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HARTLEY TRANSFORM BASED ALGORITHM FOR THE QUALITATIVE AND 

QUANTITATIVE ANALYSIS OF MULTI-COMPONENT MIXTURES WITH THE 

USE OF EMISSION EXCITATION MATRICES. 

by 

George Asimopoulos 

(ABSTRACT) 

Rapid advances in computer technology over the last few 

years and their integration into analytical instruments have 

led to tremendous increases in data collection rates. The 

need for tools to assist analytical chemists, and especially 

spectroscopists, in their task of interpreting such vast 

quantities of data is immediate. 

This work focuses on the development of an algorithm 

based on an alternative to the Fourier transform, the 

Hartley transform, for the qualitative and quantitative 

analysis of multi-component mixtures using Excitation 

Emission Matrices. The algorithm involves the reverse 

search of a compressed reference spectral library for the 

identification of possible components of the mixture and the 

method of Non-Negative Least Squares for the quantification 

of the components. 

A number of techniques for pre-processing of three 

dimensional fluorescence spectra along with several spectral 

encoding methods for the compression of the spectra were 

investigated. Both simulated and real data collected with a



fluorescence spectrophotometer were used in this study. 

The algorithm proved capable of analyzing mixtures of 

five components with relative concentrations ratio of about 

100:1 and significant spectral overlap. At the same time a 

compression ratio of about 10:1 for the spectra in the 

reference library was achieved. 

Finally, a library of three dimensional fluorescence 

spectra of some aromatic and poly-aromatic hydrocarbons was 

developed to be used with the algorithm. Such a library, 

along with the algorithm, provides a tool for the quick and 

simple qualitative and quantitative determination of 

mixtures of aromatic and poly-aromatic hydrocarbons.
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I. INTRODUCTION 

Rapid advances in computer technology over the last few 

years and their integration into analytical instruments have 

led to tremendous increases in data collection rates. The 

need for tools to assist analytical chemists and especially 

spectroscopists in their task of interpreting such vast 

quantities of data is immediate. 

The majority of samples submitted for chemical analysis 

are mixtures. It is possible to separate the components of 

a mixture physically before the analysis, by filtration, 

extraction, or chromatography. However, these techniques 

are not always successful and they add considerable effort 

to the analysis. 

A number of analytical spectroscopic techniques used to 

examine pure compounds produce signals suitable for mixture 

analysis, but the output is often difficult to interpret. In 

some cases a combination of such simple analytical 

techniques with sophisticated mathematical and statistical 

data processing methods, which fall into the area of 

Chemometrics, can provide an easy, fast and very informative 

way to analyze mixtures. 

With the amazing processing speeds that computers have 

achieved, the selection of methods available to 

Chemometricians is enormous. Algorithms and procedures, 

that only few years ago where unrealistic to use because of 
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the long manual computational times required, now only take 

a few minutes or less to execute on computers found in every 

analytical laboratory. Methods for spectral enhancement, 

deconvolution, and data reduction such as: Maximum 

Likelihood, Linear and Multiple Regression, Curve Fitting, 

Pattern Recognition, Factor Analysis, and Maximum Entropy 

approaches, Expert Systems, Monte Carlo Calculations, 

Library Searching and Modeling are available. 

Fluorescence, combining high sensitivity and multiple 

dimensions for selective information, is a technique well 

suited for mixture investigation. A combinations of 

fluorescence spectroscopy with a well implemented 

Chemometrics algorithm can be a very successful approach to 

the analysis of multi-component mixtures. 

This work presents an algorithm developed for the 

analysis of mixtures of fluorescence compounds, which 

utilizes a compressed reference spectral library of three 

dimensional fluorescence spectra. The algorithm achieves 

complete qualitative and quantitative analysis of an unknown 

mixture.



II. HISTORICAL 

A number of different approaches have been investigated 

over the last few years in an attempt to provide 

spectroscopists with tools for the analysis and 

interpretation of the vast quantities of data which modern 

instruments are capable of generating. Those methods vary 

from simple linear regression methods to those which involve 

computations and computer analysis that challenge today’s 

computer hardware and software technologies. No one 

approach has been proven suitable and successful for all 

situations. 

The next section takes a closer look at some of the 

approaches reported over the years. First, methods 

developed to assist the interpretation of fluorescence 

spectra, especially two-dimensional spectra are examined. 

Then methods designed to analyze multicomponent systems are 

explored. Finally, spectral library search, and data 

compression algorithms are reviewed. 

A. FLUORESCENCE SPECTROSCOPY 

Fluorescence spectroscopy is a widely used analytical 

technique in chemistry and related fields.! The measurement 

of fluorescence is inherently a multi-parameter technique 

because even the simplest measurement involves variation of 

more than one parameter.



For example, the measurement of the luminescence 

(fluorescence or phosphorescence) from a sample involves the 

simultaneous use of an excitation wavelength, X,,, and the 

corresponding emission wavelength, A,,. The measured 

luminescence intensity, I,, can then be represented as a 

function of X,, and \X,, 

Li=f (Next Nem) (1) 

Selective measurements of individual luminophores in simple 

or even complex mixtures can be achieved by varying these 

two parameters. 

Data collected by measuring the fluorescence intensity 

for a range of excitation and emission wavelengths is 

usually represented in a form of a numerical matrix, 

commonly referred to as an Excitation-Emission Matrix or 

EEM, with typical dimensions of 64x64 data points. Figure 1 

shows a typical Excitation-Emission Matrix. 

Early methods for acquiring an EEM involved collecting 

separate emission spectra at several excitation wavelengths 

and combining the individual spectra to form the three- 

dimensional profile. This method is obviously time 

consuming. 

In 1975 I.M. Warner et al.” reported the first video- 

fluorometer, VF, which dramatically reduces the amount of 

time required in order to acquire an EEM. This instrument



In
te
ns
it
y 

TYPICAL EXCITATION-EMISSION MATRIX 
ANTHRANILIC ACID (7.3E-6 M) 

    
Figure 1. Typical Excitation Emission Matrix. 
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uses polychromatic excitation and a silicon intensified 

target vidicon detector (television camera) to acquire data 

in matrix format without mechanical scanning. The VF can 

acquire 64 emission spectra generated at 64 excitation 

wavelengths in about one second. J.B. Zung et al.? 

reported some of the changes which have occurred in the 

instrumentation for acquiring an EEM since that initial 

report of the video-fluorometer, but the significance of 

this first report can only be realized by examining the 

exponentially increased number of papers related to EEMs 

since that time. The purpose of the use of EEMs in those 

papers vary from the analysis of multi-component mixtures,‘ 

to bacteria identification,*® and the investigation of the 

complexation properties of aromatic compounds.°® 

The video-fluorometer combined with computerized data- 

acquisition systems made data processing the time limiting 

step in the analysis of EEMs. Researchers have developed 

numerous computer aided spectral interpretation methods 

which also reduce the amount of data that needs to be 

stored. Pattern recognition isa spectral interpretation 

and data reduction method often employed. 

T.M. Rossi and I.M. Warner developed a pattern 

recognition method which operates in the frequency domain of 

the Fourier transformation, using cross-correlation 

analysis’. In their approach, EEMs are represented as two



dimensional functions. The correlation of two functions 

f(x,y) and g(x,y) is defined as 

oo 

f(x,y) gery) | [£(a,B) 9 (xa, ¥+8) dads (2) 

where a and B are generally referred to as shift parameters 

and the symbol "'" denotes correlation. Since the discrete 

analog of Equation (2) is time consuming to implement ona 

computer, the calculation of the correlation functions is 

carried out in the frequency domain of the Fourier 

transform, FT, with the use of the correlation theorem of 

the Fourier transform. The theorem is defined by 

£ (x,y) 9(X,Y)#F (u,v) X@ (u,v) (3) 

where the symbol "+" denotes a Fourier transform pair and 

the superscript "*" indicates the complex conjugate of the 

given function. 

For the identification of an unknown spectrum the 

correlation functions of the unknown with a series of known 

spectra are calculated. Quantitative measurement of spectral 

differences within each unknown-known spectral pair are 

obtained by calculating three parameters : the sum, R, of 

the negative real coefficients of the correlation function, 

the sum, I, of the absolute value of the imaginary 

coefficients of the correlation function, and the 

intervector distance, IVD, between the Fourier transforms of 

7



the two spectra. From the values of the three parameters, 

identification can be achieved by comparing these values 

with threshold values for correct spectral matches which 

previously have been estimated. Using this method the 

researchers were able to identify spectrally similar 

anthracene derivatives. 

A method using the above pattern recognition algorithm 

has been developed by Chou-Pong Pau et al.*® for bacterial 

fingerprinting. The method is based on the differences in 

enzyme content and activity of various bacteria. Bacterial 

cells mixed with carefully chosen fluorogenic enzyme 

substrates produce two-dimensional fluorescence spectrun, 

characteristic of the bacterium. In this approach, 

quantitative measurements of spectral differences are 

obtained by calculating the dissimilarity index, P, 

P=(-P) (I) (IVD) (4) 

where R, I and IVD have the same definition as those given 

above. The researchers noticed that for a perfectly matched 

spectra pair these three parameters have a value of 0, which 

result in P = 0. Consequently, they found that the 

magnitude of P can serve as an index of spectral differences 

: the smaller the value, the closer the match. The 

researchers demonstrated the feasibility of their approach 

by accurately and quickly distinguishing six strains of



Escherichia coli. Classical methodologies require a time 

consuming series of complex tests before an identification 

of those bacteria could be achieved. 

Further evaluation of the above mentioned pattern 

recognition algorithm by Chou-Pong Pau and I.M. Warner’, 

using computer simulated data matrices and spectra acquired 

by a video-fluorometer, showed that background noise and 

other spectral characteristics, such as signal to noise 

ratio, peak width, etc., can significantly affect the 

results of the algorithm. These effects make the algorithm 

unattractive for a larger size spectral library search 

method. 

The realization that noise can significantly affect the 

results of different algorithms led researchers to develop 

filtering techniques for EEMs. Although VF makes possible 

the acquisition of multiple scans of one spectrum in order 

to improve the signal to noise ratio, (S/N), it is known 

that the S/N ratio will improve proportional only to the 

square root of the number of scans,’ therefore the 

improvement is not very significant. 

M. Vicsek et al.'° reported four time-domain filtering 

techniques for enhancing the information of two-dimensional 

fluorescence data. T.M. Rossi and I.M. Warner’! reported 

filtering methods that operate in the frequency domain of



the Fourier transform for use with two-dimensional 

fluorescence data. Both groups failed to see any 

significant improvement in the quantitative value of the 

data after applying their methods. Filtering proved useful 

only when data was used for qualitative purposes. 

An obvious approach for additional selectivity in 

luminescence measurements has been reported by I.M. Warner 

et al.” He described luminescence intensity I, in terms of 

three parameters 

Ti=f (Noms P) (5) 

where P is one of a number of luminescence parameters 

including luminescence lifetime, light polarization, etc. 

Furthermore, more than three variables could be used to 

increase the selectivity of the measurement. 

Matrix isolation and low-temperature fluorescence 

spectroscopy are two methods in which the sample is cooled 

to very low temperatures. In matrix isolation the sample is 

vaporized, mixed with an inert species which is a gas at 

room temperature (such as nitrogen or argon) and deposited 

on a cold surface. This technique has been successfully 

used for the characterization of mixtures of polycyclic 

aromatic hydrocarbons (PAHs). In low-temperature 

fluorometry the liquid sample is rapidly frozen to 

temperatures of 77 K or less. This technique has also 

10



proved successful in the characterization of PAHs 

mixtures", but could not identify individual components of 

the mixture. Fluorescence spectra obtained under these 

conditions consist of bands which are much narrower than 

those observed under normal conditions. That is because the 

sample molecules are isolated and occupy strictly oriented 

positions in the low temperature matrix, thus their vibronic 

components become very sharp. This line-narrowing 

phenomenon is commonly called the "Shpol’skii effect". 

Until recently the analytical applications of 

fluorescence spectroscopy were limited to the use of the 

steady-state intensities, because of the complex and 

expensive instrumentation required for time-resolved 

measurements. For those measurements the sample is excited 

with a sinusoidally modulated light, resulting in 

fluorescence emission that is modulated at the same 

frequency, but phase-shifted and demodulated as function of 

the fluorescence lifetime, rt, of the fluorophores. Phase- 

resolved detection of the fluorescence signal produces a 

time-independent, phase-resolved fluorescence intensity, 

PRFI. D.W. Millican and L.B. McGown'® described such a 

method which incorporates fluorescence lifetime selectivity 

into EEM data. The resulting data format is referred to as 

phase-resolved EEM or PREEM. In PREEM, fluorescence 

intensity is not only a function of the excitation and 

11



emission wavelength but also a function of fluorescence 

lifetime. The equation given by Millican and McGown for the 

phase-resolved fluorescence intensity, PRFI is 

PRFI-A’m,mcos ($)-¢) (6) 

where A’ is the steady-state fluorescence intensity, m,, is 

the modulation depth (ac/dc ratio) of the exciting light, m 

is the ratio of the emission modulation depth to m,,, ¢ is 

the phase shift of the emission beam relative to the 

excitation beam, and ¢, is the phase of the detector, which 

can be set to any value between 0° and 360°. In equation 

(6), the demodulation m, and the phase shift @¢, are related 

to fluorescence lifetime by 

m= [ (wt)?+1)7!? (7) 

and 

g=arctan (wr) (8) 

where w is the angular modulation frequency, or 27 times the 

linear frequency, f. 

In two component mixtures, where components had unequal 

contributions to the total intensity, D.W. Millican and L.B. 

McGown! found that PREEMs were superior to steady-state 

EEMs in resolving the individual spectra of a two components 

with the use of multiway analysis. P.M Ritenour Hertz and 

L.B. McGown reported the first application of phase- 

12



resolved fluorescence spectroscopy for spectral 

fingerprinting. A set of petroleum-based lubricants 

(petrolatums) were characterized and discrimination between 

different petrolatum samples was achieved. 

J.R. Lakowicz et al.’ recently presented a method for 

the resolution of multi-component fluorescence emission 

using frequency-dependent phase angle and modulation 

spectra. The researchers used phase angle spectra and 

modulation spectra of the mixture, measured over a range of 

suitable light modulation frequencies and emission 

wavelengths. In this method the sample is assumed to 

consist of a mixture of fluorophores, each of which displays 

a Single exponential decay time. The expression for the 

time-dependent emission of each wavelength (A) is a multi- 

exponential decay 

T(A,t) => a,(A)e™ (9) 

where the pre-exponential factor (a,(A)) depends on emission 

wavelength. The decay times (T;) are assumed to be 

characteristic of each component in the mixture and to be 

independent of wavelength for each component. The frequency 

domain data consist of phase (¢,,) and modulation (m,,) 

values, each measured over a range of light modulation 

frequencies (w) and emission wavelengths (A). The collected 

13



data consist of multiple sets of phase and modulation 

spectra, each measured at a single modulation frequency. 

The data is then analyzed by nonlinear least-squares 

analysis to recover the emission spectra of the individual 

fluorophores and the associated decay times. 

Another luminescence-based selectivity parameter that 

has been used by F.V. Bright” to increase the selectivity 

of luminescence measurements, is what is called Fluorescence 

Anisotropy Selective Technique (FAST). This is based on 

rotational diffusion rate effects. The excitation of a 

random distribution of fluorescent molecules by linearly 

polarized light results in the preferential excitation of 

those molecules whose absorption dipoles are oriented along 

the polarization axis. Because of this selection, a 

nonuniform distribution (anisotropy) of excited-state 

molecules is generated. This induced anisotropy decays as a 

function of time because of molecular motion and solute- 

solvent interactions. The result of this decay of 

anisotropy is a randomization of the molecular emission 

dipole which manifests itself in a time-dependent 

depolarization of the resulting fluorescence. FAST is 

capable of recovering the individual spectral components in 

complex mixtures on the basis of differences in the 

rotational diffusion rates of the components. 

From the above discussion it is obvious that much 

14



effort has been put into increasing the selectivity of 

fluorescence measurements, thus making possible the use of 

the method for the analysis of complex mixtures. In the 

next section a number of algorithms developed for the 

interpretation of multi-component data will be presented. 

B. MIXTURE ANALYSIS 

The majority of samples submitted for chemical analysis 

are mixtures. It is possible to separate the components of 

a mixture physically before the analysis by filtration, 

extraction, or chromatography. However, these techniques 

are not always successful and they add considerable effort 

to the analysis. A number of instrumental techniques 

produce signals which can be used for the investigation of 

mixtures, both qualitatively and quantitatively. A number 

of methods have been developed to achieve exactly this goal. 

Some methods simply find the number of components in a 

mixture, others attempt to extract the spectra of the 

individual components, and yet some others attempt a 

quantitative analysis of the mixture. This section takes a 

closer look at some of those methods developed for the 

interpretation of multi-component data. 

Most of the early reports attempt to provide the 

capability of component deconvolution, that is to extract 

the spectra of the individual components from the mixture 

15



spectrum, or in some cases to simply find the number of 

components in the mixture. 

As early as 1977, I.M. Warner et al.”! reported a 

method for the qualitative analysis of multicomponent EEMs. 

The method analyzes the data matrix in terms of eigenvectors 

and eigenvalues. When the absorbance of the sample is less 

than 0.01,” the EEM data matrix, M, in the case of an r- 

component mixture can conveniently represented as 

M-) ax(i)y(i)! (10) 
ix] 

where x(i) and y(i)' are the observed excitation and 

emission spectra of the i” component and a, is a 

concentration dependent parameter. For such a matrix M, 

there are several mathematical procedures available for the 

calculation of the eigenvectors, and the corresponding 

eigenvalues”“. The number of eigenvectors associated 

with a large value eigenvalue, equals the number of 

independently emitting compounds in the mixture. 

Additionally, eigenvector analysis in the simple case of two 

component mixtures can extract the EEMs of the individual 

components. Another method using eigenvector analysis was 

recently reported by M. Kubista™ where the individual 

components of the sample can be identified if two spectra of 

the mixture with different relative concentrations of the 

16



components are available. 

A similar method using target factor analysis, was 

reported by M. McCue and E.R. Malinowski” for the 

investigation of infrared spectra of multicomponent 

mixtures. For the case of an r-component mixture, the 

method requires a series of at least 2r mixtures containing 

the same components but in different concentrations, whose 

absorbance is measured at least in 2r wavenumbers. The 

method can give the number of absorbing species, test for 

the presence of suspected components in the series of 

mixtures. In the case where all r components have been 

identified from the target-testing procedure a quantitative 

analysis of each solution can be made. 

The ratio method developed by T. Hirschfeld” for use 

with infrared data, and also reported by M.P. Fogarty et 

al.” for use with three dimensional fluorescence data, can 

determine the spectra of the individual components in 

related mixtures without prior knowledge of the 

constituents. The method requires r mixtures, where r is 

the number of components involved. Partly because each 

component must have a spectral region where it alone absorbs 

or emits, the method has been restricted to two and three 

component mixtures. M.P. Fogarty et al.” also developed a 

method which utilizes quenching as an aid in the ratio 

deconvolution of multicomponent fluorescence data. The 
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advantage of quenching is that apparent changes in the 

relative fluorescence intensity of the components, in order 

to create the series of mixtures required by the ratio 

method, can be accomplished without extensive sample 

preparation. 

Researchers have also developed a number of methods for 

the enhancement of the information content of spectra of 

30 used the well-known method mixtures. F. Dousseau et al. 

of spectral subtraction for the quantitative subtraction of 

water from the transmission infrared spectra of aqueous 

solutions of proteins. 

Another very popular method for the enhancement of 

infrared spectra is the Fourier self-deconvolution method 

which was introduced by J.K. Kauppinen et al.*! for 

resolving overlapped lines that can not be instrumentally 

resolved due to their intrinsic linewidth. The method uses 

one of the fundamental theorems of the Fourier transforn, 

FT. The FT of the product of two functions is the 

convolution of the FTs of each. A measured spectrum, S(A), 

can be expressed as the convolution of a higher-resolution 

spectrum, S’(A), with a broadening function G(A), 

S(A) =S’ (A) * G(A) (11) 

where the symbol "*" denotes convolution. The G(A) function 

represents the broadening of the spectrum due to 

18



instrumental effects and the fact that spectra are measured 

at finite resolution. Thus the problem of enhancing the 

resolution of a spectrum is reduced to the selection of an 

appropriate G(A) function, and then use the FT of that 

function to multiply the FT of the spectrum. Several 

functions have been suggested in the literature”*® for use 

in the Fourier self-deconvolution method, which result to 

line width reductions by factors of 3 or more. 

Disadvantages of the method is the high signal to noise 

ratio, S/N, required (S/N > 1000), and the side-lobes that 

appear along the sides of the peaks after the deconvolution. 

The methods described so far do not assume prior 

knowledge of the composition of the mixtures under 

investigation. In cases where the identity of all the 

components or partial knowledge of the composition of the 

mixture is available, several methods have been reported 

which achieve quantitative analysis of the mixture. All of 

those methods assume a linear relationship between 

concentration and measured signal, absorption or emission. 

In the simple case where two components are to be 

determined, measurements at two frequencies are needed to 

estimate the individual concentrations. For calibration of 

this type of system, two independent reference samples 

(samples with known composition) are necessary. This 
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approach can be extended to more components in the obvious 

way. An alternative, more robust approach would be to 

"over-determine" the system by using more than the minimum 

number of frequencies and reference samples, and use 

statistical and matrix procedures to estimate the solution. 

Most of these procedures offer a solution on the basis of 

minimizing the sum, R, of the squared residuals between the 

measured values, y,, and those predicted by a theoretical 

model values, p,, 

N 

R=) (y;-P,)? (12) 
i-1 

where N is the number of points in the two data sets. The 

predicted values, p,, are the result of a theoretical model 

that needs to be developed and which includes the values 

from the reference samples. From the above expression, 

Equation (12), comes the commonly used name for this type of 

analysis, least-squares analysis. 

The classical statistical procedure of multivariate 

least-square analysis is very often used for quantitative 

analysis of known-component mixtures. A comparison of 

several statistical and matrix methods for spectral 

quantitative analysis, such as multivariate least-squares, 

principal components, and partial least-squares, has been 

offered by M.P. Fuller et al.*. In the same article the 
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researchers also report their implementation of a partial 

least-squares method for use with infrared spectra. A 

successful application of this method was the quantitative 

analysis of samples of commercially available detergents”. 

Y. Li-shi and S.P. Levine® reported a least-square 

method applied to Fourier transform infrared (FT-IR) spectra 

for the quantitative analysis of multicomponent mixtures of 

airborne vapors of industrial hygiene concern. The least~ 

square fit was successful in the quantitative analysis of 

mixtures of ambient air, with up to six component mixtures. 

They involved analytes found in hazardous waste sites, and 

could even handle those cases where there was strong overlap 

of the infrared spectral features. 

A similar method for use with Near-IR Fourier transform 

(near-IR FT) Raman spectra has been reported by M.B. 

Seasholtz et al.*”, for the quantitative analysis of 

mixtures of unleaded gasoline, super-unleaded gasoline, and 

diesel. The difference in this approach was that instead of 

using pure compounds as their reference samples, the 

researchers used a calibration set of 29 mixtures composed 

of varying mass percentages of the three liquid fuels. The 

researchers also noticed something very important about the 

use of least-squares methods; by selecting different 

portions of the spectra to do the calculations there is a 

Significant effect on the error of the suggested solution. 
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The same observation has been reported by I.M. Warner 

et al.** when the least-squares method was used for 

quantitative analysis of mixtures with EEMs. After further 

investigation, it was found that it is essential that only 

regions of the matrices with good signal to noise ratios be 

used. To achieve this, rather than using the entire 900 

data points in each matrix, the researchers first reduced 

the number of data points to 36 by summing 25 neighboring 

points, and from those 36 points selected only those with 

the highest signal to noise ratios for the least-squares 

calculations. On the average, 10 points were selected and 

the method achieved the quantitative analysis of three 

component mixtures when all components were known. 

When the complete qualitative composition of the sample 

is not known Ho et al”. developed a method called rank 

annihilation factor analysis, RAFA, which successfully has 

been used to predict the concentration of an analyte in an 

unknown sample in the presence of one or more chemical 

species unaccounted for in the calibration samples. This 

early rank annihilation method allowed quantitation in the 

presence of interferents, but it required the pure component 

response matrix for calibration and could only quantitate 

for a single analyte at a time (although multiple analytes 

were possible simply by repeating the mathematics for each 

analyte). 
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The method of rank annihilation is based on minimizing 

an appropriate function which involves the eigenvalues 

computed for the unknown and reference matrices. An 

extended method of rank annihilation, which allowed 

simultaneous multicomponent analysis has been reported by Ho 

et al.* The method was applied to a set of six component 

polynuclear aromatic hydrocarbon solutions by use of data 

acquired by a video-fluorometer in the form of an EEM. The 

calculated results for different compounds were greatly 

effected by the relative fluorescence of the analyte in the 

sample and the amount of spectral overlap. 

A conceptual extension of the rank annihilation method 

of Ho et al. developed by E. Sanchez and B.R. Kowalski”, is 

called the generalized rank annihilation method, GRAM. With 

the use of GRAM, it is possible to quantitate for multiple 

analytes in the presence of spectral interferents by using a 

single calibration sample. For example, if the LC/UV 

response matrices were measured under exactly the same 

conditions for a mixture containing eight components at 

known concentrations and for an unknown which contained some 

or all of the eight components, then it would be possible to 

use GRAM to obtain the concentrations of the mixture of 

these eight analytes as well as their isolated UV spectra 

and elution profiles. Besides carrying the problems of 

relative fluorescence intensity and spectral overlap of 
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RAFA, the complexity and time required to perform the 

calculations of GRAM make the method unrealistic as the 

search method for a large size spectral library. 

The rank annihilation methods described above are 

applicable only to second-order bilinear data. The term 

second-order bilinear data describes data collected from 

instruments with the following two characteristics, (a) each 

sample yields a matrix of data, termed the response matrix, 

and (b) the rank of the response matrix for a pure chemical 

component is unity in the absence of noise. Examples of 

such techniques are liquid chromatography/ultraviolet 

(LC/UV), gas chromatography/mass spectrometry (GC/MS), and 

fluorescence excitation-emission matrices (EEM). 

Unfortunately, two very powerful instrumental methods, two- 

dimensional nuclear magnetic resonance (2D NMR) and two- 

dimensional mass spectroscopy (MS/MS), do not comply with 

the above requirements. B.E. Wilson et al.” developed a 

method called nonbilinear rank annihilation (NBRA), which 

they applied to 2D J-coupled NMR spectra. NBRA requires the 

pure component spectra for calibration, so that the direct 

multicomponent analysis and qualitative analysis advantages 

of GRAM are lost. B.E. Wilson and B.R. Kowalski® compared 

nonbilinear rank annihilation with three curve resolution 

methods for their abilities to accurately predict the 

concentration of an analyte in the presence of one or more 
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spectral interferents. Although, NBRA performed better than 

the three curve resolution methods, the results were 

inferior to multiple linear regression which was used as a 

referee method. 

When the response of the pure components is available, 

an alternative to least-squares methods for multicomponent 

analysis are methods based on Kalman filtering. The Kalman 

filter is a recursive, digital filtering algorithm developed 

by R.E. Kalman“ in the 1960s for engineering applications. 

It is a mathematical method which allows the estimation of 

system parameters, such as, the concentrations of 

fluorophores in an unknown sample, in the case of noisy 

and/or overlapped spectral responses. The Kalman filter 

algorithm is based on the generally valid assumption that 

the number of measurements is larger than the number of 

unknown concentrations. The following recursive structure 

is involved 

NEWESTIMATE=OLDESTIMATE+ CORRECTION (13) 

where "old estimate" is the estimate based on m 

measurements, the "new estimate" is the estimate based upon 

(m+1) measurements, while the "correction" is calculated on 

the basis of the new information supplied by the additional 

measurement. 

H.N.J. Poulisse*® describes a very attractive method, 
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because of the small number of computations required, based 

on the Kalman filter algorithm for multicomponent analysis 

of UV spectra. The author gives an example where the 

algorithm was able to accurately estimate the concentrations 

of the four components in a mixture where there was 

Significant spectral overlap. C.B.M. Didden and H.N.J. 

Poulisse“ further exploring the above method, show that in 

the situation where there are a number of candidate 

components, Kalman filters can be used to simultaneously 

determine the number of components present in the sample and 

their concentrations. If one of the components is not 

present in the sample, e.g. the i" component, the filter 

will produce a very small value for the i" coefficient, with 

respect to the coefficients for the other components. 

Although the Kalman filter algorithm is ideally suited for 

measurements corrupted by white noise, it is limited by the 

very small range of concentrations it can operate in. When 

the concentrations of the components vary more than one 

order of magnitude, the confidence intervals become so wide 

that the detection of minor components is impossible. 

Kalman filter methods have also been used in two 

dimensional fluorescence spectroscopy. T.L. Cecil and S.C. 

Rutan” reported an algorithm based on the Kalman filter for 

the correction of spectral response shifts in overlapped 
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fluorescence spectra of polycyclic aromatic hydrocarbons. 

The algorithm corrects for variations in peak positions, 

peak intensity ratios, and fluorescence sensitivities, 

caused by changes in the solvent polarity, therefore giving 

significantly improved estimations for the concentrations of 

the components. 

Besides the efforts to develop techniques for the 

analysis of mixtures, much emphasis in recent years has been 

placed on developing computerized methods for spectral 

interpretation. A number of different approaches has been 

studied over the years. Those vary from rule-based expert 

systems for the interpretation of infrared spectra,*” to 

automated structure elucidation systems for the 

interpretation of two-dimensional NMR spectra,” to multi- 

parameter chi-square fitting procedures for ultraviolet 

spectra.*! By far though, the most common computerized 

spectrum interpretation method employed today is library 

searching. 

C. SPECTRAL LIBRARY SEARCH - DATA COMPRESSION 

In this section, some of the most successful approaches 

for spectral interpretation with the use of spectral 

libraries, along with the search and the data reduction 

algorithms used to develop those libraries, will be 
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presented. 

One very popular and widely used retrieval algorithm is 

the Probability Based Matching, PBM, algorithm developed by 

F.W. McLafferty et al.” for the identification of unknown 

mass spectra. The PBM is a statistical technique, which 

compares an unknown spectrum with a library reference 

compound and calculates the probability or ‘Confidence 

Index’, K, that the reference compound is present in the 

unknown. The calculations are based on the probability of 

individual peaks appearing in a spectrum. The library 

reference compound with the highest calculated ‘Confidence 

Index’ value represents the correct answer. 

It is important to note that PBM uses a ‘Reverse 

Search’ technique. In reverse search, the system examines 

for the presence of the peaks of the reference spectrum in 

the unknown spectrum. In the opposite case or ‘Forward 

Search’, the system examines for the presence of the peaks 

of the unknown spectrum in the reference. The advantage of 

a reverse search system is that it can be used not only for 

the identification of pure compounds, but also for mixtures. 

B.L. Atwater et al.* realizing that the confidence 

index, K, of the PBM algorithm gives only a qualitative 

indication of the probability that the retrieved compound 

represents a correct answer, developed an improved PBM 

system where the reference compounds are ranked according to 
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the predicted match reliability. This ranking substantially 

improves the performance of PBM, and the reliability value 

is especially helpful in avoiding the assumption that the 

best matching spectrum represents the correct compound when 

its spectrum is not actually in the reference library. 

A ‘Spectrum-stripping’ technique has also been used to 

improve the identification of minor mixture components in 

matching unknown mass spectra using the PBM system.™* In 

spectrum-stripping techniques, after one compound has been 

identified, its spectrum is subtracted from the unknown and 

the search continues. The process stops when the residual 

unknown spectrum contains only instrumental noise. 

An automated mass spectrometry/mass spectrometry 

(MS/MS) search program has been developed by K.P. Cross and 

c.G. Enke,» which matches an unknown MS/MS spectrum against 

either primary or secondary spectra in a reference data 

base. The strategy of the program is first to eliminate the 

majority of candidate MS/MS spectra by prefiltering, and 

then using an intensity-based matching algorithm that 

retrieves an identical or structurally closely related 

reference compound (most of the time). The intensity-based 

algorithm was developed to recognize different kinds and 

degrees of similarity between the spectra, and for that 

reason uses seven match factors. 

In the prefiltering step, the most significant peaks in 

29



the unknown spectrum are ranked according to their 

increasing frequency in the data base. For every peak of 

the unknown spectrum, a subset of all the reference spectra 

that contain that peak, is created. The subsets of the two 

peaks with the lowest frequencies are ANDed together, 

resulting in a subset of the reference spectra which 

contains both peaks. An example of a logical AND operation 

can be seen in Figure 2. The process continues until all 

the subsets are used. The use of the least frequent peaks 

first, results in the majority of reference spectra being 

excluded in the first few AND operations, thus increasing 

the speed of the algorithm. 

The methodology of selecting a subset of the spectral 

library to contain the spectra most similar to the unknown 

has also been used for infrared spectral libraries 

searching. J.M. Bjerga and G.W. Small developed a method 

to decrease the time required to perform a standard library 

search based on principal components analysis. Principal 

components analysis calculates a new set of axes and 

coordinates which reduce the dimensionality of the original 

data space. The spectra are projected onto a principal 

plane where they are represented as a single point in a two- 

dimensional space. The angle of the point in the plane 

representing the unknown spectrum is determined, and only 

those library spectra with similar angles in the plane are 
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SET OF ALL REFERENCE SPECTRA   
Figure 2. Logical AND operation. 
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selected and further searched with the use of the Euclidean 

distance or least-squares metric, Equation (12). 

Library search techniques for structure identification 

have also been developed by O. Yamamoto et al.’ for Nuclear 

Magnetic Resonance, NMR, spectra. For this purpose search 

files containing information taken from the full spectral 

patterns are created. In the search files peak information, 

including positions and intensities, as well as other search 

items such as molecular formula, molecular weight, etc. are 

stored. The method uses the 'H-NMR area intensity rather 

than the peak height intensity for increased accuracy. The 

search is done simply by comparing the information in the 

search file for the unknown against the information in the 

search files of the reference spectra. 

A similar spectrum compression algorithm that reduces 

the storage space required for infrared vapor-phase spectra 

by 95% with minimal loss of structural information content, 

has been described by R.A. Divis and R.L. White.* Fourier 

self-deconvolution is used to resolve overlapping bands, and 

a curve-fitting process is used to calculate and store 

intensity, location, and width of identified absorbance 

bands. Spectra compressed and stored in the reference 

library with this algorithm have to be reconstructed from 

the compressed data prior to the library search process, 
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which is done simply by calculating the Euclidean distance 

between the unknown and reference spectra. 

Although this compression algorithm achieves a high 

compression factor, it is not considered a good compression 

algorithm for the generation of spectral reference libraries 

because it does not allow the search to be carried on the 

compressed form of the spectra. Carrying the search on the 

compressed form of the spectra has the obvious advantage of 

requiring less time for the search to be completed. 

Z. Zolnai et al.* described a data compression method 

for NMR data, where the important information is localized 

in a small fraction of the overall data block. The 

compression algorithm involves two steps : elimination of 

the background noise and logarithmic scaling of the data. 

For the background noise elimination step, a threshold value 

is calculated from the standard deviation of the noise, and 

each spectral point is compared with this value : points 

below the threshold value are zeroed, and points above are 

left intact. Sequences of zeros are then replaced by the 

leading zero itself and a number indicating the number of 

zeros in the sequence. In the logarithmic scaling step, the 

data points left intact in the previous step are replaced by 

their logarithmic value with a suitably chosen base. 

The overall compression factor of this method depends 

on the distribution of zero sequences in the original data 
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file, and typically ranges from 5 to 100. The fact that the 

comparison of two spectra can not be carried on the 

compressed form of those data files, and the widely varying 

of compression factors achieved, make this compression 

method inappropriate for the construction of spectral 

libraries. 

F. Ishihara” developed a very efficient and fast 

method for the compression of spectral data and search of 

spectral libraries. The method was demonstrated using 

three-dimensional fluorescence spectra of polycyclic 

aromatic hydrocarbons. The EEMs are transformed with the 

use of two-dimensional Hadamard Transform, the higher 

sequences of the transformation are discarded as they 

containing only noise, and the remaining lower sequences are 

clipped into a series of 1’s and 0’s using a zero-crossing 

clipping algorithm. In the library search process, the 

clipped pattern of the unknown is XORed (Figure 3) with the 

patterns of the reference spectra to yield the corect match. 

Numerous other approaches have been studied for data 

compression and library search algorithns, but the great 

majority of those are designed for specific applications, 

like the QUEST system of J.I. Garrels®™ for two-dimensional 

gel electrophoresis. The QUEST system automatically 

detects, resolves, and quantifies the spots that make-up the 

protein patterns on the two-dimensional gels. Those spots 
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Figure 3. Logical XOR operation.



can then be entered into the QUEST database, which can be 

searched with four different matching algorithms for the 

analysis of an unknown gel. More details for the 

construction and analysis of protein databases using the 

QUEST system are given by J.I. Garrels and B.R. Franza, Jr. 

in another report.” 

Data compression is also a very important issue in 

other areas, like image processing and speech processing, 

where large amounts of data must be compiled and analyzed. 

In most cases, methods from those fields can directly 

applied to spectral data compression. Such a case is 

described by I.E. Alguindigue and R.E. Uhrig® where neural 

networks are used to compress spectral signatures. Although 

the compression ratio achieved in this study was only 2 to 

1, the results were very encouraging, pointing out the 

future feasibility of such an approach. 

In closing this historical section it is important to 

emphasize that heretofore (1) the use of a spectral library 

of pure compounds for the analysis of pure compound unknowns 

has been successfully implemented, and (2) the use of a 

spectral library of mixtures of different compositions for 

the analysis of mixtures has also been successfully 

implemented, but the use of a pure compound spectral library 

for the the analysis of mixtures has never been reported. 

This is the goal of this research. 
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III. THEORETICAL BACKGROUND 

A. FLUORESCENCE SPECTROSCOPY 

In a conventional fluorescence measurement experiment, 

the sample is irradiated with monochromatic light which 

produces molecules in the excited state. As these molecules 

return to the ground state, light with a characteristic 

wavelength distribution is emitted, known as the 

fluorescence emission spectrum. A fluorescence excitation 

spectrum is the fluorescence intensity as a function of the 

absorption wavelength used to move the molecules to the 

excited state. 

These light absorption and emission processes are very 

nicely illustrated by the energy-level diagram suggested by 

A. Jablonski in 1935.' In Figure 4, the ground, S,, first, 

S,, and second, S,, electronic states along with the 

absorption and fluorescence processes, are shown ina 

simplified version of the original Jablonski diagram. 

During light absorption, molecules usually are excited to 

some higher vibrational level of either S, or S,, followed by 

a rapid relaxation to the lower vibrational level of §S,. 

This relaxation process is called internal conversion and is 

represented by the broken lines in Figure 4. 

The transitions between the various energy levels in 
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the Jablonski diagram are represented by vertical lines, a 

presentation chosen by Jablonski to illustrate the 

instantaneous nature of those transitions. The light 

absorption process occurs in about 10 sec, the internal 

conversion usually occurs in 10 sec, and fluorescence 

lifetimes are typically near 10° sec. 

The simplicity of the diagram is explained by the 

Franck-Condon principle, which states that! " ... the time 

required for an electronic transition is negligible compared 

with that of nuclear motion ... " This is also the source 

of the mirror image rule of fluorescence! which states that 

the fluorescence emission spectrum appears as the mirror 

image of the absorption spectrum, specifically the 

absorption representing the S, to S, transition. Also, since 

the internal conversion is so fast, emission spectra are 

usually independent of the excitation wavelength. 

Another important parameter of fluorescence 

spectroscopy which needs to be described is quantum yield. 

This parameter can best be illustrated by reference to the 

modified Jablonski diagran, Figure 5. In this diagram 

increased attention is directed to those processes 

responsible for the return to the ground state. In 

particular, two parameters are important, (1) the emissive 

rate of the fluorophore, [, which is the rate at which the 
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excited molecules return to the ground state through 

emission of radiation, and (2) the rate of radiationless 

decay, k, which is the rate at which the molecules return to 

the ground state without radiation emitting processes, such 

as thermal and solvent relaxation.” 

The fluorescence quantum yield, @¢, is the ratio of the 

number of photons emitted to the number of photons absorbed 

by the fluorophore. Since the number of photons emitted is 

proportional to Tf and the number of photons absorbed is 

proportional to the sum (I+k), the quantum yield is given by 

O° TK (14) 
  

The quantum yield can be close to unity if the radiationless 

rate is much smaller than the rate of radiative decay (that 

is k<<I). This is usually not the case, and typical values 

for the quantum yields of many compounds are much lower than 

unity. Table I shows the quantum yield values for some 

aromatic compounds.™ It can be seen that these values vary 

widely and thus quantum yield is very a important parameter 

when determining the fluorescence intensity of a sample. 

At low concentrations, when the absorbance of a sample 

is less than 0.01, the intensity of the fluorescence emitted 

at a given wavelength is directly proportional to the amount 

of light absorbed, and therefore it is also proportional to 
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Table I. Quantum yield values of some aromatic compounds. 
Re eee eee ee eee ee eee eee ee eee 

  

Compound Solvent Quantum Yield 

Anthracene Benzene 0.26 

95% EtOH 0.27 

Acridine Ethanol 0.82 

95% EtOH 0.83 

Fluorescein H,O-NaOH 0.93 

9-Aminoacridine Ethanol 0.99 
EtOH-HC1 1.00 

Water 0.98 

Quinine sulphate N H,SO, 0.54 

9,10-Dichloro- Benzene 0.65 
anthracene 

1,8-Diphenyl- Benzene 0.15 
1,3,5,7-octa- 
tetraene 

Perylene Benzene 0.89 

1,4-Diphenyl-1,3- Cyclohexane 0.44 
butadiene 

Rhodamine B Ethanol 0.97 
EtOH-HClL 1.00 
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the concentration of the analyte in the sample solution, 

following Beer’s law. For a sample containing a single 

emitting species the fluorescence intensity, I, can be given 

to an adequate approximation by” 

I=2.303I,pebe (15) 

where I, is the intensity of the incident radiation, ¢ is 

the quantum yield, ¢€ is the molar extinction coefficient, b 

is the pathlength of the sample cell and c is the 

concentration of the fluorophore in the sample solution. 

In an Excitation-Emission Matrix, M, each element, n,, 

which represents the fluorescence intensity at wavelength \, 

that was generated by excitation at wavelength i),, can be 

expressed by 

Mm, j= 2. 303GT(A,) € (A;) ¥(A;) 6 (A,) be (16) 

where y(A;) reflects the dependence of I on the monitored 

emission wavelength and §(A;) is a parameter which 

incorporates instrumental artifacts like sensitivity and 

signal collection geometry. 

Combining the terms in Equation (16), based on the 

dependance of the variables on excitation or emission 

wavelengths, results in the simple expression 

I, ;= aX,Y; (17) 

where a is a scalar equal to 2.303@bc, x, is the excitation 
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term combining the excitation wavelength related variables, 

and y; is the emission term, combining the emission 

wavelength related variables. 

When the x; and y; are properly sequenced, the two 

arrays are representations of the excitation, x, and 

emission, y, vectors (spectra) of the fluorophore 

respectively. Since the excitation profile is independent 

of the monitored emission wavelength, and the excitation 

profile is independent of the monitored emission wavelength, 

the matrix M can be expressed as the vector product of the 

excitation and emission vectors, x and y, multiplied by the 

scalar concentration term a 

M=axy™ (18) 

In a sample containing r fluorescent compounds, 

assuming again low concentrations for all components, the 

matrix M is the sum of the EEMs of the individual 

components. Thus, the r component matrix can be expressed 

as 

M= > OYE (19) 

Further simplifying Equation (19), one can combine the 

excitation and emission vectors, x and y, for each component 

into a matrix form, M,, and write the mixture matrix, M, as 
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being the sum of the individual standard matrices of the 

components, each multiplied by a relative concentration 

factor, £6, 

m=) BM, (20) 

where 6, is the concentration of the component k in the 

mixture divided by the concentration of the component k in 

the standard matrix, and the notation 6M, means that each 

element of M, is multiplied by the factor §,. 

The assumption of low concentrations made previously 

is very important if the above representation of the EEM of 

a mixture is to be pertinent. At higher concentrations of 

the analyte the relation between fluorescence intensity and 

concentration, Equation (15), becomes non-linear,! as can be 

seen in Figure 6. As the concentration of the analyte 

increases past point L,,. rf measured fluorescence intensity 

drops because of reabsorption, i.e. part of the emitted 

light is absorbed back by the fluorophores. The lower 

limit, Liwerr, Shown in Figure 6, is the limit of detection 

for the particular spectrophotometer used for the 

measurements. Below this concentration, although the 

relationship between fluorescence intensity and 

concentration remains linear, accurate measurements of the 

fluorescence are not possible. 
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The lower limit, L,,.,, can be shifted towards lower 

concentrations of the analyte with the use of more sensitive 

instruments for the measurement of fluorescence, whereas the 

upper limit, L,,.,, cannot be altered since reabsorption 

cannot be prevented. This poses no real problem for the 

algorithm which will be presented in the next section, since 

the problem most methods have is that they only work at 

higher concentration, and cannot handle low concentrations 

of analytes. 

The range between L,,,, and L,,,, is the concentration 

range where the above equations apply, and thus it will be 

the concentration range which will be implied for the 

remaining of this work. This range is typically several 

orders of magnitude wide. The exact limits, though, vary 

for different compounds, because of the differences in the 

values of quantum yield. 

The representation of the EEM of a mixture, as the sum 

of the EEMs of the individual components, Equation (20), 

will be used in the following developments. The assumption 

of a linear relationship between fluorescence intensity and 

concentration of analyte, as well as the presence or absence 

of synergistic effects, will be further explored in 

following sections. 
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B. HARTLEY TRANSFORM 

Transform methods, especially the transform developed 

by Joseph Fourier which carries his name, have found an 

enormous range of applications in chemistry.© Different 

spectroscopic techniques use the Fourier transform to 

convert a complex and confusing time sequence, created by 

the physical processes involved in those spectroscopies, 

into an interpretable spectrum. Typical examples of this 

type of spectroscopy are Fourier transform infrared 

spectroscopy, Fourier transform NMR spectroscopy, and even 

Fourier transform mass spectroscopy. 

Fourier transform techniques are also a powerful aid to 

signal processing. Those techniques not only allow the 

convenient transformation between two different 

representations of the data, but also simplify mathematical 

operations on the data. Typical applications include the 

calculation of the frequency-domain spectrum from a discrete 

time-domain data set, Fourier self-deconvolution of 

overlapped peaks, even signal filtering. 

Although Fourier transform has become the preferred 

method for those applications, it is not the only transform 

technique that can be used to achieve these results. The 

Hartley transform offers a conceptually simpler alternative 

to the Fourier transform. 

The reason for the wide spread of the Fourier 
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transform, over any other transformation, is the development 

of the discrete fast Fourier transform, FFT, by J.W. Cooley 

and J.W. Tukey,® in 1965, which tremendously increases the 

speed of the calculations. The corresponding discrete fast 

Hartley transform, FHT, was developed much later, in 1984, 

by R.N Bracewell”. 

The Hartley transform, was introduced by R.V.L. 

Hartley® in 1942. In contrast to Fourier transform, it 

maps a real function of time, X(t), into a real function of 

frequency, H(v). There is a strong connection between the 

two transforms, as the following statement indicates: the 

Hartley transform is the real part of the Fourier transform 

minus the imaginary part. 

The Hartley transform, just like Fourier, transforms a 

function from one domain, (e.g. time), to its reciprocal, 

(1/time = frequency). At this point, it is important to 

realize that a transform pair is simply an alternative 

representation of the information about the system, and 

which representation is chosen is entirely a matter of 

convenience. 

The equations for the definition of the Hartley 

transform for a continuous function extended to infinity in 

both directions, along with its inverse transform (used to 

map the frequency function back into the time domain) are: 
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o 

H(v) == [x(t) cas (anve) at (21) 

oo 

X(t)= [am cas (2nvt) dv (22) 

where cas(2mvt)=cos(27mvt)+sin(2mvt). 

These equations are very similar to those of the 

Fourier transform and its inverse: 

@ 

F(v)= [x(e)e trae (23) 

Go 

X(t)-= [Feteav (24) 

where e”?“=cos(2mvt)+jsin(2mvt), and e”™“=cos (2mvt) - 

jsin(2mvt), which are known as Euler’s formulas. The 

principal difference between the two definitions is that the 

real function cas(2mvt) in the Hartley transform replaces 

the complex exponential term e+?“ in the Fourier transform 

pair. Although this does not seem like an important 

difference, the Fourier transform of a function is obviously 

a complex function. Complex arithmetic requires more 

operations than real arithmetic (a complex multiplication or 

division requires four operations, and a complex addition of 

subtraction requires two operations). Furthermore, complex 
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data arrays require double the memory storage of real data 

arrays. Therefore, the Hartley transform will be distinctly 

faster and use less computer resources than the Fourier 

transform in applications where large amounts of data need 

to be processed. Also, since the Hartley transform uses 

fewer operations to process a signal, the transformed data 

would have fewer roundoff errors. Those errors are 

introduced by the limited precision by which computers 

carry-out calculations. 

An additional advantage of Hartley transform over 

Fourier transform, is that the inverse Hartley transform can 

be obtained by applying the same algorithm to its own 

output, thus regenerating the input data. This means that 

the same computer code can be used to compute the transform 

and its inverse. 

The definitions given above for the Hartley and Fourier 

transform deal only with continuous variables. In real 

experimental systems, the data in not continuous and it does 

not expand to infinity in both directions. In those cases, 

the discrete forms of the transform pair for a set of N data 

points is defined as 

7 

H(v)==) F(t)cas(2mvt/N) (25) 
t-0 

and 

51



N-1 

X(t)=> H(v) cas (2nmvt/N) (26) 
v= 0 

From these equations it is apparent that for the computation 

of the Hartley transform of an N-element data set, N?’ 

arithmetic operations would have to be performed (N 

computations for every one of N points). For large data 

sets this number becomes extremely large, making the 

calculation of the transform difficult and very time 

consuming. To overcome this difficulty, the fast Hartley 

transform, FHT, algorithm, uses a permutation process to 

bisect the data until data pairs are reached. Calculating 

the Hartley transform from such data pairs is trivial: 

(a,b)+(at+b,a-b) (27) 

The idea behind the permutation process is that it is 

faster to split the data into pairs, compute the transform 

of the pairs using the above equation, and recombine these 

pairs to make the entire transform, rather than to compute 

the transform for the complete data set using Equation (25). 

It takes approximately Nlog(N) computations, rather than N’, 

for the FHT algorithm to compute the transform of an N- 

element data set. A computer implementation of the FHT 

algorithm using the permutation process can be found in the 

literature.” 
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An important point to note about the discrete form of 

the transform equations is that it is simply a transform of 

a series of numbers sampled at equal intervals. There is no 

requirement that the two representations of the system be 

the time and frequency domains, respectively. Any series of 

numbers could be transformed, regardless if they represent a 

spectrum, a system response, a data matrix, or even if they 

are random numbers or noise. In these cases though, the 

interpretation of the results would be different, and a 

simple physical interpretation of the transform domain, e.g. 

frequency, may not exist. 

Another important feature of transforms, and of course 

the Hartley transform, is that mathematical operators 

undergo transformation as well as data. This means that an 

equivalent calculation can be carried out in the transform 

domain in a different way to the procedure which would have 

been used for the original data. Frequently, this can be 

used to simplify complex calculations. 

For example, an extremely important process in signal 

processing is that of convolution and deconvolution.” The 

complex calculation of the convolution of two functions in 

one domain is equivalent to simple multiplication in the 

other domain. Given two functions, h(t) and g(t), and their 

corresponding transforms, H(v) and G(v), a Hartley transform 

pair can be defined such that 
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g(t) *h(t)#G(v)H(v) (28) 

where the symbol "*" denote convolution and the symbol "+" 

denotes a transform pair. Therefore, to calculate the 

convolution of two time functions it is only necessary to 

transform them individually, perform a point by point 

multiplication of their transforms and inverse transform 

back to the time domain. 

R.N. Bracewell” explains the properties of the discrete 

Hartley transform. Some of those properties, along with 

some interesting relations of the discrete transform, can be 

found in Table II. Certain properties in Table II are very 

important for this work and will further be explained. 

Multiplication by a scalar: A very simple property of 

the Hartley transform important for this work is the 

multiplication of a given function by a scalar. Multiplying 

a function, f(t), by a scalar, results in the multiplication 

of the Hartley transform of the function by the same scalar: 

af (t)+aF(v) (29) 

where F(v) is the Hartley transform of the function, and a 

is any real number. It was explained earlier in the 

discussion on the representation of the Excitation-Emission 

Matrices, Equation (17), that each element of an EEM can be 

represented as a vector product matrix, multiplied by a 
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Table II. Properties of the Hartley transforn. 

  

Function DHT 
Theorem f (t) H(v) 

Reversal f(-t) H(-v) 

Scalar product af(t) aH (v) 

Addition f,(t) + £,(t) H,(v) + H,(v) 

Convolution £,(t) © £,(t) N/2 [(H,(v)H,(v) 

~- H,(-v) H2(-v) 
+ H,(v)H,(-v) 
+ H,(-v)H,(v) J 

Product £,(t) £,(t) N/2(H, (v) OH, (v) 
~- H,(-v) OH, (-v) 
+ Hy, (v) OH, (-v) 
+ H,(-v) OH, (v) ] 

  

Derivative £' (t) 2mVH (-v) 

2% Derivative £"(t) -47’v"H (v) 

N-1 

Sum of sequence £(t) = NH(0) 
t=0 

N-1 

First value £(0)= H(v) 
v=0 
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concentration factor, a. Since the Hartley transform can 

operate on any series of numbers, even a matrix, assuming 

that f(t)=xy, it can therefore be shown that each element of 

the transformed matrix will be proportional to the same 

concentration factor, a, i.e. each element in the 

transformed EEM is proportional to the concentration of the 

fluorescence species. 

Addition: The addition of two functions can be carried 

out in any of the two domains of the Hartley transform, i.e. 

adding two functions in one domain is equivalent of adding 

their Hartley transforms: 

g(t) +h(t)#G(v) +H(v) (30) 

where g(t), h(t), and G(v), H(v), are any two functions and 

their Hartley transforms respectively. In the case of EEMs, 

it was shown earlier, Equation (20), that the EEM of a 

mixture is the sum of the EEMs of the individual components. 

Thus, application of the addition property of the Hartley 

transform means that the transformed matrix of the mixture 

equals the sum of the transformed matrices of the individual 

components. 

Combination of these two properties of the Hartley 

transform, multiplication by a scalar and addition, in the 

case of an r component mixture with concentrations £,, 

k=1,2...r, results in the following relation: 
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M-> BMH (M) => BH (M,) (31) 
k-1 k-1 

where M and M are the EEM of the mixture and the EEMs of 

the individual components, respectively, and the symbols 

H(M) and H(M,) represent their Hartley transforms. The 

significance of the above relation will be discussed later 

in the section on least-square analysis. 

A final question that has to be addressed about Hartley 

transform is "what form does the spectrum take after it is 

transformed?" and "how does the transform effect white 

noise?" That will be better demonstrated with the use of 

appropriate examples. In the following examples, all the 

spectra and the corresponding Hartley transforms consist of 

256 points. A computer program (Appendix A) written in 

PASCAL was used to calculate the Hartley transforms. 

Since fluorescence spectra usually involve broad, 

rather featureless peaks, fluorescence spectra are commonly 

simulated with the use of Gaussian peaks. Figure 7 shows 

such a peak. It is apparent that the signal is spread over 

almost all the points of the spectrum, and only points at 

the two far sides of the spectrum seem to contain no signal 

(Although in theory, Gaussian peaks extend to infinity at 

both sides). 
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The output of the fast Hartley transform of the above 

Gaussian peak is shown in Figure 8. In the representation 

used for the transform domain in Figure 8, points at the two 

sides represent low spatial frequencies, whereas points in 

the middle of the transform represent high spatial 

frequencies. It is obvious now that the signal has been 

redistributed, and in the transform domain only points 

representing low spatial frequencies contain significant 

amounts of signal. 

The Hartley transform of an N-element data set 

representing broad, featureless peaks, shows most of the 

signal in the transform domain shifted towards the low 

spatial frequencies. The opposite is true with narrow 

peaks, showing full return to the baseline. The signal in 

the Hartley domain will be spread over most of the points, 

representing both low and high spatial frequencies. 

This is not the case with white noise. Figure 9 shows 

a simulated spectrum containing only white noise. Since 

white noise contains all possible frequencies it would be 

expected that after the transformation points at low and 

high spatial frequencies would have equal amounts of signal. 

This is exactly what Figure 10 demonstrates. After the 

transformation, the noise remains spread over the entire 

spectrum, but at the same time it is compressed by a factor 

which equals the square root of the number of points in the 

59



    

"
y
e
o
d
 

u
e
t
s
s
n
e
y
 

e 
jo 

wrzojsuelraq 
ASTAIAeCH 

*8 
O
A
N
H
T
A
 

UJ BuUajaAeAA/ 
| 

 
 

1 
I 

! 
| 

 
 

 
 

 
 

    
 
 

MVWad 
N
V
I
S
S
N
V
D
 

JO 
W
H
O
A
S
N
V
Y
L
L
 

AS 
T
L
Y
V
H
 

Ayisu9}u| 

60



“
O
S
T
O
U
 

O
A
T
U
M
 

°6 
e
A
N
h
t
a
 

U
B
u
s
j
o
n
e
n
y
 

 
 ASION 
A
L
I
H
M
 

Auisua]uy 

61



"O9STOU 
e4TYUM 

Jo 
w
a
o
j
z
s
u
e
r
q
 

A
e
T
I
A
e
H
 

“OT 
S
A
N
h
T
A
 

UIBUdJOABA// | 

1
 

! 
_t 

1 
 
 

 
 

 
 

 
 

eeerenese 

dq 

 
 

+ 

 
 

 
 

  
  

 
 

ASION 
A
L
I
H
M
 

AO 
W
H
O
A
S
N
V
Y
L
 

AF I
L
Y
V
H
 

Aysuayu| 

62



data set. 

The above two examples illustrate an important 

advantage that the Hartley transform domain has over the 

original spectrum domain for the representation of spectral 

data. Since the signal in the transform domain is shifted 

towards the low spatial frequencies and the noise remains 

spread over the entire spectrum, but with reduced magnitude, 

the signal to noise ratio, S/N, for points representing low 

spatial frequencies will be greatly enhanced. Further 

details on the behavior of white noise and S/N 

considerations on transform techniques can be found in the 

references.”! 

The way that the algorithm, which will be explained in 

detail in a later section, takes advantage of the above 

discussed properties of the Hartley transform will fully be 

realized in the following sections. 

C. DATA COMPRESSION - LIBRARY SEARCH 

The computer industry has made much progress over the 

past decade in the development of powerful and inexpensive 

microcomputers. These advances have led to the wide 

availability of computer controlled instruments capable of 

generating large quantities of data, and data acquisition 

systems which collect and store the data. Modern 

instruments are often equipped with computers that include 
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many megabytes of disk storage space. 

As is often the case, though, even those massive 

storage devices come to a point where they are no longer 

adequate for storing all available experimental data. 

Multidimensional NMR spectroscopy is such an example. 

Current 2-D spectra are typically contained within matrices 

representing 4Kx4K or 8Kx8K data points, which require 

several megabytes of disk storage space.” Future 3-D and 

4-D data sets, clearly will require much more. 

Full resolution - full intensity spectra contain the 

maximum amount of system information, but occupy the largest 

amount of computer storage space. Prior to inclusion in a 

reference library those spectra should be preprocessed in 

order to reduce the storage requirements, but also to 

increase the speed of the library search. For that reason 

several preprocessing - data compression methods have been 

developed. In this work two of those methods will be used, 

and will be discussed further. 

As was demonstrated earlier, when a spectrum with 

broad, rather featureless peaks is Hartley transformed, the 

great majority of the signal is shifted toward the low 

spatial frequencies, leaving high spatial frequencies vacant 

of signal, containing only noise. Thus, if only points 

representing low spatial frequencies in the Hartley domain 

are stored, significant amount of storage space can be 
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recovered without any significant loss of system 

information.” 

The compression factors achieved with this method are 

not great, usually less than 10, but the information loss is 

almost zero, thus making the method very attractive. The 

original spectra can always be regenerated by inverse 

transforming the stored data array, after filling zeros in 

the positions of the points which were not saved. 

In systems where the regeneration of the original 

spectra is not necessary, even some of the low spatial 

frequencies containing signal can be discarded, as long as 

the remaining points provide adequate distinction among the 

spectra in the reference library. 

The second compression method that will be used in this 

work, and which can achieve much greater compression 

factors, is called spectral encoding. Encoding is a 

technique where commonly appearing patterns in the original 

data are replaced by a unique combination of symbols, 

usually 1’s and 0’s. The choice of symbols to use is not 

important, the only requirement is that the symbols should 

take less storage space than the patterns in the original 

data that they replace. Choosing 1’s and 0’s as the symbols 

to use is very suitable, since these are the two smallest 

pieces of information computers can store (bit), and at the 
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same time computers can process them with great speeds. 

Encoding methods are very common in other areas where 

data compression is desired. Text files, for example, are 

often compressed using encoding methods.” Combinations of 

two, three or even more letters that are often found in 

words, are replaced by unique combinations of 1’s and 0’s. 

The compression factors achieved in those cases vary, 

depending on which letter combinations are chosen to be 

substituted, and how often they appear in the particular 

text file. 

In spectral encoding methods, often called clipping, 

intensity information is converted into 1’s and 0’s, 

depending on the magnitude of the intensity. Each point is 

compared against a predetermined threshold value; if the 

intensity of the point is above the threshold value the 

point is replaced by a 1; if the intensity of the point is 

below, it is replaced by a 0. This method reduces peak 

information into two levels, binary encoding. A very 

commonly used threshold value for this method is zero, 

producing the zero-crossing clipping algorithn. 

It is also possible to clip intensity information into 

more than two levels, by using more than two symbols and 

more than one threshold value. Three level encoding, 

trinary encoding, requires three symbols and two threshold 

values, four level encoding, tetranary encoding, requires 
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four symbols and three threshold values, etc. For example, 

in trinary encoding, 0, 1, and 2, can be used as the three 

symbols, indicating no intensity, small intensity, and large 

intensity, respectively. In those methods, points in the 

original spectrum, or the transformed spectrum, are encoded 

depending on their absolute intensities. 

Relative encoding methods, where the points are encoded 

depending on their relative intensity to surrounding points, 

also exist. In those methods, the intensity of each point 

is not compared against a universal threshold value, but a 

new threshold value is calculated for each point based on 

the intensity of the surrounding points. Of course those 

methods require more calculations and longer times to be 

completed, but they have the advantage of reflecting more 

fine structures, making possible the distinction between 

similar peaks. 

More details on the zero-crossing clipping algorithn, 

along with three relative encoding methods, one binary and 

two trinary, which will be tested for their value in the 

present algorithm, will be given in later sections. 

In library searching techniques an unknown spectrum is 

compared to each member of a reference library. Reference 

spectra are sorted in order of decreasing similarity, anda 

‘hit-list’ of spectra which best match the unknown is 

generated. Spectra in the reference library are high- 
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quality and usually are stored in a compressed form, which 

saves disk storage space. At the same time this makes the 

search task easier and faster. Libraries which compress the 

spectra in a form that does not allow the search to be 

carried out in the compressed form, but require the spectra 

to be regenerated prior to the search, are not very 

attractive due to the long search times that are required. 

The main reason for the long search times is the 

regeneration process. 

There are some other important parameters, besides 

reference spectra storage format, which have to be 

considered when designing a library search system. One such 

parameter is the way in which the unknown and reference 

spectra will be compared. The ‘comparison metric’ can be 

based on similarities or dissimilarities between the unknown 

and the reference spectra and the ‘comparison metric’ could 

even weight selected regions of the spectrum differently 

from others to achieve better discriminations between 

spectra. 

Another parameter that needs consideration prior the 

development of a library search system is a compromise 

between the time required to do the search, speed, and the 

quality of the results expected from the search, 

performance. Usually, library systems developed with 

compression algorithm which achieve high compression 
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factors, have short search times, high speed, but display 

poor performance. On the other hand, libraries where low 

compression factors are used for the storage of the 

reference spectra take longer to search but can achieve 

higher performance. A compromise is inevitable. 

Library search methods, based on the way the search is 

performed, are divided into two large categories: forward 

search methods and reverse search methods. In forward 

search methods the characteristics of the unknown spectrum 

are compared against those of the reference spectra. On the 

top of the “/hit-list’ will be placed the reference spectrum 

whose characteristics best match these of the unknown. In 

reverse search methods the characteristics of each reference 

spectrum are compared against those of the unknown spectrum. 

In this case, if all the characteristics of the reference 

spectrum match those of the unknown, even if some 

characteristics of the unknown remain unmatched, the 

reference is a good match and will be places on the top of 

the ‘hit-list’. 

On forward search systems the interest is on the best 

match. On reverse search systems the interest is on the 

subset of spectra which will best match the unknown. The 

main advantage of the reverse search is that it can be used 

for the analysis not only of pure compounds where an exact 

match is expected, but also in the analysis of mixtures. 
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Obviously, since the present work focuses on the 

analysis of mixtures, a reverse search library system will 

be used. The ‘comparison metric’ used is based on the 

similarity of the encoded patterns of the lower spatial 

frequencies of the Hartley transform of the spectra. 

D. NON-NEGATIVE LEAST-SQUARES 

The method of least-squares was first proposed as an 

algebraic procedure by Legendre in 1805, and later justified 

as a statistical procedure by Gauss in 1809. The technique 

was adopted almost immediately as the standard procedure for 

the analysis of astronomical data. Over the years it has 

spread to all fields of science and now it is one of the 

most familiar and most widely used multivariate statistical 

procedures. 

A definition of the least-squares problem would be 

appropriate at this point. Although a strictly mathematical 

definition of the problem can be given,” it would probably 

be confusing. Instead, an explanation of the problem will 

be attempted, through the most simple of the least-squares 

methods, linear regression. 

The simplest type of model relating the response, y, to 

an independent variable, x, is the equation of a straight 

line: 
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y=B,x+B, (32) 

where 6) is the y-intercept (value of y when x=0) and £, is 

the slope of the straight line. The plot in Figure 11, 

shows a set of (x,y) pairs, where it can be seen that a 

straight line would adequately describe the trend in the 

data. If an attempt is made to use a ruler to draw a 

straight line over these points, each time a different line 

will be draw. An objective method, which will find the 

straight line which most accurately describes the linear 

trend of the data is required. Several such methods are 

available, each one using a different criterion to select 

the best line. The most commonly used one is linear 

regression. 

Letting ¥ denote the predicted value of y for a given 

value of x, then the error of prediction, e, often called 

residual, is e=(y-¥), the difference between the actual 

value of y and the predicted value, Figure 12. Thus, the 

equation that would accurately describe the sample points 

can be written as: 

Y-Bot+ BX (33) 

The criterion that the method of linear regression 

employs to estimate the y-intercept and slope of the 

regression line, i.e. choose the best prediction line, is 
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the sum of the squared errors of prediction for all sample 

points: 

> e-D, (y- 9)? (34) 

The line which will minimize the sum of the squared errors 

(least-squares) is the one which will be chosen to most 

accurately describe the sample points. Further explanation 

of the calculations required to achieve this goal is beyond 

the scope of this discussion. Details can be found in the 

literature.” 

The same method and criterion can be used in the case 

of EEMs. Equation (20) was shown to describe the 

Excitation-Emission Matrix of an unknown mixture as a linear 

combination of the component matrices. Rewriting that 

equation for the case of a two component mixture and also 

including the error of prediction term, Equation (20) 

becomes: 

M-8,M,+B,M,+e (35) 

The similarity of this equation with Equation (33) is 

apparent. | 

In the case of the EEMs, the criterion of the sum of 

the squared errors of prediction can be used to estimate the 

values of the £6, and 8, concentration parameters, which will 

best describe the points in the unknown matrix. 
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Several mathematical procedures are available to carry 

out the above calculations.” The description of those 

procedures is also beyond the scope of this discussion, but 

one issue has to be clarified: these procedures are 

statistical procedures and as such they require a large 

number of data points for the calculated estimations to be 

accurate. That greatly increases the number of required 

calculations, but the power these procedures offer justifies 

the cost. Also, with the great speeds of new computers the 

cost is minimal. 

There are many applications in applied mathematics, 

physics, chemistry, statistics, economics, and other fields, 

where the use of the least-squares method as explained above 

is not adequate. Usually, some additional information is 

available about the problem on hand which has to be 

considered when the problem is formulated. This additional 

information can be included into the problem by the 

introduction of certain equality or inequality constraints. 

For example, the addition of constraints gives the 

ability to consider least-squares problems where each 

variable independently is bound between a lower and upper 

value, or that the sum of all variables does not exceed a 

specified value, or that all variables are non-negative. 

The last constraint generates the least-squares approach 

commonly known as Non-Negative Least-Squares, or NNLS. 
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More specifically, the NNLS method can be used in the 

case of EEMs to solve the least-square problem in Equation 

(33), imposing the constraint that all the calculated 

concentration coefficients, 8,, are non-negative. The non- 

negativity constraint, in this case, includes additional 

knowledge about the system, that the concentration of a 

compound in a sample can be positive or zero, i.e. the 

compound is present in the sample or it is not. 

In the present work, the method of least-squares will 

be used to estimate the concentrations of compounds in a 

mixture, but at the same time identify compounds which are 

not present in the mixture. Following the above discussion, 

the NNLS algorithm will be the most appropriate to use. A 

FORTRAN implementation of the NNLS algorithm given by cC.L. 

Lawson and R.J. Hanson” will be used to carry the 

calculations. 
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IV. ALGORITHM 

Before the development of computer based databases, 

spectroscopic data were compiled in books and journals. 

Each spectrum was stored and printed just as it was 

collected with no modifications. In the case of a computer 

database, though, before the data are stored, a number of 

decisions have to be made and a number of questions have to 

be answered. These questions concern (a) what data are to 

be saved, (b) in which format should this data be stored, 

and (c) how information will be retrieved from the library. 

These important aspects of a computer oriented database 

will be address in this chapter. First, the philosophy 

behind the storage/search algorithm will be discussed. 

Then, the procedure followed to develop a spectral library 

will be explained. Finally, the complete algorithm will be 

shown in the process of analyzing an unknown mixture. 

A. ALGORITHM PHILOSOPHY 

The single most important consideration prior the 

development of any computer application is the actual 

methodology which will be used to achieve the desired 

result. In the presented case, the questions of how the 

algorithm will identify the components of a mixture, and how 

it will quantify them are presented. 

Although, these questions appear to be very simple, the 
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actual realization of an appropriate algorithm is difficult. 

An explanation of the methodology used to analyze, 

qualitatively and quantitatively, three dimensional 

fluorescence spectra of unknown mixtures follows. This 

methodology is schematically summarized in Figure 13, and 

its architecture is developed in the following paragraph. 

Assume that a spectral library, containing the EEMs of 

pure compounds, has been developed, and the spectrum of an 

unknown mixture has been collected. The algorithm filters 

the members of the library, leaving to pass through only 

those which are most likely to be components of the mixture. 

The parameters of the filter, i.e. which library members 

will be allowed to pass, are controlled by the unknown EEM. 

The final estimation of the number and identity of the 

components, as well as their concentrations in the mixture 

will be made by a Least-Squares method. Only the Hartley 

transforms of the EEMs of those compounds which passed 

through the filter will be used in the Least-Squares method. 

As was explained in the library search theory section, 

a compromise between speed and accuracy in the prediction 

during a library search has to be made. The approach chosen 

in the present work was to select speed over accuracy. The 

filter is not expected to be totally accurate. It is only 

expected to filter out the majority of the library members, 

passing through the actual components of the mixture plus a 
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population of spectra which at a first approximation might 

be possible components. Too tight a filter at this stage 

would be detrimental. 

In cases of very complicated unknown mixtures with a 

large number of components it is expected that members of 

the library which are actual components maybe filtered out 

during the filtering step. The way the algorithm deals with 

such a situation will be explained in later sections. 

B. LIBRARY DEVELOPMENT 

Which data are needed and therefore stored on the disk 

depends on the purpose the data is to serve. In the case of 

the algorithm under investigation, the goal is both 

qualitative and quantitative analysis of mixtures. 

Therefore, the stored data must contain information which 

will allow to distinguish between members of the library, 

i.e. qualitative information, and also provide means for 

concentration computations, i.e. quantitative information. 

The approach chosen in this work was to divide the 

stored data into two separate parts, each containing a 

different type of needed information. One part contains 

only enough information to allow the algorithm to identify 

the members of the library. The other part verifies this 

initial identification and gives concentration estimation 

for the components. 
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This scheme for the storage of data in the spectral 

library, along with the steps required to achieve such 

information separation, are shown in Figure 14. The number 

of data points involved in each step of the process is shown 

in parenthesis. In the case of the CLP files, the number in 

the parenthesis denotes the number of clipped points, or the 

length of the clipped pattern. 

A description of the process for the development of the 

spectral library follows, along with an explanation of the 

purpose each step serves. The process must be applied to 

each and every EEM that will be a member of the library. 

The first step toward the development of the spectral 

library is the unfolding of the 64x64 points, three 

dimensional spectrum, into a linear array of 4096 points, as 

shown in Figure 15. 

The reduction of the dimensionality of the spectrum 

accomplishes two goals. First, it speeds up the next step 

of the library development process, which is the 

transformation of the data using the Hartley transform. By 

going from a three dimensional data structure, which would 

require a two dimensional transformation, to a linear array, 

which requires a one dimension transformation, there is a 

reduction in the number of calculations required to 

transform the data. 

The theory of the Hartley transformation at first 
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glance might not support the above argument : since the 

number of points is the same in both case, the number of 

calculations should be the same. However, what must be 

considered, is that the transformation is carried out ina 

computer program. There are significantly more 

instructions, mainly I/O instructions, that have to be 

carried out in the case of the two dimensional 

transformation than in the one dimensional transformation. 

In the present work all the computations were carried 

out on a very fast computer (DEC VAX), and the speed issue 

might be considered academic. For a PC implementation of 

the algorithm with larger data sets the difference would 

become significant. 

The second, and more important goal that the reduction 

of the dimensionality accomplishes is to increase the 

probability of identifying the members of the library within 

the spectrum of an unknown mixture. The next step in the 

development of the library is the transformation of the 

spectrum. In the case of a one dimension transformation the 

Signal will be more evenly spread over a larger number of 

points in the transform domain (see Figure 16). In the case 

of a two dimension transformation the signal would be forced 

into a smaller number of points corresponding to few low 

frequencies (see Figure 17). 

The end result of unfolding is that the patterns which 
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Figure 17. Typical two-dimensional transformed spectrum. 
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emerge from the spectral encoding or clipping step, which 

follows the transformation step, will be longer and thus 

more distinguishable from each other. Consequently, during 

the reverse library search the identification of the 

components in a mixture will be possible, even in cases 

involving significant spectral overlap of the components in 

the mixture. 

The next step toward the development of the spectral 

library is the transformation of the spectra using the 

discrete Hartley transform. A typical spectral transform on 

an unfolded data set is shown in Figure 16. It can be seen 

that the signal has been moved to the two ends of the 

transform domain, which correspond to low spatial frequency 

components. The middle of the transformation, which 

correspond to high spatial frequency components, is 

virtually free of signal. As was explained in the section 

on the Hartley transform theory, the high frequencies 

contain only components which correspond to white noise 

present in the spectrun. 

The transformation of the spectrum during the 

development of the spectral library accomplishes a three- 

fold goal. First, it transforms the spectrum to a form with 

much more characteristic than the original one, making 

possible the quick and accurate identification of the 

individual spectra in a mixture. 
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The fluorescence spectra and Excitation Emission 

Matrices of pure compounds are rather broad and featureless, 

with not a lot of sharp characteristics. This makes visual 

distinction between two spectra very difficult. In the case 

of mixtures involving overlapping peaks the task of 

distinguishing the spectra of the individual components 

becomes impossible. 

After the transformation the spectrum contains a large 

number of narrow, well defined, positive and negative peaks, 

which can very easily be compared against those of an 

unknown mixture to determine the identity of the compounds 

present in the mixture. 

The second goal that the transformation of the spectrum 

accomplishes is to minimize the amount of space required to 

store the spectrum in the computer memory. As was explained 

in previous sections, the majority of the signal is shifted 

toward the low spatial frequencies, leaving high spatial 

frequencies vacant of signal, containing only noise. Thus, 

if only points representing low spatial frequencies in the 

Hartley domain are stored, significant amount of storage 

space will be preserved. The original spectrum can always 

be regenerated with those few points which have been saved. 

Furthermore, since in terms of the present algorithm 

the only critirion is to save enough information so that the 

identity and quantity of the different compounds in the 
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mixtures can be estiblished and the regeneration of the 

original spectrum is not required, the number of points 

stored can further be reduced by discarding some low spatial 

frequencies. In fact, half of the low spatial frequencies 

can be discarded. Only the first 512 points from one side 

of the transform domain were saved, and stored as part of 

the library. This is called truncation. Those 512 points, 

for each member in the library, were stored in files as four 

byte integers, with file extension HTL. These files will 

henceforth be referred to as HTL files. 

The third but very important goal the transformation of 

the spectrum accomplishes is to improve the performance of 

the Non-Negative Least-Squares method which will be used to 

estimate the concentrations of the compounds in the unknown 

mixture. The NNLS method will use the points stored in the 

HTL files for the calculation of the concentrations. 

Although, the method of Least~-Squares is very powerful 

and very robust, it can produce erroneous results when used 

with points with a low signal-to-noise ratio, S/N, or when 

some of the points used do not contain any signal, but only 

noise. For example, ina case of two component mixture 

where the two components give signal in two separete 

spectral regions, it is important that points from both 

regions be used if the method of Least Squares is to be used 

for the estimation of the concentration of the components. 
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If points only from one spectral region are used the method 

will produce erroneous results. 

The transformation along with the truncation of the 

spectra guarantees that the above two deleterious conditions 

do not exist. First, the transformation, as was explained 

earlier, increases the signal-to-noise ratio for the low 

spatial frequencies in the transform domain; thus only 

points with high signal-to-noise ratio will be used for the 

Least Squares method. Second, since after the truncation 

only those low spatial frequencies are stored in the HTL 

files all of the points used in the Least Squares method 

will contain an optimum signal level and points containing 

only noise will never be used. 

Finally, the third and last step toward the development 

of the spectral library is the spectral encoding or clipping 

of the points saved in the HTL files. Ina first attempt 

the zero-crossing clipping algorithm was used to reduce the 

points in the HTL files into a 512 points long combination 

of 1’s and 0’s, producing a pattern unique for each member 

of the library. Each of these combinations was stored, into 

a file with the extension CLP. These files, referred to as 

CLP files, along with the corresponding HTL files, are what 

make up the spectral library which will be used by the 

algorithm. 

In the clipping step the intensity information, which 
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was preserved in the HTL files after the transformation, is 

now lost. The CLP files contain only the qualitative 

information for each spectrum in the library, leaving the 

intensity or quantitative information in the HTL files. The 

CLP and HTL files are the two separate representations of 

the data, containing two different types of information, of 

a qualitative and quantitative nature respectively. 

The clipping of the data has a tremendous impact on the 

storage space required. With the zero-crossing clipping 

algorithm, only one bit per point is required to store the 

clipped pattern. The other three relative encoding methods, 

which were also tested in this work, require three symbols 

to be used for the encoding (-1, 0, and 1). Two bits per 

point are required to store the clipped pattern. 

The compression that is achieved by discarding most of 

the spatial frequencies after the Hartley transformation of 

the spectra, Compression A, along with the compression 

achieved with the spectral encoding, Compression B, are 

summarized in Figure 18. 

The original spectra contain 4096 points. Each point 

takes four bytes if stored as a long integer. Each original 

spectrum requires 16,384 bytes. After all the high spatial 

frequencies, and half of the low frequencies are discarded 

only 512 points of the Hartley transformation need to be 

stored in the HTL files ( Compression A ), again as four 
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byte long integers. The space each spectrum requires is now 

reduced to 2048 bytes. This is a compression ratio of 8:1. 

Only 12.5% of the storage space occupied by the original 

spectrum would required. 

After the HTL files are clipped, each of the 512 points 

requires at most (in the case of the relative encoding 

methods) two bits or 0.25 bytes. Thus, the whole clipped 

pattern to be stored in the CLP file is only 128 bytes long. 

This is a compression ratio of 128:1. The CLP files occupy 

less than 1% (0.8%) of the original spectral space. 

The fact that only the qualitative information stored 

in the CLP files will be used during the library search 

tremendously reduces the time necessary to execute the 

search algorithm. The library search is the time critical 

part of any algorithmic method since it is usually done in 

user relevant time. 

The overall compression ratio achieved during the 

development of the library, since both the HTL and CLP files 

would have to be stored in the library, is about 7.5:1, 

requiring only about 13% of the original space required to 

store spectra in their original forn. 

One point need clarification. All the spectra have to 

be collected under the same conditions. These conditions 

include the excitation and emission wavelength ranges, the 

resolution of the spectrum, the width of the slits of the 
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excitation and emission monochromators, the signal amplifier 

gain, etc. The instrument parameters used for the 

development of the spectral library used in this work will 

be given in the experimental section. 

A description of the complete algorithm now follows. 

The description will be given from the point of an unknown 

mixture, i.e. the procedure which has to be followed in 

order to analyze an unknown mixture. 

C. ANALYSIS OF A MIXTURE 

The discussion in this chapter assumes that the steps 

previously explained in the development of the spectral 

library have been completed, the HTL and the CLP files for 

all the compounds in the library have been stored, and the 

three dimensional fluorescence spectrum of the unknown 

mixture has been collected. The spectrum of the unknown 

mixture must have been collected under the same conditions 

used for the spectra in the library. 

The first four steps in the process of analyzing the 

spectrum of an unknown mixture are the same followed during 

the development of a compressed spectral library component. 

The unknown three dimensional spectrum is unfolded into a 

linear array, transformed using the Hartley transform, the 

first 512 low spatial frequencies are stored in an HTL file, 

these same 512 points are clipped, and saved in an CLP file. 
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The complete algorithm, including these four initial steps, 

is show diagrammatically in Figure 19. 

After the creation of the HTL and CLP files of the 

unknown, the reverse search of the library using only the 

information in the CLP files follows. The goal of this 

search is to eliminate the majority of the library members 

on the basis of their improbability of being components of 

the unknown mixture. This is done by checking the 

similarity of the encoded patterns of each library member 

against the encoded pattern of the unknown spectrum. The 

greater the similarity of the encoded patterns, the greater 

the probability that the reference compound is a component 

of the mixture. 

As was explained in the theory section, the test of the 

similarity of the encoded patterns is done on a bit basis. 

In particular, if a certain bit of the encoded pattern of 

the reference spectrum matches that of the unknown, this 

point is considered to be a positive attribute. If it does 

not match it is considered a negative attribute. The 

"positive" to "negative" attribute ratio, Positive/Negative, 

is a measure of the similarity of the two encoded patterns, 

and is the comparison metric used by the algorithm for the 

reverse library search. 

In the case of two totally unrelated spectra, the 

number of "positive" points is expected to be found equal to 
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the number of "negative" points, giving a Positive/Negative 

Ratio equal to 1.0. In the case of a reference spectrum 

which is an actual component of the mixture, a much larger 

number of "positive" points compared to "negative" points is 

expected, giving a high value of Positive/Negative Ratio. 

The higher the Positive/Negative Ratio, the higher the 

similarity of the encoded patterns, which indicates that 

there is a high probability the reference compound to be a 

component of the mixture. 

In the case of a trinary encoding method, since there 

are three symbols used, -1’s, 0’s, and 1’s, there would also 

be non-applicable, N/A, points. Those would be combinations 

for a particular bit pair between that in the reference 

spectrum and that in the unknown 1,0; -1,0; 0,1; or 0,-1. 

The reason such points would not be used, and thus are 

termed non-applicable, is because of the presence of white 

noise. As explained in the theory of the Hartley transform, 

white noise from the original spectrum, will be evenly 

distributed in the transform domain over the entire 

spectrum. The presence of this noise can force a point to 

be moved from a 0 to a position of 1 or <1, or vise versa. 

Thus combinations involving 0’s cannot be of any value. In 

the case of binary encoding methods, since only two symbols 

are used, 1’s and 0’s, such distinction is not possible. 

During the library search step of the algorithm 
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(Figure 19), the Positive/Negative Ratio for all the 

reference spectra is calculated, and the library members are 

sorted from highest to lowest ratio. At the top of the list 

are the reference compounds with the highest probability of 

being components of the unknown mixture. Only those 

compounds would be used for the next step of the algorithn, 

which is the method of Non-Negative Least-Squares. 

During the NNLS step, the HTL files and the 

quantitative information contained in those files will be 

used. Only the members of the library with the highest 

Positive/Negative Ratios, will be involved in this step. 

The NNLS method is expected to verify the selection of 

compounds from the reverse search step. The verification 

will be achieved by calculating the concentration factors of 

the reference compounds in the mixture. 

For compounds actually present in the mixture, the 

method would estimate their concentration relative to the 

concentration of the compound in the reference spectrum. 

For the members of the library which were selected during 

the library search but are not actually present in the 

unknown mixture, the NNLS method is expected to give a 

concentration estimation of zero. 

All Least-Squares methods provide means for the 

evaluation of the quality of the suggested solution. The 

implementation of the NNLS method used in the present work 
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uses the Euclidean length or Euclidean norm, RNORM, defined 

as : 

RNORM= Oo u7) 12 (36) 
i-1 

where u is the residual vector of the estimated solution. A 

large value of RNORM denotes a poor estimation, where a 

small value denotes an accurate estimation. 

In term of the present algorithm, a small RNORM value 

indicates an acceptable estimation of the identities and 

concentrations of the components of the unknown mixture. At 

this point the analysis of the mixture has been completed. 

The number of components in the mixture will equal the 

number of reference compounds with concentration factors 

larger than zero. If the estimated concentration factors 

are multiplied by the concentration of the corresponding 

compound in its reference spectrum the result will be the 

absolute concentrations of the components in the mixture. 

Where the NNLS method gives rise to a large RNORM value 

the solution is considered non-acceptable. This would be 

the result of an incomplete library search, during which one 

or more components of the mixture were not retrieved from 

the library. As was mentioned earlier, this is a situation 

which can arise in cases of mixtures containing a large 

number of components. 
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In such situations, the largest estimated concentration 

factor will be used to subtract the corresponding compound 

from the mixture. The subtraction will be done in the 

Hartley domain. More explicitly, the HTL library file of 

the compound with the highest estimated concentration factor 

(after each point in the file is multiplied by that factor) 

will be subtracted from the HTL file of the unknown, 

Figure 19. 

Because of the property of addition of the Hartley 

transform, explained earlier, the resulting HTL file will be 

the Hartley transformation of the remaining components of 

the mixture. This new HTL file will be clipped and further 

treated as a new unknown mixture for the reverse search of 

the library. 

Again, the Positive/Negative Ratio for all reference 

spectra will be calculated, and the library members will be 

sorted from highest to lowest ratio. The compounds with the 

new higher ratios, as well as the compound subtracted 

previously, will be used by the NNLS method. The unknown 

used for this second run of the NNLS method will be the 

original HTL file of the unknown mixture, not the one found 

after the subtraction. The reason is that, as was explained 

earlier, the first estimated concentration for the 

subtracted component is not expected to be very accurate, 

thus a new more accurate estimation is needed. 
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The calculated RNORM will be checked again and either 

the solution will be accepted, or the algorithm will re- 

enter the same loop by subtracting a second component. The 

compound which will be subtracted this time will be the 

compound with the second highest concentration factor. The 

algorithm can continue to loop through until a satisfactory 

solution is found. Of course, to avoid an infinite loop 

structure in the case a satisfactory solution cannot be 

found, a limit on the number of times that the algorithm 

will be allowed to go through the loop must be set. 

The choice of subtracting only one compound at a time 

was made because in the presence of a major component in the 

mixture it was found that the accuracy of the calculated 

concentration factors for other components was limited. By 

subtracting only the component with the highest 

concentration factor the chance of subtracting a compound 

not actually present in the mixture was essentially 

eliminated. 

Finally, besides this main loop of the algorithm there 

is a small branch in the algorithm which is designed to 

carry information obtained during the course of one loop to 

the next. As can be seen in Figure 19 there is reverse 

connection between the step where the NNLS method is applied 

and the next reverse search of the library. This function 

is explained in the following paragraph. 
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It was found that if the concentration factor for a 

specific member of the library during the NNLS step is 

calculated to be 0.0, the probability of that compound being 

a component of the mixture was also zero. Even in the 

situation where a high Positive/Negative Ratio was 

calculated for that member of the library during consecutive 

library searches, that compound would not be further 

considered in the computations. This information is 

communicated from one loop to the next through the reverse 

connection mentioned above. 

This concludes the theoretical explanation of the 

algorithm. In the experimental section which follows a 

description of how the algorithm actually behaved will be 

given. 
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V. EXPERIMENTAL 

The study of the behavior of the algorithm with 

experimental data was carried out in two parts. In the 

first part, the behavior of the algorithm was tested against 

computer generated spectroscopic data. In the second part 

the algorithm was tested against actual Excitation Emission 

Matrices of multi-component mixtures. 

Detailed descriptions of the two parts of the study 

will follow a brief discussion on the software that was 

developed to carry out the functions of the algorithn. 

A. SOFTWARE 

Two programs that would accomplish the two separate 

functions dictated by the algorithm are needed : the first 

program processes the EEM of a reference compound and adds 

it to the reference library. The second program processes 

the EEM of the unknown mixture and carries out the complete 

analysis of the mixture. From the discussion in the 

previews sections it should be obvious that the beginning of . 

the second program would duplicate the actions of the first. 

Although this two program approach would be sufficient, 

in order to facilitate the process of debugging and testing 

of the code a multi-module approach was employed instead. 

Each of the steps needed for the development of the 

reference library, Figure 14, as well as each of the steps 

103



required for the analysis of an unknown mixture, Figure 19, 

were built as separate modules, i.e. a separate pieces of 

code. 

The computer language chosen for the software 

implementation and testing of the algorithm was, for the 

most part, PASCAL, a high level language, widely used ina 

variety of fields, and available for a great variety of 

computer platforms. 

The presented algorithm involves extensive mathematical 

manipulations of large data sets, especially during the 

Hartley transform of the EEMs. It also involves a great 

number of Input/Output operations during the reverse library 

search. These functions can easily be carried out by built- 

in functions and procedures available in PASCAL. To insure 

the portability of the developed code, standard PASCAL, as 

it is defined by the American National Standards Institute, 

(ANSI), was used. 

For the Non-Negative Least-Squares part of the 

algorithm, a FORTRAN implementation of the method, as given 

4 was used. by C.L. Lawson and R.J. Hanson, 

The computer platform for the development and debugging 

of the code, as well as the testing of the algorithm, was a 

DEC VAX/VMS system, (Virtual Address eXtension/Virtual 

Memory System). At the time the development of the 
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algorithm was started, the VAX/VMS was the only available 

system with adequate speed, memory, and disk storage space 

to handle the requirements of the presented work. 

Listings of the code for the major parts of the 

algorithm, can be found in Appendix A. 

B. SIMULATED DATA 

1. EXPERIMENTAL 

During this part of the study, Excitation Emission 

Matrices of poly-aromatic hydrocarbons, collected during a 

previous study that was carried out at the Laboratory 

Automation and Instrument Design Group of the Chemistry 

Department at Virginia Polytechnic Institute and State 

University by Fumiko Ishihara (ref. 59), were selected to 

develop the reference library. The Excitation Emission 

Matrices were stored in ASCII format computer files. 

Those Excitation Emission Matrices were collected with 

a Perkin-Elmer Fluorescence Spectrophotometer, Model MPF-66, 

which provides a 0.25nm to 20nm resolution range in 0.1inn 

increments (MPF-66 Operating Directions, Perkin-Elmer 1984). 

The instrument was connected to a Perkin-Elmer 7500 

Professional Computer for data collection, and instrument 

control. The 64x64 data points Excitation Emission Matrices 

were collected with an instrument resolution of 3nm. More 

details on the instrument parameters and settings, as well 
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as the source and purity of the compounds and solvents used 

can be found in ref. 59. 

During this part of the study, simulated EEMs of 

mixtures were employed to explore different parts of the 

algorithm. The simulated EEMs of mixtures were developed by 

mathematically adding the actual spectra of the pure 

components. To simulate concentration effects, before the 

spectra of the pure components were added together each pure 

compound spectrum was multiplied by a concentration factor 

between 1 and 10. A concentration factor of 1 means that 

the concentration of the pure compound in the mixture is 

equal to the concentration of the compound in the reference 

spectrum, were a concentration factor of 10 means that the 

concentration of the pure compound in the mixture is 10 

times greater than the concentration of the compound in the 

reference spectrum. 

The EEMs of the pure compounds which were added 

together to develop the unknown mixtures, as well as the 

concentration factors by which they were multiplied, were 

selected by a random drawing model. The random drawing was 

implemented by using a random number genarator. 

Statistically sound random number generators are part of 

most computer languages. 

In this type of experimental set-up, where the spectra 

in the reference library are actual EEMs of pure compounds, 
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but the unknown mixtures are mathematically developed, the 

behavior of the algorithm is isolated from instrumental 

noise, quenching, as well as chemical interactions that can 

excist in the case where EEMs of real mixtures are used. 

The behavior of the algorithm when those effects are present 

will be examined in following sections. 

1. LIBRARY SEARCH OPTIMIZATION 

By examining the diagram of the philosophy of the 

algorithm, Figure 13, as well as the diagram of the complete 

algorithm, Figure 19, it should be evident that the 

filtering or reverse search of the library is the most 

important step of the algorithm. If during the search all 

the components of the mixture were retrieved from the 

library, the NNLS method would readily be able to quantify 

them. 

The effort to optimize the reverse search part of the 

algorithm i.e. to insure that the algorithm would produce 

the best possible results at the smallest possible number of 

iterations through the loop, is the subject of the next 

section. 

In the event where the algorithm can retrieve all the 

components of a mixture during the first search of the 

library, the application of the NNLS method should have no 

problem in accurately identifying and quantifying those 
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components during the first run. No further iterations 

through the loop would be necessary. 

To achieve optimum results during the reverse library 

step of the algorithm it is obvious that the process of 

unfolding and spectral encoding, as well as the number of 

points used during the reverse library search, should be 

optimized. Also, with the same goal in mind, an effort to 

filter the Hartley transform before the spectral encoding 

step was attempted. 

The initial effort was to find the optimum procedure to 

unfold the three dimensional spectra into a linear array. 

For that reason two unfolding schemes were investigated. In 

the first one, the spectrum was unfolded by following a 

boustrophedon, or zig-zag path, starting from the upper 

right corner of the spectrum and ending at the lower right 

corner. The boustrophedon unfolding can be visualized by 

following the arrows shown in Figure 20. 

In the second scheme for the unfolding of the spectrun, 

a spiral path is followed. Again the unfolding starts at 

the upper right corner, but this time after moving in 

circles of decreasing diameters, the unfolding stops at the 

center of the spectrum. This unfolding procedure will be 

referred to as spiral unwrapping, to distinguish it from the 

preview unfolding. Figure 21 diagrammatically shows the 

spiral unwrapping scheme. 
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Figure 20. Boustrophedon unfolding of an EEM. 
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Figure 21. Spiral unwrapping of an EEM. 
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The other part of the algorithm that was investigated 

in an effort to optimize the reverse search results was the 

spectral encoding or clipping step. As was explained in the 

theory section, in addition to the simple zero-crossing 

clipping algorithm, three relative encoding methods have 

been developed and tested for their application in the 

algorithm. From these three relative methods, the first is 

a binary method, i.e. it utilizes two symbols to encode the 

data, whereas the other two are trinary methods, i.e. they 

utilize three symbols to encode the data. 

The three relative encoding methods will be referred to 

as clipping methods A, B, and C, respectively. These three 

methods were designed to reflect, progressively from A to C, 

finer structures in the Hartley transform of the spectra. 

Unfortunately, each increase in resolution is at the expense 

of speed. The zero-crossing method, which will be referred 

to simply as clipping method, is the crudest but at the same 

time fastest spectral encoding method tested. Figure 22 

shows an example of the zero-crossing method. 

For the first relative encoding method, clipping method 

A, two symbols are utilized for the encoding, 1, and 0. The 

methodology used to achieve the encoding is the comparison 

of each point with the one immediately proceeding it. The 

encoding starts with the first point on the left of the 

transformation, which has always a large positive value, and 
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Figure 22. Example of zero-crossing clipping. 
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thus it is clipped to a1. This first point of the Hartley 

transform represents the average value of the transformed 

spectrum, and in the case of EEM always has a positive 

value. 

For the rest of the points in the transformation if a 

particular point has been encoded into a 1, the next point 

is encoded into a 1 only if the two points are comparable in 

value. A point is encoded into a 0 if it is significantly 

smaller than its predecessor. On the other hand, if a point 

has been encoded into a 0, the next one is also encoded into 

a 0, unless it is significantly larger, in which case it is 

encoded into a 1. Significantly smaller, or larger, is 

defined as being at least 25% smaller, or larger, 

respectively. An example of clipping method A can be seen 

in Figure 23. 

For the second relative encoding method tested, 

clipping method B, three symbols are utilized for the 

encoding, 1, 0, and -1. The value of each point is compared 

against the value of its two neighboring points, the one 

immediately proceeding, and the one immediately following. 

If a particular point of the transformation is a local 

maximum, i.e. the value of the point is larger than both 

neighboring points, it is clipped into al. If it isa 

local minimum, i.e. smaller that both neighboring points, it 

is clipped into a -1. The remaining points are clipped into 
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114



O’s. Figure 24 shows an example of clipping method B. 

The third and last relative encoding method developed 

and tested, clipping method C, also utilizes three symbols, 

1, 0, and -1. Similar to method B, a particular point is 

clipped into a 1, or a -1, if it is a local maximum or 

minimum, respectively. 

In this method, however, the remaining points of the 

transformation are clipped into 1’s if they are 

significantly close to a local maximum, or they are clipped 

into 0’s if they are significantly close to a minimun. 

Points which are not significantly close to a local maximum 

nor a minimum are clipped into 0’s. Significantly close is 

defined as being equal or larger than 75% of the closest 

maximum; or being equal or smaller than 75% of the closest 

minimum, respectively. Figure 25 shows an example of this 

method. 

The final effort in optimizing the results of the 

reverse search of the library was an attempt to eliminate 

problems derived from the presence of white noise in the low 

Spatial frequencies of the Hartley transforn. 

As was demonstrated in the Hartley transform theory 

section, white noise present in the original spectrum will 

be significantly reduced in the transform domain, but yet it 

will continue to be spread over the entire transform domain, 
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even among the low spatial frequencies. The presence of 

that noise in the HTL files could potentially cause problems 

during the spectral encoding process. 

The magnitude of several points in the HTL files could 

be changed so that during the encoding step the clipped 

pattern of the entire spectrum could be significantly 

altered, to the point where the identification of the 

compound would not be possible. Points most vulnerable to 

this effect would be low magnitude points. Especially in 

the case of the zero-crossing algorithm, the value of points 

close to zero could be forced to change from positive to 

negative, and vice versa, thus changing the clipped pattern 

of the spectrum. 

To overcome this problem, the higher spatial 

frequencies of the Hartley transform were used to estimate 

the noise level in the transform domain. Furthermore, low 

spatial frequency points with magnitudes equal or smaller to 

the estimated noise level were forced to zero. By doing so, 

those points could not further alter the clipped pattern of 

the spectrum, and thus effect the results of the library 

search. 

As was explained previously, the effort of this part of 

the study was to find the optimum unfolding and spectral 

encoding methods to be employed with the algorithm. To do 

so, the unfolding methods (boustrophedon and spiral) and the 
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encoding methods (zero-crossing and the three relative 

encoding methods A, B, and C) explained above, as well as 

combinations of the two, had to be tested in order to. 

selected the optimum approach. 

All possible combinations of those methods, as well as 

the attempt to filter the Hartley transform, can be seen in 

Figure 26. In Figure 26, the two dimensional Hartley 

transformation was also included and tested. The main 

reason for including the two dimensional transformation in 

this part of the study was to check the advantage of the 

unfolding and the application of the one dimension Hartley 

transformation over the two dimensional transformation. 

Also in Figure 26, the number of points saved at each 

step of the process can be seen. Again, in the case of the 

encoding methods, the number in parenthesis denotes the 

length of the clipped patterns that would emerge from the 

encoding. It should be noted that in the case of the two 

dimensional transformation the number of points stored is 

higher than for the other combinations, 576 points instead 

of 512. This is a result of the way the spatial frequencies 

are represented in the two dimensional transformation. 

Now that all those combinations have been formed, in 

order to find the optimum one, a reference library for each 

of them has to be developed. Then, the algorithm would be 

employed to do the reverse search of each of those libraries 
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for a specific set of unknown mixtures. The combination 

which would yield the best result during the reverse search, 

would be the optimum one. 

For this purpose, the Excitation Emission Matrices of 

61 poly-aromatic hydrocarbons, collected during a previous 

study,” were selected to develop the different reference 

libraries. A list of those compounds, along with their code 

names can be seen in Table III. The use of two letter code 

names for referring to the library members was adopted from 

the data collection software used in running the 

fluorescence spectrophotometer. 

Several of those reference spectra were randomly 

selected to form the set of unknown mixtures. In order to 

form a representative set of possible unknowns that the 

algorithm would encounter in a real life application, and 

also to be able to draw statistical conclusions from the 

results, a large number of unknown mixtures had to be 

tested. Also the unknown mixtures should have varying 

number of components with different relative concentrations. 

To achieve that goal, 40 different unknowns were made 

by randomly selecting members of the reference library. Ten 

of these unknowns were constructed with only one component 

(10 unknown x 1 component = 10 components), ten others with 

two components each (10 unknown x 2 components = 20 
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Table III. List of compounds in the reference library. 
eee eee e ee eee eee eee eee ee eee eee ee es 

AA 

AC 

AN 

AQ 

AR 

AZ 

BB 

BD 

BE 

BI 

BN 

BO 

CA 

CH 

DA 

DE 

DI 

DN 

DP 

DS 

EA 

ES 

FL 

IA 

IB 

ID 

IM 

IN 

IP 

MA 

MB 

2-Aminoanthracene 

Anthranilicacid 

Anthracene 

Anthraquinone 

Acridine 

Azulene 

BBOT 

BBD 

4-Biphenylphenylether 

2,2-Binaphthyl 

bNPD 

BBO 

9,10-Dichloroanthracene 

Chrysene 

9,10-Diphenylanthracene 

1,1-Diphenylethylene 

4,5-Diphenylimidazule 

2,3~-Dimethylnaphthalene 

Dimethy1POPOP 

Diphenylstilbene 

Methylanthracene 

Esculin 

Fluorene 

1-Aminoanthracene 

1,1-Binaphthyl 

Indole 

1-Methylnaphthalene 

1-Naphthol 

1-Phenylnaphthalene 

9-Methylanthracene 

4-Methylbiphenyl 

MN 

NA 

ND 

NO 

NP 

PA 

PB 

PD 

PE 

PH 

PN 

PO 

PP 

PQ 

PY 

QP 

QU 

SA 

SN 

TA 

TE 

T™ 

TN 

TP 

TQ 

TR 

TS 

TT 

VA 

VB 

2-Methylnaphthalene 

Naphthalene . 

aNPD 

2-Naphthol 

aNPO 

9-Phenylanthracene 

PBD 

PPD 

Perylene 

Phenanthrene 

2-Phenylnaphthalene 

POPOP 

PPO 

Phenanthrenequinone 

Pyrene 

p-Quaterphenyl 

Quinoline 

Salicylic Acid 

2,6-Dimethylnaphthalene 

Triphenylamine 

Tetracene 

Triphenylamine(1.00e-3) 

Triphenylamine(5.00e-4) 

1368-Tetraphenylpyrene 

Triphenylamine(1.00e-5) 

Triphenylene 

Triphenylamine(1.00e-4) 

Triphenylamine(5.00e-5) 

9-Vinylanthracene 

4-Vinylbiphenyl 
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components), ten more with three components each (10 unknown 

x 3 components = 30 components), and finally, the last ten 

were constructed with five components each (10 unknown x 5 

components = 50 components), giving a total number of 110 

components. 

The first ten unknowns, with only one component, will 

be referred to as Unknowns 1 through 10, where the remaining 

unknowns, with more than one components, will be referred to 

as Mixtures 1 through 30. 

Each reference spectrum, before being tested as an 

unknown, was also multiplied by a random concentration 

factor. The composition of those 40 unknowns, along with 

the random concentration factors each component was 

multiplied by may be found in Appendix B. 

In order to study the effect that noise would have on 

the algorithm in the case of one component unknowns random 

noise was added to each of these spectra. The peak to peak 

value of the added noise was 0.05 fluorescence intensity 

units. For the worst case (Unknown 10) the level of the 

noise added gave a signal to noise ratio, S/N, of 20:1. The 

EEM of Unknown 10, as well as the EEMs of the rest of the 

unknown mixtures, can be seen in Appendix C. 

At this point, each of those 40 unknowns were unfolded, 

transformed, and clipped, according to each of the 

unfolding-clipping combinations explained above. The 
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library CLP files were then searched against the generated 

CLP files of the unknowns. 

The outcome of a library search for an unknown mixture, 

as explained in the section describing the algorithm, is a 

Positive/Negative Ratio for each member of the spectral 

library. The higher the Ratio, the higher the probability 

of the presence of the reference in the unknown mixture. 

An example of the library search results is shown in 

Table IV. The table shows the results for the Mixture 3 

unknown. In the first column of the table the code names 

for the 61 library members are shown. In the next three 

columns the number of Positive, Non-applicable (N/A), and 

Negative Points, respectively appear. In the last column 

are the calculated Positive/negative Ratios for each library 

member. At the bottom of the table, it can be seen that the 

spectral encoding method tested in this particular example 

was clipping method C. 

A closer examination of the last column reveals the 

expected result that the great majority of the reference 

spectra have a ratio of one, or very close to one. Only 

very few have ratios significantly higher than one. This 

observation becomes even more obvious by examining a plot of 

those Positive/Negative Ratios, along the y-axis, versus the 

61 reference spectra, along the x-axis, as shown in 

Figure 27. 
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Table IV. Library search results for unknown Mixture 3. 

POSITIVE/NEGATIVE 
RATIO 

NEGATIVE 
POINTS 

NA POSITIVE 
POINTS 

SPECTRUM 
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Each asterisk in Figure 27 represents the 

Positive/Negative Ratio for one reference spectrum. The two 

points on the graph shown as solid squares represent the 

Positive/Negative Ratio for the two reference spectra which 

were the actual components of the mixture. Clearly, the 

plot shows that the reverse search was successful. 

On examining a second example, though, the results are 

not quite so clear. Figure 28 shows the results of the 

reverse search of the library for a three component mixture, 

Mixture 19. Using the same notation as before, solid 

squares for the actual components of the mixture and 

asterisks for the other members of the library, the plot 

reveals that only two of the three components could be 

picked out during the search. They have large 

Positive/Negative Ratios. The third component would be 

lost, with a Ratio very close to one. 

A second important observation can be made from these 

two plots of the above examples. Besides the actual 

components in the unknown mixtures, several other members of 

the library, were found during the search to have Ratios 

significantly higher than one. 

A conclusion can be drawn from the above observations. 

The comparison metric used in this reverse search of the 

library is the Positive/Negative Ratio which is a continuous 
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type variable. A threshold value needs to be established. 

Reference spectra with Positive/Negative Ratio values above 

this threshold would pass the filtering step and would be 

considered possible components of the unknown mixture. 

Reference spectra with Ratios below the threshold would be 

filtered out and would not be considered during the next 

step of the algorithm, the NNLS method. 

In order to find this threshold value, the means and 

the standard deviation for the reference spectra for each of 

the 40 unknowns were calculated. Figure 29, and Figure 30 

show the calculated mean and standard deviation for each 

unknown. 

As expected, the mean of the Positive/Negative Ratios 

of the reference spectra for each one of the 40 unknowns was 

very close to one. The actual average value for the means 

shown in Figure 29, was about 1.1. The corresponding 

standard deviations, shown in Figure 30 were relative small 

with an average value of about 0.2. 

An appropriate threshold value for the Positive/ = ~ 

Negative Ratio applied during this type of work was 1.5, 

which is approximately the mean plus two standard 

deviations. Statistically, this is a 95% cut off value, 

i.e. only about 5% of the library members are expected to 

pass the filtering step and will be selected as possible 

components of an unknown mixture after the library search. 
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Because of the relative small size of the spectral 

library employed in this study, a 95% cut off point would 

only allow a very small number of spectra, (about 3 

reference spectra) to pass this step of the algorithm. This 

number is obviously smaller than the maximum number of 

components (five), in the mixtures that the algorithm will 

be tested against. 

For that reason, during the reverse library search the 

six spectra with the highest ratios will always be selected 

as possible components of the unknown mixture, regardless of 

their actual Ratio. 

For the rare, but always possible situation where a 

very large number of reference spectra would have 

Positive/Negative Ratios higher than 1.5, the number of 

compounds selected as possible components will be limited to 

10. This corresponds to about 15% of the total number of 

reference compounds in the library. 

To summarize the rules which will be used to select the 

reference compounds to be considered as possible components 

of the unknown mixtures : | 

1) Reference compounds with a Positive/Negative 

Ratio of over 1.5, or the six compounds with 

the highest ratios, will be selected. 

2) If more than 10 reference compounds have 

ratios of over 1.5, only the first 10 will be 
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selected. 

It should be noted that although the above examples and 

calculations for the estimation of a threshold value, and 

the generation of the selection rules, were developed using 

only one of the unfolding-clipping combinations tested, 

(Figure 26) similar observations were found for the 

remaining approaches. Consequently, the same threshold 

value and selection rules were used for the reverse search 

of the reference libraries developed for all the 

combinations. 

The present effort continues to be directed towards the 

selection of the optimum unfolding-clipping combination. 

At this point (1) the reference libraries have been 

developed, (2) the 40 unknowns have been searched against 

these libraries, and (3) the selection rules have been 

established. Now a list of the reference spectra that were 

selected for each one of the tested combinations can be 

developed. Table V shows an example of such a list, for the 

boustrophedon unfolding - clipping method C combination (the 

composition of the 40 unknown may be found in Appendix B). 

The Table shows for each one of the 40 unknowns which 

reference compounds were selected by the algorithm as 

possible components after the reverse search. The selected 

compounds for each unknown are ranked from highest to lowest 

Ratio. Also shown in the same Table are the code names of 
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Table V. Example of a list with selected reference spectra. 
a 

UNKN 
1 an bo 
2 bb da 
3 bd az 
4 £1 mb 
5 ma pa 
6 mn dn 
7 pd vb 
8 po bo 
9 pp tm 

10 tq tt 

MIXTURE 
1 in sn 

3; by Eg 
a ib an 
5 in sn 
6 az hd 
7 ca id 
8 bb da 
9 mp qp 

10 qu qp 

MIXTURE 
11 da bb 
12 pd vb 
13 fl bo 
14 tn tr 
15 im ip 

Be 1 ca 
18 Bi pb 
19 ph ca 
20 ts tt 

MIXTURE 
21 pp oy 
22 e 
23 tt in 
24 jan ea 
25 dp ts 
26 pad vb 
27 sa pb 
28 in 

29 ib tm 
30 tr tn 

Number 

ea 
va 
nd 
pda 
ar 
im 
na 
ds 

aq 
ts 

bb 
sa 
pa 
qp 
tm 
va 
tp 
va 

n 
tb 

va 
na 
po 
no 
pe 
no 
tp 
sa 
tp 
tn 

gp 
vb 
ts 
bo 
tt 
na 
bi 

Pq 
aq 
ts 

of correct compounds C 
Total number of compounds retrieved 

po 
dn 

aq 
vb 

ap 
pd 
dn 
ea 
bn 

ap 

p ad 
ma 
in 
pq 
bb 
be 

bn 

tp 
ia 
tq 
da 

ip 
mn 
an 
tn 
ch 

da 
ta 
ai 

Pq 
aq 
da 
da 
tm 
ib 
tt 

ca 

te 
ds 

pb 
de 
ph 
dn 
pb 
na 

qu 
ac 
tr 
qu 

va 

aq 
aq 
1p 
tn 
tm 
de 

ay 
tq 

vb 

ib 

Pq 

pp 

ip 

qu 

sa 

tr 

no 

tq 

az 
tn 

qu 

ta 
bn 

ip 
tm 

sn 

tr bn no 

dn 

bi aq pa 

bn tt py 

bn pb ts 

pb bn tm 

dn te 
im ip 

bn ma 

bn tn aq 
aq tr pb 
aa in tr 
sa aq ch 

retrieved 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
OWN 

0 
29 
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the actual components in the unknown mixtures, selected 

during the search. These appear as underlined and 

highlighted entrees in the table. 

Examining the table more carefully, it is evident that 

for all the unknowns for which the library was searched the 

reference spectrum with the highest Ratio was always an 

actual component of the unknown. Furthermore, for the 

unknowns with more than one component, in most situations, 

the reference spectrum with the second highest Ratio was 

also an actual component of the unknown. 

The same two examples used to explain the library 

search, Mixtures 3 and 19, will be used again to further 

clarify the entries in Table V. First, in the case of 

Mixture 3, which is a two component unknown mixture, it can 

be seen that according to the selection rules seven 

reference compounds were selected as possible components: 

Mixture 3 py ar pa ma di aq pq 

The compound shown on the left, py, had the highest Ratio, 

and the one on the right, pq, had the lowest Ratio. oo 

It can be seen that the two actual components of the 

Mixture 3, reference spectra py and ar, were found to have 

the highest Positive/Negative Ratios among all the reference 

spectra. This, of course, is the same observation made by 

examining the plot of the library search results in 

Figure 27. 
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In the case of the second example, Mixture 19, which is 

a three component mixture, only six reference spectra were 

selected : 

Mixture 19 ph ca tp da di ta 

Six is the minimum number of reference spectra that could be 

selected during the library search, according to the 

selection rules. Again, the compound on the left, ph, had 

the highest Ratio, and the one on the right, ta, the lowest 

Ratio. In this example, although the two components with 

the highest Ratios were also actual components of the 

mixture, the third component was not retrieved from the 

library. 

In an effort to select the optimum combination of 

unfolding and spectral encoding procedures (Figure 26) for 

the final algorithm, the above examples will be further 

explored. 

The number of actual components in the unknowns that 

were successfully selected and retrieved during the library 

search, which equals the number of highlighted and co 

underlined spectra in Table V, is obviously an important 

criterion of the performance of a particular combination of 

unfolding-clipping techniques. Since the total number of 

components in the 40 unknowns, as explained previously, was 

110, the closer the number of selected reference spectra is 

to 110, the better the performance. 
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A second criterion of the performance of the reverse 

search is the total number of reference spectra selected 

during the search. Since according to the selection rules 

at least six reference spectra would be retrieved for every 

unknown regardless of their Positive/Negative Ratio, the 

minimum number of reference spectra that can be selected for 

all 40 unknowns, is 240 (6 reference x 40 unknown). Thus, 

the closer the total number of selected reference spectra to 

240, the better the performance of the library search. 

Both of these criteria are equally important for a 

comparison of the performances of the different 

combinations. They represent recovery rate and specificity 

of the search. For that reason, the Success Index which 

scores the performance of the combinations employed, is 

defined as the ratio of the two : 

Number of actual components retrieved 
  Success Index = 
Total number of components retrieved 

From the definition, it can be seen that the lower 

limit of the Success Index is zero. This would occur whén 

no components were correctly retrieved. The upper limit, 

can be found when the number of correctly retrieved 

compounds equals the total number of components (110), and 

the total number of compounds retrieved equals the minimum 

possible number of retrieved compounds (240). This upper 

limit would be 0.458 (=110/240). 
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To avoid this strange upper limit, the Success Index 

was normalized, by dividing it with its maximum value, 

(0.458) 3; 

Successindex 

0.458 
NormalizedSuccessIndex= 

The lower and upper limits for the Normalized Success Index, 

which will rate the performance of the different 

combinations of unfolding and spectral encoding are 0.0 and 

1.0, respectively. 

For the combination shown in Table V, boustraphedon 

unfolding and relative clipping method C, the number of 

correctly retrieved components (number of highlighted and 

underlined spectra) was 80. The total number of compounds 

selected from the library was 292. Thus the Normalized 

Success Index is 0.60. 

At this point, some further explainations on the 

purpose and use of the Success Index are in order. 

The purpose of the Success Index is to establish a - 

common ground on which the different library development 

schemes presented previously can be compared. The Index is 

intended to reflect how the different schemes perform, i.e. 

how successful the different library development schemes are 

on retrieving the appropriate compounds. The name of the 

Index was derived from this function. 
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The Index should only be used as a relative measure of 

performance for the different library schemes, and should 

not be used as a percentage measure of the performance of 

the complete algorithm. The performance of the complete 

algorithm will be evaluated later. 

The Normalized Success Index for all the combinations 

explained previously (Figure 26) was calculated. The 

results are shown in Figure 31. The calculation of the 

Normalized Success Index for the different library 

development schemes is based on a single set of randomly 

selected unknown mixtures, thus the calculation of a 

Standard Error is not possible. On the other hand, the 

large number of unknown mixtures as well as the random 

selection of the set of the unknown mixtures, allows us to 

use the single measure of the Success Index in the 

comparison of the different library development schemes. 

Similar approaches have been used in the past by other 

researchers in the area.” 

Since the Success Index depends on two independent - 

variables, in order to better judge the performance of the 

various library development combinations, Figure 31 also 

shows the number of actual components retrieved from the 

library search on a percentage basis. 

For example, a 73% figure of merit means that during 

the first library search performed by the algorithm, 73% of 

139



*
s
o
u
a
y
o
s
 

j
z
U
u
s
u
d
o
T
e
a
a
p
 

ATPAIAT[ 
W
U
e
A
S
J
J
I
P
 

JO 
xapuyr 

s
s
a
o
o
n
s
 

P
O
E
Z
T
T
e
W
I
A
O
N
 

'"Te 
e
a
n
b
t
a
 

W
E
L
 

W
E
L
 

 
 

 
 

  
   
 

LS'O0 
£39°0 

p
a
i
s
a
0
o
0
y
 
S
p
u
n
o
d
w
o
g
 

[9 
d
i
t
 

[ 
dI19 

X@PU] 
S
S
B
D
O
N
S
 

psezijeWwJON 
A
q
 

M
v
L
 

%O0L 
%
6
L
 

%
v
9
 

%
8
9
 

* 
H
E
L
 

%
E
L
 

%
8
9
 

L9°0 
ov’o 

Sse’0 
9
7
0
 

Sv'0 
85°0 

Lv'o0 
6S°0 

 
 

W
E
L
 

09°0 
 
 

[ dvd | 
(9 

di1d| 
[a di

d
]
 
fv 

did] 
[dit | 

(9 d
q
 

(a did] 
fy 

did] 
[ d
i
d
 | 

 
 

 
   

  
  

  
  

  
  

 
 

 
 

 
 

  
@ 
N
O
I
S
S
A
H
d
W
O
D
 

 
 

 
 
 
 

 
 

  A
F
I
L
Y
V
H
 

Gc 
A
F
T
L
Y
V
H
 

Y
a
l
a
 

Ad 1
L
Y
V
H
 

 
 

  
  

  
  

  
  

  
 
 

 
 

 
 
 
 

 
 

  
  

 
 

 
 

d
V
Y
M
N
N
 

a@Io4daNnn 
  

  
  

 
 

Vv 
N
O
I
S
S
A
U
d
W
O
d
 

  
 
 

  
  

 
 

   
 

Vu 
losadsS 

dé 
  

  
 
 

140



the components in a mixture would be expected to be 

retrieved. The remaining will be retrieved during following 

iterations through the loop of the algorithn. 

To help in a comparison of the different library 

development schemes tested in the presented study, Figure 32 

shows a bar graph of the calculated Normalized Success 

Indexes. Several conclusions on the performance of the 

various methods for the unfolding of three dimensional 

spectra and spectral encoding can be drawn from that graph. 

First, is the obvious advantage of the boustrophedon 

unfolding (crossed lines pattern) over the spiral unwrapping 

(dotted pattern). From the value of the Normalized Success 

Index it can be seen that for every clipping method, the 

boustrophedon unfolding always out-performed the spiral 

unwrapping. In every case, the combinations involving 

boustraphedon unfolding gave higher Normalized Success 

Indexes than those involving the spiral unwrapping. 

Apparently, in spiral unwrapping the linear array which 

is created is not as symmetrical as that resulting from - 

boustrophedon unfolding. This asymmetry forces the 

transformation to spread the signal over more spatial 

points, so the 512 points which are saved are not enough to 

distinguish as succesfully members of the library during the 

library search process. 

Comparing the performance of the two clipping methods 
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[zero-crossing and clipping method C, with filtering (dark 

gray pattern) and without filtering (crossed lines pattern) 

of the Hartley transform], it is apparent that filtering 

hinders the performance of the clipping methods. The 

observation implies that there is significant information 

about the characteristics of the reference spectra in all 

the low spatial frequency points of the Hartley transform, 

even those with very small magnitude. 

Comparing the different spectral encoding method one 

observes an obvious disadvantage of the relative clipping 

method B. Every combination involving clipping method B 

gave small Success Index. The performances of the remaining 

three methods, especially in the case of unfolded spectra, 

were similar enough that all appear to have equal ability. 

Although the zero-crossing algorithm is the simplest 

one, it compares favorably with other relative encoding 

methods which reflect finer structures in the transformed 

Spectra. This satisfactory operation of the zero-crossing 

clipping algorithm results from the fact that the data in 

the transform domain is mean centered at zero.” The 

observation that the simplest clipping algorithm gives 

better or equal results to more complicated methods suggests 

that the Occam’s Razor be applied. 

Comparing the one dimensional Hartley transform with 
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the two dimensional transform, Figure 32, it appears that 

the two dimensional Hartley transformation combined with the 

simple zero-crossing spectral encoding method out-performs 

the one dimensional transformation. Such a conclusion would 

be false. First, recall that in the case of the two 

dimensional transform the number of points saved after the 

Hartley transformation (576 points) was larger than the 

number of points saved for the rest of the combinations (512 

points). Second, the Normalized Success Index is not the 

only critirion on the performance of these combinations. 

The advantages of the unfolding of the spectra, which were 

explained in previous sections, are also very important. 

Finally, to select the optimum combination, the bar- 

graph of the Normalized Success Indexes (Figure 32), as well 

as the percentage of the correct number of components 

retrieved (Figure 31) in each case can be examined 

concurrently. 

It can be seen that boustrophedon unfolding combined 

with relative clipping method C gives one of the highest- 

Normalized Success Indexes as well as one of the highest 

percentages of correctly retrieved components. That 

combination will be utilized in the next part of the study, 

which involves the application of the NNLS method. During 

that part the identification of the components of the 

unknowns will be verified, and their concentrations will be 
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estimated. The qualitative and quantitative analysis of the 

unknowns will then be complete. 

2. APPLICATION OF THE NNLS METHOD 

Since boustrophedon unfolding combined with clipping 

method C gave the best results during the library search 

part of the algorithm, the library developed for that 

combination will be used during the next step, the NNLS 

method. The results of the reverse search of that library 

are shown in Table V. 

For this part of the algorithm, the HTL files are 

employed. Specifically, the HTL library files of the 

reference spectra which were retrieved during the library 

search, along with the HTL file of the unknown mixture, will 

be used in the NNLS calculations. 

The expected result of the method is the estimation of 

the concentration factors of the components of the mixture. 

For the reference compounds which were retrieved during the 

library search, but which were not actual components of the 

unknown mixture, the concentration factors are expected to 

be equal to zero. 

Furthermore, the absolute concentrations of the 

components can be computed from those factors. The absolute 

concentration of each component, would be equal to the 

concentration of the solution of the pure compound used to 
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collect the reference spectrum, times the corresponding 

concentration factor. 

The relative accuracy of the concentrations of the 

solutions of the reference compounds involved only two 

significant figures. This also limits the accuracy of the 

calculated concentration factors. For that reason, and also 

in order to decrease the time required to perform the 

computations (the number of computations in the NNLS method 

increases exponentially with the number of points involved), 

only a small number of the points in the HTL files were 

entered in the calculations. In fact, only the first 128 

points of the Hartley transform were involved. The number 

128 was small enough to keep the time required to perform 

the computations to a minimum, and at the same time large 

enough to give the required accuracy. 

To serve as examples of the type of results obtained 

during this step, Mixtures 3 and 19 will again be explained 

in details. 

The HTL files of the seven reference compounds - 

retrieved from the library, namely py, ar, pa, ma, di, aq, 

and pq, along with the HTL file of Mixture 3, were entered 

in the NNLS calculations. As explained earlier, a FORTRAN 

implementation of the method, was used. The output of the 

NNLS method for Mixture 3, is shown in Table VI. 

The first column of the output shows the two letter 
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Table VI. Output of NNLS calculations for Mixture 3. 
eee ener eee rene eee eee ence eee ee 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : MIXTURE 3 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) aq 0.00 (0.0) 
2) ar 2.00 (2.0) * 
3) di 0.00 (0.0) 
4) ma 0.00 (0.0) 
5) pa 0.00 (0.0) 
6) pq 0.00 (0.0) 
7) py 1.00 (1.0) * 

RNORM = 8. MODE = 1 

KRREEKKEKERKEEKEKREREKKEKERKEREREERERKREKREKKKKKKKKREEE 

NOTE 3: The asterisk denote the actual components 
of the unknown. 
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code names for the reference spectra entered in the method, 

and the second column shows the calculated concentration 

factors. The numbers in parenthesis next to the 

concentration factors, are the actual factors which were 

used to develop the unknowns. 

At the bottom of Table VI the value of the RNORM for 

the estimated solution can be seen. As previously 

explained, the value of RNORM serves as an indication of the 

quality of the calculated solution : small RNORM values 

indicate an accurate and acceptable solution. 

Since the RNORM for Mixture 3 had a very small value, 

eight, the estimated concentration factors should be very 

accurate. This becomes obvious by comparing the calculated 

factors with the actual factors shown in parenthesis. 

The last item shown at the lower right side of Table VI 

is the mode at which the execution of the program carrying 

the NNLS calculations terminated. Mode equal to one 

indicates normal termination of the program. Any mode value 

different from one indicates the detection of an error. 

Errors can be generated either during the initiation of the 

program, e.g. fewer data points are found in the input file 

than expected, or during the execution of the program, e.g. 

attempt to divide by zero. 

As anticipated for Mixture 3, since all of the 

components were retrieved during the library search, the 
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NNLS method had no problem to correctly and very accurately 

estimate the concentration factors of the components of the 

mixture. The analysis was completed during the first NNLS 

calculation, thus the algorithm never entered into the loop. 

In the case of the second example, Mixture 19, the 

situation is different. As can be seen in Table VII, the 

RNORM had a very large value, indicating that the calculated 

solution is not an acceptable one. This outcome is 

obviously expected since during the library search only two 

out of three components were retrieved. 

The proposed solution should not be completely ignored 

because it can reveal further significant information. 

Examining the estimated concentration factors closely, it 

can be seen that only the two actual components of the 

mixture have factors different from zero. Apparently zero 

concentration factor denies the presence of the reference 

compound in the mixture. 

Furthermore in Table VII, it can be seen that the 

estimated concentration factors for the two components ir 

Mixture 19 were not very far from the actual ones. 

At this point however, since the solution from the NNLS 

method was not acceptable, the algorithm enters into the 

refining loop (Figure 19). The component that was found to 

have the largest concentration factor is subtracted from the 

unknown spectrum and the library search step will be 

149



Table VII. Output of NNLS calculations for Mixture 19. 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : MIXTURE 19 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) ca 9.46 (7.0) * 
2) da 0.00 (0.0) 
3) ph 3.02 (3.0) * 
4) tp 0.00 (0.0) 
5) di 0.00 (0.0) 
6) ta 0.00 (0.0) 

RNORM = 718474. MODE = 1 

KREKKKEEKEKKEREKKEEKEREKRKEKKEKEKKEREKRKRERKERKKKRKKKREEERE 
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repeated. 

In the case of our example, the HTL file of reference 

spectrum ca, which was found to have the largest 

concentration factor is subtracted from the HTL file of the 

unknown Mixture 19. Specifically, each point of the HTL 

file of reference ca, after been multiplied by the 

concentration factor (9.46) calcutated from the NNLS method, 

would be subtracted from the corresponding point of the HTL 

file of the unknown. 

Because of the expected inaccuracy of the estimated 

concentration factor, to avoid situations where the 

reference spectrum is over-subtracted, the concentration 

factor is always rounded down before use. The factor 9.46 

found for the reference spectrum ca, was rounded down to 

9.0. This rule was applied in all cases, since in many 

instances the first estimated factors were found to be 

larger that the actual ones. 

If the spectral subtraction was performed in the 

spectral domain were all data points would have a positive 

value, it would be possible to avoid over-subtraction of a 

compound by testing for the production of negative numbers. 

In the case of the present algorithm the subtraction is 

performed in the transform domain, where data points with 

both positive and negative values exist, such a test can no 

be used. The only method to avoid over-subtraction of a 
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compound was to round down the estimated concentration 

factors. 

Following the diagram in Figure 19, the resulting new 

HTL file would be again clipped and the library would be re- 

searched against the new CLP file. 

After the second library search, the reference spectra 

found to have the largest Positive/Negative Ratios will be 

checked against the reference spectra found to have zero 

concentration factors at the previous NNLS calculations. If 

a reference compound was found to have zero concentration, 

i.e. it could not be present in the unknown mixture, it will 

not re-enter at the NNLS method, even if it was found to 

have a large Positive/Negative Ratio during the second 

library search. 

For the case of Mixture 19, the reference spectra that 

were selected during the second library search, along with 

the new concentration factors estimated during the second 

application of the NNLS method, are shown in Table VIII. 

Comparing the new concentration factors, calculated - 

after the first iteration of the algorithm through the loop, 

with the actual factors shown in parenthesis, and also by 

observing the value of RNORM, one concludes that this is a 

very accurate and acceptable solution. 

From the two examples above, it is apparent that the 

algorithm is able to correctly identify, and also very 
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Table VIII. Output of NNLS calculations for Mixture 19 after 
one iteration through the algorithm loop. 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : MIXTURE 19 

ITERATION =: 1 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) ca 7.00 (7.0) * 
2) ph 3.00 (3.0) * 
3) ta 0.00 (0.0) 
4) sa 0.00 (0.0) 
5) pe 3.00 (3.0) * 
6) tq 0.00 (0.0) 

RNORM = 27. MODE = 1 

HHI K KKK KKK KEI KE RIKKI REAR AKKRERAEEREREEEKKERK RRA 
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accurately quantify, the components of these two mixtures. 

The complete analysis of the remaining unknowns, are 

summarized in Table IX. It can be seen that the algorithm 

was able to completely and correctly analyze 92% of the 

unknowns tested (37 out of 40 unknowns). For the remaining 

unknowns the algorithm was still able to correctly identify 

and quantify some of the compounds present in the mixtures. 

Including these compounds, a 94% success rate was 

accomplished. 

The analysis of those unknowns was usually achieved 

part either after the first run of the NNLS method or during 

the first iteration through the loop of the algorithm. Only 

about 20% of the trials required that the algorithm proceed 

into the loop two or three times. For the three cases where 

a complete analysis was not reached after the fourth time 

through the loop, the execution of the algorithm was 

terminated. In these three cases the great overlap of the 

components, as well the great resemblance of the actual 

components with other members of the reference library, made 

the analysis of the mixture impossible. 

As can be seen in Table IX, for the 10 unknowns were 

artificial white noise was added into the spectra to test 

the behavior of the algorithm against noise, the procedure 

still gave excellent results. The presence of white noise 

did not affect the performance of the algorithm. The 
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behavior of the algorithm toward noise will further be 

examined in the next section. 

After this thorough investigation of the library 

search, and the NNLS method parts of the algorithm using 

simulated mixtures, the next section will test the algorithm 

against actual EEM of mixtures of poly-aromatic 

hydrocarbons. 

Before we proceed to the next section it is necessary 

to address a philosophical concern about the soundness of 

the presented chemometrics approach in contrast to more 

computer intensive approach. 

First, the fact that the computing speed of today’s 

computers has reached tremendous levels should not be 

confused with the limitations of the mathematical techniques 

that are implemented via these computers. The limitations 

of mathematical techniques are often not imposed by the 

speed of the computer or the person using the computer but 

by the very nature of the mathematical procedures and . 

methods involved. The fault, dear Brutus, lies not- in-our 

"Computers", but ourselves. For example, the calculation of 

the square root of a negative number cannot be done even 

with the use of the fastest computer. 

In some other situations, the limitations of the 

mathematical techniques used are imposed from the physical 

or practical meaning of the solutions that those techniques 
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offer. For example, if a simple Least Squares method (not 

the Non-Negative Least Squares method) is used to estimate 

the concentrations of the components of a mixture a 

mathematically acceptable solution can be found which shows 

the concentration of some of the components to be negative. 

Obviously such a solution would have no physical meaning. 

In terms of the Least Square method used in this study, 

although theoretically the number of unknown parameters that 

can be estimated by the method could equal the number of 

data points in the measurement matrices, there would be no 

practical value in such a solution. As the authors of the 

book "Solving Least Squares Problems" explain "...the 

purpose of least squares computation is not merely to find 

some set of numbers that ‘solve’ the problem, but rather the 

investigator wishes to obtain additional quantitative 

information describing the relationship of the solution 

parameters to the data..." 

Forces solutions for complex systems can be extracted 

from shear application of computer time, but they usuaily 

have little practical meaning, and may be misleading. For 

example M.R. Thompson” has shown that correlation 

techniques can solve quantitative decomposition of Infrared 

spectra with up to 20 components but the discrepancies 

between calculated and known values are gross. 

157



A final issue concernign the algorithm was 

investigated: how the algorithm reacts if a particular 

component of an unknown mixture is not a member of the 

reference library. 

To test the algorithm in this situation, the analysis 

of some of the two and three component unknown mixtures was 

repeated after one of the components of those mixtures was 

removed from the reference library. The selection of the 

unknown mixtures to be used in this test, as well as which 

component of the mixture to be removed from the library was 

done randomly, with the use of the random number generator 

discussed previously. 

Six two component mixtures and four three component 

mixtures were selected to be used. For some of those 

mixtures the component that was removed from the library, 

was a major component providing the main contribution to the 

fluorescence intensity of the unknown, while for some other 

mixtures the component removed was a minor component 

providing a small contribution to the fluorescence intensity 

of the mixture. 

The result of this analysis was that the algorithm was 

not able to find an acceptable solution for any of these 

unknowns. The algorithm entered the loop four times (the 

maximum number of times allowed) but it was not able to find 

an acceptable solution. It should be noted that during the 
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previous analysis, the algorithm was able to correctly 

analyze all those ten unknown mixtures. 

The result of this test on the behavior of the 

algorithm was expected and it gives greater confidence to 

the answers that the algorithm produces. The algorithm will 

not force a solution to the problem by giving an acceptable 

answer when such an answer is not available. If the 

algorithm is to be used under real circumstances it is 

preferable to not get a solution than to get an incorrect 

solution. 

The unknown mixtures used in this test along with the 

component that was removed from the library are shown in the 

next page, 159A. 

C. REAL MIXTURES 

In this second part of the study, actual Excitation 

Emission Matrices of mixtures of poly-aromatic hydrocarbons 

in aqueous solutions at very low concentrations were used to 

test the performance of the algorithm. 

The algorithm was employed to analyze this series of 

unknown mixtures, using a small reference library that was 

developed specifically for that purpose. Finally, the 

effect that chemical and electronic (white) noise would have 

on the performance of the algorithm was examined. 
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Mixture Number Component removed 
(concentration factor) 
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1. EXPERIMENTAL 

Actual mixtures of poly-aromatic hydrocarbons were used 

to test the performance of the algorithm in this part of the 

study. 

The instrument used to collect the Excitation Emission 

Matrices of the mixtures and the pure components was again 

the same Perkin-Elmer Fluorescence Spectrophotometer, Model 

MPF-66, which provides a 0.25nm to 20nm resolution range in 

O.1inm increments (MPF-66 Operating Directions, Perkin-Elmer 

1984). The instrument was connected to a Perkin-Elmer 7500 

Professional Computer for data collection, and instrument 

control. 

The settings of the instrument parameters used to 

collect the spectra for this part of the study are 

summarized in Table X. The selection of a 4nm resolution 

for the collected spectra, was a trade off between the scan 

width and resolution. 

The use of much larger wavelength ranges would require 

a lower instrument resolution which would deteriorate thé 

characteristics of the spectra. On the other hand, if a 

higher instrument resolution was selected the excitation and 

emission wavelength ranges would be smaller, resulting in 

less selective measurements. The chosen resolution was a 

trade off between selectivity, size of Excitation Emission 

Matrices, and computations time. 

160



Table x. Settings of Instrumental Parameters. 
Oe 

Perkin-Elmer 
Fluorescence Spectrophotometer 

Model MPF-66 

Excitation wavelength range 

Emission wavelength range 

Excitation monochrometer slit width 

Emission monochrometer slit width 

Instrument Resolution used 

Wavelength scan speed 

Signal amplifier gain 

200nm to 452nm 

236nm to 488nm 

Snm 

5nm 

4nm 

160nm/min- 

~ ~_ 

HIGH 
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The solutions of the pure compounds used to develop the 

reference library (Table XI), as well as the solutions of 

the mixtures which were prepared to be analyzed with the 

algorithm, were prepared in degassed, deionized water. The 

selection of water as the solvent was done because the 

algorithm was intended to be used as an easy and fast method 

for the detection of pollution in environmental samples, 

mainly water samples. 

The selection of deionized water was done in order to 

avoid the presence of heavy metals in the solutions which 

would effect the fluorescence of the compounds by 

quenching.! The deionized water was degassed by keeping the 

water at boiling point for at least 15 minutes. The water 

was degassed in order to avoid the effect of quenching from 

dissolved oxygen.! 

The concentrations of the pure compounds in the 

reference solutions as well as the concentrations of the 

components of the mixtures were kept at very low levels, in 

most cases bellow 10° M, in order to avoid the effect of~ 

self absorption, which appears at higher concentrations.! 

More details on the selection of the concentration range for 

the compounds in the reference library will be presented in 

the next section. 

The solutions of the reference compounds were prepared 
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by initially dissolving a few milligrams of the compound in 

water. By appropriate dilutions the reference solution was 

brought to the desired concentration. The source and purity 

of the compounds used to develop the reference library as 

well as their exact concentrations can be found in Table XI. 

The solutions of the unknown mixtures were prepared by 

combining portions of the reference solutions. By 

appropriate dilutions the solutions were brought to the 

desired concentrations. The selection of compounds to be 

used in the preparation of the unknown mixtures, as well as 

the concentrations of the reference compounds in the 

mixtures, was done with a random drawing with the use of a 

random number generator (see Experimental section on 

Simulated Mixtures). 

By using Excitation Emission Matrices of solutions of 

actual mixtures, the behavior of the algorithm in the 

presence of instrumental as well as chemical noise (chemical 

interactions between species present in the mixtures) can be 

investigated. + = 

2. POLY-AROMATIC HYDROCARBON MIXTURES 

Poly-aromatic hydrocarbons, PAHs, with several aromatic 

benzenoid rings, are the most common type of molecules 

studied with the aid of fluorescence spectroscopy. 
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For the above reason, as well as the severe 

environmental hazard they present even in very low 

concentrations, PAHs were chosen for this study. 

Before the development of the reference spectral 

library, some additional very important issues had to be 

investigated. The first issue is the concentration of the 

reference compounds in the solutions to be used to collect 

the EEMs for the reference library. The second issue is the 

verification of the assumption that the EEM of a mixture 

would be equal to the sum of the individual components. 

Finally, the effect of the presence of spectral background 

on the results of the algorithm needed to be investigated. 

First, to find the optimum concentration for the 

reference solutions, an important assumption made by the 

algorithm, one discussed in the theory section, has to be 

recalled. 

The algorithm assumes that the fluorescence intensity 

at each and every point of the EEM would change linearly 

with the concentration. The concentration of the reference 

solution, as well as the concentration of the reference 

compound in the unknown mixtures, would have to be in the 

linear part of the fluorescence intensity versus 

concentration relationship. The working range of the 

algorithm would be the range between L,,,,, and L,,. 
T 
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(Figure 6). 

To determine the working range, the EEM of anthranilic 

acid, one of the compounds to be used in the reference 

library, was collected in a number of different 

concentrations. The fluorescence intensity at the peak of 

the spectrum, as well as the intensity at half height, was 

plotted against the molar concentration, Figure 33. 

From the plot in Figure 33 it can be seen that the 

fluorescence intensity remains linear with concentration, 

R7=0.99, for a range of about three orders of magnitude, 10° 

to 10° M. The optimum concentration for the reference 

spectrum should be somewhere at the midpoint of the range. 

To obtain the best results, the same rule should be use for 

every compound that is member of the reference library. 

To explore the second issue mentioned above, the linear 

additivity of the EEMs of the components in a mixture, the 

EEM of a mixture of two components, as well as the EEMs of 

the individual components were collected. In every case, 

the concentrations of the compounds were within the working 

range, as that was defined previously. 

The sum of the EEMs of the two components was compared 

with the actual EEM of the mixture. The comparison can be 

seen in Figure 34. It is obvious that the EEMs of the 

individual components indeed add linearly to form the EEM of 
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the mixture within the working range of the algorithm. 

To realize the importance of the third and last issue 

mentioned above, the background intensity, the EEM of the 

background has to be examined. The Excitation Emission 

Matrix of pure water, under the exact same conditions used 

for the other solutions, was collected to serve as the 

background. It is shown in Figure 35. 

The background EEM consist of a large ridge of 

scattered light. This is a characteristic of the instrument 

aesign, not the result of the experimental technique used in 

this study. Each point on the ridge corresponds to an 

emission wavelength identical to the excitation wavelength 

used. Part of that scattered light is due to reflections on 

the instrument optics and the quartz cell walls. Another 

part comes from Rayleigh (elastic) scattering of the light 

from the water molecules. The intensity of Rayleigh 

scattered light is proportional to 1/\‘, which explains why 

the intensity of the scattered light dramatically decreases 

at higher excitation wavelengths, see Figure 35. > + 

The background EEM also consists of a second low 

intensity ridge that runs almost parallel to that of the 

scattered light. This second ridge is formed from the Raman 

(inelastic) scattering of light. Because of the inelastic 

type of the phenomenon, i.e. energy loss is associated with 
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Figure 35. Background Excitation Emission Matrix. 

169



the phenomenon, the emitted light appears at higher 

wavelengths compared to the wavelengths of the excitation 

beam. 

The intensity of the Raman scattered light is often 

used to determine the sensitivity of fluorescence 

spectrophotometer. The signal to noise ratio for several 

points on that ridge, which correspond to vibrations of the 

water dipole at specific frequencies, can determine the 

sensitivity of the instrument. This method is preferred 

over the classic Limit of Detection method because it is 

simpler and it also can easily be employed to compare the 

sensitivity of different instruments. 

The suggested value of signal to noise ratio determined 

with the above method for a well calibrated and maintained 

spectrophotometer should exceed a 30:1 ratio. Periodical 

testing of the fluorescence spectrophotometer employed in 

the present study gave a signal to noise ratio higher than 

35:1. 

Returning to the issue of the effect of the background 

on the performance of the algorithm, the intensity of the 

points of the EEM which contain background signal would no 

longer be linear with the concentration of the analyte. 

That would obviously effect the value of the saved Hartley 

transform points, the clipping pattern, and thus the results 

of the algorithm. The background signal has to be removed 
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before any further processing of the reference and unknown 

EEMs. 

Because of the relative narrow shape of the scattered 

light ridge compared to the resolution with which the EEMs 

were collected, very small instrument fluctuations would 

produce large variations in the measured intensity of the 

scattered light ridge points. Thus a simple subtraction of 

the background signal would not be very reliable. An 

interactive method, where the user supervises the amount of 

subtracted signal, was used instead to remove the background 

signal. 

Now that the above issues about the reference spectra 

in the library have been addressed, a reference library can 

be developed to help in the evaluation of the performance of 

the algorithm against EEMs of actual mixtures. 

The Excitation Emission Matrices of several water 

soluble PAHs were collected to form a small reference 

library. The EEMs of the compounds in the reference library 

along with their structures can be seen in Appendix D.- At 

the same time, several of those compounds were randomly 

selected to be used as unknowns. At this time actual 

solutions of those compounds were combined to serve as 

unknown mixtures. 

Because of the small size of the reference library, 

only three unknown solutions were prepared. The three 
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unknown mixtures contained one, two, and three components, 

respectively. The composition of those unknown mixtures, 

and the names and concentrations of the compounds in the 

reference library, are shown in Table XI. The Excitation 

Emission Matrices of the three unknown solutions are shown 

in Figure 36, Figure 37, and Figure 38. 

Following the results described earlier for the 

development of the reference library, the Excitation 

Emission Matrices of the compounds were unfolded and 

clipped, using the boustrophedon unfolding and relative 

clipping method Cc. The HTL and the CLP files were again 

stored to form the reference library. 

The EEMs of the unknown mixtures were also unfolded, 

transformed, clipped, and the reference library was 

searched. The Positive/Negative Ratio for every member of 

the library was calculated and the compounds with Ratios 

higher than 1.5 were selected to enter in the NNLS 

calculations. 

Because the unknown mixtures contained only a maximum 

of three components, and also because of the small size of 

the reference library, the minimum number of compounds to 

enter the NNLS calculations regardless of the Positive 

/Negative Ratio was set to four. The results of the reverse 

library search and the NNLS calculations for the three 

unknown mixtures are shown in Table XII. 
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Table XI. 

composition of the unknown mixtures. 
ee eee 

KA Salicylic Acid 
(Aldrich 99+%, Gold label) 

KB 1,4-Naphthoquinone 
(Aldrich 97%) 

KE Linuron 
(EPA Standard) 

KF Indole 
(Aldrich 99+%, Gold label) 

KH Anthranilic Acid 
(Fluka AG, puriss.p.a) 

KK Fluorene 
(Aldrich 98%) 

KP 1,4-Dimethoxybenzene 
(Aldrich 99%) 

KT Benzoquinone 
(Aldrich 98%) 

KZ Acridine 
(Aldrich 98%) 

PU PPD 
(Fluka AG, >98% purum) 

PY Esculin 
(Fluka AG, >98% purum) 

Unknown 1. Indole 

Unknown 2. Anthranilic Acid 

Indole 

Unknown 3. Linuron 

Anthranilic Acid 

Esculin 

2.2 x 10° 

1.0 10% 

4.0 x 10° 

2.4 10° 

6.6 x 107 

1.2 10° 

1.4 10° 

1.4 x 10° 

1.4 107 

3.8 x 10° 

8.8 x 10° 

2.4 x 10° 

6.6 107 

3.0 x 10° 

3.0 10° 

3.3 107 

8.8 10° 

List of compounds in the reference library, 

M 

and 
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Figure 36. EEM of Unknown 1. 
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Figure 38. EEM of Unknown 3. 
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Table XII. Library search results and NNLS calculations for 
the three unknown mixtures. 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : UNKNOWN 1. 

REFERENCE CONCENTRATION 

SPECTRUM FACTOR (ACTUAL) 

1) kf 1.0 (1.0) * 
2) pu 0. (0.0) 
3) kp 0.0 (0.0) 
4) kq 0.0 (0.0) 

RNORM = 120736. MODE = 1 

KHEKEEKEKKKEKKEEKEKEKKEREKEKKEEKERKEKKERKEERKEKEREERERKKERRKE 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : UNKNOWN 2. 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) kh 1.0 (1.0) * 
2) kf 1.3 (1.25) * 
3) pu 0.1 (0.0) 
4) ka 0.0 (0.0) 

RNORM = 159139. MODE = 1 

KREKKKEKEKEKKEREKKEKEREKEKRERKEEEKEKEKREKRRERKEEKEKRRERRRKEERKREE 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : UNKNOWN. 3.- - 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) ke 0.8 (0.75) * 
2) kh 0.5 (0.5) * 
3) kg 0.0 (0.0) 
4) py 0.1 (0.1) * 

RNORM = 228595. MODE = 1 
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In Table XII the four selected reference spectra, for 

each unknown, are ranked from highest to lowest 

Positive/Negative Ratio. Following the notation used in the 

previous part, the actual concentration factors are shown in 

parenthesis, ant the correct components of the unknowns are 

denoted with an asterisk. It can be seen that again the 

reference with the highest Ratio was always an actual 

component of the unknown. 

The higher values of the RNORM, relative to those 

calculated during the use of simulated mixtures is due to 

the noise present in the EEMs and to instrument instability 

during the different runs. To verify this conclusion, the 

calculations were repeated after intentionally removing some 

of the actual components present in the mixtures. In other 

words, the method was forced to produce an non-acceptable 

solution, so that the value of the RNORM can be compaired 

with that of an acceptable solution. In each case the 

resulting RNORM was at least one order of magnitude larger, 

= —_ 

denoting a non-acceptable solution. 

From Table XII it is apparent that the algorithm was 

able to successfully identify and quantify all the 

components of the three unknown mixtures. The fact that the 

analysis was completed during the first NNLS calculations 

and no further iterations through the loop of the algorithm 

were required, was attributed to the relative small size of 
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the library. 

The importance of the obtained results, though, even 

with the small size library was still quite significant. 

The actual components of the unknown mixtures indeed had the 

highest calculated Positive/Negative Ratio in the library, 

and also the NNLS method was proven capable of correctly 

quantifying the components of real unknown solutions. 

It should be further noted that the calculated 

concentration factors have only one significant figure after 

the decimal place because of the errors associated with the 

preparation of the reference and unknown solutions. Those 

errors were introduced from the instrumentation and 

apparatus involved during the preparation of the solutions, 

e.g. analytical balance, volumetric flasks, pipets, etc. 

The last test that the algorithm was put through, since 

it was proven capable of dealing with real EEMs of actual 

multi-component mixtures, was the presence of chemical 

noise, i.e. chemical interactions between species present in 

the same unknown solution, as well as the present of white 

noise. Those last two issues are discussed in the next 

section. 

2. CHEMICAL AND WHITE NOISE 

In the case of multi-component mixture the possibility 

of some type of interaction between different species 
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present in the solution always exists. For example, those 

interactions include interactions between acids and bases, 

or interactions where two species interact to form some type 

of complex as in the case of charge transfer complexes. 

In this part of the study, the performance of the 

presented algorithm was tested under the presence of acid- 

base and charge transfer interactions between the species of 

the unknown mixture. 

The ability of the algorithm to deal with those 

situations was tested by selecting members of the developed 

reference library that would interact with each other to 

form unknown mixtures. 

First, an acid (Anthranilic acid) and a base (Acridine) 

were selected and mixed together to form an unknown 

solution. Next, from the reference library two compound 

that could form a charge transfer complex, an electron donor 

(1,4-Dimethoxybenzene) and an electron acceptor 

(Benzoquinone), were selected and used to form a second 

unknown solution. The concentrations of the components im 

both solution were made to match the concentrations of the 

respective compounds in the reference library. 

The Excitation Emission Matrices of the two solutions 

(Figure 39 and Figure 40) were collected and analyzed 

according to the algorithm. The results of the library 

search and the NNLS calculations are shown in Table XIII. 
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Figure 39. Anthranilic acid and Acridine. 
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Figure 40. 

  
  

1,4-Dimethoxybenzene and Benzoquinone. 

182



Table XIII. NNLS results in the presence of acid-base and 
charge transfer complex interactions. 
ee ener eee 

NNLS RESULTS FOR : ACID-BASE MIXTURE. 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) kh 1.0 (1.0) * 
2) ka 0.0 (0.0) 
3) ky 1.0 (1.0) * 
4) kb 0.0 (0.0) 

RNORM = 82535 . MODE = 1 

HRHKEEKKKEKEKKEEKREKEEKEKKEKEKEKKEKEEKKKKERKEKEKEKKKRRKKEEE 

NNLS RESULTS FOR : CHARGE TRANSFER COMPLEX. 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) kp 1.0 (1.0) * 
2) kq 0.9 (1.0) * 
3) pu 0.0 (0.0) _ 
4) kf 0.0 (0.0) 

RNORM = 18657. MODE = 1 

KERKERKERKERKKEKERREREKRKEERKEKEERRERKRKERKEKKRERRERKKKREKRSE 
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Again, the reference compounds are shown in order of highest 

to lowest Positive/Negative Ratio, and the actual 

concentration factors are shown in parenthesis. 

From Table XIII it is obvious that in both cases the 

algorithm was able to correctly identify the components of 

the unknown mixtures, and in the case of the acid-base was 

also able to accurately estimate the concentrations of the 

components. 

In the case involving a charge transfer complex, the 

estimated concentration of the second component was found to 

be slightly lower than the actual one. The reason for that 

deviation was probably the fact that the contribution of 

that second component in the total fluorescence intensity of 

the mixture was relative small, and small instrument 

fluctuations were manifested in that manner. 

From the above examples it appears that the above 

explained interactions do not depreciate the value of this 

decomposition approach. There are a number of reasons. for 

this. First, the effect of quenching has been avoided-by 

making sure that heavy metals and disolved oxygen are not 

present in the solutions. Second, the effect of acid base 

interactions between the components of the mixtures was 

reduced to minimum levels since the library containes only 

organic compounds. Organic acids and bases are mainly weak 

acids or bases.” 
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Finally, the effect of charge transfer formation 

between species present in the mixtures did not affect the 

results since the formation constants of those compounds are 

usually very small.” 

At a first approximation the effects of quenching, acid 

base interactions, as well as charge transfer complex 

formation can be ignored. If the algorithm was to be 

extended to higher concentrations, outside the linear range 

of the fluorescence where self absorption can be observed, 

or strong acids and bases, or compounds that form strong 

charge transfer complexes are added in the library, then the 

algorithm would have difficulty. In those situations a 

different approach (e.g. neural networks) would have to be 

examined. 

Finally, the performance of the algorithm was tested in 

the presence of significant white noise in the Excitation 

Emission Matrices of the unknown solutions. 

For that reason, artificial white noise was added in 

the EEMs of the three unknown solutions used in the previous 

part of the study, the testing of the algorithm against 

actual mixtures. The noise was generated using a random 

number generator from a commercially available signal 

processing software package. 

The same amount of noise, same peak to peak value, was 

added in the EEMs of each one of the mixture. The estimated 
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signal to noise ratios for the three unknowns were 27:1, 

36:1, and 15:1 respectively. The resulting EEMs can be seen 

in Figure 41, Figure 42, Figure 43. 

The EEMs were again unfolded, transformed, clipped, and 

the reference library was search. The new selected library 

members were entered in the NNLS calculations. The results 

of the library search, as well as the estimated factors from 

the NNLS method, are shown in Table XIV. 

Examining the results in Table XIV, and comparing these 

results with those in Table XII it is apparent that the 

presence of the noise did not hinder the ability of the 

algorithm to analyze multi-component mixtures. Even in the 

case of the Unknown 3, which had a very small signal to 

noise ratio, the algorithm was still able to correctly 

identify and quantify all of the components. The algorithm 

also passed this last test successfully. 
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Table XIV. Results of the analysis of unknown real mixtures 
in the presence of white noise. 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : UNKNOWN 1. 

REFERENCE CONCENTRATION 

SPECTRUM FACTOR (ACTUAL) 

1) kf 1.0 (1.0) * 
2) pu 0.0 (0.0) 
3) kp 0.0 (0.0) 
4) ke 0.0 (0.0) 

RNORM = 123883. MODE = 1 

KHREKEKKKEKKKEKKEKKKKEEKKKEKKKEKREKEREKKREREKKKKKKKKKKEEEE 

NON-NEGATIVE LEAST-SQUARES RESULTS FOR : UNKNOWN 2. 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) kf 1.3 (1.25) * 
2) kh 1.0 (1.0) * 
3) ka O.1 (0.0) 
4) kb 0.0 (0.0) 

RNORM = 162379. MODE = 1 

KREEKEKKEKKKEKKKKEKKEERERERKKKRKKKKRRKRKEKKKKKKKKRKRKAKKREE 

NON-NEGATIVE LEAST~SQUARES RESULTS FOR : UNKNOWN 3.._ 

REFERENCE CONCENTRATION 
SPECTRUM FACTOR (ACTUAL) 

1) ke 0.8 (0.75) * 
2) kh 0.5 (0.5) * 
3) ka 0.0 (0.0) 
4) py 0.1 (O.1) * 

RNORM = 232059. MODE = 1 
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VI. CONCLUSIONS 

The goal of this research was the development of a 

Hartley transform based algorithm for the qualitative and 

quantitative analysis of multi-component mixtures using a 

compressed spectral library of Excitation Emission Matrices. 

The concept of a spectral library of pure compounds used for 

the analysis of multi-component mixtures was proved 

successful. 

The developed algorithm proved capable of analyzing 

mixtures of five components with relative concentrations 

ratio of about 100:1 and significant spectral overlap. The 

algorithm, in 93% of the cases, was able to successfully 

identify the components in the mixtures and very accurately 

estimate their concentrations. 

Also a number of techniques for pre-processing of three 

dimensional fluorescence spectra were investigated. The 

"boustrophedon" unfolding of three dimensional fluorescence 

spectra was one of the pre-processing techniques tested. - 

The two-fold purpose of the unfolding was the reduction of 

the computations required to complete the Hartley transform 

of the spectra and at the same time the increase of the 

number of spatial frequencies that could be used for the 

identification of the components of a mixture. 

The Hartley transform technique used in this research 
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is an alternative to the Fourier transform technique and a 

very powerful signal processing technique. The Hartley 

transform performs at least as well as the Fourier transform 

and at the same time it avoids the confusing concept of 

imaginary numbers. 

The truncation of the Hartley transform spectrum along 

with the spectral encoding methods, especially relative 

encoding methods, was shown to be excellent compression 

tools for the Excitation Emission Matrices involved in this 

study. The spectra were compressed by a factor of almost 

10:1 before they were included in the spectral library, 

while the most time consuming part of the algorithm, the 

library search, was greatly accelerated by been performed in 

a sub-set compressed by a factor 128:1 compared with the 

original data-set. 

The Non-Negative Least-Squares method, employed in this 

study to estimate the concentrations of the components of 

the unknown mixtures, was shown to be a very powerful and 

robust computational method. The concept of non-negativé 

coefficients agrees with the restriction of having only 

positive concentrations in chemical systems, making the 

method well suited for the analysis of chemical data. 

Finally, the algorithm was also proved successful in 

the qualitative and quantitative analysis of mixtures when 

its performance was tested against the presence of large 
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amount of white noise in the spectrum of the unknown 

mixture, as well as the presence of chemical interactions 

between the species present in the unknown sample. 

In conclusion, the research project undertaken was 

completed successfully, and the developed algorithm along 

with appropriate spectral libraries could be employed ina 

variety of real world situations, analysis of environmental 

samples, etc. The effect of chemical interferences and 

interactions between species present in the unknown 

solutions on the performance of the algorithm, as well as 

alternative methodologies for the compression and analysis 

of spectral data, e.g. neural networks, are areas where 

further research could very well be justified. 
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program unfold (input,output) ; 

(KAKA KKKEKEKKKKEKKEKEEKEKKKEEKKKKEEKKKRERKKEKERKEKREEREKKEEKEEKKKEEKE) 

(* 

(* 

(* 

(* 

(* 

(* 

(* 

(* 

(* 

(* 

*) 
PROGRAM UNFOLD 3/5/90 ‘*) 

*) 
This program takes the 64x64 spectrum and it *) 

"boustraphedon" unfolds it into a linear array of *) 
4096 elements. It asks for the spectrum/input file *) 
name and also for the unfolded/output file name. *) 

*) 
George Asimopoulos *) 

*) 
(ERK KKKKKEKKEKEKKKKKEKKEEEEEKEKEEKEKEKERERREKKEKEEKEEEKEKREKKEKEKS ) 

var 
i, j, k : integer ; 

point 2 array [1..8,1..8] of integer 

input file, 
output file : text ; 

spectrum file, 
unfolded file : packed array[1..70] of char 

begin 
write(’Enter spectrum/input file 
readlin(spectrum_ file); 
write(’Enter unfolded/output file 
readlin(unfolded_ file) ; 

'); 

");7 

=
e
 open(input_file,spectrum file,old) 

reset (input_file); 
open(output file,unfolded file); 
rewrite(output_ file) ; 

for k:=1 to 32 do 
begin 

for i:=1 to 8 do 
begin 

for j:=1 to 8 do 
begin 

read(input_file,point[i,j]); 
write(output file,point[i,j]); 

end; 
writeln(output file); 

end; 

f 

f 
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for i:=1 to 8 do 
begin 

for j:=1 to 8 do 
read(input_file,point[{i,j]); 

end; 

for i:=8 downto 1 do 
begin 

for j:=8 downto 1 do 
write(output file,point[i,j]); 

writeln(output_file) ; 
end; 

end; 
end. 
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program hartley (input,output) ; 

(RHR KKEKEKEKKEKEKEKKKEKEEKKEK KEKE KEE KERREKKERKEKEKREKKEKKE ) 

(* 

(* 

(* 

PROGRAM HARTLEY 3/5/90 

Fast Hartley transform routine. 

transform:= forwd ; from time to frequency domain. 
transform:= revse ; from frequency to time. 

power _index:= index to which 2 must be raised to 
generate a transform containing ‘’syze’ elements. 

syze:= number of elements in the input data array. 

This program can calculate the hartley 
transformation of any number of points that is a 
power of 2. The program can also calculate the 
reverse transformation. The output is integers. 

The program asks for the input and output file 
name, the number of points and the direction of 
the transformation. 

George Asimopoulos 

*) 
*) 
*) 
*) 
*) 
*) 
*) 
*) 
*) 

*) 

*) 
(ERK KEKEKKEKKEKEKEKEKEKEKEKERKEEKEEEREREREEEERERERERERERERKEKES ) 

const 
datasize = 4096 ; 

type 
direction _type = ( forwd, revse ); 

var 
dir, test_option, dummy : char ; = 
i, j, k, syze, iter, power_index, demo : integer ; 
data_array : data_array type ; 
transform direction : direction type 
spectrum file, transform file : name 

data_array type = array[1..datasize] of real ; 
name = packed array[1..70] of char ; 

m
e
 

“O
e 

input file, output file : text ; 

(ERK KEKKKEK KEKE KEKE KKK REE KEK KEE EKKEKEKKEEEKERKEEES ) 

procedure fht ( var data_array : data_array type ; 
power index, syze : integer ; 
transform direction : direction_type ) ; 
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var 

i,j,k, 
trg_ind,trg_inc, 
power,t_a,f a, 
i_temp,section, 
s start,s_ end : integer ; 
sne, csn : array[1..datasize] of real ; 
accu : array(1..2,1..datasize] of real ; 

(BR RAAKKEKKKEKEKKEEKKKEKKKEKEKEKES ) 

function permute ( index : integer ) : integer ; 

var 
i, j, s : integer ; 

begin 

index := index - 1 ; 
for i:=1 to power _index do 

begin 
s := index div 2 ; 
j := j + j+ index -s-s; 
index :=s ; 

end; 
permute := j + 1 ; 

(HAKKAR KKKKHKEKKEKKEKEKKEKEKEKEKEKERER ) 

procedure trig _ table ( npts : integer ) ; 

const 
pi = 3.14159265 ; 

var 
i : integer ; 
angle, omega : real ; es 

begin 
angle := 0 ; 
omega := 2 * pi / npts ; 
for i:=1 to npts do 

begin 
sne[i] := sin(angle) ; 
csn[ij] := cos(angle) ; 
angle := angle + omega ; 

end; 
end; 
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(FRR KKKKKEERKERKEEKEKKEKEKKEKKEKE ) 

function modify ( power, s_start, s_end, index : integer ) : 
integer ; 

begin 
if ( s_start = index ) or ( power < 3 ) then 

modify := index 
else 

modify := s_ start + s_ end - index + 1 ; 
end; 

(RKKKKKKKEKKKKKKKEKKEKKEKKEEEEE ) 

procedure butterfly ( trig_ind, i_1, i_2, i_3 : integer ) ; 

begin 
accu[{t_a,i_1] := accu[f_a,i_1] + 

accu[f_a,i_2] * csn(trig_ind] + 
accu[f_a,i_3] * sne[{trig_ ind] 

trig_ind := trig _ind + syze div 2 ; 
accu[t_a,i_2} := accu[f_a,i_1] + 

accu(f_a,i_2] * csn{trig_ind] + 
accu[f_a,i 3] * sne(trig_ind] 

=
e
 

=
e
 

end; 

begin 
power := 1; 
fas=1; 
taszs=2 ; 

for i:=1 to syze do 
begin 

accu([f_a,permute(i)] := data_array[i] ; 
end; 

for i:=1 to power _ index do 
begin 7 

jc= 1; 
section := 1; 
trg_inc := syze div (power + power) ; 
repeat 

trg_ind :=1 ; 
s start := section * power + 1 ; 
s end := ( section + 1 ) * power ; 
for k:=1 to power do 

begin 
butterfly(trg_ind,j,j + power, 

modify(power,s start,s end, j 
+ power)); 
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_ind := trg_ind + trg_inc ; 
J +1 m

e
 

trg 
J: 

end; 
j := j + power ; 
section := section + 2 ; 

until j > syze ; 
power := power + power ; 
i temp := taj; 
t_a := 
fai:= 

end; 

e 

f _a 
_temp ; He

 
R
h
e
e
 

| 

case transform direction of 
forwd : for i:=1 to syze do 

data_array[i}) := accu[f_a,i]) / syze ; 
revse : for i:=1 to syze do 

data_array[i] := accu[f_a,i] ; 
end; 

end; 

(ERK HKKKKKEKEKKEEKEKEKEKKEKKEEKERKEEEKKEEEKEEKKKEEKEEEKEKEREKEE ) 

begin 
write(’What is the name of the input file : ‘); 
readln(spectrum_ file) ; 
open(input file, spectrum file, old); 
reset (input file); 
writeln; 

write(’What is the name of the output file : ‘’); 
readin(transform file) ; 
open(output file, transform file ); 
rewrite (output _ file); 
writeln; 

write(’How many points you have : ‘); 
readln(syzZe) ; - = 
writeln; 

power index := 0 
demo := syze ; 
repeat 

demo := demo div 2 ; 
power index := power _index + 1 ; 

until (demo = 1); 

=
a
 

writeln(’Select transform direction :’) 
write(/’ (F)orward, (R)everse ’ 
read (dummy) ; 

° 

a 

3 
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writeln; 
case dummy of 

‘F’,‘/f" : transform_direction 
‘R’,’r’ : transform_direction 

end; 

forwd 

revse m
e
 

“8
S 

for i:=1 to syze do 
read(input_file, data_array[i]); 

fht( data_array, power_index, syze, transform direction); 

1 := 0; 
for k:=1 to 512 do 

begin 
for j:=1 to 8 do 

begin 
is=i+i1; 
write(output_file,round(data_array[i]):10); 

end; 

writeln(output_ file) ; 
end; 

close(output file); 

end. 
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program hartley 2d (input,output) ; 

(HHA KKAKEKKEAKKEKEKKEKKEK KEE KKEEKERKEKEREKERKEERKERKEKEEKKEREEEE) 

(* *) 
(* PROGRAM HARTLEY 2D 10/17/90 *) 
(* *) 
(* Fast Hartley transform routine. *) 

(* *) 
(* transform:= forwd ; from time to frequency domain. *) 
(* transform:= revse ; from frequency to time. *) 

(* *) 
(* power index:= index to which 2 must be raised to *) 
(* generate a transform containing *) 
(* ‘syze’ elements. *) 

(* *) 
(* syze:= number of elements in the input data array. *) 

(* *) 
(* This program calculates the 2-D Hartley *) 
(* transformation of a 64x64 data set. The program *) 
(* can also calculate the reverse transformation. The *) 
(* output is integers. *) 
(* The program asks for the input and output file *) 
(* names and the direction of the transformation. *) 

(* *) 
(* George Asimopoulos *) 

(* *) 
(RRA KHRKEKKKEKKEK KEKE KKK KEKE KEKE KEKE KEEEKEEKEKEREREEKEEKKEES ) 

const 
datasize = 64 ; 

type 
direction _type = ( forwd, revse ); 
data_array type = array[1..datasize] of real ; 
name = packed array[1..70] of char ; 

var 7 
dir, test_option, dummy char ; 
i, j, k, syze, iter, 
power index, demo 
spectrum 

integer ; 
array[1..datasize,1..datasize] 

of real ; 
data_array 
transform direction 
spectrum file, 
transform file : name ; 
input_file, output file : text ; 

data array type ; 
direction_type ; 

(* HRHEKEKEKKEKKKKKEEKKKEKEEKKEKKKEKKRREKEKKKKKKERRKKKKKKKKKRKEK *) 
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procedure fht ( var data_array : data_array type ; 
power index, syze : integer ; 
transform direction : direction_type ) ; 

var 

i,j,k, 
trg_ind,trg inc, 
power,t_a,f a, 
i_temp,section, 
s start,s end : integer ; 
sne, csn : array[1..datasize] of real ; 
accu : array[1..2,1..datasize] of real ; 

(RRKKKKKKEKKKEKKEKKEKKKKEKKKKE ) 

function permute ( index : integer ) : integer ; 

var 
i, j, S : integer ; 

index := index - 1 ; 
for i:=1 to power index do 

begin 
s := index div 2 ; 
j := j+ 3 + index -s-s/; 
index :=s ; 

end; 
permute := j +1 ; 

end; 

(RARKRKKKEKEREKKEKEKKEKEKKREKESR) 

procedure trig table ( npts : integer ) ; 

const [= 
pi = 3.14159265 ; 

var 
i: integer ; 
angle, omega : real ; 

begin 
angle := 0 ; 
omega := 2 * pi / npts ; 
for i:=1 to npts do 

begin 
sne[i] = sin(angle) 

= cos(angle) um
e 

l
e
 

csn[i] 
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angle := angle + omega ; 
end; 

end; 

(HEKRRAREKKEKEKEKEKKKKEKEKEEKE ) 

function modify ( power, s_start, s_ end, index : integer ) : 
integer ; 

begin 
if ( s_start = index ) or ( power < 3 ) then 

modify := index 
else 

modify := s_ start + s_end - index + 1 ; 
end; 

(BREE KKKEKEREKEEKEERKEKKE ) 

procedure butterfly ( trig_ind, i_1, i 2, i_3 : integer ) ; 

begin 
accu(t_a,i_1] := accu(f_a,i_1]} + 

accu(f_a,i_ 2] * csn[{trig_ind] + 
accu[f_a,i_3] * sne(trig_ind] 

trig_ind := trig_ind + syze div 2 ; 
accu[t_a,i_2] := accu(f_a,i_1] + 

accu[f a,i_ 2] * csn[trig_ind] + 
accu[f_a,i_3] * sne[(trig_ind)] 

=
e
 

=
e
 

end; 

=
e
 1 

i 
_ ! 

trig table(syze) ; 
for i:=1 to syze do 

begin - 
accu(f_a,permute(i)] := data_array[i] ; 

end; 
for i:=1 to power_index do 

begin 

jJr= 1; 
section := 1 ; 
trg_inc := syze div (power + power) ; 
repeat 

trg_ind := 1 ; 
s start := section * power + 1 ; 
s end := ( section + 1) * power ; 
for k:=1 to power do 
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begin 
butterfly(trg_ind,j,j + power, 

modify (power,s start,s end,j + 

power) ); 
trg_ind := trg_ind + trg_inc ; 
Js=jt+i1; 

end; 
j := j + power ; 
section := section + 2 ; 

until j > syze ; 
power := power + power ; 
i_temp := t_a ; 
t_ =fay; 
f = i_temp ; 

a 
_a 

end; 

case transform direction of 
forwd : for i:=1 to syze do 

data_array[i] := accu(f_a,i] / syze ; 
revse : for i:=1 to syze do 

data_array[i] := accu({f_a,i] ; 
end; 

end; 

(* KEKKKKEEEEKKEEKEEKKEKKEEEEKEKKKEEEEEEEEEEEEKKKRKKKKKKRKEEE *) 

begin 
write(/What is the name of the input file : ‘’); 
readln(spectrum_ file); 
open(input file, spectrum file, old); 
reset(input file); 

write(’What is the name of the output file : ‘); 
readin(transform file) ; 
open(output_ file, transform file ); 
rewrite(output file); 

for i:=1 to datasize do 
for j:=1 to datasize do 

read(input_file,spectrum[(i,j]); 

syze := datasize ; 

power index := 0 ; 
demo := syze ; 
repeat 

demo := demo div 2 ; 
power index := power index + 1 ; 

until (demo = 1); 
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writeln(’Select transform direction :/’) 
f wri 

; 
te(’ (F)orward, (R)everse ; 

read (dummy) ; 
wri 

cas 

teln; 
e dummy of 
'F’,'f' 3: transform direction := forwd ; 
‘R’,’r’ : transform direction := revse ; 

end; 

for i:=1 to datasize do 
begin 
for j:=1 to datasize do 

data_array[j] := spectrum[i,j]; 

for 

for 

fht(data_array,power_ index, syze,transform_ direction) ; 
for j:=1 to datasize do 

spectrum(i,j] := data_array[j]; 
end; 

j:=1 to datasize do 
begin 
for i:=1 to datasize do 

data_array[i] := spectrum[i,j]; 
fht(data_array,power_index,syze,transform_ direction) ; 
for i:=1 to datasize do 

spectrum[i,j] := data_array[i]; 
end; 

i:=1 to 16 do 
begin 

:=0; 
for j:=1 to 16 do 

begin 
write (output_file,round(spectrum[(i,j]):10); 
k:=k+1; 
if (k=8) then 

begin 
k:=0; so 
writeln(output_ file) ; 
writeln(’i=’,1:3,’  j="',3:3); 
end; 

end; 
:=0; 

for j:=49 to 64 do 
begin 
write (output_file,round(spectrum[i,j]):10); 
k:=k+1; 

if (k=8) then 
begin 
k:=0; 
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writeln(output_file) ; 
end; 

end; 
end; 

for i:=49 to 64 do 
begin 

2=0; 

for j:=1 to 16 do 
begin 
write (output_file,round(spectrum[i,j]):10); 
:=k+1; 

if (k=8) then 
begin 
k:=0; 
writeln(output file); 
end; 

end; 
k:=0; 
for j:=49 to 64 do 

begin 
write (output_file,round(spectrum[i,j]):10); 
k:=k+1; 
if (k=8) then 

begin 
k:=0; 
writeln(output file); 
end; 

end; 
end; 

close(output file); 
end. 
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PROGRAM CLIPC 500 (INPUT,OUTPUT) ; 

(RHA KKHKKKKKKK KKK KEKE KKK KEE KEKE KEE RE REE KE REREREEEEKEKERKEKES ) 

(* *) 
(* PROGRAM CLIPC_ 500 3/29/91 *) 
(x *) 
(* This program is clipping the input file into 1/’s, *) 
(* O’s and -1’s. The program compares three points at *) 
(* a time and if the middle point is a maximum it clips *) 
(* it into a 1, if it is a local minimum it clips it *) 
(* into a -1, and the points in between if they are *) 
(* closer to the maximum it clips them to 1 and if they *) 
(* are closer to the minimum it clips them into -1. If *) 
(* they are not close enough to either the maximum or *) 
(* the minimum it clips them into 0. *) 
(* To check if they are close enough or not it takes *) 
(* the difference between the min and max points and *) 
(* 25% of this difference is close to the minimum and *) 
(* 25% is close to the minimum. The rest of the *) 
(* difference is considered as 0’s. It clips only 512 *) 
(* points. *) 

(* *) 
(* George Asimopoulos *) 

(* *) 
(RHERHKKEKKKKKKEKKEKKEEKKKKKKEK KEKE KEKEKEKEKREKEKEKEKEREKEKEKER ) 

TYPE 

name = packed array(1..70] of char ; 

VAR 

i, k, J, 1, 

one, two, three, 
max index, min_index, 
difference 
data_array, 
clipped array 

integer ; 

array(1..512] of integer ; 
input file,output file text ; = 
filtered file, . 
clipped file : name ; 
flag max,flag min : boolean ; 

begin 
write(’What is the input file : ’); 
readin(filtered_file) ; 
open(input_file,filtered_file,old); 
reset(input_ file); 

write(’What is the output file : ’); 
readin(clipped file); 
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open(output_file,clipped file); 
rewrite(output file); 

for i:=1 to 512 do 
read(input file,data_array[i]); 

reset (input file); 

read(input_ file,one, two) ; 
clipped_array[{1] :=1 ; 
max_index := 1 ; 
min_index := 2 ; 
is=1; 

repeat 
is=it+i =; 
read(input_ file,three) ; 
if (two>one) and (two>three) 

then 
begin 
max_index := i ; 
clipped array[i] := 1 ; 
flag _max := true ; 
end; 

if (two<one) and (two<three) 
then 
begin 
min_index := i ; 
clipped array[i] := -1 ; 
flag min := true ; 
end; 

if (flag_min) and ((min_index - max_index) >1) 
then 
begin 
difference := data_array[max_index] - 

data array[min index]; 
for k:=(max_index+1) to (min index-1) do > 

begin 
clipped _array[k] = 0 ; 
if ( data_array[k] > ( data_array[max_index] - 

( 0.25 * difference ) ) ) 
then 
clipped array([k] : 

if ( data_array[k] < 
1; 

then 
clipped _array[k] : 

end; 
end; 

-1 ; 

data_array[min index] + 
0.25*difference ) ) ) 
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if (flag_max) and ((max_index - min_index) >1) 
then 
begin 
difference := data _array [max_ index] - 

data _ _array([min_index]; 
for k:=(min_ index+1) to (max _index-1) do 

begin 
clipped_array[k] := 0 ; 
if data_array[k] < ( data_array[min_index] + 

0.25 * difference ) 
then 
clipped array[(k] := -1 ; 

if data_array[k] > ( data_array[max_index] - 
0.25 * difference ) 

then 
clipped_array[k] := 1 ; 

end; 
end; 

flag min := false 
flag max := false 
one := two ; 
two := three ; 

m
e
 

EO 

until i=511 ; 

if (three>0) 
then 

clipped array[512] 
else 

clipped array[512] : 

il ~ 

It oO 

i := 0; 
repeat 

for k:=1 to 16 do 
write(output_file,clipped_array[{i+k]:3); 

i:=1i1+16; - = 
writeln(output file); 

until i=512 ; 

close(input_ file); 
close(output_ file); 

end. 
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program filter (input,output) ; 

(RHR KKKKEKKEKKKKKKKAKKKE KEK KK KH KEEKEKEKKEKERKEKEEKEREKEEKEKKKEEE ) 

(* *) 
(* PROGRAM FILTER 5/29/91 *) 
(* *) 
(* This program calculates the standard deviation of *) 
(* the noise part of the transformation, it writes the *) 
(* standard deviation and calculates the noise level: *) 
(* noise = 1.96 * stdev (95% filter). *) 
(* Then it checks each point in the transformed *) 
(* spectrum against the noise level and if the point *) 
(* is between 0.0 +/- noise it converts it into 0. *) 
(* The number of points it uses for the calculation *) 
(* of s is 1000 points. The program asks for the *) 
(* input and output file names, and it writes the *) 
(* standard deviation. *) 

(* *) 
(* George Asimopoulos *) 

(* *) 
(RAKE KKKKK KEKE KE KEKE KE EKEKEKEREKEKEEKEEKEKREKEEREREREEKES ) 

var 
i, j, k, number_of_ points, 
index_number1, index_number2 : integer; 

Sum_of X, Sum_of_X2, noise, 
stad_deviation, A, B, C : real; 

data_array array[1..4096] of real; 

input file, output_file text; 

transformed file, 
filtered file packed array[1..70] of 

char; 
—_ 

begin 
write(’Enter the transformed/input file : '); 
readin(transformed file) ; 
open(input_file,transformed_ file,history:=olqd) ; 
reset (input file); 

for i:=1 to 4096 do 
read(input_file,data_array[i]); 

write(’Enter the filtered/output file 2: 6); 
readln(filtered file) ; 
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open(output_file,filtered_file) ; 
rewrite (output _ file); 

(* Calculate standard deviation #FkxKREKKKKKKEKKKKK *) 

number of points := 1000 ; 

index_number1 := 2048 - Round(number_ of points/2); 

index number2 := 2 i 048 + Round(number of points/2 

Sum of X := 0 ; 
Sum_of X2 := 0 ; 

for i:=index_numberl1 to index_number2 do 
begin 

Sum_of X := Sum_of_X + data_array[i]; 
Sum _ . of | _X2 3= Sum_ of _X2 + (data_ array[i]) * 

data array[i]); 
end; 
= number of points * Sum of X2 ; 

Sum of X * Sum_of xX ; 
A : 
B : 
C := number of points * (number of points - 1); 

stad deviation := sqrt((A - B) / C) ; 

(* HHEEKKKEEKKKKKEKKKKKKKKRKEKKKKKKKKKKKKKKKRKKEK *) 

Write(’The standard deviation of the noise is : ’); 
Writeln(stad_deviation) ; 

noise := 1.96 * stad deviation ; 
1:=0; 
repeat 

begin 
for j:=1 to 8 do 

begin 
if (data_ array[it+j]<noise) and ed 

(data_array[it+j]>(noise*(-1) )) 
then data _array[it+tj] := 0; 

write (output _ file,round (data _array[it+j]):10); 
end; 

writeln(output_ file); 
1:=it8; 

end; 
until i=4096 ; 

end. 
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program search (input,output) ; 

(* RKEEKREKRKEKEKKEEKEREKKEKEREEKEREKEREREKKERKKKEKKKEKKKEKE *) 

(+ *) 
(* PROGRAM SEARCH 12/29/89 *) 

(* *) 
(* This program performs the reverse search of the *) 
(* library of the clipped spectra (1,0,-1). At the *) 
(* beginning it asks for the name of the unknown *) 
(* spectrum (the spectrum should first be unfolded, *) 
(* transformed, filtered and clipped) and then it does *) 
(* the search against all the files in the SEARCH.FIL *) 
(* file. The results go into the file *) 
(* [ .CLIP.SEARCH] (unknown) .OUT *) 
(* where (unknown) is the name of the unknown spectrum. *) 

(* *) 
(* George Asimopoulos *) 

(* *) 
(* HHKKKKKKKKKKKKEKKEKKEEKKEKKKEKKEEKREKKEKEEKKEKKREKREKKERKEEEKE ) 

type 
name = packed array[1..50] of char ; 

point = array(1..4096] of integer ; 

var 
i, j, k, positive_points, 
no points, negative_points : integer ; 
positive negative : real ; 
unknown_point,reference_ point : point ; 
unknown, reference, results : name ; 
unknown file, reference file, 
input file, results_file : text ; 

begin 
write(‘What is the unknown spectrum : ’); 
readliln(unknown) ; - o- 
open (unknown_file, unknown, old) ; 
reset (unknown_file) ; 

for i:=1 to 4096 do 
read (unknown_file,unknown_point[i])); 

close(unknown_ file); 

(* Open and prepare the heading for the results file *) 

results := ‘[.clip.search]’; 
L:=7; 

218



repeat 
i:=i+1; 
results[i+7] := unknown[i]; 

until unknown[i]=’./’; 
results[i+8]:=’0’; 
results[i+9]:=/’u’; 
results[i+10]:=’t/; 
open(results file,results) ; 
rewrite(results file); 
writeln(results file); 
write(results file,’ REVERSE SEARCH FOR ‘); 
1:=7; 
repeat 

i:=i+1; 
write(results_file,unknown[i)); 

until unknown[i]=’./’; 
writeln(results file); 
writeln(results file); 
write(results file,’ SPECTRUM Positive ‘'); 

writeln(results_ file, ’NO Negative Positive/Negative’); 
writeln(results file); 

(* HEEKEKKEKEKREKKEKEEERKEEREKKEKREKEKKEKKEKEKKEEKEKKKRKEKKKEEK *) 

open(input_file,’search.fil’,old); 
reset (input _ 

repeat 

file); 

readin(input_file,reference) ; 
open(reference file,reference,old) ; 
reset (reference file); 

for i:=1 to 4096 do 

read(reference file,reference point[i]); 

positive points := 0 ; 
no points := 0 ; 7 o> 
negative points := 0 ; 

for i:= 
begin 

if 

if 

if 

to 4096 do 

(reference _point({i]=1) and 
(unknown _point[(i]=1) 
then positive points := positive points + 1; 
(reference _point[i]=-1) and 
(unknown_point[i]=-1) 
then positive points := positive points + 1; 
(reference point[i]=1) and 
(unknown point[i]=0) 
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then no_points := no_points + 1 ; 
if (reference _point[iJ=-1) and 

(unknown_point[i]= =0) 
then no points := no points + 1 ; 

if (reference point[i]= 1) and 
(unknown_point[i]=~1) 
then negative points := negative points + 1 ; 

if (reference _point[i]=-1) and 
(unknown_point[{i]=1) 
then negative points := negative points + 1 ; c 

end; 

if negative_points>0 
then 

positive negative := positive points / 
negative points 

else positive _ negative = 10 ; 
write(results file, ‘ reference[8],reference[9]); 
write(results_ file,’ '); 
write (results _ file,positive points,no_ points, 

negative _ points) ; 
writeln(results file,’ ’, positive _negative:7:4); 
close(reference file); 

until EOF(input file); 
end. 
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JUNE 6, 1991 

THIS PROGRAM SOLVES A SYSTEM OF SIMULTANEUS EQUATIONS 

USING THE METHOD OF LEAST SQUARES AND ALSO IT FORCES 

THE SOLUTION TO HAVE ONLY NON-NEGATIVE COEFFICIENTS: 

i.e. Ax=B AND x>=0 
AT THE END IT PRINTS THE SIX X COEFFICIENTS, THE 

EUCLIDIAN NORMAL AND THE MODE WITH THE NNLS SUBROUTING 

EXITED. 

THE MAIN SUBROUTINES OF THIS PROGRAM WERE TAKEN FORM 

LAWSON AND HANSON, "SOLVING LEAST SQUARES PROBLEMS", 

PRENTICE-HALL, 1974. 

GEORGE ASIMOPOULOS 

DIMENSION A(128,6) ,B(128) ,X(6) ,W(6) ,2(128) , INDEX (6) 
DIMENSION A1(128) ,A2(128) ,A3(128) 
DIMENSION A4(128) ,A5(128) ,A6(128) 

READ THE MATRIX A FROM THE INPUT FILE 

DO 10 I=1,128 
READ(3,100) Al(I),A2(I),A3(1I),A4(I) ,A5(1I) ,A6(I) ,B(I) 
DO 20 I=1,128 
A(I,1)=A1(I) 
A(I,2)=A2 (I) 
A(I,3)=A3 (I) 
A(1I,4)=A4 (TI) 
A(1I,5)=A5 (I) 
A(I,6)=A6(I) 
CONTINUE 

CALL THE SUBROUTING NNLS TO FIND THE SOLUTION 

CALL NNLS(A,128,128,6,B,X,RNORM, W, Z, INDEX, MODE) 

PRINT OUT THE SOLUTION os 

DO 30 I=1,6 
WRITE(4,105) I,X(TI) 
WRITE (4, *) 
WRITE(4,110) RNORM,MODE 
WRITE (4,120) 
FORMAT (7F10.0) 
FORMAT (3X, /RNORM = ’,F10.0,’ MODE = ’,I3) 
FORMAT (5X,1I2,')’,2X,F8.4) 
FORMAT ( ‘ KRKEKKKKKKKEKKEKKKKEKEKKEKKEKEKKKE! ) 

STOP 
END 
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FUNCTION DIFF (X,Y) 
DIFF=X-Y 
RETURN 
END 
SUBROUTINE Gl (A,B,COS,SIN, SIG) 

COMPUTE ORTHOGONAL ROTATION MATRIX 
COMPUTE. .MATRIX (C, S) SO THAT 

(C, S) (A)=(SQRT (A**2+B**2) ) 
(-S,C) (-S,C) (B) = ( 0 ) 

COMPUTE SIG =SQRT(A**2+B**2) 
SIG IS COMPUTED LAST TO ALLOW FOR THE POSSIBILITY 
THAT SIG MAY BE IN THE SAME LOCATION AS A OR B. 

ZERO=0. 
ONE=1. 
IF (ABS(A).LE.ABS(B)) GO TO 10 
XR=B/A 
YR=SQRT (ONE+XR**2) 
COS=SIGN (ONE/YR, A) 
SIN=COS*XR 
SIG=ABS (A) *YR 
RETURN 
IF (B) 20,30,20 
XR=A/B 
YR=SQRT (ONE+XR**2) 
SIN=SIGN (ONE/YR,B) 
COS=SIN*XR 
SIG=ABS(B) *YR 
RETURN 
SIG=ZERO 
COS=ZERO 
SIN=ONE 
RETURN 
END 
SUBROUTINE G2 (COS,SIN,X,Y) 

APPLY THE ROTATION COMPUTED BY G1 TO (X,Y).. 

XR=COS*X+SIN*Y 
Y=-SIN*X+COS*Y 
X=XR 
RETURN 
END 
SUBROUTINE H12 

+ (MODE, LPIVOT,L1,M,U, IUE, UP, C, ICE, ICV, NCV) 

CONSTRUCTION AND/OR APPLICATION OF A SINGLE 
HOUSEHOLDER TRANSFORMATION... Q=I + U*(U**T) /B 
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MODE = 10R2 #£=©1TO SELECT ALGORITHM Hl OR H2. 
LPIVOT IS THE INDEX OF THE PIVOT ELEMENT. 
L1,M IF Li .LE. M THE TRANSFORMATION WILL BE 

CONSTRUCTED TO ZERO ELEMENTS INDEXED FROM 
L1 THROUGH M. IF Li GT. M 
THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION. 

U() , LUE, UP ON ENTRY TO Hl U() CONTAINS THE PIVOT 
VECTOR. IUE IS THE STORAGE INCREMENT 
BETWEEN ELEMENTS. ON EXIT FROM H1 U() 
AND UP CONTAIN QUANTITIES DEFINING THE 
VECTOR U OF THE HOUSEHOLDER 
TRANSFORMATION. ON ENTRY TO 
H2 U() AND UP SHOULD CONTAIN QUANTITIES 
PREVIOUSLY COMPUTED BY H1. THESE WILL 
NOT BE MODIFIED BY H2. 

C() ON ENTRY TO H1 OR H2 C() CONTAINS A MATRIX 
WHICH WILL BE REGARDED AS A SET OF VECTORS TO 
WHICH THE HOUSEHOLDER TRANSFORMATION IS TO BE 
APPLIED. ON EXIT C() CONTAINS THE SET OF 
TRANSFORMED VECTORS. 

ICE STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS 

IN C() 
ICV STORAGE INCREMENT BETWEEN VECTORS IN C(). 

NCV NUMBER OF VECTORS IN C() TO BE TRANSFORMED. IF 
NCV .LE. O NO OPERATIONS WILL BE DONE ON C(). 

DIMENSION U(IUE,M) ,C(1) 
DOUBLE PRECISION SM,B 
ONE=1. 

IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.0OR.L1.GT.M) RETURN 
CL=ABS (U(1,LPIVOT) ) 
IF (MODE.EQ.2) GO TO 60 

**%&**k**CONSTRUCT THE TRANSFORMATION *** 

DO 10 J=L1,M | 
CL=AMAX1(ABS(U(1,d)) ,CL) 

IF (CL) 130,130,20 
CLINV=ONE/CL 
SM= (DBLE(U(1,LPIVOT) ) *CLINV) **2 

DO 30 J=L1,M 
SM=SM+ (DBLE(U(1,d) ) *CLINV) **2 

CONVERT DBLE. PREC. SM TO SINGLE PREC. SM1 

SM1=SM 
CL=CL*SQRT (SM1) 
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40 
50 

60 
70 

80 

90 

100 

110 
120 
130 

IF (U(1,LPIVOT)) 50,50,40 
CL=-CL 
UP=U (1, LPIVOT) -CL 
U(1,LPIVOT) =CL 
GO TO 70 

**kkk*kAPPLY THE TRANSFORMATION I+U*(U**T)/B TO C #¥¥x*xx 

IF (CL) 130,130,70 
IF (NCV.LE.0) RETURN 
B=DBLE (UP) *U(1, LPIVOT) 

B MUST BE NONPOSITIVE HERE. IF B=0. , RETURN 

IF (B) 80,130,130 
B=ONE/B 
I2=1-ICV+ICE* (LPIVOT-1) 
INCR=ICE* (L1-LPIVOT) 

DO 120 J=1, NCV 
I2=I2+ICv 
I3=I2+INCR 
14=13 
SM=C (I2) *DBLE(UP) 

DO 90 I=L1,M 
SM=SM+C (13) *DBLE(U(1,I) ) 
I3=13+ICE 

IF (SM) 100,120,100 
SM=SM*B 
C(I2)=C (12) +SM*DBLE (UP) 

DO 110 I=L1,M 
C(14)=C(14)+SM*DBLE(U(1,I)) 
I4=I4+ICE 

CONTINUE 
RETURN 

_ END 

SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W, ZZ, INDEX, MODE) 

*kkkk*ENONNEGATIVE LEAST SQUARES ***%% 

GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE 
AN N-VECTOR, X, WHICH SOLVES THE LEAST SQUARES PROBLEM 

A*X=B SUBJECT TO X .GE.O 

A() ,MDA,M,N MDA IS THE FIRST DIMENSIONING 
PARAMETER FOR THE ARRAY,A(). ON ENTRY 
A() CONTAINS THE M BY N MATRIX, A. ON 
EXIT A() CONTAINS THE PRODUCT MATRIX, 
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10 

Q*A. WHERE Q IS ANC M BY M ORTHOGONAL 
MATRIX GENERATED IMPLICITLY BY 
THIS SUBROUTINE. 

B() ON ENTRY B() CONTAINS THE M VECTOR,B. ON EXIT 
B() CONTAINS Q*B. 

X() ON ENTRY X() NEED NOT BE INITIALIZED. ON EXIT 
X() WILL CONTAIN THE SOLUTION VECTOR. 

RNORM ON EXIT RNORM CONTAINS THE EUCLIDEAN NORM OF 
THE RESIDUAL VECTOR. 

W() AN N-ARRAY OF WORKING SPACE, ON EXIT W() WILL 
CONTAIN THE DUAL SOLUTION VECTOR. W WILL 
SATISFY W(I)=0. FOR ALL I IN SET P AND W(I) 
.LE.0. FOR ALL I IN SET Z 

22 () AN M-ARRAY OF WORKING SPACE. 
INDEX() AN INTEGER WORKING SPACE OR ARRAY OF LENGTH AT 

LEAST N ON EXIT THE CONTENTS OF THIS ARRAY 
DEFINE THE SETS P AND Z AS FOLLOWS.. 

INDEX(1) THRU INDEX(NSTEP) = SET P. 
INDEX(IZ1) THRU INDEX (122) = SET Z. 
IZ1 = NSTEP+1 =NPP1 
IZ2 =N 

MODE THIS IS A SUCCESS~-FAILURE FLAG WITH THE 
FOLLOWING MEANINGS. 
1. THE SOLUTION HAS BEEN COMPUTED 

SUCCESSFULLY 
2. THE DIMENSIONS OF THE PROBLEM ARE BAD. 

EITHER M.LE.O OR N.LE.O. 
3. ITERATION COUNT EXCEEDED. MORE THAN 3*N 

ITERATIONS. 

DIMENSION A(MDA,N), B(M), X(N), W(N), ZZ(M) 
INTEGER INDEX (N) 
ZERO=0. 
ONE=1. 
TWO=2. 
FACTOR=0.01 7 

MODE=1 
IF (M.GT.0.AND.N.GT.0) GO TO 10 
MODE=2 
RETURN 
ITER=0 
ITMAX=3 *N 

INITIALIZE THE ARRAYS INDEX() AND X(). 

DO 20 I=1,N 
X (I) =ZERO 
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20 

30 

40 
50 

INDEX (I) =I 

IZ2=N 
1Z1i=1 
NSETP=0 
NPP1=1 
ITERA=0 

kkkkkKR MAIN LOOP BEGINS HERE *#****k% 

CONTINUE 
ITERA=ITERA + 1 
PRINT *,’ LOOP A ITERATION : ’,ITERA 
ITERB=0 

QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE 
SOLUTION. 
OR IF M COLS OF A HAVE BEEN TRIANGULARIZED. 

IF (1I1Z1.GT.IZ2.OR.NSETP.GE.M) GO TO 350 

COMPUTE COMPONENTS OF THE DUAL (NEGATIVE 
GRADIENT) VECTOR W() 

DO 50 IZ=IZ1,122 
J=INDEX (IZ) 
SM=ZERO 

DO 40 L=NPP1,M 
SM=SM+A (L,J) *B(L) 

W(J)=SM 

FIND LARGEST POSITIVE W(J). 

60 WMAX=ZERO 

70 

80 

DO 70 IZ=1I21,122 
J=INDEX (IZ) 
IF (W(J).LE.WMAX) GO TO 70 | “= 
WMAX=W (J) , 
IZMAX=1Z 
CONTINUE 

IF WMAX.LE.O GO TO TERMINATION. 
THIS INDICATES SATISFACTION OF THE KUHN 
TUCKER CONDITIONS. 

IF (WMAX) 350,350,80 
IZ=IZMAX 
J=INDEX (IZ) 
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90 
100 

110 
120 

130 

140 
150 

THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET P. 
BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL 
ELEMENT TO AVOID NEAR LINEAR DEPENDENCE. 

ASAVE=A (NPP1,J) 
CALL H12 (1,NPP1,NPP1+1,M,A(1,J),1,UP,DUMMY,1,1,0) 
UNORM=ZERO 
IF (NSETP.EQ.0) GO TO 100 

DO 90 L=1,NSETP 
UNORM=UNORM+A (L,J) **2 

UNORM=SQRT (UNORM) 
IF (DIFF (UNORM+ABS (A(NPP1,J) ) *FACTOR, UNORM) ) 

+130,130,110 

COL J IS SUFFICIENTLY INDEPENDENT. COPY B INTO 22, 
UPDATE ZZ AND 
SOLVE FOR ZTEST ( = PROPOSED NEW VALUE FOR X(J) ). 

DO 120 L=1,M 
ZZ (L)=B(L) 

CALL H12 (2,NPP1,NPP1+1,M,A(1,J),1,UP,2Z,1,1,1) 
ZTEST=ZZ (NPP1) /A(NPP1,J) 

SEE IF ZTEST IS POSITIVE 

IF (ZTEST) 130,130,140 

REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET 
P. RESTORE A(NPP1,J), SET W(J)=0., AND LOOP BACK TO 
TEST DUAL COEFFS AGAIN. 

A(NPP1,J) =ASAVE 
W(J)=ZERO 
GO TO 60 

THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO BE MOVED 
FROM SET Z TO SET P. UPDATE B, UPDATE INDICES; - 
APPLY HOUSEHOLDER TRANSFORMATIONS TO COLS IN NEW SET 
Z, ZERO SUBDIAGONAL ELTS IN COL J, SET W(J)=0. 

DO 150 L=1,M 
B(L)=ZZ(L) 

INDEX (IZ) =INDEX (I21) 
INDEX (1IZ1)=d 
IZ1=1I21+1 
NSETP=NPP1 
NPP1i=NPP1+1 
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IF (IZ1.GT.1Z2) GO TO 170 
DO 160 JZ=121,12Z2 
JJ=INDEX (JZ) 

160 CALL H12 
+(2,NSETP,NPP1,M,A(1,J),1,UP,A(1,Jd) ,1,MDA,1) 

170 CONTINUE 

IF (NSETP.EQ.M) GO TO 190 
DO 180 L=NPP1,M 

180 A(L,J)=ZERO 
190 CONTINUE 

W(J) =ZERO 

SOLVE THE TRIANGULAR SYSTEM. 
STORE THE SOLUTION TEMPORARILY IN ZZ(). 

ASSIGN 200 TO NEXT 
GO TO 400 

200 CONTINUE 
PRINT *,/ LOOP B ITERATION’ 

kKEEKKESECONDARY LOOP BEGINS HERE *** 

ITERATION COUNTER. 

210 ITER=ITER+1 
ITERB=ITERB + 1 
PRINT *,/ ‘ ,ITERB 
IF (ITER.LE.ITMAX) GO TO 220 
MODE=3 
WRITE (6,440) 
GO TO 350 

220 CONTINUE 

SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE 
IF NOT COMPUTE ALPHA —- 

ALPHA=TWO 
DO 240 IP=1,NSETP 
L=INDEX (IP) 
IF (ZZ(IP)) 230,230,240 

230 T=-X(L) /(2Z(IP)-X(L) ) 
IF (ALPHA.LE.T) GO TO 240 
ALPHA=T 
JJ=IP 

240 CONTINUE 
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250 

IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE THEN 
ALPHA WILL STILL=2. IF SO EXIT FROM SECONDARY 
LOOP TO MAIN LOOP. 

IF (ALPHA.EQ.TWO) GO TO 330 

OTHERWISE USE ALPHA WHICH WILL BE BETWEEN 
O. AND 1. TO INTERPOLATE BETWEEN THE OLD X AND 
THE NEW ZZ. 

DO 250 IP=1,NSETP 
L=INDEX (IP) 
X (L) =X (L) +ALPHA* (ZZ (IP) -X(L) ) 

MODIFY A AND B AND THE INDEX ARRAYS TO MOVE 
COEFFICIENT I FROM SET P TO SET Z. 

I=INDEX (JJ) 
260 X(I)=ZERO 

270 
280 

IF (JJ.EQ.NSETP) GO TO 290 
JJ=JI+1 

DO 280 J=JJ,NSETP 
II=INDEX (J) 
INDEX (J-1) =II 
CALL Gl (A(J-1,II) ,A(J,II) ,CC,SS,A(J-1,II)) 
A(J,II)=ZERO 

DO 270 L=1,N 
IF (L.NE.II) CALL G2(CC,SS,A(J-1,L) ,A(J,L)) 
CONTINUE 

CALL G2 (CC,SS,B(J-1) ,B(J) ) 
290 NPP1=NSETP 

300 

NSETP=NSETP-1 
IZ1=1Z1-1 
INDEX (IZ1) =I 

SEE IF THE REMAINING COEFFS IN SET P ARE FEASIBE5E. 
THEY SHOULD BE BECAUSE OF THE WAY ALPHA WAS 
DETERNINED. IF ANY ARE INFEASIBLE IT IS DUE TO 
ROUND-OFF ERROR. ANY THAT ARE NONPOSITIVE WILL BE 
SET TO ZERO AND MOVED FROM SET P TO SET Z. 

DO 300 JJ=1,NSETP 
I=INDEX (JJ) 
IF (X(I)) 260,260,300 
CONTINUE 

COPY B( ) INTO ZZ( ). THEN SOLVE AGAIN AND LOOP BACK 
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310 

320 

330 

340 

350 

360 

370 
380 
390 

400 

410 
420 
430 

440 

DO 310 I=1,M 
ZZ (1) =B(I) 

ASSIGN 320 TO NEXT 
GO TO 400 
CONTINUE 
GO TO 210 

*kkkk END OF SECONDARY LOOP*#***keek% 

DO 340 IP=1,NSETP 
I=INDEX (IP) 
X (I) =ZZ (IP) 

ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING 

GO TO 30 

REKKKKEKEND OF MAIN LOOP ¥8#¥#XRREREREX 

COME TO HERE FOR TERMINATION. 
COMPUTE THE NORM OF THE FINAL RESIDUAL VECTOR. 

SM=ZERO 
IF (NPP1.GT.M) GO TO 370 

DO 360 I=NPP1,M 
SM=SM+B (I) **2 

GO TO 390 
DO 380 J=1,N 
W(J) =ZERO 

RNORM=SQRT (SM) 
RETURN 

THE FOLLOWING BLOCK OF CODE IS USED AS AN INTERNAL 
SUBROUTINE TO SOLVE THE TRIANGULAR SYSTEM, PUTTING THE 
SOLUTION IN Z2Z(). 

DO 430 L=1,NSETP 
IP=NSETP+1-L - 
IF (L.EQ.1) GO TO 420 

DO 410 II=1,IP 
ZZ (II) =ZZ(II) -A(II,JJ) *22(IP+1) 

JJ=INDEX (IP) 
ZZ(IP)=ZZ(IP) /A(IP,JJ) 

GO TO NEXT, (200,320) 
FORMAT (35HO NNLS QUITTING ON ITERATION COUNT.) 
END 
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Appendix B. 
Composition of the 40 unknowns. 
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One component unknowns - Unknown 1 to 10. 

Unknown # 

10 

Component 

AN Anthracene 

BB BBOT 

BD BBD 

FL Fluorene 

MA 9-Methylanthracene 

MN 2-Methylnaphthalene 

PD PPD 

PO POPOP 

PP PPO 

TQ Triphenylamine(1.00e-5) 

Factor 
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Two component unknowns - Mixture 1 to 10. 

Mixture # 

10 

Component 

IN 1-Naphthol 
BB BBOT 

CA 9,10-Dichloroanthracene 
PY Pyrene 

PY Pyrene 
AR Acridine 

AN Anthracene 
IB 1,1-Binaphthyl 

IN 1-Naphthol 
T™ Triphenylamine(1.00e-3) 

AZ Azulene 
VA 9-Vinylanthracene 

CA 9,10-Dichloroanthracene 
ID Indole 

BB BBOT 

AQ Anthraquinone 

NP aNPO 

QP p-Quaterphenyl 

QP p-Quaterphenyl 
QU Quinoline 

Factor 
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Three component unknowns - Mixture 11 to 20. 

Mixture # 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Component 

PN 2-Phenylnaphthalene 
EA Methylanthracene 
DA 9,10-Diphenylanthracene 

IB 1,1-Binaphthyl 
TE Tetracene 
PD PPD 

FL Fluorene 
BO BBO 

DI 4,5-Diphenylimidazule 

TA Triphenylamine 
PA 9-Phenylanthracene 
TN Triphenylamine(5.00e-4) 

IM 1-Methylnaphthalene 
PE Perylene 
TQ Triphenylamine(1.00e-5) 

PB PBD 

DA 9,10-Diphenylanthracene 
QU Quinoline 

CA 9,10-Dichloroanthracene 
BE 4-Biphenyliphenylether 
PH Phenanthrene 

IA 1-Aminoanthracene 
VB 4-Vinylbiphenyl 
BI 2,2-Binaphthyl 

PE Perylene 
CA 9,10-Dichloroanthracene 
PH Phenanthrene 

TE Tetracene 
BD BBD 

TS Triphenylamine(1.00e-4) 

0
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Five component unknowns ~- Mixture 21 to 30 

Mixture # 

21 

22 

23 

24 

25 

26 

27 

Component 

QP p-Quaterphenyl 

NP aNPO 

IA 1-Aminoanthracene 
PP PPO 

AN Anthracene 

MN 2-Methylnaphthalene 
PE Perylene 
PD PPD 

BD BBD 

TE Tetracene 

MA 9-Methylanthracene 
TT Triphenylamine(5.00e-5) 
IB 1,1-Binaphthyl 
SA Salicylic Acid 
IN 1-Naphthol 

EA Methylanthracene 
TE Tetracene 
AN Anthracene 
ID Indole 
AA 2-Aminoanthracene 

TS Triphenylamine(1.00e-4) 
DP Dimethy1POPOP 
DN 2,3-Dimethylnaphthalene 
BE 4-Biphenylphenylether 
AN Anthracene 

QP p-Quaterphenyl 
BD BBD 

IP 1-Phenylnaphthalene 
BI 2,2-Binaphthyl 
PD PPD 

SA Salicylic Acid 
BI 2,2-Binaphthyl 
DA 9,10-Diphenylanthracene 
AQ Anthraquinone 
BE 4-Biphenylphenylether 

Factor 
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Five component unknowns - Mixture 21 to 30. 

28 

29 

30 

TR 
PY 
DP 
IN 
ID 

AA 
AC 
TM 
IB 
AZ 

TR 
IA 
AA 
IM 
CH 

Triphenylene 
Pyrene 
Dimethy1POPOP 
1-Naphthol 
Indole 

2-Aminoanthracene 
Anthranilic Acid 
Triphenylamine(1.00e-3) 
1,1-Binaphthyl 
Azulene 

Triphenylene 
1-Aminoanthracene 
2-Aminoanthracene 
1-Methylnaphthalene 
Chrysene 

(continue) 
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Appendix C. 
Excitation Emission Matrices of 40 unknowns. 
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Appendix D. 
Reference library. 

Molecular Structures and Excitation Emission Matrices. 
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