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Second-Order Cyclostationary Feature Based Detection of WiMAX Signals
in Pulsed Noise Environments

Joseph M. Davis

(ABSTRACT)

Spectral coexistence and cooperative spectrum sharing techniques are vital to the continued
development and proliferation of wireless communications systems. Government directives
indicate that certain frequency bands which once were reserved for radar-only applications
must now support wireless broadband systems. The e�ect of co-site interference upon detec-
tion techniques for wireless broadband systems is evaluated. Cyclostationary feature based
detection methods are evaluated against gaussian noise and interfering radar signals. Alter-
native decision algorithms utilizing support vector machines are proposed and evaluated and
compared against traditional general likelihood ratio test algorithms. Recommendations for
certain algorithms and observation window lengths to maximize e�ectiveness and minimize
computational complexity are developed.

This research was funded through O�ce of Naval Research grant N00014-12-1-0062 and
contract N00014-12-C-0702



Acknowledgments

When I left Virginia Tech in 2003 for a tour of duty in the U.S. Air Force, I did not know
whether or not I would return to �nish my education or where my life would take me. Now
through hard work, faith, and the support of my family, friends, coworkers, and the faculty
at Virginia Tech I have reached an awesome point in my life. Nearly one decade after I
boarded an airplane for San Antonio, I am �nishing my M.S. thesis.

I would like to thank my friend Zach Le�ke, for introducing me to Dr. Dietrich and Dr.
McGwier. Dr. Dietrich introduced me to the problem of co-site interference and coexistence
between communications and radar systems with an undergraduate research project. Dr.
McGwier and the Ted & Karyn Hume Center at Virginia Tech provided support and guidance
during my graduate career.

I also want to recognize the Association of Federal Communications Consulting Engineers
(AFCCE). AFCCE generously provided several scholarships in my undergraduate studies,
and one scholarship award during my graduate career.

Finally, I would like to recognize my loving wife, Heather, whose patience, empathy, and
understanding enabled me to con�dently pursue my graduate school interests.

iii



Contents

1 Introduction 1

1.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 WiMAX Systems 4

2.1 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 WiMAX OFDMA PHY Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Second-Order Cyclostationary Signal Analysis 11

3.1 Cyclic Analysis of WiMAX Signals . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 OFDM CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 WiMAX OFDMA Frame CA . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Signal Detection and Identi�cation 21

4.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Statistical Test for Presence of Cyclostationarity . . . . . . . . . . . . 21

4.1.2 Multiple CF Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Ratio Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Hypothesis Test Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Pulsed Noise Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



4.4 SVM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evaluation of Detection Methods 33

5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Simulation Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Selected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1 Cauchy Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2 General Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 Support Vector Machine Detector . . . . . . . . . . . . . . . . . . . . 38

5.4 Summary & Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion 46

6.1 Detector Analysis & Recommendation . . . . . . . . . . . . . . . . . . . . . 46

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A Results 52

A.1 Cauchy Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2 General Likelihood Ratio Test - Single CF . . . . . . . . . . . . . . . . . . . 64

A.3 General Likelihood Ratio Test - Two CFs . . . . . . . . . . . . . . . . . . . . 76

A.4 General Likelihood Ratio Test - Three CFs . . . . . . . . . . . . . . . . . . . 88

A.5 General Likelihood Ratio Test - Four CFs . . . . . . . . . . . . . . . . . . . 100

A.6 Support Vector Machine - No Noise Training . . . . . . . . . . . . . . . . . . 112

A.7 Support Vector Machine - 0dB AWGN Training . . . . . . . . . . . . . . . . 119

A.8 Support Vector Machine - 0dB SINR Pulse Training . . . . . . . . . . . . . . 126

v



List of Figures

2.1 Example Fixed and Mobile WiMAX System . . . . . . . . . . . . . . . . . . 5

2.2 OFDM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Frequency Domain OFDM Magnitude . . . . . . . . . . . . . . . . . . . . . . 7

2.4 TDD WiMAX OFDM Example . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 TDD WiMAX OFDMA Example . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Overview of TDD WiMAX AAI Superframe Structure . . . . . . . . . . . . 10

3.1 CAF Nsym = 300 ~� = 0 N = 512 CPlen = 1=8 . . . . . . . . . . . . . . . . . 15

3.2 CAF Nsym = 300 ~� = Tu N = 512 CPlen = 1=8 . . . . . . . . . . . . . . . . . 15

3.3 Example Distribution of Preamble Tones . . . . . . . . . . . . . . . . . . . . 16

3.4 CAF Nframe = 200 ~� = �2Tu=3 N = 512 CPlen = 1=8 . . . . . . . . . . . . . 17

3.5 CAF Nframe = 200 ~� = 0 N = 512 CPlen = 1=8 . . . . . . . . . . . . . . . . 18

3.6 CAF Nframe = 200 ~� = Tu=3 N = 512 CPlen = 1=8 . . . . . . . . . . . . . . 18

3.7 CAF Nframe = 200 ~� = �Tf N = 512 CPlen = 1=8 . . . . . . . . . . . . . . . 19

3.8 CAF Nframe = 200 ~� = 2Tf N = 512 CPlen = 1=8 . . . . . . . . . . . . . . . 20

4.1 Block Diagrams of Detectors for Single CF . . . . . . . . . . . . . . . . . . . 26

4.2 Block Diagram of the Multiple CF Detector . . . . . . . . . . . . . . . . . . 27

4.3 Example of a Linear Classi�er in Two Dimensions . . . . . . . . . . . . . . 28

4.4 Example of a Linear Classi�er in Two Dimensions with Maximum Margin . 29

4.5 Example of Non-Linearly Separable Data in Two Dimensions . . . . . . . . 30

4.6 Kernel Trick Applied to Data . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



4.7 Block Diagram of SVM Detector . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 CRT Pd vs. AWGN with 10% False Alarm Rate . . . . . . . . . . . . . . . . 36

5.2 Cauchy Ratio Test vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Selected GLRT Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 40

5.5 GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 41

5.6 Selected SVM vs. AWGN Results . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 Selected SVM vs. 300 Hz Pulses Results . . . . . . . . . . . . . . . . . . . . 44

5.8 Selected SVM vs. 1500 Hz Pulses Results . . . . . . . . . . . . . . . . . . . . 45

6.1 SVM Detector Performance in High AWGN SNR . . . . . . . . . . . . . . . 47

A.1 CRT vs. AWGN with 10% False Alarm Rate . . . . . . . . . . . . . . . . . . 53

A.2 CRT vs. AWGN with 1% False Alarm Rate . . . . . . . . . . . . . . . . . . 53

A.3 CRT vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR . . 54

A.4 CRT vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR . . . 54

A.5 CRT vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR . . . . 55

A.6 CRT vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR . . . . 55

A.7 CRT vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR . . . 56

A.8 CRT vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR . . . . 56

A.9 CRT vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR . . . 57

A.10 CRT vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR . . . . 57

A.11 CRT vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR . . . 58

A.12 CRT vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR . . . . 58

A.13 CRT vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR . . 59

A.14 CRT vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR . . 59

A.15 CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR . . . 60

A.16 CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR . . . . 60

vii



A.17 CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR . . 61

A.18 CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR . . . 61

A.19 CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR . . 62

A.20 CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR . . . 62

A.21 CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR . . 63

A.22 CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR . . . 63

A.23 GLRT 1 CF vs. AWGN with 10% False Alarm Rate . . . . . . . . . . . . . . 65

A.24 GLRT 1 CF vs. AWGN with 1% False Alarm Rate . . . . . . . . . . . . . . 65

A.25 GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR 66

A.26 GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 66

A.27 GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 67

A.28 GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 67

A.29 GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR 68

A.30 GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 68

A.31 GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR 69

A.32 GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 69

A.33 GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR 70

A.34 GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 70

A.35 GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.36 GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 71

A.37 GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 72

A.38 GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 72

A.39 GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR 73

A.40 GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 73

A.41 GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR 74

A.42 GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 74

A.43 GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR 75

A.44 GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 75

viii



A.45 GLRT 2 CF vs. AWGN with 10% False Alarm Rate . . . . . . . . . . . . . . 77

A.46 GLRT 2 CF vs. AWGN with 1% False Alarm Rate . . . . . . . . . . . . . . 77

A.47 GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR 78

A.48 GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 78

A.49 GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 79

A.50 GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 79

A.51 GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR 80

A.52 GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 80

A.53 GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR 81

A.54 GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 81

A.55 GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR 82

A.56 GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 82

A.57 GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.58 GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 83

A.59 GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 84

A.60 GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 84

A.61 GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR 85

A.62 GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 85

A.63 GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR 86

A.64 GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 86

A.65 GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR 87

A.66 GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 87

A.67 GLRT 3 CF vs. AWGN with 10% False Alarm Rate . . . . . . . . . . . . . . 89

A.68 GLRT 3 CF vs. AWGN with 1% False Alarm Rate . . . . . . . . . . . . . . 89

A.69 GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR 90

A.70 GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 90

A.71 GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 91

A.72 GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 91

ix



A.73 GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR 92

A.74 GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 92

A.75 GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR 93

A.76 GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 93

A.77 GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR 94

A.78 GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 94

A.79 GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.80 GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 95

A.81 GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 96

A.82 GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 96

A.83 GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR 97

A.84 GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 97

A.85 GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR 98

A.86 GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 98

A.87 GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR 99

A.88 GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 99

A.89 GLRT 4 CF vs. AWGN with 10% False Alarm Rate . . . . . . . . . . . . . . 101

A.90 GLRT 4 CF vs. AWGN with 1% False Alarm Rate . . . . . . . . . . . . . . 101

A.91 GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR102

A.92 GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR 102

A.93 GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR 103

A.94 GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 103

A.95 GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR104

A.96 GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR 104

A.97 GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR105

A.98 GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR 105

A.99 GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR106

A.100GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR 106

x



A.101GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.102GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR107

A.103GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR108

A.104GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR 108

A.105GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR109

A.106GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR109

A.107GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR110

A.108GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR110

A.109GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR111

A.110GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR111

A.111SVM Detector with No Noise Training vs. AWGN . . . . . . . . . . . . . . . 113

A.112SVM Detector with No Noise Training vs. 1500Hz Pulses, -10 dB AWGN SNR113

A.113SVM Detector with No Noise Training vs. 1500Hz Pulses, 0 dB AWGN SNR 114

A.114SVM Detector with No Noise Training vs. 1500Hz Pulses, 10 dB AWGN SNR 114

A.115SVM Detector with No Noise Training vs. 1500Hz Pulses, 20 dB AWGN SNR 115

A.116SVM Detector with No Noise Training vs. 1500Hz Pulses, 30 dB AWGN SNR 115

A.117SVM Detector with No Noise Training vs. 300Hz Pulses, -10 dB AWGN SNR 116

A.118SVM Detector with No Noise Training vs. 300Hz Pulses, 0 dB AWGN SNR . 116

A.119SVM Detector with No Noise Training vs. 300Hz Pulses, 10 dB AWGN SNR 117

A.120SVM Detector with No Noise Training vs. 300Hz Pulses, 20 dB AWGN SNR 117

A.121SVM Detector with No Noise Training vs. 300Hz Pulses, 30 dB AWGN SNR 118

A.122SVM Detector with 0dB AWGN Training vs. AWGN . . . . . . . . . . . . . 120

A.123SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, -10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.124SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 0 dB AWGN SNR121

A.125SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.126SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 20 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



A.127SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 30 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.128SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, -10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.129SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 0 dB AWGN SNR123

A.130SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 10 dB AWGN SNR124

A.131SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 20 dB AWGN SNR124

A.132SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 30 dB AWGN SNR125

A.133SVM Detector with 0dB SINR Pulse Training vs. AWGN . . . . . . . . . . . 127

A.134SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, -10 dB
AWGN SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.135SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 0 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.136SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 10 dB
AWGN SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.137SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 20 dB
AWGN SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.138SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 30 dB
AWGN SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.139SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, -10 dB
AWGN SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.140SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 0 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.141SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 10 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.142SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 20 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.143SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 30 dB AWGN
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



List of Tables

2.1 Example Pilot Tone Subcarrier Distribution, Nfft = 1024, FUSC, non-STC
[1, pp 1171] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 WiMAX OFDMA Preamble Subcarrier Distribution . . . . . . . . . . . . . . 8

2.3 WiMAX Subcarrier Boosting Parameters [1, pp. 1293] . . . . . . . . . . . . 9

3.1 OFDM Symbol CAF Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 WiMAX OFDMA Preamble Subcarrier Distribution . . . . . . . . . . . . . . 16

3.3 WiMAX OFDMA Frame CAF Results . . . . . . . . . . . . . . . . . . . . . 19

4.1 CAF Features For Detection of WiMAX Signals . . . . . . . . . . . . . . . . 25

4.2 Select �2
n Distribution Tail Values . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Select Cauchy Distribution Tail Values . . . . . . . . . . . . . . . . . . . . . 25

5.1 Radar System Parameters for Simulation . . . . . . . . . . . . . . . . . . . . 33

5.2 WiMAX System Parameters for Simulation . . . . . . . . . . . . . . . . . . . 34

5.3 WiMAX Detection Decision Engines . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Decision Engine Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Simulation Noise Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 SVM Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7 SVM Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 90% Pd SINR Threshold in 0 dB AWGN SNR, Pfa = 10%, 300 Hz Pulses . . 46

xiii



De�nition of Symbols

 Convolution
bc The Floor Function
�� The Complex Conjugate Operator
� Cyclic Frequency
~� Absolute Cyclic Frequency
Ap Preamble Boosting Amplitude
CPlen Cyclic Pre�x length (fractional)
cumf�g Cumulant Operator
�(t) The Dirac Delta Function
`cp Cyclic Pre�x length (time)
fs Sampling Rate
Imf�g Imaginary Component
K The set of all cyclic frequencies
N Number of sub-channels or subcarriers
NGH Number of high guard subcarriers
NGL Number of lower guard subcarriers
N The set of all Natural Numbers
P [�] Probability of some event
PFA Probability of False Alarm Detection
PD Probability of Detection
Rs Symbol Rate
Rxy Cross-Correlation Function of x and y
Rx Autocorrelation Function of x
Rx(t1; t2) Autocorrelation Function of x evaluated at t1; t2
Rx(�) Autocorrelation Function of x evaluated at t; t+ �
Rx(�; �) Cyclic Autocorrelation Function of x evaluated at �; �
Ref�g Real Component
Sf�;�(�; !) Cyclic Spectrum of f
� Lag Time
~� Absolute Lag Time
t Time
�T Matrix Transpose Operator
Ts Symbol Duration
Tu Useful Symbol Duration
W Channel Bandwidth
Xk Data Symbol k in a sequence fX0; X1; X2; � � � g
Xp

k The kth Preamble Data Symbol
Z The set of all Integers

xiv



De�nition of Acronyms
AAI Advanced Air Interface
AAS Adaptive Antenna System
AMC Adaptive Modulation and Coding
ASR Aircraft Surveillance Radar
BPSK Binary Phase Shift Keying
CA Cyclic Analysis
CAF Cyclic Autocorrelation Function
CFAR Constant False Alarm Rate
CP Cyclic Pre�x
CR Cognitive Radio
CS Cyclic Spectra
DFT Discrete Fourier Transform
DL Downlink
FCC Federal Communications Commission
FFT Fast Fourier Transform
FUSC Full Use of Subcarriers
IDFT Inverse Discrete Fourier Transform
IEEE Institute of Electrical and Electronics Engineers
IMT-Advanced International Mobile Telecommunications-Advanced
LAN Local Area Network
LUT Look-Up Table
MAN Metropolitan Area Network
NLOS Near Line of Sight
NPRM Notice of Proposed Rulemaking
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OSI Open Systems Interconnection
PA Primary Advanced (preamble)
PAN Personal Area Network
PN Psuedorandom Noise
PRF Pulse Repetition Frequency
PUSC Partial Use of Subcarriers
QAM Quadrature Amplitude Modulation
RTG Receive-Transmit Transition Gap
SA Secondary Advanced (preamble)
SM Spatial Multiplexing
SINR Signal to Interference Noise Ratio
SNR Signal to Noise Ratio
STC Space-Time Coding
TDD Time Division Duplexing

xv



TTG Transmit-Receive Transition Gap
UL Uplink
WAN Wide Area Network
WiMAX Worldwide Interoperability for Microwave Access
WSR Weather Surveillance Radar

xvi



Chapter 1

Introduction

The Federal Communications Commission Notice of Proposed Rulemaking (NPRM) 12-
148 proposes to make available up to 150 MHz of S-band spectrum for broadband service
providers. Prior to the NPRM, the 3.5 GHz spectrum was occupied by U.S. radar systems.
This wireless broadband access initiative will require broadband systems and radar systems
to coexists with each other and mitigate both in-band and adjacent-channel interference.
The coexistance problem between radar and consumer broadband systems is a candidate for
the application of cognitive radio (CR) techniques.

One of the challenges in implementing CR techniques in this scenario is the high instantaneous-
to-average power ratio used in radar systems. This implies that RF hardware must be re-
silient against high-energy bursts, and the CR techniques used must be robust against the
wide dynamic range of the signals. A challenging part of this CR application is the devel-
opment of a sensor to detect the existence of broadband systems around a radar.

The sensor is a unique challenge due to the nature of the signals involved. Radar systems
typically use high-gain directional antennas coupled with high-power, low duty cycle, am-
pli�ers to perform their mission. The directed energy from an operating radar system can
impact in-band and adjacent channel broadband systems at great distances. While a typical
broadband wireless cell may be measured on the order of square kilometers, the cell may be
a�ected by a radar system 60-100 kilometers away.

Simply using a wireless broadband receiver at the radar location will not su�ce for detec-
tion of broadband systems, as their link budgets are designed for much smaller distances.
Instead, detection methods which are robust against low received signal energy and pulsed
interference must be developed. This thesis will investigate the application of second order
cyclostationary feature detection to the problem. Feature detection methods are proven to

1
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be robust in low signal to noise ratio (SNR) environments, and can utilize signi�cant in-
tegration gain with long observation periods. The performance of these methods against
pulsed noise will be evaluated. Additionally, alternative computationally-e�cient methods
of feature identi�cation and analysis of useful observation periods are performed.

1.1 Prior Work

Detection of WiMAX and other OFDM systems for cognitive radio applications is a well-
researched area. A common theme among proposed detection methods is the use of second
order cyclostationarity. Gardner's text provides the foundation upon which feature based
detection and classi�cation methods operate [2]. Expanding upon these concepts, statistical
tests are formed for the presence of cyclostationary in [3][4].

Detection and classi�cation of standardized OFDM waveforms such as WiMAX, LTE, DVB-
T, etc. lend themselves to these second-order feature detection techniques. The parameters
of these signals are known a priori because of the published standard. Thus, a detector or
classi�er need only examine received signals for certain signatures belonging to the signals
of interest. Some detector/classi�ers utilize pilot tone induced features [5]. Others examine
recurring preambles [6], but the predominant features of interest are cyclic-pre�x induced
[7][8][9][10][11].

Describing the signal of interest in detail are several text resources [12] [13] [14] [15]. Ad-
ditionally, the standards themselves provide the exact speci�cation of the physical (PHY)
layer under various operating modes of the system [1][16].

Some work has addressed the coexistence of radar and OFDM systems, typically suggesting
that radar parameters change drastically to avoid interference to the communications systems
[17]. However, there is little information describing how a radar system would reliably detect
OFDM systems in the presence of its own signals. This thesis explores the application
of these detection methods to environments which have short modulated pulses with high
instantaneous to average power (typical of most radar systems).

1.2 Thesis Organization

This document is organized into four other major parts. Chapter Two gives an overview
of WiMAX, the signal of interest for this document. Orthogonal Frequency Division Mul-
tiplexing (OFDM) is described in detail and an in-depth description of the physical (PHY)
layer of WiMAX systems is presented. Following the introduction of OFDM and WiMAX
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systems, second-order cyclostationary signal analysis is performed in Chapter Three. This
cyclostationary analysis (CA) provides the foundation for signal detection methods discussed
in Chapter Four. These detection methods are presented with analytical support to justify
their use in additive white Gaussian noise (AWGN) environments. The detection methods
are distilled into implementable algorithms for use in AWGN environments. The second part
of Chapter Four introduces a pulsed interference source, and a potential solution of using
CA detection metrics with a support vector machine (SVM) is presented.

Chapter Five outlines the performance metrics each detection algorithm is evaulated against
and describes the AWGN and pulsed interference framework in which the simulations oper-
ate. After discussion of the simulation framework, select results are presented and discussed
(with other relevant results in the Appendix). The document concludes with a sixth chapter
to draw conclusions about the work and propose paths of future work.



Chapter 2

WiMAX Systems

In networking topology, there are four primary classi�cations of networks: Personal Area Net-
work (PAN), Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide
Area Network (WAN). A PAN typically has a maximum range of several meters and is used
for personal devices; common protocols of the PAN include the 802.15 family (Bluetooth,
ZigBee, MiWi, etc.). Many network users are most familiar with the LAN; a LAN is gener-
ally an Ethernet or 802.11 wireless network and can range in size from an o�ce to several
buildings. The MAN extends the concepts of LAN, interconnecting the networks over a
regional area and can include backbone connections over �ber and �xed microwave systems.
A WAN connects geographically separated networks over a much larger area. The Internet is
considered the classic example of a WAN. Cellular and wireless broadband networks such are
also considered WANs (as the network connects smaller, geographically separated networks).

There are several WiMAX implementations covered by di�erent revisions of the 802.16 stan-
dard. Some revisions are not backward compatible (e.g. 802.16e-2005 and 802.16-2004)
[12]. The 802.16 working group has evolved the standard to polish the mobile user ca-
pabilities of the system starting with 802.16e-2005, and later developing 802.16-2009 and
802.16m. 802.16m incorporates an advanced air interface to meet the requirements of IMT-
Advanced systems. The latest release 802.16-2012 incorporates the 802.16m amendment into
the 802.16 standard (with the exception of the Advanced Air Interface which is incorporated
into 802.16.1-2012)[1][16].

The WiMAX Forum is an industry organization that promotes the standardization of the
hardware used in 802.16 networks. The IEEE standard only provides for the OSI Layer
1 and 2 speci�cations and includes many optional features. The WiMAX Forum ensures
equipment interoperability and conformance to the 802.16 standard and industry-adopted
standards.

WiMAX is organized into three types of stations: a base station, subscriber station, and
a mobile station. Subscriber stations are used in �xed service point-to-point links (such as

4
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Figure 2.1: Example Fixed and Mobile WiMAX System

a gateway for a LAN). Mobile stations are handsets and other devices used by consumers.
The latest standard 802.16-2012 incorporates the speci�cations of 802.16m, which provided
for advanced mobile service.

2.1 OFDM

Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division
Multiple Access (OFDMA) are modulation methods used by nearly all latest-generation
wireless broadband systems. OFDMA is a special case of OFDM. OFDM is a multicarrier
modulation scheme which spaces the carriers at such distances that they are all orthogonal
to each other and cause no inter-carrier interference [18].

Given some channel bandwidth W divided into N uniformly distributed sub-channels, or-
thogonality is achieved at a symbol rate of:

�f =
W

N
(2.1)

Rs =
1

�f
(2.2)

To achieve a time domain signal which satis�es the othorgonality requirement, an Inverse
Fourier Transform is applied to frequency domain symbols. This is typically implemented
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Figure 2.2: OFDM Block Diagram

as an Inverse Discrete Fourier Transform as real systems operate in discrete time. The
IDFT is generally approximated with an Inverse Fast Fourier Transform, with data symbols
populating the bins of the FFT. The FFT size corresponds to the number of subcarriers,
N , in Equation (2.1). The sampling rate of the IFFT modulator, using complex samples,
corresponds to the bandwidth W of the system. The symbol duration becomes Ts = N=W .

Demodulation of an OFDM symbol is simply the converse operation: a DFT applied to re-
ceived time-domain data (typically approximated with a Fast Fourier Transform). To over-
come the e�ects of multipath propagation e�ects, the cyclic pre�x is introduced. The cyclic
pre�x is simply copying some fraction of the OFDM time-domain samples (1=4; 1=8; 1=16;etc.)
from the tail of the symbol and prepending them to the beginning of the time domain sym-
bol. This allows for a maximum delay spread of fsTu`cp where fs is the sampling rate, Tu
is the useful symbol duration (a function of the FFT size and oversampling rate), and `cp
is the fractional length of the cyclic pre�x. Figure 2.2 shows an example OFDM transmit-
ter/receiver pair.

OFDM is described analytically by describing the information on each subcarrier as a generic
QAM signal:

Xk = Ake
j�k (2.3)

And the OFDM symbol is described as the sum of all subcarriers:

s(t) =
1p
N

N�1X
k=0

Xke
j2�kt=Tu ; 0 � t � Tu (2.4)

To aid with channel estimation and equalization, pilot tones are used on a subset of the
OFDM subcarriers. The distribution of pilot tones is governed by the anticipated channel
coherence bandwidth and maximum Doppler shift anticipated. Pilot tones are typically
boosted in magnitude over the data symbols and have a psuedorandom data sequences that
is known a priori by the receiver. Figure 2.3 demonstrates the magnitude of the frequency
domain OFDM symbol, with boosted pilot tones in red.
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Figure 2.3: Frequency Domain OFDM Magnitude

Figure 2.4: TDD WiMAX OFDM Example

2.2 WiMAX OFDMA PHY Layer

A multi-user OFDM system uses either Time Division Duplexing (TDD) or Frequency Divi-
sion Duplexing (FDD) to provide data to di�erent users. OFDMA allows for a more e�cient
allocation of time and frequency domain resources by assigning users di�erent `tiles' in a
transmission burst as opposed to allocating complete symbols (compare Figures 2.4 and
2.5). 802.16 WirelessMAN-OFDM speci�es an OFDM PHY for non-line of sight (NLOS)
links. Figure 2.4 illustrates the frame structure of TDD WirelessMAN-OFDM [1, pp. 834].

The basic unit of the WiMAX frame is a single OFDM symbol. As described in the OFDM
overview, each symbol contains pilot tones. The 802.16 standard speci�es pilot tone modu-
lation as BPSK encoded, with the input binary sequence following a psuedorandom binary
sequence (PRBS) generator X11+X9+1 [1, pp. 826]. The seed value of the PRBS generator
is determined from the IDCell and Segment properties of the base station. These pilot tones
are distributed in a circular bu�er over the designated pilot subcarriers. The actual pilot
subcarriers vary depending on various operating parameters of the system (such as FUSC,
PUSC, STC, etc.). Pilot tones are indexed on the �rst useable subcarrier above the lower
guard band. Table 2.1 shows an example distribution of pilot subcarriers.

In addition to the de�ned pilot tones, each WiMAX frame has a speci�ed preamble. The
preamble is another BPSK modulated psuedorandom sequence. The modulation data orig-
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Table 2.1: Example Pilot Tone Subcarrier Distribution, Nfft = 1024, FUSC, non-STC [1, pp
1171]

Subcarrier Set Subcarrier Indicies

Variable Set 0 [0,24,48,72,96,120,144,168,192,216,240,264,288,
312,336,360,384,408,432,456,480,504,528,552,576,
600,624,648,672,696,720,744,768,792,816,840]

Constant Set 0 72 � (2 � (k)) + 9, k = f0; 1; 2; 3; 4; 5g
Variable Set 1 [12,36,60,84,108,132,156,180,204,228,252,276,300,

324,348,372,396,420,444,468,492,516,540,564,588,612,
636,660,684,708,732,756,780,804,828]

Constant Set 1 72 � (2 � (k) + 1) + 9, k = f0; 1; 2; 3; 4g
Table 2.2: WiMAX OFDMA Preamble Subcarrier Distribution

FFT Size Parameter k

2048 f0; : : : ; 567g
1024 f0; : : : ; 283g
512 f0; : : : ; 142g
128 f0; : : : ; 35g

inates from lookup tables corresponding to the IDCell and Segment properties of the base
station [1, pp. 1143-1161]. The allocated preamble subcarriers for WirelessMAN-OFDMA
are described with Equation (2.5) and k de�ned in Table 2.2.

PreambleCarrierSetn = n+ 3K (2.5)

Every third subcarrier is populated in the preamble, which results in a time-domain repetition
of three preamble symbols within the useful symbol duration. Both the pilot tones and
preamble subcarriers are boosted over unit-energy according to their system parameters as
shown in Table 2.3.

Expanding on WirelessMAN-OFDM, WirelessMAN-OFDMA provides for a multi-user sys-
tem with a more exible framework to distribute bandwidth. The legacy TDD OFDMA air
interface uses a frame size of 5ms with the uplink (UL) and downlink (DL) times speci�ed
as an UL/DL ratio (similar to WirelessMAN-OFDM). There are pauses between the UL and
DL bursts known as the transmit to receive transition gap (TTG) and receive to transmit
transition gap (RTG). The frame preamble, header (DL/UL map), DL burst, TTG, UL
burst, and RTG form the entire 5ms frame as shown in Figure 2.5[1, pp. 897].

An \advanced air interface" (AAI) builds upon the legacy OFDMA frames, incorporating
four legacy frames into a superframe as shown in Figure 2.6. The AAI was designed to meet
the speci�cations of IMT-Advanced systems. Within the superframe are three advanced
preambles: two secondary advanced (SA) preambles and one primary advanced (PA) pream-
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Table 2.3: WiMAX Subcarrier Boosting Parameters [1, pp. 1293]

Subcarrier Type Boosting Level Notes

Pilot 2.5dB All Except UL PUSC,
DL TUSC1, DL/UL STC

Pilot 5.5dB DL STC, UL AMC,
Collaborative SM

Pilot 3dB UL STC & PUSC
Pilot 0dB All Others
Preamble 9dB DL (non-AAS)
Preamble 0dB UL & DL AAS

Figure 2.5: TDD WiMAX OFDMA Example
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Figure 2.6: Overview of TDD WiMAX AAI Superframe Structure

ble. When interoperating with legacy systems, these preambles are o�set from the start of
the AAI superframe with a delay called the Frame O�set[12][19]. The symbols following the
PA and SA preambles contain detailed information for the AAI resource allocations for both
the DL and UL. Figure 2.6 describes the sequence of preambles in the 20ms AAI superframe
[16, pp. 580].

Both PA and SA preambles are speci�ed in a manner similar to the legacy preamble. In
an SA preamble symbol the subcarriers are allocated similar to the legacy preamble (every
third subcarrier), which results in a three-fold time domain repetition for synchronization
purposes. These features allow user equipment to uniquely identify several base stations as
the equipment connects to a network and performs periodic re-evaluations of its connection.
The AAI can be con�gured to be backward-compatible with legacy OFDMA systems, al-
locating frame symbols for both a legacy DL/UL map and an AAI DL/UL map [12]. The
legacy and AAI both have di�erent pilot tone distributions available, with the AAI capable
of adapting pilot distribution on a per-burst basis.



Chapter 3

Second-Order Cyclostationary Signal

Analysis

A process is described as wide-sense stationary if the mean and autocorrelation function have
no dependence on time. That is, the autocorrelation function can be described completely
as a function of a time lag � :

Rs(t1; t2) = Rs(t; t+ �); � = t2 � t1 8t (3.1)

A process is second-order cyclostationary if the mean and autocorrelation function are
periodic[2]. The autocorrelation function can be written as a sum over the set K of all
cyclic frequencies � of the signal :

Rs(t; t+ �) =
X
�9K

Rs(�; �)e
|2��t (3.2)

Where Rs(�; �) is the cyclic autocorrelation function (CAF) of s(t) at cyclic frequency (CF)
� and time lag � as de�ned by [2]:

Rs(�; �) , lim
I!1

1

I

Z I=2

�I=2
Rs(t; t+ �)e�|2��t (3.3)

The ideal CAF estimate from a �nite length sampled signal of M samples fs(n)gM�1
n=0 is of

the form [3]:

R̂s(�; �) =
1

M

M���1X
n=0

s(n)s�(n+ �)e|2��n (3.4)

The estimate R̂s is related to Rs(�; �) with an error value �. As M approaches in�nity, �
approaches zero [3].

R̂s(�; �) = Rs(�; �) + �s(�; �) (3.5)
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One can observe that (�; �) in Equation (3.4) is dependent upon the sampling frequency fs
of a discrete signal, and thus not equivalent to the same parameters in Equation (3.3). To
describe the relationship between the parameters in Equations (3.3) and (3.4), it is common
to use the notation (~�; ~�) to describe the absolute cyclic frequency and time lag. Therefore,
the following relationship is de�ned, and Equation (3.3) re-de�ned:

(�; �) = (~�f�1s ; ~�fs) (3.6)

Rs(~�; ~�) = lim
I!1

1

I

Z I=2

�I=2
Rs(t; t+ ~�)e�|2�~�t (3.7)

3.1 Cyclic Analysis of WiMAX Signals

3.1.1 OFDM CAF

In Chapter 2, a continuous time representation of an OFDM symbol was de�ned as:

s(t) =
1p
N

N�1X
k=0

Xke
|2�kt=Tu ; 0 � t � Tu (3.8)

In real systems, the OFDM symbol is pre�xed with a portion of the tail of the symbol. This
is the Cyclic Pre�x (CP). A discrete time (sampled) de�nition of an OFDM symbol takes
the form:

s(t) =

(PN�1
n=0

h
�
�
t� nTu

N

�
1p
N

PN�1
k=0 Xke

|2�kt=Tu
i

0 � t � Tu

0 otherwise
(3.9)

De�ning the CP length as a fraction of the useful symbol time Tu, the sampled CP is
described as:

0 � CPlen � 1; CPlen �N 9 N (3.10)

`cp = CPlen � Tu (3.11)

CPCPlen(t) =

(PCPlenN�1
n=0

h
�
�
t� nTu

N

�
1p
N

PN�1
k=0 Xke

|2�k(t+Tu�`cp)=Tu
i

0 � t < `cp

0 otherwise
(3.12)

Then the complete transmitted symbol becomes:

m(t) = CPCPlen(t) + s(t� `cp) (3.13)
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Evaluating the CAF Estimate:

R̂m(�; �) =
1

M

M���1X
n=0

m(n)m�(n+ �)e|2��n (3.14)

=
1

M

M���1X
n=0

�
CPCPlen

�
n
Tu
N

�
+ s

�
n
Tu
N
� `cp

���
CPCPlen

�
(n+ �)

Tu
N

�

+s

�
(n+ �)

Tu
N
� `cp

���
e|2��n (3.15)

=
1

M

M���1X
n=0

�
CPCPlen

�
n
Tu
N

�
CP �CPlen

�
(n+ �)

Tu
N

�

+s

�
n
Tu
N
� `cp

�
s�
�
(n+ �)

Tu
N
� `cp

�

+CPCPlen

�
n
Tu
N

�
s�
�
(n+ �)

Tu
N
� `cp

�

+s

�
n
Tu
N
� `cp

�
CP �CPlen

�
(n+ �)

Tu
N

��
e|2��n (3.16)

Now examine the four parts of Equation (3.16) separately. First, consider for any M �
N(1 + CPlen):

1

M

M���1X
n=0

CPCPlen

�
n
Tu
N

�
CP �CPlen

�
(n+ �)

Tu
N

�
e|2��n (3.17)

From the de�nition of CPCPlen(t) in Equation (3.12) we observe the following results:

� 6= 0 �! 0 (3.18)

� = 0 �! 1

M

j
M

(1+CPlen)N

k
�1X

sym=0

2
4sym(1+CPlen)N+CPlenN�1X

n=sym(1+CPlen)N

����CP sym
CPlen

�
n
Tu
N

�����
2

e|2��n

3
5 (3.19)

Similarly for

1

M

M���1X
n=0

s

�
n
Tu
N
� `cp

�
s�
�
(n+ �)

Tu
N
� `cp

�
e|2��n (3.20)

The de�nition of s(t) in Equation (3.9) yields:

� 6= 0 �! 0 (3.21)

� = 0 �! 1

M

j
M

(1+CPlen)N

k
�1X

sym=0

2
4 sym(1+CPlen)N�1X
n=CPlenN+sym(1+CPlen)N

����ssym
�
n
Tu
N
� `cp

�����
2

e|2��n

3
5 (3.22)
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Because the data Xk is I.I.D. uniformly distributed random data, both Equations (3.19) and
(3.22) result in a CAF response only at � = 0; the summation of the two is an autocorrelation
of the complete observed signal with itself at � = 0, thus having constant mean and Rm

independent of t.

R̂m(�; � = 0) =
1

M

M�1X
n=0

����m
�
n
Tu
N

�����
2

e|2��n (3.23)

R̂m(�; � = 0) =
1

M

M�1X
n=0

����m
�
n
Tu
N

�����
2

�(�) (3.24)

Realizing that Rxy(t; �) = Ryx(t;��) only one remaining combination need be evaluated.

1

M

M���1X
n=0

CPCPlen

�
n
Tu
N

�
s�
�
(n+ �)

Tu
N
� `cp

�
e|2��n (3.25)

� 6= Tufs �! 0 (3.26)

� = �Tufs �! 1

M

j
M�Tufs

(1+CPlen)N

k
�1X

sym=0

2
4sym(1+CPlen)N+CPlenN�1X

n=sym(1+CPlen)N

����CP sym
CPlen

�
n
Tu
N

�����
2

e|2��n

3
5 (3.27)

Because of the nozero lag � = �Tufs, this implies a periodic structure (and nonzero CAF at
� 6= 0). Rm has a time dependence. If an in�nite sampling of OFDM symbols are considered,
then the CAF has the form:

R̂m(�; � = �Tufs) = A � sinc
�

�

CPlenN

� 1X
k=�1

�

�
�� k

(1 + CPlen)N

�
(3.28)

Where A is the magnitude of the CAF response at (�; �) = (0; 0). Because the observed
sample sequence is �nite, the above impulse train is convolved with another sinc function
corresponding to the entire observation window:

R̂m(�; � = �Tufs) =
"
A � sinc

�
�

CPlenN

� 1X
k=�1

�

�
�� k

(1 + CPlen)N

�#

 sinc

�
1

M

�
(3.29)

Therefore, one can see as M becomes large, R̂m(�; � = �Tufs) approaches (3.28). The
resulting CAF with nonzero magnitude at the lags and frequencies indicated in Table 3.1.
Figure 3.1 illustrates the CAF at ~� = 0 of a sequence of 300 OFDMA symbols, and Figure
3.2 shows the CAF response at ~� = Tu.
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Figure 3.1: CAF Nsym = 300 ~� = 0 N = 512 CPlen = 1=8

Figure 3.2: CAF Nsym = 300 ~� = Tu N = 512 CPlen = 1=8
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Table 3.1: OFDM Symbol CAF Results

~� ~� Feature Description

0 0 The autocorrelation of the signal with itself
k
Ts
; k9Z �Tu CP induced cyclostationarity

Figure 3.3: Example Distribution of Preamble Tones

3.1.2 WiMAX OFDMA Frame CA

The previous section showed the CAF estimate for a sequence of OFDM symbols. In addition
to the CP induced cyclostationarity, a WiMAX frame contains a preamble symbol every 5ms.
The 802.16 standard speci�es in x8.4.6.1.1 the subcarrier allocation shown in Equation (3.30).
Where n is the SegmentID of the base station and k is one of the sets speci�ed by Table 3.2.
Figure 3.3 provides a graphical representation of the preamble subcarrier distribution.

PreambleCarrierSetn = n+ 3K (3.30)

The preamble subcarriers are o�set where the 0th subcarrier is the �rst useable subcarrier
in the OFDM symbol. The �rst useable subcarrier is the �rst index above the lower guard
band. Xp

k is the kth preamble data bit from the tables speci�ed in x8.4.6.1.1 mapped such

Table 3.2: WiMAX OFDMA Preamble Subcarrier Distribution

FFT Size Parameter k

2048 f0; : : : ; 567g
1024 f0; : : : ; 283g
512 f0; : : : ; 142g
128 f0; : : : ; 35g
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Figure 3.4: CAF Nframe = 200 ~� = �2Tu=3 N = 512 CPlen = 1=8

that Xp
k9f�1; 1g and Ap is the speci�ed preamble boosting level:

Xk =

8>>>><
>>>>:

0 k � NGL

0 k � N �NGH + 1

0 (k �NGL � n)mod(3) 6= 0

ApX
pj
K�NGL�n

3

k (k �NGL � n)mod(3) = 0

(3.31)

This distribution of subcarriers results in a nonzero CAF at[11]:

(~�; ~�) =

�
i

Tf
;
nTu
3

�
i = f0;�1;�2 : : :g
n = f0;�1;�2g (3.32)

(~�; ~�) =

�
i

Tf
; nTf

�
i = f0;�1;�2; : : :g
n = f0;�1;�2; : : :g (3.33)

The lag ~� = nTu
3

is caused by the time-domain repetition of the preamble symbol. Due to
populating every third IFFT bin, the preamble symbol repeats three times over the course
of one useful symbol period Tu. Figures 3.4,3.5, and 3.6 demonstrate the CAF response due
to the preamble symbol over an observation of 200 frames.

Because the preamble is unchanging ~� = nTf is also a nonzero lag. CFs ~� = i
Tu

are noted
at each speci�ed lag. These CFs are induced because of similar structure to the CP induced
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Figure 3.5: CAF Nframe = 200 ~� = 0 N = 512 CPlen = 1=8

Figure 3.6: CAF Nframe = 200 ~� = Tu=3 N = 512 CPlen = 1=8
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Figure 3.7: CAF Nframe = 200 ~� = �Tf N = 512 CPlen = 1=8

CFs from Equation 3.28. The resulting analysis of the CAF structure from a sequence of
WiMAX frames yields nonzero results at the CFs and lags shown in Table 3.3. Figures 3.7
and 3.8 demonstrate these nonzero CAF responses.

Table 3.3: WiMAX OFDMA Frame CAF Results

~� ~� Feature Description

0 0 The autocorrelation of the signal with itself
i
Tf
; i9Z nTu

3
; n9f0;�1;�2g Every third subcarrier populated in the preamble symbol

i
Tf
; i9Z nTf ; n9Z The preamble symbol recurs every Tf

Considering a WiMAX frame has irregular gaps between the DL and UL block (TTG and
RTG, respectively), the CP-induced cyclostationarity (~�; ~�) = ( k

Ts
;�Tu); k9Z is convolved

with the fourier series representation of two rectangular waves, both with period Tf and with
duty cycles NDLTs

Tf
and NULTs

Tf
for the DL and UL blocks respectively. Furthermore, the TTG

and RTG may vary from frame to frame leading to the only predictable CP-induced CAF
response at (~�; ~�) = (0;�Tu).

3.1.3 Summary

In this chapter, the second-order cyclic features of OFDM symbols and the WiMAX signal
were discussed. OFDM exhibits a nonzero CAF response due to the cyclic pre�x. Because
WiMAX frames are a sequence of OFDM symbols, they share this same feature. WiMAX also
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Figure 3.8: CAF Nframe = 200 ~� = 2Tf N = 512 CPlen = 1=8

introduces nonzero CAF response because of the frame preamble structure (which repeats
every 5ms frame). Tables 3.1 and 3.3 summarize the CAF responses of interest.



Chapter 4

Signal Detection and Identi�cation

Cyclic features are used for detection, identi�cation, and classi�cation [2]. In this chapter, the
application of cyclostationary analysis to the detection of WiMAX is discussed. A statistical
test for the detection of cyclic frequencies is presented �rst[3], followed by a method for
detection of multiple CFs[4]. Both tests require the computation of a covariance matrix. A
third method which simpli�es the test statistic does not require calculation of a covariance
matrix[7]. After discussion of the three detection methods, a support vector machine binary
classi�er is suggested.

4.1 Theoretical Analysis

4.1.1 Statistical Test for Presence of Cyclostationarity

Assuming the samples of the process s well separated in time are independent, the CAF
estimate in Equation (4.1) converges upon the true CAF as M becomes large[3].

R̂s(�; �) =
1

M

M���1X
n=0

s(n)s�(n+ �)e|2��n (4.1)

R̂s(�; �) = Rs(�; �) + �s(�; �) (4.2)

lim
M!1

R̂s(�; �) = Rs(�; �) (4.3)

The error quantity
p
M
h
R̂s(�; �)�Rs(�; �)

i
is asymptotically complex normal

lim
M!1

p
M�s(�; �)) N (0;�) (4.4)

21
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Where � is the covariance matrix

� =

�
Re
�
Q+Q�

2

	
Im
�
Q�Q�

2

	
Im
�
Q+Q�

2

	
Re
�
Q��Q

2

	� (4.5)

Where

Q(m;n) , Sf�m;�n
(2�; �) (4.6)

Q�(m;n) , S�f�m;�n
(0;��) (4.7)

Sf�;�(�; !) , lim
M!1

1

M

M�1X
t=0

1X
�=�1

cumfRs(t; �);Rs(t+ �; �)ge�|!�e�|�t (4.8)

S�f�;�(�; !) , lim
M!1

1

M

M�1X
t=0

1X
�=�1

cumfRs(t; �);R�
s(t+ �; �)ge�|!�e�|�t (4.9)

The parameters of the covariance matrix � are estimated with the frequency smoothed cyclic
periodigram[3][11][4].

Q(m;n) = Ŝf�m;�n
(2�; �) =

1

ML

(L�1)
2X

s=
�(L�1)

2

W (s)FM;�n

�
�� 2�s

M

�
FM;�m

�
� +

2�s

M

�
(4.10)

Q�(m;n) = Ŝ�f�m;�n
(0;��) = 1

ML

(L�1)
2X

s=
�(L�1)

2

W (s)F �M;�n

�
� +

2�s

M

�
FM;�m

�
� +

2�s

M

�
(4.11)

Where W (s) is a spectral window function with length L and

FT;� (!) =
T�1X
t=0

x(t)x�(t+ �)e�|!t (4.12)

To determine the presence of a cyclic frequency, create a hypothesis test:

H0 : � @K 8 f�ngNn=1 ) R̂s(�; �) = �s(�; �)

H1 : � 9K for somef�ngNn=1 ) R̂s(�; �) = Rs(�; �) + �s(�; �)

Creating a generalized likelihood ratio test statistic 	[3][4]:

r̂ ,
h
Re
n
R̂s(�; �1); : : : ; R̂s(�; �n)

o
; Im

n
R̂s(�; �1); : : : ; R̂s(�; �n)

oi
(4.13)

	 ,M r̂�̂�1r̂T (4.14)
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Where r is a 1 � 2N row vector and N is the number of lags considered for CF �. The
residual � under H1 converges on a normal distribution as previously noted[3][4]:

H1 : lim
M!1

p
M
�
r̂�̂�1r̂T � r��1rT

�
) N �0; 4r��1rT� (4.15)

The behavior of 	 under the two hypotheses is:

H0 : lim
M!1

	) �2
2N (4.16)

H1 : lim
M!1

	) N �r��1rT; 4r��1rT� (4.17)

Under H0 a constant false alarm rate (CFAR) threshold � is set by evaluating the resulting
chi-squared distribution with 2N degrees of freedom.

PFA , P [	 � �jH0] (4.18)

The probability of detection is approximated by substituting the estimates r̂ and �̂ into the
result from (4.17):

PD , P [	 � �jH1] (4.19)

PD � 1

2
� erf

 
�� r̂�̂�1r̂Tp
2 � 4r̂�̂�1r̂T

!
(4.20)

4.1.2 Multiple CF Test

Expanding upon the previous test for a single cyclic frequency, a test can be constructed to
detect a process which contains several cyclic frequencies. Considering the same test statistic
	 from Equation (4.14) one can derive two test combined test statistics[4]:

Dm = argmax
�9K

	 = M
�9K

r̂�̂�1r̂T (4.21)

Ds =
X
�9K

	 =M
X
�9K

r̂�̂�1r̂T (4.22)

The decision statistic Ds is the most interesting, as it converges on a chi-squared distribution
with 2NN� degrees of freedom where N is the number of time lags for a certain cyclic
frequency and N� is the number of cyclic frequencies considered[4]. The hypothesis test is
constructed similar to that of a single CF:

H0 : � @K 8 f�ngNn=1 ) R̂s(�; �) = �s(�; �)

H1 : � 9K for somef�ngNn=1 ) R̂s(�; �) = Rs(�; �) + �s(�; �)
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H0 is rejected if Ds � � where � is the CFAR threshold set from the resulting �2
2NN�

distribution. Examining the probability of detection PD, the performance of the multi-CF
detector can be approximated:

PD , P [Ds � �jH0] (4.23)

Observing for a single CF, Ds is equivalent to the single-CF detector:

lim
M!1

Ds ) N
�
M r̂�̂�1r̂T; 4M r̂�̂�1r̂T

�
(4.24)

Because the sum of Gaussian processes results in a Gaussian process:

lim
M!1

Ds ) N
 
M
X
�9K

	; 4M
X
�9K

	

!
(4.25)

Then the PD may be estimated with a similar evaluation of the error function:

PD � 1

2
� erf

 
��M

P
�9K	p

2 � 4MP
�9K	

!
(4.26)

4.1.3 Ratio Detector

An alternative test statistic considers the ratio of the CAF response at a known CF to that
of some other CF or lag which is known not to exist in the signal of interest [7][8]:

	� =

����� R̂s(�; �)

R̂s(� + S; �)

����� ; (� + S) @K (4.27)

	� =

����� R̂s(�; �)

R̂s(�; � + x)

����� ; (� + x) @f�ngNn=1 (4.28)

The behavior of this statistic is analyzed under the following hypothesis test:

H0 : � @K 8 f�ngNn=1 ) R̂s(�; �) = �s(�; �)

H1 : � 9K for somef�ngNn=1 ) R̂s(�; �) = Rs(�; �) + �s(�; �)

� is asymptotically complex normal. Under hypothesis H0 the test statistic 	 becomes a
ratio of normal distributions, which results in a Cauchy distribution[7][8]:

P [	jH0] =
1

� (1 + 	2)
(4.29)

A CFAR threshold is set using the CDF of the Cauchy distribution:

PFA , P [	 � �jH0] = 1�
�
1

2
� tan�1(�)

�

�
(4.30)
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Table 4.1: CAF Features For Detection of WiMAX Signals

�̂ �̂ Description

0 Tu Cyclic Pre�x
1
Tf

Tu
3

Preamble

0 Tf Preamble
1
Tf

Tf Preamble

Table 4.2: Select �2n Distribution Tail Values

n P [X � x] x n P [X � x] x n P [X � x] x n P [X � x] x

2 0.1 4.605 4 0.1 7.779 6 0.1 10.645 8 0.1 13.362
2 0.01 9.210 4 0.01 13.277 6 0.01 16.812 8 0.01 20.090
2 0.005 10.597 4 0.005 14.860 6 0.005 18.548 8 0.005 21.955
2 0.001 13.82 4 0.001 18.47 6 0.001 22.46 8 0.001 26.13

4.2 Hypothesis Test Approach

The previously described hypothesis tests can be grouped together into a library of cyclo-
stationary detectors, as the underlying functionality is consistent across all three detectors.
These three detectors are separated into two groups: single cycle and multi-cycle detectors.
The �rst and third test discussed previously are classi�ed as single-cycle detectors, with the
multi-cycle test falling in the latter category.

The algorithms will accept the equivalent of in-phase and quadrature (IQ) samples from a
receiver. In C++ these are speci�ed as either complex < float > or complex < double >
for single and double-precision oating point numbers, respectively. The CAF features used
for detection are described it Table 4.1. Tables 4.2 and 4.3 provide selected threshold results
from the �2

n and Cauchy distributions, respectively.

Table 4.3: Select Cauchy Distribution Tail Values

P [X � x] x

0.1 3.078
0.01 31.82
0.005 63.66
0.001 318.3
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(a) Block Diagram of the Single CF Detector

(b) Block Diagram of the Ratio Detector

Figure 4.1: Block Diagrams of Detectors for Single CF

4.2.1 Implementation

Figures 4.1a and 4.1b describe the basic algorithms for analysis of a single CF for detection
of WiMAX systems. The CAF estimate ^R(�; �) is performed as speci�ed in Equation (3.4).
The covariance matrix estimate �̂ is computed with Equations (4.5), (4.10), and (4.11).

The multiple CF detector described in Figure 4.2 follows the computation of the decision
statistic Ds in Equation (4.22). The thresholds for all three detectors are chosen from their
corresponding distribution tables (Tables 4.2 4.3).

4.3 Pulsed Noise Interference

The pulsed \noise" applied to the received signal models a typical radar systems transmis-
sion. High energy and low duty cycle are the key characteristics of the pulsed signal. Within
the pulses, psuedorandom biphase coding is used to model typical radar system pulse com-
pression. Other techniques some radar systems use for pulse compression include frequency
diversity and chirp sequences [20][21]. For modeling the e�ect of radar pulses upon these
feature-based detection methods, the simple method of biphase modulation is su�cient to
understand the e�ects of low duty cycle, high energy pulses. The rate of modulation is
typically at least an order of magnitude over the pulse bandwidth.
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Figure 4.2: Block Diagram of the Multiple CF Detector

The previously described hypothesis tests were analyzed assuming a zero-mean AWGN pro-
cess. The radar signal presents a unique noise process whose analysis in terms of these
hypotheses is nontrivial. The psuedorandom codes used in the modulation sequence at-
tempts to maximize the autocorrelation response (minimizing the correlation between pulses
in any dwell). The computer algorithms used operate under the same AWGN assumption,
and will be evaluated against the simulated puled noise.

4.4 SVM Approach

Machine learning techniques are attractive solutions to regression and binary classi�cation
problems [22][23]. The classic approach to formulating a linear classi�er de�nes a relationship
between a set of vectors x in some feature space that can be mapped to the set y9 f�1;+1g.
A hyperplane is drawn to separate the sets

h
f(xi; yi = �1)gNi=1 ; f(xi; yi = +1)gNi=1

i
over a

data set of size N with the form[23]:

wx+ b =

(
� 0 y = +1

< 0 y = �1 (4.31)

Figure 4.3 describes an example of a hyperplane wx + b = 0 in a two-dimensional space
with linearly separable data. One can note that small variations in certain data points
near decision boundaries can result in changes of classi�cation. While the classi�cation
boundary certainly �ts the dataset, a casual observer may infer that it is not ideal. To
minimize the number of data points near a decision boundary, a margin � is introduced for
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Figure 4.3: Example of a Linear Classi�er in Two Dimensions

maximization[23]:

wx+ b =

(
� � y = +1

� �� y = �1 (4.32)

Any set of linearly independent data can be linearly separated with as many dimensions
as data points. This is similar to the principle in communications of a modulation scheme
containing a quantity of basis functions less than or equal to the number of symbols used.
Likewise, one can think of the dimensions of a linearly separable data set as a set of basis
functions from which the data set is generated. Figure 4.5 shows an example of a set of data
represented in two dimensions whose basis functions cause the set of data to be inseparable
linearly. One can apply a function to the data (the \kernel trick") to produce linearly sepa-
rable data (as shown in Figure 4.6) :

The points which lie along the lines of maximum margin are known as support vectors.
These support vectors de�ne the decision boundaries of the classi�er. Frequently it is im-
practical to provide a feature space with su�cient dimensionality to ensure linear separation
of all training data. Support vector machines provide for a slack variable � to accommo-
date these inseparable mis-classi�cations. This slack variable is introduced to classi�er as[23]:
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Figure 4.4: Example of a Linear Classi�er in Two Dimensions with Maximum Margin

yi (wxi � b) � 1� �i (4.33)

Where � is the distance from the margin, and if �i > 1 for point i then the result is a mis-
classi�cation. A common approach to minimize mis-classi�cations is to constrain the system
with a 2-Norm \soft margin" objective function:

argmmin
w;�;b

(
1

2
jwj2 + C

NX
n=1

�i

)
(4.34)

Optimizing Equation (4.34) is a quadratic programming exercise with computational cost
O(N3)[23]. The advantage an SVM would present over a multi-cycle GLRT detector comes
at the computational savings avoiding the computation of the covariance matrix.
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Figure 4.5: Example of Non-Linearly Separable Data in Two Dimensions
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Figure 4.6: Kernel Trick Applied to Data

Figure 4.7: Block Diagram of SVM Detector
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4.4.1 Implementation

Figure 4.7 shows a block diagram of the proposed SVM detector. The SVM requires a train-
ing sequence prior to evaluation. Three di�erent types of training sequences will be used on
the SVM detector: WiMAX without noise, WiMAX with 0dB SNR AWGN, WiMAX with
0dB SINR pulsed noise. The features used for the SVM classi�er will be the test statistic
computed at (�̂; �̂) = (0; Tu), (�̂; �̂) = (0; Tu=2) and the observation window length. Two
kernels will be evaluated: Gaussian and �2.

The software used to construct the SVM framework is the SHOGUN SVM Toolbox (specif-
ically, version 3.0.0)[24]. SHOGUN provides a C++ front-end to libSVM and other SVM
libraries. Additionally SHOGUN expands upon available kernels and o�ers interfaces to
other languages (MATLAB, Python, Ruby, etc.). Each kernel will require cross-validation
to determine the optimal radial basis function width and weight of C for each classi�er.
These optimizations will be performed over the training data sets in a simple exhaustive
search over a range of values for the parameters. The kernels with the least cross-validation
error will be chosen to continue for evaluation. The result will be a total of three kernels
available; the best Gaussian or �2 from each of the three training data sets.



Chapter 5

Evaluation of Detection Methods

The previous chapter identi�ed four di�erent second-order cyclostationary feature based de-
tection methods. In this chapter these methods are evaluated against the classic AWGN
channel; then their performance is evaluated in a simulated radar environment. The simu-
lated radar signal consists of low duty cycle biphase modulated pulses with chip sequences
generated from Gold Codes from the preferred pair (X10+X3+1),(X10+X8+X3+X2+1).
The duty cycle of the radar pulses will be �xed at 1:5%, which is a reasonable approximation
of the low duty cycle used by most radar systems. The coding rate is also �xed at 5MHz,
which would provide a moderate range resolution of 30 meters to a radar system. Two di�er-
ent pulse repetition frequencies (PRFs) will be examined, 300Hz and 1500Hz. There PRFs
were chosen to examine the e�ects of two di�erent scenarios: one at 300Hz such that there are
only one to two pulses per WiMAX frame (allowing for 32 symbol durations between pulses),
and a second at 1500Hz which would provide much shorter duration pulses (one tenth of
a symbol duration) at much greater frequency. Table 5.1 summarizes these radar parameters.

The WiMAX simulation will also be �xed in its parameters. Shown in Chapter 3, the CAF
response magnitude at certain lags such as Tu are dependent upon the cyclic pre�x length.
Considering the CAF response is the magnitude squared of the cyclic pre�x, a doubling or
halving of the CP length results in a 6 dB gain or loss in response. For these analyses, the
CP length is �xed at 1=8 with the understanding that the 1=4 length will have better perfor-

Table 5.1: Radar System Parameters for Simulation

Parameter Value(s)

Duty Cycle 1:5%
PRF [300,1500] Hz
Pulse Width [50,250] �s
Coding Rate 5MHz

33
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Table 5.2: WiMAX System Parameters for Simulation

Parameter Value(s)

FFT Size 512
CP Length 1/8
Useful Symbol Duration 91.429 �s
Total Symbol Duration 102.857 �s
Frame Duration 5 ms
Symbols Per Frame 47

Table 5.3: WiMAX Detection Decision Engines

Multi-Cycle GLRT
Single-Cycle GLRT
Single-Cycle \Ratio Test"
SVM with No-Noise training
SVM with 0dB SNR AWGN training
SVM with 0dB SINR Pulsed Noise training

mance and the 1=16 will have worse performance. The FFT size of the symbol only a�ects
the system bandwidth. For these simulations, the FFT size is �xed at 512, which results
in a system bandwidth of 5.6MHz; all system parameters are reviewed in Table 5.2. The
WiMAX is upsampled to 10MHz and combined with the radar signal generated at 10MHz,
e�ectively simulating 5.6MHz of receiver bandwidth sampled at 10MHz.

5.1 Simulation Parameters

The previous section described the �xed parameters of the radar and WiMAX systems for
simulation. The simulation architecture will vary other parameters to compare the per-
formance of the four detectors in the AWGN and radar noise environments. The decision
engines under consideration are de�ned in Table 5.3. The CFAR parameters and observation
window length M for the decision engines are described in Table 5.4. Table 5.5 describes
the di�erent noise environments tested. For each pulsed noise range, the underlying AWGN
noise is varied from -10dB to 30dB SNR in 10 dB steps (four AWGN levels per pulsed noise
SINR sweep).
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Table 5.4: Decision Engine Parameters

Attribute Parameter

CFAR PFA [0.1,0.01]
M
Ts

[5,10,25,50,100,250,500] symbol durations

Table 5.5: Simulation Noise Parameters

Noise Type Noise Level Other Parameters

AWGN -15:3:12 dB SNR
Pulsed Noise -10:5:30 dB SINR PRF 300 Hz
Pulsed Noise -10:5:30 dB SINR PRF 1500 Hz

5.2 Simulation Resolution

The simulations were designed to generate a series of test data corresponding to ten trials of
500-symbol windows at most two times per con�guration. The resolution of the simulation
increases with decreasing window size, as the smaller windows are run over the large dataset
generated for the 500-symbol window. For example, each test run of ten trials of 500-symbols
yields over 1,000 trials for the 5-symbol window.

Limiting the test runs to a maximum of 20 trials for the 500-symbol window restricts the
resolution. This can be improved with a greater number of trials at the cost of greatly
increasing computation time. The CAF estimator and covariance estimator are implemented
using their formal de�nition. While Fast Fourier Transform techniques can produce similar
estimates, they were not implemented in favor of establishing a proof-of-concept simulation
using the aforementioned estimate de�nitions.

5.3 Selected Results

The entire results from the described simulations are contained in Appendix A (approxi-
mately 286 plots). Some of the results are selected for discussion in this chapter. The reader
is encouraged to review all of the plots contained in the Appendix.

5.3.1 Cauchy Ratio Test

The Cauchy Ratio Test is the least complex of all the decision algorithms. Figure 5.1 demon-
strates the ratio test in against an AWGN channel. The legend of the graphs describe the
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Figure 5.1: CRT Pd vs. AWGN with 10% False Alarm Rate

observation window in terms of WiMAX useful symbol durations (about 102�s). \CR5"
corresponds to a 5-symbol observation window and \CR250" corresponds to a 250-symbol
observation window. This ratio test, as a tradeo� in computational complexity, does not
estimate the covariance matrix of the observed signal and relies on the CAF response at
a known non-CF of the signal. Figures 5.2a and 5.2b demonstrate the e�ectiveness of this
technique in the presence of a pulsed radar signal.

Many cyclostationary techniques work well below the 0dB SNR threshold given long obser-
vation windows. To highlight the performance of these detectors in this chapter, the 0dB
SNR was chosen. While the techniques may work below 0dB SNR, a deliberately designed
sensor should yield satisfactory SNR levels with the desired signal. The Appendix contains
additional analysis from -10 dB through 30 dB SNR.

5.3.2 General Likelihood Ratio Test

The GLRT is more robust against noise, as the test statistic incorporates a covariance esti-
mate. Figure 5.3a demonstrates the single-cycle GLRT detector against AWGN with a 10%
CFAR threshold. Figure 5.3b illustrates the performance of the four-cycle GLRT detector,
also with a 10% CFAR threshold. Due to the lags for cycles three and four in the multi-cycle
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(a) CRT Pd vs. 300Hz Pulses with 10% False Alarm Rate

(b) CRT Pfa vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN

SNR

Figure 5.2: Cauchy Ratio Test vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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Table 5.6: SVM Parameters

Training Data Kernel Type libsvm C1 libsvm C2 RBF Width Cross-Validation
Description Error Rate

AWGN �2 7.61 11.62 6.53 0.00608
No Noise �2 1.9 2.9 15.9 0.00267
Pulse Noise Gaussian 1.6 2.6 12.5 0.03442

detectors, the minimum observation window used in the simulation is 100 symbol periods.
A 5 ms WiMAX frame has only 49 TU periods, and the 50 symbol observation window yields
a very small number of samples over which the cross-correlation is evaluated.

Introducing the same level of pulsed radar interference from Figure 5.2a, the GLRT single-
cycle detector is evaluated in Figures 5.4a and 5.4b. The single-cycle detector is impacted by
the pulse energy, and degrades its performance (Figure 5.3a). However, the false alarm rate
of the single-cycle detector is more manageable than that of the Cauchy Ratio Test detector,
as it typically surpassed it's CFAR performance.

Expanding upon the single-cycle detector, the four-cycle detector utilizes a summation of
several CF decision statistics. It's AWGN performance (Figure 5.3b vs 5.3a) is signi�cantly
greater than that of the single-cycle detector, however it's Pd in the pulsed environment is
nearly identical to the single-cycle detector (Figure 5.5a vs. 5.4a). The advantage of the
four-cycle detector over the single-cycle detector rests with it Pfa performance, and rejecting
false positives from the interfering signal (Figure 5.5b vs. 5.4b).

5.3.3 Support Vector Machine Detector

The three SVMs were trained with a series of 600 \positive" vectors and 600 \null" vectors.
The groups of 600 were divided into 100-vector groups, each with a di�erent observation
window length. Thus there are 100 vectors from a 5-symbol observation, 100 vectors from
a 10-symbol observation, etc. for the set of [5,10,50,100,250,500]. Optimal SVM parameters
were found using a linear search over a range of slack weights and basis function widths.
Two di�erent kernels were also tested in the linear search. The search was evaluated using a
10-fold cross validation on the respective data set with ten runs. Table 5.6 shows the SVM
and kernel parameters used for each machine. The trained SVMs were then run against the
complete training data set to evaluate their e�cacy before in-depth simulations were run.
These results are shown it Table 5.7, whose diagonal represents the \training error" of the
SVMs.

The disparity of results between the training data set and the AWGN evaluation indicate
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(a) GLRT 1 CF Pd vs. AWGN with 10% False Alarm Rate

(b) GLRT 4 CF Pd vs. AWGN with 10% False Alarm Rate

Figure 5.3: Selected GLRT Results
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(a) Pd

(b) Pfa

Figure 5.4: GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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(a) Pd

(b) Pfa

Figure 5.5: GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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(a) SVM Detector with 0dB AWGN Training Pd vs. AWGN

(b) SVM Detector with 0dB AWGN Training Pfa vs. AWGN

Figure 5.6: Selected SVM vs. AWGN Results
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Table 5.7: SVM Training Results

P
P
P
P
P
P
P
P
P

SVM
Data

AWGN No Noise Pulse

AWGN 0.0050 0.1883 0.0567
No Noise 0.1025 0.0025 0.1383
Pulse 0.1400 0.1275 0.0258

an improper �t to the signal of interest. This can result from a binary classi�er which is
over-�t to the training data, improper feature selection, or implementation errors moving
from training data to evaluation data. In the case of the AWGN evaluations in Figures 5.6a
and 5.6b, only the 500-symbol window behaves as expected: low Pd at lower SNRs, and low
Pfa at higher SNRs.

5.4 Summary & Observations

In this chapter, the method of evaluation for the various detectors was discussed. Selected
results were presented, with complete results available in Appendix A for all test cases. The
GLRT works reasonably well when exposed to pulses, but only at favorable SINR levels (>
0dB). Examining the additional results in the Appendix will show that the 300 Hz pulses af-
fect the performance of the GLRT more than the 1500 Hz pulses. The SVM approach shows
some promise as indicated with the 300 Hz performance, but as shown with the AWGN and
1500 Hz, the features selected for the SVM and the degree of �t are likely inappropriate for
this data set.

The Cauchy Ratio Test, at long observation windows (250, 500 symbols) and a Pfa = 0:1,
yields performance about 10 dB under those of the GLRT with one and two CFs. The eval-
uated Pfa under the radar noise for the CRT remained consistent with the CFAR threshold,
while the GLRT typically surpassed the CFAR performance. An advantage to choosing the
CRT over the GLRT is the CRT does not require the computation of a covariance matrix.
The CRT, as de�ned earlier is simply the ratio of the CAF response at a known CF and a
known non-CF.
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(a) SVM Detector with 0dB SINR Pulse Training Pd vs. 300Hz Pulses, 0

dB AWGN SNR

(b) SVM Detector with 0dB SINR Pulse Training Pd vs. 300Hz Pulses, 0

dB AWGN SNR

Figure 5.7: Selected SVM vs. 300 Hz Pulses Results
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(a) SVM Detector with 0dB SINR Pulse Training Pd vs. 1500Hz Pulses, 0

dB AWGN SNR

(b) SVM Detector with 0dB SINR Pulse Training Pfa vs. 1500Hz Pulses,

0 dB AWGN SNR

Figure 5.8: Selected SVM vs. 1500 Hz Pulses Results



Chapter 6

Conclusion

The presence of high energy pulsed noise can create unique challenges for congnitive radio
and spectrum sharing. This thesis examined the application of second order cyclostationary
features to the detection of WiMAX signals in the presence of AWGN and pulsed noise. In
addition to classical general likelihood ratio tests, a support vector machine solution was
proposed and evaluated. All of the detectors were evaluated in an array of varying noise
parameters and observation window length to determine the optimum application of these
second order statistics.

6.1 Detector Analysis & Recommendation

Chapter Five presented the evaluation methods and selected results of the detectors consid-
ered. Table 6.1 describes the performance di�erence between two of the least computationally
complex detection methods. The CRT requires the computation of two CAF estimates. Each
CAF estimate, when computed with the formal de�nition of the CAF has a computational
complexity of O(N2). If one applies FFT approximation techniques to the CAF, the com-
plexity is reduced to O(N logN).

Table 6.1: 90% Pd SINR Threshold in 0 dB AWGN SNR, Pfa = 10%, 300 Hz Pulses

Detector Type Observation Length SINR Detector Type Observation Length SINR

Cauchy 500 5 GLRT 1 CF 500 -3
Cauchy 250 7 GLRT 1 CF 250 1
Cauchy 100 12 GLRT 1 CF 100 5
Cauchy 50 17 GLRT 1 CF 50 7
Cauchy 25 22 GLRT 1 CF 25 12

46
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(a) SVM vs. 300Hz Pulses with Pulse Training,

20 dB AWGN SNR

(b) SVM vs. 1500Hz Pulses with Pulse Training,

20 dB AWGN SNR

Figure 6.1: SVM Detector Performance in High AWGN SNR

The GLRT requires the estimation a covariance matrix �. The operations required for the �
estimate have a cost O(N2)[11]. In the case of the multiple CF tests, the complexity scales
linearly as an O(N2) test statistic must be calculated for each CF of interest. The SVM
detector evaluated uses two test statistic computations as features, this equates the SVMs
computational cost to that of the GLRT with two CFs; two O(N2) operations are required.

In evaluating the SVM performance, the 1500 Hz data set showed that the SVM was over-�t
to the 300 Hz data. Figure 6.1b shows very poor performance in favorable AWGN SNR lev-
els while Figure 6.1a shows satisfactory (but not ideal) performance in the same AWGN SNR.

Examining di�erent observation window lengths, Figure 6.2a shows that a small window at
low PRFs can provide asymptotic performance with the bulk of the successful detections
occurring between the radar pulses. The high PRF results of Figure 6.2b demonstrate the
advantage of long integration periods when it is impossible to perform signal analysis in
between pulses.

An ideal detector would achieve a balance of high refresh rate and high probability of de-
tection when subjected to radar signals. Using the discussed results, a two-step detector
is recommended. Incoming samples from the receiver would �rst go through a single-cycle
GLRT detector with a short observation window length (e.g. 10 TU). Using a 2-of-3 criterion
and a 10% CFAR threshold, the Pd and Pfa become:
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(a) GLRT 1 CF vs. 300Hz Pulses with 10% False

Alarm Rate, 0 dB AWGN SNR

(b) GLRT 1 CF vs. 1500Hz Pulses with 10%

False Alarm Rate, 0 dB AWGN SNR

P 0 = 3P 2 � 2P 3 (6.1)

This will yield a 2.8% CFAR. In the case of 0dB AWGN SNR in the presense of 300 Hz
pulses, this will result in an asymptotic Pd of 78.4%. The second level of this detector should
be user (or cognitive engine) selectable. If the system is in an area where WiMAX systems
are known to exist (or if the radar system is operating with a high PRF), then the second
detector should perform an evaluation on samples when the �rst detector's algorithm results
in \No Detection."

A multi-cycle detector should be used for this second level. The number of cycles and
observation period should be tuned to the systems computational capabilities and desired
refresh rate. Calculating a 4-cycle statistic on an observation window size of >500 TU is
much more costly than a 2-cycle statistic on a 250 TU window.

6.2 Future Work

The library of C++ code created to support this work implemented the formal de�nition of all
algorithms. Signi�cant performance gains will be realized with a refactoring of the code and
implementation of FFT techniques for CAF calculation and test statistic computations[25].
After refactoring and implementation of more e�cient calculation methods, testing can be
performed on the proposed two-step detector. The proposed SVM classi�er shows promise;
in the case of the data presented in this thesis, the features or kernels selected were insu�-
cient to provide for robust classi�cation. For each set of possible features, the entire analysis
routine is required: kernel evaluation, parameter optimization, and evaluation. Once more



appropriate features are identi�ed, the SVM can be trained as a multi-class classi�er with
other similar signals (such as LTE, DVB-T, etc.) to perform joint detection and classi�cation.

Beyond optimizing the existing algorithms, additional tests are required to ensure robustness
of the �nal detection algorithm. There will be some PRF threshold where the initial small
observation window detector yields insu�cient probability of detection to justify its use. The
data presented here focused on in-channel interference from a radar system. Additionally
the radar was limited to 5MHz of bandwidth, slightly less than the WiMAX system band-
width. Other combination of system bandwidths, in-channel, and adjacent-channel band-
widths should be evaluated. The WiMAX test signal utilized the WirelessMAN-OFDMA
speci�cation. The AAI interface was not evaluated. Because the AAI introduces additional
preambles, some gains are expected on the 3-cycle and 4-cycle GLRT detectors. The per-
formance of the detector with the AAI should be evaluated and compared to that of the
WirelessMAN-OFDMA.

Another aspect not considered in this thesis is the susceptibility of the detector to spoo�ng.
Because the primary detection methods rely upon the cyclic-pre�x induced cyclostationarity,
other systems which have useful symbol durations close to that of WiMAX can cause false
alarms within the detector. Depending upon the operational goals of the detector, rejection
of these false positives may be desired. If rejection of false positives and spoo�ng is required,
then the system should use more identifying features of WiMAX to �lter the false positives.
Some of these features may include pilot tone sequences or other standardized structures
within the signal.
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Appendix A

Results

A.1 Cauchy Ratio Test
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(a) Pd (b) Pfa

Figure A.1: CRT vs. AWGN with 10% False Alarm Rate

(a) Pd (b) Pfa

Figure A.2: CRT vs. AWGN with 1% False Alarm Rate
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(a) Pd (b) Pfa

Figure A.3: CRT vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.4: CRT vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.5: CRT vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.6: CRT vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR



Joseph M. Davis Chapter 6. Conclusion 56

(a) Pd (b) Pfa

Figure A.7: CRT vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.8: CRT vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.9: CRT vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.10: CRT vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.11: CRT vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.12: CRT vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR



Joseph M. Davis Chapter 6. Conclusion 59

(a) Pd (b) Pfa

Figure A.13: CRT vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.14: CRT vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.15: CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.16: CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.17: CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.18: CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.19: CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.20: CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.21: CRT vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.22: CRT vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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A.2 General Likelihood Ratio Test - Single CF
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(a) Pd (b) Pfa

Figure A.23: GLRT 1 CF vs. AWGN with 10% False Alarm Rate

(a) Pd (b) Pfa

Figure A.24: GLRT 1 CF vs. AWGN with 1% False Alarm Rate
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(a) Pd (b) Pfa

Figure A.25: GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.26: GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.27: GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.28: GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.29: GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.30: GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.31: GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.32: GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.33: GLRT 1 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.34: GLRT 1 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.35: GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.36: GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.37: GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.38: GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.39: GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.40: GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.41: GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.42: GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.43: GLRT 1 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.44: GLRT 1 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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A.3 General Likelihood Ratio Test - Two CFs
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(a) Pd (b) Pfa

Figure A.45: GLRT 2 CF vs. AWGN with 10% False Alarm Rate

(a) Pd (b) Pfa

Figure A.46: GLRT 2 CF vs. AWGN with 1% False Alarm Rate
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(a) Pd (b) Pfa

Figure A.47: GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.48: GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.49: GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.50: GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.51: GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.52: GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.53: GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.54: GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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(a) Pd (b) Pfa

Figure A.55: GLRT 2 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.56: GLRT 2 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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Figure A.57: GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR
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Figure A.58: GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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Figure A.59: GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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Figure A.60: GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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Figure A.61: GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.62: GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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Figure A.63: GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR
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Figure A.64: GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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Figure A.65: GLRT 2 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR
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Figure A.66: GLRT 2 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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A.4 General Likelihood Ratio Test - Three CFs
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Figure A.67: GLRT 3 CF vs. AWGN with 10% False Alarm Rate
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Figure A.68: GLRT 3 CF vs. AWGN with 1% False Alarm Rate
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Figure A.69: GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR
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Figure A.70: GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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Figure A.71: GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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Figure A.72: GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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Figure A.73: GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR
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Figure A.74: GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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Figure A.75: GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR
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Figure A.76: GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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Figure A.77: GLRT 3 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR
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Figure A.78: GLRT 3 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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Figure A.79: GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR
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Figure A.80: GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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Figure A.81: GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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Figure A.82: GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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Figure A.83: GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR

(a) Pd (b) Pfa

Figure A.84: GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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Figure A.85: GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR
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Figure A.86: GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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Figure A.87: GLRT 3 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR
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Figure A.88: GLRT 3 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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A.5 General Likelihood Ratio Test - Four CFs
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Figure A.89: GLRT 4 CF vs. AWGN with 10% False Alarm Rate
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Figure A.90: GLRT 4 CF vs. AWGN with 1% False Alarm Rate
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Figure A.91: GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR
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Figure A.92: GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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Figure A.93: GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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Figure A.94: GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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Figure A.95: GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR
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Figure A.96: GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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Figure A.97: GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR
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Figure A.98: GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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Figure A.99: GLRT 4 CF vs. 300Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR
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Figure A.100: GLRT 4 CF vs. 300Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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Figure A.101: GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, -10 dB AWGN SNR
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Figure A.102: GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, -10 dB AWGN SNR
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Figure A.103: GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 0 dB AWGN SNR
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Figure A.104: GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 0 dB AWGN SNR
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Figure A.105: GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 10 dB AWGN SNR
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Figure A.106: GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 10 dB AWGN SNR
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Figure A.107: GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 20 dB AWGN SNR
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Figure A.108: GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 20 dB AWGN SNR
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Figure A.109: GLRT 4 CF vs. 1500Hz Pulses with 10% False Alarm Rate, 30 dB AWGN SNR
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Figure A.110: GLRT 4 CF vs. 1500Hz Pulses with 1% False Alarm Rate, 30 dB AWGN SNR
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A.6 Support Vector Machine - No Noise Training
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Figure A.111: SVM Detector with No Noise Training vs. AWGN
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Figure A.112: SVM Detector with No Noise Training vs. 1500Hz Pulses, -10 dB AWGN SNR
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Figure A.113: SVM Detector with No Noise Training vs. 1500Hz Pulses, 0 dB AWGN SNR
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Figure A.114: SVM Detector with No Noise Training vs. 1500Hz Pulses, 10 dB AWGN SNR
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Figure A.115: SVM Detector with No Noise Training vs. 1500Hz Pulses, 20 dB AWGN SNR
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Figure A.116: SVM Detector with No Noise Training vs. 1500Hz Pulses, 30 dB AWGN SNR
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Figure A.117: SVM Detector with No Noise Training vs. 300Hz Pulses, -10 dB AWGN SNR
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Figure A.118: SVM Detector with No Noise Training vs. 300Hz Pulses, 0 dB AWGN SNR
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Figure A.119: SVM Detector with No Noise Training vs. 300Hz Pulses, 10 dB AWGN SNR
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Figure A.120: SVM Detector with No Noise Training vs. 300Hz Pulses, 20 dB AWGN SNR
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Figure A.121: SVM Detector with No Noise Training vs. 300Hz Pulses, 30 dB AWGN SNR
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A.7 Support Vector Machine - 0dB AWGN Training
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Figure A.122: SVM Detector with 0dB AWGN Training vs. AWGN
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Figure A.123: SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, -10 dB AWGN SNR
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Figure A.124: SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 0 dB AWGN SNR
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Figure A.125: SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 10 dB AWGN SNR
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Figure A.126: SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 20 dB AWGN SNR
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Figure A.127: SVM Detector with 0dB AWGN Training vs. 1500Hz Pulses, 30 dB AWGN SNR



Joseph M. Davis Chapter 6. Conclusion 123

(a) Pd (b) Pfa

Figure A.128: SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, -10 dB AWGN SNR
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Figure A.129: SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 0 dB AWGN SNR
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Figure A.130: SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 10 dB AWGN SNR
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Figure A.131: SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 20 dB AWGN SNR
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Figure A.132: SVM Detector with 0dB AWGN Training vs. 300Hz Pulses, 30 dB AWGN SNR
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A.8 Support Vector Machine - 0dB SINR Pulse Train-

ing



Joseph M. Davis Chapter 6. Conclusion 127

(a) Pd (b) Pfa

Figure A.133: SVM Detector with 0dB SINR Pulse Training vs. AWGN
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Figure A.134: SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, -10 dB AWGN
SNR



Joseph M. Davis Chapter 6. Conclusion 128

(a) Pd (b) Pfa

Figure A.135: SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 0 dB AWGN
SNR
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Figure A.136: SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 10 dB AWGN
SNR



Joseph M. Davis Chapter 6. Conclusion 129

(a) Pd (b) Pfa

Figure A.137: SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 20 dB AWGN
SNR
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Figure A.138: SVM Detector with 0dB SINR Pulse Training vs. 1500Hz Pulses, 30 dB AWGN
SNR
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Figure A.139: SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, -10 dB AWGN
SNR
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Figure A.140: SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 0 dB AWGN
SNR
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Figure A.141: SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 10 dB AWGN
SNR
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Figure A.142: SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 20 dB AWGN
SNR
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Figure A.143: SVM Detector with 0dB SINR Pulse Training vs. 300Hz Pulses, 30 dB AWGN
SNR


