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The Born-Oppenheimer Approximation for Triatomic Molecules with Large
Angular Momentum in Two Dimensions

Adam Shoresworth Bowman

(ABSTRACT)

We study the Born-Oppenheimer approximation for a symmetric linear triatomic molecule

in two space dimensions. We compute energy levels up to errors of order ǫ5, uniformly for

three bounded vibrational quantum numbers n1, n2, and n3; and nuclear angular momentum

quantum number ℓ ≤ kǫ−3/4 for k > 0. Here the small parameter ǫ is the fourth root of the

ratio of the electron mass to an average nuclear mass.
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John Rossi, Marvin Blecher, and Leslie Kay.

My fellow students at Virginia Tech have provided considerable guidance, advice, inspiration,

friendship, and support. At the risk of unfairly leaving some out, I’d like to specifically thank

Steve Boyce, Siddharth Venkat, Hans-Werner Van Wyk, Martin Rudolph, Ulrich Dobramysl,

and Daniel Hockensmith.

Thanks are due to some of my fellow undergraduates at Penn, who showed me the value of

hard work. Though there are many who deserve recognition, Steve Bates, Enrique Rojas,

Vikram Pattanayak, Russ Brocato, and Yuo-Chen Kuo stand out.

My girlfriend, Rena Bartley, deserves thanks for sticking by me over many moody months

and convincing me that it’s okay to (occasionally) unwind by playing Mario Kart Wii.

Lastly, I’d like to thank my mother, Kim Bowman; and my sisters, Anne and Grayden; who

have always had far more faith in my abilities than I have. My mother not only deserves

thanks for raising and financially supporting me, but for encouraging me to always challenge

myself. This may be the greatest thing I’ve learned from her.

iv



Contents

1 Introduction 1

1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Statement of the Problem 6

2.1 The Nuclear Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Electron Energy Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Multiple Scales Calculation 14

3.1 Order 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Orders 1/4 through 7/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 An Aside – “Weird” Powers of ǫ . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Order 9/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Order 5/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Order 11/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Order 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Order 13/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 Order 7/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.11 Order 15/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.12 Order 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.13 Order 17/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.14 Order 9/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Final Results 39

4.1 The Error in the Approximate Energy . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 43

vi



List of Figures

2.1 The nuclear geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The original domain of the variables θ1 and θ2. . . . . . . . . . . . . . . . . . 10

2.3 The naively rotated region, indicating lack of unitarity of the change of variables. 11

2.4 The correctly scaled and rotated region, showing the manipulation. The two

right triangles are moved from the fourth quadrant to the first quadrant as

indicated. The boundary condition in θ are thus the standard ones we expect.

Note that area is preserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 A (two-dimensional) illustration of the validity of the assumption ψ0 ⊥ ψν .

The circle depicted is the unit circle {‖ψ‖ = 1}. By proceeding in this way,

we obtain a vector ψǫ which is not a unit vector but is instead some multiple

of the unit vector ψ̂ǫ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 An illustration of the normal modes . . . . . . . . . . . . . . . . . . . . . . . 23

vii



Chapter 1

Introduction

In a seminal paper of 1927 ([1]), Max Born and Robert Oppenheimer presented results,

motivated by (the then relatively new) quantum theory, that underpin much of what is

known about molecular bound states – that is, bounds states of some particles of small mass

(electrons) and some particles of large mass (nuclei). Their results centered on a small,

dimensionless parameter, which they took to be the fourth root of the ratio of the electron

mass to an average nuclear mass associated with the molecule. In the present work, we denote

this parmeter by ǫ. The authors showed that one could perform an asymptotic expansion of

the molecular energy levels to fourth order in ǫ, with the coefficients in the expansion having

simple, and remarkable, physical interpretations:

• The coefficient of ǫ0 represents the electronic energy near the optimal nuclear configu-

ration;

• the coefficient of ǫ2 represents the vibrational nuclear energy; and

• the coefficient of ǫ4 represents the rotational nuclear energy, along with several correc-

tions to the lower order terms (e.g., anharmonic vibrational corrections).

The coefficients of ǫ1 and ǫ3 were found to be identically zero. The physical intuition underly-

ing their method was the fact that the nuclear masses are several orders of magnitude larger

than the electron masses. Using this fact, an approximate solution to the time-independent

Schrödinger equation for the molecule can be developed by (1) solving the electronic problem

for a fixed configuration of the nuclei and then (2) solving the nuclear problem by letting

1
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the energy eigenvalue of the electronic problem (which depends parametrically on the nu-

clear positions) act as an effective potential for the nuclei. An approximate wave function

for the entire molecule can then be written as a product of the nuclear and electronic wave

functions.

Born and Oppenheimer argued ingeniously for what they thought the molecular energy

should look like, but their work was not rigorously verified for a realistic physical model until

many years later by, among others, Combes, Duclos, and Seiler [2, 3]. The proper intuition

underlying the time-independent Born-Oppenheimer approximation – that of the disparity

between the spatial scales of the nuclear and electronic motions – was formalized in [5] by

George Hagedorn using the method of multiple scales. He showed that, assuming smooth

interaction potentials, energy eigenvalue and eigenfunction expansions exist to arbitrarily

high orders in ǫ for Hamiltonians H of the form H = −ǫ
4

2
∆+h, where h contains interaction

potential terms and terms related to the electronic kinetic energy. He provided a recipe for

calculating the approximate energy eigenvalues and eigenfunctions (“quasimodes”). The

work of Klein, Martinez, Seiler, and Wang [14] relaxed the smoothness assumption and

demonstrated that expansions to all orders in ǫ exist for Coulomb potentials (which are

singular at the origin) as well. Quite recently, Hagedorn and Toloza [9, 10] considered

molecular models in which the nuclei had only one degree of freedom and certain restrictions

were placed on the electron Hamiltonian. They used the method of “optimal truncation” to

obtain exponentially accurate approximate energies.

In [16], Vania Sordoni studied diatomic molecules with large nuclear angular momentum

(she allowed the angular momentum quantum number ℓ to grow as ǫ → 0) using techniques

similar to those employed in [14] but very different from those used in [5]. She obtained error

estimates for the approximate energies that were uniform for bounded nuclear vibrational

quantum numbers n and ℓ satisfying ℓ < ǫ−1. She proved the existence of energy expansions

to arbitrary orders in ǫ, but did not provide explicit formulae for these energies. Most

recently, in the Virginia Tech Ph.D. dissertation [12] and the paper [13], Sharon Hughes

used the techniques developed in [5] to expand upon Sordoni’s work by providing formulae

for the approximate energies of diatomic molecules with ℓ ≤ κǫ−3/2. She also provided error

estimates for these energies that were O(ǫ5) and uniform in ℓ and n.
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1.1 Our Results

In this work, we consider a simplified model of a triatomic molecule with an arbitrary

finite number of electrons in two dimensions, appropriate for molecules whose equilibrium

configuration is linear and symmetric. As was done in [16] and [12], we allow the nuclear

angular momentum of our molecule to grow arbitrarily large as we make the parameter ǫ

small. We obtain uniform, O(ǫ5) error estimates for an approximate energy level E(ǫ) of

such a molecule for vibrational quantum numbers n1, n2, n3 ≤ N for some N ∈ N0 = N∪{0}
(we confront three of these in the present work) and all ℓ satisfying ℓ = κǫ−3/4, where κ is

a real constant kept inside some compact interval [0, k]. We also obtain a quasimode Ψǫ

which satisfies ‖(Hǫ−E(ǫ))Ψǫ‖ = O(ǫ5) for the molecular Hamiltonian Hǫ. For a particular

electron energy surface, we prove that E(ǫ) has the form

E(ǫ) = ǫ2f2(N, ℓ) + ǫ4f4(N, ℓ) + ǫ6f6(N, ℓ).

More specifically, letting N = (n1, n2, n3), where the nj are nonnegative integers, there is an

exact energy level EN,ℓ of the molecule such that

EN,ℓ = ǫ2
{(

n1 +
1

2

)

+

(

n2 +
1

2

)√
3 +

(

n3 +
1

2

)√
2

}

(1.1)

+ ǫ4

{

ℓ2

4
− 39

224
−

√
2

7

(

n1 +
1

2

)(

n3 +
1

2

)

(1.2)

+
1√
6

(

n2 +
1

2

)(

n3 +
1

2

)

+
1

56

(

n3 +
1

2

)2

+ T4(1, 1, π)

}

(1.3)

+ ǫ6ℓ2
{

3

4

(

n1 +
1

2

)

+
7

4
√
3

(

n2 +
1

2

)

− 1√
2

(

n3 +
1

2

)}

(1.4)

+O(ǫ5), (1.5)

We make the following remarks about the above result:
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• The term T4(1, 1, π) in (1.3) represents the diagonal Born-Oppenheimer correction.

• There is a slight abuse of notation above: It may seem strange to precede “O(ǫ5)”

with a term that has coefficient ǫ6. But ℓ can grow to be as large as kǫ−3/4, so the

expression in brackets in (1.4) can be on the order of ǫ6 · ǫ−3/2 = ǫ9/2.

• The vibrational quantum numbers n1, n2, and n3 correspond to the normal modes

associated with the nuclear vibration. For our particular model, which fixes the central

nucleus at the origin, these correspond to the symmetric stretch (n1), the asymmetric

stretch (n2), and the bending (n3) modes.

• We no longer see decoupling between the vibrational and rotational degrees of freedom

for terms that are O(ǫ6). In the classic Born-Oppenheimer approximation, where the

angular momentum and vibrational quantum numbers are held fixed as ǫ → 0, such

coupling is absent. That there should, in general, be coupling between ℓ and n goes

back to the work of Dunham (see [4], as well as the discussion in Herzberg’s book [11]),

who suggested that there should be energy expansions of the form

∑

i,j

Aij(ǫ)

(

n+
1

2

)i

(ℓ(ℓ+ 1))j

for diatomic molecules with large angular momentum.

• In two dimensions, the linearity of the molecule is not so important – we treat the

linear case in this work for simplicity’s sake. In three dimensions, however, linear

molecules are very different from nonlinear ones. Rotations of linear molecules in R
3

are described by two angles, whereas rotations for nonlinear molecules require three

angles.

• That the absolute error

E = |EN,ℓ −E(ǫ)|

is O(ǫ5) (as ǫ → 0) of course implies that there exists a constant C and a δ > 0 such

that if 0 < ǫ < δ, we have |E| ≤ Cǫ5. But we emphasize that this constant C actually

depends on κ and N : C = CN,κ. In other words, for fixed N ∈ N0 and κ ∈ [0, k], our

expression E(ǫ) differs from an exact energy level EN,κ of the molecule (subject to our

assumptions) as follows:

E = |E(ǫ)−EN,κ| ≤ CN,κǫ
5
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Uniform estimates follow from the fact that κ is kept inside a compact set, and the

constant CN,κ depends continuously (polynomially, in fact) on κ. (We have used EN,κ

instead of EN,ℓ above because the crucial observation for uniformity is that the κ is

kept in a compact set. But ℓ and κ are interchangeable, since ℓ = κǫ−3/4.)



Chapter 2

Statement of the Problem

We consider the following two-dimensional model of a triatomic molecule: Let the central

nucleus have infinite mass and be fixed at the origin. Suppose the two outer nuclei both have

mass M . Let their position vectors be R1 and R2. Consider, in addition, n electrons of mass

me with position vectors ξ1, ξ2, . . . ξn ∈ R
2. Because of the assumption we’ve placed on the

central nucleus, the center of mass for the system is the origin in R
2. In units (e.g., Hartree

atomic units) where ~ and me have numerical value 1, the total non-relativistic (spin-free)

molecular Hamiltonian has the form

H0 = − 1

2M
∆R1

− 1

2M
∆R2

− 1

2

n
∑

i=1

∆ξi + U(R1, R2, ξ1, . . . , ξn), (2.1)

where ∆ is the Laplacian operator, and we assume U is a smooth1 potential that captures

the details of how the nuclei and electrons interact with one another. The nuclear geometry

of this model is depicted in Figure 2.1.

Now, let ǫ =M−1/4, and write R1 = (r1, θ1) and R2 = (r2, θ2) in their polar representations.

Also, let Ξ = (ξ1, . . . , ξn) ∈ R
2n denote the totality of the electronic coordinates. Since the

polar Laplacian takes the form

∂2

∂x2i
+

∂2

∂y2i
=

∂2

∂r2i
+

1

ri

∂

∂ri
+

1

r2i

∂2

∂θ2i
,

1We are placing smoothness assumptions on the interaction potentials that are not satisfied if the poten-
tials in question are Coulombic. However, we have reason to believe that similar results can be obtained
(though after considerably more effort) for such potentials – see, for example, [14] and [6].

6
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x

y

r2
r1

M

M

θ1

θ2

Figure 2.1: The nuclear geometry.

it follows that H0 = T0 + h, where

T0 =− ǫ4

2

(

∂2

∂r21
+

1

r1

∂

∂r1
+

1

r21

∂2

∂θ21
+

∂2

∂r22
+

1

r2

∂

∂r2
+

1

r22

∂2

∂θ22

)

.

is the nuclear kinetic energy operator, and

h(r1, r2, θ1, θ2) = −1

2

n
∑

i=1

∆ξi + U(r1, θ1, r2, θ2,Ξ).

We refer to h as the electron Hamiltonian. Note that it depends parametrically on the

nuclear coordinates, though it is a differential operator in the electronic coordinates Ξ. The

eigenvalue equation for this Hamiltonian reads H0 Ψ(r1, r2, θ1, θ2,Ξ) = E Ψ(r1, r2, θ1, θ2,Ξ).

We can simplify our calculations by making a standard change of dependent variable and

writing Ψ = (r1r2)
−1/2ψ. In terms of the new dependent variable ψ, the eigenvalue equation

reads

H0

[

ψ√
r1r2

]

= E

(

ψ√
r1r2

)

.

After some algebra, we multiply both sides of this equation by
√
r1r2 and find we are consid-

ering a new eigenvalue equation (with the same eigenvalues) H1 ψ = E ψ, where H1 takes

the form

H1 =− ǫ4

2

(

∂2

∂r21
+

1

4r21
+

1

r21

∂2

∂θ21
+

∂2

∂r22
+

1

4r22
+

1

r22

∂2

∂θ22

)

+ h(r1, r2, θ1, θ2).
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We make an additional change of variables: Let θ = 1
2
(θ1+θ2) and φ = θ2−θ1. (The necessity

of the factor of one half in the definition of θ is somewhat interesting and is discussed

in more detail below.) The Chain Rule confirms that in terms of these new variables,
∂

∂θ1
=

1

2

∂

∂θ
− ∂

∂φ
and

∂

∂θ2
=

1

2

∂

∂θ
+
∂

∂φ
. Letting R = (r1, r2, θ, φ) denote the totality of

the new nuclear coordinates (a convention we will adopt for the remainder of this paper),

we write the total molecular Hamiltonian H(ǫ) as

H(ǫ) =− ǫ4

2

(

∂2

∂r21
+

∂2

∂r22
+

(

1

r21
+

1

r22

)(

1

4

∂2

∂θ2
+

∂2

∂φ2
+

1

4

)

+

(

1

r22
− 1

r21

)

∂

∂θ

∂

∂φ

)

+ h(R).

(2.2)

2.1 The Nuclear Angular Momentum

We first determine the form of the total nuclear angular momentum in terms of the original

polar angles θ1 and θ2. In our units (~ = 1), the angular momentum Lj of the jth nucleus

(for j = 1, 2) takes the form

Lj = xjpyj − yjpxj
= −i

(

xj
∂

∂y j

− yj
∂

∂x j

)

.

By the Chain Rule,

∂

∂xj
=

∂

∂rj

∂rj
∂xj

+
∂

∂θj

∂θj
∂xj

=
cos θj
rj

∂

∂rj
− sin θj

rj

∂

∂θj
, so yj

∂

∂x j
= sin θj cos θj

∂

∂rj
− sin2 θj

∂

∂θj
.

∂

∂yj
=

∂

∂rj

∂rj
∂yj

+
∂

∂θj

∂θj
∂yj

=
sin θj
rj

∂

∂rj
+

cos θj
rj

∂

∂θj
, so xj

∂

∂yj
= sin θj cos θj

∂

∂rj
+ cos2 θj

∂

∂θj
.

This proves Lj = −i ∂
∂θ j

. The total nuclear angular momentum L, which is the sum of the

angular momenta of the individual nuclei, is then given by

L = L1 + L2 = −i
(

∂

∂θ1
+

∂

∂θ2

)

= −i
(

1

2

∂

∂θ
−

�
�
�∂

∂φ
+

1

2

∂

∂θ
+

�
�
�∂

∂φ

)

= −i ∂
∂θ
.
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This operator has the familiar normalized eigenfunction

Θℓ(θ) =
eiℓθ√
2π

We will see that continuity of the eigenfunction in θ demands that Θℓ(θ) = Θℓ(θ + 2π); or,

ℓ = 0,±1,±2, . . . Note that L commutes with the nuclear kinetic energy operator

T (ǫ) = −ǫ
4

2

(

∂2

∂r21
+

∂2

∂r22
+

(

1

r21
+

1

r22

)(

1

4

∂2

∂θ2
+

∂2

∂φ2
+

1

4

)

+

(

1

r22
− 1

r21

)

∂

∂θ

∂

∂φ

)

,

so we can simultaneously diagonalize T (ǫ) and L.

We have taken the time to elucidate the form of the nuclear angular momentum here because,

in what follows, we will only be considering states with a specific form for the nuclear angular

momentum. This will be made precise below.

We now take a moment to explain the factor of 1/2 in the definition of θ. Figure 2.2 shows

the original (gray) region in which θ1 and θ2 live. Periodic boundary conditions are imposed

on θ1 and θ2 such that the dotted lines match up with the solid lines. If we make a näıve

choice of coordinate change given by θ = θ1 + θ2, φ = θ2 − θ1, we obtain the region shown

in Figure 2.3. Notice that the area of the region in which these new variables live (in the

θ − φ plane) is twice that of the original region (in the θ1 − θ2 plane). Hence the measure

has changed; the transformation from (θ1, θ2) to (θ, φ) is not unitary. Another way to see

this is to consider the matrix T of the transformation from (θ1, θ2)-space to (θ, φ)-space:

[

θ

φ

]

=

[

1 1

−1 1

][

θ1

θ2

]

Then det T = 2. Ideally, we would like the variables θ and φ to live in a nice rectangular

region such that the measure dθdφ is identical to dθ1dθ2. We remedy this as follows:

1. Define a different change of variables:

θ =
1

2
(θ1 + θ2), φ = θ2 − θ1. (2.3)

Under this change, the original domain of θ1 and θ2 is mapped to the region shown in

Figure 2.4a.
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θ1

θ2

2π

2π

Figure 2.2: The original domain of the variables θ1 and θ2.

2. The new change of variables has the advantage of preserving the area (A = 4π2) of the

original region. In other words, the transformation (2.3) preserves the measure. Also,

note that the new transformation is unitary:

[

θ

φ

]

=

[

1
2

1
2

−1 1

] [

θ1

θ2

]

, and

∣

∣

∣

∣

∣

1
2

1
2

−1 1

∣

∣

∣

∣

∣

= 1.

3. One can use the periodicity in the original polar variables to chop the isosceles triangle

in the fourth quadrant of Figure 2.4a into two right triangles and move them to the first

quadrant as indicated in Figure 2.4b. We then have the desired boundary conditions

(2π periodicity) in θ for any given φ.

4. We note that the boundary conditions in φ for this new region (Figure 2.4b) are very

strange. However, we will choose an electron energy surface for which φ will be highly

localized (near π), so we won’t need to worry too much about this.
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θ

φ

θ2 = 2π

θ1 = 2π

θ1 = 0

θ2 = 0

4π

2π

−2π

2π

Figure 2.3: The naively rotated region, indicating lack of unitarity of the change of variables.

2.2 The Electron Energy Surface

As discussed in the introduction, one of the hallmarks of the Born-Oppenheimer approxi-

mation is the simplification of solving the electronic eigenvalue problem while holding the

nuclear coordinates fixed. A solution to the eigenvalue problem for a fixed configuration of

the nuclei is called an electron energy surface. In the calculation that follows in the next

chapter, we assume we have found a real solution Φ(Ξ|R) (an assumption we are free to make,

since h is a real operator), normalized in the Hilbert space L2(dΞ) (such that ‖Φ(Ξ|R)‖ = 1),

to the electronic eigenvalue problem:

h(R) Φ(Ξ|R) = V (r1, r2, φ) Φ(Ξ|R).

The notation “(Ξ|R)” indicates that the nuclear variables enter the solution only as parame-

ters – i.e., Φ is determined for a given set of nuclear coordinates. Note we are free to assume

that the eigenvalue V has no θ dependence, since we need the potential to be invariant under

a rotation of the entire system (electrons + nuclei) when the other variables are held fixed.

In particular, we assume V (r1, r2, φ) takes the specific form

V (r1, r2, φ) =
1

2
(r1 − 1)2 +

1

2
(r2 − 1)2 +

1

2
(r21 + r22 + 2r1r2 cosφ).
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θ

φ

−2π

2π

θ2 = 2π

θ1 = 2π

θ1 = 0

θ2 = 0

π

2π

(a) Original (“unchopped”) region

φ

θπ 2π

2π

(b) The final (“chopped”) region

Figure 2.4: The correctly scaled and rotated region, showing the manipulation. The two
right triangles are moved from the fourth quadrant to the first quadrant as indicated. The
boundary condition in θ are thus the standard ones we expect. Note that area is preserved.
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One sees immediately that this strictly nonnegative potential has a minimum at r1 = r2 = 1,

φ = π. It is therefore appropriate for a symmetric linear triatomic molecule of the form

A − B − A (e.g., CO2). We assume this eigenvalue is isolated in the sense that there is

a neighborhood about the minimum (1, 1, π) such that, in this neighborhood, V does not

intersect the continuous spectrum of h. We also assume V has multiplicity one.



Chapter 3

The Multiple Scales Calculation

The method of multiple scales is a technique that finds wide application in applied mathe-

matics. As the name of the method indicates, it becomes important in perturbation theory

problems that simultaneously involve very different length scales; for example, r and ǫr,

where ǫ is a dimensionless parameter. The problem is solved by introducing a new variable

s = ǫr and treating the variables r and s as independent (as they are, to a good approx-

imation, when ǫ is very small). The higher dimensional problem is then solved, with the

replacement s = ǫr made in the final solution.

We are presented with such a problem here, though it is slightly more complicated than

the example mentioned above because we are dealing with several different variables. The

different length scales in our problem are as follows:

• The (parametric) dependence of the electronic wavefunction Φ on the nuclear positions

is O(1) (since the electronic Hamiltonian has the form h(r1, r2, θ, φ)); whereas

• There are quantum fluctuations of the nuclei about their optimal configuration that

are O(ǫ). More will be said about precisely why this is the correct scale to use below.

So we will need to play the game of multiple scales in the three nuclear variables r1, r2, and

φ. Recall that the total molecular Hamiltonian H(ǫ) reads

H(ǫ) =− ǫ4

2

(

∂2

∂r21
+

∂2

∂r22
+

(

1

r21
+

1

r22

)(

1

4

∂2

∂θ2
+

∂2

∂φ2
+

1

4

)

+

(

1

r22
− 1

r21

)

∂

∂θ

∂

∂φ

)

+ h(R),

(3.1)

14
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where we refer to h(R) as the electronic Hamiltonian. We remind the reader that

h(R) = −1

2
∆Ξ + U(R,Ξ).

Again, we emphasize that h depends only parametrically on the nuclear variables R =

(r1, r2, θ, φ), but acts as a differential operator in L2(dΞ).

We will be interested in finding approximate solutions, or quasimodes, for the eigenvalue

problem given by the time-independent Schrödinger equation for the entire molecule:

H0 Υ(R,Ξ) = E Υ(R,Ξ).

If we let Υ(R,Ξ) =
Ψ(R,Ξ)√
r1r2

, we are then seeking approximate solutions to the time-

independent Schrödinger equation corresponding to the Hamiltonian H(ǫ) in (2.2):

H(ǫ)Ψ(R,Ξ) = EΨ(R,Ξ).

We will attempt to find Ψǫ(R,Ξ) (the ǫ subscript reminds us that we are considering an

approximate, not an exact, solution to the eigenvalue problem) and E(ǫ) such that for all ǫ

sufficiently small,

‖(H(ǫ)− E(ǫ))Ψǫ‖ ≤ Cǫ5

for some positive constant C ∈ R. Note that, because of the θ dependence in the electronic

Hamiltonian h, the nuclear angular momentum operator L = −i ∂
∂θ

does not, in general,

commute with H(ǫ), in which case the nuclear angular momentum ℓ is not a conserved

quantity. We will find, however, that it will provide us with a convenient way to label our

states.

To find Ψǫ using the method of multiple scales, we will first seek a solution to a higher-

dimensional problem, presented as follows (more details are provided in the paper [5]): Define

variables xi, yi such that x1 = r1, x2 = r2, and x3 = φ. For the yi’s, let

y1 =
r1 − 1

ǫ
, y2 =

r2 − 1

ǫ
, y3 =

φ− π

ǫ
.

Henceforth, let X ∈ R
3 denote the vector (x1, x2, x3) and Y ∈ R

3 denote the vector
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(y1, y2, y3). We now set

Ψǫ(X, θ,Ξ) = ψǫ(X, Y, θ,Ξ),

where ψǫ is our higher-dimensional solution.

Some rearrangement of terms in (3.1) gives

H(ǫ) =− ǫ4

2

{

∂2

∂r21
+

∂2

∂r22
+

(

1

r21
+

1

r22

)

∂2

∂φ2

+
1

4

(

1

r21
+

1

r22

)(

∂2

∂θ2
+ 1

)

+

(

1

r22
− 1

r21

)

∂

∂θ

∂

∂φ

}

+ h(R).

(3.2)

The Chain Rule confirms that in terms of the variables x1 and y1, the differential operators

above take the form

∂2

∂r2i
=

∂2

∂x2i
+

2

ǫ

∂

∂xi

∂

∂yi
+

1

ǫ2
∂2

∂y2i
,

∂

∂φ
=

∂

∂x3
+

1

ǫ

∂

∂y3
,

∂2

∂φ2
=

∂2

∂x23
+

2

ǫ

∂

∂x3

∂

∂y3
+

1

ǫ2
∂2

∂y23
.

We now make a judicious choice of whether to replace the original nuclear variables with the

xi or yi’s in the expression for H(ǫ). Since the nuclear kinetic energy derives principally from

quantum effects, we let ri = 1+ ǫyi for i = 1, 2 for ri in the nuclear kinetic energy operator.

We will also introduce an operator T4 into the Hamiltonian H(ǫ), which will have the job

of removing the X dependence of certain functions that will show up in our calculations.

We find that T4 allows us to treat the variables X and Y as if they are independent, even

though they really aren’t. (See [5] for more details about this.) The Hamiltonian in terms
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of the variables X and Y is then

H(ǫ) =− ǫ4

2

∂2

∂x21
− ǫ3

∂2

∂x1∂y1
− ǫ2

2

∂2

∂y21

− ǫ4

2

∂2

∂x22
− ǫ3

∂2

∂x2∂y2
− ǫ2

2

∂2

∂y22

+

(

1

(1 + ǫy1)2
+

1

(1 + ǫy2)2

)(

−ǫ
4

2

∂2

∂x23
− ǫ3

∂2

∂x3∂y3
− ǫ2

2

∂2

∂y23

)

+
1

8

(

1

(1 + ǫy1)2
+

1

(1 + ǫy2)2

)(

−ǫ4 ∂
2

∂θ2
− ǫ4

)

+
1

2

(

1

(1 + ǫy2)2
− 1

(1 + ǫy1)2

)(

−ǫ4 ∂
∂x3

− ǫ3
∂

∂y3

)

∂

∂θ

+ [h(x1, x2, x3, θ)− V (x1, x2, x3)] + V (1 + ǫy1, 1 + ǫy2, π + ǫy3)

+ ǫ4[T4(1 + ǫy1, 1 + ǫy2, π + ǫy3)− T4(X)].

We expand V (1 + ǫy1, 1 + ǫy2, π + ǫy3) and all other terms that feature 1 + ǫyi or π + ǫy3 in

their Taylor series about ǫ = 0. Since

V (1 + ǫy1, 1 + ǫy2, π + ǫy3) =

(

y21 + y22 − y1y2 +
1

2
y23

)

ǫ2 +

(

1

2
y1y

2
3 +

1

2
y2y

2
3

)

ǫ3

+

(

1

2
y1y2y

2
3 −

1

24
y23

)

ǫ4 +O(ǫ5)

and

1

(1 + ǫyi)2
= 1− 2ǫyi + 3ǫ2y2i − 4ǫ3y3i + 5ǫ4y4i +O(ǫ5),
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it follows that H(ǫ) takes the form:

H(ǫ) =− ǫ4

2

∂2

∂x21
− ǫ3

∂

∂x1

∂

∂y1
− ǫ2

2

∂2

∂y21

− ǫ4

2

∂2

∂x22
− ǫ3

∂

∂x2

∂

∂y2
− ǫ2

2

∂2

∂y22

+
(

2− 2ǫ(y1 + y2) + 3ǫ2(y21 + y22)− 4ǫ3(y31 + y32) +O(ǫ4)
)

(

−ǫ
4

2

∂2

∂x23
− ǫ3

∂

∂x3

∂

∂y3
− ǫ2

2

∂2

∂y23

)

+

(

1

4
− 1

4
ǫ(y1 + y2) +

3

8
ǫ2(y21 + y22)−

1

2
ǫ3(y31 + y32) +O(ǫ4)

)(

−ǫ4 ∂
2

∂θ2
− ǫ4

)

+

(

(y1 − y2)−
3

2
ǫ(y21 − y22) + 2ǫ2(y31 − y32) +O(ǫ3)

)(

−ǫ5 ∂
∂x3

∂

∂θ
− ǫ4

∂

∂y3

∂

∂θ

)

+ h(X, θ)− V (X)

+ ǫ2
(

y21 − y1y2 + y22 +
y23
2

)

+ ǫ3
(

1

2
y23(y1 + y2)

)

+ ǫ4
(

1

2
y23

(

y1y2 −
y23
12

))

+O(ǫ5)

+ ǫ4[T4(1 + ǫy1, 1 + ǫy2, π + ǫy3)− T4(X)].

Collecting like powers of ǫ, we can formally write H(ǫ) as

H(ǫ) =H0 + ǫ2H2 + ǫ3H3 + ǫ4H4 +O(ǫ5),

where

H0 =h(X, θ)− V (X),

H2 =− 1

2

∂2

∂y21
− 1

2

∂2

∂y22
− ∂2

∂y23
+ y21 + y22 +

1

2
y23 − y1y2,

H3 =− ∂

∂x1

∂

∂y1
− ∂

∂x2

∂

∂y2
− 2

∂

∂x3

∂

∂y3
+ (y1 + y2)

(

∂2

∂y23
+

1

2
y23

)

,

H4 =− 1

2

∂2

∂x21
− 1

2

∂2

∂x22
− ∂2

∂x23
+ 2(y1 + y2)

∂

∂x3

∂

∂y3
− 3

2
(y21 + y22)

∂2

∂y23

− 1

4
− 1

4

∂2

∂θ2
− (y1 − y2)

∂

∂y3

∂

∂θ
+

1

2
y23

(

y1y2 −
y23
12

)

+ T4(1 + ǫy1, 1 + ǫy2, π + ǫy3)− T4(X).

It will also be important to account for operators of order 5 and 6 in the Hamiltonian that
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contain ∂/∂θ and ∂2/∂θ2. These are:

H5 =
1

4
(y1 + y2)

∂2

∂θ2
− (y1 − y2)

∂

∂x3

∂

∂θ
+

3

2
(y21 − y22)

∂

∂y3

∂

∂θ
,

H6 = −3

8
(y21 + y22)

∂2

∂θ2
+

3

2
(y21 − y22)

∂

∂x3

∂

∂θ
− 2(y31 − y32)

∂

∂y3

∂

∂θ
.

Since we are interested in angular momentum quantum numbers ℓ that can be as large as

κǫ−3/4, these operators actually produce terms of order lower than ǫ5, as we will soon see.

We now study the perturbation problem

H(ǫ)(ǫν0ψν0+ǫ
ν1ψν1+ǫ

ν2ψν2+. . .) = (ǫν0Eν0+ǫ
ν1Eν1+ǫ

ν2Eν2+. . .)(ǫ
ν0ψν0+ǫ

ν1ψν1+ǫ
ν2ψν2+. . .),

where the νi allow for the fact that we might have weird (that is, non-integer) powers of ǫ

in the expansions of ψ and E because of the ǫ−3/4. We will determine what the ν’s are as

we go along. Because of this, we make the ansatz that only quarter powers of ǫ will appear

in the wavefunction and energy expansions; i.e., ψ and E will have the form

ψ = ψ0 +

19
∑

n=1

ǫn/4ψn/4 +O(ǫ5),

E = E0 +

19
∑

n=1

ǫn/4En/4 +O(ǫ5),

with ψn/4 and En/4 possibly being equal to zero for certain values of n. In fact, we will find

that the wavefunction will look (formally) like

ψǫ = ψ0 + ǫ ψ1 + ǫ5/4ψ5/4 + ǫ3/2ψ3/2 + ǫ2ψ2 + ǫ9/4ψ9/4

+ ǫ5/2ψ5/2 + ǫ3ψ3 + ǫ13/4ψ13/4 + ǫ17/4ψ17/4 + ǫ9/2ψ9/2,

(3.3)

with each of the ψν above not equal to zero. We will make the following additional assumption

on the ψν :

ψν ⊥ ψ0 for ν > 0. (3.4)

By considering Figure 3.1, one sees that at each order this can be done, though the eigen-

vector of H(ǫ) thereby obtained will not necessarily be normalized.

In what follows we will consider only states whose leading order term ψ0 has the following
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ψ̂ǫ

ψ0

ψǫǫψ1

Figure 3.1: A (two-dimensional) illustration of the validity of the assumption ψ0 ⊥ ψν . The
circle depicted is the unit circle {‖ψ‖ = 1}. By proceeding in this way, we obtain a vector
ψǫ which is not a unit vector but is instead some multiple of the unit vector ψ̂ǫ.

form:

ψ0(X, Y, θ,Ξ) = Θℓ(θ)Φ(Ξ|X)f(X, Y,Ξ), (3.5)

where f is an arbitrary function with no θ dependence. In words, we assume that the

θ dependence of ψ0 enters only through the electronic eigenfunction Φ and the angular

momentum eigenfunction Θℓ(θ) =
eiℓθ√
2π

. This restricts the generality of our results, but it

also prevents the calculations from becoming prohibitively complicated.

We now embark on the multiple scales perturbation calculation. We will use a number of

Hilbert space tricks – predominantly properties of inner products – to simplify the expressions

at each order. We being with terms that multiply ǫ0.

3.1 Order 0

The leading order terms in H(ǫ) are the order zero terms. They require

[h(X, θ)− V (X)]ψ0(X, Y, θ,Ξ) = E0ψ0(X, Y, θ,Ξ).
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This equation will be satisfied if we set E0 = 0 and allow ψ0 to be a multiple of Φ in the Hilbert

space L2(dΞ). We therefore conclude that ψ0 = f0(X, Y )Φ(Ξ|X)Θℓ(θ) for some function f0.

3.2 Orders 1/4 through 7/4

The next several orders in ǫ — namely, ν = n/4 for n = 1, 2, . . . , 7 — are each treated as

follows:

1. Since, inductively, Eν−1/4 = 0, and there are no terms in the Hamiltonian of order

ν ∈ (0, 2), the order ν terms require H0ψν = Eνψ0, or

[h(X, θ)− V (X)]ψν = Eνψ0. (3.6)

2. We satisfy (3.6) by setting Eν = 0 and writing ψν = fν(X, Y, θ)Φ(Ξ|X), where the fν

are arbitrary functions with no dependence on the electronic coordinates. We only

expect ψ1, ψ3/2, and ψ5/4 to be nonzero.

3.3 Order 2

The next order terms acting on the wavefunction are of order ǫ2. At this order, we have

[h(X, θ)− V (X)]ψ2

+

(

−1

2

∂2

∂y21
− 1

2

∂2

∂y22
− ∂2

∂y23
+ y21 + y22 +

1

2
y23 − y1y2

)

ψ0 = E2ψ0.

(3.7)

To satisfy this equation, we make the change of variables

z1 =
1√
2
(y1 + y2), z2 =

1√
2
(y1 − y2), z3 =

1√
2
y3. (3.8)

In terms of these new variables, H2 becomes a standard harmonic oscillator Hamiltonian

in three dimensions with the three frequencies ω1 = 1, ω2 =
√
3, and ω3 =

√
2. These

frequencies are not rationally related, so there is no degeneracy in the energies associated
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with this oscillator. We write

Hosc = −1

2

∂2

∂z21
− 1

2

∂2

∂z22
− 1

2

∂2

∂z23
+

1

2
z21 +

3

2
z22 + z23 .

Then the ǫ2 terms require H0ψ2+[Hosc−E2]ψ0 = 0. We make one more change of variables:

ζi = ω
1/2
i zi. Considering the components of (3.7) parallel to Φ, we conclude that

ψ0 = g0(X)Φ(Ξ|X)Θℓ(θ)

3
∏

i=1

φni
(ζi), (3.9)

where g0(X) is an arbitrary function of X , and we have defined φni
(ζi) as follows:

φni
(ζi) = Ani

Hni
(ζi)e

−ζ2i /2 (3.10)

for ni = 0, 1, 2, . . ., with Hni
(ζi) the nith Hermite polynomial in the variable ζi and Ani

the

normalization constant that satisfies 〈φni
, φni

〉zi = 1; that is,

1 = A2
ni

∞
∫

−∞

H2
ni
(ω

1/2
i zi)e

−(ω
1/2
i zi)2dzi. (3.11)

It follows that Ani
= 2−ni/2(ni!)

−1/2π−1/4ω
1/4
i . An appeal to the standard results for harmonic

oscillators shows us that E2 then takes the form

E2 =

(

n1 +
1

2

)

+

(

n2 +
1

2

)√
3 +

(

n3 +
1

2

)√
2,

giving us the first nonzero contribution to the energy expansion. Since the product of

harmonic oscillator eigenfunctions determined above will crop up later in a number of places,

we simplify notation by letting N = (n1, n2, n3), Z = (ζ1, ζ2, ζ3), and
∏3

1Ani
Hni

(ζi)e
−ζ2i /2 =

ΩN (Z). In this new notation, ψ0 takes the more manageable form

ψ0 = g0Θℓ(θ)Φ(Ξ|X)ΩN (Z).

Note that we have removed the X dependence from g0, which we will soon find we can do

(see the discussion in Section 3.12) by making an appropriate choice for the operator T4. We

find that no constraints fix the value of g0, so we set g0 = 1. Then the final (normalized)
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(a) The asymmetric stretch

(b) The symmetric stretch

(c) The bending mode

Figure 3.2: An illustration of the normal modes

form for ψ0 is ψ0 = Φ(Ξ|X)ΩN(Z)Θℓ(θ).

We make a few remarks about the form of ψ0:

• It is not difficult to see that these frequencies correspond to the normal modes for a

system of two oscillators free to move in two dimensions, as mentioned in the introduc-

tion. Obviously, n3 corresponds to changing φ and keeping the ri’s fixed – the bending

mode. Since n1 corresponds to keeping r1 − r2 and φ fixed while varying r1 + r2, this

is the symmetric stretch. The quantum number n2 corresponds to the asymmetric

stretch. Figure 3.2 depicts these modes.

• It should now be apparent why the quantum fluctuations mentioned on page 14 occur

on the order of ǫ1: Notice that our ψ0 in (3.9) contains gaussians in the variables ζi,

which look like

exp

(

−ωiz
2
i

2

)

= exp

(

−ωi(ri − rmin)
2

2ǫ2

)

.

One way to think of this expression is to view ǫ as the variance of the gaussian; then√
ǫ2 = ǫ represents the characteristic length. Alternatively, note that we have (for

example)

r1 − 1 =
ǫ√
2
(z1 + z2).

Hence the quantum fluctuations of the nuclei about their equilibrium positions (e.g.,

r1 − 1) really are on the order of ǫ.
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• The observant reader will note that the harmonic oscillator Hamiltonian in the variable

x is normally solved for x ∈ (−∞,∞). However, r1, r2 ∈ [0,∞), and φ ∈ [0, 2π). We

will remedy this by multiplying the entire wavefunction Υǫ by a cut-off function F (q)

that restricts the domain of the wavefunction. (A similar strategy is employed in both

[5] and [12].) In constructing F , we exploit the assumption that V is isolated to find

a δ > 0 such that F has the following properties:

1. F is C∞ in all three variables.

2. F is symmetric about zero.

3. F satisfies

F (q) =







1 if |q| < δ,

0 if |q| > 2δ.

4. For δ ≤ |q| ≤ 2δ, we define F in such a way that the requirements (1) and (2) are

satisfied and such that F only takes values in the range [0, 1].

We will multiply our final solution by F (r1 − 1)F (r2 − 1)F (φ− π). This removes the

ambiguity introduced by the implication in our definition of ΩN (Z) that the zi’s live

everywhere. Calculations carried out in [12] demonstrate that L2 norms of derivatives

of the cut-off functions times the φ’s defined above are exponentially small, so we can

carry out our perturbation theory calculations without taking the cut-off functions into

account. It is also argued in [12] that the normalization constant derived in (3.11) still

works, since the gaussians in the φ’s are highly localized, and the difference ‖φ− Fφ‖
(where ‖ · ‖ is the L2 norm) is again exponentially small.

Considering the components of (3.7) perpendicular to Φ, we find ψ2 = f2(X, Y, θ)Φ(Ξ|X) for

some arbitrary function f2.

3.4 An Aside – “Weird” Powers of ǫ

Having obtained a particular form for ψ0 in terms of Φ(Ξ|X), it will be important for us

to consider the action of the operators H4, H5, and H6 on ψ0. At present, we shall only

be concerned with certain terms of these operators that contain partial derivatives in θ (for
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reasons that will soon be apparent). To this end, define operators Λ4 and Λ6 as follows:

Λ4 = −1

4

∂2

∂θ2
− (y1 − y2)

∂

∂y3

∂

∂θ
, (3.12)

Λ6 = −3

8
(y21 + y22)

∂2

∂θ2
. (3.13)

These operators isolate the terms in H4 and H6 that contain partial derivatives in θ. We

first look at Λ4ψ0 (where we have abbreviated the form of ψ0 to ψ0 = ΦΘΩ):

ǫ4Λ4ψ0 =ǫ
4

(

−1

4

∂2

∂θ2
− (y1 − y2)

∂

∂y3

∂

∂θ

)

ΦΘΩ

=− ǫ4

4
Ω

(

Θ
∂2Φ

∂θ2
+ 2

∂Φ

∂θ

∂Θ

∂θ
+ Φ

∂2Θ

∂θ2

)

− ǫ4(y1 − y2)
∂Ω

∂y3

[

∂Φ

∂θ
Θ+

∂Θ

∂θ
Φ

]

=− ǫ4

4
ΩΘ

(

∂2Φ

∂θ2
+ 2iℓ

∂Φ

∂θ
− ℓ2Φ

)

− ǫ4(y1 − y2)Θ
∂Ω

∂y3

[

∂Φ

∂θ
+ iℓΦ

]

.

After letting ℓ = κǫ−3/4 and grouping like powers of ǫ, we find

ǫ4Λ4ψ0 =− ǫ4
(

1

4
ΩΘ

∂2Φ

∂θ2
+ (y1 − y2)

∂Ω

∂y3

∂Φ

∂θ
Θ

)

+ ǫ5/2
κ2

4
ψ0

− ǫ13/4
(

iκ

2
ΩΘ

∂Φ

∂θ
+ iκ(y1 − y2)

∂

∂y3
ψ0

)

.

(3.14)

Thus, because of the form we have chosen for the angular momentum quantum number ℓ,

some terms that appear at first glance to be of order 4 are actually of order 4− 3/4 = 13/4

or order 4− 3/2 = 5/2. Now, we consider H5ψ0:

ǫ5H5ψ0 =ǫ
5

(

1

4
(y1 + y2)

∂2

∂θ2
− (y1 − y2)

∂

∂x3

∂

∂θ
+

3

2
(y21 − y22)

∂

∂y3

∂

∂θ

)

ΦΘΩ

=
ǫ5

4
(y1 + y2)Ω

(

Θ
∂2Φ

∂θ2
+ 2

∂Θ

∂θ

∂Φ

∂θ
+ Φ

∂2Θ

∂θ2

)

− ǫ5(y1 − y2)Ω

(

Θ
∂

∂θ

∂Φ

∂x3
+
∂Φ

∂x3

∂Θ

∂θ

)

+
3ǫ5

2
(y21 − y22)

∂Ω

∂y3

(

Θ
∂Φ

∂θ
+ Φ

∂Θ

∂θ

)

=
ǫ5

4
(y1 + y2)ΩΘ

(

∂2Φ

∂θ2
+ 2iℓ

∂Φ

∂θ
− ℓ2Φ

)

− ǫ5(y1 − y2)ΩΘ

(

∂

∂θ

∂Φ

∂x3
+ iℓ

∂Φ

∂x3

)

+
3ǫ5

2
(y21 − y22)Θ

∂Ω

∂y3

(

∂Φ

∂θ
+ iℓΦ

)

.
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Imposing ℓ = κǫ−3/4 and grouping together powers of ǫ, we find

ǫ5H5ψ0 =ǫ
5Θ

(

1

4
(y1 + y2)Ω

∂2Φ

∂θ2
− (y1 − y2)Ω

∂

∂θ

∂Φ

∂x3
+

3

2
(y21 − y22)

∂Ω

∂y3

∂Φ

∂θ

)

+ ǫ17/4Θ

(

1

2
iκ(y1 + y2)Ω

∂Φ

∂θ
− iκ(y1 − y2)Ω

∂Φ

∂x3
+

3

2
iκ(y21 − y22)Φ

∂Ω

∂y3

)

− ǫ7/2
κ2

4
(y1 + y2)ψ0.

(3.15)

So we have terms that are of order 5 − 3/4 = 17/4 and 5− 3/2 = 7/2. Finally, we consider

Λ6ψ0 when ℓ = κǫ−3/4:

ǫ6Λ6ψ0 = −3

8
ǫ6(y21 + y22)Ω

(

Φ
∂2Θ

∂θ2
+ Θ

∂2Φ

∂θ2
+ 2

∂Θ

∂θ

∂Φ

∂θ

)

= −3

8
ǫ6(y21 + y22)Ω

(

−ℓ2ΦΘ+Θ
∂2Φ

∂θ2
+ 2iℓΘ

∂Φ

∂θ

)

= ǫ9/2
3

8
κ2(y21 + y22)ψ0 − ǫ6

3

8
(y21 + y22)ΩΘ

∂2Φ

∂θ2
− ǫ21/4

3

4
iκ(y21 + y22)ΩΘ

∂Φ

∂θ
.

So, instead of showing up at order 6, as we might expect, terms show up at orders 6 − 3/2

= 9/2 and 6 − 3/4 = 21/4. These observations will be important as we move forward. We

will need to do something similar once we obtain precise forms for higher-order ψν ’s.

3.5 Order 9/4

Terms multiplying ǫ9/4 require

[h(X, θ)− V (X)]ψ9/4 = E9/4ψ0.

Our strategy for orders 1/4 through 7/4 works here as well. We conclude that E9/4 = 0 and

ψ9/4 = f9/4(X, Y, θ)Φ(Ξ|X).
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3.6 Order 5/2

The next order terms in the Hamiltonian acting on the wavefunction are of order 5/2 (see

(3.14) above). They require

[h(X, θ)− V (X)]ψ5/2 =

(

E5/2 −
κ2

4

)

ψ0.

In analogy with the ǫ9/4 calculation, we satisfy this equation by setting E5/2 = κ2/4 and

taking

ψ5/2 = f5/2(X, Y, θ)Φ(Ξ|X).

3.7 Order 11/4

We find the terms of order 11/4 require

[h(X, θ)− V (X)]ψ11/4 = E11/4ψ0.

Again, we are reminded of our order 9/4 calculation. We conclude immediately, therefore,

that E11/4 = 0, and that

ψ11/4 = f11/4(X, Y, θ)Φ(Ξ|X).

3.8 Order 3

We next need to consider H3ψ0 +H2ψ1 +H0ψ3 = E2ψ1 + E3ψ0, or

[h(X, θ)− V (X)]ψ3 + [Hosc −E2]ψ1

+

(

(y1 + y2)
∂2

∂y23
+

1

2
y23(y1 + y2)−

∂

∂x1

∂

∂y1
− ∂

∂x2

∂

∂y2
− 2

∂

∂x3

∂

∂y3

)

ψ0

= E3ψ0.

(3.16)
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To assist with calculations for this and higher orders, we decompose the ψν as follows:

ψν = ψ⊥
ν + ψ

‖⊥
ν + ψ

‖‖
ν , where

• ψ⊥
ν is orthogonal to Φ(Ξ|X) in the Hilbert space L2(dΞ) (where, again, Ξ ∈ R

2n),

• ψ
‖⊥
ν is a multiple of Φ(Ξ|R) but orthogonal to ΩN (Z) in L

2(dZ) = L2(dz1dz2dz3), and

• ψ
‖‖
ν is a multiple of Φ(Ξ|R)ΩN(Z).

This strategy enables us to make the following useful observations:

1. The assumption that ψ0 ⊥ ψν for ν > 0 enables us to say that ψ
‖‖
ν = 0 for ν > 0. This

means ψν = ψ⊥
ν + ψ

‖⊥
ν for ν > 0.

2. If it is determined that ψν has the form fν(X, Y, θ)Φ(Ξ|R) for some function fν , then

ψ⊥
ν = 0, and it follows that ψν = ψ

‖⊥
ν . In light of this observation and our previous

computations, we conclude the following:

3. Note that since Φ is a unit vector in L2(dΞ), we know
∂Φ

∂xi
⊥ Φ and

∂Φ

∂θ
⊥ Φ in L2(dΞ).

Taking the inner product of both sides of (3.16) with Φ(Ξ|R) and ΩN(Z), we find that

E3 = 0. The components of either side of (3.16) in the direction of Φ(Ξ|R) but perpendicular
to ΩN (Z) must be equal. We therefore have

ψ1 = ψ
‖⊥
1 = Θℓ(θ)Φ(Ξ|R)[Hosc −E2]

−1
r

[

(y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ΩN (Z)

]

, (3.17)

where the reduced resolvent [Hosc − E2]
−1
r denotes the inverse of the restriction of the oper-

ator [Hosc − E2] to the subspace of L2(dZ) orthogonal to ΩN (Z). We will need the explicit

form of ψ1 in later calculations, so we simplify it by letting

G1(Y ) = [Hosc − E2]
−1
r

[

(y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ΩN (Z)

]

(3.18)

It then follows that

ψ1 = Θℓ(θ) Φ(Ξ|R) G1(Y ). (3.19)
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Likewise, the components of both sides of (3.16) orthogonal to Φ(Ξ|R) must be equal, so

ψ⊥
3 = Θℓ(θ)[h(X, θ)− V (X)]−1

r

(

∂ΩN

∂y1

∂Φ

∂x1
+
∂ΩN

∂y2

∂Φ

∂x2
+ 2

∂ΩN

∂y3

∂Φ

∂x3

)

,

where [h(X, θ)−V (X)]−1
r is the restriction of the operator [h(X, θ)−V (X)] to the subspace

of L2(dΞ) orthogonal to Φ.

Having found an explicit form for ψ1 in terms of the electron eigenfunction, we mimic what

we did above for ψ0 and consider what happens when the operators H4 and H5 act on ψ1.

Again, we will only be concerned with terms involving partial derivatives in θ, for only these

operators produce terms of strange (but relevant) orders. Retaining the definition of Λ4 in

(3.12), we find

ǫ5Λ4ψ1 =− ǫ5
[

1

4

∂2

∂θ2
+ (y1 − y2)

∂

∂y3

∂

∂θ

]

ΘΦG1

=− ǫ5

4
G1

(

Θ
∂2Φ

∂θ2
+ 2

∂Φ

∂θ

∂Θ

∂θ
+ Φ

∂2Θ

∂θ2

)

− ǫ5(y1 − y2)
∂G1

∂y3

[

∂Φ

∂θ
Θ+

∂Θ

∂θ
Φ

]

=− ǫ5

4
G1

(

Θ
∂2Φ

∂θ2
+ 2iℓ

∂Φ

∂θ
Θ− ℓ2ΦΘ

)

− ǫ5(y1 − y2)
∂G1

∂y3

[

∂Φ

∂θ
Θ + iℓΘΦ

]

,

and after letting ℓ = κǫ−3/4 and grouping like powers of ǫ, we find

ǫ5Λ4ψ1 =− ǫ5
(

1

4
G1Θ

∂2Φ

∂θ2
+ (y1 − y2)

∂G1

∂y3

∂Φ

∂θ
Θ

)

+ ǫ7/2
κ2

4
ψ1

− ǫ17/4
(

iκ

2
G1Θ

∂Φ

∂θ
+ iκ(y1 − y2)

∂G1

∂y3
ΘΦ

)

.

(3.20)

Thus, our choice for the particular form taken by ℓ implies that what appear to be fifth-order

terms are really terms of orders 7/2 and 17/4. We will similarly be concerned with what
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happens when H5 acts on ψ1:

ǫ6H5ψ1 =ǫ
6

(

1

4
(y1 + y2)

∂2

∂θ2
− (y1 − y2)

∂

∂x3

∂

∂θ
+

3

2
(y21 − y22)

∂

∂y3

∂

∂θ

)

ΘΦG1

=
ǫ6

4
(y1 + y2)ΘG1

(

∂2Φ

∂θ2
+ 2iℓ

∂Φ

∂θ
− ℓ2Φ

)

− ǫ6(y1 − y2)G1Θ

(

∂

∂x3

∂Φ

∂θ
+ iℓ

∂Φ

∂x3

)

+
3ǫ6

2
(y21 − y22)Θ

∂G1

∂y3

(

∂Φ

∂θ
+ iℓΦ

)

=ǫ6
(

1

4
(y1 + y2)ΘG1

∂2Φ

∂θ2
− (y1 − y2)G1Θ

∂

∂x3

∂Φ

∂θ
+

3

2
(y21 − y22)Φ

∂G1

∂y3

∂Φ

∂θ

)

+ ǫ21/4
(

iκ
1

2
(y1 + y2)ΘG1

∂Φ

∂θ
− iκ(y1 − y2)ΘG1

∂Φ

∂x3
+

3

2
iκ(y21 − y22)Θ

∂G1

∂y3
Φ

)

− ǫ9/2
κ2

4
(y1 + y2)ψ1.

The last term, of order 6 − 3/2 = 9/2, will be relevant to us. The other terms are ignored,

since they are of order larger than five.

We now resume the perturbation calculation.

3.9 Order 13/4

The next-highest order terms acting on the wavefunction give

[h(X, θ)− V (X)]ψ13/4 + [Hosc − E2]ψ5/4

− iκ (y1 − y2)
∂ΩN

∂y3
Θℓ(θ)Φ− 1

2
iκ Θℓ(θ)ΩN (Z)

∂Φ

∂θ
= E13/4ψ0.

(3.21)

Taking inner products of both sides with Φ(Ξ|R)ΩN (Z), we conclude that E13/4 = 0.

Looking on both sides of (3.21) at components parallel to Φ(Ξ|R) but orthogonal to ΩN (Z),

we find that

ψ5/4 = ψ
‖⊥
5/4 = iκ Θℓ(θ)Φ(Ξ|R) [Hosc − E2]

−1
r

(

(y1 − y2)
∂ΩN

∂y3

)

= −κ Θℓ(θ)Φ(Ξ|R) [Hosc − E2]
−1
r

(

(y1 − y2)

(

−i∂Ωn

∂y3

))

.

(3.22)
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All remaining terms are orthogonal to Φ(Ξ|R), so

ψ⊥
13/4 =

1

2
iκ Θℓ(θ)ΩN(Z)[h(X, θ)− V (X)]−1

r

∂Φ

∂θ
. (3.23)

Again, we need to consider what happens when H4 acts on ψ5/4 to see what kind of weird

powers of ǫ pop up. Retaining the definition of Λ4 provided in (3.12) and simplifying notation

by letting

G5/4(Y ) = [Hosc −E2]
−1
r

(

(y1 − y2)
∂ΩN

∂y3

)

,

we have, after some algebra,

ǫ21/4Λ4ψ5/4 =− ǫ21/4
(

1

4

∂2

∂θ2
+ (y1 − y2)

∂

∂y3

∂

∂θ

)

iκΘΦG5/4

=− iκǫ21/4
(

1

4
G5/4Θ

∂2Φ

∂θ2
+ (y1 − y2)

∂G5/4

∂y3

∂Φ

∂θ
Θ

)

+ ǫ15/4
κ2

4
ψ5/4

+ ǫ9/2
(

κ2

2
G5/4Θ

∂Φ

∂θ
+ κ2(y1 − y2)

∂G5/4

∂y3
ΘΦ

)

.

(3.24)

3.10 Order 7/2

The next-highest order terms acting on the wavefunction are of order 7/2 (see (3.15) and

(3.20)). They require, after some cancellation,

[h(X, θ)− V (X)]ψ7/2 + [Hosc −E2]ψ3/2 −
κ2

4
(y1 + y2)ψ0 = E7/2ψ0. (3.25)

Taking the inner product of both sides with Φ(Ξ|R)ΩN (Z), we conclude that E7/2 = 0. And

we find that ψ⊥
7/2 = 0 and ψ3/2 = ψ

‖⊥
3/2 =

κ2

4
Θℓ(θ)Φ [Hosc − E2]

−1
r ((y1 + y2)ΩN (Z)). The form

of ψ3/2 will be important to us in later computations, but it’s a bit messy as written. We

will simplify things by letting

G3/2 = [Hosc −E2]
−1
r ((y1 + y2)ΩN(Z)), (3.26)
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in which case the expression for ψ3/2 becomes

ψ3/2 =
κ2

4
Θℓ(θ)Φ(Ξ|R)G3/2. (3.27)

3.11 Order 15/4

The terms multiplying ǫ15/4 require (see (3.24))

[h(X, θ)− V (X)]ψ15/4 +
κ2

4
ψ5/4 = E15/4ψ0 + E5/2ψ5/4.

But (κ2/4)ψ5/4 = E5/2ψ5/4, so these terms cancel. Taking inner products of both sides with

Φ(Ξ|R)ΩN (Z), we find E15/4 = 0 and ψ15/4 = f15/4(X, Y, θ)Φ(Ξ|X).

3.12 Order 4

We now move to the order 4 terms. The operator T4 will appear at this order to remove

the X dependence from the functions gν . The terms multiplying ǫ4 then require, in part by

what we unearthed in (3.14),

[h(X, θ)− V (X)]ψ4 + [Hosc −E2]ψ2

+

(

(y1 + y2)

(

∂2

∂y23
+

1

2
y23

)

− ∂

∂x1

∂

∂y1
− ∂

∂x2

∂

∂y2
− 2

∂

∂x3

∂

∂y3

)

ψ1

+

[

−1

2

∂2

∂x21
− 1

2

∂2

∂x22
− ∂2

∂x23
+ 2(y1 + y2)

∂

∂x3

∂

∂y3
− 3

2
(y21 + y22)

∂2

∂y23

− 1

4
+

1

2
y23

(

y1y2 −
y23
12

)]

ψ0 −
(

1

4
ΩΘ

∂2Φ

∂θ2
+ (y1 − y2)

∂Ω

∂y3

∂Φ

∂θ
Θ

)

+ T4(1, 1, π)ψ0 − T4(X)ψ0 = E4ψ0.

(3.28)
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We remind the reader that ψ1 takes the form (3.17). Employing the definition of G1(Y )

given in (3.18) and taking inner products of each side of (3.28) with Θℓ(θ)Φ(Ξ|X), we find

[Hosc − E2] 〈Θ, f2〉θ + (y1 + y2)

(

∂2

∂y23
+

1

2
y23

)

G1(Y )

+ ΩN(Z)

〈

Φ(Ξ|X),

(

−1

2

∂2

∂x21
− 1

2

∂2

∂x22
− ∂2

∂x23
− 1

4

∂2

∂θ2

)

Φ(Ξ|X)

〉

− 3

2
(y21 + y22)

∂2ΩN

∂y23
− 1

4
ΩN(Z) +

1

2
y23

(

y1y2 −
y23
12

)

ΩN(Z)

+ ΩN(Z)T4(1, 1, π)− ΩN (Z)T4(X) = ΩN (Z)E4.

(3.29)

If we set

T4(X) =

〈

Φ(Ξ|X),

(

−1

2

∂2

∂x21
− 1

2

∂2

∂x22
− ∂2

∂x23
− 1

4

∂2

∂θ2

)

Φ(Ξ|X)

〉

,

then there will be cancellation of two of the terms on the left-hand side. Then, taking the

inner product of both sides of (3.29) with ΩN(Z), we obtain an expression for E4:

E4 =

〈

ΩN (Z), (y1 + y2)
∂2G1

∂y23

〉

+
1

2

〈

ΩN (Z), (y1 + y2)y
2
3G1(Y )

〉

− 3

2

〈

ΩN(Z), (y
2
1 + y22)

∂2

∂y23
ΩN (Z)

〉

− 1

4
+

1

2

〈

ΩN (Z), y1y2y
2
3ΩN(Z)

〉

− 1

24

〈

ΩN (Z), y
4
3ΩN (Z)

〉

+ T4(1, 1, π).

(3.30)

Writing this entirely in terms of the zi’s and letting p3 = −i ∂
∂z3

, we find that

E4 =− 1√
2

〈

ΩN , z1p
2
3G1

〉

+
√
2
〈

ΩN , z1z
2
3G1

〉

+
3

4

〈

ΩN , (z
2
1 + z22)p

2
3ΩN

〉

+
1

2

〈

ΩN , (z
2
1 − z22)z

2
3ΩN

〉

− 1

6

〈

ΩN , z
4
3ΩN

〉

− 1

4
+ T4(1, 1, π).

(3.31)

These inner products were computed in Mathematica – some sample code is provided in the
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appendix, beginning on page 44. At the end of the day, we find

E4 =− 39

224
−

√
2

7

(

n1 +
1

2

)(

n3 +
1

2

)

+
1√
6

(

n2 +
1

2

)(

n3 +
1

2

)

+
1

56

(

n3 +
1

2

)2

+ T4(1, 1, π).

(3.32)

The term T4(1, 1, π) is known as the diagonal Born-Oppenheimer correction. It clearly

depends on the form of the electronic eigenfunction Φ, so we can say nothing further about

it. We can, however, write down an expression for ψ2:

ψ2 = ψ
‖⊥
2 = [Hosc − E2]

−1
r (y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ψ1

+
3

2
[Hosc − E2]

−1
r (y21 + y22)

∂2

∂y23
ψ0 −

1

2
[Hosc −E2]

−1
r y23

(

y1y2 −
y23
12

)

ψ0.

(3.33)

3.13 Order 17/4

The next order we see in the Hamiltonian is 17/4. These terms give

[h(X, θ)− V (X)]ψ17/4 + [Hosc −E2]ψ9/4

− 1

2
iκΘℓ(θ)G1(Y )

∂Φ

∂θ
+ iκ(y1 − y2)

∂

∂y3
ψ1 (3.34)

+

(

(y1 + y2)
∂2

∂y23
+

1

2
y23(y1 + y2)−

∂2

∂x1∂y1
− ∂2

∂x2∂y2
− 2

∂2

∂x3∂y3

)

ψ5/4

+

(

−iκ(y1 − y2)
∂

∂x3
+

3

2
iκ(y21 − y22)

∂

∂y3

)

ψ0 +
1

2
iκ(y1 + y2)Θℓ(θ)ΩN (Z)

∂Φ

∂θ
(3.35)

= E17/4ψ0.
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The terms (3.34) and (3.35) above result from H4 acting on ψ1 and H5 acting on ψ0, respec-

tively. We take the inner product of ψ0 with both sides. We get

E17/4 =κ

〈

ΩN (Z), (y1 − y2)

(

−i ∂
∂y3

)

ΩN(Z)

〉

+

〈

ΩN (Z), (y1 + y2)
∂2

∂y23
ψ5/4

〉

+
1

2

〈

ΩN (Z), (y1 + y2)y
2
3ψ5/4

〉

− 3

2
κ

〈

ΩN(Z), (y
2
1 − y22)

(

−i ∂
∂y3

)

ΩN (Z)

〉

.

Rewriting this in terms of the zi’s, we get

E17/4 = κ

〈

ΩN (Z), (y1 − y2)

(

−i ∂
∂y3

)

ΩN(Z)

〉

(3.36)

+

〈

ΩN (Z), (y1 + y2)
∂2

∂y23
ψ5/4

〉

(3.37)

+
1

2

〈

ΩN (Z), (y1 + y2)y
2
3ψ5/4

〉

(3.38)

− 3

2
κ

〈

ΩN (Z), (y
2
1 − y22)

(

−i ∂
∂y3

)

ΩN(Z)

〉

, (3.39)

where the inner products are computed in L2(dZ). Each of these inner products is zero.

This is relatively obvious for (3.36) and (3.39), since 〈z2n+1
j 〉 and 〈p2n+1

j 〉 (the odd moments)

vanish for all n in the harmonic oscillator eigenstates. Rewriting these inner products entirely

in terms of the zi’s, we find that (3.36) involves a computation of 〈φn1
(z1), z1φn1

(z1)〉 = 0

and (3.39) involves 〈φn3
(z3), p3φn3

(z3)〉 = 0. For the other two lines, we need to work a bit

harder, since these inner products involve [Hosc −E2]
−1
r . But since Hosc is an even operator,

it preserves the parity of what it operates on. Using the form of ψ5/4 in (3.22), we note that

the second function in the inner products in both (3.37) and (3.38) is odd in z1 (and z2).



Adam S. Bowman Chapter 3. The Multiple Scales Calculation 36

Hence E17/4 = 0. We also find

ψ⊥
17/4 =

1

2
iκ Θℓ(θ)[Hosc − E2]

−1
r

[

(y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ΩN (Z)

]

[h(X, θ)− V (X)]−1
r

∂Φ

∂θ

− κ Θℓ(θ)
∂

∂y1

(

[Hosc − E2]
−1
r

[

(y1 − y2)

(

−i ∂
∂y3

)

ΩN (Z)

])

[h(X, θ)− V (X)]−1
r

∂Φ

∂x1

− κ Θℓ(θ)
∂

∂y2

(

[Hosc − E2]
−1
r

[

(y1 − y2)

(

−i ∂
∂y3

)

ΩN (Z)

])

[h(X, θ)− V (X)]−1
r

∂Φ

∂x2

− 2κ Θℓ(θ)
∂

∂y3

(

[Hosc −E2]
−1
r

[

(y1 − y2)

(

−i ∂
∂y3

)

ΩN (Z)

])

[h(X, θ)− V (X)]−1
r

∂Φ

∂x3

+ iκ (y1 − y2)Θℓ(θ)ΩN (Z)[h(X, θ)− V (X)]−1
r

∂Φ

∂x3

+
1

2
iκ(y1 + y2)Θℓ(θ)ΩN (Z)[h(X, θ)− V (X)]−1

r

∂Φ

∂θ
.

We also see that

ψ
‖⊥
9/4 = ψ9/4 =

2κ [Hosc −E2]
−1
r

[

(y1 − y2)

(

−i ∂
∂y3

)

[Hosc −E2]
−1
r

(

(y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ΩN (Z)

)]

+ 2κ [Hosc − E2]
−1
r

[

(y1 + y2)

(

− ∂2

∂y23

)

[Hosc − E2]
−1
r

(

(y1 − y2)
∂

∂y3
ΩN (Z)

)]

+ κ [Hosc − E2]
−1
r

[

y23(y1 + y2)

(

− ∂2

∂y23

)

[Hosc − E2]
−1
r

(

(y1 − y2)
∂

∂y3
ΩN (Z)

)]

− 3κ [Hosc −E2]
−1
r

[

(y21 − y22)

(

−i ∂
∂y3

)]

.

3.14 Order 9/2

The terms multiplying ǫ9/2 give

[h(X, θ)− V (X)]ψ9/2 + [Hosc − E2]ψ5/2

+

(

(y1 + y2)
∂2

∂y23
+

1

2
y23(y1 + y2)−

∂

∂x1

∂

∂y1
− ∂

∂x2

∂

∂y2
− 2

∂

∂x3

∂

∂y3

)

ψ3/2

+ κ2(y1 − y2)
∂G5/4

∂y3
ΘΦ− κ2

4
(y1 + y2)ψ1 +

3

8
κ2(y21 + y22)ψ0 +

κ2

2
ΘG5/4(Y )

∂Φ

∂θ

= E9/2ψ0

(3.40)
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It follows that

E9/2 =

〈

ΩN , (y1 + y2)
∂2

∂y23
ψ3/2

〉

+
1

2

〈

ΩN , (y1 + y2)y
2
3ψ3/2

〉

+ κ2
〈

ΩN , (y1 − y2)
∂

∂y3
G5/4

〉

− κ2

4
〈ΩN , (y1 + y2)ψ1〉

+
3

8
κ2

〈

ΩN , (y
2
1 + y22)ψ0

〉

.

(3.41)

Again, this computation was carried out in Mathematica, where it was determined that

E9/2 =
3

4
κ2

(

n1 +
1

2

)

+
7

4
√
3
κ2

(

n2 +
1

2

)

− 1√
2
κ2

(

n3 +
1

2

)

.

The relevant code can be found in the Appendix. We also have

ψ⊥
9/2 =

κ2

4
Θ
∂

∂y1

(

[Hosc − E2]
−1
r ((y1 + y2)ΩN )

)

[h(X, θ)− V (X)]−1
r

∂Φ

∂x1

+
κ2

4
Θ
∂

∂y2

(

[Hosc − E2]
−1
r ((y1 + y2)ΩN )

)

[h(X, θ)− V (X)]−1
r

∂Φ

∂x2

+
κ2

2
Θ
∂

∂y3

(

[Hosc − E2]
−1
r ((y1 + y2)ΩN )

)

[h(X, θ)− V (X)]−1
r

∂Φ

∂x3

− κ2

2
Θ [Hosc − E2]

−1
r

(

(y1 − y2)
∂ΩN

∂y3

)

[h(X, θ)− V (X)]−1
r

∂Φ

∂θ
,

(3.42)

and

ψ
‖⊥
5/2 =− κ2

4
ΘΦ [Hosc − E2]

−1
r

[

(y1 + y2)
∂2

∂y23
[Hosc −E2]

−1
r ((y1 + y2)ΩN)

]

− κ2

8
ΘΦ [Hosc − E2]

−1
r

[

y23(y1 + y2) [Hosc −E2]
−1
r ((y1 + y2)ΩN )

]

+ κΘΦ [Hosc − E2]
−1
r

[

(y1 − y2)

(

−i ∂
∂y3

)

[Hosc −E2]
−1
r

(

(y1 − y2)

(

−i ∂
∂y3

)

ΩN

)]

+
κ2

4
ΘΦ [Hosc − E2]

−1
r

[

(y1 + y2) [Hosc − E2]
−1
r

(

(y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ΩN

)]

− 3

8
κ2ΘΦ [Hosc −E2]

−1
r ((y21 + y22)ΩN ).

(3.43)

The remaining terms in the expansion are O(ǫ5), so we’ve reached the goal, though in
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principle it should be possible to work in a similar fashion to proceed to arbitrarily high

orders in ǫ.



Chapter 4

Final Results

We have obtained an approximate energy of the form

E(ǫ) = ǫ2
{(

n1 +
1

2

)

+

(

n2 +
1

2

)√
3 +

(

n3 +
1

2

)√
2

}

+ ǫ5/2
{

κ2

4

}

+ ǫ4

{

− 39

224
−

√
2

7

(

n1 +
1

2

)(

n3 +
1

2

)

+
1√
6

(

n2 +
1

2

)(

n3 +
1

2

)

+
1

56

(

n3 +
1

2

)2

+ T4(1, 1, π)

}

+ ǫ9/2κ2
{

3

4

(

n1 +
1

2

)

+
7

4
√
3

(

n2 +
1

2

)

− 1√
2

(

n3 +
1

2

)}

(4.1)

when ℓ = κǫ−3/4. If we make this replacement in the above result, we obtain the result on

page 3. We’ve also built up an approximate eigenvector as we’ve gone along. In the interest

of aesthetics, though, we refrain from reproducing it in its entirety here!

39
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4.1 The Error in the Approximate Energy

It is a well-known (though by no means trivial) result from operator theory (see, for example,

[15]) that if H is a Hermitian operator on a Hilbert space H and E ∈ R, then

‖(H −E)−1‖o =
1

dist(E, σ(H))
,

where σ(H) is the set of eigenvalues of H (so we necessarily have σ(H) ⊂ R, since H is

assumed Hermitian), dist(E, σ(H)) = inf
s∈σ(H)

|E − s|, and

‖T‖o = sup
x∈H
‖x‖=1

‖Tx‖ (4.2)

is the operator norm on the set of bounded operators on H. Consider the vector Ψǫ given

by

Ψǫ(R,Ξ) = F (r1 − 1)F (r2 − 1)F (φ− π)
∑

ν∈N

Ψν(R,Ξ),

where N is the set of ν’s for which ψν was computed to be nonzero in Chapter 3, F is our

cut-off function, and

Ψν(R,Ξ) = Ψν(r1, r2, θ, φ,Ξ) = ψν

(

r1, r2, φ,
r1 − 1

ǫ
,
r2 − 1

ǫ
,
φ− π

ǫ
, θ,Ξ

)

,

In other words, we obtain Ψǫ by replacing all the xi’s and yi’s in our multiple scales solution

with their expressions in terms of the ri’s. Though the notation may have concealed it, the

wavefunctions Ψν are elements of the Hilbert space

H = L2(dR)⊗ L2(dΞ) with norm ‖ · ‖.

They involve gaussians, or derivatives of gaussians, whose decay compensates for any growth

from derivatives of the Hermite polynomials. Hence they are still square-integrable. It follows

that Ψǫ ∈ H and satisfies (by construction)

‖(H(ǫ)− E(ǫ))Ψǫ‖ = O(ǫ5)
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for H(ǫ) in (2.2) and E(ǫ) in (4.1). Clearly, we have

‖Ψ0‖ = ‖Θℓ(θ)Φ(Ξ|R)ΩN(R)‖ = 1.

Also, note that ‖Ψǫ‖ = ‖Ψ0 +Ψ⊥‖, where

Ψ⊥ =
∑

ν∈N
ν 6=0

ǫνΨν

By construction, 〈Ψ0,Ψ⊥〉 = 0, so we can apply the Pythagorean theorem to conclude

‖Ψǫ‖ =
√

‖Ψ0‖2 + ‖Ψ⊥‖2 ≥ 1.

We therefore have

1

dist(σ(H(ǫ)), E(ǫ))
= ‖(H −E)−1‖

≥
∥

∥

∥

∥

(H(ǫ)− E(ǫ))−1 (H(ǫ)−E(ǫ))Ψǫ

‖(H(ǫ)−E(ǫ))Ψǫ‖

∥

∥

∥

∥

=
‖Ψǫ‖

‖(H(ǫ)−E(ǫ))Ψǫ‖

≥ 1

O(ǫ5)

= O(ǫ−5).

Hence dist(σ(H(ǫ)), E(ǫ)) ≤ O(ǫ5), meaning that we can find a real constant D > 0 and an

EN,ℓ in the spectrum of the full molecular Hamiltonian H(ǫ) (of course, it will depend on

the values we fix for these constants) such that

|EN,ℓ − E(ǫ)| ≤ DN,κǫ
5.

when ǫ is sufficiently small. This proves the result that was stated in the introduction:

Uniformity of this estimate follows from the fact that we are considering only finitely many

N ’s (i.e., we are keeping the vibrational quantum numbers ni bounded) and are keeping our

κ = ℓǫ3/4 in a compact set. It can be shown that the constant D has a polynomial dependence
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on what κ is chosen to be, allowing us to invoke continuity of D in κ to choose a Dmax,N

that works for every value of κ in the interval [0, k]. One then chooses D = max
N

Dmax,N , and

D becomes the uniform bound.
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Appendix A

Mathematica Computations

The (approximate) energy expression on page 3 was obtained after taking various inner

products of the harmonic oscillator eigenstates first defined in (3.10). These were carried

out in Mathematica by using raising and lowering operators as defined in [7]. The code used

to obtain these results is reproduced, in part, below.

Recall that, after performing a suitable change of variables (see (3.8)), we were able to

write the O(ǫ2) terms in the Hamiltonian H(ǫ) as a sum of three noninteracting harmonic

oscillators: Hosc =
3
∑

j=1

Hzi, where

Hz1 =
p21
2

+
1

2
z21 , (A.1)

Hz2 =
p22
2

+
3

2
z22 , (A.2)

Hz3 =
p23
2

+ z23 , (A.3)

and we have let pj = −i ∂
∂zj

. In [7], techniques are provided for defining ladder operators for

quadratic Hamiltonians like these. Specifically, for a Hamiltonian of the formH =
p2

2
+
1

2
ω2x2

(where ω ∈ R), one sees we can define a raising operator a† and a lowering operator a as

45
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follows:

a† =
x− ip√

2ω
, (A.4)

a =
x+ ip√

2ω
. (A.5)

There is an additional factor of ~−1/2 multiplying each of these operators in [7], but we

remind the reader that ~ has numerical value 1 here. It follows that, in terms of these ladder

operators,

x =
1√
2ω

(a† + a), (A.6)

p = i

√

ω

2
(a† − a). (A.7)

It is then straightforward to show that H =
ω

2
(a†a+aa†). The matrix of the Hamiltonian H

is diagonal in a basis of L2(dx) given by {φk(x)}∞k=1, where φ0(x) = π−1/4ω−1/4 exp

(

−ωx
2

2

)

and we define φk+1(x) recursively for k ≥ 0 by φk+1(x) =
a†φk(x)√
k + 1

. In [7], it is also shown

that the φk behave as expected with respect to a: that is, aφk =
√
kφk−1.

Now to the problem: At fourth order in ǫ, we are faced with evaluating the inner products

in (3.31), which we reproduce for convenience here:

E4 =− 1√
2

〈

ΩN , z1p
2
3G1

〉

+
√
2
〈

ΩN , z1z
2
3G1

〉

+
3

4

〈

ΩN , (z
2
1 + z22)p

2
3ΩN

〉

+
1

2

〈

ΩN , (z
2
1 − z22)z

2
3ΩN

〉

− 1

6

〈

ΩN , z
4
3ΩN

〉

− 1

4
+ T4(1, 1, π),

(A.8)

where G1(Y ) = [Hosc −E2]
−1
r

[

(y1 + y2)

(

− ∂2

∂y23
− 1

2
y23

)

ΩN(Z)

]

. The first thing we need to

do is write G1 entirely in terms of the zi’s:

G1(Z) =
√
2[Hosc −E2]

−1
r

[

z1

(

1

2
p23 − z23

)

ΩN (Z)

]

,

where of course p23 = − ∂2

∂z23
and the inner products are computed in L2(dZ). We plug this

into (10) where appropriate and find that the inner product we need to evaluate then looks
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like

E4 =− 1

2

〈

ΩN , z1p
2
3[Hosc − E2]

−1
r z1p

2
3ΩN (Z)

〉

+
〈

ΩN , z1p
2
3[Hosc − E2]

−1
r z1z

2
3ΩN(Z)

〉

+
〈

ΩN , z1z
2
3 [Hosc −E2]

−1
r z1p

2
3ΩN (Z)

〉

− 2
〈

ΩN , z1z
2
3 [Hosc −E2]

−1
r z1z

2
3ΩN

〉

+
3

4

〈

ΩN , (z
2
1 + z22)p

2
3ΩN

〉

+
1

2

〈

ΩN , (z
2
1 − z22)z

2
3ΩN

〉

− 1

6

〈

ΩN , z
4
3ΩN

〉

− 1

4
+ T4(1, 1, π).

(A.9)

We take a moment to remind the reader that ΩN (Z) = φn1
(z1)φn2

(z2)φn3
(z3). In light of

this, for j = 1, 2, 3, we define

a†j = (2ωj)
−1/2(zj − ipj),

aj = (2ωj)
−1/2(zj + ipj), so

Hzj =
ωj

2
(a†jaj + aja

†
j).

We are now interested in computing the matrix elements [zj ]k,k′ = 〈φk(zj), zj φk′(zj)〉:

〈φk, zj φk′〉 =
1

√

2ωj

〈

φk, (a+ a†)φk′
〉

=
1

√

2ωj

(√
k′ + 1δk,k′+1 +

√
k
′
δk,k′−1

)

,

where δi,j is the Kronecker delta. It follows that

[zj ]k,k−1 =

√

k

2ωj
, [zj ]k,k+1 =

√

k + 1

2ωj
,

with all other entries being zero. Similarly, for [p3]k,k′, we have (since ω3 =
√
2)

〈φk, p3 φk′〉 = i

√

ω3

2

〈

φk, (a
† − a)φk′

〉

= i 2−1/4
(√

k′ + 1δk,k′+1 −
√
k′δk,k′−1

)

,
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from which it follows that

[p3]k,k−1 = i 2−1/4
√
k, [p3]k,k+1 = −i 2−1/4

√
k + 1, (A.10)

with all other entries being zero. We also find that

〈

φk, Hzj φk′
〉

=
ωj

2

〈

φk, (a
†a+ aa†)φk′

〉

= ωj(k
′ + 1/2)δkk′.

This implies [Hzi]k,k = ωj(k + 1/2), with all other entries zero; i.e., the matrix is diagonal,

as expected. The matrices [zj ] and [p3] are (of course) infinite dimensional, but because of

the particular form of the inner products we want to compute, we will only need to focus on

smaller submatrices.

Below, we show how we define the matrix [z1] in Mathematica. The energy eigenstates in

this variable are indexed by the nonnegative integer n1. The matrices [z2] and [z3] are defined

similarly.

γ1 = 1;γ1 = 1;γ1 = 1;

ω1 = Sqrt[γ1];ω1 = Sqrt[γ1];ω1 = Sqrt[γ1];

A1 = Sqrt[1/ω1];A1 = Sqrt[1/ω1];A1 = Sqrt[1/ω1];

Z1 = Table[0, {a, 1, 13}, {b, 1, 13}];Z1 = Table[0, {a, 1, 13}, {b, 1, 13}];Z1 = Table[0, {a, 1, 13}, {b, 1, 13}];
For[a = 1, a ≤ 12, a++,Z1[[a, a + 1]] = Sqrt[1/(2ω1)(a− 6 + n1)];For[a = 1, a ≤ 12, a++,Z1[[a, a + 1]] = Sqrt[1/(2ω1)(a− 6 + n1)];For[a = 1, a ≤ 12, a++,Z1[[a, a+ 1]] = Sqrt[1/(2ω1)(a− 6 + n1)];

Z1[[a + 1, a]] = Sqrt[1/(2ω1)(a− 6 + n1)]]Z1[[a + 1, a]] = Sqrt[1/(2ω1)(a− 6 + n1)]]Z1[[a + 1, a]] = Sqrt[1/(2ω1)(a− 6 + n1)]]

Note that the only states we have been concerned with in this definition are the ones indexed

by n1 − 6, n1 − 5, . . . , n1 + 6. One can see that these are (at most) the ones that enter into

the perturbation theory calculation if we start in the state φn1
(z1).

We define the matrix for the operator p3 as follows, using (12):

P3[[a, a+ 1]] =P3[[a, a+ 1]] =P3[[a, a + 1]] =

−I ∗ Sqrt[ω3/2]Sqrt[n3− 6 + a];−I ∗ Sqrt[ω3/2]Sqrt[n3− 6 + a];−I ∗ Sqrt[ω3/2]Sqrt[n3 − 6 + a];

P3[[a+ 1, a]] =P3[[a+ 1, a]] =P3[[a + 1, a]] =

I ∗ Sqrt[ω3/2]Sqrt[n3 − 6 + a]]I ∗ Sqrt[ω3/2]Sqrt[n3− 6 + a]]I ∗ Sqrt[ω3/2]Sqrt[n3− 6 + a]]

Now, we must construct the harmonic oscillator reduced resolvent [Hosc − E2]
−1
r , which fig-

ures prominently in the calculation in (11). First comes Hosc, which we define as follows:

First, we write an array to correspond to Hzj for each j (the code for j = 1 is shown here):
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H1 = Table[0, {a, 1, 13}, {b, 1, 13}];H1 = Table[0, {a, 1, 13}, {b, 1, 13}];H1 = Table[0, {a, 1, 13}, {b, 1, 13}];
For[a = 1, a ≤ 13, a++,For[a = 1, a ≤ 13, a++,For[a = 1, a ≤ 13, a++,

H1[[a, a]] = ω1 ∗ (n1 + a− 7 + 1/2)]H1[[a, a]] = ω1 ∗ (n1 + a− 7 + 1/2)]H1[[a, a]] = ω1 ∗ (n1 + a− 7 + 1/2)]

We then define the “big” Hamiltonian Hosc as follows:

BigH =BigH =BigH =

KroneckerProduct[H1,KroneckerProduct[H1,KroneckerProduct[H1,IdentityMatrix[13],IdentityMatrix[13],IdentityMatrix[13], IdentityMatrix[13]]+IdentityMatrix[13]]+IdentityMatrix[13]]+

KroneckerProduct[IdentityMatrix[13],KroneckerProduct[IdentityMatrix[13],KroneckerProduct[IdentityMatrix[13],H2, IdentityMatrix[13]]+H2, IdentityMatrix[13]]+H2, IdentityMatrix[13]]+

KroneckerProduct[IdentityMatrix[13],KroneckerProduct[IdentityMatrix[13],KroneckerProduct[IdentityMatrix[13],IdentityMatrix[13],H3];IdentityMatrix[13],H3];IdentityMatrix[13],H3];

Similar “big” definitions need to be made for the operators zj and pj. The reduced resolvent

[Hosc −E2]
−1
r can then be entered as follows:

BigRResolvent =BigRResolvent =BigRResolvent = Table[0, {a, 1, 13∧3}, {b, 1, 13∧3}];Table[0, {a, 1, 13∧3}, {b, 1, 13∧3}];Table[0, {a, 1, 13∧3}, {b, 1, 13∧3}];
For[a = 1, a ≤ 13∧3, a++,For[a = 1, a ≤ 13∧3, a++,For[a = 1, a ≤ 13∧3, a++,If[If[If[ Simplify[BigH[[a, a]]−Simplify[BigH[[a, a]]−Simplify[BigH[[a, a]]− ((n1 + 1/2)ω1 + (n2 + 1/2)ω2+((n1 + 1/2)ω1 + (n2 + 1/2)ω2+((n1 + 1/2)ω1 + (n2 + 1/2)ω2+

(n3 + 1/2)ω3)]!=0,(n3 + 1/2)ω3)]!=0,(n3 + 1/2)ω3)]!=0,

BigRResolvent[[a, a]] =BigRResolvent[[a, a]] =BigRResolvent[[a, a]] = 1/1/1/ (BigH[[a, a]]−(BigH[[a, a]]−(BigH[[a, a]]− ((n1 + 1/2)ω1 + (n2 + 1/2)ω2+((n1 + 1/2)ω1 + (n2 + 1/2)ω2+((n1 + 1/2)ω1 + (n2 + 1/2)ω2+(n3 + 1/2)ω3))]](n3 + 1/2)ω3))]](n3 + 1/2)ω3))]]

These operators will need to act on the vector

psi0 = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,psi0 = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,psi0 = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,0, 0};0, 0};0, 0};
Psi0 =Psi0 =Psi0 = Flatten[KroneckerProduct[Flatten[KroneckerProduct[Flatten[KroneckerProduct[Flatten[KroneckerProduct[psi0,Flatten[KroneckerProduct[psi0,Flatten[KroneckerProduct[psi0,psi0]], psi0]];psi0]], psi0]];psi0]], psi0]];

which involves a Kronecker product of vectors corresponding to the state indexed by (n1, n2, n3).

This puts us in a position to evaluate the inner products in (11), which we do with the fol-

lowing code:

E4 = −1/4+E4 = −1/4+E4 = −1/4+Simplify[Simplify[Simplify[3/4 ∗ Psi0.BigZ1.BigZ1.BigP3.BigP3.3/4 ∗ Psi0.BigZ1.BigZ1.BigP3.BigP3.3/4 ∗ Psi0.BigZ1.BigZ1.BigP3.BigP3.Psi0]+Psi0]+Psi0]+

Simplify[Simplify[Simplify[3/4 ∗ Psi0.BigZ2.BigZ2.BigP3.BigP3.3/4 ∗ Psi0.BigZ2.BigZ2.BigP3.BigP3.3/4 ∗ Psi0.BigZ2.BigZ2.BigP3.BigP3.Psi0]+Psi0]+Psi0]+

Simplify[Simplify[Simplify[1/2 ∗ Psi0.BigZ1.BigZ1.BigZ3.BigZ3.1/2 ∗ Psi0.BigZ1.BigZ1.BigZ3.BigZ3.1/2 ∗ Psi0.BigZ1.BigZ1.BigZ3.BigZ3.Psi0]−Psi0]−Psi0]−
Simplify[Simplify[Simplify[1/2 ∗ Psi0.BigZ2.BigZ2.BigZ3.BigZ3.1/2 ∗ Psi0.BigZ2.BigZ2.BigZ3.BigZ3.1/2 ∗ Psi0.BigZ2.BigZ2.BigZ3.BigZ3.Psi0]−Psi0]−Psi0]−
Simplify[Simplify[Simplify[1/6 ∗ Psi0.BigZ3.BigZ3.BigZ3.BigZ3.1/6 ∗ Psi0.BigZ3.BigZ3.BigZ3.BigZ3.1/6 ∗ Psi0.BigZ3.BigZ3.BigZ3.BigZ3.Psi0]−Psi0]−Psi0]−
Simplify[Simplify[Simplify[1/2 ∗ Psi0.BigZ1.BigP3.BigP3.1/2 ∗ Psi0.BigZ1.BigP3.BigP3.1/2 ∗ Psi0.BigZ1.BigP3.BigP3.BigRResolvent.BigZ1.BigP3.BigP3.BigRResolvent.BigZ1.BigP3.BigP3.BigRResolvent.BigZ1.BigP3.BigP3.Psi0]+Psi0]+Psi0]+

Simplify[Psi0.BigZ1.BigP3.BigP3.Simplify[Psi0.BigZ1.BigP3.BigP3.Simplify[Psi0.BigZ1.BigP3.BigP3.BigRResolvent.BigZ1.BigZ3.BigZ3.BigRResolvent.BigZ1.BigZ3.BigZ3.BigRResolvent.BigZ1.BigZ3.BigZ3.Psi0]+Psi0]+Psi0]+

Simplify[Psi0.BigZ1.BigZ3.BigZ3.Simplify[Psi0.BigZ1.BigZ3.BigZ3.Simplify[Psi0.BigZ1.BigZ3.BigZ3.BigRResolvent.BigZ1.BigP3.BigP3.BigRResolvent.BigZ1.BigP3.BigP3.BigRResolvent.BigZ1.BigP3.BigP3.Psi0]−Psi0]−Psi0]−
Simplify[Simplify[Simplify[2 ∗ Psi0.BigZ1.BigZ3.BigZ3.2 ∗ Psi0.BigZ1.BigZ3.BigZ3.2 ∗ Psi0.BigZ1.BigZ3.BigZ3.BigRResolvent.BigZ1.BigZ3.BigZ3.BigRResolvent.BigZ1.BigZ3.BigZ3.BigRResolvent.BigZ1.BigZ3.BigZ3.Psi0]Psi0]Psi0]

Simplification of the result of this command gives the result (3.32). Similarly, we need to
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rewrite the expression for E9/2 contained in (3.41) entirely in terms of the zj ’s. We find

E9/2 =− κ2

4

〈

ΩN , z1p
2
3 [Hosc −E2]

−1
r z1ΩN

〉

+
κ2

2

〈

ΩN , z1z
2
3 [Hosc −E2]

−1
r z1ΩN

〉

− κ2
〈

ΩN , z2p3 [Hosc −E2]
−1
r z2p3ΩN

〉

− κ2

4

〈

ΩN , z1 [Hosc − E2]
−1
r z1p

2
3ΩN

〉

+
κ2

2

〈

ΩN , z1 [Hosc −E2]
−1
r z1z

2
3ΩN

〉

+
3

4
κ2

〈

ΩN , (z
2
1 + z22)ΩN

〉

.

(A.11)

This is computed similarly to obtain the result (3.41).


