
VLSI Design
1994, Vol. 1, No. 3, pp. 243-259
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1994 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

Block-Level Logic Extraction from CMOS VLSI
Layouts

INDERPREET BHASIN and JOSEPH G. TRONT
Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA

(Received August 30, 1990, Revised February 21, 1991)

This paper describes a Prolog based Block Extraction System (ProBES) which converts a transistor level description
of a CMOS circuit into a logic block level description. The operation of ProBES is conceptually similar to that
of a circuit extractor. However, whereas a circuit extractor is used to identify circuit primitives such as transistors,
resistors and capacitors from the geometrical information in a mask level layout description, ProBES can be used
to identify predefined gates and logic blocks in a CMOS transistor network. ProBES operates according to the
circuit hierarchy. Basic gates such as inverters, transmission-gates, nands, nors, etc. are identified first. Logic
blocks composed of these gates are then identified. More complex blocks which contain blocks already identified
are recognized next and so on. ProBES is meant to be used as an aid in the verification of logic design. It can
provide a connectivity check for a circuit.

Key Words: Layout Verification; Logic Extraction; VLSI Design

INTRODUCTION

significant aspect of the VLSI design process
is verifying that the final layout correctly rep-

resents the intended logic. Errors can arise due to
the manual effort involved in translating logic designs
to physical structures in silicon. Digital circuits have
an implicit hierarchy in their description. However,
it is easier to verify a circuit at a higher level of
description when it is pruned of unnecessary details.
A desirable approach in verifying a design would
therefore be to transform a detailed description into
a less detailed one [1]. A system has been imple-
mented to automatically extract logic blocks from a
CMOS transistor level description. This process of
block extraction is one in a series of progressive steps
toward translating the circuit description to a higher
level.
The description of the circuit is assumed to be

available at the transistor level. Several schemes al-
ready exist to extract transistor level interconnectiv-
ity information from the mask level layout [2, 3].
Starting with the description generated by a circuit
extractor, we derive a higher level description in the
form of an interconnection of functional blocks. Pre-
vious work of a related nature has concentrated on

the extraction of very basic gates, based purely on
topological comparison with reference gates [4, 5, 6].
A generalized approach is outlined in [7, 8] for check-
ing the logical correctness of FET designs through
circuit recognition. In [9] a block extraction scheme
is described to extract predefined circuit blocks from
a SPICE like network description. But, the recog-
nition of blocks is based purely on circuit topology
and is accomplished through comparison of reference
graphs of logic functions with derived graphs in a
circuit. A shortcoming of.methods which rely on a
graphical approach is that a test for graph isomorph-
ism establishes topological, not functional equiva-
lence.. As a result, two implementations of the same
logic function may be considered different. This im-
poses a restriction on the designer to create designs
which retain a topological correspondence with the
original designs. A logic extractor described in [10]
translates CMOS transistor level descriptions to gate
level in order to enable gate level logic simulation.
The procedure involves combining transistors into
series and parallel branches. By combining these
branches, the logic function is established. An ad-
vantage of this method is that no user reference logic
functions are needed. However, by this process only
primitive logic functions or logic blocks composed of

243

244 INDERPREET BHASIN and JOSEPH G. TRONT

these primitive functions can be extracted. This is a
limitation because designers often use non-standard
logic gates and not all logic blocks can be described
as combinations of simple primitive gates. In
ProBES, any arbitrarily defined logic block can be
extracted. An array of predefined gates is recognized
from a transistor level description of the circuit,
based on the transistor level structure of a gate or
the symbolic boolean expressions at the output node
of a gate. The extraction of these boolean expres-
sions is part of the program. Following the recog-
nition of basic gates, functional blocks composed of
these gates can be recognized. In the program, a
library of functional blocks is maintained. Within this
library, a logic block is defined as a set of Prolog
clauses. More than one description of the same type
of logic block is possible. The recognition of a func-
tional block becomes equivalent to satisfying a goal,
subject to the constraints specified in the rules for
that block. These constraints take a structural form
wherein a block is defined as a composition of lower
level blocks and gates. The basis of block extraction
is the circuit topology as well as the deduced logical
behavior of circuit blocks. Unlike previous methods
which take a purely graphical approach, we use the
symbolic features of Prolog to define functional
blocks. The instances of these blocks in a circuit are
then recognized using the pattern matching ability
inherent in Prolog.

THE BLOCK EXTRACTION
APPROACH

Currently, simulation of the designed circuit is the
predominant method of verification [11]. For large
circuits, complete verification is not possible even
with switch level simulators. Other than simulation,
verification methods based on topological compari-
son [4, 5, 6, 9] have been suggested. But, these meth-
ods have limitations and are not generally applicable.
In the absence of simulation, the functional correct-
ness of a circuit has to be deduced from a purely
static analysis based on the physical connectivity of
the circuit components. The task of establishing the
functional correctness of a circuit is easier when the
description of the circuit is available at a higher level
in the abstraction hierarchy.
We describe a method to recognize logic functional

blocks from a transistor level description of a circuit.
Translating a circuit description consisting of an in-
terconnection of transistors to a description consist-
ing of an interconnection of logic blocks is a step
toward raising the level of abstraction. We may ob-

serve how such a recognition process can enable ver-
ification at a higher level. Assume that a circuit is
specified as a composition of subcircuits. A recog-
nition procedure operating on the implemented de-
sign identifies each subcircuit that makes up the
larger circuit. Now, we can check whether these sub-
circuits are configured in a way that realizes the in-
tended circuit.
An intelligent program attempting to recognize

logic blocks in a circuit would need a knowledge-
base which enables it to do the following:

Correlate derived boolean expressions with de-
fined functions.

Match particular circuit topologies to defined
functions.

The recognition process then, is based on both, the
topology of the circuit and the logical behaviour of
the circuit. The broad outline of the recognition and
verification procedure can be stated as follows:

1. Circuit recognition rules are maintained in a
library. These rules define logic gates in terms
of transistor interconnections or in a behav-
ioural form in terms of boolean logic expres-
sions.

2. The transistor level description of the circuit is
processed to a form where the application of
recognition rules can proceed. This processing
step involves partitioning a circuit into smaller
subcircuits and extracting logic expressions at
output nodes of these subcircuits.

3. Gates in the circuit are extracted based on these
logic expressions.

4. The circuit to be verified is specified as an in-
terconnection of its constituent logic blocks.
Rules describing each of these logic blocks
should be present in the rule library. A logic
block is defined in terms of the gates or lower
order logic blocks contained in it.

5. Using the recognition rules, an attempt is made
to find an instance of each logic block in the
original circuit, within the designed circuit. The
recognition procedure is constrained by a need
to preserve the connectivity between logic
blocks as specified in the original circuit. This
connectivity pattern is implicit in the input and
output node names of the logic blocks.

6. If an instance of each constituent logic block is
found, one can conclude that the circuit reflects
the desired logic.

In order to implement the described approach, a
programming language is desired which facilitates an

BLOCK LEVEL EXTRACTION 245

easy description of logic circuits as well as the ma-
nipulation of boolean expressions. Prolog is a logic
programming language well suited to the structural
description of digital circuits.
The use of Prolog has been suggested of late for

the description and verification of digital circuits [13,
14]. In [15], a Prolog based approach is described
for verifying gate level circuits through symbolic sim-
ulation. A Prolog based connectivity checker is de-
scribed in [16]. Prolog allows a circuit to be described
in a manner which is easy to understand. This is
particularly advantageous when we consider the
framing of rules for the recognition of logic blocks.
If a new logic block is used in a design, the user can
add the rule describing the block, to the rule library

with relative ease. There are two major features of
Prolog which are very useful in verification. These
are the pattern matching ability and automatic back-
tracking.
Complete details for this block extraction algo-

rithm along with information on the software that
implements this approach can be found in [21].

SYSTEM OVERVIEW

The overall scheme for the extraction of gates,
blocks, and logic expressions from a layout descrip-
tion (CIF file) is shown in Figure 1. In this scheme,
the Magic system [17] is shown, used in conjunction

MAOIC SYS’IIIM

CIF FILE

.mag FILE

.ext FILE

.sim FILE

(CPROM)
IOLO0DATABASB
AND
IOGRAM

blocks expressions

BLOCKEXTRACTION AND RECOGNITION SYSTEM

FIGURE A Block Extraction and Recognition System.

246 INDERPREET BHASIN and JOSEPH G. TRONT

with the block extraction and recognition system.
Any other circuit extraction procedure which pro-
duces a transistor level description of a layout in the
Magic .sim format, can be used instead.
A C preprocessing program called sim2pro, which

forms a part of the block extraction system, converts
a file in the Magic .sim format into a list of Prolog
clauses which form the input to the recognition pro-
gram written in Prolog.
The preprocessing program converts a transistor

in the .sim format to the following Prolog clause:

trans(type,g,s,d).

where
Type indicates the transistor type, namely n or p
Gate stands for the gate node of the transistor

and s and d represent the end terminals of the tran-
sistor, namely source and drain. In addition, the pro-
gram searches through the attribute lists of terminals
to identify nodes which are primary inputs and out-
puts of the circuit. To enable the program to extract
this information, the designer when creating a layout
needs to affix the labels input and output to the CIF
geometric structure associated with the primary input
and output nodes of a circuit. The Magic layout sys-
tem allows attributes to be associated with individual

geometries (usually rectangles for Manhattan style
layouts). Therefore, a rectangle (poly, diffusion or
metal) which corresponds to a primary input can be
labelled as such and this information is retained by
the circuit extractor. A generalized form of the input
file to the block extraction program is as follows:

input_list([l1,12,...I]).
output_list([O,02 Om]).
rans(Type,Gate,T1 ,T2).

The input description consists of a list of primary
input nodes to the circuit [I,12,...I] a list of primary
output nodes of the circuit, Ol,02,...Om followed by
a list of transistors in the circuit.

Figure 2(a) shows a CMOS XNOR circuit. The
.sire file describing this circuit is shown in Figure
2(b) and the list of Prolog clauses derived by sim2pro
from the .sire file is shown in Figure 2(c).

.The list of Prolog clauses describing the transistors
in the circuit form an input to the Prolog program.
The database consists of a list of Prolog functions as
well as rules for recognizing gates and logic func-
tional blocks in the circuit. The program also derives
logic expressions at output nodes of logic blocks.

VDD

L

FIGURE 2 A CMOS EXNOR circuit.

BLOCK LEVEL EXTRACTION 247

EXTRACTION OF CIRCUIT BLOCKS Node Classification

The extraction of circuit blocks from a transistor level
description consists of several steps. These steps are
described in this section.

Recognition of Inverters and Transmission Gates

Inverters and transmission gates can be recognized
directly from their transistor structures. The early
recognition of inverters is necessary to identify com-
plementary signals in the circuit. This information is
useful in later steps when logic expressions are de-
rived at the output nodes of partitioned blocks.

Inverters are identified by looking for a pair of p
and n type transistors having the same gate input and
forming a direct path from vdd to ground. CMOS
transmission gates are recognized by identifying a
pair of nodes connected to both p and n type edges
and having complementary gate inputs. The recog-
nized inverters and transmission gates are inserted
into the database. The transistors forming these are
then deleted from the database.

Deriving a Node-Oriented Data Structure

The input to the program containing a list of tran-
sistors in the circuit describes the circuit in the form
of an implicit graph. In order to recognize logic
blocks, we need to partition the network described
by the transistor netlist. The partitioning step con-
verts the network into smaller subnetworks, the be-
havior of which can be derived independently.
Each transistor in the circuit stands for an edge in

the circuit graph. The input description of the circuit
is therefore, a list of edges. Prior to the partitioning
procedure, a node-oriented data structure for the
graph, consisting of a list of nodes in the circuit along
with the connectivity information for each node is
derived. This facilitates partitioning.
A node is represented in the following format after

processing the transistor list:

node(Nodename, Nodetype, Edgelist, Gatelist)

where
Nodename is the name of the node in the circuit.
Nodetype is a variable instantiated in a later step

to one of the node categories.
Edgelist is the list of edges incident with the node.
Gatelist is the list of edges to which the given node

is a gate input.

Preceding the partitioning of the circuit into smaller
subcircuits, the nodes in the circuit are classified into
one of the four categories: input, pullup, external,
and normal. The terminology has been borrowed
from Nmos partitioning techniques. In the case of
CMOS circuits, we proceed to define the classifica-
tion of nodes as follows:

1. Pullup Nodes: A pullup node is defined as a
node which is a drain or source node of both a
p and an n type transistor, in the circuit which
results after all transistors forming CMOS
transmission gates have been removed. See Fig-
ure 3(a). The need to identify all of the trans-
mission gates in the circuit in the first step is
evident here. This definition of pullup nodes is
merely intended to enable partitioning. It does
not always conform to the usual notion of a
pullup node in a CMOS circuit as a node con-
nected to vdd via a p block.

2. Input Nodes: An input node is defined as one
of the following:
(a) A primary input node in the circuit.
(b) A primary output of the circuit which is not
also a pullup node.
(c) A node which is a drain or source node of
a transistor, but is not a pullup node and is
connected to an end terminal of a transmission
gate. (Figure 3 (b)).

3. External Node: An external node is defined as
one of the following:
(a) A node which is connected only to gates of
transistors and is an end terminal of a trans-
mission gate. (Figure 3 (c)).
(b) A node which is not a pullup or input node
and is connected to the gate of a transistor (Fig-
ure 3 (d)).

4. Normal Node: A normal node is one which does
not fall into any of the categories above. (Figure
3 (e)).

CIRCUIT PARTITIONING

The circuit partitioning technique formulated here is
similar to the partitioning methods used in the pre-
simulation phase in switch-level simulators. One such
partitioning method for Nmos circuits is described in
[18]. In a CMOS circuit the broad idea behind the
partitioning procedure is to divide the set of transis-
tors in the circuit into driver, load and pass transis-

248 INDERPREET BHASIN and JOSEPH G. TRONT

input node

pullup node

external node

(c) normal node

external node

FIGURE 3 Classification of Nodes.

tors. Driver transistors are a group of n type tran-
sistors which could form the n block of a CMOS logic
block. Load transistors are a group of p type tran-
sistors which could form the p block of a CMOS logic
block. The remaining transistors are grouped into
pass transistor blocks.

Partitioning is accomplished by splitting the circuit
graph at boundary nodes. These boundary nodes
consist of vdd, ground, input nodes, and pullup
nodes. Splitting the circuit graph at a vertex means
dividing the vertex into two or more vertices, so that
all the edges incident with the vertex become mu-

BLOCK LEVEL EXTRACTION 249

tually disconnected at that vertex. We seek groups
of transistors bounded by boundary nodes. The split-
ting procedure is implemented as a search starting
at a boundary node and terminating at all boundary
nodes reachable from the starting node.

DERIVATION OF LOGICAL
EXPRESSIONS

Once the partitioning is complete, transistors in the
circuit have been grouped into sets of load, driver,
and pass blocks. Load and driver blocks are multi-
input-single-output logic blocks, whereas pass blocks
may be multi-input-multi-output logic blocks. The
next step consists of deriving the logical expressions
at output nodes of logic blocks in terms of the inputs
to the blocks. Approaches towards the automatic
generation of Boolean expressions in a MOS network
are described in [19, 20].

In out technique, a logic expression at an output
node of a logic block is formed by tracing paths from
the node to all reachable driving signal nodes of the
block. A node n. is reachable from a node n; if there
is a path in the circuit graph that connects the two.
Nodes that fall into the category of driving signal
nodes are vdd, ground and input nodes to the block.
At each output node of a block, two logic expres-

sions are generated to represent the logical high and
low value at that node. For an output node V of a
logic block having inputs I,12,...13, the following
clause is inserted into the database:

value(V,[I ,12,...13] ,V_Low,V_high)
where V_low and V_high are the boolean expres-
sions for the logical 0 and 1 values at the node V,
respectively.
The logic expressions are derived in the sum of

products form. Each path traced from the output
node to a reachable driving signal node yields a prod-
uct term and the OR of all such terms gives the sum
of products form for the expression.

and for a driver block output as"

value(V,O,Id, Tj)

where T/and Td are the logic expressions derived by
considering paths to vdd and gnd respectively, and
I(I) are the inputs to the load (driver) block. A
load-driver block is recognized by identifying a pair
of clauses as above, which have the same first ar-
gument V, (the same output node) and complemen-
tary second arguments (1 and 0).
Three classes of logic, namely pseudo NMOS,

clocked CMOS, and fully complementary CMOS are
recognized. The rules for recognizing the logic cat-
egory are listed below:

1. If T; [[1]], the load block consists of a single
p type transistor with a grounded gate, and the
logic is pseudo NMOS. In this case, V_low

Ta and V_high (T) The logic expression
for the output node V is inserted into the da-
tabase in the form"

value(V,I,V_low, V_high)

where I I,.

2. If there is a boolean variable c present__in each
product term in Te and its complement c is pres-
ent in each product term in T, then we have
clocked logic. In this case c is removed from
each product term in T to get T and c from
each product term in T to get T. The logic
expression at the output node V is asserted as"

value(V,clocked,c ,I,V_low,V_high)

where I I {c}, V_Iow T and V_high
Tllo

3. If I le, we consider the logic to be fully
complementary. In this case V_low Tt and
V_high T. The logic expression at V is rep-
resented as"

value(V,I,V_low,V_high)

LOGIC CLASSES RECOGNIZED

A load-driver logic block is formed by combining a
load block and a driver block which have the same
output node. In order to derive the logic expressions
at the output node V of a load-driver block, we need
to consider all the paths leading from V to vdd and
gnd. We represent the generated logic expressions
for a load block output as:

value(V, 1 ,I, Tz)

where I le.

In case I above, the complement of a boolean expres-
sion has to be derived. The program has the ability
to find the complements of boolean expressions. The
procedure however, is exponential in time complex-
ity with the number of variables in the expression to
be complemented. This means that load-driver
blocks with a large number of inputs would restrict
the program speed.

250 INDERPREET BHASIN and JOSEPH G. TRONT

PASS AND TRANSMISSION BLOCKS

Transmission gates and pass blocks in the circuit have
nodes which have been labelled as both inputs as
well as outputs of these blocks. Such nodes are de-
noted as io nodes, and have to eventually be resolved
as either input or output nodes of these blocks and
gates. We do this by tracing the fan-in and fan-out
of nodes which form the interface nodes between
blocks.

In the case where the directionality of a transmis-
sion gate is unresolved, it is left as bidirectional.

RECOGNITION OF GATES

The term gate as used here implies a collection of
transistors with one or more inputs and only one
output. The program database contains a list of user
defined gates. Each defined gate has an associated
set of attributes which include: the name by which
the gate is referred to in the program, the inputs and
output of the gate, and two boolean equations which
express the logical high and logical low values at the
gate output in terms of the inputs. An additional
attribute may be present describing the gate as being
clocked, in which case the clock signal would also be
specified.
The reference boolean equations associated with

a gate are in terms of Prolog variables. (In the version
of Prolog used, variables begin with upper-case let-
ters. Variables may be instantiated to constants
which begin with lower-case letters.) The derived
expressions at the output node of a logic block are
in terms of Prolog constants. These constants are, in
effect, the node names of the inputs to the logic
block. As an illustration, the logic at the output node
y of a block implementing the exor function and
having inputs a and b is represented as:

value(y,[a,b], [[a_, b_],[a,b]],[[a_,b],[a,b_]]).

In the example above, the boolean variables: a, a_,b,
and b_ are all constants. In the program database,
a two input exor gate may be defined using the fol-
lowing attributes:

gatename: exor2
Inputs: [A,B]
High expression: [[A_,B],[A,B_]]
Low expression: [[A_,B_],[A,B]]

where A and B are Prolog variables representing the
two inputs to the exor gate. The variables A_ and

B_ would be related within the rule to A and B by
the clauses below:

complement(A,A_).

and

complement(B,B_).

The identification of a gate in the circuit becomes a
problem of finding a correspondence between an ex-
tracted logic expression set the pair (v_low,v_
high) for an output node v and a reference gate with
an associated set of logic expressions. In order to do
so, the definitions of n input reference gates are ex-
amined, where n is the number of inputs in the
expressions for the output v. An equivalence is
sought to be established between the derived logic
expression set and the reference logic expression set
of an n input gate.
The following equivalence relationship is used"

F(x) and G(x) represent the same boolean function
if-

F(x)G(x) + F(x)G(x) 0 Or in other words
F(x__)G(X) 0 and
F(x)G(x) O.

The above equations imply that if F(x) 1, then
G(x) 1 and if G(x) 1 then F(x) 1. This in
turn implies that the truth tables for the two functions
match. The stated equivalence is valid however, only
in the case when the truth tables for F and G contain
no ’don’t cares’ in the output column. The presence
of don’t cares leaves the function incompletely spec-
ified. If don’t cares are present, there would be a
likelihood of the function being incorrectly recog-
nized as shown below. This, unfortunately, is a re-
striction on the method.
The equivalence relationship described above is

applied in the recognition procedure. Assume that
in the gate library we have a gate ’f’ defined by the
boolean expressions f_0 and f_l which represent the
logical low and high values of the gate output, re-
spectively. An extracted expression ’g’ represents a
gate ’f’ if:

f_0*g_l 0 (1)
and

f_a*g_O 0 (2)
For a clocked inverter with inputs clk and x the ex-
tracted expression ’g’ is defined by" g_l clkx and
g_O clkx. In this case because the output is un-
defined when clk is/low, by the equivalence rela-
tionship stated above, the function could be incor-
rectly recognized as an exclusive-or for which the

BLOCK LEVEL EXTRACTION 251

defining expressions are f_l clkx + clkx and
f_O clhx + clkx.
As stated before, the boolean expressions describ-

ing a gate in the library are in terms of Prolog vari-
ables. Before we can attempt an equivalence through
Eqs. (1) and (2), these variables have to be instan-
tiated as symbolic constants in the logic expression
which we wish to recognize.
As an illustration, the exor gate described earlier

uses the prolog variables A and B. The derived
expression is in terms of Prolog constants a and b.
A one to one assignment from the set {a,b} to the
set {A,B} has to be made. In this case, since the
inputs to an exor are symmetric, either of the as-
signments (A=a,B=b) or (A=b,B=a) would
prove or disprove the equivalence. In the general
case we have derived expression which is in terms of
the n constants (al,az,...an). The boolean expressions
for n input gates in the library are in terms of the n
variables (AI,Az,....A,). We seek a one to one as-
signment of the set {al,...a} to the set {A,....An}.
There are n! such assignments. This means that in
the worst case, there will be n! steps to prove equiv-
alence before an equivalence test fails. As the num-
ber of gate inputs grows, the process of recognition
becomes more time consuming. However, it is to be
noted that the definition of a ’gate’ as applied here
refers to a partitioned block within a larger circuit.
We can expect that the number of inputs n to a par-
titioned block would, barring exceptional cases, be
a small value. Further, for a large class of gates, we
can put the symmetricity or interchangeability of in-
puts to advantage here. If p of the n gate inputs are
interchangeable, then effectively, the number of as-
signments in the discussion above reduces to n!/p!.
The three examples to follow illustrate the gate

recognition procedure.
The clause expcomp(Expression_l,Expression_

2) in the examples, is true if the following equality
holds:

Expression_l’Expression_2 0

where both Expression_l and Expression_2 are
boolean expressions.

In the examples above, Expression_2 is the de-
rived boolean expression whereas Expression_l is
the reference expression. The logical high and low
expressions of the reference gate appear implicitly
in the two expcomp(clauses. Functional equiva-
lence is established if the two expcomp(clauses are
true.

Notice that in the first two examples, the inputs
to a nor gate and a nand gate are interchangeable.
However, in the case of Example 3 which refers to

the gate shown in Figure 4 the inputs are not inter-
changeable. The clause:

perm List_1 ,List_2)

permutes the elements of List_l to produce List_2.

By backtracking all the possible permutations will be
tried in order to establish a functional equivalence.
The last clause, assert(gate_name(II,I2...In,O)) as-
serts the gate by the name gate_name into the data
base. I1, I2... In represent the input signals to the
gate while O is the output signal.

Example 1.
recog(Y,[A,B ,Y0,Y1,nor2):-
expcomp([[A] ,[B]] ,Y1),
complement(A,A_),
complement(B,B_),
expcomp([A_,B_]],Y0),
assert(nor2(A,B,Y)).

Example 2.
recog(clocked,Clock,Y, A,B],Y0,Y1,nand2_
clocked):-
expcomp([[A,B]] ,Y1),
complement(A,A_),
complement(B,B_),
expcomp([A_],[B_]],Y0),
assert(nand2_clocked(A,B,Y,Clock)).

Example 3.
recog(Y, [I 1 ,I2,I3 ,I4] ,Y0,Y1,and332or3):-
perm(IX1,12,13,14],[A,B,C,D]),
expcomp([A,B,C], [A,D,C],[B ,Dl],Y0),
complement(A,A_),
complement(B,B_),
comp|ement(C,C_),
complement(D,D_),
expcomp([[A_,B_],[A_,D_],[C_,B_],
[C_,D_],[D_,B_ll,Y1),
assert(and332or3(A,B,C,D,Y)).

The goal statment in the recognition clause has the
format:

recog(Y,Input_list,Y0,Y1 ,gate_name)

where Y is the output node of a block we wish to
recognize, Input_list is the list of input signals to
that block, YO and Y1 are the logical low and high
expressions derived at the node Y in the logic expres-
sion generation step, and gate_name is the name by
which the gate is referred to in the system.

In the case of clocked logic, two additional pa-
rameters, "clocked" indicating clocked logic and
"Clock" being the clock signal are present.

In order to handle the interchangeability of gate
inputs we maintain rules in the database by which

252 INDERPREET BHASIN and JOSEPH G. TRONT

l

tl

C

GND

FIGURE 4 An Example Circuit: ’and332or3’.

BLOCK LEVEL EXTRACTION 253

each gate is related to its various functionally iso-
morphic forms. The following examples illustrate the
idea:

Example 1
norgate_2(A,B ,Y) :-

nor2(A,B,Y);
nor2(B,A,Y).

Example 2.
nandgate_3(A,B ,C,Y):-
perm([A,B,C],[A1,B 1 ,C1]),
nand3(A1,B1,C1,Y).

The rules described above are representative of a
general method which can be used to recognize all
the logic blocks in a circuit for which corresponding
gates exist in the gate library. In this approach we
recognize a gate by the logic it implements rather
than by the topology as is done in previous gate
recognition programs which use graphical tech-
niques. This is an advantage because different im-
plementations of the same gate can be recognized
without having to store knowledge of all the different
forms.

RECOGNITION OF FUNCTIONAL
BLOCKS

Once all the gates have been recognized, the pro-
gram proceeds to recognize all of the functional
blocks which may be composed of these gates. At
this level, recognition is through the connectivity of
the basic gates. We do not attempt to derive the
behaviour of higher level logic blocks.
The descriptions of functional blocks used in a

design are present in the program database in the
form of rules. A functional block is defined in rule
form in terms of the gates it contains and their in-
terconnections. More than one description of the
same function is possible.

In Prolog terms, a functional block is defined as a
set of clauses. The following rule for a functional
block describes a full-adder which is shown in Fig-
ure 5.

function(full_ad-
der, [[inputs,A,B ,Gin] ,[sum,Sum],
[carryout,Cout]]:-

exorgate(A,B,S1),
exorgate S 1,Cin,Sum),
nandgate_2(A,B,S2),
nandgate_2(A,Cin,$3),
nandgate_2(B,Cin,S4),
nandgate_3($2,$3 ,$4,Cout).

The recognition of a functional block is equivalent
to satisfying a goal subject to the constraints specified
in the rules for that block. In the case above, this
particular full-adder is found in the designed circuit
if all the gates that compose it are found and are
interconnected in the manner specified in the rule.
The recognition process involves a search in the

database, for components which are specified in the
description of a functional block. A functional block
may be described both in terms of basic gates as well
as other functional blocks. For instance, the multi-
plier cell of Figure 6 uses the full-adder of Figure 5
and D flip-flops of the kind shown in Figure 7 and
is described as follows:

function(mult_ce|l, [inputs, M1,M2,Pin,Rb],
[clocks,Clk1,Clk2], [outputs,M1out,Pout]]):-
dffr(1 ,Rb,Clk1 ,M1out,Q1b),
dffr(Pin ,Rb,Clk2,S4,Q2b),
dffr(Cout,Rb,Clk2,S5,Q3b),
nandgate_2(M1out,M2,S2),
inv(S2,S3),
full_adder($3 ,$4 ,$5 ,Pout,Cout).

The gates and functional blocks recognized from the
transistor level description of the multiplier circuit
are shown in Figure 8.
The search during the recognition of a functional

block is successful when the last clause in its rule is
satisfied. In other words, a block is recognized when
the last component contained in its structural de-
scription is identified in the given circuit.
A clause in the rule for a functional block is con-

strained by the node interconnection assignments
made in previous clauses in the rule. If the search
procedure in the recognition of a particular block
fails, all the node interconnection assignments done
prior to the step at which failure occurs must be
undone and alternative assignments explored. The
advantage of automatic backtracking is realized here.
The procedure seeks all the possible alternatives in
terms of the component interconnections to satisfy
the recognition rule. If the rule fails completely, an
instance of that particular functional block does not
exist in the circuit and all node assignments are un-
done.

THE SPECIFICATION OF RULES FOR
GATES AND FUNCTIONAL BLOCKS

In the program database, a library of gates and func-
tional blocks is maintained. Rules describing new
gates and functional blocks can be added to the li-

254 INDERPREET BHASIN and JOSEPH G. TRONT

FIGURE 5 A Full-Adder Circuit.

brary by the user. It is to be noted here that the user
only needs to follow a specified methodology in add-
ing new rules to the database and is not required to
be knowledgeable about Prolog or any Prolog func-
tions used in the system.
The description of gates is in a behavioural form.

The gates are grouped in the library by the number
of inputs they have. The description of functional
blocks is in a structural form. When automatically
recognizing gates and functional blocks in a circuit,
the program first attempts to find a corresponding
gate in the database for each derived logic expression
set. After the recognition of gates, the program
checks for the possible invocations within the circuit

of each functional block defined in the database.
Each recognized instance of a functional block is then
asserted as a clause in the database.
The recognition of functional blocks proceeds se-

quentially according to the order in which rules for
functional blocks appear in the database. A func-
tional block may be composed of other lower level
functional blocks. For recognition to proceed cor-
rectly, a block which is a component of another func-
tional block should be defined before the latter. For
this reason, the order in which rules for functional
blocks appear in the database should be such that
lower complexity blocks are defined before higher
complexity blocks.

d flip-flop

d flip-flop

13 Q

d flip-flop

D Q

mlout

Pout

FIGURE 6 A Multiplier Circuit

FIGURE 7 D Flip-Flop Circuit with Reset.

255

256 INDERPREET BHASIN and JOSEPH G. TRONT

OATE:trmsmission Gate:inverter Gate: and2-nor Function: exorgate
input al input clkl input[xl2,s4,s3] inputs x5 adl
output dill output clklb output adl output pout
gate_inputs clklb clkl

OATE:transmission GATE:inverter GATE: nor2 *****
input pin input s2 input [adl,s5] Function: exorgate
output df21 output s3 output x22 inputs s4 s3
gate_nputs clk2b cllc2 output adl

GATE:transmission GATE: inverter GATE: nor2 *****
input dfl3 input clk2 input [s3,s4] Function: exorgate
output dfl output clk2b output x 12 inputs adl s5
gate=inputs clkl clklb output pout

GATE:transmission GATE:inverter GATE: hand2 *****
input df23 input 12 input [rb,s5] Function:exorgate
output df21 output dfl3 output df3qb inputs s3 s4
gate_inputs clk2 clk2b output adl

GATE:transmission GATE: inverter GATE: hand2 Function:full adder
input df33 input dfl4 input [df31,rb] inputs s4 s3 s5
output dr31 output slout output dr32 sun pout
gate_inputs clk2 clk2b carryout cout

GATE:transmission GATE:inverter GATE: nand2 *****
input cout input df22 input [rb,s4] Function:full adder
output dr31 output dr23 output df2qb inputs s3 s4 s5
gate_nputs clk2b clk2 sun,pout

carryout cout
GATE:transmission GATE:inverter GATE: hand2 *****
input df3qb input df24 input [dfZl,rb] Function: dffr
output df34 output s4 output df22 input cout
gate_inputs clk2b clk2 reset_input d3

outputs s5 df3qb
clock clk2

GATE:transmission GATE:inverter GATE: hand2 *****
input d.f32 input dr32 input Is2, flout] Function: dffr
output df34 output dr33 output s2 input pin
gate_inputs clk2 clk2b reset_input rb

outputs s4 df2qb
clock clk2

GATE:transmission GATE:inverter GATE: hand2 *****
input dt2qb input df34 input rb, siout Function: dffr
output df24 output s5 output dflqb input n
gate_inputs clk2b clk2 reset_input rb

outputs siout dflqb
clock clkl

GATE:transmission GATE: hand2 GATE: hand2 *****
input df22 input [s5,s4] input [dfl 1, rb] Function:nult cell
output dr24 output ad4 output dfl2 inputs nl n2 pin rb
gate_inputs clk2 clk2 clocks clkl clk2

outputs slout pout
GATE:transmission GATE: hand2 GATE: and2 *****
input dflqb input [s5,s3] input [df31, rb]
output dfl4 output ad3 output df33
gate_inputs clklb clkl

GATE:transmission GATE: nand3 GATE: and2
input dfl2 input [ad4,ad3,ad2] int [df21,rb]
output dfl4 output cout output df23
gate_inputs clki clklb

GATE: nand2 GATE: and2
input [s4,s3] input [n2, slout]
output ad2 output s3

GATE: and2..nor GATE: and2
input [x22,s5,adl] input [dfl l,rb]
output pout output dfl3

FIGURE 8 Gates and Blocks Recognized in the Multiplier Circuit.

BLOCK LEVEL EXTRACTION 257

The order in which the input and output nodes are
listed within the attributes for a functional block is
important. In particular, if two or more of the inputs
of a functional block are interchangeable, through
backtracking, the program may report more than one
instance of the same functional block with the same
set of inputs but a different order. For example, the
output generated for the multiplier circuit of Figure
6 shows two instances of the same full adder with
the order of inputs changed.

RESULTS AND CONCLUSIONS

The block extracting system described in this paper
translates a physical description of a CMOS circuit
which is in terms of transistor interconnections, to a
logic level description which is in terms of intercon-
nections of logic functional blocks. The block ex-
tractor operates on a circuit to produce a list of gates
and logic blocks in the circuit along with their input
and output terminals.
The system is an aid in checking the physical design

of a circuit against the intended logic level descrip-
tion. It facilitates the task of network comparison by
translating it to a higher level in the circuit hierarchy.
Rules describing the logic blocks used in a design
should be present in the program database. If an
instance of each logic block present in the original
design is found in the circuit by the circuit recognition
procedure, and the recognized blocks are intercon-
nected correctly, the physical design can be assumed
to be logically correct.
The system can also be used to check for the pres-

ence of a particular circuit block in the designed cir-
cuit. In this case, the structural description of the
circuit block is provided and contains actual node
names in the circuit. The program then checks for a
specific circuit block with the given input and output
terminals. If the node names in the description of
the circuit block are left as variables, the program
would check for all invocations of that block within
the design.

Since the system extracts logic expressions at out-
put nodes of blocks, it has a further application. It
can be used to verify the logical behaviour of a cell
which is composed of a single load-driver block or a
pass block. In this case, the cell is described in terms
of the boolean equations at its output nodes. Using
the equivalence rule described earlier, the program
can be made to check for an equivalence between
the extracted boolean expressions and the reference
expressions. Lastly, the system can be used to arrive

at logical expressions at output nodes of blocks in
the circuit.
The C preprocessing program consists of 200 lines

of code. The block extracting program consists of
about 2300 lines of Prolog code and is implemented
in three stages. The first stage is the circuit parti-
tioning stage, in which a CMOS circuit is partitioned
into smaller subcircuits. The second stage consists of
extracting logic expressions at output nodes of circuit
blocks. In the third stage circuit recognition rules are
used to identify logic blocks within a circuit. The
program has been implemented in the dialect of
Prolog known as the Edinburgh syntax, on the MV/
10000 Data General computer running under the
AOS-VS operating system. The described system is
a research prototype. The ease of implementing an
approach has overridden the need to achieve run-
time efficiency.

Logic blocks in a number of circuits were recog-
nized using the approach described. Sample results
for different circuits are shown in Table I. These
results show the program performance for a set of
circuits whose size covers a moderately broad spec-
trum. Functional description of the sample circuits
mentioned in Table I along with further results in-
cluding those for additional circuits can be found in
[211.
The program run time contains a factor which is

dependent on the computer system used. In the ab-
sence of a Prolog compiler, the program runs on an
interpreter. This could be a disadvantage with regard
to the run time of the program. A more efficient
implementation of this system would have the first
two stages of the block extractor written in C. The
third stage of the program involves circuit recogni-
tion based on rules. This stage makes use of the
symbolic features of Prolog and would be difficult to
carry out in a language such as Pascal or C.
The run time is also dependent on the size of the

program database. As more rules for recognizing
logic blocks are added to the database., the time taken
to recognize a logic block increases. There is a re-
striction on the size of gates which can be recognized.
This restriction arises from the fact that the number
of input assignments to be considered in a gate is n!

TABLE
Sample Run Times

Circuit 2 3 4

Number of transistors 9 22 108 2552
Number of nodes 8 14 61 1891
Number of gates and blocks extracted 4 9 47 1210
CPU time in seconds 7.4 22 134 3284

258 INDERPREET BHASIN and JOSEPH G. TRONT

where n is the number of gate inputs. The recognition
time is dependent not only on the size of the circuit,
that is the number of transistors present within the
circuit, but also on the complexity of gates and logic
blocks in the circuit. A large circuit with a number
of simple gates (having a small number of inputs)
would take proportionally less time than a smaller
circuit containing a few complex gates (having a large
number of inputs). The time taken to recognize func-
tional blocks also depends to some degree on the
way the rules for functional blocks are framed. What
is important to note is that the increase in run time
does not increase exponentially as the size of the
circuit increases.

EXTENSIONS TO THE WORK DONE

Possible extensions to the block extraction system
are mentioned below.

1. Connectivity (Netlist) comparison at a higher
level: If a reference description of the circuit is
provided in the form of an interconnection of
gates and logic blocks, it can be compared with
the extracted list of gates and logic blocks to
check for the correctness of the circuit. In order
to do so, the block extraction program can be
run on both, the netlist obtained from the lay-
out through a circuit extractor and the netlist
of the specified circuit which could have been
entered using a schematic capture system. By
pattern matching, the gates and logic blocks
from the two netlists can be compared and
checked for equivalence. The present recog-
nition procedure reports the presence or ab-
sence of blocks within a circuit. It does not have
the ability to report discrepancies between a
reference circuit description and the extracted
block level description.

2. Simulation at a higher level: The recognition of
logic blocks could enable symbolic or logic sim-
ulation at the functional block level.

3. Extraction of higher level behaviour: Given an
interconnection of logic blocks in a circuit, an
attempt could be made to derive the behav-
ioural description of the circuit. For this pur-
pose, the behaviour of each functional block
would be stored in a suitable format. The be-
haviour of the circuit would then be extracted
from the behaviour of its components and a
description of their interconnection.

4. Operational Speedup: The nature of the circuit
and block extraction problem is such that this

process lends itself to being a candidate for so-
lution on a parallel processor computing sys-
tem. The problem could be partitioned along
geometric boundaries and the search for inde-
pendent and coordinated solutions could be
performed on distinct processors.

References

[1] S. Leinwand and T. Lamdan, "Design Verification Based
on Functional Abstraction," Proceedings of the 15th Design
Automation Conference, 1978, pp. 353-359.

[2] A. Gupta, "ACE--A Circuit Extractor," Proceedings of
the 20th Design Automation Conference, 1983, pp. 721-725.

[3] W.S. Scott and J.K. Ousterhout, "Magic’s Circuit Extrac-
tor," IEEE Design and Test, February 1986, pp. 24-34.

[4] M. Takashima, T. Mitsuhasti, T. Chiba, and K. Yoshida,
"Programs for Verifying Circuit Connectivity of MOS/LSI
Artwork," Proceedings ofthe 19th Design Automation Con-
ference, 1982, pp. 544-550.

[5] T. Watanabe, M. Endo, and N. Miyahara, "A New Au-
tomatic Logic Interconnection Verification System for VLSI
Design," IEEE Transactions on Computer-Aided-Design of
Integrated Circuits and Systems, Vol. CAD-2, No. 2, April
1983, pp. 70-81.

[6] L. Scheffer and R. Apte, "LSI Design Verification using
Topology Extraction," Proceedings of the 16th Design Au-
tomation Conference, 1979, pp. 149-153.

[7] P.J. Russell, "Algorithms for Generalized On-Chip FET
Circuit Recognition," IBM Technical Disclosure Manual,
Vol. 21, No. 2, July 1972, pp. 815-819.

[8] P.J. Russell, "Physical to Logical Checking of FET LSI
Chips," IBM Technical Disclosure Manual, Vol. 21, No. 2,
July 1972, pp. 822-824.

[9] F. Luellan, T. Hoepken, and E. Barke, "A Technology
Independent Block Extraction Algorithm," Proceedings of
the 21st Design Automation Conference, 1984, pp. 610-615.

[10] M. Boehner, "LOGEX-An Automatic Logic Extractor
from Transistor to Gate Level for CMOS Technology," Pro-
ceedings of the 25th Design Automation Conference, 1988,
pp. 517-522.

[11] R.E. Bryant, "MOSSIM: A Switch Level Simulator for
MOS LSI," Proceedings of the 18th Design Automation
Conference, 1981, pp. 786-790.

[12] I. Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley Publishing Company, 1986.

[13] N. Suzuki, "Concurrent Prolog as an Efficient VLSI Design
Language," Computer, Vol. 18, No. 2, Feb. 1985, pp.
33-39.

[14] F. Maruyama and M. Fujita, "Hardware Verification,"
Computer, Vol. 18, No. 2, Feb. 1985, pp. 22-32.

[15] N. Srinivas and V.D. Agrawal, "Prove: Prolog Based Ver-
ifier," IEEE International Conference on Computer-Aided-
Design, 1986, pp. 306-309.

[16] A.C. Papaspyridis, "A Prolog Based Connectivity Verifi-
cation Tool," Proceedings of the 25th Design Automation
Conference, 1988, pp. 523-527.

[17] W.S. Scott et al, "1986 VLSI Tools," Report No. UCB/
CSD 86/272, December, 1985, Computer Science Division,
University of California, Berkeley.

[18] V. Rao and T. Trick, "Network Partitioning and Ordering
for MOS VLSI Circuits," IEEE Transactions on Computer-
Aided-Design, Vol. CAD-6, No. 1, Jan. 1987, pp. 128-143.

[19] G.F. Pfister, "Algorithms for Deducing the Logical Behav-
ior of Arbitrary FET Circuits," IBM Technical Disclosure
Bulletin, Vol. 27, No. 2, July 1984, pp. 1168-1179.

[20] G. Ditlow, W. Donath and A. Ruehli, "Logic Equations
for MESFET Circuits," IEEE International Symposium on
Circuits and Systems, 1983, pp. 752-755.

BLOCK LEVEL EXTRACTION 259

[21] I. Bhasin, "Recognition of Logic Blocks in CMOS Cir-
cuits," M.S.E.E. Thesis, Department of Electrical Engi-
neering, Virginia Polytechnic Institute and State University,
1988.

Biographies

INDERPREET BHASIN was born in Nainital, India in 1963. He
received the B. Tech. degree in Electrical Engineering from the
Indian Institute of Technology, Bombay, in 1986, and the M.S.
degree in Electrical Engineering from Virginia Polytechnic Insti-
tute in 1988. Since 1989 he has been a design engineer with Intel
Corporation in Portland, Oregon, where he works on the design
of microprocessor chips. His areas of interest include logic and
circuit design and design verification of VLSI devices.

DR. JOSEPH G. TRONT is an Associate Professor of Electrical
Engineering at Virginia Polytechnic Institute and State University
where he teaches both graduate and undergraduate courses in
computer engineering and electronics. His research interests in-
clude VLSI design, fault-tolerant computing, digital circuit model-
ing and simulation, VLSI testing, and microprocessor applica-
tions. His work in VLSI has been on the development of CAD
tools as well as the development of schemes for implementing
fault-tolerant architectures as VLSI circuits. He has worked on
modeling single-event upset effects in integrated circuits. He has
also been involved in the design and modeling of parallel computer
architectures for solving combinatorial problems.

Dr. Tront received a B.E.E. in 1972 and an M.S.E.E. in 1973
from the University of Dayton. He received the Ph.D. degree
from the State University of New York at Buffalo in 1978. He
joined the faculty at Virginia Tech in 1978.

