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(ABSTRACT) 

 

The purpose of a cost model is to provide designers and decision-makers with 

accurate cost information to assess and compare multiple alternatives for obtaining the 

optimal solution and controlling cost. The cost models developed in the design phases are 

the most important and the most difficult to develop. Therefore it is necessary to identify 

appropriate cost drivers and employ appropriate modeling techniques to accurately 

estimate cost for directing designers. The objective of this study is to provide higher 

predictive accuracy of cost estimation for directing designer in the early design phases of 

complex products. 

After a generic cost estimation model is presented and the existing methods for 

identification of cost drivers and different cost modeling techniques are reviewed, the 

dissertation first proposes new methodologies to identify and select the cost drivers: 

Causal-Associated (CA) method and Tabu-Stepwise selection approach. The CA method 

increases understanding and explanation of the cost analysis and helps avoid missing 

some cost drivers. The Tabu-Stepwise selection approach is used to select significant cost 

drivers and eliminate irrelevant cost drivers under nonlinear situation. A case study is 

created to illustrate their procedure and benefits. The test data show they can improve 

predictive capacity. 

Second, this dissertation introduces Tabu-SVR, a nonparametric approach based on 

support vector regression (SVR) for cost estimation for complex products in the early 

design phases. Tabu-SVR determines the parameters of SVR via a tabu search algorithm 

improved by the author. For verification and validation of performance on Tabu-SVR, the 

five common basic cost characteristics are summarized: accumulation, linear function, 
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power function, step function, and exponential function. Based on these five 

characteristics and the Flight Optimization Systems (FLOPS) cost module (engine part), 

seven test data sets are generated to test Tabu-SVR and are used to compare it with other 

traditional methods (parametric modeling, neural networking and case-based reasoning). 

The results show Tabu-SVR significantly improves the performance compared to SVR 

based on empirical study. The radial basis function (RBF) kernel, which is much more 

robust, often has better performance over linear and polynomial kernel functions. 

Compared with other traditional cost estimating approaches, Tabu-SVR with RBF kernel 

function has strong predicable capability and is able to capture nonlinearities and 

discontinuities along with interactions among cost drivers. 

The third part of this dissertation focuses on semiparametric cost estimating 

approaches. Extensive studies are conducted on three semiparametric algorithms based 

on SVR. Three data sets are produced by combining the aforementioned five common 

basic cost characteristics. The experiments show Semiparametric Algorithm 1 is the best 

approach under most situations. It has better cost estimating accuracy over the pure 

nonparametric approach and the pure parametric approach. The model complexity 

influences the estimating accuracy for Semiparametric Algorithm 2 and Algorithm 3. If 

the inexact function forms are used as the parametric component of semiparametric 

algorithm, they often do not bring any improvement of cost estimating accuracy over the 

pure nonparametric approach and even worsen the performance. 

The last part of this dissertation introduces two existing methods for sensitivity 

analysis to improve the explanation capability of the cost estimating approach based on 

SVR. These methods are able to show the contribution of cost drivers, to determine the 

effect of cost drivers, to establish the profiles of cost drivers, and to conduct monotonic 

analysis. They finally can help designers make trade-off study and answer “what-if” 

questions. 
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Chapter 1 Introduction 

1.1  Background 

The primary focus of this research is on accurately estimating cost to assist designers 

and decision makers to control cost during the early design phases for complex products. 

The cost model developed during the design phases is used in critical design decisions 

which shape the cost of the entire project. Ten to fifteen percent [1] of the total cost spent 

during the design phase commits eighty percent of the total cost in the life cycle. The cost 

models developed in the design phases are the most important and the most difficult to 

develop. Even though a rather small proportion of the total life cycle cost is spent during 

the design phases of a product, it is important that there are effective measures to control 

cost during the design phases to minimize total life cycle cost. Experience has shown that 

the greatest potential for cost reduction is in the early design phases. Cost estimation is 

necessary to provide opportunities to allow designers, planners and decision-makers to 

consider better alternatives for cost control.  

However, during the early design phases available information is inadequate because 

the product is not fully defined. This is especially true for complex products; they have 

complex designs and complex manufacturing processes and thus cost estimation is not an 

easy task. The relationships between costs and cost drivers are complex. They often 

include nonlinear properties and may be very hard to define in some cases. Therefore, it 

is necessary, especially for complex products, to employ appropriate models and 

techniques to accurately estimate the cost for directing the designers. 

 

1.2 Motivation 

During the design phases, designers and decision-makers often need to know accurate 

cost information to assess and compare multiple alternatives to obtain the optimal 

solution. They need to identify cost reduction opportunities and tradeoffs to meet targets 

(requirement, performance, and schedule). They also need to evaluate cost reduction 

ideas and alternatives affecting system performance factors for their impact and compare 
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the results with the original “baseline” design. A cost estimating model must be 

reasonably, accurate, robust, fast and capable of operating on data of the detail typically 

available in the related phase, to support conduct the cost trade-off studies for designers 

and decision makers.  

Accuracy is crucial to a cost model for a complex product. It is the most basic need 

for estimating cost. In the early design phases, inaccuracy results in overestimates or 

underestimates of cost. An overestimate may cause a designer to abandon an appropriate 

design in favor of a cheaper design with worse performance. When costs are 

underestimated in the early design phases, initial plans for materials, scheduling, tooling, 

processing etc., are not attainable. There would be a redesign, replanning, reproduction 

and possibly the addition of personnel and equipment at the later phases. These 

eventually increase costs more than originally budgeted. The accuracy of cost estimates is 

therefore essential for designers to control cost. The most realistic estimate with greatest 

accuracy would incur the most economical cost of a complex product.  

Accuracy improves with more available information. Generally, with the evolving of 

design, more and more information can be provided to make estimation more accurate. 

Creese and Moore [2] provided a discussion on the degree of accuracy in the different 

stages as shown in Figure 1-1. During the conceptual design phase, available information 

is inadequate and cost estimation must rely primarily on the use of known essential 

product functions and hence accuracy ranges from -30% to +50% of the real cost. As 

design progresses, more design information becomes available and cost estimates can be 

made based on available historical cost data. The accuracy of cost estimates in this stage 

ranges from -15 to +30%. During the detail design phase, when most information about 

the product is known, the degree of cost estimating accuracy should be within - 5 to 

+15%.  

Generally, with more information, better accuracy is obtained. In reality, the 

development of a cost estimating model is a process of identifying and employing 

information (cost drivers, historical data and apriori knowledge) to estimate costs. Early 

and even some current cost models, miss some important cost drivers which reflect key 

engineering design parameters and key management decisions [3], even when the 

historical data are available. This results in a bias for cost estimation and lack of 
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credibility for designers and decision-makers. Hence, identifying and selecting cost 

drivers is an important task for cost estimation. 

 

Accuracy 

%

The Degree of Cost Estimation Accuracy

Estimate

Conceptual 

Design Phase

Detail 

Design Phase

 Preliminary 

Design Phase
Life Cycle

Accuracy 

-30 to +50% 

Accuracy 

- 15 to +30%

Accuracy 

- 5 to +15%  

 

Figure 1-1 The Degree of Cost Estimation Accuracy  

Besides identification of cost drivers, the cost modeling techniques that employ the 

cost drivers greatly affect the degree of estimating accuracy. Different cost estimating 

approaches will produce different degrees of accuracy even under the same situation. 

This is especially true for complex products. The relationship between cost and cost 

drivers often includes nonlinear and discontinuous properties, which are difficult to 

define. Even when the same cost drivers and the same set of historical data are used, the 

appropriate choice of cost modeling approaches can significantly improve the estimating 

accuracy. Finding a feasible and appropriate approach to improve the estimating accuracy 

is another main task of cost estimation. 

In summary, the motivations of this study are addressed as: 

 The cost estimating model would be continuously and concurrently applicable for 

design use, which could help designers achieve good trade-off decisions. It can 

provide designers with a “what if” capability to easily test the impact of design 

alternatives on complex product costs. 

 The appropriate cost model provides designers with accurate cost. Accuracy is the 

basic need of a cost model. To improve the estimating accuracy for a complex 

product, it is necessary to: 
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o Fully employ all available significant cost drivers as possible; and 

o Choose the feasible and appropriate cost estimating approach. 

 

1.3  Objectives 

The main research issue is how to provide higher predictive accuracy of cost 

estimation for directing designers at the early design phases of complex products. 

It will address these questions: 

1. How are available significant cost drivers identified and selected? 

2. Is an approach based on support vector regression (SVR) applicable in cost 

estimation? Is it better than other traditional cost estimating approaches such 

as parametric method, neural networks, and case-based reasoning? 

3. Can the nonparametric approach based on support vector regression be 

combined with parametric approaches to improve cost estimates? 

4. Can a cost estimating model based on support vector regression be used to 

provide a guide for designer to realize the impact of design decisions on costs? 

Given these research questions, the primary objective of this research is to provide 

new methodologies to obtain higher predictive accuracy of cost estimation and guide 

designers at the early design phases of complex products. It can be broken down into sub-

objectives that include: 

 Presenting and summarizing current cost estimating approaches and model 

techniques; 

 Proposing two new methodologies, Causal-Associated (CA) approach and 

Tabu-Stepwise selection approach, to identify cost drivers and then select the 

most significant cost drivers by eliminating the irrelevant and redundant cost 

drivers using Tabu-Stepwise selection approach; 

 Exploring a new technique Tabu-SVR, a nonparametric approach based on 

support vector regression (SVR) combining with a tabu search algorithm, 

which is applied in cost estimating model for the higher predictive accuracy 

during the early design phases of complex products; this objective involves: 
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– Choosing an appropriate kernel function and tuning parameters for support 

vector regression to accurately estimate cost, 

– Summarizing the common basic cost characteristics to produce test cases 

for experiments, 

– Conducting experiments to compare different kinds of approaches under 

the different scenarios: parametric estimating approach; neural network 

approach; case-based reasoning approach and the approaches based on 

support vector regression, 

 Investigating three semiparametric algorithms based on SVR for cost 

estimation and comparing them with pure parametric method and pure 

nonparametric approach based on SVR; 

 Introducing two existing methods to conduct a sensitivity analysis based on 

the nonparametric approach based on SVR for directing designers. 

 

1.4 Scope 

This research will focus on cost estimation for complex products at the early design 

phases. The methodology proposed in this study is applicable to most products 

throughout the phases of the entire life cycle. But for complex products at the early 

design phases, the methodology is especially useful when the cost structure is not clear or 

when relationships between costs and cost drivers are unknown and include nonlinear 

properties. This cost modeling methodology will result in higher accuracy of cost 

estimation and help designers conduct cost tradeoff studies at the time of concurrent 

design. 

Most examples and existing cost models in this study come from the area of 

aerospace cost estimation. The methodology for cost estimation in the area of aerospace 

can undoubtedly be used in broader domains such as automobile, semiconductor, etc.  
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1.5  Organization  

This dissertation is organized into eight chapters. Chapter 1 introduces motivations, 

objectives and scope of this study. Chapter 2 first presents a generic cost estimation 

model. Based on this generic framework and classification of cost modeling techniques, it 

reviews the existing methods about identification of cost drivers and different kinds of 

cost modeling techniques. Then Chapter 2 gives the reviews of tabu search and support 

vector regression to support the next chapters. In Chapter 3, the framework of this study 

is first presented and the research methodology for the whole study is briefly introduced. 

Chapter 4 proposes the Causal-Associated method for identifying cost drivers and the 

Tabu-Stepwise selection technique for selecting cost drivers. A case study of an AC 

motor is presented to show the feasibility and benefits of proposed methods. In Chapter 5, 

Tabu-SVR, the nonparametric cost estimating approach based on SVR is then given. 

Based on summarized basic common cost characteristics, and the Flight Optimization 

Systems (FLOPS) cost module (engine part) [4-6], the test cases (data sets) are produced. 

Choosing the appropriate kernel and tuning corresponding parameters via a tabu search 

algorithm are studied. Comparison between SVR and other three conventional 

approaches is presented. Chapter 6 introduces three semiparametric algorithms based on 

SVR under different type and amount of known information for cost estimation. After 

that, two methods of sensitivity analysis based on SVR are introduced in Chapter 7.  

Finally the dissertation is concluded in Chapter 8.  The direction of future research is also 

presented in this chapter.  
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Chapter 2 Literature Review 

2.1  Generic Cost Estimation Model 

A generic cost estimation model can be written as (2-1):  

 );( xfC   (2-1) 

where C is the desired cost. 

The first variable, x, is a vector of real numbers with dimension d, dRx . It can be 

written as },,,,{ 321 dxxxxx  . Each xi ( di 1 ) is a cost driver which is assumed to 

be related to and influence the cost (C). The set of cost drivers should include all of the 

inputs that significantly impact the cost (C). 

he second variable  is a vector of parameters. For different models which use 

different estimating strategies and/or approaches, has different meanings. It often 

depends on the form of );( f and the nature of input space. For example, in a linear 

model, the parameters reflect the model structure and the nature of historical data. The 

parameters are more fundamental to the model than the input variable set.  

 The function, );( f , expresses the relationship between x,  and C. It includes two 

aspects: a structural relationship and a functional relationship.  

In the cost estimating area, the structural relationship is often called the cost 

breakdown structure (CBS). It can help a designer understand the detail cost information 

associated with the product. Additionally, it can simplify the problem. Generally, when 

and how );( f  is decomposed relies on knowledge about the product. For example, 

);( f  can be broken down according to product structure and/or the phases of the 

product life cycle. 

In Figure 2-1, cost (C) is broken down into three components: C1, C2, and C3. Their 

relationships can also be expressed as Equations (2-2). For instance, the acquisition cost 

of engines (C) in an aircraft is composed of three components: 1) the cost of research, 

development, test and evaluation (RDT&E) (C1); 2) the cost of production (C2); and 3) 

the other cost (C3) such as administration, collaboration, etc. 
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C1 is composed of C11, C12 and C13. In the first component of engines cost, C11 is the 

cost of research, C12 is the cost of development, and C13 is the cost of test and evaluation. 

 

C f(x

C1 f1(x C2 f2(x C3 f3(x

C11 f11(x

C12 f12(x

C13 f13(x

C21 f21(x

C22 f22(x

 

Figure 2-1 An Example of Cost Breakdown Structure (CBS) 

C2 is made of C21 and C22. For the engines in an aircraft, the cost of production can be 

the sum of direct production cost (C21) and indirect production cost (C22). 
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 (2-2) 

 

The input space or parameter space of subcomponents is a subset of the input space or 

parameter space of the product. In the above example, the input space of C13 is a subset 

of input space of C. 

A functional relationship );( f  is a mapping relation between the input space and the 

output (C) (see Figure 2-2). It is generally derived from historical data, experience, and 

physical properties via statistical techniques, empirical studies, laws of physics, etc. It can 

be expressed by a cost estimating approach.  
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Cost 
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Figure 2-2 Generic Cost Function Relation f(x; ) 

There are many different cost estimating techniques identified in literatures. They can 

be organized into two broad classifications: 

 Based on functional relationship: 

1) Expert judgment (see Section 2.3.1); 

2) Parametric modeling (see Section 2.3.2); 

3) Neural network modeling (see Section 2.3.3); 

4) Case-based reasoning (see Section 2.3.4); 

 Based on type of inputs and structural relationship: 

1) Feature-based estimating (see Section 2.4.2); 

2) Activity-based costing (see Section 2.4.3); 

3) Process-based costing (see Section 2.4.4); 

4) Simulation (see Section 2.4.5). 

The functional relationships form the building blocks of a cost model, such as f12(x; 

), or f22(x; ) in Figure 2-1. If there is not enough knowledge to form a cost breakdown 

structure, the high level functional relationship f(x; would be investigated as a basic 

element. Functional relationships can be established by a few different cost modeling 

techniques: expert judgment, parametric method, neural network approach, and case-

based reasoning approach. These cost estimating techniques can be applied during the 

entire life cycle of a product (see Figure 2-3). 

With increased information and knowledge about a product, there are additional cost 

estimating techniques that can be utilized to take advantage of the additional information 

and knowledge. The cost estimating techniques, which are based on the type of inputs 

and the structural relationship, are often applied in the later phases of the product life 



 10 

cycle (see Figure 2-3). These techniques include feature-based estimating, activity-based 

costing, process-based costing, and simulation.  

In this research, after the Causal-Associated method and Tabu-Stepwise algorithm are 

presented to identify and select cost drivers, new cost estimating approaches based on 

SVR, including nonparametric and semiparametric, are proposed and studied. The 

nonparametric approach will be compared with other formalized conventional cost 

estimating models (parametric modeling, neural network modeling, and case-based 

reasoning). Finally, there are two methods presented to determine the impact of cost 

drivers on output (C) and provide designers with guidance for sensitivity analysis. 

 

N

E

E

D

Conceptual 

Design

Preliminary 

Design
Detail Design

Construction and/or 

Production

Feature-based 

Activity-based 

Process-based 

Simulation

Case-based reasoning

Neural Network

Parametric

Expert judgment 

Based on Functional Relationship

Based on Inputs and Structural 

Relationship

The Life Cycle of Product  

Figure 2-3 The Cost Estimating Techniques and the Life Cycle of a Product 

2.2  Identification and Selection of Input Variables (Cost Drivers)  

2.2.1  Input Variables (Cost Drivers) 

As indicated earlier, the input variables x1, x2, … , xd are called cost drivers and are 

assumed to significantly impact and/or relate to the final cost (C). Analyzing their effects 

on the final cost can help determine which design properties deserve the most attention 
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during design phases of a product. Cost drivers can be associated with or include such 

things as: recourses, design attributes, product features, product structures information, 

performance, reliability, maintainability, production processes, production plans, 

management information, general operations such as activities performed in the life cycle, 

etc. As a design evolves, more detail is known about the product and more detailed cost 

models can be constructed which can introduce more new cost drivers.  

Harwick [7] indicated that most cost drivers in space transportation economics can be 

grouped in different categories: management (design team, production team), technical 

(size, stages/structure, motors/rocket propulsion, electronics), cultural (parallel 

organizations, certification requirements, schedule), and market (new design, prototypes, 

production quantity, design repeat, year of technology, mechanic and electronic).  

Complexity, an important index in cost modeling, is a typical type of cost drivers. 

Bashir and Thomson [8] proposed five complexity measure criteria: intuition, sensitivity, 

consistency, generality, and simplicity. Harwick [7] categorized the economic properties 

in different areas: diseconomies and economies of scale (size), impact of schedule (rate of 

development or rate of production), production learning curve factor, impact of economic 

externalities at the system level. These complexity measure and economic properties are 

widely used in most cost models [9-13]. 

 

2.2.2  Identification and Selection of Cost Drivers 

The identification and selection of cost drivers is very important for the performance 

of a cost model. Appropriate and complete cost drivers are a prerequisite for accurate cost 

estimates.  

Early cost models only consider part of the available information (cost drivers) such 

as product performance and technical indicators. The result is that their degree of 

estimating accuracy is not high. In 1998, Marx, Mavris, et al. [14] stated that existing 

aircraft cost models were based only on product design variables. For improving 

accuracy and model fidelity, the cost model must represent the use of advanced materials 

and processes. The aircraft designers can thus determine life-cycle cost implications of 

production change. Prince [3] presented two reasons that NASA‟s management did not 
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believe the cost estimate: the cost models “do not reflect key engineering design 

parameters; and they do not reflect key management decisions”. Therefore, identification 

and selection of cost drivers is crucial to cost estimating. 

Most current models [15-17] first identify candidate cost drivers via many sources: 

personal and/or other experience, and published information. The final set of cost drivers 

is selected by expert survey and/or statistical analysis (see Figure 2-4). 

 

Real World 

Information and 

Data

Possible 

Cost Drivers
Cost Drivers

 Published Information; 

and/or Experience

Statistical Analysis;

and/or Survey

 

Figure 2-4 The Existing Methods to Identify and Select Cost Drivers 

The parametric estimating handbook [16] published by the Department of Defense 

presents a typical process for identifying possible cost drivers. First, using brainstorming 

techniques, several alternatives for potential cost drivers are identified. Several experts 

are then surveyed to obtain their feedback on the merits of each potential cost driver. 

Finally the best cost driver candidates are selected for further analysis.  

Seo, Park, et al. [15, 18] adopted another typical process to identify the cost drivers. 

First they formed a set of candidate product attributes based upon the literatures and the 

experience of experts. Second they grouped and reviewed these candidate cost drivers. 

Third, they refined these candidate drivers using first-order relationships based on the 

data. After bivariate correlations were computed, those cost drivers were selected if 

correlation tests to 95% statistical significance.  

 

2.3  Cost Estimating Approaches Based on Functional Relationship 

The following sections describe cost estimating approaches based on functional 

relationship. These approaches include expert judgment, parametric modeling, neural 

network modeling, and case-based reasoning. 
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2.3.1  Expert Judgment 

Although designers and decision-makers feel more comfortable with the use of 

algorithmic and formalized methods, expert judgment for cost estimate is one of most 

widely used approaches in the whole life cycle of a product. Hughes [19] indicated that 

Heemstra and Kusters [20] stated that over half of the production estimates are based on 

intuition while approximate 16% of the estimates employ a formalized estimation 

methodology.  

Expert judgment is based on the experience and knowledge of experts in the field. By 

nature, a cost estimate is a cost prediction of experts. Based on their experience and 

understanding of the complex product, experts achieve a cost estimate of the product 

under design. The apparent weakness of this method is that an estimate cannot be better 

than the experts‟ opinion. Additionally, the apparently subjective and unstructured nature 

of expert opinion makes it appear particularly vulnerable. 

The advantages and disadvantages of this technique are summarized [19, 21] as 

following: 

 Advantages: 

– Quick to produce, and easily incorporate knowledge of past experiences;  

– Requires little resource in terms of time and cost. 

 Disadvantages: 

– No better than the experts; 

– Subjective: different experts with the same starting information will 

provide different cost estimates, use of expert judgment is not consistent 

and an unstructured process; 

– Prone to bias: personal experience, political aims, resources, time pressure, 

memory recall; 

– Estimate reuse and modification is difficult; 

– Difficult to quantify and validate the estimates; 

– Estimate depends on level of experience. 

For expert judgment, perhaps the most formal and rigorous method for capturing 

expert opinion is the Delphi technique [22]. This method has been used as an effective 

way of achieving consensus. It can lower individual biases and improve the estimate. 
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This method will force the experts involved in the cost estimation to voice their opinions 

anonymously through an intermediary. After analyzing the opinion gathering in each 

round and then feeding back to participants in subsequence rounds, the estimating cost 

will converse on a consensus to be good estimator of the true cost. 

 

2.3.2  Parametric Modeling 

Parametric estimating [16] is an approach that employs historical cost data and 

statistical techniques to establish cost estimating relationships (CERs) between cost and 

cost drivers during design, production, operation and support, and retirement phase for 

predicting future cost. CERs are mathematical expressions or formulas that are used to 

estimate the cost of an item or activity as a function of one or more relevant cost drivers. 

Dean [23] gave a commonly used CER as (2-3):  

  
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 (2-3) 

where xi and xj are cost drivers, , i, and j are parameters, r <= s, and s <= d, d is the 

dimension of input space. 

The linear form of Equation (2-3) is as (2-4): 

   
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In this linear form (2-4) the coefficients , i, and j can be obtained via least 

squares regression. There are four steps to establish a CER [16, 23]: 

1) Selection of cost drivers (see Section 2.2);  

2) Appropriate structure of the formula; 

3) Computation of parameter  by the statistical technique, generally a multiple 

linear regression; 

4) Examination and validation of the estimates of the CERs.  

Currently, most formalized cost models are parametric models, which are mainly 

composed of a set of CERs and a structural relationship. Total system cost model are 

more complex than individual CERs because they incorporate the functional relationship 

and structural relationship which consist of “many equations, ground rules, assumptions, 
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logic, and variables that describe and define the particular situation being studied and 

estimated” [16]. 

In the area of aerospace and aircraft, most cost models are established based on 

parametric methods, such as the cost module of Flight Optimization Systems (FLOPS) 

[4-6], DAPCA-III[24], TRANSCOST Model [13], PRICE H [9, 11, 25, 26], SEER-H 

[10], NASA/Air Force Cost Model (NAFCOM) [12], Unmanned Space Vehicle Cost 

Model (USCM), and Small Satellite Cost Model (SSCM) [27, 28]. For example, the cost 

module of FLOPS adapted by Johnson [4, 5] is a typical life cycle cost model that is a 

parametric model. McCullers and NASA Langley Research Center [6] has continued to 

improve the module. The inputs to this module include four types of data: 

1) Cost calculation data (variables related to calculating cost that do not change 

as the optimization proceeds ); 

2) Mission performance data (design mach number; maximum dynamic pressure; 

cruise velocity; block fuel (fraction of aircraft fuel capacity; block time)); 

3) Cost technology parameters (cost technology parameters to account for the 

cost associated with advanced technologies); 

4) Configuration and data from other modules (weight; number of engines per 

aircraft; maximum thrust per engine; number of seats; total number of crew; 

maximum total fuel capacity; cargo weight; wing area). 

The outputs of the cost module are: airframe RDT&E cost; airframe production cost; 

engine RDT&E cost; engine production cost; manufacturing cost; manufacturing cost 

with spares; manufacturers profit; total acquisition cost (price); direct operating cost; 

indirect operating cost; total life cycle cost.  

Depending on pertinent CERs and inputs, costs are computed. For instance, when 

computing airframe production cost, the CERs of three components (wing, tail and body) 

are as follows:  

– WING: CWING = 1730*WTS(1)
0.766

Q218*FMWING*FMCOMP  

– TAIL: CTAIL = 1820*(WTS(2) + WTS(3))
0.766

Q218*FMTAIL*FMCOMP 

– BODY: CBODY = 2060*WTS(4)
0.766 

Q218*FMBODY*FMCOMP 

where WTS(1), WTS(2), WTS(3), and WTS(4) are the weights of the related components. 

FMWING, FMCOMP, FMBODY, and FMTAIL are cost technology parameters 



 16 

representing complexity (their default value are 1). Q218 reflects the price index. 

 

2.3.3  Analogy Models (Cased-Based Reasoning (CBR))  

The analogical modeling method (case-based reasoning method) seeks an estimate 

solution based on the past cases. By analogy it identifies a similar product or component 

and adjusts its costs for differences between it and the target system or entity (see Figure 

2-5).  
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Figure 2-5 Case-Based Reasoning (CBR) [29] 

The analogous method tends to be good for new products or innovative designs. It 

attempts to evaluate the cost of a product from similar products. The method is similar to 

the cognitive reasoning process of an individual: “the recognition of the problem, the 

recall of similar experiences and their solutions, the choice and the adaptation of one of 

the solutions (source case) to the new problem (target case), the evaluation of the new 

situation and the learning of the solved problem” [29]. Based on the creation of a link 

between the source problem specifications and the target problem specifications, the 

analogical method transposes the solution of the source to the target and adapts the 

known new solution to the target problem (See Figure 2-5). 

The method can be thought of as a four step process. The first step is the description 

of problem (indexation). It includes structural description and contents description. This 
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step would focus on contents in a case, which are cost drivers in CBR. The second step 

implements similarity measures and retrieves similar cases from case base. Then through 

adaptation procedures, the solution is obtained in the third step. Finally, the fourth step 

determines whether the solved case needs to be put in the case base. Details of the 

process are given below. 

 

2.3.3.1  Description of Problem (Indexation) with Cost Drivers of CBR  

For the CBR method, a problem is solved by retrieving a previous case suitable for 

solving the new problem. Hence the structure and content of CBR‟s collection of cases is 

very important. It is necessary that the case searching and matching processes must be 

both effective and reasonably time efficient. Furthermore the new case is needed to 

integrate into the case base. Therefore, the description of problem in CBR including: 1) 

contents in a case, 2) an appropriate structure for describing case contents, and 3) the 

organization and index of cases for effective retrieval and reuse.  

From the analysis of the product design process and its decision making processes, 

Wenstink, ten Brinke, et al. [30] presented four product characteristics that should be 

considered for the committed product costs (the costs that are fixed during the product 

design process): geometry (shape, dimensions, accuracy, etc); material (material costs 

may occupy about 50% of the total product costs); production process(es); and 

production plans.  

 

2.3.3.2  Similarity Measures and Retrieved Process 

Starting with a problem description (sometimes partial), the similarity measures and 

retrieved process end when a best matching case has been acquired. The target 

description features are matched against the description features of cases in the case base 

and a measure of similarity is computed. The retrieved cases would be ranked according 

to their similarity to the target, and a best matching case would be found. There are two 

major case retrieval approaches [31]: 
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 The distance-based or computational approach calculates the distance between 

cases. The most similar case is determined by the evaluation of a similarity 

measure. 

 The indexing or representational approach searches the similar case by 

indexing structures which connect the cases. The similar case is coded into the 

structure of the case base itself.  

Note that the above two approaches might be combined. The first approach is most 

widely used. Commonly, CBR systems use the inverse of weighted normalized Euclidian 

distance (Equation 2-5) as the similarity measure.  

  SIM(X, Y) = 1 – DIST (X, Y) = 1 - 
i

iii yxdistw ),(22  (2-5) 

where X is the attribute vector of a source case and Y is the attribute vector of the target 

case, wi is normalized importance of i
th

 attribute. The normalized distance, dist(xi,yi), is 

defined as dist(xi,yi) = |xi-yi|/|maxi-mini|. Besides the above conventional approaches, 

Liao, Zhang, et al. [31] showed that combining the fuzzy set theory with the conventional 

CBR system greatly enhances measure‟s capability. Herrmann, Balasubramanian, et al. 

[32] proposed a special design similarity measure using the artificial neural networks 

(ANN) to help decision-makers.  

 

2.3.3.3  Adaptation Procedures to Get the Solution 

Once a matching case is retrieved, the adaptation process adjusts for prominent 

differences between the retrieved case and the target problem by applying formulas or 

rules to modify the solution of the retrieved case for those differences. Daengdej, Lukose, 

et al. [33] proposed a method of adapting the solution applying the statistical methods 

called closeness factor. As was the case used in the similarity measure, ANN is also used 

in the process of adaptation. To some extend, by adaptation, the CBR method can 

incorporate parametric modeling and ANN in determining similarity measures and 

adaptation procedures. Once the similar cases are selected, the final cost of the problem 

would depend on the available data of these cases. It is possible to use a parametric 

model on these similar case data or train ANN using them to compute the cost of the 

target. 
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2.3.3.4  Self-Learning 

One of the advantages of CBR is its powerful learning capacity. When the CBR 

method solves a new problem, it can retain the solution of new problem in the case 

database. As more problems are solved, the CBR method can be applied in a larger 

variety of situations and the estimates increase in accuracy. In short, newly solved 

problems can be learned by storing their specifications and solutions together as new 

cases in the case base. 

 

Rehman and Guenov [34] proposed a methodology to estimate the manufacturing 

cost at the design phases, which incorporates the use of case-based and rule-based 

reasoning. They employed case-based reasoning to retrieve a similar product model 

completely described, and applied rules to derive the process plan for cost estimate. In a 

series of papers written by ten Brinke, Lutters, Weustink, et al. [30, 35, 36], a generic 

framework for cost estimating was developed as the basis for the control of the 

production costs. The framework takes design, process planning and production planning 

aspects into account. The authors also proposed a variant-based (case-based) cost 

estimation method based on the product information structure related to the 

manufacturing engineering reference model. Based upon the CAD information exported 

from the CAD system in STEP format, El-Mehalawi [37] developed a cost estimation 

model for Net-Shape Manufacturing (NSM) using a case-based reasoning approach. 

For software cost estimation, much research has been done on the use of CBR [38-41]. 

Shepperd and Schofield [39] presented an approach to estimating software project effort 

based upon the use of analogies (case-based reasoning). After characterizing projects in 

terms of these projects‟ features, such as the number of interfaces, the development 

method, and the size of the functional requirements document, the case base for the 

source projects was established. One of the most similar projects was then selected and 

adjusted to predict the project effort.  
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2.3.4  Neural Networks  

Artificial neural networks (NNs) simulate biological neurons using computers [42] to 

model a system with an unknown input-output relation. Artificial NNs are trained 

through modifying the parameters to minimize a loss function via the stochastic gradient 

decent method. For example, a back-propagation neural network is a common neural 

network architecture, which is composed of an input layer, an output layer, and some 

hidden layers between the input and output layers. Each layer has a number of processing 

unit (neuron). A neuron simply computes the sum of their weighted inputs, subtracts its 

threshold from the sum, and passes the results through its transfer function. This can be 

expressed mathematically as Equation (2-6): 

  



n

j

ijijii sxwfy
1

)(  (2-6) 

where yi represents the output of neuron, wij represents the weight associated with the 

input j, si represents the threshold value of the neuron, and fi represents the transfer 

function.  

Artificial Neural Networks (NNs) are purely data driven models. Funahashi [43] and 

Hornik, Stinchcombe, et al. [44] have proven that multilayer feedforward networks, with 

as few as one hidden layer, are indeed capable of universal approximation. However, they 

did not address the issue of how many neurons are needed to attain a given degree of 

approximation. 

Using a back-propagation neural network Zhang and Fuh [45] proposed a feature-

based prototype system to estimate the costs of packaging products only based on design 

information. However Zhang and Fuh indicated, determining the number of hidden layers 

and the number of neurons in each hidden layer is a trial and error process, which can be 

time consuming. Neural network training requires experience and relies on accurate 

historical cost data. Using artificial neural networks, Seo, Park, et al. [15, 18] proposed an 

approximate method --- learning life cycle cost (LCC) for providing preliminary life 

cycle cost. With regard to accuracy and stability, the model resulted in better prediction 

than the statistical regression model did. 

Based on pilot cost data from a manufacturing company and artificially created 

simulative data, Bode [46, 47] compared cost estimation performance between 
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conventional methods, i.e. linear and nonlinear parametric regression and neural 

networks. He indicated that neural networks achieve lower deviations in their cost 

estimations. Bode concluded that neural networks can detect hidden relationships among 

training data and they seem most appropriate for cost estimation in the conceptual phase 

of routine design and configuration design tasks. However, they are inappropriate for cost 

estimation of radical innovations. Smith and Mason [48] examined the performance, 

stability and ease of cost modeling using regression versus neural networks. Their paper 

indicates that neural networks have advantages when dealing with data where there is 

little apriori knowledge of CER function form for regression. Furthermore, the artificial 

neural network is a "black box" CER and does not provide any explanation for users. 

 

2.4  Cost Estimating Approaches Based on Inputs and Structural 

Relationship 

In Section 2.3, the approaches based on functional relationship were classified into: 

expert judgment, parametric method, case-based reasoning approach, and neural network 

approach. They are building blocks for the approaches based on inputs and structural 

relationship which are discussed in this section. The performance of these cost estimating 

approaches presented later depends on the identification of inputs, structure and the 

approaches based on functional relationship. This section focuses on cost breakdown 

structure (CBS) and four approaches based on inputs and structural relationship: feature-

based modeling, process-based approach, activity-based costing estimating and 

simulation. 

 

2.4.1  Cost Breakdown Structure (CBS) 

Breaking a complex problem into a set of subproblems is a common strategy for 

solving a complex and/or new problem. It can make the complex problem easy to 

understand and solve. With enough information, especially in the later design phases, 

employing a reasonable cost breakdown structure (CBS) can simplify the degree of 

problem and help designers and decision-makers trace the cost detail information. A CBS 
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partitions a complex product into smaller components to improve the accuracy of cost 

estimates and provides a mechanism for collecting and organizing actual costs, cost 

control for design and decision making [1].  

The cost breakdown structure (CBS) constitutes a functional breakdown of costs. For 

the life cycle cost of a product, the entire life cycle could be considered and identified in 

a CBS. This includes research and development cost, production and construction cost, 

operation and system support cost, and retirement and disposal cost. In life cycle cost 

modeling, the CBS includes all costs related to customer, contractor, supplier, and 

consumer (user) activities over entire life cycle [1].  

The Life Cycle Cost ( LCC ) module of the FLOPS [4-6] is a typical parametric 

model (see Section 2.3.2) with a functional breakdown structure. The module is 

composed of elements to calculate RDT&E (Research, Development, Testing and 

Evaluation) cost production cost, DOC (Direct operation cost), IOC (Indirect operating 

cost) (see Figure 2-6). 

The cost breakdown structure of a computer model for estimating Development and 

Procurement Costs of Airframe (DAPCA-III)[24] is showed in Figure 2-7. It is composed 

of two components – the development and the production costs. The development cost is 

composed of total engineering for flight-test aircraft, total tooling for flight-test aircraft, 

nonrecurring manufacturing labor, recurring manufacturing labor for flight-test, quality 

control, nonrecurring manufacturing materials, recurring manufacturing materials for 

flight-test, and flight test. The production cost includes total engineering for production 

aircraft, total tooling for production aircraft, recurring manufacturing labor for production 

aircraft, recurring manufacturing materials for production aircraft, and quality control for 

production aircraft. 
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Figure 2-6 The Cost Breakdown Structure of the Cost Module in FLOPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 The Cost Breakdown Structure of DAPCA – III  
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2.4.2  Feature-Based Modeling 

Shah [49] states that “features are elements used in generating, analyzing, or 

evaluating designs.” From the manufacturing view, they represent shapes and 

technological attributes associated manufacturing operations and tools. Because there 

exists correlations between design features and cost, feature-based cost modeling uses 

these features as cost drivers. Feng, Kusiak, et al. [50] focused on the cost evaluation of 

machining form features. They indicated that the machining cost of a part depends not 

only on the type of form features, but also on the relationship among the features which 

has a significant impact on the machining cost imposed by changeovers and setups. Due 

to the type of information required, these models could only be used in the detail design 

stage. Jung [51] classified the features into four major categories and then further 

classified them based on machining operation. According to these detailed features, Jung 

developed a cost estimating system at the early design stage. Though he indicated the 

system could be applied at the early design stage, detailed design information is not 

typically available at the stage. 

With the growth of CAD/CAM technology and 3D modeling, the feature-based 

approach has become very popular in part design. In their paper, Ouyang and Lin [52] 

stated that manufacturing cost was determined by shape complexity, product precision 

and tooling process. They estimated the manufacturing cost of a design according to the 

shapes and precision of its features through the integration with commercial CAD. But 

Ou-Yang and Lin [52] simplified machining processes. They did not consider the tool, 

the cutting speed, and the feed rate, which would impact the surface roughness.  

In the feature-based approach, as in the parametric and analogy estimation approaches, 

the neural network approach could be combined with features-based modeling for cost 

estimation. Using a back-propagation neural network Zhang and Fub [45] proposed a 

feature-based cost prototype system to estimate the cost of packaging products.  

Because the cost drivers of feature-based approach are design features. It makes it 

easy and convenient to let designer know how design features influence committed cost 

directly. However, there are limitations for feature-based cost modeling: 

1) There is no widely accepted consensus on the definition of features. Even 

different CAD/CAM systems have different definition for a same feature; 
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2) The relation between features and costs is not easily defined; 

3) Generally, it can be applied in the preliminary phase or later. The reason is 

that the feature-based approach needs more knowledge about product 

structure and features.  

 

2.4.3  Process-Based Approach  

The process-based approach is mainly employed in cost estimation for manufacturing 

a product. Haffner [53] stated that there exists an inherent relation between product 

design, processes, and product costs. The process-based approach maps material types, 

process technologies, design changes, and productions conditions to the part cost by 

establishing a relation between product design, material choice, process selection, and 

processing costs. The cost equations are established based on the physics of the 

underlying production process. The basic laws of physics for a variety of processes often 

provide the scaling between part design and the processing time.  

The fundamental tenet of process-based cost modeling is a first order cost model [53]. 

It was observed that many manufacturing operations (humans and machines) can be 

represented as dynamic systems with first order velocity response to a step input. This 

behavior is amenable to a physical model by the following equation (2-7): 

  )1( /

0

tevv   (2-7) 

where v0 is the steady-state process velocity,  is the dynamic time constant, and t is the 

process time. 

From the above equation, the process time can be obtained and the cost can be 

calculated by using the following cost form (2-8) for the corresponding process [54]: 

 Cost = (Manufacturing Process Step Time) * (Manufacturing Time, Resource  

 Cost Relationship) (2-8) 

COSTADE [54, 55] is a process-based cost model which addresses fabrication, 

design and analysis costs. The fabrication costs depend on the time for the process step 

when the resources are consumed. Their cost equations were built through selection of 

critical design parameters (surface area, length, width, quantity, etc.), and a cost equation 

functional form, which best represent the physics of the problem for a range. This 
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physical insight can be used to define the critical design variables and their functional 

relationship to cost.  

The process-based approach can predict the cost for a complex product, and new 

product which adopts new technology without directly applicable production data. The 

major disadvantage of process-based approach is that its development is often time 

consuming and expensive. In addition, it requires some engineering knowledge of the 

processes and the evaluated parts. Therefore, the process-based approach can often be 

only applied at the detailed design phase, at which there is a detail manufacturing plan for 

the product. 

 

2.4.4  Activity-Based Costing (ABC) Estimating 

In activity-based cost estimating, all cost drivers are associated with the activities 

required to produce the product. The design, manufacturing, usage and recycle /disposal 

for a product can be divided into all kinds of defined activities that are mutually exclusive. 

Based on historical, observed, or estimated data, the cost per unit of the activity‟s output 

is calculated. The estimated cost for a new product can be obtained according to the 

product‟s consumption of these activities. 

Park and Kim [56] presented a set of activity-based cost drivers in their economic 

evaluation model for advanced manufacturing systems (see Table 2-1): 

Table 2-1 Some Cost Drivers of Activity-based Estimating Approach [56] 

Activity Type Details 

Costs as Needed Direct material cost; Direct labor cost. 

Activity Costs Processing activity cost (utilities, equipment depreciation, 

insurance and property taxes, maintenance and repair, and floor 

space cost); Tooling activity cost; Quality control activity costs; 

Setup activity cost; Material handling activity cost; Inventory 

handling activity cost; Purchase order activity cost; Software-

Related activity cost. 

Nonactivity Costs Unused activity costs, waiting time cost, inventory holding cost, 

and idle time cost. 
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Ong [57] developed an activity-based cost estimating system to help designers 

estimate the manufacturing cost of a printed circuit board assembly at the early concept 

stage of design. The author declares the model could be employed at the conceptual 

design phase, however the data needed would most probably available at and after the 

preliminary design stage.  

 Velcu, Ben-Arieh and Qian [58, 59] indicated that the advantages of ABC include the 

following: ABC is a relatively accurate method to estimate costs; it can track details of 

indirect cost-to-cost objectives, provide product cost information, and monitor cost 

behavior. However, they indicated that the shortcomings of ABC include the following: 

the ABC method requires greater effort and expense in obtaining the information required 

for the analysis; it is time-consuming analytical processes; they cannot always clearly 

identify the causal relationship between activities and products; ABC cannot self-learn 

like CBS and NNs; any change in business or manufacturing processes results in the 

reconstruction of the ABC model. 

Based on the aforementioned properties, the ABC method can be generally employed 

at the detailed design phase when there is enough accounting information for the analysis. 

But it is not good for all products and all phases in the entire lifecycle, especially during 

the early design phases. 

 

2.4.5  Simulation  

Simulation is a powerful visualization method used to analyze system performance 

and thus improve the qualitative understanding of how cost is incurred in products. 

Moreover, simulation can model the stochastic nature inherent in a system. It thus 

provides a good tool for the analysis in nondeterministic situations, and more specifically 

for the study of risk and uncertainty in cost estimating area. Combining with ABC, the 

simulation-based model was proposed by Ozbayrak, Akgun, et al. [60] to estimate the 

product costs in an advanced manufacturing organization. Steele and Cope [61] proposed 

a methodology to estimate operational costs of reusable launch vehicle, which uses 

activity-based simulation as the platform to analyze the operations. Asiedu, Besant, et al. 
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[62] proposed a simulation modeling approach via kernel estimation techniques and thus 

applied this approach to a bidding problem. 

Simulations can be used to study the dynamics of cost behavior. Forrester pioneered 

the work on systems dynamics and referred to his research as a simulation methodology 

[63-66]. In his paper, Forrester [66] said “system dynamics uses concepts drawn from the 

field of feedback control to organize available information into computer simulation 

models.” Sterman [67] introduce the thinking tools of system dynamics which are mainly 

composed of causal loop diagrams and stock and flows. A causal loop diagram, the basic 

building block of system dynamics, denotes the cause and effect relationship (using an 

„arrow‟) between two variables via a causal linkage. Stocks and flows and feedback are 

the two cornerstones of system dynamics. Stocks are accumulations due to differences in 

the inflow and outflow rates of a process. Stocks characterize the state of the system and 

provide information to base decisions or actions upon.  

Abdel-Hamid and Madnick [68, 69] developed a dynamics model that estimates the 

time distribution of effort, schedule and residual defect rates using inputs (cost drivers) 

such as staffing rates, experience-mix, training rates, personnel turnover, and defect 

introduction rates for the software development. This model can continually reestimate 

effort and cost and compare targets against actual expenditure at each major milestone. It 

also incorporates managerial decision-making dynamics into continuous estimation 

models. Abdel-Hamid and Madnick [68, 69] stated that modeling technique could not 

only increase the fidelity of such models, but could also enable management to search for 

and test alternative interventions on a continuous basis. Monga, Damle and Scott [70-72] 

used system dynamics model to study the cost of the integration, the development, the 

operations, maintenance and disposal of new technologies for ship systems. In these 

system dynamics models, the trend and sensitivity of costs associated with some input 

variables are easily study. However, formulating the dynamics model is not an easy task. 

It needs strong expert knowledge and data in the process of establishing the model. 

Therefore, simulation can be employed with enough information. In general, it does a 

good job to estimating cost and analyzing the cost behavior and distribution at the detail 

phase. However, as ABC and process-based cost modeling, it is not good for estimating 

costs during the early design phases. 
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2.5  Supporting Methodologies 

This section provides literatures review about tabu search and support vector 

regression (SVR). They are supporting methodologies for this study. 

 

2.5.1  Tabu Search 

Tabu search, initially proposed by Glover [73, 74], is a mathematical optimization 

method, which has been widely used for combinatorial optimization. Tabu search is a 

meta heuristic that uses a memory function to avoid being trapped at a local minimum. 

To explore regions left unexplored by the local search procedure and then escape local 

optimality, its short term memory structures prevent search cycles. To perform an 

exhaustive search in the entire space by generating solutions that are not seen before or to 

analyze in depth a subset of promising solutions, its long term memory helps implement 

diversification and intensification mechanisms.  

 

2.5.2  Support Vector Regression (SVR)  

The foundations of Support Vector Machines (SVM) have been developed by Vapnik 

[75]. The SVM can be applied to both classification and regression problems. The SVM 

for regression is called Support Vector Regression (SVR) and applied in regression 

analysis. SVM has its solid mathematical foundation based on statistical learning theory 

(Vapnik-Chervonenkis (VC) theory) [75-81]. A major goal of VC theory is to 

characterize the generalization error instead of the error on specific data sets, which 

enable SVM to generalize well to unseen data. Unlike conventional regression techniques, 

the SVR attempts to minimize the upper bound on the generalization error based on the 

principle of structural risk minimization rather than minimizing the training error. This 

approach is expected to perform better than the empirical risk minimization principle 

employed in the conventional approaches. Moreover, the SVR is a convex optimization, 

which ensures that the local minimization is the unique minimization. Support vector 

machine has three key features: 

1) Better generalization capability; 

http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Local_optimality
http://en.wikipedia.org/wiki/Local_optimality
http://en.wikipedia.org/wiki/Local_optimality
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2) Global optimal solution using optimization theory; 

3) Kernel functions for nonlinearity. 

The following section introduces the structural risk minimization used by SVM 

compared to empirical risk minimization principle employed in the conventional 

approaches. Then Section 2.5.2.2 give a brief description of SVR. A more detailed 

description of SVR refers to [75-81]. The attractive features and limitation of SVR are 

summarized in Section 2.5.2.3. 

 

2.5.2.1  Structure Risk Minimization versus Empirical Risk Minimization  

The generalization error (structure risk) is a key concept in the SVM [75-81]. The 

goal is to estimate unknown real-valued function in the relationship (2-9): 

  )(xfy   (2-9) 

with a training data set   l

iii yx
1

,


. The training data are independent, identically 

distributed (i.i.d) samples generated according to some (unknown) joint probability 

density function p(x,y). An estimation procedure selects the best model f(x) from a set of 

possible models by minimizing (unknown) prediction risk, generalization risk (or error) 

(2-10): 
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The loss function can be defined as (2-11): 
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The following error defined on the training data set is usually called the training error 

or empirical risk (2-12): 
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Unfortunately, p(x,y) is unknown so that R[f] is difficult to formulate. However, 

Vapnik gave an upper bound (Equation 2-13) to this generalization error.  
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Vapnik showed that for i.i.d. data and l>h, the bound holds with probability 1-, 

where the second term is confidence term which depends on the VC dimension h that 
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characterizes the capacity of the set of functions and it is a combinatorial measure for the 

model complexity. 

For a linear function, it can be expressed as (2-14): 

  bxwxf  ,)(  (2-14) 

In the support vector regression, the risk function [80] of (2-14) is as (2-15): 
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the first term measures the model complexity, the second term measures the training error 

or empirical risk. The goal is to minimize the generalization error which can be achieved 

by obtaining a small training error 

empR  while keeping the capacity of the set of functions 

(model complexity) as small as possible. 

2.5.2.2  Support Vector Regression 

Given a training data set   l
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,
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, where dRx  is the input space. The SVR 

developed by Vapnik [75] relies on estimating a linear regression function (Equation 2-

14): 
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where w and b are the slope and offset of the regression line. As above mentioned, the 

regression function is calculated by minimizing the objective function (it is also called 

the primal objective function) and it is subjected to the corresponding constraints (2-16): 
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where wwT

2

1
 is the term characterizing the model complexity (smoothness of f(x)) and 
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*  is the loss function determining how the distance between f(xi) and the 

target values yi should be penalized. The slack variables iandi
*
  are introduced for the 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TF4-4F7S11D-1&_mathId=mml2&_acct=C000025338&_version=1&_userid=513551&md5=e8956653f54138a68b9642d203f0ce97
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situation that the target value exceeds more than , see Figure 2-16. The constant C>0 

determines the trade-off between the flatness of f (model complexity) and the amount to 

which deviations larger than  are tolerated. The commonly used -insensitive loss 

function was introduced by Vapnik. This -insensitive loss function || is defined by (2-

17): 
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In fact, this particular constraint defines a tube with radius around the hypothetical 

regression function in such a way that if a data point is positioned in this tube the loss 

function equals 0, while if a data point lies outside the tube, the loss is proportional to the 

magnitude of the Euclidean difference between the data point and the radius of the tube. 

The points lying outside the tube are named support vectors (SVs), because they will be 

used to estimate regression function. This implies that all other data points are in fact not 

important for inclusion into the model and can be removed after the SVR model has been 

constructed. Hence, usually (much) less training points do constitute the regression model.  

By introducing a dual set of variables (Lagrange multipliers), the Lagrange function 

is defined as Equation (2-18). 
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Karush-Kuhn-Tucker (KKT) theorem states, a solution to the primal problem must 

satisfy the following (2-19): 
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http://www.math.lsu.edu/~stoltz/Courses/05M4025-1/LectureNotes/LagrangeKKT/Old/KKT.pdf
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Substitute all into L yields the dual problem (2-20): 
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To solve a nonlinear regression or functional approximation problem, the SVR 

constructs a linear regression hyper plane in a high-dimensional feature space, which is 

nonlinear in the original input space via the mapping function: FxXx  )(:  . 

However, it is suffices to know )(),(),( ii xxxxk   rather than  for support vector 

regression. K(x, xi) is called the kernel function. It has been shown that a suitable kernel 

function makes it possible to map a non-linear input space to a high-dimensional feature 

space where linear regression can be carried out. Several kernel functions have been 

proposed in literatures, but the particular choice of a kernel to map the non-linear input 

space into a linear feature space depends highly on the nature of the data representing the 

problem at hand. The four widely used kernel functions are shown below: 

 Linear (2-21):   

 ii xxxxK ,),(   (2-21) 

 Polynomial (2-22):  
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 Radial basis function (2-23):  

  2
exp),( ii xxxxK    (2-23) 

 Hyperbolic tangent kernel (2-24): 

 ),tanh(),( ii xxxxK    (2-24) 
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Theoretically, the kernel function must satisfy Mercer theorem. (However, the last 

kernel function --- tangent kernel does not satisfy the Mercer theorem but has been 

successfully used in practice (for details see [76, 77])). 

After mapping using the kernel, the regression formulas are as follows: 

Linear (2-25):  
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Nonlinear (2-26): 
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General (2-27): 
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2.5.2.3  The Attractive Features and Limitations of SVR 

Support vector regression (SVR) has many attractive features: 

 It has the ability to model non-linear relationships; 

 It has the ability to select only the necessary data points (support vector) to 

solve the regression function, which results in a sparse solution; 

 The regression function is related to a quadratic problem (QP) which has a 

unique global solution in general; 

 VC theory characterizes properties the generalization error which enable SVR 

to generalize well to unseen data; 

 The SVR technique can be used when there are few samples than variables, 

which is also called small n large p problems [82]. 

But, SVR has some limitations: 

 SVR raises a quadratic optimization problem of the same size as the training 

data set. There is a computationally demanding optimization problem.  

 Currently, there is not a structure method to choose kernel function. 
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 There are a number of free parameters that need to be defined by the user. 

Since the generalization performance of the SVR models depends on a proper 

setting of these parameters, this is still a hard problem for applying SVR.  

The problem of optimal parameter selection is further complicated by the fact that the 

SVR model complexity and its generalization performance depends on all of these 

parameters together (interaction of parameters). This means that a separate optimization 

of each parameter is not sufficient to find the optimal regression model. For this reason, 

usually a very time-consuming grid search optimization method is invoked to find the 

optimal SVR parameter settings, or some formulas based on the empirical study [83] are 

used to determine the appropriate parameters set. Chapter 5 will further discuss the 

choice of kernel functions and parameters. 

 

2.6  Summary 

First this chapter presented a generic cost model. It consists of three components: 

output (cost C), the relationship f(x;), and an input space x. Based on the generic model, 

the classification of cost estimating approaches is given as: approaches based on 

functional relationship and approaches based on inputs and structural relationship. 

The cost drivers are fundamental to a cost model. The cost drivers are factors which 

have significant effect on final costs. Section 2.2.1 gave some cost drives published in 

literatures. Two traditional methods of identifying cost drivers in the literatures were then 

introduced. 

This chapter has then presented an overview of a variety of estimation techniques. 

This discussion was organized into the approaches based on functional relationships and 

based on inputs and structural relationships.  

Based on functional relationship, the approaches were classified into: expert 

judgment, parametric method, neural network approach and case-based reasoning 

approach. The significant drawback of expert judgment is its subjective nature, which 

makes the designer and decision-maker uncomfortable in using it. Parametric method is 

the most widely used formalized modeling method for cost estimating. But apriori 

knowledge of the functional form is needed. Also it is very difficult to deal with 
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nonlinearity. Case-based reasoning method is a good estimating approach which 

overcomes some drawbacks of parametric method. It does not need functional forms 

apriori and can deal with nonlinearity. However, it is hard to define a similarity measure 

and adjusting methods for case-based reasoning. It thus cannot guarantee the accuracy of 

estimating cost. Artificial neural network approach is a much more accurate technique. 

Artificial NNs are able to capture the nonlinearities, discontinuities, interactions among 

the cost drivers, and have capability of learning and adaptivity. But neural network 

approach has some weakness: it is a “black box”; it lacks explanation capabilities and 

does not provide an environment for directing user; producing near optimal neural 

network models is still a challenge task; and there are over fitting problems when there 

are lots of historical data. 

The approaches based on the inputs and structural relationship (feature-based cost 

approach, activity-based cost estimating approach, process-based cost approach and 

simulation) are often applied in the preliminary or later phase and respectively do a good 

job under a certain situation and scenario. In the different situation and scenarios, 

different approaches have respective advantages and disadvantages. But at the early 

design stage these four methods may not work because the information about the 

structure is usually incomplete or uncertain.  

The approaches based on functional relationship are building blocks for the 

approaches based on structural relationship and inputs. The performance of these four 

approaches based on inputs and structural relationship depends on the identification of 

inputs, structure and the approaches based on functional relationship. If there is not a 

good approach based on functional relationship, there would be no accurate estimation. 

The approach based on functional relationship is corner stones for cost estimation. 

Cost estimation has always been difficult at the early stage of product development 

when only a few conceptual attributes of the product in question are known or for 

complex product. The relationship between these attributes and cost is very hard to obtain. 

And the discontinuity and nonlinearity often may exist in these relationships. From the 

above summary, the neural network approach has advantages over other estimating 

approaches when there is little apriori knowledge and nonlinearity and/or discontinuity to 

the CER and multicollinearity existing among the cost drivers. However the neural 
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network approach has over fitting problems. Also there is not a structure way to produce 

near optimal neural network architecture, training methods and stopping criteria. 

Moreover, it is a "black box" CER and does not provide any explanation for users.  

Section 2.5 introduces the two methods, tabu search and support vector regression 

based on statistical learning theory. Tabu search is a memory-based stochastic 

optimization strategy. The SVR maps the data into a high-dimensional feature space via a 

kernel function and then performs linear regression in this space. Therefore SVR could 

model nonlinear relationships and have better generalization capability with a global 

solution than conventional methods. SVR should provide a better performance comparing 

to these conventional cost modeling approaches. 

Therefore, this study will focus on a new way to identifying and selecting cost drivers 

and new cost estimating approaches based on SVR, which can be applied in the entire life 

cycle, especially at the early design phases. This approach will overcome the “black box” 

problem to be able to provide guide to designers. 
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Chapter 3 Research Methodology Framework 

3.1  Introduction 

A cost estimating model must be accurate and capable of operating on data of the 

detail typically available in the related phase, to support cost trade-off studies for 

designers and decision makers. The main purpose of this research is to provide new 

methodologies to obtain higher predictive accuracy of cost estimation and guide 

designers at the early design phases of complex products. However, accurately estimating 

cost is not an easy task at the early stage of complex product development when only a 

few conceptual attributes of the product are known. The relationship between these 

attributes and cost is very hard to obtain. Furthermore, discontinuity and nonlinearity 

often exist between them.  

New methodologies for the generic cost estimation model (presented in Section 2.1) 

are discussed and studied in this study. First these methodologies can be used to identify 

the cost drivers from causal and associated aspect and then select the significant cost 

drivers. Second they will estimate the cost based on support vector regression (SVR) 

using pure nonparametric approach and semiparametric approach when existing 

nonlinear and discontinuous properties during the early design phases. After that, they 

will direct designer and decision-maker based on sensitivity analysis supported by SVR. 

 

3.2  Research Methodology Framework 

The cost drivers, the relationship f(x; ), and the desired cost estimate are three basic 

elements for the generic cost estimation model. The appropriate cost driver set and 

appropriate relationship influence the final desired cost estimate. The identification and 

selection of cost drivers is important in a cost estimating model. Under certain situation, 

especially when not enough information is available for cost estimation, the cost driver 

set used may actually influence what relationship will serve as the model. In this study a 

new method, the Causal-Associated approach, is introduced to identify the cost drivers. A 

Tabu-Stepwise algorithm is then proposed to select appropriate cost drivers set. 
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To improve the predicable accuracy of cost estimating, it is important to choose an 

appropriate approach to estimate the cost. In the estimation of the cost of the complex 

product, if the parametric form of underlying function f(x; ) is known apriori, a 

parametric cost estimating approach should be used. There are many references found in 

the literature (see Section 2.3.2) which discuss the parametric approach. However, in the 

initial design phases, for a complex product there may be inadequate knowledge of the 

relationships that exist, or there may exists nonlinearity and discontinuity in the 

relationship. Hence it is very hard to define a cost model. This study proposed a pure 

nonparametric cost estimating approach based on SVR and semiparametric cost 

approaches based SVR to estimate costs. If a product is very complex and/or the 

estimating process occurs at the very early stage of design and the functional form of the 

model is unknown, a pure nonparametric cost estimating approach should be used. For 

the situation in between, there is knowledge about the partial parametric form but this 

form is not adequate throughout the entire inputs, the parametric approach would not be 

appropriate because the resulting fit would be misleading (biased) at points where the 

data deviates from the specified model. However, it is not wise to ignore the knowledge 

and only use the pure nonparametric approach. Semiparametric approach, combining the 

parametric technique with the nonparametric technique, would be a good way for cost 

estimation in this situation. Therefore, in this study, new cost estimating nonparametric 

and semiparametric approaches, based on support vector regression (SVR), are presented 

to deal with the situation when there is not apriori knowledge of the functional form of 

the cost model or there exists some incomplete apriori knowledge about the model. These 

new approaches can improve the accuracy of cost estimation over conventional methods. 

A cost estimation model not only needs to estimate cost as accurate as possible. At 

the design phases, but also the objective of a cost model is to help designer achieve good 

cost trade-off decisions. The cost estimating approach thus can provide the cost 

transparency (the impact of design alternatives on complex product costs) to designers. 

Two methods of sensitivity analysis are introduced to help designers evaluate the 

contribution of input variables for the final cost and provide explanation to the above 

nonparametric cost model based on SVR.  
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The proposed cost modeling approach in this research is composed of four parts: 1) 

identifying cost drivers via Causal-Associated (CA) method and eliminating the 

insignificant cost drivers using Tabu-stepwise method (Chapter 4); 2) estimating cost via 

the nonparametric approach based on support vector regression (Chapter 5); 3) estimating 

cost using semiparametric approach based on support vector regression (SVR) (Chapter 

6); and 4) indicating the effect of cost drivers on cost for cost modeling based on SVR via 

sensitivity analysis (Chapter 7). The framework of the proposed cost estimating approach 

is as the Figure 3-1.  
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Figure 3-1 The Framework of the Proposed Cost Estimating Approach 

The new method, Causal-Associated (CA), in this research is proposed to identify the 

cost drivers, which is different with traditional methods for identifying cost drivers. The 

acceptable and available cost drivers at the current stage, are found via this method. The 

CA method includes five components: cost breakdown structure (CBS), root cost drivers, 

associated cost drivers, relationships, and assumptions. Generally, there are five steps for 

identifying the cost drivers: 1. Decomposition; 2. Listing Root Cost Drivers; 3. Analysis; 

4. Substitution; and 5. Gathering. The CA method not only reduces the chance of missing 
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data, but also provides a way to analyze the assumptions and preconditions of cost 

estimation. The detailed CA would be discussed in Chapter 4.  

After identification, using a Tabu-Stepwise variable selection technique, the unrelated 

or insignificant cost drivers will be eliminated to reduce the variance in the model output 

and the cost of collecting the data. The Tabu-Stepwise algorithm based on Tabu-SVR 

selects the significant cost drivers to form a candidate set for cost estimates. This 

algorithm searches better candidate subset of cost drivers via 5-fold cross validation and 

employs RMSE as its criterion. The Tabu-Stepwise method is a stepwise search method 

and employs tabu-list in the searching process. The tabu list would record a number of 

history steps and prohibit repeated calculation at the future steps. The initial subsets 

would choose the results of Mallow‟s Cp, Adjusted R-square methods, or start from the 

first variable. The detailed Tabu-Stepwise would be discussed in Chapter 4. 

The nonparametric approach based on SVR, Tabu-SVR, estimates cost combining 

support vector regression with the tabu search algorithm mentioned previously in Section 

2.5. For a cost estimating nonparametric approach based on SVR, there are three steps to 

get final cost: 1. Data Preprocessing; 2. Choosing the kernel and parameters; 3. Training 

the SVR and computing the final cost. The parameters are determined using the tabu 

search algorithm via the cross-validation procedure. The performance criterion to choose 

the parameters is Root Mean Square Error (RMSE). There are three types of kernel 

(linear kernel, polynomial kernel, and radial basis function (RBF) kernel) to be 

investigated in this study. More information about the Tabu-SVR would be found in 

Chapter 5. 

At times there may be limited some knowledge about the parametric form but full 

information about this form is not known, the semiparametric approach would be a good 

way for cost estimation in this situation. The semiparametric approach is able to combine 

a parametric component based on the researcher‟s knowledge of the underlying model 

with a nonparametric component designed to capture any structure in the data that the 

parametric fit fails to explain. According to different combining strategies on the 

nonparametric component and the parametric component, three semiparametric 

algorithms based on SVR are discussed in Chapter 6.  
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The development of a cost model for complex product design is not only done to 

provide accurate cost estimation but also to explain those complex and often non-linear 

relationships. In Chapter 7, there are two existing methods introduced for sensitivity 

analysis based on SVR. In the first method, a certain number of points with equal interval 

are produced in the range of the studied cost driver. In the second method, the cost 

estimating approach (nonparametric approach and semiparametric approach) based on 

SVR adjusts the input values of one variable while keeping all the others constant to 

approximate a gradient.  

In this study, for verifying and validating the cost estimating approaches, five 

common basic cost characteristics are summarized in Chapter 5. They are: accumulation; 

linear function; power function; step function; and exponential function. These five 

common basic cost characteristics are often combined to represent the cost characteristics 

of a complex product. Based on those fundamental cost characteristics and general rules 

for combining terms along with FLOPS cost module, test cases (data sets) are produced 

to verify and validate the nonparametric and semiparametric cost estimating approaches.  
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Chapter 4 Identification and Selection of Cost Drivers 

4.1  Introduction  

Cost drivers are any factors which cause a change in the cost of work performed in 

the lifecycle of a product. The identification and selection of cost drivers is fundamental 

to a cost estimating model. The cost driver set that is used can determine what 

relationship (cost estimating approach) is applied in the cost model. Appropriate selection 

of the cost driver sets can make the estimation more accurate (smaller bias or unbiased) 

and reduce the variance of the estimate.  

This research proposes a new method, Causal-Associated (CA) approach (see Figure 

4-1), to identify the cost drivers, which is different with traditional methods for 

identifying cost drivers. The CA method utilizes the cost breakdown structure to list the 

root cost drivers and then find associated cost drivers to substitute for root cost drivers 

that are not available or too expensive to obtain. The more complete acceptable and 

available cost drivers at the current stage are identified via the CA method. After 

identification, using the Tabu-Stepwise selection technique, the unrelated or insignificant 

cost drivers will be eliminated. This can reduce the variance in the model output and the 

cost of collecting the data. The procedure of identification and selection of cost driver is 

shown in Figure 4-1. A case study is then conducted to show how the CA method and the 

Tabu-Stepwise technique identify and select cost drivers. 
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Figure 4-1 The Procedure of Identification and Selection of Cost Drivers 
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4.2 Methodology of Identifying and Selecting Cost Drivers 

4.2.1 Causal-Associated (CA) Method 

Correlation is not causation. A statistically significant link or high correlation 

between two variables does not imply that one causes the other because this could be 

coincidence or the result of another unmeasured variable related to the two variables. 

Correlation is often used as measure of the linear relationship between variables, and 

therefore it is inappropriate when the relationship is strongly nonlinear. From the 

statistical aspect [84], the associated relation means: X and Y are associated if and only if 

x1  x2 then P(Y | X = x1)  P(Y | X = x2). The causal relation means: X is a cause of Y 

if and only if x1  x2 then P(Y | X set= x1)  P(Y | X set= x2). This indicates the 

associated relation would function in some points of the set but the causal relation would 

function for all of the points of the set. 

Causal relationship analysis [85] would bring more complete and correct 

understanding and explanation to the cost analysis. It therefore results in an improved 

predictive capacity. Completeness helps show what drives the cost and it formulates 

guiding principles and useful rules. Correctness provides greater insight and detail to cost 

analysis. 

At the early design stage, not all root cost drivers discussed in Section 4.2.2.1 are 

measurable and affordable. While a root cost driver may not be available, there could 

exist some associated cost drivers defined in Section 4.2.2.1 to represent these 

unavailable or unacceptable root cost drivers. In this situation, care must be taken in the 

assumptions or preconditions when associated cost variables represent root cost drivers. 

They would be assumptions or preconditions of the final cost model. The following 

section provides a new method, Causal-Associated (CA) method, to list all available and 

acceptable cost variables including root cost drivers and associated cost drivers. All of 

these cost variables would be candidate cost drivers for the model. At the same time, the 

assumptions and/or preconditions associated with associated cost drivers would be 

identified in the process. 

 



 45 

4.2.1.1  The Framework of Causal-Associated (CA) Method 

CA method includes five components: cost breakdown structure (CBS), root cost 

drivers, associated cost drivers, relationships, and assumptions: 

1. Cost Breakdown Structure (CBS): The CBS is a conceptual model for 

understanding and analyzing the root cost drivers. The desired cost output is 

decomposed into cost components. There are three ways to decompose a cost: 

a) Time phase method --- which depends on temporal sequence or phases in 

the whole process. The cost component of an aircraft can be divided into 

four cost components: the cost in the design phases, the cost in the 

production phase, the cost in the operation phase, and the cost in the 

disposal phase. 

b) Physical structure method --- which depends on physical constituents of 

the product. For example, the cost of an aircraft is composed of the cost of 

airframe, the cost of engine and the assembling cost. The cost of the 

airframe is sum of the costs of the following components: wing, tail, body, 

gear, nacelle, propulsion system, flight control, hydraulics, electrical, 

pneumatics, air condition, anti-icing, auxiliary power, furnishing  and 

equipment, instrument, avionics, and assembling cost. 

c) Mixed method --- which combines time phases with physical structure. 

For example, the cost of an aircraft at the design and production phase is 

composed of five cost components: the cost for airframe in the design 

phases, the cost for airframe at production phase, the cost for engine at 

design phases, the cost for engine at production phase, the other 

miscellaneous cost. 

2. Root Cost Drivers (see Figure 4-2) 

Root cost drivers are causal variables to cost. While there exist many different 

ways to categorize root cost drivers, one way will be considered as follows: 

– Materials 

o The Type of Material  

o The Volume of Material 

– Time/Count: 
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o Product Design Properties 

o Production Process 

o Technology 

o Management 

o Schedule 

o Quantity of production 

o Facility and Equipments 

– Environment Variables 

o The Unit Cost of Material 

o The Unit Cost of Labor 

o The Unit Cost of Facility and Equipment Consumption 

o The Unit Cost of Energy 

– Economic Factors 

o Price Index 

o Quantity 

o Learning Factor 
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Figure 4-2 Root Cost Drivers 
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3. Associated Cost Drivers 

Associated cost drivers are the input variables that would have a significant effect 

on the final cost but are not truly root cost drivers. Associated cost drivers 

generally have a high correlation with cost, which can include performance, 

reliability, maintainability, and general operations. Correlation is not causation. 

For example, most aerospace cost models use weight as a cost driver. Weight is 

strongly correlated with the cost but generally it is not considered as a root cost 

driver for all cost components. Under some assumptions and preconditions, the 

associated cost drivers can be used to estimate the cost. 

4. Relationships 

Causal-Associated method includes three relationships: accumulation, causality 

and associated relationship. The accumulating relationship exists between a cost 

component and all cost components in its sublevel (see Figure 2-1). Causal 

relationships exist between a cost component and its root cost drivers, and 

between root cost drivers in different level (see Figure 4-2). Associated 

relationship exists between a root cost driver and its associated cost drivers. 

5. Conditions and Assumptions 

Because correlation is not causation, correlation generally happens under some 

conditions or assumptions. When associated cost drivers are found and associated 

relationships are established, there must be some assumptions and preconditions. 

These assumptions and preconditions would be indicated as the assumptions and 

preconditions of the cost estimating model while using these associated cost 

drivers. 

 

4.2.1.2  The Procedure of Causal-Associated (CA) Method  

Generally, the identification of cost drivers has five steps for identifying the cost 

drivers (see Figure 4-3): 

1. Decomposition: The cost components are decomposed until they cannot be 

broken down more in a meaningful way. The cost of a product is conceptually 

broken into a number of cost components. This helps simplify the problem and 
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determine the cost drivers. Generally a Cost Breakdown Structure (CBS) is 

constructed according to time phases and/or physical properties. The CBS is an 

accumulation process. 

2. Listing Root Cost Drivers: At the lowest lever of CBS, all important root cost 

drivers are listed from four perspectives: material; time/count; environment 

variables; and economic factors. Each cost component at the lowest level must be 

linked to some root drivers which are the causes of cost of the corresponding 

components. All root cost drivers of each component are listed as completely as 

possible.  

3. Analysis: The availability and acceptability of the root cost drivers are analyzed. 

An analysis is conducted to determine if the root cost drivers are available and 

acceptable.  

4. Substitution: If the root cost drivers are unavailable or unacceptable, the 

associated cost drivers are found to substitute them under corresponding 

assumptions. If these associated cost drivers are not available and acceptable, the 

causal and associated analysis will continue until all cost drivers are acceptable 

and available under some assumptions. 

5. Gathering: All available and acceptable root cost drivers and associated cost 

drivers are gathered; and all redundant drivers to form the possible set of cost 

driver are eliminated. At the final step, all available and acceptable root cost 

drivers and associated cost drivers, which are gathered and output, are candidate 

cost drivers. They will be employed to estimate costs of a product.  
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Figure 4-3 The Procedure of Causal-Associated (CA) Method 
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4.2.1.3 Comparisons with Traditional Methods of Identification of Cost Drivers 

The Causal-Associated method assists the designer in considering all factors and in 

avoiding missing some cost drivers. This can help reduce the bias and improve the degree 

of estimating accuracy. When using associated cost drivers to represent some root cost 

drivers, the assumptions and preconditions are easily identified.  

This Causal-Associated method is different with the traditional method (see Figure 4-

4). The traditional methods identify potential cost drivers from references found in the 

literature and experience (see Section 2.2.2). After these potential cost drivers are 

grouped and reviewed, the candidate cost drivers are then determined using statistical 

analysis based on the data or expert survey. This method cannot guarantee the 

completeness and correctness of cost drivers. It just selects cost drivers from the existing 

literatures and experience. This method potentially misses some input information and 

cannot provide assumptions and preconditions for cost estimation as the Causal-

Associated method. 
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Figure 4-4 Comparison between Causal-Associated Method and Traditional Methods 
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A comparison between the Causal-Associated method and the traditional methods is 

illustrated in Figure 4-5. This example is assumed to happen at an early design phase. 

The root cost drivers are x1
*
, x2

*
, x3

*
, x4

*
. The root cost driver x3

*
 is correlated with x1, 

x2, x3 under some assumptions. The root cost driver x4
*
 is correlated with x4, x5 under 

some assumptions. 

The root cost drivers, x3
*
, x4

*
, are not available currently. 

Possible cost drivers for the product based on experience and other published 

resources are included in the set A. However all product information related to the cost 

are included in the set B. The real world data and information about the product is in the 

set R. Their relationship is RBA  . 
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Figure 4-5 A Comparison Example for Identifying Cost Drivers 

 Traditional Methods 

From the literature and experience, possible cost drivers are listed based on 

Set A. After grouping, reviewing, statistical analysis or expert survey, x1, x2, 

x3, x1
*
, and x2

*
 are the final cost drivers as the result of traditional methods. 
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 The Causal–Associated Method 

From the causal analysis, the root cost drivers will be x1
*
, x2

*
, x3

*
, and x4

*
. 

Because x3
*
 and x4

*
 are not available, associated cost drivers would be 

identified to represent them and appropriate assumptions and conditions could 

be defined.  

The Causal-Associated method can find the variables x4 and x5 to represent x4
*
 

which cannot be identified in the traditional methods. Additionally, the 

Causal-Associated method determines the assumptions for x1, x2, and x3 

representing x3
*
. These assumptions would be the preconditions of the cost 

estimating model. The traditional methods ignore these assumptions. Finally, 

x1, x2, x3, x4, x5, x1
*
, and x2

*
 are the candidate cost drivers under these 

assumptions. 

 

In summary, the CA method not only reduces the chance of missing data, but also 

provides a way to analyze the assumptions and preconditions of cost estimation. It assists 

the designer in considering all factors and in avoiding missing some cost drivers. This 

can help reduce the bias and improve the degree of estimating accuracy. When replacing 

some root cost drivers with associated cost drivers, the assumptions and preconditions are 

easily identified.  

 

4.2.2  Tabu-Stepwise Selection Based on Tabu-SVR 

4.2.2.1 Introduction of Tabu-Stepwise 

The variable selection methods have extensively been studied in linear models. 

Generally, the first type of approach to variable selection is a sequential approach. It 

includes three possible methods: forward selection method, backward elimination method, 

and stepwise selection method. The forward selection method adds one variable at a time 

to a model until the addition of another variable does not significantly improve the 

performance criterion. The backward elimination method begins with the model with all 

variables and drops one variable at a time until eliminating a variable significantly worse 

the performance criterion. The stepwise selection method is the most popular. It is a 
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combination of both forward selection method and backward elimination method. Its 

procedure begins by adding one variable at a time to a model but each time a new 

variable is added, all previously entered variables are re-evaluated and possibly dropped. 

The stepwise procedure ends by adding and dropping variables until the “best” subset is 

found.  Another type of approaches to variable selection would examine all possible 

models from the total list of future variables. This approach includes R-square, MSE, 

Adjusted R-square, Mallow‟s Cp, etc.  

The biggest drawback of first type of approach is that the methods cannot guarantee 

that they will find the best solution. The major shortcoming of the second type of 

approach is that the methods must examine all possible models (the number of models = 

2
the number of variables

 - 1). For example, if only fifteen variables were considered for the 

model, the number of possible models would be 32,767. This can result in computation 

times that are not acceptable.  

Additionally, for a complex product in the early design phases, it is known that there 

are nonlinear relationships between cost drivers and cost and generally there is not 

enough information about function form and cost relationships. The above variable 

selection methods, based on a linear model, are not adequate for the cost driver selection 

for complex products during the early design phases.  

In a word, the purpose of the method of cost driver selection is to find the preferred 

solution without consuming excessive computational resources for complex products 

during the early design phases. 

Therefore, an improved stepwise method, the Tabu-Stepwise selection method based 

on Tabu-SVR, is proposed to deal with the problem of cost driver selection for complex 

products during the early design phases. The basis of this selection method, the cost 

model based on Tabu-SVR, is a nonparametric model based on support vector regression, 

which is presented and discussed in Chapter 5. The Tabu-Stepwise algorithm employs 

Tabu-SVR to find the appropriate parameters via 5-fold cross validation, and use a 

stepwise search and a tabu list in the searching process to reduce the calculation time. 

Additionally, it can start from initial subsets which are the results of the Mallow‟s Cp and 

Adjusted R-square methods, or the first variable.  
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4.2.2.2 The Procedure of Tabu-Stepwise 

The Tabu-Stepwise is based on Tabu-SVR (see Chapter 5) to find a best subset of 

cost drivers. The performance criterion (CV-MSE) is Mean Square Error via 5-fold Cross 

Validation. It is a stepwise search method and employs a tabu list in the searching process. 

The tabu list would record a number of history steps and reduce the chance of repeated 

calculation for the future search.  

The flow chart of Tabu-Stepwise is as Figure 4-6. The procedure of Tabu-Stepwise is 

as follows: 

Step 1: Construct the initial subset (The final results of Mallow‟s Cp, Adjusted R-

square, or the first variable were chosen as the initial subset in this study); 

Step 2: Calculate the CV-MSE of initial subset using Tabu-SVR; 

Step 3: Initialize the tabu list, loop variables i, j; 

Step 4: Add in the i
th

 variable if i
th

 is not in the model; form the new subset, and then 

calculate the performance of this new subset using Tabu-SVR and record the 

new subset in the tabu list if it is not in the previous tabu list; compare the 

MSE and then determine the candidate subset; 

Step 5: Drop the j
th

 variable if j
th

 is in the model; form the new subset, and then 

calculate it using Tabu-SVR and record it in the tabu list if it is not in the 

previous tabu list; compare the CV-MSE and then determine the candidate 

subset; 

Step 6: Return Step 5 if j is less than the number of variables; return step 4 if i is less 

than the number of variables; 

Step 7: Output the final subset with the smallest MSE. 

 

In summary, the Tabu-Stepwise method can select the “best” cost driver set for a 

complex product in the early design phases. It takes advantage of the benefit of stepwise 

selection and tabu list, which not only have better performance than the forward method 

and back elimination method but also can save plenty of computation resource.  
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Figure 4-6 Flow Chart of Tabu-Stepwise Selection Method 
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4.3 Case Study 

4.3.1 Overview of Case Study 

The purpose of this case study is to demonstrate the feasibility of the Causal-

Associated method to identify cost drivers and to illustrate the use of the Tabu-Stepwise 

based on Tabu-SVR selection methods to select significant cost drivers and eliminate 

irrelevant cost drivers. It is intended to show the value of the methods in being able to 

identify all cost drivers, provide a way to analyze the assumptions and preconditions of 

cost estimation, and then avoid adding extra noise, deteriorating the accuracy of the 

model, and clouding meaningful relationships which exist between important variables. 

An electric motor (AC) is used as the object of this case study for the identification of 

cost drivers. Electric motors are often a component of a more complex system. According 

to the design and manufacturing process of an AC motor and following the Causal-

Associated method described before, the cost are broken down, the root cost drivers are 

listed and analyzed. For those unacceptable and unavailable root cost drivers, the 

corresponding associated cost drivers and assumptions would be obtained. Finally all 

available and acceptable cost drivers would become the set of possible cost drivers. 

To eliminate irrelevant variables and improve the accuracy of cost estimation, the 

Tabu-Stepwise based on Tabu-SVR selection method is used to select significant cost 

drivers set from all possible cost drivers. Different initial sets were used in Tabu-

Stepwise, which are the results of Adjusted R-square using SAS, the results of Mallow‟s 

Cp using SAS, and the first variable. Because Tabu-SVR is employed in this search, the 

nonlinear properties existing between cost and cost drivers and among cost drivers are 

not ignored. 

The final selected cost drivers by Tabu-Stepwise selection method would form the 

candidate cost drivers set. They would be used for cost estimation based on support 

vector regression discussed in Chapter 5 and Chapter 6.  
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4.3.2 Description of Case Study Background 

4.3.2.1 Choice of Product 

When a complex product is decomposed by its physical structure, the product cost is 

often the sum of the cost components as illustrated in Figure 4-7. In this case study, this 

cost component chosen for research is the cost of an AC motor (460v, three-phase, 100 

hp, 1800 Speed). For many complex products, an electric motor is one of their important 

components. It often requires being designed and then manufactured for different 

complex products and satisfying special needs of some customers. Therefore, the process 

for identifying and selecting cost drivers for an AC motor is typical and needed in 

analyzing components of a complex product.  

 

 

 

Figure 4-7 A Complex Product of Cost Breakdown Structure  

4.3.2.2 Structure and Components of AC Induction Motor  

An induction motor is comprised of the following basic components: 

o Stator --- It consists of a number of coils of wire wrapped on laminated iron 

cores. The windings utilize electrical power to produce a rotating magnetic 

field in the rotor-stator gap, and thereby transfer drive power to the rotor. 
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o Rotor --- It consists of a cylindrical arrangement of copper or aluminum 

conducting bars attached to two end rings at either end of the bars. The 

magnetic field of the rotor couples with the rotating magnetic fields of the 

stator to produce mechanical torque and drive the load.  

o Frame --- There are two parts: housing and end frame. The motor frame 

supports the rotor and stator during operations, and provides enclosure of the 

motor environment. The frame attaches to the foundation, supplying support 

and reaction to driver torques. 

o Other Miscellaneous Parts --- Bearings support the rotating shaft within the 

stationary motor housing. Lead wire and terminations are used for the 

connections between the power supply and motor. 

 

4.3.2.3 Design, Materials and Manufacturing Process of AC Induction Motor 

 Design of AC Induction Motor 

There are several CAD packages and programs available to assist motor designers 

and researches. They make motor design and analysis much easier and faster. But for 

original design and special requirements on motor, the designer always needs to 

perform the actual procedure. The crucial stages of the design procedure are: 

specification elaboration; design considerations; dimensioning procedure; 

performance calculation; initial evaluation; design formation and layout; final 

evaluation; finalized design layout; and technical drawings and documents [86]. 

 Materials and Manufacturing Process of AC Induction Motor 

Materials for manufacturing of an AC induction motor and its parts include iron 

and aluminum castings, steel tubing and shafting, copper wire, steel laminations, 

purchased bearings, epoxy coating, varnish, adhesive, cleaning chemicals, etc. The 

four separate parts of the product (wound stator core, rotor core with shaft, frame and 

other miscellaneous parts) are manufactured or purchased separately and then 

assembled into complete motor units as Figure 4-8. The following sections briefly 

introduce these four separate parts separately and their materials. 
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Figure 4-8 The Manufacturing Process of an AC Motor ([87]) 

 

o Stator Core: 

Typical stators are comprised of steel laminates with uniform slotting 

around the inner diameter (ID) (see Figure 4-9). The laminations are stacked 

into a core. Copper coils, insulated for the appropriate voltage level are wound 

into the slots (a wound stator) to deliver the supply power in the correct spatial 

and phase orientation.  

1. Stator Laminations  (Figure 4-9) 

 

Figure 4-9 Stator Lamination 
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Different types of steel have different magnetic properties. The 

appropriate steel will depend on motor design. After pressing and 

annealing, laminates are cut or pressed from the sheet. Stator 

laminations are then stacked together to form a stator core via welding, 

bonding, or cleating.  

2. Insulators 

The stator winding must be insulated from the stator core. Two 

processes are often used: epoxy coating and slot liners.  

3. Coils 

Copper coils insulated for the appropriate voltage level are wound 

and injected into the slots (a wound stator). Then Lacing is used for 

tightly holding all of the magnet wires in the end turn through the resin 

bonding process. 

 

o Rotor: 

The rotor is comprised of a stack of thin insulated laminations shrunk, 

pressed or welded onto the shaft, with stack plates at each end to maintain a 

high interlaminar pressure. Conducting bars, usually made of copper alloy, 

run down the length of the rotor body either parallel to the axis of rotation, or 

with a uniform skew.  

1. Shaft 

High strength steel with good fatigue characteristics is typically 

required. Most motor manufacturers use SAE 1045 in either cold-

rolled or hot-rolled steel (CRS or HRS), or sulfurized SAE 1117, SAE 

1137, SAE 1144, hot-rolled SAE 1035, and cold-rolled SAE 

1018([87]). The CNC Swiss turning machines is mostly used to 

complete the shaft. Then the shaft is hardened.  

2. Rotor laminations 

The materials and manufacturing process are mostly the same as 

stator laminators. An insulation coating, applied to prevent induction 

of axial current, keeps rotor body losses to a minimum.  
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3. Rotor bars 

Aluminum, copper, and copper alloys with low electrical resistance 

are most often used.  

4. Connection ring and retaining ring.  

Comparable to the rotor bars, the connection ring requires low 

electrical resistance to minimize losses. Aluminum, copper and higher 

strength copper alloys can be used. Retaining ring typically comprises 

high-strength alloy steel with good fatigue characteristics. 

 

o Frame: 

The housing or frame is used to cover the stator, provide heat transfer and 

protection, provide a location for mounting the end frames, and serve as an 

attachment for other components, such as outlet boxes and lifting hooks. The 

end frames are used to contain the shaft bearings, support the rotor assembly, 

and act as a heat transfer device.  

1. Housing 

The housings are made of cast iron; in rolled, wrapped, and tube 

steel; or in both cast and extruded aluminum tube. Different materials 

have different manufacturing process. For cast iron completed on 

either manual machines or CNC machining centers, the processes are: 

machine and drill the mounting feet; bore the inner diameter (ID); turn 

the end frame registers; drill and tap for the end frame attachment; and 

mill for the outlet box attachment. For rolled steel, after a stamping 

press this piece is formed around a mandrel, welded, machine-faced to 

length; a stamped mounting base is welded to the housing. For 

wrapped steel, the manufacturing processes are the same as for a rolled 

housing except that the stator core is used as the mandrel. For tube 

steel, the process is: cut to length, machine end frame diameter, and 

weld mounting feet. For aluminum castings, they are machined like 

cast iron with the same type of equipments. For aluminum tubing, the 
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material is cut to length and the mounting feet are then welded or 

screwed to the housing. 

2. End Frames 

Like housings, end frames come in cast-iron, steel, zinc, or 

aluminum castings. For cast-iron castings, a computer numerically 

controlled (CNC) machine prepares the bearing bore and end frame 

diameter, and a manual drill is used to prepare the holes for the 

housing attachment. For the steel material, it is processed through a 

stamping press. For zinc or aluminum end frames, they are usually cast 

in a horizontal die caster.  

 

o Miscellaneous Parts: 

1. Bearings 

Bearing systems are used to support the rotor and shaft within the 

stationary motor housing and reduce the friction between the shaft and 

the end frames. 

2. Lead wire and terminations (Studs, screws and terminals).  

Lead wire and terminations are used for motor to connect the 

motor to a power source.  

 

This study will focus on the cost of an AC motor associated with design and 

manufacturing phases while estimates happen during the early design phases. With 

limited historical cost information and knowledge of these phases, the cost of AC motor 

can be break down to the basic cost object unit. For this basic cost object, the 

identification of cost drivers would be conducted according to break down structure and 

the detailed procedures during these phases. 

For an AC motor, depending on temporal sequence, there are two phases: design and 

manufacturing phases. Then for the design phase of an AC motor, there are crucial stages: 

specification elaboration; design considerations; dimensioning procedure; performance 

calculation; initial evaluation; design formation and layout; final evaluation; finalized 

design layout; and technical drawings and documents. For the manufacturing phase of an 
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AC motor, there are four components to be considered in this research: stator; rotor; 

frame; other miscellaneous parts. For different parts, there are different processes which 

also vary with their materials and manufacturer. 

 

4.3.3 Identification of Cost Drivers 

4.3.3.1 The Procedure of Identification of Cost Drivers 

Generally, the identification of cost drivers for an AC motor consists of five 

following steps as discussed earlier. 

1. Decomposition: the cost components are decomposed until they are acceptable; 

2. Listing Root Cost Drivers: at the lowest lever of CBS, all important root cost 

drivers are listed from four perspectives: material; time/count; environment 

variables; and economic factors; 

3. Analysis: the availableness and acceptableness are analyzed for the above root 

cost drivers; 

4. Substitution: If the root cost driver is unavailable or unacceptable, the associated 

cost drivers are found to substitute that root cost driver under corresponding 

assumptions; 

5. Gathering: all available and acceptable causal and associated cost drivers are 

gathered; all redundant drivers to form the possible set of cost driver are 

eliminated. 

 

4.3.3.2 Decomposition  

As indicated earlier, there are two cost components that are considered in this case 

study: the cost of AC motor design and the cost of production of the AC motor. 
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Figure 4-10 Decomposition of the Cost of AC Motor 

o The Cost of AC Electric Motor Design 

For simplicity, it is assumed that there will not be any prototype motor to 

manufacture. If this were not true, the process of analysis would be same as the 

manufacturing phase. Although the design process could be divided into multiple 

stages, in this case study it is considered as a single direct cost component plus 

one indirect cost component (see Figure 4-10). This is reasonable in that design is 

a labor intensive iterative process. The direct cost component includes direct labor 

cost, materials cost, and equipment charges associated with design. Indirect cost 

component incorporates the administration cost, related indirect material cost, and 

equipment charges. Those do not directly impact the design but are a definitely 

component of the final design cost. 

 

o The Cost of AC Motor Manufacturing 

The cost of the AC motor manufacturing has two cost components: direct 

cost of manufacturing and indirect cost of manufacturing. The direct costs are 

costs directly attributable to the manufacturing of an AC motor. Indirect costs 

are costs not directly allocated to an AC motor associated with manufacturing 

such as depreciation or supervisory expenses.  

1. The direct cost of manufacturing 

The direct cost of manufacturing is decomposed according to 

manufacturing processes of the corresponding AC motor. This study 
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focuses on the processes discussed before (see Figure 4-8). If the cost 

breakdown structure follows the basic motor components, the direct cost 

of manufacturing consists of five components: stator costs, end frames 

cost, miscellaneous parts costs, rotor costs, and assembly costs. 
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Figure 4-11 Decomposition of the Direct Cost Manufacturing (AC Motor) 

For the decomposable cost components, they are broken down to 

subcomponents and the analysis continues until decomposition of the 

lower levels is no longer needed. The cost of stator includes three 

subcomponents:  housing cost, wound stator core costs, and assembly 

costs. The cost of wound stator core is divided into stator lamination stack 

cost, magnet wire cost, and the cost of component for winding, insulation 

and lacing. The cost of rotor also includes three components: shaft cost, 

rotor core cost, and the cost of the component for assembly. The rotor core 

comprises of three subcomponents: rotor lamination stack cost, the cost of 

rotor bars and the rings for connection and retaining, and the cost of 

assembly. All shade rectangles in Figure 4-11 are indecomposable 

including end frames; miscellaneous parts; final assembly; housing; stator 

assembly; stator lamination stack; magnet wire; the component for 

winding, insulation, and lacing; shaft; rotor assembly; rotor lamination 

stack; bars and rings; rotor core assembly. For these indecomposable 

components, the root cost drivers are listed. 
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2. The indirect cost of manufacturing 

The indirect cost of manufacturing often includes two subcomponents: 

production overhead and corporation overhead. In this study, for 

simplicity, the cost associated with supply and demand is not considered, 

although the identifying processes of their cost drivers are the same as the 

processes described here. 

 

4.3.3.3 Listing Root Cost Drivers 

For indecomposable cost component, the root cost drivers are considered based on 

four basic types: materials, time/count, environment variables, and economic factors (see 

Figure 4-12) and listed under these categories. This section respectively lists the root cost 

drivers for all indecomposable cost components in last section. 
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Figure 4-12 The Studied Indecomposable Cost Component 

According to Figure 4-10, after decomposing the cost of design, two following cost 

components are not decomposed, which are listed root cost driver based on the above 

four basic types: 

1. Direct Cost Component for AC Motor Design 

Design is a labor intensive process. Materials typically are accounted for a very 

small part of the total design cost, which can be neglectable. Moreover, modern AC 

motor designer often employs CAD or other software to aid design, which would 

incur the cost. So for this component, design labor time is a major root cost driver 
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which mostly impacts the cost. Also equipment time being used is another root cost 

driver. Correspondingly, environment variables compose of two drivers: design labor 

cost per unit time and equipment cost per unit time. Economic factors are current 

price index. 

 

2. Indirect Cost Component for AC Motor Design 

Indirect cost component also is a labor intensive process. It is mostly considered 

the cost associated with design. Therefore materials could be considered neglectable. 

With respective to time/count, there are two root cost drivers: the number of 

initialization for design (which is same as setup while a machine starts, or like fix 

cost), administration labor time for design. Correspondingly, environment variables 

compose of two drivers: initialization unit cost and administration labor cost per unit 

time for design. Economic factors are the current price index. 

 

According to Figure 4-11, after decomposing the direct cost component of 

manufacturing, thirteen cost components are not able to be decomposed further, whose 

root cost driver are listed based on the above four basic types: 

1. Cost Component for End Frames 

Generally, end frames are made from cast-iron, steel, zinc, or aluminum castings. 

Here, the AC induction motor in this study is assumed to be a 100 hp motor and cast-

iron would be used for the end frames. The manufacturing processes was discussed 

before: a computer numerically controlled (CNC) machine prepares the bearing bore 

and end frame diameter, and a manual drill is used to prepare the holes for the 

housing attachment. Therefore, with respect to materials, the root cost driver is cast-

iron per unit weight. Manufacturing processes involve machine time, the number of 

setups, and labor time. Correspondingly, environment variables compose of two 

drivers: unit cost for cast-iron, labor cost per unit time, machine cost per unit and 

setup cost per unit. Economic factors could include the current price index. 

 

2. Cost Component for Miscellaneous Parts 
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For simplicity, two miscellaneous parts, bearings and terminators, are considered. 

The bearings are considered as purchased parts. Terminators with lead wire also do 

not involve production. From the perspective of material, the number of bearings with 

particular specification, the length of lead wire, the number of studs and screws are 

root cost drivers. No root cost drivers associated with time/count are in this 

component. Environment variables include the unit cost for the bearing with 

particular specification, the unit cost for lead wire, and the unit cost for studs and 

screws. Economic factors are same as above. 

  

3. Cost Component for Final Assembly 

The final assembly of the AC motor includes assembling, testing, painting and 

packing processes. The weight of painting material and its unit cost are root cost 

drivers. The costs incurred in this component are time based. Labor time for final 

assembly and its labor cost per unit time are very important root cost drivers here. 

 

4. Cost Component for Housing  

Housings come in cast-iron; in rolled, wrapped, and tube steel; or in both cast and 

extruded tube aluminum. Since the AC induction motor in this study is assumed to be 

100 hp, cast-iron is used for housing. The manufacturing operations are completed on 

either manual machines or a computer numerically controlled (CNC) machine. 

Therefore, with respect to materials, one root cost driver is the weight of cast-iron. 

Manufacturing processes involve machine time, the number of setups, and labor time. 

Correspondingly, environment variables compose of two drivers: unit cost for cast-

iron, labor cost per unit, machine cost per unit and setup cost per unit. Economic 

factors are the current price index. 

 

5. Cost Component for Stator Lamination Stack 

The stator lamination stack is made of stator lamination via welding, bonding, or 

cleating. Stator laminators are made of specific types of steel sheets via cutting, 

pressing, and annealing. With respect to materials, the weight of particular steel 

sheets is a root cost drivers (other associated materials are neglectable for simplicity). 
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Labor time is needed to weld, bond, or cleat for stacking laminations. Environment 

variables include unit cost for particular steel sheets, labor cost unit time. Economic 

factors are same as before. 

 

6. Cost Component for Magnet Wire  

The component only is related to material cost. The length or gauge of the magnet 

wire and unit length of magnet wire is its root cost drivers. 

 

7. Cost Component for Winding, Insulation, and Lacing  

Some winding and lacing operations are completed on machines. The weight of 

insulation material (epoxy powder) and its unit cost are root cost drivers. Varnish for 

bonding stator also is an important material in this part. The weight of varnish and its 

unit cost are root cost drivers. From the perspective of time, labor time, machine time, 

the number of machine setups are major causes of cost. Environment variables are 

labor cost per unit time, machine cost per unit time and setup unit cost. 

 

8. Cost Component for Stator Assembly 

The housing needs to be cleaned first. The wound stator is pressed into the 

housing by a hydraulic machine. The cleaning materials are root cost drivers during 

this process. They include zinc phosphate/caustic sludge, spent solvent and acetone-

wetted cloth. The cost is also incurred by time. Labor time and machine time for 

stator assembly, the weight of cleaning material, the corresponding cleaning material 

unit cost, labor cost per unit time and the corresponding machine cost per unit time 

are very important root cost drivers here. 

 

9. Cost Component for Shaft 

The shaft is made of cold-rolled steel. The manufacturing operations are 

completed on special CNC Swiss turning machines. Therefore, with respect to 

materials, the root cost driver is the weight of rolled steel. The root cost drivers 

associated with time/count and include machine time, the number of setups, and labor 

time. Correspondingly, environment variables compose of following drivers: unit cost 
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for rolled steel, labor cost per unit, machine cost per unit and setup cost per unit. 

Economic factors are the current price index. 

 

10. Cost Component for Rotor Lamination Stack 

The rotor lamination stack is made of rotor laminations via welding, bonding, or 

cleating. Rotor laminations are made of specific types of steel sheets via cutting, 

pressing, annealing. With respect to materials, the weight of particular steel sheets is a 

root cost drivers (other associated materials are neglectable for simplicity). Labor 

time is needed to weld, bond, or cleat for stacking laminations. Environment variables 

include unit cost for particular steel sheets, labor cost unit time. Economic factors are 

same as before. 

 

11. Cost Component for Bars and Rings 

The cost component of bars and rings are only related to material cost. The root 

cost drivers include the weight of aluminum (alloy) with specific specification for 

connection bars and the weight of steel with specific specification for retaining rings. 

Their corresponding environment variables are unit cost of aluminum and unit cost of 

steel. 

 

12. Cost Component for Rotor Core Assembly 

The material cost associated with rotor core assembly could be neglectable. 

Assembling rotor bars, connecting rings, retaining rings, and rotor lamination stack 

together incurs labor cost. The root cost drivers include labor time and labor cost per 

unit time. 

 

13. Cost Component for Rotor Assembly 

The shaft is inserted into rotor core. The labor and machine cost is the only cost 

considered. Labor time and machine time for rotor assembly, the corresponding labor 

cost per unit time and the corresponding machine cost per unit time are very 

important root cost drivers. 
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The indirect cost component of manufacturing can be broken down into two 

following cost components, whose root cost drivers are listed based on the four basic 

types: 

1. Cost Component for Production Overhead 

Cost component for production overhead also is often based on labor. It is mostly 

considered as the cost associated with production management. Therefore materials 

could be considered neglectable. With respect to the basic type of root cost driver 

(time/count), there are two root cost drivers: administration labor time for production. 

Correspondingly, environment variable is administration labor cost per unit time for 

production. Economic factors are the current price index. 

 

2. Cost Component for Corporation Overhead 

Corporation overhead also is a labor intensive process. It is mostly considered as 

the cost associated with overhead in the range of corporation associated the motor 

production. Therefore materials could be considered neglectable. With respect to the 

basic root cost driver (time/count), administration labor time for motor production at 

the corporation level is a root cost driver. Correspondingly, environment variable is 

administration labor cost per unit time for production at the corporation level. 

 

In the prediction of AC motor, the costs are influenced by their manufacturing scale 

(quantity) and learning factors. For simplicity, in this study, these factors are included in 

the economic factors. After listing all important root cost drivers for each bottom 

component, the final list of root cost drivers sees Table 4-1 through Table 4-4. 
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Table 4-1 The Cost Drivers Associated with Material  

The Type of 

Root Cost Driver Phases Property Root Cost Driver Unit

Mark of 

Availability Associated Cost Drivers

Material Design Direct (Neglectable)

Indirect (Neglectable)

Production Direct Cast Iron (for Housing) Weight Available

Magnet Wire Length Not Available

Voltage, Frequency, Temperature, Power 

(output), Effiency, Speed, Winding density 

Factor

Integral epoxy powder Weight Not Available

Voltage, Temperature, Power (output), 

Efficiency, Stator Laminations

Steel Sheet Weight Not Available

Voltage, Frequency, Temperature, Power 

(output), Effiency, Speed, Winding density 

Factor

Cold-Rolled Steel (CRS) Weight Available

Cast Iron (for End Frame) Weight Available

Bearing number Not Available

Speed, operation, torque, operating conditions, 

vibration, temperature, shock-impact loads

Aluminum (alloy) for Bars and 

Connection Ring (Rotor) Weight Not Available

Voltage, Frequency, Temperature, Power 

(output), Effiency, Speed, Winding density 

Factor

Steel (alloy) for Retaining Ring Weight Not Available

Voltage, Frequency, Temperature, Power 

(output), Effiency, Speed, Winding density 

Factor

Lead Wire Length Available

Studs number Available

Screws number Available

Terminals number Available

Varnish Weight Available

Adhesives Weight Available

Zinc phosphate/caustic sludge(for 

Cleaning) Weight Available

Spent solvent (for Cleaning) Weight Available

Acetone-wetted cloth (for Cleaning) area Available

Paint solids ((including plastic 

sheets, filters, and precipitated paint 

from the paint booth water curtain)) Weight Available

Paint liquids Weight Available

Indirect (Neglectable)  



 73 

Table 4-2 The Cost Drivers Associated with Time/Count 

The Type of 

Root Cost 

Driver Phases Property Root Cost Driver Unit

Mark of 

Availability Associated Cost Drivers

Time/ 

Count

Design Direct Design Labor Time Time Not Availabe Complexity (Voltage, Frequency, Temperature, Power (output), 

Effiency, Speed, Winding density Factor, Specific 

requirements), Design Institute (Experience, Tools)

Equipment Time Time Not Available Design Time--- Direct

Indirect Administration labor time Time Not Available Design Time--- Complexity

The Number of Initialization for Design Number Avaiable

Production Direct CNC Machining Time (Housing) Time Not Available Specific requirements (Geometry),  Quantity

The Number of CNC Setups (Housing) Number Available

Labor Time (Housing) Time Not Available CNC machining time and setup times (Housing)

CNC Machining Time (End Frame) Time Not Available Specific requirements (Geometry),  Quantity

The Number of CNC Setup(End Frame) number Available The number of setups

Labor Time (End Frame) Time Not Available CNC machining time and setup times (End Frames)

Wound Stator Assembly Labor Time Time Not Available Housing Material, the size, the electrical efficiency

Laminations Machining Time Time Not Available Voltage, Frequency, Temperature, Power (output), Effiency, 

Speed, Winding density Factor

Laminations Labor Time Time Not Available Laminations Machining Time

Labor Time for Stator Laminations Stack Time Avaiable

Machining Time for Stator Winding, 

Insulation and Lacing

Time Not Avaiable Voltage, Frequency, Temperature, Power (output), Effiency, 

Speed, Winding density Factor

Labor Time for Stator Winding, 

Insulation and Lacing

Time Not Available Voltage, Frequency, Temperature, Power (output), Effiency, 

Speed, Winding density Factor

The Number of Setups for Stator 

Winding, Insulation and Lacing

Number Available

CNC Swiss Turning Machining time 

(Shaft)

Time Not Available Power, Speed, Voltage, Specific requirements (Geometry),

The Number of CNC Swiss Turning 

Setups(Shaft)

number Available

Labor Time for Machining Shaft Time Not Available CNC Swiss Turning Machining Time

Rotor Assembly Labor Time Time Not Available Speed, operation, torque, operating conditions, vibration, 

temperature, shock-impact loads

Rotor Assembly Machine Time Time Not Available Speed, operation, torque, operating conditions, vibration, 

temperature, shock-impact loads

Varnish Impregnation Process Time Time Available

Assembly Labor Time Time Not Available Complexity (Voltage, Frequency, Temperature, Power (output), 

Effiency, Speed, , Specific requirements), 

Indirect Administration Labor Time (Production) Time Not Available Labor Time, Machine Time and Materials in Production

Administration Labor Time (Corporation) Time Not Available Production Scale, Complexity, Manufacturer Efficiency  
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Table 4-3 The Cost Drivers Associated with Environment 

The Type of 

Root Cost 

Driver Property Root Cost Driver

Mark of 

Availability

Environments  Design Design Labor Cost per Unit Time (Direct) Unvailable*

Labor Cost per Unit Time (Indirect) Available

Equipment Cost per Unit Time Available

Administration Labor Cost Per Unit Time Available

Initializing Unit Cost (Design) Available

Production Cost per Pound (cast iron) for Housing Available

Cost per Pound (cast iron) for End Frame Available

Cost per unit length (Magnet Wire) Available

Cost per Pound (Integral epoxy powder) Available

Cost per Pound ( Steel Sheet) for Laminations Available

Cost per Pound ( Steel ) for Retaining Rings Available

Cost per Pound ( Aluminum ) for Rotor Bars and Connection 

Rings Available

Cost per Pound (CRS) for Shafts Available

Cost per unit bearing (Particular specification) Available

Cost per unit Length (Leading Wire) Available

Unit Cost for studs (Particular specification) Available

Unit Cost for screw (Particular specification) Available

Unit Cost for terminates (Particular specification) Available

Cost per Pound (Varnish) Available

Cost per Pound (Adhesive) Available

Cost per Pound (Zinc phosphate) Available

Cost per Pound (Spent solvent) Available

Cost per Square Feet (Acetone-wetted cloth) Available

Cost per Pound (Paint liquids) Available

Labor Cost per Unit Time (CNC machine) Available

Machine Cost per Unit Time (CNC machine) Available

Cost per Setup (CNC machine) Available

Labor Cost per Unit Time (Wound) Available

Cost per Unit Time (Machine for Wound, Lacing) Available

Cost per Setup (Machine for Wound, Lacing) Available

Cost per Unit Time (CNC Swiss Turning) Available

Cost per Unit Time (Machine for Rotor Assembly) Available

Cost per Setup (CNC Swiss Turning) Available

Labor Cost per Unit Time(CNC Swiss Turning) Available

Labor Cost per Unit Time (General) Available

Labor Cost per Unit Time(Production) Available

Labor Cost per Unit Time (Corporation) Available  

Note: 

* Its associated cost drivers are labor unit cost, design labor unit cost for other product, and labor unit cost for other product. 

 

Table 4-4 The Cost Drivers Associated with Economic Factors 

The Type of Root Cost Driver Root Cost Driver Mark of Availability 

Economic Factors Price Index Available 

 Quantity Available 

 Learning Curve Factor Available 
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4.3.3.4 Analysis of Availableness and Acceptableness 

More and more cost information is provided with the evolving of a design. During the 

early design phases, much cost information is not available. While cost is estimated at 

this phase, unavailable information associated with costs cannot be used as cost drivers to 

estimate cost. Therefore, after listing root cost drivers, the availability of root cost drivers 

must first be checked. Secondly, when cost information is available but very expensive to 

obtain compared to the cost of the motor, this type of cost information also cannot be 

practically used. Lack of these appropriate cost information could lead to cost estimation 

inaccuracy. When cost drivers are unavailable or unacceptable, associated cost drivers 

can be substituted for the missing root cost drivers to improve the accuracy. 

This case study examines the cost of an AC motor in the early design phases. The 

performance parameters and customer requirements of the AC motor are known. Some 

materials, general design processes and manufacturing processes for the particular AC 

motor also are known. But special and customized requirements will result in change of 

some of the processes. For example, the machining time and labor hours for some 

processes cannot be known before completing detailed design. Additionally, some types 

of material specification cannot be determined until the detailed design phase. The above 

mentioned information is important to cost estimation but they are not available early in 

the design process. They must be marked for finding a substitution. Another type of root 

cost drivers must also be marked for substitution because it is available but very 

expensive to obtain. For instance, some manufacturing process information can be 

purchased from other organization at a very high price. This study only considers 

availability of root cost drivers. 

After analyzing, the marked root cost drivers are as indicated in Table 4-1 through 

Table 4-4.  

 

4.3.3.5 Substitution (Associated Cost Drivers) 

As mentioned in the last section, there are unavailable and unacceptable root cost 

drivers, some of which significantly impact the cost estimate of AC motor. Associated 

cost drivers must be found at current design phase by making assumptions and 
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preconditions. As the design evolves, the root cost driver known at that future phase 

would be employed instead of their substitutions (associated cost drivers). Cost 

estimation would thus be much more accurate. 

All marked in last analysis step (see Table 4-1 through Table 4-4) would be found 

associated cost drivers. Generally, there are two types of substitution: direct and indirect. 

A direct substitution means that a root cost driver has a direct relationship with associated 

cost driver(s). The root cost driver can be derived from the associated cost driver(s) under 

some conditions. For instance, the length of magnet wire cannot be determined in the 

early design phases. But the length of magnet wire is related to voltage, frequency, 

temperature, power (output), efficiency, winding density factor. Using empirical formula 

or physics properties, the length of magnet wire can be obtained (Figure 4-13). 

 

Voltage Frequency Temperature Power

The 

Length of 

Magnet 

Wire

Winding 

Density 

Factor

Efficiency

 

Figure 4-13 Associated Cost Drivers for the Length of Magnet Wire 

Other substitutions are based on indirect relationships. For example, it is assumed that 

the labor unit cost is known for motor production but design labor unit cost is unknown 

for motor design. From experience, the labor unit cost for producing some products has 

stable relationship with the design labor unit cost for designing those products if both are 

done in the same area (city or country). Therefore, if the labor unit cost and design labor 

unit cost for other product are known at the same area, the design labor unit cost for the 

AC motor can be derived (Figure 4-14). The assumption or condition for this indirect 
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substitution is relationships in the same area. If this assumption or condition is not 

satisfied, the substitution would be not appropriate. 

Labor 

Unit Cost

Labor Unit 

Cost for 

Other 

Product

Design 

Labor 

Unit Cost

Design 

Labor Unit 

Cost for 

Other 

Product  

Figure 4-14 Associated Cost Drivers of the Design Labor Unit Cost for AC Motor 

The associated cost drivers for all marked root cost driver are derived via those two 

types of relationship: direct or indirect. Please see Table 4-1 through Table 4-4.  

 

4.3.3.6 Gathering for Future Possible Cost Drivers to Model 

All available and acceptable root cost drivers and associated cost drivers are gathered 

as Table 4-5. They are used for cost model to estimate the cost.  

 

4.3.3.7 Effect of Causal-Associated Method 

A Causal-Associated method helps consider all factors and avoid missing some cost 

drivers. This can help reduce the bias and improve the degree of estimating accuracy. 

When using associated cost drivers to represent some root cost drivers, the assumptions 

and preconditions will be easily obtained.  

This Causal-Associated method is different with the traditional method. The 

traditional methods identify potential cost drivers from references found in the literature 

and experience. After these potential cost drivers are grouped and reviewed, the candidate 

cost drivers are then determined using statistical analysis based on the data or expert 
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survey. This method cannot guarantee the completeness and correctness of cost drivers. It 

selects cost drivers from the existing literatures and experience. And it only considers 

available information and cannot provide assumptions and preconditions for cost 

estimation as the Causal-Associated method. The CA method not only reduces the chance 

of missing data, but it also provides a way to analyze the assumptions and preconditions 

of cost estimation. 

 

Table 4-5 Final Cost Drivers of an AC motor 

Availale Root Cost Drivers

the weight of cast iron (for Housing) the weight of Integral epoxy powder the weight of Cold-Rolled Steel (CRS)

the weight of Cast Iron (for End Frame) the number of bearing the length of leading wire

the number of studs the number of screws the number of terminals

the weight of varnish the weight of coolant the weight of Zinc phosphate

the weight of Spent solvent the area of Acetone-wetted cloth the weight of paint solid

the paint of liquid the number of setups of CNC (Housing) the number of setups of CNC (End Frame)

Stator Laminations Annealing time Rator Laminations Annealing time CNC Swiss turning Machining time (Shaft)

Shaft Hardening Time Varnish Impregnation Process Time Labor Cost per Unit time (Direct)

Labor Cost per Unit time (Support) Machine Cost per Unit Length Unit Cost for design (other)

Cost per pound (cast iron) for Housing Cost per pound (cast iron) for End Frame Cost per pound (Integral epoxy powder)

Cost per pound (Steel Sheet) for Laminations Cost per pound (CRS) for Shafts Cost per unit Length (Leading Wire)

Unit Cost for studs (particular specification) Unit Cost for screw (particular specification) Unit Cost for terminates (particular specification)

Cost per pound (varnish) Cost per pound (adhesive) Cost per pound (coolant)

Cost per pound (Zinc phosphate) Cost per pound (Spent solvent) Cost per square feet (Acetone-wetted cloth)

Cost per pound (Paint liquids) Labor Cost per Unit Length (CNC machine) Cost per Unit Length (CNC machine)

Cost per Setup (CNC machine) Labor Cost per Unit Time (Wound) Cost per Unit Time (Machine for Wound Lacing)

Unit Cost per Laminations Cost per Unit Time (Annealing) Cost per Unit Time (CNC Swiss Turning)

 Labor Cost per Unit Time (CNC Swiss Turning) Labor Cost per Unit Time (General) Labor Cost per Unit Time (Support)

Price Index Quantity Learning Factors

Available Associated Cost Drivers

Voltage Frequency Temperature

Power (output) Effiency Speed

Winding density Factor Operating conditions Torque

Vibration Temperature Shock-impact Loads

Design Institute (Experience Tools) Management Efficiency of Manufacturer Specific Requirements

Design Labor Unit Cost for Other Product Labor Unit Cost for Other Product
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4.3.4 Selection of Cost Drivers 

4.3.4.1 Description of the Problem  

For simplifying the problem and illustrating the method of selection of cost drivers, 

the wound stator core of the AC motor was taken as the subject of the case study 

developed in this research. The wound stator core is assumed there are 15 available and 

acceptable possible cost drivers at the current stage: Horse Power (HP); Speed (SPEED); 

Efficiency (EFF); Quantity (QUAN); Machine Cost per Unit (MCU); Setup Cost per 

Unit( SCU); Labor Cost per Unit (LCU); Design Labor Cost per Unit (LCUD); the 

Number of Setups (STs); Design Time (DT); Material 1 Cost (MC1); Material 2 Cost 

(MC2); Material 3 Cost (MC3); Material 1 Weight (MW1); Material 2 Weight (MW2). 

Secondly, for verifying Tabu-Stepwise cost driver selection based on SVR, five noise 

variables are added into the motor: V1, V2, V3, V4, and V5. 

Some of the data for this study come from the public resources. The others were 

artificially generated according to motor cost properties based on manufacturing 

processes.  

 

4.3.4.2  Method for Selection of Cost Drivers for Wound Stator Core 

The methods of variable selection have been extensively studied in linear models. For 

complex products during the early design phases, these selection methods would not have 

good performance if there were nonlinear relationships between cost drivers and cost or 

there were no knowledge about function form.  

Support Vector Regression (SVR) for cost estimates is a good method to deal with the 

above situation. The cost model based on Tabu-SVR is presented and discussed in 

Chapter 5. Based on Tabu-SVR, this study proposed a hybrid approach, Tabu-Stepwise, 

to select cost drivers. The Tabu-Stepwise algorithm employs Tabu-SVR to find the 

appropriate parameters via 5-fold cross validation, and use a stepwise search along with a 

tabu list in the searching process to find the better subset with less calculation time. The 

tabu list would record a number of history steps and reduce the chance of repeated 

calculation. This reduces computation time to a third of its original value.  
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4.3.4.3 Results and Analysis 

Using SAS, based on Adjusted R-Square selection, twelve cost drivers were selected 

from the original set of cost driver. They are listed as follows (see Table 4-6): 

– HP; QUAN; MCU; SCU; LCU; LCUD; STS; DT; MC1; MC3; MW1; MW2 

Using SAS, based on Cp selection, ten cost drivers were selected as Table 4-6. 

– HP; SPEED; SCU; LCU; LCUD; STS; DT; MC1; MW1; MW2 

 

Table 4-6 The Results of Adjusted R-square and Cp 
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T

s

D

T

M

C

1

M

C

2

M

C

3

M

W

1

M

W

2

Adjust-R √ √ √ √ √ √ √ √ √ √ √ √

Cp √ √ √ √ √ √ √ √ √ √  

 

The proposed search methodology starts the search for the best set of cost drivers 

using the initial set of cost drivers provided by the best result of Adjusted R-square and 

Cp method along with the first variable(see Appendix B). The Table 4-7 lists the partial 

results based on SVR, when the starting point was the result of Adjusted R-square. The 

Table 4-8 lists the partial results based on SVR, when the starting point was the result of 

Cp. A third starting point was considered where the first variable identified in both 

methods was considered (see Appendix B). Different starting points have different results. 

The best subset of cost drivers to estimate cost is the result with the smallest Mean 

Square Error via 5- fold Cross Validation (CV-MSE). 
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Table 4-7 The Partial Searching Results Based on SVR (Starting Point: the Result of 

Adjusted R-square) 

Index*
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2  C**  CV-MSE***

30713 √ √ √ √ √ √ √ √ √ √ √ √ 0.052811 7.77E+08 567.720 1.175E+09

30712 √ √ √ √ √ √ √ √ √ √ √ 0.023797 6.38E+08 1644.441 1.375E+09

30715 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.010689 6.22E+08 425.652 1.553E+09

30711 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.022399 2.51E+08 6553.866 1.491E+09

30703 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.021285 4.00E+08 1396.906 1.196E+09

30687 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.012904 9.96E+08 4678.882 1.245E+09

30655 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.020879 6.00E+08 446.637 1.331E+09

30591 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.005587 4.96E+08 260.615 1.392E+09

30463 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.008514 2.24E+08 3904.206 1.507E+09

30207 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.006466 5.89E+08 54.954 1.584E+09

29695 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.018772 2.74E+08 73.349 1.494E+09

30719 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.018574 5.06E+08 23.575 1.343E+09

32767 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.016341 7.02E+08 1397.497 1.218E+09

28671 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.024208 3.35E+08 38.647 7.613E+08 ←  

Note: 

* index means a unique integer representing the set of cost drivers. 

** , C, are the SVR parameters. Their value were found by Tabu-SVR via 5-fold cross validation. 

***CV-MSE is the performance criterion using Mean Square Error (MSE) via 5-fold Cross Validation (CV). 

 

Table 4-8 The Partial Searching Results Based on SVR (Starting Point: the Result of Cp) 

Index*
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2  C**  CV-MSE***

26595 √ √ √ √ √ √ √ √ √ √ 0.044072 9.78E+08 716.035 5.800E+08 ←

26594 √ √ √ √ √ √ √ √ √ 0.030207 6.63E+08 270.934 6.935E+08

26593 √ √ √ √ √ √ √ √ √ 0.052748 9.57E+08 98.415 7.566E+08

26599 √ √ √ √ √ √ √ √ √ √ √ 0.029658 9.38E+08 42.097 7.639E+08

26607 √ √ √ √ √ √ √ √ √ √ √ √ 0.050608 9.61E+08 250.935 7.325E+08

26591 √ √ √ √ √ √ √ √ √ √ √ √ 0.011578 7.04E+08 1562.584 8.546E+08

26559 √ √ √ √ √ √ √ √ √ √ √ √ 0.011213 7.60E+08 93.500 8.645E+08

26495 √ √ √ √ √ √ √ √ √ √ √ √ 0.012671 8.03E+08 304.639 9.839E+08

26367 √ √ √ √ √ √ √ √ √ √ √ √ 0.030614 9.16E+08 22.182 9.122E+08

26111 √ √ √ √ √ √ √ √ √ √ √ √ 0.038852 8.57E+08 107.224 1.046E+09

25599 √ √ √ √ √ √ √ √ √ √ √ √ 0.036888 5.88E+08 154.114 6.522E+08

26623 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.024645 5.96E+08 420.363 7.360E+08

32767 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.016341 7.02E+08 1397.497 1.218E+09

28671 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.014945 5.97E+08 1026.168 7.303E+08  

Note: 

* index; ** , C, ***CV-MSE have same meanings as Table 4-7. 

 

As the results indicated in Table 4-9, the partial searching results based on SVR are 

better than above results in this case. 
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Table 4-9 The Partial Searching Results Based on SVR (Starting point: First Variable) 
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2  C**  CV-MSE***

1 √ 4.3879513 7.06E+08 10132.145 2.003E+09

7 √ √ √ 4.7479872 3.39E+07 2459.6004 2.507E+08  

Note: 

* index; ** , C, ***CV-MSE have same meanings as Table 4-7. 

 

The final cost driver subset is: 

– Horse Power (HP); Speed (SPEED); Efficiency (EFF);  

The eliminated cost drivers: 

– Quantity (QUAN); Machine Cost per Unit (MCU); Material 2 Cost (MC2); 

Material 3 Cost (MC3); Setup Cost per Unit( SCU); Labor Cost per Unit 

(LCU); Design Labor Cost per Unit (LCUD); the Number of Setups (STs); 

Design Time (DT); Material 1 Cost (MC1); Material 1 Weight (MW1); 

Material 2 Weight (MW2); 

This subset has the smallest MSE, which means it has the smallest predicting error. 

 

For verifying the Tabu-Stepwise selection, five variables were added into the subset 

to create noise. The same three starting points were used: the result of Adjusted R-square; 

the result of Cp; and the first variable (see Appendix B). The result of Adjusted R-square 

introduced one noise variable (V5). The Tabu-Stepwise did not eliminate it. However, the 

result set of cost drivers after the search is better over the original set as shown in Table 

4-10. The Cp method is better as it does not select any noise variables. Tabu-stepwise 

reduces the CV-MSE results via reselecting the cost drivers (Table 4-11). In Table 4-12, 

the best result is still same as the no-noise variables discussed before. As before, starting 

with the only one variable eliminates all noise variables and gets the best subset of cost 

drivers with smallest CV-MSE. 

Therefore, the best subset including five noise variables is:  

– Horse Power (HP); Speed (SPEED); Efficiency (EFF);  
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Table 4-10 The Partial Searching Results Based on SVR (Starting Point: the Result of 

Adjusted R-square with 5 Noise Variables) 
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5  C**  CV-MSE***

554985 √ √ √ √ √ √ √ √ √ √ √ √ 0.018856 6.25E+08 140.159 1.428E+09

554984 √ √ √ √ √ √ √ √ √ √ √ 0.039944 5.88E+08 113.409 1.241E+09

554983 √ √ √ √ √ √ √ √ √ √ √ √ √ 0.026018 5.74E+08 523.340 1.314E+09

554975 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.014438 6.49E+08 4203.534 1.224E+09

552959 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 0.019056 4.29E+08 617.508 1.178E+09 ←  

Note: 

* index; ** , C, ***CV-MSE have same meanings as Table 4-7. 

 

Table 4-11 The Partial Searching Results Based on SVR (Starting Point: the Result of Cp 

with 5 Noise Variables) 
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5  C**  CV-MSE***

26521 √ √ √ √ √ √ √ √ √ 0.036593 7.48E+08 233.552 6.619E+08

26520 √ √ √ √ √ √ √ √ 0.033536 9.91E+08 1823.965 6.419E+08

26511 √ √ √ √ √ √ √ √ √ √ 0.021391 7.04E+08 766.690 6.379E+08 ←

25599 √ √ √ √ √ √ √ √ √ √ √ √ 0.039823 6.37E+08 558.234 7.161E+08  

Note: 

* index; ** , C, ***CV-MSE have same meanings as Table 4-7. 

 

Table 4-12 The Partial Searching Results Based on SVR (Starting Point: First Variable 

with 5 Noise Variables) 
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5  C**  CV-MSE***

1 √ 4.387951 7.06E+08 10132.145 2.003E+09

7 √ √ √ 4.747987 3.39E+07 2459.600 2.507E+08 ←  

Note: 

* index; ** , C, ***CV-MSE have same meanings as Table 4-7. 

 

4.3.4.4 Effects of Selection of Cost Drivers 

Tabu-stepwise selecting method based on Tabu-SVR improves the accuracy of the 

cost estimating prediction by eliminating irrelevant variables, and it reduces expenditure 

of the collection, storage, and computation load in the process of cost estimation. Also 

the Tabu-Stepwise selection method based on Tabu-SVR can identify the nonlinear 
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correlations among cost drivers and find the nonlinear relationships between cost drivers 

and cost. It makes selection of cost drivers feasible and effective under nonlinear 

conditions. 

 

4.3.5 Summary of Case Study 

This case study illustrates the feasibility and the procedure of Causal-Associated 

method for identifying the cost drivers. From this case study, it is seen that the Causal-

Associated method helps reduce the chance of missing some cost drivers. This can reduce 

the bias and improve the degree of estimating accuracy. When using associated cost 

drivers to represent some root cost drivers, the assumptions and preconditions can be 

identified. The Tabu-Stepwise selecting method, based on Tabu-SVR, was used to select 

the cost drivers of wound stator core. The test data shows it improves the accuracy of the 

cost estimating prediction by eliminating irrelevant variables, and it reduces expenditure 

of the collection, storage, and computation load in the process of cost estimation. 
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Chapter 5 Cost Estimating Nonparametric Approach Based on 

Support Vector Regression 

Support Vector Machine (SVM) is widely used in signal processing, pattern analysis, 

data classification, facial expression classification, text analysis. Additionally it has been 

applied to several financial applications. No literature on the application of SVM for cost 

modeling was found. This research focuses on the application of SVR for cost estimation 

in the early design phases of complex products and comparison among SVR and other 

traditional cost estimating methods. 

The objective of this chapter is to present the cost estimating nonparametric approach 

based on support vector regression (SVR) and to test the applicability of support vector 

regression for cost estimation during design stage of a product. The performance of SVR 

is compared with conventional methods: linear regression, neural networks, case-based 

reasoning. This chapter firstly presents how to apply support vector regression in cost 

estimating area. Next how the test data (data sets) are created under the simulated and 

pilot scenarios is explained. Thirdly the application of support vector regression in cost 

estimation is investigated to see the influence of the selection of appropriate parameters 

and the choice of kernel function. Finally, the performance of Tabu-SVR, when kernel 

respectively is the polynomial and radial basis function, is compared with those of other 

traditional cost estimating methods: regression, case-based reasoning, and neural network. 

 

5.1 The Cost Estimating Nonparametric Approach Based on SVR 

The nonparametric approach based on SVR estimates cost using Equation (5-1). The 

nonlinear input space is mapped to the linear feature space with high dimensions by x). 

Vapnik [75] proposed the structure risk minimization principle to minimize the upper 

bound of the generalization error. The coefficient w and b of Equation (5-1) are estimated 

by minimizing the regularized risk function under the constraints (see Problem 5-2). The 

Primal Problem (5-2) can be transformed to its Dual Problem (5-3) with its constraints. 

The Dual Problem (5-3) is a quadratic optimization problem, which has a global optimal 

solution. After solving this quadratic optimization problem, the final nonparametric 
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function can be expressed by Equation (5-4). The i  and *

i  are the solutions of 

optimization problem. Parameter b is a by-product of the optimization process [76]. The 

kernel function is defined as )(),(),( ii xxxxk  . For additional information on SVR, 

see Section 2.5.2. 
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The root mean square error (RMSE) of prediction and accuracy degree are commonly 

used as generalization criterion between measured and predicted values. Also they can be 

used as performance criterion of the models. The RMSE of prediction value is defined by 

Equation (5-5). 
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where iŷ  and iy  denote the predicted value and the measured value and l is the number 

of points. 

And accuracy degree is equal to (1 - Mean Absolute Relative Error (MARE)), where 

MARE can be defined as (5-6): 
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For a cost estimating nonparametric approach based on SVR, there are four steps to 

get the final cost: 

1. Data Preprocessing (Section 5.1.1) 

2. Choosing the kernel and parameters (Section 5.1.2) 

3. Training the SVR (Section 5.1.3) 

4. Computing the final cost using the SVR model and the input (Section 5.1.3). 

These steps are discussed in detail in the next three sections.  

 

5.1.1  Data Preprocessing 

The original data are scaled into the range of (0, 1). The goal of linear scaling is to 

independently normalize each cost drivers to the specified range. It avoids the larger 

value input variables dominate smaller values inputs and avoids numerical difficulties 

during the calculation. This hence reduces prediction errors. 

The whole data set is divided into two parts: a training data set and a test data set. The 

training data is firstly used to choose a kernel and parameters via cross-validation (the 

idea is to split the data into two parts, to train on one part and then to test the accuracy of 

the predictor on the rest of data). The training data can then be used to determine i  ; *

i  

and b in Equation (5-4) via solving the optimization Problem (5-3). The test data is for 

the verification purposes. 

 

5.1.2  Choosing Kernel and Corresponding Parameters via Tabu-Search  

In the SVR algorithm, the kernel function, its parameters, and two SVR training 

parameters (C, and ε) for ε-insensitive loss function play a key role in the SVR 

performance. Parameter C is the trade off between model complexity (flatness) and the 

degree of deviations allowed in the optimization formulation. Parameter  controls the 

width of the -insensitive zone, which affects the number of support vectors used to 

construct the regression function. The kernel function represents the mapping instrument 

that is necessary to transform the non-linear input space to a high-dimensional feature 

space where linear regression is possible. The mapping depends on the intrinsic 
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topological structure of the data and application-domain knowledge. It implies that the 

kernel type and all parameters need be optimally chosen to get the best performance. 

However, there are no structural methods for determining efficiently the selection of 

kernel and all parameters. Moreover, because C and -values affect the model in a 

different way and kernel parameters and C are dependent, the kernel function and all 

parameters cannot be chosen separately. Three different kernel functions are often found 

in the literature associated mapping process. Therefore, the following method (Figure 5-1) 

is used to choose the appropriate kernel and all parameters to get the solution. 

Application-Domain 

Knowledge?

Linear Kernel Polynomial Kernel Linear KernelRBF Kernel

Find the 

best 

parameters 

(C, ) using 

search 

algorithm 

via cross-

validation

Find the best 

parameters 

(C, , d) 

using search 

algorithm via 

cross-

validation

Find the 

best 

parameters 

(C, ) 

using 

search 

algorithm 

via cross-

validation

Compare among all alternatives

Obtain the most appropriate kernel and parameters

unknown

 

Figure 5-1 The Method to Choose Kernel and Parameters 

If the intrinsic topological structure of the data and application-domain knowledge is 

known, the particular kernel would be chosen. The parameters are determined based on a 
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tabu search algorithm. The performance obtained by the cross-validation procedure is 

criterion to choose the parameters. 

Otherwise, there are generally three types of kernel (linear kernel, polynomial kernel, 

and radial basis function (RBF) kernel). The better parameters of each kernel can be 

chosen through the cross-validation procedure. Then after comparison with performance 

of all kinds of kernel with the chosen parameters, the most appropriate kernel and 

corresponding parameters are obtained. This study focused on which kernel in these three 

kernel functions had better performance in the cost estimating area. 

The following procedure is for choosing parameters based on RBF kernel. The 

procedure for other kernel functions is same.  

For RBF kernel, , C,  play an important role on the generalization performance of 

SVR. The proposed search algorithm combines the empirical study [83] and a tabu search 

algorithm. The starting point is based on the training data. Cherkassky and Ma [83] 

proposed that C values should be based on the training data without resulting in re-

sampling using the following estimation:  

 )3,3max( yy yyC     (5-7) 

where y and ζy are the mean and standard deviation of the y values of the training data. 

Using the idea of Central Limit Theorem, they proposed that ε be given by: 
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where p is the standard deviation of the input noise and l is the number of training 

samples. Since the value of p is not known beforehand, the following equation can be use 

to estimate p using the idea of k-nearest-neighbor method: 
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where l is the number of training samples, k is the low-bias/high variance estimators, and 

ŷ  is the predicted value of y by fitting a linear regression to the training data to estimate 

the noise variance. 

And is set to d 
~ (0.1-0.5) where all d cost drivers are pre-scaled to [0, 1]. 

The degree of dimensions is given by d. 
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The kernel function and all parameters would be put into Problem (5-3). The 

Equation (5-4) is used to predict the value of yi corresponding to the sample xi. The 

predictive capability of a set of given parameters (C1, ) (the starting point) is 

evaluated using the RMSE defined as Equation (5-5). 

 

Tabu search is a memory-based stochastic optimization algorithm [74, 88, 89], 

modified for SVR as follows: 

Step 1:   Define the starting point (C1,) based on empirical study (Equations 

5-7, 5-8, 5-9) as current point; initialize the best point (C*,),  the 

tabu list, the ranges of C,  and  ; setup the number of neighbor points, 

the parameters for aspiration criterion, diversification, intensification, 

and  termination criterion. 

Step 2:   Generate set of neighbor points based on current point according to 

neighbor generating policy; compute RMSE of the neighbor points via 

10-fold cross validation. 

Step 3:   Choose the best neighbor (C', ''), which is not in the tabu list or does 

not satisfied aspiration criterion. 

Step 4:   Replace the best point (C*,) with (C', '') if RMSE of (C', '') is 

less than RMSE of (C*,). 

Step 5:   Go to Step 2, if termination criterion is not satisfied, define (C', '') as 

current point and update tabu list; or go to Step 6. 

Step 6:  Terminate and output the best point (C*,**). 

 

For the tabu search algorithm, the procedure of tabu search is almost the same. 

However the policy of defining neighborhood, the structure of tabu list, the strategies of 

intensification and diversification, and the criteria of aspiration and termination 

determine the performance of tabu search. These six elements of tabu search are defined 

as follows:  

 Neighborhood Definition: 

The neighborhood structure is very important to the efficiency of TABU 

SEARCH algorithm. Three sets of neighborhood points (see Figure 5-2) are 
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separately produced according to corresponding generating policy. This policy 

can help explore most of the space and finally converges to the global 

optimum. 

 

texttext5%

5%

15%

1/3 

points

1/3 

points

1/3 

points

 

Figure 5-2 The Neighborhood Definition 

 

First Neighborhood: 

  /025.0  hRXY  (5-10) 

where X is the current value, R is a random parameter out of the interval of [-1, 

1], h is the range of current variable,  is defined as:  

 ))
3/

sin(1(5.0
N

i 



  (5-11) 

where i is the index of the neighbor points, N is the total number of neighbor 

points generated at each iteration;  is used to control the oscillation period of 

makes the generated randomized first-neighbors much closer center 

on the current solution. The sine function explores the closer promising area 

better.  is defined as:  

 iterM

n

)10(


  (5-12) 
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where M is the total number of iterations, n measures the complexity of the 

optimization problem, which is set between 1 and 2, iter is the current number 

of iterations. is shrink factor, which shrinks as the number of iteration 

increases.  Another shrink variable is defined as (5-13): 

  10  (5-13) 

where is a frequency index. If the search visits one area frequently, the 

possibility that this area would include a promising solution would be much 

higher than other areas. Using can more accurately explore this area. , the 

frequency index is associated with the hit frequency.  

The purpose of three parameters is to implement intensification 

strategies via generating continuous neighborhood points and to provide more 

precise final solutions. 

 

Second Neighborhood: 

  /075.0  hRXY  (5-14) 

R, h, are same as previous definition.  

 

Third Neighborhood: 

 hRLowerBoundCurrentY  _  (5-15) 

R is a random parameter out of the interval of [0, 1], h is the range of current 

variable.  

 

 Tabu List: 

 A tabu list illustrated in Figure 5-3 stores solutions that have recently 

been selected, which are used to escape from being recycled. The tabu list is 

based on two ideas: recency-based and frequency-based. The recently-based 

tabu list stores the most recently visited points and prohibits revisiting 

unpromising points for a specified number of iterations. The frequency-based 

tabu list is used to record history and hit frequency of the search area.  
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Figure 5-3 The Structure of Tabu List  

 

 Intensification: 

Intensification strategies help tabu search explore specific areas more 

thoroughly. This study employs two strategies to intensify the search: 

 Generating policy of three neighborhood points.   

 Frequency-based shrink variable  shrink factor which dynamically 

decreases the search space for each variable.  

 

 Aspiration Criterion 

For a broadly diversified search, the aspiration criterion allows tabu search 

to override the tabu property when the equation (5-16) satisfies certain 

conditions .  
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where k is the current iteration number and kcenter determines at which point, f(k) 

= 0.5. A uniform random number P ( 0 ≤ P ≤ 1), is generated at each iteration. 

If P is less than or equal to f(k) , the tabu property is overridden; or the best 

non-tabu point in the neighbor space is used as a new starting point.  

 

 Diversification Strategies: 

For ensuring all areas of the search space have been adequately explored, 

there are following three strategies to diversify the search: 
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 Escape strategy based on tabu-list frequency,  

 Aspiration criterion, and 

 Generating policy of three neighborhood points 

 

 Termination Criterion: 

The stopping conditions for the three processes are defined as follows: 

 The program will stop after a given number of iterations without any 

improvement on the value of the objective function as (5-17): 
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where k is the current number of iterations,  is a given number of 

iterations, is a pre-defined value of the objective function. 

 The search procedure will stop after a pre-defined maximum number 

of iterations. 

   

5.1.3  Training the SVR and Computing the Final Cost 

After obtaining the kernel and all parameters, the following (Equation 5-3) can be 

solved to get an optimal solutions ( i  ; *

i  and b) using the training data set.  
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Using these i , *

i  and b and corresponding historical data points along with the 

kernel function, the cost of any inputs can be calculated via Equation 5-4 as follows: 
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5.2  Test Cases 

Cost data of a real product in a company or organization are often confidential. It is 

hard to find the real cost data of a complex product to verify and validate the proposed 

model in this study. Even though there are small data sets in literature, the amount of 

these small cost data are too small to test performance of the proposed cost estimating 

approach. Therefore, this study provided two types of test data, simulated test data and 

pilot test data, to verify and validate the proposed cost estimating approach. The 

simulated test data come from the summarized common basic cost characteristics. The 

pilot test data are produced by the cost module (engine part) of Flight Optimization 

Systems (FLOPS). Section 5.2.1 and Section 5.2.2 will discuss these types of test data 

further. 

 

5.2.1  Simulated Data Sets Based on Common Basic Cost Characteristics 

This section first summarizes common basic cost characteristics based on literatures. 

These common basic cost characteristics are then expressed by mathematical functions. 

Combining the mathematical functions and following the general rules, the formulas are 

constructed to produce test data for the future verification and validation. 

 

5.2.1.1  Common Basic Cost Characteristics 

Complex products have complex designs and complex manufacturing processes and 

thus cost estimation is not an easy task. The relationships between cost and its cost 

drivers are complex and often include nonlinear relationships and may be very hard to 

define in some cases. Here, common basic cost characteristics are summarized as 

following to form the test cases (data sets). These test cases would be used to test cost 

modeling techniques. 

As mentioned in previous chapters, the cost can be broken down into cost 

components illustrated in Figure 5-4. Therefore, for complex products, the first basic 

characteristic of cost is accumulation. Cost of a complex product can always be expressed 
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as the sum of all cost components (Equation 5-18) via appropriate cost breakdown 

structure.  

CnCCC  21  (5-18) 

 

Cost

Cost1 Cost2 Costn

 

Figure 5-4 Cost Breakdown Structure 

The second basic characteristic of cost can be expressed by linear function (5-19): 

 baxC   (5-19) 

This is very common characteristic in cost estimating area. For example, the labor 

cost (C) can approximately equal variable cost plus fixed cost under some condition. 

Here, fixed cost is, the intercept b and a can be expressed by unit cost per time, the cost 

driver x is the time length.  

 

The third basic characteristic of cost can be expressed by power function (5-20): 

 2

1

a
xaC   (5-20) 

 

Figure 5-5 The Power Relation ([90]) 
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The power function can normalize cost for learning curve theory or structural size. 

Under the assumptions of learning, the unit cost of production decreases as the quantity 

increase, and the rate of decrease typically decreases as the number of units increases. For 

example (Figure 5-5), C is cost of x
th

 unit, a1 is the cost of the first unit produced, a2 is a 

parameter measuring the rate labor hours are reduced as cumulative output increases, and 

quantity x is cost driver. In the area of aerospace, the weight-size cost also can be 

expressed as the power function (5-3). The cost driver x is the weight or size, a1 is the 

cost of the theoretical first pound cost, a2 is a parameter measuring the amount costs 

decrease with respect to the weight (size). 

 

The fourth basic characteristic of cost can be expressed by step functions (5-21): 

 )(1 xfaC   (5-21) 

where ,Rai   f(x)=1 if ),[ 32 aax  and 0 otherwise, i=1,2,3. Generally, the step function 

is combined with other functions to express cost. For example, the cost in semiconductor 

industry has typical associated cost curve in Figure 5-6. The cost driver here is one 

measurement of product performance. The contribution of technology breakthrough 

would make one manufacturing cost curve with corresponding performance shift to 

another curve. This situation can be expressed by a step function with other 

characteristics.  

 

Figure 5-6 The Cost Expressed by the Combination of Step and Other Functions [91] 
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The fifth basic characteristic of cost is an exponential function (5-22), which does an 

excellent job of normalizing cost for temporal effects such as inflation and technology 

escalation. The exponential functions often combine with other function to express cost. 

 
xa

eaC 2

1  (5-22) 

In summary, there are five above basic cost characteristics often combined to use in 

cost modeling: accumulation; linear function; power function; step function; and 

exponential function. The cost of complex product can be expressed by these five 

characteristics. For example, Figure 5-7 shows typical cost curve on time, which at least 

includes linear, power, step function. Based on these five common basic cost 

characteristics and general combining rules, the six simulated formula are constructed to 

produce test data in Section 5.2.1.2.  

 

 

Figure 5-7 Typical Cost Curve on Time [90] 

5.2.1.2 Six Formulas for Producing Simulated Test Cases (Data Sets)  

Following the common cost modeling mathematical expression and based on above 

common basic cost characteristics, the following six formulas are constructed for 

producing test cases (data sets). The formulas have five to six cost drivers to represent 
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multiple inputs. Step function and exponential function could not express cost only by 

themselves.  

 

Linear Function with five cost drivers is as (5-23): 

 
54321 200100300150250500 xxxxxC   (5-23)  

The range of xi is 0 to 1. A noise component is also added in Equation (5-23) (coefficient 

of variation, c.v. = =0.05).  

 

The Linear-Step Function (5-24) with five cost drivers is as (5-24): 
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The range of xi is 0 to 1. A noise component is also added in each cost drivers (coefficient 

of variation, c.v. = =0.03).  

 

The Power Function with five cost drivers is as (5-25): 
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The range of xi is 0 to 1. A noise component is also added in each cost drivers (coefficient 

of variation, c.v. = =0.03).  

 

The Linear-Power Function with five cost drivers is as (5-26): 
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The range of xi is 0 to 1. A noise component is also added in each cost drivers (coefficient 

of variation, c.v. = =0.03).  

 

The Power-Step Function with five cost drivers is as (5-27): 
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The range of xi is 0 to 1. A noise component is also added in each cost drivers (coefficient 

of variation, c.v. = =0.03).  

 

The Linear-Power-Step Function with six cost drivers is as (5-28): 
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The range of xi was 0 to 1. A noise component is also added in each cost drivers 

(coefficient of variation, c.v. = =0.03).  

 

In a summary, the above formulas are listed in Table 5-1. They would produce test 

cases to examine the performance of the cost estimating techniques.  

 

Table 5-1 Six Formulas to Produce Test Cases (Data Sets) 
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5.2.2  Pilot Data Set from a Real Detailed Cost Model 

Detailed cost models or some commercial parametric cost model have incorporated 

knowledge about cost breakdown structure (CBS) and functional relationship. These cost 

models can be used as a generator of data to produce pilot data. These data can be applied 

to test the performance of other tested cost models when these tested models do not have 

enough knowledge about CBS and/or functional relationship. For the tested cost model in 

this section, given the subset of cost drivers, it could be assumed that there is no 

knowledge about CBS and the functional form. The pilot data by the commercial 

parametric cost model are employed to choose kernel function and hyper parameters of 

SVR, to test the robustness of SVR, and to compare the performance between the 

proposal cost estimating method based on SVR and other existing methods.  

An available cost model was chosen, which is associated with the cost for aircraft 

engines [5, 6, 92]. The model for the cost of subsonic engine research, development, test, 

evaluation (RDT&E) and production is a function of the maximum thrust of the engine at 

sea-level static conditions, weight, specific fuel consumption at sea-level static, turbine 

inlet temperature, and a pressure term.  

Five input variables were chosen for cost drivers. They are WTS_25, NENG, 

THRMAX, SMACH, QMAX. WTS_25 is total weight of engines. It is assumed between 

10,000 lbs and 70,000lbs. NENG is the number of engines per aircraft. In this example, 

NENG is set 2 or 4. THRMAX is the maximum thrust per engine ranging from 20,000 lbs 

to 90,000 lbs. SMACH is the maximum Mach number at best altitude and ranges between 

0.7 Mach and 1 Mach. QMAX is the maximum dynamic pressure ranging from 200 lb/ft
2
 

to 600 lb/ft
2
. All data based on these five variables were randomly and uniformly 

produced in their range and input to the FLOPS cost module (engine part) [6] while other 

input variables were held constant default value (See Figure 5-8). The FLOPS cost 

module [6] was originally developed using FORTRAN. For this study, the FLOPS cost 

module was converted to EXCEL, which was then verified using the data from Johnson‟s 

dissertation [5].  

Then all variables are scaled to [0, 1] using following formula (5-29) as: 

 The transformed value = (current value – minimum)/(maximum-minimum) (5-29) 
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The above linear scaling independently normalizes each input variable to the 

specified range [0, 1]. It would avoid larger value input variables overwhelm smaller 

value inputs and avoid numerical difficulties during the calculation to hence help reduce 

prediction errors [93].  

The EXCEL Tool 

(FLOPS Cost 

Module)

WTS_25

NENG

THRMAX

SMACH

QMAX

Other Input 

Variables

Cost Drivers

Engine Cost

[10,000 lbs, 70,000 lbs]

{2, 4}

[20,000 lbs, 90,000lbs]

[0.7 Mach, 1 Mach]

[200 lb/ft
2
, 600 lb/ft

2
]

default

 

Figure 5-8 The Pilot Data Produced by an EXCEL Tool (FLOPS COST Module) 

 

5.2.3  The Method to Produce Data Set 

The six formulas in Section 5.2.1 randomly produced 120 points. The EXCEL tool 

developed for simulating FLOPS cost module also randomly generated 120 points in the 

ranges of five cost drivers. These data points were first scaled using Equation 5-29. The 

first 60 points were used for training data. Two groups (each 30 points) were used as test 

data sets. The training data set and one test data set are used in the study of choice of 

hyper parameters and kernels for SVR and comparison of performance. The second test 

data set and the training data along with first test data were used to study the robustness 

of SVR to the sample data. 

 

5.3 Experiments  

5.3.1 Implementation of Methods for Experiments 

In experiments, it is assumed that there is no apriori knowledge about the cost 

breakdown structure and the functional relationship. Support vector regression, 

parametric method, neural network and case-based reasoning are respectively used to 
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build cost models and make a comparison. The root mean square error (RMSE, see 

Equation 5-5) and accuracy degree (1-MARE, see Equation 5-6) are the performance 

criterion of the models.  

 

5.3.1.1  Support Vector Regression and Support Vector Regression with Tabu 

Search Algorithm  

For support vector regression, the details are presented in previous chapter. The 

parameters of SVR were calculated according to empirical study [83]. This method of 

choosing parameters is called SVR for comparison purposes. The parameters were 

obtained via tabu search algorithm developed in C++. This method of choosing 

parameters is called Tabu-SVR. The experiments of support vector regression were 

performed through the program developed by the author using C++ and CPLEX (Figure 

5-9, also see Appendix A).   

 

 

Figure 5-9 The Software Framework of Tabu-SVR 

Read File
Convert Data with 

Kernal 

Quadratic 

Programming Solver

(CPLEX Concert 

Technology)

Kernel 

Function

Hyper 

Parameters

Cross-

Validation

Performance

Tabu Search 

Algorithm

Empirical Study 

for Initial Point

Model
Data File

Data

 

  



  





l

i

iiii

ii

l

ji

l

i

l

i

iiijijjii

CandtS

yxxk

1

**

*

1, 1 1

***

,0,0)(..

)()(),())((
2

1
max





      bxxkααxf
N

i

iii 
1

* ,



 104 

5.3.1.2 Parametric Method (Linear and Log-Linear) 

In applying the parametric method, the following cost estimating relationship 

(CER)(5-30) of these five independent variables is used to estimate cost, 

 55443322110 xxxxxC    (5-30) 

In the general CER given by Dean[23], another common CER can be obtained by the 

logarithm transformation in both sides (5-31): 

55443322110 lnlnlnlnln)ln( xxxxxC    (5-31) 

 

5.3.1.3  Neural Networks 

Two types of neural network were tested. The first type of neural networks is feed-

forward back propagation (NN1) (see Figure 5-10). It has two layers. Five neurons are in 

the first layer and one neuron is in the second layer (output layer). The transfer function 

in the first layer is hyperbolic tangent sigmoid. The transfer function in the second 

function is linear. 

 

Figure 5-10 Feed-Forward Backpropagation Neural Networks (NN1)1
 

 

The second type of neural network (NN2) is radial basis networks which consist of 

two layers: a hidden radial basis layer and an output linear layer of neurons (see Figure 5-

11). The network has the number of neurons same as the number of historical data points, 

which can produce a network with zero error on training vectors. Hence thirty hidden 

neurons are in the first layer and one neuron is in the second layer.  

                                                 
1
 For Data Sets which have five cost drivers and are associated with a cost function, such as Linear, Power, 

Power-Step, Linear-Power, Linear-Step, but not with Linear-Power-Step cost function 
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The experiments of these two types of neural networks (NN1 and NN2) are 

performed using Matlab 7.1. 

 

 

Figure 5-11 Radial Basis Neural Networks (NN2)
1
 

 

5.3.1.4  Case-Based Reasoning 

For case-based reasoning (see Section 2.3.3), based on five cost drivers, the degree of 

similarity was calculated according to the following equation (5-32): 

 SIM(X, Y) = 1 – DIST (X, Y) = 1 - 
i

iii yxdistw ),(22  (5-32) 

where weight (wi) is up to coefficient of linear model. Two adaptation procedures are 

then applied to get the solution. In the first procedure (CBR1), the output value (y) of one 

training point, whose value of similarity measurement is the largest, is chosen as the 

predicted value for the test point. In the second procedure (CBR2), the corresponding 

predicted value is determined as the average value of two most similar cases.  

 

5.3.2  Result Analysis  

5.3.2.1 Appropriate Parameters for SVR 

Proper parameters setting can improve the cost estimating predicable accuracy. This 

section shows that the cost model can more accurately predict unknown data via 

identifying optimal choice of hyper parameters. From Chapter 2.5.2, the SVR 

performance depends on kernel, its parameters and model parameters (C, and ε) for ε-

                                                 
1
 For Data Sets which have five cost drivers and are associated with a cost function, such as Linear, Power, 

Power-Step, Linear-Power, Linear-Step, but not with Linear-Power-Step cost function 
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insensitive loss function. Generally, they affect performance together. The selection of 

optimum values for these training parameters (C and ε) and kernel‟s parameters is an 

active area of research. However there is not a structure method to select optimum values 

of these parameters. In this study the tabu search algorithm would be used to choose 

appropriate hyper parameters to improve the performance. All hyper parameters were 

obtained by empirical study or by the tabu search algorithm. The hyper parameters of 

SVR and Tabu-SVR under all data sets are showed in Table 5-2. The performance results 

via the tabu search algorithm were compared with those via empirical study under 

different scenarios in Table 5-3. Then the Wilcoxon signed ranks tests were conducted in 

Table 5-4, to examine whether the selection of hyper parameters via tabu search 

algorithm significantly improved the performance of SVR. 

Table 5-3 shows the RMSE and accuracy results of Tabu-SVR and SVR.  Except for 

the data set associated with a power cost function, the performance of the other data sets 

was improved by using Tabu-SVR. For data sets associated with a linear cost function, 

RMSE of linear kernel was reduced from around 132 to around 35 and accuracy was 

increased from around 88% to around 97%. For the data set associated with a linear-

power cost function, RMSE of linear kernel was decreased from 10.71 to 3.53 and 

accuracy was improved from 86.12% to 95.20%; RMSE of polynomial kernel was 

decreased from 12.94 to 1.21 and accuracy was improved from 86.12% to 95.20%; 

RMSE of RBF kernel was reduced from 12.93 to 1.32 and accuracy was increased from 

83.32% to 98.50%.  

From the perspective of accuracy, it was more improvement for the data set 

associated with a linear-power-step cost function, RMSE of linear kernel was dropped 

from 28.80 to 10.50 and the accuracy rose from 78.36% to 92.91%; RMSE of RBF kernel 

was reduced from 28.30 to 3.19 and accuracy was improved from 78.33% to 97.65%; 

though RMSE and accuracy of polynomial kernel was not changed. The largest 

improvement was on the data set associated with a linear-step cost function and data set 

from a real cost detailed model (aircraft Engine). For the data set associated with a linear-

step cost function, RMSE of all kernels was decreased from 650 to 248 (linear), 

177.99(polynomial), and 222.90(RBF); accuracy was improved from 54% to above 82%. 

For the data set associated with the aircraft engine, RMSE was decreased from 752,054 to 
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338,816 (linear kernel), from 770,889 to 124,678 (polynomial kernel), and from 770,848 

to 109,972; accuracy was improved from 59% to 86% (linear kernel), from 60% to 96% 

(polynomial and RBF kernel). For the data set associated with a power-step cost function, 

except linear and polynomial kernel, RMSE and accuracy of RBF kernel improved a lot, 

respectively from 12.63 to 3.02 and from 7.96% to 56.20%.  Moreover, for the data set 

associated with a power cost function, RMSE and accuracy of all kernels were not 

improved.  

 

Since values are not always known to be normal distributed, the Wilcoxon signed test 

is to be preferred over the Student t-test. Here Wilcoxon test for choice of hyper 

parameters (H0: the accuracy of SVR and Tabu-SVR is equal) was conducted. Table 5-3 

shows that RMSE and accuracy were improved under all data sets except the data set 

produced by power function. The p-values in Table 5-4 suggested: except for the data set 

associated with a power cost function under all kernels, a power-step cost function under 

polynomial kernel, and a linear-power-step cost function under polynomial kernel, all 

improvements of the tabu search algorithm for choice of hyper parameters are significant. 

 

In summary, the tabu search algorithm for choosing parameters for SVR (Tabu-SVR) 

can significantly improve the performance over SVR with empirical study for most data 

sets.  
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Table 5-2 The Hyper Parameters of SVR with Empirical Study and Tabu-SVR for the Data Sets 

    Kernel 

Data Sets   Linear (C; )   Polynomial (C; ; ; d)   RBF (C; ) 
           

Linear 
SVR (1418;  355)   (1418; 355.9; 0.000488; 0; 3)   (1418; 355.9; 0.000488) 

Tabu-SVR (671361482;  1.61)   (8207921; 1.74; 8.33; 63.93; 1)   (199600833; 46.30; 0.1493) 

              

Linear-Step 
SVR (2071; 2663)   (2071; 2663; 0.000488; 0; 3)   (2071; 2663; 0.000488) 

Tabu-SVR (2196; 96.52)   (84355032; 57.10; 56.47; 84.24; 2)   (421917211; 0.2923; 3.38) 

              

Power 
SVR (499.5; 1587)   (499.5; 1588; 0.000488; 0; 3)   (499.5; 1588; 0.000488) 

Tabu-SVR (819105583; 4.44)   (31306882; 851863; 72.73; 42.81; 7)   (255195575; 97091; 10.79) 

              

Linear-Power 
SVR (108.3; 17.93)   (108.3; 17.93; 0.000488; 0; 3)   (108.3; 17.93; 0.000488) 

Tabu-SVR (10.07; 0.05118)   (80459428; 0.02011; 13.51; 44.35; 2)   (474749259; 0.7482; 0.07294) 

              

Power-Step 
SVR (39.39; 77; 93)   (39.39; 77; 93; 0.000488; 0; 3)   (39.39; 77; 93; 0.000488) 

Tabu-SVR (121535774; 1e-007)   (87210032; 2854029; 71.00; 95.24; 7)   (480356155; 0.001414; 0.9006) 

              

Linear-Power-Step 
SVR (191.9; 73.72)   (191.9; 73.72; 0.000488; 0; 3)   (191.9; 73.72; 0.000488) 

Tabu-SVR (31.50; 0.120025)   (35917982; 4602666; 96.33; 73.55; 7)   (779005577; 0.5482; 0.04027) 

              

Aircraft Engine 
SVR (2918482; 2823387)   (2918482; 2823387; 0.000488; 0; 3)   (2918482; 2823387; 0.000488) 

Tabu-SVR (609051117; 549.54)   (29305139; 218.1; 3.408; 6.635; 4)   (507358263; 35.74; 0.2802) 
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Table 5-3 The Choice of Hyper Parameters 

  Kernel 

  Linear  Polynomial  RBF 

Data Sets Measurement SVR Tabu-SVR  SVR Tabu-SVR  SVR Tabu-SVR 

Linear 
RMSE 132.04 36.06  132.22 28.58  132.22 47.33 

Accuracy 88.68% 97.42%  88.70% 98.05%  88.70% 96.24% 

          

Linear-Step 
RMSE 650.21 248.53  651.30 177.99  651.30 222.90 

Accuracy 54.48% 82.78%  54.39% 89.21%  54.39% 87.24% 

          

Power 
RMSE 29.89 61.78  28.14 24.75  28.14 31.61 

Accuracy 9.13% 4.08%  9.54% 10.60%  9.54% 8.33% 

          

Linear-Power 
RMSE 10.71 3.53  12.94 1.21  12.93 1.32 

Accuracy 86.12% 95.30%  83.31% 98.55%  83.32% 98.50% 

          

Power-Step 
RMSE 12.60 7.79  12.63 13.31  12.63 3.02 

Accuracy 7.78% 18.02%  7.96% 11.77%  7.96% 56.20% 

          

Linear-Power-
Step 

RMSE 28.08 10.50  28.30 28.30  28.30 3.19 

Accuracy 78.36% 92.91%  78.33% 78.33%  78.33% 97.65% 

          

Aircraft Engine 
RMSE 752054.73 338815.80  770889.35 124678.03  770848.57 109972.68 

Accuracy 58.86% 86.37%  60.49% 95.85%  60.49% 96.32% 
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Table 5-4 Wilcoxon Signed Rank Test for Choice of Hyper Parameters 

p-value (Wilcoxon 
Signed Rank Test) 

Linear Kernel Polynomial Kernel RBF Kernel 

SVR vs. Tabu-SVR SVR vs. Tabu-SVR SVR vs. Tabu-SVR 

Linear <.0001 <.0001 <.0001 

Linear-Step  <.0001  <.0001 <.0001 

Power 0.2188* 1.0000* 0.6875* 

Linear-Power  <.0001  <.0001  <.0001 

Power-Step 0.0098 0.8311*  <.0001 

Linear-Power-
Step  <.0001 1.0000*  <.0001 

Aircraft Engine  <.0001  <.0001  <.0001 
* denote >0.1 (insignificant difference) 

 

5.3.2.2 Appropriate Kernels of SVR for Cost Estimates 

As mentioned previously, SVR performance depends heavily on the kernel function. 

However the kernel should reflect the intrinsic topological structure of the data and 

application-domain knowledge. Which kernel is much more appropriate for cost 

estimates is the major focus in this section.  

The results of this study indicate that one kernel function performs better than another 

two under most conditions. From Table 5-3 and Figure 5-12, the polynomial kernel 

outperformed linear kernel and RBF kernel for the data sets associated with a linear cost 

function, a linear-step cost function, a power cost function, and a linear-power cost 

function. But the performance of RBF is very close to polynomial kernel. For example, 

for the data set associated with a linear-power cost function, the RMSE of polynomial 

and RBF kernels are respectively 1.32 and 1.21 comparing to RMSE (3.53) of linear 

kernel. Their accuracy shows same trend: 98.55% (polynomial), 98.50% (RBF) and 

95.30% (linear). For the data sets associated a linear cost function, a linear-step cost 

function, a power cost function, a linear-power cost function, and aircraft engine, the 

difference of accuracy between polynomial and RBF kernel is less than 2%. However, for 

the data sets associated with a power-step cost function and a linear-power-step cost 

function, the performance of RBF is much better than those of polynomial and linear 

kernel. Even the linear kernel has much better accuracy and RMSE than polynomial 

kernel does. 
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Figure 5-12 Choice of Linear Kernel, Polynomial Kernel and RBF Kernel 

Wilcoxon signed rank test statistically compared the performance of accuracy for 

different data sets among linear, polynomial and RBF kernels. As shown in Table 5-5, 

although three kernels have good performance (their accuracy greater than 95%), the 

polynomial and linear kernels significantly outperformed RBF kernel. However the 

performance of polynomial and linear is not significantly different. Table 5-6 shows the 

polynomial kernels have much better performance than linear kernel.  And the 

performance of polynomial kernels is not significantly different with that of RBF kernel. 

For data set associated with a power cost function (Table 5-7), there is not significant 

difference among three kernels. Moreover, for data set associated with a linear-power 

cost function, Table 5-8 shows the accuracy of RBF and polynomial kernels are much 

better than that of linear kernel, and the performance of polynomial kernels is not 

significantly different with that of RBF kernel. Table 5-9 shows for the data set 

associated with a power-step cost function, the performance of RBF kernel is 

significantly better than those of linear kernel and polynomial kernel. For the data set 
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associated with a linear-power-step cost function, polynomial kernel has worst 

performance, RBF kernel is best and the linear kernel is in the middle (Table 5-10). They 

are all significantly different. Table 5-11 shows the RBF and polynomial kernel have 

better accuracy than linear and they are not significantly different. 

In conclusion, RBF is best kernel under all kinds of above data sets except for the 

data set associated with a linear cost function. However, its accuracy is 96.24% for the 

data set associated with a linear cost function, which is acceptable. The polynomial 

kernel often has good performance. But for data sets associated with a power-step cost 

function and a linear-power-step cost function, its performance is not good and even 

worse than that of linear kernel. 

 

Table 5-5 Wilcoxon Signed Rank Test for Kernels under Data Set (Linear) 

Data Set (Linear) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

36.06 97.42% Linear   0.1074* 0.0106 

28.58 98.05% Polynomial      <.0001 

47.33 96.24% RBF       
 * denote >0.1 (insignificant difference) 

 

Table 5-6 Wilcoxon Signed Rank Test for Kernels under Data Set (Linear-Step) 

Data Set (Linear-Step) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

248.53 82.78% Linear   0.0106 0.094* 

177.99 89.21% Polynomial     0.1755* 

222.90 87.24% RBF       
 * denote >0.1 (insignificant difference) 

 

Table 5-7 Wilcoxon Signed Rank Test for Kernels under Data Set (Power) 

Data Set (Power) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

61.78 4.08% Linear   0.2188* 0.25* 

24.75 10.60% Polynomial     0.5625* 

31.61 8.33% RBF       
 * denote >0.1 (insignificant difference) 
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Table 5-8 Wilcoxon Signed Rank Test for Kernels under Data Set (Linear-Power) 

Data Set (Linear-Power) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

3.53 95.30% Linear    <.0001  <.0001 

1.21 98.55% Polynomial     0.5001* 

1.32 98.50% RBF       
 * denote >0.1 (insignificant difference) 

 

Table 5-9 Wilcoxon Signed Rank Test for Kernels under Data Set (Power-Step) 

Data Set (Power-Step) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

7.79 18.02% Linear   0.5195* 0.0001 

13.31 11.77% Polynomial      <.0001 

3.02 56.20% RBF       
 * denote >0.1 (insignificant difference) 

 

Table 5-10 Wilcoxon Signed Rank Test for Kernels under Data Set (Linear-Power-Step) 

Data Set (Linear-Power-Step) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

10.50 92.91% Linear    <.0001  <.0001 

28.30 78.33% Polynomial      <.0001 

3.19 97.65% RBF       

 

 

Table 5-11 Wilcoxon Signed Rank Test for Kernels under Data Set (Aircraft Engine) 

Data Set (Aircraft Engine) 

RMSE Accuracy 
p-value(Wilcoxon 

Signed Rank Test) Linear Polynomial RBF 

338,816 86.37% Linear    <.0001  <.0001 

124,678 95.85% Polynomial     0.5131* 

109,973 96.32% RBF       
 * denote >0.1 (insignificant difference) 

 

5.3.2.3 Data Sensitivity Test 

After choosing appropriate kernel with corresponding parameters, the SVR model can 

be easily built to estimate estimates. However the sensitivity of this model to data is very 
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important. If the model was not robust to data, the performance of this model would not 

be reliable. This section will study the sensitivity of Tabu-SVR to data.  

 Table 5-12 shows RMSE and accuracy under different kernels for two test data sets 

respectively from each formula. RMSE and accuracy seems very different for the data 

sets associated with a linear-step cost function (RBF kernel), power (linear kernel, 

polynomial kernel, RBF kernel), aircraft engine.  

Wilcoxon test (Table 5-13) statistically compared the performance (accuracy) for two 

data sets associated same cost functions under different kernel functions. For seven data 

sets, the performance under RBF kernel for two test data sets is not significantly different. 

The accuracy of polynomial kernel for two test data sets associated with a linear-power 

cost function is significantly different at the level =0.1. That means polynomial kernel is 

sensitive to the sample sets when the data have linear-power property. The accuracy 

under linear kernel for two test sets from linear and aircraft engine is significantly 

different at the level =0.1. Thus linear kernel is sensitive to the sample sets when the 

data have linear property. 

The RBF kernel is most robust. For all test data sets, it has not significant difference 

in performance. The polynomial kernel is sensitive to the data set associated with a 

linear-power cost function. The linear kernel was worst, which has significant difference 

when data sets produced by the linear cost function and the real cost detail model (aircraft 

engine). 



 115 

 

Table 5-12 Data Sensitivity Test 

    Kernel 

    Linear (Tabu-SVR)  Poly (Tabu-SVR)  RBF (Tabu-SVR) 

  Measurement Data Set1 Data Set2  Data Set 1 Data Set2  Data Set1 Data Set2 

Linear 
RMSE 36.06 40.50   28.58 28.65   47.33 36.49 

Accuracy 97.42% 96.40%   98.05% 97.63%   96.24% 97.26% 

            

Linear-Step 
RMSE 248.53 245.43   177.99 133.28   222.90 166.93 

Accuracy 82.78% 84.46%   89.21% 91.57%   87.24% 90.19% 

            

Power 
RMSE 61.78 99.15   24.75 100.19   31.61 94.66 

Accuracy 4.08% 1.21%   10.60% 10.84%   8.33% 6.33% 

            

Linear-Power 
RMSE 3.53 3.58   1.21 0.77   1.32 0.86 

Accuracy 95.30% 95.56%   98.55% 99.12%   98.50% 98.97% 

            

Power-Step 
RMSE 7.79 10.18   13.31 16.23   3.02 4.08 

Accuracy 18.02% 21.19%   11.77% 12.49%   56.20% 60.16% 

            

Linear-Power-
Step 

RMSE 10.50 9.50   28.30 16.23   3.19 3.11 

Accuracy 92.91% 91.37%   78.33% 77.57%   97.65% 97.35% 

            

Aircraft Engine 
RMSE 338815.80 182883.25   124678.03 61007.67   109972.68 56185.22 

Accuracy 86.37% 90.22%   95.85% 97.11%   96.32% 97.45% 
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Table 5-13 Wilcoxon Signed Rank Test for Data Sensitivity 

p-value (Wilcoxon 
Signed Rank Test) 

Linear Polynomial  RBF 

Set1 vs. Set2 Set1 vs. Set2 Set1 vs. Set2 

Linear 0.0168* 0.3069 0.0782 

Linear-Step 0.3911 0.3167 0.4141 

Power 0.5000 0.5469 0.6250 

Linear-Power 0.9920 0.0451* 0.4258 

Power-Step 0.2661 0.6788 0.4954 

Linear-Power-Step 0.0894 0.9122 0.9122 

Aircraft Engine 0.0476* 0.4025 0.1964 
* denote <0.1 (two side test).  

 

5.3.2.4  Comparison with Traditional Methods 

For complex products during the early design phases, the functional form of 

parametric methods (the linear or log-linear) must be determined based on experience. 

Moreover, nonparametric methods such as SVR, case-based reasoning, and neural 

networking, do not suffer from this disadvantage. With the exception of a case of an 

exact fit, the performance of the parametric methods is worse than that of nonparametric 

methods. 

From Table 5-14 and Table 5-15, for data sets associated with a linear cost function, 

undoubtedly, parametric method (linear) and Tabu-SVR with polynomial kernel 

outperformed other methods. Their RMSE (28.58 of Tabu-SVR (poly) and 29.13 of 

linear) are best. The performance of Tabu-SVR (RBF) is very close to them. Its accuracy 

is 96.24%, which is much better than those of other methods. This is also true for data set 

associated with a power cost function and a power-step cost function, the parametric 

method with the form (log-linear) has the better performance. For the data set associated 

with a power cost function, none of the nonparametric methods and parametric methods 

(linear) has good performance. Moreover, from the perspective of RMSE, Tabu-SVR 

(poly) and Tabu-SVR (SVR) have much better performance than the parametric method 

(linear), case-based reasoning 2, and neural networking 1 and 2. For the data set 

associated with a power-step cost function, Tabu-SVR (RBF) also has better performance 

than Tabu-SVR (polynomial kernel), parametric method (linear), case-based reasoning 1 

and 2, neural networking 1. Its performance is very close to that of neural networking 2.  
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For other data sets associated with a linear-step cost function, or a linear-power cost 

function, Tabu-SVR (RBF) and Tabu-SVR (polynomial kernel) have much better 

performance than other methods. For the data set associated with a linear-step cost 

function, the performance of Tabu-SVR (polynomial kernel) is significantly better than 

those of parametric methods (linear, log-linear), case-based reasoning (1 and 2), and 

neural networking (1 and 2). For the data set associated with a linear-power cost function, 

the performance of Tabu-SVR (polynomial and RBF kernels) is significantly better than 

that of parametric methods (linear, log-linear), case-based reasoning (1 and 2), and neural 

networking (1 and 2). For the data sets associated with a linear-power-step cost function 

and the real cost detailed model, the performance of Tabu-SVR (RBF kernel) is 

significantly better than of parametric methods (linear, log-linear), case-based reasoning 

(1 and 2), and neural networking 1. For the data set associated with a linear-power-step 

cost function, the RMSE (3.19) of Tabu-SVR (RBF kernel) is far less than RMSEs of 

other methods (see Table 5-14). The accuracy (96.32%) of Tabu-SVR (RBF) for the data 

set associated with the aircraft engine is much higher than accuracy of other methods: of 

parametric methods (linear, log-linear), case-based reasoning (1 and 2), and neural 

networking (1 and 2). 

Thus, Tabu-SVR has better performance over other methods under most situations. It 

seems to be quite robust to the complexity of the hidden relationship among cost drivers 

and cost except for data sets associated with a power cost function and power-step cost 

function. Even for these two data sets, their performance is not worse than those of most 

other methods. The exception to this is that the log-linear method does model power 

relationship well as should be expected. 
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Table 5-14 Comparison with Traditional Methods 

 

 

 

 

 

 

Data Sets Measurement 
Tabu-
SVR(Poly) 

Tabu-
SVR(RBF) Log-Linear Linear CBR1 CBR2 NN1 NN2 

                    

Linear 
RMSE 28.58 47.33 60.32 29.13 67.91 61.46 72.29 415.76 

Accuracy 98.05% 96.24% 94.72% 97.92% 93.98% 94.67% 94.17% 68.14% 

             

Linear-Step 
RMSE 177.99 222.90 248.995792 271.61 376.35 284.1266 271.19 361.21 

Accuracy 89.21% 87.24% 83.61% 81.31% 75.31% 0.80 83.73% 77.72% 

             

Power 
RMSE 24.75 31.61 10.40 72.04 22.49 109.65 185.32 132.80 

Accuracy <50% <50% 80.04% <50% <50% <50% <50% <50% 

             

Linear-Power 
RMSE 1.21 1.32 5.40 2.57 5.33 4.18 2.70 3.16 

Accuracy 98.55% 98.50% 93.73% 96.88% 93.79% 94.73% 96.95% 96.72% 

             

Power-Step 
RMSE 13.31 3.02 2.26 7.32 5.12 4.83 4.48 2.83 

Accuracy <50% 56.20% 84.34% <50% 51.02% 54.23% 53.52% 53.81% 

             

Linear-Power-
Step 

RMSE 28.30 3.19 13.23 6.68 14.22 13.28 25.91 5.67 

Accuracy 78.33% 97.65% 92.25% 95.89% 90.84% 91.23% 81.09% 96.76% 

             

Aircraft Engine 
RMSE 124678.03 109972.68 873792.97 316000.95 248326.98 275598.93 426500.34 192653.92 

Accuracy 95.85% 96.32% 73.65% 82.09% 90.17% 90.22% 79.90% 87.03% 
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Table 5-15 Wilcoxon Signed Rank Test for Comparison with Traditional Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 * denote >0.1 (insignificant difference) 

Data Sets  
 p-value (Wilcoxon 
Signed Rank Test) Log-Linear Linear CBR1 CBR2 NN1 NN2 

                

Linear 
Tabu-SVR(Poly)  <.0001 0.1122*  <.0001  <.0001 <.0001  <.0001 

Tabu-SVR(RBF) 0.1624* 0.0001 0.0044 0.0344 0.0216 <.0001 

          

Linear-Step 
Tabu-SVR(Poly) 0.0074 0.0011 0.0008 0.0003 0.0274 0.0001 

Tabu-SVR(RBF) 0.1384* 0.0476 0.0038 0.0148 0.1688* 0.0005 

          

Power 
Tabu-SVR(Poly)  <.0001 0.6406* 0.0005 0.0027 0.8926* 0.0313 

Tabu-SVR(RBF)  <.0001 0.8125* 0.0005 0.0015 0.8457* 0.2500* 

          

Linear-Power 
Tabu-SVR(Poly)  <.0001 0.0004  <.0001  <.0001 0.0003 0.0025 

Tabu-SVR(RBF)  <.0001 0.0055  <.0001  <.0001 0.0038 0.0168 

          

Power-Step 
Tabu-SVR(Poly)  <.0001 0.0179  <.0001 <.0001  <.0001  <.0001 

Tabu-SVR(RBF) 0.0203 0.0232 0.5634* 0.8073* 0.6475* 0.1876* 

          

Linear-Power-
Step 

Tabu-SVR(Poly)  <.0001  <.0001  <.0001  <.0001 0.1122*  <.0001 

Tabu-SVR(RBF) 0.0004 0.0055  <.0001  <.0001  <.0001 0.0711* 

          

Aircraft Engine 
Tabu-SVR(Poly)  <.0001  <.0001 0.0011 0.0023  <.0001 0.0005 

Tabu-SVR(RBF)  <.0001  <.0001 0.0002 0.0006  <.0001 0.0003 
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5.4  Conclusions 

In experiments, according to cost estimating basic common characteristics, six 

formulas and an EXCEL tool equivalent to FLOPS cost module were used to create data 

sets for testing. Using these data, a study was made in choosing parameters and the kernel 

function of SVR for cost estimation. Cost models based on support vector regression, 

parametric modeling, neural network and case-based reasoning were constructed. Their 

performance was then compared. The root mean square error (RMSE) and accuracy 

degree of prediction were used as performance criterion. 

From the results, Tabu-SVR significantly improved the performance of the cost 

models based on SVR which choose appropriate parameters via empirical study. The 

RBF and polynomial kernel showed better performance over a linear kernel under most 

data sets. Moreover, the RBF kernel was much more robust to data of the problem.  

When function forms are known, the nonparametric methods are not necessary and do 

not perform well. For example, when it is known that the data set would be produced by a 

linear function or the data set would be produced by a power function and a power-step 

function, the parametric method (linear) or the parametric method (log-linear) would be a 

good choice. However, when an apriori CER (functional form) is unknown, the 

nonparametric methods, such as support vector regression, case-based reasoning, and 

neural networking, have better performance. 

Tabu-SVR cost modeling yielded good performance over other cost modeling 

techniques. The Tabu-SVR was able to capture these nonlinearities and discontinuities, 

along with interactions among cost drivers. Tabu-SVR hence had strong predicable 

capability. When the function form cannot be determined because of inadequate 

information, the Tabu-SVR can be used effectively. Therefore, the cost model based on 

SVR has a great potential to accurately estimate cost for complex product during the 

early design phases. 

The largest benefits of the Tabu-SVR are the facts that a global solution exists and is 

found with appropriate parameters and kernel function in contrast to neural networks 

which have to be trained with randomly chosen initial weight setting. Furthermore, due to 

specific optimization procedure it is assured that overtraining is. A drawback of the Tabu-
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SVR is that the searching time for appropriate parameters could be much longer than 

parametric methods, case-based reasoning, and neural network. Finding appropriate 

parameters of Tabu-SVR might spend hours of computation resource. However, cost 

estimating area does not generally need real-time estimates. Spending hours of training 

and model building is still acceptable for cost estimates.  
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Chapter 6 Cost Estimating Semiparametric Approach Based 

on Support Vector Regression 

6.1 Introduction 

At some points in times, while there may be limited knowledge about the parametric 

form of the cost relationships, the form is not adequately known throughout the entire 

range of data. At such times, the parametric approach would not be appropriate because 

the resulting fit would be misleading (biased) at points where the data deviates from the 

specified model. However, it is not wise to ignore the knowledge and only use a 

nonparametric approach.  

A semiparametric approach is presented for such situation that combines a parametric 

approach with a nonparametric approach. The semiparametric approach is able to handle 

different amounts of model misspecification by combining a parametric regression fit, 

which is based on the researcher‟s knowledge of the underlying model, with a 

nonparametric regression fit, which is designed to capture any structure in the data that 

the parametric fit fails to explain. It can provide noticeable improvements over the two 

approaches when used individually. Therefore, the semiparametric approach has two 

components as (6-1): the parametric component );( xf paramparam  and the nonparametric 

component );( xf nonparnonpar  . 

 );();()( xfxfxf nonparnonparparamparam    (6-1) 

where param and nonpar are their parameters and x is vector of cost drivers. 

There are limited studies in literatures [94, 95] on semiparametric approaches based 

on support vector regression. Smola, Frieb, et al.[94] extended the support vector 

regression to a semiparametric model. However, they did not consider multiple inputs 

and the data sets that included the properties of power and step functions. Pai and Lin[95] 

proposed a hybrid ARIMA and support vector regression to forecast stock price. The 

parametric component in their hybrid model only employed the first-order terms of inputs. 

Therefore there are limitations when applying these semiparametric approaches in cost 

estimation. Moreover, the application of a semiparametric approach for cost estimation 

has not been found in other literatures.  
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The main task of this chapter is to effectively and efficiently use semiparametric 

approach in the area of cost modeling. This chapter first introduces three semiparametric 

algorithms. Second three test data sets are produced using basic common cost 

characteristics summarized in last chapter. Extensive studies for these three 

semiparametric algorithms (A1, A2, and A3) on multiple inputs were then performed 

under different situations.  Comparisons were made among these three algorithms (A1, 

A2, and A3), a pure nonparametric approach Tabu-SVR, and parametric approaches for 

cost estimation.  

 

6.2 Semiparametric Approaches Based on SVR 

For the semiparametric approach based on SVR, there are three algorithms considered 

in this chapter. Algorithm 1 (A1) is the most common idea in the semiparametric area. 

Algorithm 2 (A2) was presented by Pai and Lin[95]. Algorithm 3 (A3) was proposed by 

Smola, Frieb, et al.[94]. They are introduced respectively as follows. 

Algorithm 1 (A1): The first algorithm uses residuals from the parametric model to 

train the nonparametric portion. There are three steps: 

First, the parametric part (6-2) performs a regression using the training data for 

all
j

param .  

 yxxf
n

j

j

j

paramparamparam 
1

)();(   (6-2) 

Second, after 
j

param  in Equation (6-2) is obtained, the parametric portion of 

semiparametric model, );( xf paramparam  , is determined. The residual of the parametric 

portion becomes the output of nonparametric portion (6-3). 

 )(,)();(
1

xwxyexf
n

j

j

j

paramnonparnonpar   


 (6-3) 

For the nonparametric portion );( xf nonparnonpar  , all input x and output e are from the 

train data and residual. For this investigation, the RBF kernel was chosen. The parameter, 

nonpar , can then be found using the tabu search algorithm presented in Chapter 5.  

Third, the final cost is sum of the parametric portion and the nonparametric portion. 
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Algorithm 2 (A2): A second algorithm was presented by Pai and Lin [95]. It is same 

as the algorithm 1 except that it considers the parametric portion when choosing the 

parameters of SVR. 

First, the parametric part (6-2) performs a regression using the training data for 

all j

param . This step is the same as the first step in Algorithm 1. 

After j

param is obtained, the parametric portion of semiparametric model is 

determined. The residual (6-3) of the parametric portion becomes as the output of the 

nonparametric portion. This is also same as Algorithm 1.   

However, for the nonparametric portion, the parameters ( nonpar  such as C, kernel 

parameters) are chosen to make the final performance best when considering the 

parametric portion and nonparametric portion. This is different with Algorithm 1 (see 

Table 6-1). Algorithm 1 chooses the parameters considering only the nonparametric 

portion.  

After choosing the parameters nonpar  using the tabu search algorithm, 

);( xf nonparnonpar   is constructed as the same way in Chapter 5. 

The final cost is sum of the parametric portion and the nonparametric portion. 

 

Algorithm 3 (A3): Smola, Frieb, et al.[94] denoted that algorithm 1 generally would 

not lead to finding the minimum generalization error. Hence, the semiparametric 

procedure should involve simultaneously fitting a parametric and a nonparametric model. 

Smola, Frieb, et al. [94] proposed a feasible way to fit the parametric part and 

nonparametric part at the same time. 

Using a general parametric part 


n

i

i

i

param x
1

)(  replaces the b in Equation 5-1 to get 

Equation (6-4): 

 



n

i

i

i

paramparamparamnonparnonpar xxwxfxfxf
1

)()(,);();()(   (6-4) 
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where )(, xw  is the nonparametric part );( xf nonparnonpar  . The parameter nonpar  here 

includes model parameters such as C,  and kernel parameter.  

Smola, Frieb, et al.[94] made an extension for SVR when considering the parametric 

parts. The Primal Problem (2-16) and the Dual Problem (2-20) were changed as follows 

Equations (6-5) and (6-6): 
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The RBF was chosen as its kernel here. The parameters nonpar  can be found using 

tabu search algorithm described in Chapter 5. The optimization problem ( i  ; *

i  and 

j

param ) is solved when appropriate nonpar  are determined. This is different with 

Algorithm 1 and Algorithm 2 (see Table 6-1). 

The semiparametric cost estimating function can be found as (6-7): 

 



n

j

j

j

param

l

i

iii xxxkxf
11

* )(),()()(   (6-7) 

The cost can be calculated via Equation 6-7 with known optimal i , *

i , 
j

param  and 

an appropriate kernel function. 
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Table 6-1 Three Semiparametric Algorithms Based on SVR 

 Algorithm 1 (A1) Algorithm 2 (A2) Algorithm (A3) 

Step 1 Obtain param  according to training 

data;  

Construct );( xf paramparam   

Obtain param  according to training 

data;  

Construct );( xf paramparam   

Obtain param  , nonpar  according 

to training data simultaneously; 

Construct );( xf paramparam   and 

);( xf nonparnonpar   

Step 2 Obtain nonpar  according to training 

data (residual and input x);  

Construct );( xf nonparnonpar   

Obtain nonpar  according to training 

data (residual and input x) while 

considering );( xf paramparam  ; 

Construct );( xf nonparnonpar   

Sum of );( xf paramparam   and 

);( xf nonparnonpar   

Step 3 Sum of );( xf paramparam   and 

);( xf nonparnonpar   

Sum of );( xf paramparam   and 

);( xf nonparnonpar   

 

 

This chapter would make comparisons between the above three algorithms (see Table 

6-1), a pure parametric model, and a pure nonparametric model via the experiments under 

different scenarios. The advantages and drawbacks under different scenarios are 

discussed later.  

 

6.3 Experiments 

6.3.1 Data 

In the last chapter (Section 5.2.1), five common basic cost characteristics were 

summarized: accumulation, linear function, power function, step function, and 

exponential function. They are often combined in cost modeling area to express the cost 

relationship of a complex product. Based on these five common basic cost characteristics 

and general combining rules, the test cases (data sets) for semiparametric cost estimating 

approaches were produced. In the last chapter, experiments have shown that 

nonparametric cost estimating approach based on SVR had very good performance under 

most scenarios except those included power properties. Therefore, for semiparametric 
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cost approaches based on SVR, only the data including strong power properties were 

produced to test the performance. 

Combing with five common basic cost characteristics, three equations were created in 

Table 6-2 to use in generating test data sets under the desire to include power and step 

functions. Each formula has five cost drivers with nonlinear features: strong power 

properties and step function. The formula of test case 1 does not include any interaction 

among x1, x2 and x3. The formulas of test case 2 and 3, there exists interaction among x2, 

x4 and x5. Moreover, the formula of test case 3 has larger parameters for its step function 

and greater power for its power property comparing to the formula of test case 2. 

The data of each cost driver xi (i=1,2,3,4,5) were uniformly and randomly produced  

in the range between 0 and 1. Noise was then added in each cost drivers (coefficient of 

variation, c.v. = =0.03). The corresponding cost was produced using the formulas of 

test cases as Table 6-2.  

 

Table 6-2 Three Formulas to Produce Test Cases (Data Sets)  

Name Formula 

Test Case 

1 
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6.3.2 Methods 

The semiparametric approaches include two components: the parametric part and the 

nonparametric part as noted in Equation (6-1). The nonparametric parts are implemented 

using the Tabu-SVR presented in Chapter 5. The parametric part is generally based on 

knowledge of the underlying model. However, the knowledge of underlying model might 

be inexact, partial, or exact. The performance of three semiparametric algorithms, the 

pure nonparametric approach and pure parametric approach, under different degree of 

exactness and different amount of known knowledge of underlying model, is the focus of 

this chapter.   

According to three test cases in Section 6.3.1, there are following situations 

considering in this study. Based on these situations, the corresponding parametric 

components of semiparametric algorithms or the parametric approach are defined in 

Table 6-3 through Table 6-6. 

 “L” assumes all function forms of cost drivers are first-order terms.  

 Known partial or exact function form of one cost driver 

 Known partial or exact function forms of multiple cost drivers 

 Inexact function form(s) of cost driver(s). This means that the function form is 

unknown. The first-order term of cost driver(s) is as a substitute of its function 

form. 

 

1. “L” assumes all function forms of the cost drivers are first-order terms.  

When there are unknown function forms of cost drivers, the first-order term is often 

used as the function form of cost driver in the parametric approach. Therefore, when the 

function forms of all cost drivers are the first-order terms, the relationships of parametric 

approach and the parametric portion of the semiparametric approach are listed in Table 6-

3. 
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Table 6-3 The Relationship When the Function Forms of All Cost Driver Are First-Order 

Test Case Known Cost 

Drivers 

Abbr* 

 

Parametric Function Form** 

 

Test Case 1 
 

!x1, !x2,! 
x3, !x4, !x5 

Param-L 
55443322110),( xxxxxxf    

A1-L, A2-L, 

A3-L 
5544332211);( xxxxxxf paramparam    

Test Case 2 

 

!x1, !x2,! 

x3, !x4, !x5 

Param-L 
55443322110),( xxxxxxf    

A1-L, A2-L, 
A3-L 

5544332211);( xxxxxxf paramparam    

Test Case 3 !x1, !x2,! 

x3, !x4, !x5 

Param-L 
55443322110),( xxxxxxf    

A1-L, A2-L, 

A3-L 
5544332211);( xxxxxxf paramparam    

Note: 
*Abbr:  The “Param-L”denotes parametric approach with all first-order terms of cost drivers. 

.The “A1-L”, “A2-L”, or “A3-L” respectively denotes that in the parametric component of semiparametric algorithms, the 

function forms of all cost drivers are the first-order term.   
** Parametric Function Form means: 

1. for the parametric approach, the form is its relationship. 
2. for the semiparametric algorithms, the form is the relationship of its parametric component 

! means “unknown but instead of the first-order term”.  The function form of its cost driver is expressed as the first-order term. 

 

2. Known partial or exact function form of one cost driver 

Under test case 1, the exact function forms of x2 or x3 are known. Under test case 2 

and test case 3, the exact function form of x3 is known. The partial function form of x2 or 

x5 is known because the cost drivers x2 or x5 involve the interaction term which are 

assumed unknown. Therefore, the relationship of parametric approach and parametric 

component of semiparametric algorithms can be expressed as Table 6-4. 

 

3. Known partial or exact function forms of multiple cost drivers 

Under test case 1, the exact function form of x2 and x3 might be known together. 

Under test case 2 and test case 3, both the partial function form of x2 and the exact 

function form of x3 might be known; or all three of the partial function form of x2, the 

exact function form of x3, and the partial function form of x5 might be known. Moreover, 

the interaction term is assumed unknown. Therefore, the relationship of parametric 

approach and parametric component of semiparametric algorithms can be expressed as 

Table 6-5. 
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Table 6-4 The Relationship with Known Partial or Exact Function Form of One Cost 

Driver 

 
Test Case Known Cost 

Drivers 
Abbr* 

 
Parametric Function Form** 

 

Test Case 1 x2 Param-2 












6.05.0

6.05.2
)(

)(),(

2

2

21

5544332122110

x

x
xf

xxxxfxxxf 
 

A1-2 or A2-2 
or A3-2 












6.05.0

6.05.2
)(

)();(

2

2

21

2122

x

x
xf

xfxxf paramparam 
 

x3 Param-3 
5544

5.0

3322110),( xxxxxxf     

A1-3 or A2-3 

or A3-3 

5.0

33);(  xxf paramparam   

Test Case 2 ^x2 Param-2 












6.05.0

6.05.1
)(

)(),(

2

2

21

5544332122110

x

x
xf

xxxxfxxxf 
 

A1-2 or A2-2 

or A3-2 












6.05.0

6.05.1
)(

)();(

2

2

21

2122

x

x
xf

xfxxf paramparam 
 

x3 Param-3 
5544

3.0

3322110),( xxxxxxf     

A1-3 or A2-3 

or A3-3 

3..0

33);(  xxf paramparam   

^x5 Param-5 5.1

55443322110),( xxxxxxf    

A1-5 or A2-5 

or A3-5 

5.1

55);( xxf paramparam    

Test Case 3 ^x2 Param-2 












6.05.0

6.05.2
)(

)(),(

2

2

21

5544332122110

x

x
xf

xxxxfxxxf 
 

A1-2 or A2-2 

or A3-2 












6.05.0

6.05.2
)(

)();(

2

2

21

2122

x

x
xf

xfxxf paramparam 
 

x3 Param-3 
5544

5.0

3322110),( xxxxxxf     

A1-3 or A2-3 
or A3-3 

5..0

33);(  xxf paramparam   

^x5 Param-5 3

55443322110),( xxxxxxf    

A1-5 or A2-5 

or A3-5 

3

55);( xxf paramparam    

Note: 
*Abbr: Param means the parametric approach. The A1, A2, and A3 respectively denote Semiparametric Algorithm 1, Algorithm 2, 

and Algorithm 3. 

** Parametric Function Form means: 
1. for the parametric approach, the form is its relationship. 

2. for the semiparametric algorithms, the form is the relationship of its parametric component 

^ means “partial known” 
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Table 6-5 The Relationship with Known Partial or Exact Function Form of Multiple Cost 

Drivers 

Test Case Known Cost 

Drivers 

Abbr* 

 

Parametric Function Form** 

 

Test Case 1 x2, x3 Param-23 










 

6.05.0

6.05.2
)(

)(),(

2

2

21

5544

5.0

332122110

x

x
xf

xxxxfxxxf 
 

A1-23 or A2-23 

or A3-23 










 

6.05.0

6.05.2
)(

)();(

2

2

21

5.0

332122

x

x
xf

xxfxxf paramparam 
 

Test Case 2 ^x2, x3 Param-23 










 

6.05.0

6.05.1
)(

)(),(

2

2

21

5544

3.0

332122110

x

x
xf

xxxxfxxxf 
 

A1-23 or A2-23 

or A3-23 










 

6.05.0

6.05.1
)(

)();(

2

2

21

3..0

332122

x

x
xf

xxfxxf paramparam 
 

^x2, x3, ^x5 Param-235 










 

6.05.0

6.05.1
)(

)(),(

2

2

21

5.1

5544

3.0

332122110

x

x
xf

xxxxfxxxf 
 

A1-235 or A2-

235 or A3-235 










 

6.05.0

6.05.1
)(

)();(

2

2

21

5.1

55

3..0

332122

x

x
xf

xxxfxxf paramparam 
 

Test Case 3 ^x2, x3 Param-23 










 

6.05.0

6.05.2
)(

)(),(

2

2

21

5544

5..0

332122110

x

x
xf

xxxxfxxxf 
 

A1-23 or A2-23 

or A3-23 










 

6.05.0

6.05.2
)(

)();(

2

2

21

5..0

332122

x

x
xf

xxfxxf paramparam 
 

^x2, x3, ^x5 Param-235 










 

6.05.0

6.05.2
)(

)(),(

2

2

21

3

5544

5..0

332122110

x

x
xf

xxxxfxxxf 
 

A1-235 or A2-

235 or A3-235 










 

6.05.0

6.05.2
)(

)();(

2

2

21

3

55

5.0

332122

x

x
xf

xxxfxxf paramparam 
 

Note: 

*Abbr: Param means the parametric approach. The A1, A2, and A3 respectively denote Semiparametric Algorithm 1, Algorithm 2, 
and Algorithm 3. 

** Parametric Function Form means: 

1. for the parametric approach, the form is its relationship. 
2. for the semiparametric algorithms, the form is the relationship of its parametric component 

^ means “partial known” 

 

4. Inexact or unknown function form(s) of cost drivers 

This part further studies the influence of inexact knowledge of function form on 

estimating accuracy based on Semiparametric Algorithm 3. If there are not known exact 
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function forms, the corresponding first-order term (s) of cost driver is (are) as the 

parametric component of semiparametric algorithms. These function forms of parametric 

components are listed in Table 6-6. 

 

Table 6-6 The Relationship with Inexact Function Forms of Cost Driver(s) 

Test Case Known Cost 
Drivers 

Abbr* 
 

Parametric Function Form** 
 

Test Case 1 !x2 A3-02 
22);( xxf paramparam    

!x3 A3-03 
33);( xxf paramparam    

!x2, ! x3 A3-0203 
3322);( xxxf paramparam    

Test Case 2 !x2,  A3-02 
22);( xxf paramparam    

!x3 A3-03 
33);( xxf paramparam    

!x5 A3-05 
55);( xxf paramparam    

!x2,! x3, A3-0203 
3322);( xxxf paramparam    

!x2,! x3,!x5 A3-020305 
553322);( xxxxf paramparam    

Test Case 3 !x2,  A3-02 
22);( xxf paramparam    

!x3 A3-03 
33);( xxf paramparam    

!x5 A3-05 
55);( xxf paramparam    

!x2,! x3, A3-0203 
3322);( xxxf paramparam    

!x2,! x3,!x5 A3-020305 
553322);( xxxxf paramparam    

Note: 

*Abbr: The “A3” denotes Semiparametric Algorithm 3. 

** Parametric Function Form means: the form is the relationship of its parametric component 

! means “unknown”.  The function form of its cost driver is expressed as the first-order term. 

 

6.3.3 Results and Discussion 

6.3.3.1  Comparison between Semiparametric Algorithms Based on SVR and 

Parametric Approach 

According to the amount and type of known information, the different parametric 

components (see Table 6-3 through Table 6-4) and the nonparametric component were 

combined to construct different semiparametric models.  Their performance was listed 

and compared under three scenarios: test case 1, 2, and 3. Table 6-7, Table 6-8 and Table 

6-9 respectively show comparison between parametric approach and three 

semiparametric algorithms (A1, A2, and A3) under these test cases. 

In Figure 6-1, Figure 6-2, and Figure 6-3, first column in each series represents the 

performance of the pure parametric approach. The last column in each series represents 

the performance of a pure nonparametric approach based on SVR. Between them, second 
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column represents Semiparametric Algorithm (A1) under the different amount and type 

of know information.  

From Table 6-7 through Table 6-9 and Figure 6-1 through Figure 6-3, it can be seen 

that the second column (semiparametric A1) in each series is always higher than or 

almost equal to the corresponding first column (the pure parametric approach). This 

means that the performance of A1 is always better than the performance of the pure 

parametric approach with same amount and types of known information. From the Table 

6-7 through Table 6-9, the p-values of Wilcoxon signed rank test also show under some 

situations the semiparametric A1 is significantly better than corresponding pure 

parametric approach. Under test case 1, if the function forms for “x2 and x3” are known, 

the semiparametric A1 has highest accuracy. It is significantly better than the 

corresponding pure parametric approach. Under test case 2, semiparametric A1 models 

with know function forms about “x5” or “x2, x3 and x5” are respectively and significantly 

better than their corresponding parametric approach with known function forms on “x5” 

or “x2, x3 and x5”.When assuming function forms of all cost drivers are first-order terms, 

A1-L has significant improvement over Param-L. 

Moreover, the performance of semiparametric A2 is not good. This is discussed in 

Section 6.3.3.5. The performance of semiparametric A3 with known function form on 

“x3” is very good. Even under the test case 3, it is best in the Table 6-9 and Figure 6-3, 

which have significant improvement oven the corresponding Param-3. However, for 

semiparametric A3, the known function forms on other cost drivers did not bring any 

benefits for estimating accuracy under test case 3. This is discussed in Section 6.3.3.5. 
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Table 6-7 Comparisons (Accuracy and Wilcoxon Signed Rank Test) under Test Case 1 

Accuracy 0.7181 0.7257 0.7166 0.9321 0.9757 0.6702 0.7164 0.2266 0.3052 0.4420 0.7399 0.9493 0.6989 0.7285 0.7268 0.6621

Accuracy

p-value (Wilcoxon 

Signed Rank Test) Nonpar A1-L A1-2 A1-3 A1-23 A2-L A2-2 A2-3 A2-23 A3-L A3-2 A3-3 A3-23 A3-02 A3-03 A3-0203

0.7257 Param-L 0.7112 0.4590 0.3655 0.0001 0.0000 0.0128 0.3655 0.0000 0.0000 0.0000 0.8050 0.0000 0.5237 1.0000 0.9836 0.1746

0.7166 Param-2 0.8531 0.3547 0.0613 0.0000 0.0000 0.0957 0.4466 0.0000 0.0000 0.0000 0.6216 0.0000 0.6509 0.8531 0.8855 0.2022

0.9321 Param-3 0.0001 0.0001 0.0000 0.8130 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0878 0.0000 0.0001 0.0000 0.0000

0.9476 Param-23 0.0000 0.0000 0.0000 0.0237 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6959 0.0000 0.0000 0.0000 0.0000

0.7181 Nonpar 0.7112 0.8531 0.0001 0.0000 0.3235 0.8370 0.0000 0.0000 0.0009 0.6658 0.0000 0.6216 0.2757 0.9672 0.2096  

Table 6-8 Comparisons (Accuracy and Wilcoxon Signed Rank Test) under Test Case 2 

Accuracy 0.9117 0.9030 0.8822 0.9592 0.8944 0.9604 0.9607 0.8560 0.8618 0.2204 0.8556 0.2574 0.3270 0.3411 0.8626 0.9359 0.7673 0.7231 0.1745 0.8428 0.8606 0.8764 0.8159 0.7371

Accuracy

p-value (Wilcoxon 

Signed Rank Test) Nonpar A1-L A1-2 A1-3 A1-5 A1-23 A1-235 A2-L A2-2 A2-3 A2-5 A2-23 A2-235 A3-L A3-2 A3-3 A3-5 A3-23 A3-235 A3-02 A3-03 A3-05 A3-0203 A3-020305

0.8549 Param-L 0.0005 0.0031 0.0292 0.0000 0.0037 0.0000 0.0000 0.2096 0.5787 0.0000 1.0000 0.0000 0.0000 0.0000 0.7577 0.0003 0.0066 0.0055 0.0000 0.5372 0.5928 0.3038 0.3135 0.0058

0.8613 Param-2 0.0055 0.0075 0.1558 0.0001 0.0058 0.0000 0.0000 0.8531 0.0999 0.0000 0.4590 0.0000 0.0000 0.0000 0.9672 0.0010 0.0066 0.0055 0.0000 0.3038 0.9018 0.5509 0.2172 0.0009

0.9445 Param-3 0.0840 0.0161 0.0004 0.0378 0.0237 0.0190 0.0152 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2329 0.0000 0.0000 0.0000 0.0000 0.0005 0.0002 0.0001 0.0000

0.8541 Param-5 0.0003 0.0023 0.0585 0.0000 0.0011 0.0000 0.0000 0.7112 0.3991 0.0000 0.1086 0.0000 0.0000 0.0000 0.7266 0.0000 0.0037 0.0045 0.0000 0.4716 0.7421 0.2096 0.3337 0.0037

0.9485 Param-23 0.0359 0.0055 0.0002 0.1229 0.0017 0.1332 0.1332 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1746 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0001 0.0000

0.9374 Param-235 0.3135 0.0613 0.0029 0.0033 0.0672 0.0010 0.0004 0.0001 0.0008 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8693 0.0000 0.0000 0.0000 0.0000 0.0011 0.0006 0.0004 0.0000

0.9117 Nonpar 0.5928 0.0144 0.0003 0.0878 0.0001 0.0001 0.0006 0.0058 0.0000 0.0004 0.0000 0.0000 0.0000 0.0033 0.3038 0.0000 0.0001 0.0000 0.0012 0.0085 0.1086 0.0040 0.0001  

Table 6-9 Comparisons (Accuracy and Wilcoxon Signed Rank Test) under Test Case 3 

Accuracy 0.7804 0.7746 0.7653 0.9338 0.7697 0.9499 0.9392 0.7649 0.7653 0.6202 0.7700 0.6759 0.5764 0.7269 0.7668 0.9578 0.7247 0.7970 0.6955 0.7773 0.7493 0.7382 0.7849 0.7207

Accuracy

p-value (Wilcoxon 

Signed Rank Test) Nonpar A1-L A1-2 A1-3 A1-5 A1-23 A1-235 A2--L A2-2 A2-3 A2-5 A2-23 A2-235 A3-L A3-2 A3-3 A3-5 A3-23 A3-235 A3-02 A3-03 A3-05 A3-0203 A3-020305

0.7746 Param-L 0.4590 0.9672 0.6959 0.0002 0.0585 0.0000 0.0001 0.6071 0.4590 0.0003 0.0417 0.0090 0.0001 0.2022 0.7892 0.0000 0.2757 0.5647 0.0735 0.6509 0.5372 0.8210 0.3991 0.2172

0.7653 Param-2 0.3991 0.6959 0.4107 0.0001 0.9836 0.0000 0.0001 0.8531 0.8210 0.0007 0.9508 0.0136 0.0002 0.3038 0.8050 0.0000 0.4843 0.4843 0.1132 0.6071 0.5372 0.9508 0.3991 0.3038

0.9338 Param-3 0.0007 0.0002 0.0001 0.6216 0.0002 0.1229 0.3038 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0114 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

0.7697 Param-5 0.3765 0.0585 1.0000 0.0002 0.9672 0.0000 0.0002 0.8210 0.7734 0.0005 0.9508 0.0136 0.0001 0.2410 0.7266 0.0000 0.3877 0.3991 0.0999 0.5787 0.7266 0.9508 0.3655 0.2249

0.9343 Param-23 0.0005 0.0002 0.0001 0.8370 0.0001 0.0917 0.4716 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0152 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0000

0.9392 Param-235 0.0005 0.0001 0.0001 0.3038 0.0002 0.2942 0.7577 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.2579 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000

0.7804 Nonpar 0.4590 0.3991 0.0007 0.3765 0.0003 0.0005 0.6071 0.4716 0.0015 0.3547 0.0071 0.0008 0.1812 0.3991 0.0001 0.0096 0.9672 0.0769 0.5104 0.2329 0.0190 0.9018 0.1950  

Note for Table 6-7 through Table 6-9:  

1. The shade grid in the first row means the highest accuracy; 2. The shade grids except in the first row denote p-value <0.025 (significant different) via Wilcoxon Signed Rank Test.  
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Figure 6-1 Comparisons under Test Case 1 

Note: 
1. The abbreviated name of each column is listed as the following table.  

Series Name Lin-X1-X5 X2 X3 X2, X3 

Param Param-L Param-2 Param-3 Param-23 

A1 A1-L A1-2 A1-3 A1-23 

A2 A2-L A2-2 A2-3 A2-23 

A3 A3-L A3-2 A3-3 A3-23 

A3-0 A3-L A3-02 A3-03 A3-0203 

Nonpar Nonpar Nonpar Nonpar Nonpar 

 
2. “Nonpar” means the nonparametric approach based on SVR.  

 

6.3.3.2 Comparison between Semiparametric Algorithms Based on SVR and 

Nonparametric Approach Based on SVR 

As mentioned previously, it is also not wise to ignore the knowledge and only use a 

pure nonparametric approach based on SVR to estimate cost. From the Table 6-7 through 

Table 6-9 and Figure 6-1 through 6-3, appropriate semiparametric algorithms with known 

function forms on some cost drivers are significantly better than a corresponding pure 

nonparametric approach. 

Under the test case 1, semiparametric A1 is close to or significantly better than its 

corresponding pure nonparametric approach. With known function form on “x2”, the 

performance of semiparametric A1 is not significantly different with that of the pure 

nonparametric approach. However, with known function forms on “x3” or “x2 and x3”, 
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semiparametric A1 attained estimating accuracy 93.21% and 97.57%, which respectively 

are significantly better than that of the corresponding nonparametric approach (accuracy: 

71.81%). Semiparametric A3 is close to or significantly better than the corresponding 

pure nonparametric approach. The known function forms on “x2” or “x2 and x3” for 

semiparametric A3 did not bring any significant improvement comparing to the 

nonparametric approach. Moreover, with known function form on “x3”, A3 has 

significant improvement, whose accuracy is 94.93%. Semiparametric A2 did not show 

any improvement on performance with known information. 
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Figure 6-2 Comparisons under Test Case 2 

Note: 

 

1. The abbreviated name of each column is listed as the following table.  

Series Name Lin-X1-X5 ^X2 X3 ^X5 ^X2, X3 ^X2, X3, ^X5 

Param Param-L Param-2 Param-3 Param-3 Param-23 Param-235 

A1 A1-L A1-2 A1-3 A1-3 A1-23 A1-235 

A2 A2-L A2-2 A2-3 A2-3 A2-23 A2-235 

A3 A3-L A3-2 A3-3 A3-3 A3-23 A3-235 

A3-0 A3-L A3-02 A3-03 A3-03 A3-0203 A3-020305 

Nonpar Nonpar Nonpar Nonpar Nonpar Nonpar Nonpar 

 

2. “Nonpar” means the nonparametric approach based on SVR.  
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Figure 6-3 Comparisons under Test Case 3 

Note: They are same as notes for Figure 6-2.  

 

Under the test case 2, semiparametric A1 is mostly close to or significantly better 

than its corresponding nonparametric approach. With partial known function form on 

“x5”, the performance of semiparametric A1 is not significantly different with that of the 

nonparametric approach. The partial known function form on “x2” worsened the 

performance a little bit comparing to the pure nonparametric approach. However, with 

known function forms on “x3”, “x2 and x3”, or “x2, x3 and x5”, semiparametric A1 attained 

estimating accuracy 95.92%, 96.04% and 96.07%, which respectively are significantly 

better than the corresponding nonparametric approach (accuracy: 91.17%). Under most 

situations semiparametric A3 has worse performance than the pure nonparametric 

approach does. Moreover the known function forms on “x3” brought significant 

improvement comparing to the nonparametric approach. This is also true under test case 

1. The semiparametric A2 did not show any improvement on performance with known 

information. 

Under the test case 3, semiparametric A1 is also mostly close to or significantly better 

than the nonparametric approach. With known function form on “x2” or “x5”, the 

performance of semiparametric A1 is not significantly different with that of the pure 

nonparametric approach. However, with known function forms on “x3”, “x2 and x3”, or 
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“x2, x3 and x5”, semiparametric A1 attained estimating accuracy 93.38%, 94.99% and 

93.32%, which respectively are significantly better than the corresponding nonparametric 

approach (accuracy: 78.04%). Semiparametric A3 is close to or significantly better than 

the nonparametric approach. The known function forms on “x2”, “x5”, “x2 and x3”, or “x2, 

x3 and x5” for semiparametric A3 did not bring significant improvement comparing to the 

pure nonparametric approach. However, with known function form on “x3”, A3 has 

significant improvement, which has best accuracy 95.78%. Semiparametric A2 did not 

show any improvement on performance with known information. 

 

6.3.3.3  Comparison among Three Semiparametric Algorithms Based on SVR 

From the graphs in Figure 6-1 through Figure 6-3, the performance of semiparametric 

A1 is much better than A2 and A3 with different amount and type of known information. 

Moreover the performance of A1 is much more stable than that of A2 and A3: even 

inexact function forms or partial function forms did not significantly worsen the 

performance of A1 comparing to that of the corresponding pure nonparametric (see A1-L 

vs. Nonpar in Table 6-7 through Table 6-9).  Additionally for A1, there is a trend: more 

information brings higher accuracy (see A1-2 vs. A1-23, A1-3 vs. A1-23 under the test 

case 1; or see  A1-2 vs. A1-23, A1-3 vs. A1-23,  A1-5 vs. A1-23 under the test case 2; ). 

Furthermore, with known function forms of “x3” A3 had very good performance, whose 

the estimating accuracy under three test cases respectively attained “94.93%”, “93.59%”, 

and “95.78%”. They were obviously significantly better than corresponding pure 

nonparametric approach and pure parametric approach. Semiparametric A2 did not show 

any improvement under three test cases. 

 

6.3.3.4 The Results with Inexact Function Forms  

When there is not knowledge of function forms, the first-order forms are used as the 

function form of cost drivers. In Table 6-7 through Table 6-9 and Figure 6-1 through 

Figure 6-3, “A1-L”, “A2-L”, “A3-L”, “A3-02”, “A3-03”, “A3-05”, “A3-0203”, and “A3-

020305” represent this situation.  
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These tables and figures show inexact function forms for semiparametric approach 

cannot bring improvement of performance over the pure parametric approach and 

nonparametric approach. When the nonparametric approach have good performance for 

the data as test case 2, A1-L have significant better performance than the corresponding 

parametric approach. However, A1-L is not significant different with the nonparametric 

approach.  

Additionally, these inexact forms increase the semiparametric model complexity, 

especially for A2 and A3, and even possibly worse the performance. A3-L under the test 

case 1, 2 has very bad performance. Under test case 2 (A3-02, A3-03, A3-0203, A3-

020305), inexact forms make the performance semiparametric approach significantly 

worse than that of the corresponding pure nonparametric approach.  

 

6.3.3.5  Discussion 

These results suggest that when there may be some knowledge about the parametric 

form it cannot be wise to ignore the knowledge and only use the pure nonparametric 

approach. The semiparametric approach would be a good way for cost estimation in this 

situation. It can improve the estimating accuracy by combining a parametric component, 

which is based on the researcher‟s knowledge of the underlying model, with a 

nonparametric component, which is designed to capture any structure in the data that the 

parametric fit fails to explain. It can provide noticeable improvements over the two 

approaches when used individually. 

Below are listed some important issues when using the semiparametric approach. 

1. Based on Section 6.3.2.1 and Section 6.3.2.2, known exact function forms would 

certainly bring improvement for estimating accuracy. At least it could not worsen 

performance for the semiparametric A1. The result can be obtained according to 

A1-2 vs. Param-2, A1-3 vs. Param-3, and A1-23 vs. Param-23 under three test 

cases; or A1-5 vs. Param-5, A1-235 vs. Param-235 under the test case 2 and 3. 

But the semiparametric A2 and A3 cannot guarantee it.  

2. Semiparametric A3 may have better performance when it works with a single cost 

driver with known exact function form. This was also verified by Smola, Frieb, et 
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al.[94]. Under three test cases, with known function forms of “x3”, A3 bring 

significant improvement comparing to the pure nonparametric method. But with 

inexact function form or partial function form of single cost driver, the estimating 

accuracy is not significantly different with the pure nonparametric approach. This 

does not conflict with the result presented in the paper [94]. However, 

semiparametric A3 performance has easily been worsened by model complexity 

which grows as the number of cost drivers increase, whatever the function forms 

of these cost drivers are exact or not (see A3-23, A3-235, A3-0203, A3-020305 in 

Table 6-7 through Table 6-9 and Figure 6-1 through Figure 6-3). Therefore, 

Semiparametric Algorithm 2 and 3 based on Tabu-SVR for cost estimates is 

sensitive to model complexity. 

3. Semiparametric Approach 2 did not show any improvement with known function 

form (see A2 under three test cases) 

4. Partial known function form mostly cannot solely bring the improvement (see A1-

2 or A1-5, A3-2 or A3-5 under the test case 2, 3). Also exact function forms of x2 

associated with step function have not brought any improvement (see A1-2, A3-2 

under three test cases) over the corresponding parametric approach (Param-2) and 

the nonparametric approach under these test cases.  

5. Unknown interaction among cost drivers would worsen the estimating accuracy. 

(see A1-2, A1-5, A3-2, and A3-5 under the test cases 2, 3) 

 

6.4  Conclusions 

By way of conclusion, it is expected that semiparametric approach will be used when 

there is some knowledge about the parametric form but the form is not adequately known 

throughout the entire range of data or not to reflect true attribute of data. The 

semiparametric approach would be a good way for cost estimation in this situation. The 

semiparametric approach is able to combine a parametric component based on the 

researcher‟s knowledge of the underlying model, with a nonparametric component 

designed to capture any structure in the data that the parametric fit fails to explain. In the 

experiments, three test cases were produced based on five common basic cost 
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characteristics. All comparisons showed semiparametric A1 had much better and more 

stable performance than the corresponding parametric approach and the pure 

nonparametric approach.  
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Chapter 7 Sensitivity Analysis Based on Support Vector 

Regression for Cost Control 

7.1  Introduction 

The cost model for complex products design is not only used to provide accurate cost 

estimation but also can be used to explain complex, and often non-linear, relationships 

between input variables and cost behavior. This can easily be used by designers and 

decision makers in the design stage. 

The objectives of sensitivity analysis based on SVR is to:  

o determine the contribution of cost drivers; 

o answer “what-if” question for cost trade-off study; 

o determine the effect of each variables xi (the absolute maximum change when 

the value of variable xi is varied in its allowable range and all other variables 

are kept at their designated value) on cost, as Figure 7-1; 

o establish the profile of each variable xi when all other variables are kept at the 

designated set, which mean the outputs at its minimum value, then 

successively at their first quartile, median, third quartile and maximum of the 

variable xi, as Figure 7-2, or outputs at a number of points with equal intervals 

in the whole range; and 

Cost

xi

C2

C1

The absolute maximum change (c1 – c2) 

when the value of variable xi is varied in 

its allowable range and all other variables 

are kept at their mean/median value

 

Figure 7-1 The Sensitivity of Variable xi 
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Cost

xi

C2
C1

C3

C4

C5

Minimum Median Maximum  

Figure 7-2 The Profile of Variable xi 

o establish a monotonic (non-decreasing or non-increasing) range for a 

particular variable xi when other variables are kept at the designated set (see 

Figure 7-3).  

Cost

xi

C2

C1

C3

C4

a b c d

Non-decreasing Range [a, b] and [c, d]

Non-increasing Range [b, c] 

 

Figure 7-3 The Monotonic Range of Variable xi 

The performance of Tabu-SVR for cost estimation has been discussed in previous 

chapter. Tabu-SVR approach has a great potential to accurately estimate cost for complex 

products during the early design phases. However, Tabu-SVR is a nonparametric method, 

which cannot directly give the explanation of those complex and nonlinear relationships. 

This section would introduce two existing methods to solve this problem. These two 
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methods can provide a way to attain the above objectives of sensitivity analysis based on 

SVR. Finally they can be used by designers and decision in the design stage. 

 

7.2 Methods 

Sensitivity analysis is used to study the influence of cost drivers on cost. The method 

is using cost estimating approach based on SVR as an estimator (simulator). In the 

different scenarios, the outputs then are organized to obtain the above goals. 

To attain the objectives in Section 7.1, there are two methods.  

Method 1: A certain number of points with equal interval are produced in the range of 

the studied cost driver. For example, if five points are produced, they would be minimum, 

first quartile, median, third quartile and maximum. Other cost drivers are kept as the 

designated values (see Figure 7-4).  

f(x, ) basd on 

SVR 
xi Ci

k

All other xj(j<>i) are kept 

at the designated value
 

Figure 7-4 The Method 1 for Sensitivity Analysis Based on SVR 

In Figure 7-4, the studied cost driver is xi and the desired number of points is k. The 

value of cost driver xi is varied in its allowable range and all other cost drivers are kept at 

their designated value. The maximum and minimum of k points would then determine the 

absolute maximum change. When k is greater, the effect of cost driver xi would be more 

accurate. The effect of all cost drivers determines the contribution of cost drivers. Also 

these k points form the profile of xi when all other cost drivers are kept at the designated 

set. Furthermore, these k points can establish a monotonic (non-decreasing or non-

increasing) range for a particular variable xi when other variables are kept at the 

designated set.  

Method 2: The cost estimating approach (nonparametric approach and 

semiparametric approach) based on SVR adjusts the input values of one variable while 

keeping all the others untouched (see Figure 7-5). The changed costs against each change 
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in the cost drivers are noted. The cost driver whose changes affect the cost most is the 

one that has the most relative influence. These changes can take the form of xi=xi+δ 

where xi is the selected input variable and δ is the change. The variable δ can be increased 

and decreased in designated percentage of the input value in the allowable range. 

 

f(x, ) basd on 

SVR 
xi yi

All other xj(j<>i) are kept 

at the designated value
 

Figure 7-5 The Method 2 for Sensitivity Analysis Based on SVR 

The methods can easily help conduct trade-off study to answer “what-if” question. 

When other cost drivers are kept at the designated values, small intentioned change on 

the studied cost driver would bring the cost change and direct the designers. When small 

change happenes at the sequenced points on the studied cost driver as other cost drivers 

keep untouched, MSE for this studied cost driver can be calculated. After this kind of 

MSE of all cost drivers, the contribution of cost drivers can be compared.  

 

7.3 Numerical Example 

7.3.1  Data Description 

The training data used in this section were produced by FLOPS cost module as 

previous Section 5.2.2. Five input variables were chosen for cost drivers. They are 

WTS_25, NENG, THRMAX, SMACH, QMAX. WTS_25 is total weight of engines. It is 

assumed between 10000 lbs and 70000lbs. NENG is the number of engines per aircraft. 

In this example, NENG is set 2 or 4. THRMAX is the maximum thrust per engine ranging 

from 20000 lbs to 90000 lbs. SMACH is the maximum Mach number at best altitude and 

ranges between 0.7 Mach and 1 Mach. QMAX is the maximum dynamic pressure ranging 

from 200 lb/ft
2
 to 600 lb/ft

2
. After training, the nonparametric model based on SVR was 
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constructed. Then the sensitivity analysis based on SVR for these five cost drivers can be 

preformed via the above two methods.  

 

7.3.2 Results and Discussion 

The cost driver, NENG, only has two values: 2 and 4. For method 1, the rest of cost 

drivers were divided by equal intervals to produce 20 points. For each cost drivers, the 

cost estimate was calculated while the other cost drivers were kept at the median value. 

The resulting problems are displayed in Figure 7-6 and Figure 7-7.  
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COST-WTS_25 (d)
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Figure 7-6 The Profiles of Four Cost Drivers: (a) QMAX; (b) SMACH; (c) THRMAX; (d) 

WTS_25 

In Figure 7-6 has shown all cost drivers are monotonic for the range of interest. 

Except the cost is decreasing as WTS_25 drops, the costs are increasing as all other cost 

drivers: NENG, QMAX, SMACH, and THRMAX, rise.  Figure 7-7 indicates the 

influence of all cost drivers. For NENG=2, THRMAX is most significant cost driver 
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because its range is biggest. The second one is WTS_25. The least important cost driver 

is QMAX, whose range is smallest. For NENG=4, there are same results as NENG=2.  
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Range Analysis under NENG=4 (b)
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Figure 7-7 Contribution of the Cost Drivers by Method 1: (a) NENG=2; (b) NENG=4 

For method 2, these 20 points were used as sequence points. Small change, 5%, was 

chosen to add to the sequence points. The MSE of output before and after can reflect the 

influence of cost drivers as Table 7-1. It has shown when NENG =2 THRMAX has 

biggest MSE, 3.43E+10. The cost driver THRMAX is most significant. The second 

significant cost driver is WTS_25. QMAX is the least important. The results are same as 

NENG =4.  

Therefore, method 1 and method 2 showed the same results. In this example, 

THRMAX has most significant impact on cost. The following sequence of importance is: 

WTS_25, SMACH, and QMAX. 

 

Table 7-1 MSE of Cost Drivers When Small Changes (5%) Are Added and Other Cost 

Drivers Are Kept at the Median 

MSE QMAX SMACH THRMAX WTS_25 

NENG=2 7.26E+08 5.46E+09 3.43E+10 2.06E+10 

NENG=4 2.26E+09 1.05E+10 1.24E+11 8.19E+10 

 

In this example, all cost drivers are monotonic. It hence is unnecessary to do 

monotonic analysis.  
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7.4 Conclusions 

After the cost was predicted accurately, knowing the contribution of each cost driver 

is also very important. Method 1 and Method 2 presented in this chapter for sensitivity 

analysis would improve the explanation capability of cost estimating approach based on 

SVR. Also they can help designer and decision-maker to perform trade-off study during 

the design phases.   

This chapter illustrates how to use method 1 and method 2 to make sensitivity 

analysis based on SVR for the aircraft engine cost. In the numeric example, the method 1 

and method 2 showed the contribution of cost drivers and established the profiles of cost 

drivers. These results show these two methods could easily help designer make trade-off 

study and answer “what-if” questions. 
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Chapter 8 Conclusions and Future Research 
 

During the design phases, designers and decision-makers often need to know accurate 

cost information to assess and compare multiple alternatives and to determine preferred 

design. They need to identify cost reduction opportunities and tradeoffs to meet 

aggressive targets (requirement, performance, and schedule). They also need to evaluate 

cost reduction ideas and alternatives affecting system performance factors for their 

impact and compare the results with the original “baseline” design. Therefore, a cost 

estimating model must be reasonably accurate, robust, and capable of operating on data 

of the detail typically available in the related phase, to support cost trade-off studies for 

designers and decision makers.  

This study first focused on identifying and selecting cost drivers, and then on 

nonparametric and semiparametric cost approach based on support vector regression to 

improve cost estimating accuracy. The methods of sensitivity analysis were introduced to 

determine the contributions and profiles of cost drivers, which can work to support cost 

tradeoffs by designers and decision makers. The study is concluded as following sections. 

 

8.1 Conclusions 

A generic cost model was first presented in Chapter 2. It consists of three components: 

output (cost), f(x;), and an input space x. Based on the generic model, there are two 

types of cost estimating approaches: approaches based on functional relationship and 

approaches based on inputs and structural relationship. The approaches based on the 

inputs and structural relationship (feature-based cost approach, activity-based cost 

estimating approach, process-based cost approach and simulation) are often applied in the 

preliminary or later phase and respectively do a good job under a certain situation and 

scenario. The approaches based on functional relationship are building blocks for the 

approaches based on structural relationship and inputs. The performance based on inputs 

and structural relationship depends on the identification of inputs, structure and the 

approaches based on functional relationship. If there is not a good approach based on 
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functional relationship, there would be no accurate estimation. The approach based on 

functional relationship is corner stones for cost estimation.  

Based on functional relationship, the approaches were classified into: expert 

judgment, parametric method, neural network approach and case-based reasoning 

approach. The significant drawback of expert judgment is its subjective nature. 

Parametric method needs apriori knowledge of the functional form and it is very difficult 

to deal with nonlinearity and discontinuity. Case-based reasoning method is hard to 

define a similarity measure and adjusting methods and thus cannot guarantee the 

accuracy of estimating cost. For artificial neural network approach, it is hard to produce 

near optimal neural network models and overcome over fitting problems when there are 

lots of historical data. The artificial neural network approach was thought to lack 

explanation capabilities.  

Cost estimation has always been difficult at the early stage of product development 

when only a few conceptual attributes of the product are known for complex product. The 

relationship between these attributes and cost is very hard to obtain. And the 

discontinuity and nonlinearity may often exist in these relationships. Therefore, this study 

focused on a new way to identify and select cost drivers and to estimate cost based on 

support vector regression, which can be applied in the entire life cycle, especially for 

complex products during the early design phases. And the methods of sensitivity analysis 

could make it overcome the “black box” problem and be able to provide guide to 

designers. 

 

Chapter 3 presented the research framework of this study. This study was composed 

of four parts:  

– identifying cost drivers via Causal-Associated (CA) method and eliminating 

the insignificant cost drivers using Tabu-Stepwise method;  

– estimating cost via Tabu-SVR, a nonparametric approach based on support 

vector regression with a tabu search algorithm;  

– estimating cost using semiparametric approach based on support vector 

regression (SVR); and  
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– indicating the effect of cost drivers on cost for cost modeling based on SVR 

via sensitivity analysis.  

 

In Chapter 4, a new method, Causal-Associated (CA) approach, was proposed to 

identify the cost drivers, which is different with traditional methods for identifying cost 

drivers. CA approach would bring more complete and correct understanding and 

explanation to the cost analysis, and help avoid missing some cost drivers. It therefore 

results in an improved predictive capacity. After that, Tabu-Stepwise selection technique 

was presented to eliminate the unrelated or insignificant cost drivers under nonlinear 

situation and reduce the variance in the model output and the cost of collecting the data.  

A case study in Chapter 4 was employed to illustrate the feasibility, the procedure of 

Causal-Associated method and Tabu-Stepwise method. From this case study, it was seen 

that the Causal-Associated method helps avoid missing some cost drivers. When using 

associated cost drivers to represent some root cost drivers, the assumptions and 

preconditions were easily obtained. After that, Tabu-Stepwise selecting method based on 

Tabu-SVR was used to select the cost drivers. The test data showed it improved the 

accuracy of the cost estimating prediction by eliminating irrelevant variables, also 

reduced expenditure of the collection, storage, and computation load in the process of 

cost estimation. 

A nonparametric approach based on support vector regression was introduced in 

Chapter 5. It includes three subparts: the methodology of Tabu-SVR, test cases and 

experiments. The procedure of Tabu-SVR, a nonparametric cost estimating approach 

based on SVR, was presented. The tabu search algorithm for choosing parameters of 

SVR was proposed. For validation and verification of performance on Tabu-SVR, the test 

cases were generated. The test cases include simulated data sets and pilot data set. The 

simulated data sets were produced based on five summarized basic common cost 

characteristics: accumulation; linear function; power function; step function; and 

exponential function. The pilot data set was produced by the FLOPS cost module (aircraft 

engine part). The cost models were constructed respectively based on SVR, parametric 

method, neural networks and case-based reasoning. The cost estimating approach based 

on SVR was studied. The performance of all methods was compared.  
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From the results, Tabu-SVR significantly improved the performance comparing to 

SVR based on empirical study via choosing appropriate parameters. The RBF and 

polynomial kernels show better performance over linear kernel under most data sets. 

Moreover, RBF kernel is much more robust. This means RBF kernel is less dependent on 

the sample data used. When an a apriori CER (functional form) is unknown, Tabu-SVR 

cost modeling yielded good performance over other cost modeling techniques: parametric 

method, case-based reasoning, and neural networking. The Tabu-SVR was able to 

capture these nonlinearities and discontinuities, along with interactions among cost 

drivers, had strong predicable capability. Especially, when the cost data does not allow to 

be discerned the appropriate CER because no enough knowledge is obtained or finding 

appropriate function forms become more complex as the dimensionality of cost drivers 

grows. Therefore, the cost model based on Tabu-SVR has a great potential to accurately 

estimate cost for complex products during the early design phases.   

In Chapter 6, the focus is on semiparametric cost estimating approach based on 

support vector regression (SVR). After presenting three semiparametric algorithms based 

on SVR, three data sets based on common basic characteristics were produced. The 

experiments showed that Semiparametric Algorithm 1 is the best approach under most 

situations and Algorithm 3 might have better performance under some situation. It often 

had better performance over the pure nonparametric approach and the pure parametric 

approach. The model complexity would influence the estimating accuracy for Algorithm 

2 and Algorithm 3. The inexact function forms of some cost drivers would not bring the 

improvement of cost estimating accuracy and even worsen the performance.  

Sensitivity analysis for cost modeling was discussed in Chapter 7. Two existing 

methods introduced in this chapter for sensitivity analysis would improve the explanation 

capability of cost estimating approach based on SVR. Also they can help designer and 

decision-maker to perform trade-off study during their design phases.  This Chapter 

illustrates how to use method 1 and method 2 to make sensitivity analysis based on SVR 

for aircraft engine cost. The numeric example showed the method 1 and method 2 were 

able to determine the contribution of cost drivers and establish the profiles of cost drivers. 

Therefore, the method 1 and method 2 could easily help designers make trade-off study 

and answer “what-if” questions. 
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8.2 Future Research 

Identifying and selecting cost drivers are very important to cost estimation. The CA 

method proposed in this study is a good way to identify the cost drivers. Tabu-Stepwise 

method based on Tabu-SVR can eliminate the insignificant and irrelevant cost drivers 

under nonlinear situation. But it has two drawbacks: first it is very time consuming; 

second it could not guarantee the best candidate sets. Future research could focus on how 

to reducing irrelevant cost drivers with less time and finding the better candidate sets as 

possible. 

Tabu-SVR has better performance than SVR based on empirical study and other 

traditional methods: parametric method, case-based reasoning, and neural networking 

under most situations. From this study, appropriate parameters and kernel would 

significantly impact on the performance of cost estimation. The tabu search algorithm 

was proposed to solve parameters choosing problems. It is still time consuming to choose 

appropriate parameters to construct a cost model based on SVR. Therefore, choosing 

appropriate kernel and parameters for SVR can still be studied further in the future. 

This study showed inexact and incomplete function forms would not bring any 

benefit for estimating performance and even sometimes worsen the performance. It is still 

worth studying how to use incomplete function forms to improve the performance. 

Additionally, the influence of interaction of cost drivers to performance in 

semiparametric approach could be a topic of future research. 
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Appendices 

Appendix A: Software Development  

In this study, the Tabu-Stepwise selection method in Chapter 4, the Tabu-SVR, and 

Semiparametric Algorithm 1, 2, 3 were implemented by the software developed by the 

author. The software was developed in Microsoft Visual C++ 2003 under Windows XP. 

The main framework of software is as Figure 5-9.   

The procedures and methods of Tabu-Stepwise, Tabu-SVR, and Semiparametric 

Algorithm 1, 2, 3 have been discussed in Chapter 4, 5, and 6. The data structure of 

software  was designed by referencing LIBSVM [96] and SVM
Light

 [97]. The 

optimization module was developed based on ILOG CPLEX 9.0.  

 In order to demonstrate the validity of the software, dummy data sets were created to 

test each module in the software. The middle outputs of matrix calculation realized by 

software were verified by being compared with the results of Matlab. A couple of 

functions were created to test the tabu search algorithm for choosing parameters for SVR, 

such as: 

54321 )()()()()( 55443322110


axaxaxaxaxay   

where ai, i=0, 1, 2 ,3 ,4 ,5; j, j=1, 2, 3, 4, 5;  ai and j are constant. xj is values searched 

by the tabu search algorithm. 

  

Appendix B: The Partial Output of Software (Tabu-Stepwise Method)  

The method and analysis about result of Tabu-Stepwise see Section 4.2.2 and Section 

4.3.4.  

Start from the Result of Adjusted R-square (15) 
 

OS time:    23:57:30 

OS date:    03/08/07 

 

Current OS time:    00:42:01 

Var:100111111110111   *Index:30713   *gamma:0.052810875   *C:7.7668482e+008   *e:567.72013  Value:1175042927.758595 

Current OS time:    01:25:44 

Var:000111111110111   *Index:30712   *gamma:0.023796549   *C:6.3782715e+008   *e:1644.4411  Value:1374664340.997489 

Current OS time:    08:10:24 

Var:110111111110111   *Index:30715   *gamma:0.010688677   *C:6.2225299e+008   *e:425.6524  Value:1552956573.694922 

Current OS time:    09:30:08 



 155 

Var:111011111110111   *Index:30711   *gamma:0.02239864   *C:2.5133743e+008   *e:6553.8658  Value:1490856550.715772 

Current OS time:    10:14:14 

Var:111101111110111   *Index:30703   *gamma:0.021285461   *C:4.0030664e+008   *e:1396.9057  Value:1195978998.023215 

Current OS time:    11:33:17 

Var:111110111110111   *Index:30687   *gamma:0.012904201   *C:9.9607283e+008   *e:4678.8819  Value:1245110090.179428 

Current OS time:    12:33:08 

Var:111111011110111   *Index:30655   *gamma:0.020879212   *C:5.9978692e+008   *e:446.63711  Value:1330770859.65468 

Current OS time:    13:18:42 

Var:111111101110111   *Index:30591   *gamma:0.0055869241   *C:4.9638682e+008   *e:260.61523  Value:1392342933.541083 

Current OS time:    14:35:51 

Var:111111110110111   *Index:30463   *gamma:0.008514491   *C:2.2421014e+008   *e:3904.2058  Value:1506839501.653724 

Current OS time:    15:19:48 

Var:111111111010111   *Index:30207   *gamma:0.0064658684   *C:5.8921178e+008   *e:54.95376  Value:1583886532.58673 

Current OS time:    16:10:48 

Var:111111111100111   *Index:29695   *gamma:0.018772303   *C:2.7411525e+008   *e:73.349337  Value:1494388142.995594 

Current OS time:    17:47:50 

Var:111111111110111   *Index:30719   *gamma:0.018574108   *C:5.0550009e+008   *e:23.574596  Value:1343286945.438213 

Current OS time:    18:35:24 

Var:111111111111011   *Index:28671   *gamma:0.024208341   *C:3.3508086e+008   *e:38.647055  Value:761342910.2086661 

Current OS time:    18:19:45 

Current OS date:    03/10/07 

 

Start from the Result of Cp (15) 
 

OS time:    00:26:21 

OS date:    03/09/07 

 

Current OS time:    02:42:50 

Var:110001111110011   *Index:26595   *gamma:0.044072428   *C:9.7811969e+008   *e:716.03517  Value:579987291.0513141 

Current OS time:    08:34:06 

Var:010001111110011   *Index:26594   *gamma:0.03020724   *C:6.6311213e+008   *e:270.93373  Value:693538760.5838952 

Current OS time:    09:59:59 

Var:100001111110011   *Index:26593   *gamma:0.05274831   *C:9.5668995e+008   *e:98.415288  Value:756624098.3907197 

Current OS time:    12:54:44 

Var:111001111110011   *Index:26599   *gamma:0.029657512   *C:9.3807308e+008   *e:42.097124  Value:763940017.6385477 

Current OS time:    15:19:00 

Var:111101111110011   *Index:26607   *gamma:0.050607916   *C:9.6131403e+008   *e:250.93535  Value:732529223.8408792 

Current OS time:    16:40:12 

Var:111110111110011   *Index:26591   *gamma:0.011577547   *C:7.0424173e+008   *e:1562.5843  Value:854630423.9268196 

Current OS time:    17:31:05 

Var:111111011110011   *Index:26559   *gamma:0.011212986   *C:7.5999129e+008   *e:93.500146  Value:864496281.4449811 

Current OS time:    19:16:35 

Var:111111101110011   *Index:26495   *gamma:0.012671489   *C:8.0258272e+008   *e:304.63891  Value:983949355.3646636 

Current OS time:    20:16:11 

Var:111111110110011   *Index:26367   *gamma:0.030613986   *C:9.1647587e+008   *e:22.181785  Value:912192509.8520589 

Current OS time:    21:13:01 

Var:111111111010011   *Index:26111   *gamma:0.038851661   *C:8.5702377e+008   *e:107.22442  Value:1046047127.069876 

Current OS time:    22:02:37 

Var:111111111100011   *Index:25599   *gamma:0.03688848   *C:5.8823888e+008   *e:154.1143  Value:652171464.0421363 

Current OS time:    09:58:01 

Var:111111111110011   *Index:26623   *gamma:0.024645471   *C:5.9611198e+008   *e:420.36258  Value:735977417.6815288 

Current OS time:    11:37:56 

Var:111111111111011   *Index:28671   *gamma:0.014944798   *C:5.9669329e+008   *e:1026.1681  Value:730285283.6970077 

Current OS time:    16:16:13 

Current OS date:    03/11/07 

 

 

Start from First Variable (15) 
OS time:    11:40:47 

OS date:    03/17/07 
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Current OS time:    12:23:40 

Var:100000000000000   *Index:1   *gamma:4.3879513   *C:7.0583209e+008   *e:10132.145  Value:2003086893.195135 

Current OS time:    13:43:54 

Var:111000000000000   *Index:7   *gamma:4.7479872   *C:33920638   *e:2459.6004         Value:250747646.9397545 

Current OS time:    22:40:52          

Current OS date:    03/17/07 

 

 

Start from the Result of Adjusted R-square (20) 
OS time:    23:10:35 

OS date:    03/16/07 

 

Current OS time:    23:31:52 

Var:10010111111011100001   *Index:554985   *gamma:0.018856142   *C:6.2471956e+008   *e:140.15949  Value:1427580085.650467 

Current OS time:    23:50:24 

Var:00010111111011100001   *Index:554984   *gamma:0.039943672   *C:5.8764228e+008   *e:113.4089  Value:1240999446.779702 

Current OS time:    00:52:39 

Var:11100111111011100001   *Index:554983   *gamma:0.026018204   *C:5.7362659e+008   *e:523.33981  Value:1313703275.508232 

Current OS time:    01:40:09 

Var:11111011111011100001   *Index:554975   *gamma:0.014438349   *C:6.494865e+008   *e:4203.5336  Value:1223761224.341701 

Current OS time:    04:30:07 

Var:11111111111101100001   *Index:552959   *gamma:0.019056498   *C:4.2863589e+008   *e:617.50788  Value:1178473513.340879 

Current OS time:    06:45:52 

Current OS date:    03/17/07 

 

 

Start from the Result of Cp (20) 
 

OS time:    11:51:38 

OS date:    03/17/07 

 

Current OS time:    12:17:43 

Var:10011001111001100000   *Index:26521   *gamma:0.036593017   *C:7.4843016e+008   *e:233.55167  Value:661887569.5358445 

Current OS time:    12:43:33 

Var:00011001111001100000   *Index:26520   *gamma:0.033535666   *C:9.9073074e+008   *e:1823.9649  Value:641909134.0751731 

Current OS time:    14:10:16 

Var:11110001111001100000   *Index:26511   *gamma:0.021390641   *C:7.0383319e+008   *e:766.69016  Value:637918642.460373 

Current OS time:    16:06:07 

Var:11111111110001100000   *Index:25599   *gamma:0.039823188   *C:6.3686396e+008   *e:558.23428  Value:716098169.7540585 

Current OS time:    18:58:48 

Current OS date:    03/17/07 

 

Start from the First Variable (20) 
OS time:    00:14:57 

OS date:    03/18/07 

 

Current OS time:    01:01:33 

Var:10000000000000000000   *Index:1   *gamma:4.3879513   *C:7.0583209e+008   *e:10132.145  Value:2003086893.195135 

Current OS time:    02:24:01 

Var:11100000000000000000   *Index:7   *gamma:4.7479872   *C:33920638   *e:2459.6004  Value:250747646.9397545 

Current OS time:    16:08:05 

Current OS date:    03/18/07 

 

Note: 

*gamma, *C, and *e are the parameters of SVR model with RBF kernel. They are C, and(see Section 2.5.2 and Section 5.1.2). 
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