995 and the HCM 2000, a theoretical shock wave analysis model, and six delay estimates

from the INTEGRATION microscopic traffic simulation software.

The delay estimates predicted by each model under uniform and random arrival scenarios were

compared to assess their consistency.  For the uniform arrival scenarios, it is found that all the

analytical models produce identical results and that the INTEGRATION model produces slightly

higher results that follow the same general trend as the delay estimates from the analytical

models.  The difference in delay estimates between the analytical models and the simulation

results is explained by the sensitivity of delay estimates from microscopic traffic simulation

models to assumed traffic arrival patterns.  Another source of variation was associated to the

modeling of cyclic vehicle arrivals.  While analytical delay models compute delays over one

signal cycle using average arrival rates that may not correspond to an integer number of arrivals

per cycle, simulation models can only simulate integer number of arrivals and departures per

cycle and must therefore estimate delays by averaging traffic conditions over a certain number of

cycles.  Despite these differences, it was concluded that there is general consistency between the

various delay models considered in this chapter for the uniform arrival scenarios.

A similar conclusion for the simulated delays predicted by the INTEGRATION model and delays

predicted by the CCG 1995 and HCM 2000 was also reached for the scenarios considering

random arrivals.  In this case, the evaluation results demonstrate that the delay estimated by the

CCG 1995 and the HCM 2000 models fall within the confidence interval of the delay obtained

by simulation using INTEGRATION.  The results also showed that the HCM 2000 model

generally predicted higher delays than the HCM 1994 model when applied to the analysis of

undersaturated traffic flows.  At last, the results clearly indicated the inability of the two
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theoretical traditional delay models based on vertical queue analysis and horizontal shock wave

analysis to accurately estimate delays when considering random arrivals.


