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We report the modal analysis of optical fiber single-mode–multimode–single-mode intrinsic Fabry–Perot
interferometer sensors. Themultimode nature of the Fabry–Perot cavity gives rise to an additional phase
term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could signifi-
cantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal
behavior, this phase term is explained by employing a rotating vector approach. Comparison of the
theoretical analysis with experimental results is presented. © 2010 Optical Society of America
OCIS codes: 060.2310, 060.2370, 120.2230, 120.3180, 030.4070.

1. Introduction

Fiber-optic Fabry–Perot (FP) interferometric sensors
have been extensively studied in the past two dec-
ades for measurement of a variety of parameters,
such as temperature [1], strain [2,3], pressure
[4,5], and acoustic waves [6,7]. Generally, fiber FP
sensors can be divided into extrinsic and intrinsic
types. In an extrinsic structure, the light from the
lead-in fiber exits the fiber to propagate through a
small air gap to a reflector and then reenters the fi-
ber. The reflections from the fiber end–air interface
and the reflector along with the air gap form the FP
cavity. The structure can be designed to relate the
gap length to various measurands for sensing.

In contrast with the extrinsic structure, the reflec-
tions in an intrinsic FP sensor are generated inside
the fiber. These reflectors can be Bragg gratings [8,9],
reflective films [10], and air bubbles [11]. Lately, an-
other method was proposed for the fabrication of in-
trinsic Fabry–Perot interferometer (IFPI) sensors
[12]. In this method, the partial reflectors are pro-
duced by fusion splicing the single-mode fiber
(SMF) to multimode fiber (MMF) with a well-con-

trolled splicing condition. The relatively large refrac-
tive index difference between the cores of the SMF
and the MMF can generate quality reflections. At
the same time, the light in the MMF is still guided
so the insertion loss of the sensor can be controlled
at a low level. This structure offers the advantages
of high operating temperature and low insertion loss
at the same time, which allows multiplexing a
number of such sensor elements in one fiber for
measurement at high temperatures. White-light in-
terferometry has proved to be perhaps the most prac-
tical way for the demodulation of fiber F–P sensors.
Typical signal demodulation for low-finesse cavities
aims at finding the optical path difference (OPD),
defined as OPD ¼ 2nL, where n is the refractive in-
dex and L is the physical length of the cavity accord-
ing to the sinusoidal spectral information given by
[13–15]

I ∝ cosðkOPDþ π þ φÞ: ð1Þ

In Eq. (1), the DC component has already been re-
moved. The sinusoidal nature of the spectrum comes
from the interference generated by the two cavity
mirrors. k is equal to 2π=λ, where λ is the light wave-
length in vacuum, the term π comes from the reflec-
tion from an optically denser medium, and the term φ
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is an additional phase term, which has been investi-
gated thoroughly in the case of SMF extrinsic Fabry–
Perot interferometers (EFPIs) and MMF EFPIs by
Han et al. [16,17]. This additional phase term is ex-
plained as a result of wavefront distortion of the light
during propagation in free space. The demodulation
of the sensor’s OPD can be performed either by the
peak-tracking method [13] or the phase linear re-
gression method [15]. The OPD demodulation accu-
racy can be greatly enhanced by measuring the
additional phase term φ in advance (the so-called
OPD demodulation with known phase), which re-
quires the phase term to be a constant for any given
FP cavity [15]. In reality, the phase term is depen-
dent on the cavity length in SMF EFPI [16] and is
further dependent on the mode-field distribution
(MFD) in the lead-inMMF forMMFEFPI [17], which
means one needs to be very cautious before as-
suming the phase term to be constant during OPD
measurement. By taking into account the overall
effect exerted by the multiple transmission modes
in the cavity, we analyzed the interference spectro-
gram of the single mode–multimode–single-mode
(SMS) IFPI sensor and concluded that a nonconstant
phase term also existed. Similar to the EFPI case,
the phase term was generated by the field wavefront
distortion; however, for EFPIs, the distortion comes
from free-space propagation, while for IFPIs it is a
side effect of intermodal dispersion.

2. Modal Analysis of the SMS IFPI

A. Exact Field Expression

A typical SMS IFPI sensor is fabricated by fusion
splicing a lead-in SMF to a section of MMF; the MMF
is cleaved to a desired length (cavity length L) and
spliced using the same splicing condition to a lead-
out SMF. The interfaces at the two splicing points
generate weak light reflections due to the difference
in the core refractive indices of the SMF and MMF.
Figure 1 shows the geometry of the SMS IFPI sensor.

Instead of applying Eq. (1) to obtain the sensor
spectrum, a more accurate model employs analysis
of modal coupling and propagation in the multimode
waveguide [18–21]. Light in the SMF is carried by
the LP01 mode of the SMFwith normalizedmode pro-
file Φ0. At the interface R1, the mode energy is split
into several parts carried separately by LP0k modes
with normalized mode profile Φk in the MMF (here
we made the assumption that the MMF is a weakly
guided, step-index fiber for simplicity of analysis).
Modes in the MMF with azimuthal number other

than zero will not be exited due to mode orthogonal-
ity. For each mode, the coupling coefficient is defined
as η0→k ¼ ∬ R1

ϕ0ϕ�
kdxdy. Being reflected by R2 and

propagating to R1, the kth mode profile can be
expressed as rη0→kϕk exp½jð2πλ OPDk þ πÞ�, where
OPDk ¼ 2nkL and nk is the effective index of the
kth mode. At interface R1, all these modes will be re-
coupled into the fundamental LP01 mode of the SMF
with coupling coefficient ηk→0 ¼ ∬ R1

ϕkϕ�
0dxdy ¼

η�0→k. As a result, the contribution to the total mode
profile by each mode can be described as
rjη0→kj2ϕ0 exp½jð2πλ OPDk þ πÞ�, and the total field pro-
file at R1 can be expressed as

ϕs ¼ rϕ0

�
1þ

XN
k¼1

η2k exp
�
j

�
2π
λ OPDk þ π

���
; ð2Þ

where ηk ¼ jη0→kj is a real number and N modes are
assumed to be excited in the MMF. Based on the
expression for the total field above, we can find
the reflection intensity from the sensor as

I ¼
ZZ
R1

ϕsϕ�
sdxdy ¼ r2j1þ Σj2; ð3Þ

where Σ ¼ P
N
k¼1 η2k exp½jð2πλ OPDk þ πÞ� is an effective

vector to be discussed in more detail in Subsection 2.
C. In addition, we have already applied the normal-
ization condition∬ R1

ϕ0ϕ�
0dxdy ¼ 1. Note that, if only

one mode is excited in the MMF, Eq. (3) will be auto-
matically reduced to Eq. (1) after canceling the DC
component.

B. Two-Mode Excitation

The expression for the total field intensity deduced
from the last section [Eq. (3)] is comprehensive but
relatively complicated. Here we consider amuch sim-
pler case in which only two modes are excited in the
MMF with similar effective refractive indices; this
analysis can provide us with an illustrative under-
standing of how intermodal dispersion affects the
sensor spectrum.

Assuming that the effective indices of the two
modes are n1 and n2, respectively, and, accordingly,
the OPD experienced by the two modes are OPD1 ¼
2n1L and OPD2 ¼ 2n2L, we define ΔOPD ¼ OPD1−
OPD2 such that OPD2 can be expressed by OPD2 ¼
OPD1 −ΔOPD.

The total reflected spectrum can be expressed as

I ¼ 1þ η41 þ η42 þ 2η21 cosðOPD1 • k0Þ
þ 2η22 cosððOPD1 −ΔOPDÞ • k0Þ
þ 2η21η22 cosðΔOPD • k0Þ: ð4Þ

In Eq. (4), the fourth and fifth terms on the right-
hand side describe the interference of the modes withFig. 1. Schematic of an SMS-IFPI sensor.
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themselves, and the last term accounts for the inter-
ference between the two modes. After some mathe-
matical manipulations, Eq. (4) can be rewritten as

I ¼ r2
�
1þΓþ 2

ffiffiffiffi
Γ

p
sin½OPD1k0 þφðΔOPD;k0Þþ π�

�
;

where

Γ ¼ η41 þ η42 þ 2η21η22 cosðΔOPD • k0Þ

φðΔOPD; k0Þ ¼

8><
>:

arctan
�

η21þη22 cosðΔOPD•k0Þ
η22 sinðΔOPD•k0Þ

�
; sinðΔOPD • k0Þ ≥ 0

π − arctan
�

η21þη22 cosðΔOPD•k0Þ
jη22 sinðΔOPD•k0Þj

�
; sinðΔOPD • k0Þ < 0

:
ð5Þ

It is not difficult to find that, at the limit η22 ≪ η21
(which means the second mode is excited so weakly
that almost all the power is carried by the first
mode), Eq. (5) reduces to Eq. (1) with the additional
phase term equal to zero. As the second mode
emerges, the amplitude and phase of the sinusoid
will be modulated. The phase term φðΔOPD; k0Þ as
a function of ΔOPD • k0 has been plotted in Fig. 2.
To plot the figure, the wavelength span was set from
1400 to 1700nm, the effective refractive indices of
mode 1 and mode 2 were set to be 1.448 and
1.441, respectively, the cavity length was set to
1mm, and four different cases with excitation ratio
(η21=η22) of 6∶4, 7∶3, 8∶2, and 9∶1 were compared.

C. Rotating Vector Picture

In Subsection 2.B, we only considered the excitation
of two modes inside the MMF cavity. In reality, the
number of modes excited can be much more, which
complicates the problem. From Eq. (3), the received
intensity is proportional to j1þ Σj2, where the vector

Σ is defined as Σ ¼ P
N
k¼1 η2k exp½jð2πλ OPDk þ πÞ�. The

received power can be expressed as

I ∝ j1þ Σj2 ¼ 1þ jΣj2 þ 2jΣj cosðψÞ; where ψ
¼ ∠Σ: ð6Þ

Equation (6) leads to the conclusion that the total
phase in the interference spectrogram can be directly

obtained from the angle of the vector Σ. In the follow-
ing discussion, for simplicity without losing general-
ity, we omit the phase term π in the expression of
vector Σ:

Σ ¼
XN
k¼1

η2k exp
�
j

�
2π
λ OPDk

��
; ð7Þ

where OPDk ¼ 2nkL and nk is the effective refractive
index of the kth mode. It is straightforward to find
out that Σ is the sum of N vectors representing N
orthogonal modes (we define the mode vector as
υk ¼ η2k exp½jð2πλ OPDkÞ�); the modulus of each vector
is the square of the magnitude of the mode coupling
coefficient between the given mode and the LP01
mode of the SMF; the phase of each vector is simply
the product of the vacuum wavenumber and the ef-
fective OPD of that mode. Figure 3 illustrates how
the total field vector is related to each individual
mode vector. In total, five modes were assumed to
be excited.

In the interference spectrogram, as the wavenum-
ber k increases, all theN individual mode vectors (υk)
will rotate at different angular speed OPDk ¼ 2nkL.
The mode vector of the fundamental LP01 mode
rotates at the fastest speed (corresponding to the lar-
gest effective refractive index), while the mode vector
of LP0N mode rotates the slowest. The differences
among rotational speeds of all the mode vectors

Fig. 3. Relationship between the total field vector and the five
individual mode vectors.

Fig. 2. Additional phase term for a two-mode cavity at different
excitation ratios.
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are very small because modal refractive indices have
very similar values. Although the individual vectors
rotate at similar speeds, their pointing directions are
almost arbitrary because the wavenumber k and the
cavity length L are both very large numbers. The
effective vector Σ rotates at a speed that depends si-
multaneously on the rotational speed of each vector
and their relative orientations. If most of the mode
vectors align at similar directions, the rotating speed
of the effective vector can be slower than any of the
individual vectors; there are also occasions where its
rotational speed is faster than any of the individual
vectors (see Fig. 4 for an example).

Figure 4 plots the mode vectors of all seven excited
modes in a step-index MMF with ncore ¼ 1:448,
nclad ¼ 1:434, and rcore ¼ 25 μm, excited by SMF with
ncore ¼ 1:445, nclad ¼ 1:440, and rcore ¼ 4:2 μm. In the
simulation, the cavity length is 2mm, and the wave-
length is set to be λ ¼ 1550nm. Increasing wavenum-
ber k results in rotation of mode vectors, while the
effective vector rotates correspondingly. In total, nine
groups of vectors are plotted with equal angular spa-
cing, such that the fundamental mode vector (υ1) of
the ninth group coincides with that of the first group,
which means by increasing k, υ1 rotates exactly 2π.
Since the fundamental mode travels the fastest, all
the higher-order modes rotate at slower rates; none
of the higher-order modes rotates as far as 2π. How-
ever, the effective vector rotates faster than the fun-
damental mode vector, as shown in Fig. 4. The end
of the cascaded gray arrows (which represents the ef-
fective vector after υ1 rotates by 2π) falls ahead of the
end of the cascaded dark arrows (which represents
the effective vector before rotation), indicating a fas-

ter rotational speed of the effective vector than the
fundamental mode vector υ1.

As k increases, all the vectors begin to rotate; while
each individual mode vector rotates at constant
speed, the effective vector does not, even though the
speed variation is not significant if k scans in a nar-
row range (within the spectral range of the interfer-
ence spectrogram). Taking the rotational speed of υ1
as a reference, the relative speed for any other vector
can be obtained by subtracting the speed of υ1 from
its own speed. At any given wavenumber k, this re-
lative speed is proportional to the phase difference
between that vector and the LP01 vector. For the cav-
ity we examined to plot Fig. 4, when the wavelength
is scanned from 1520 to 1570 nm , the relative phase
shift (taking LP01 vector as the reference) of the fol-
lowing vectors are plotted in Fig. 5: LP02 (at a lower
rotating speed), the effective vector Σ (at a faster,
varying speed), and the linear fitting of the rotating
speed of Σ (represents a virtual mode vector that best
approximates the rotating speed of the effective
vector). The angular rotating speed of the virtual vec-
tor is actually the first-step-estimated OPDð1Þ of the
cavity, as is discussed in Section 3.

3. Results and Discussion

In an actual sensor application, a change in the mea-
surand, such as strain or temperature, varies the
OPD of the SMS-IFPI sensor; by detecting with high
accuracy the OPD change, the change in the measur-
and can be decoded correspondingly. For example,
strain changes the OPD of the cavity as

ΔOPD
OPD

¼ ð1 − peÞε; ð8Þ

where pe is the effective strain-optic constant and ε is
the applied strain [22]. Temperature modifies both
the dimension and the refractive indices of the cavity
according to

Fig. 4. Zoom-in view of the rotating vectors: Nine groups of vec-
tors are plotted with equal angular spacing such that υ1 rotates
exactly 2π. Dark lines, first group of vectors (beginning position);
gray lines, last group of vectors (end position: υ1 coincides with υ1
in the first group; υ2 is a little behind υ2 in the first group; the
effective vectorΣ is ahead ofΣ in the first group). Inset: global view
of the vector rotation. Upper-left arrow, position of the first
and last groups of vectors; other arrows illustrate the rotational
direction of the vectors.

Fig. 5. Relative phase shift to LP01 mode as k increases. Plotted
are phase shifts of LP02 mode, the effective vector Σ, and a virtual
mode with neff ¼ nestimate.
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ΔOPD
OPD

¼ ðαT þ σTÞΔT; ð9Þ

where αT is the coefficient of thermal expansion
(CTE) of silica, and σT is the thermal-optic coefficient
of the fiber core [22]. Hence, the key of measurement
accuracy and resolution relies on the OPD decoding
quality.

Most of the OPD decoding algorithms assume the
sensor spectrogram to be purely sinusoidal [14,15].
According to Eq. (1), the total phase in the interfer-
ence spectrum is

φtot ¼ k •OPDþ φ0; ð10Þ

where φ0 is the additional phase term introduced
in section one (the phase term π is omitted).
Equation (10) indicates that the OPD of the cavity
equals the angular rotational speed of the total phase
φtot with k. The wavenumber km corresponding to the
peak locations of the interference pattern should sa-
tisfy the phase relationship: km •OPDþ φ0 ¼ 2πm,
where m is the fringe order of the corresponding
peak; let us denote the smallest fringe order on
the spectrogram to be m0; we have km •OPDþ
φ0 ¼ 2πðm0 þNÞ, where N ¼ 0; 1; 2;…. The above
relationship can be rewritten as

km •OPDþ φ0
0 ¼ 2πN; φ0

0 ¼ φ0 − 2πm0;

N ¼ 0; 1; 2;…: ð11Þ

By linearly fitting km with N, one can find the first-
step estimation of the optical path difference OPDð1Þ.
Multiple measurements can be performed to accu-
rately find the phase term φ0

0 in advance so that,
for any measurement that follows, we can predict
the location of the mth fringe peak by

kð1Þm •OPDð1Þ þ φ0
0 ¼ 2πN: ð12Þ

The OPD estimation error (δOPD) is related to a
phase shift δφ by

δOPD ¼ δφ
2π λm: ð13Þ

By setting λm ¼ 1550nm, one can calculate that a
phase shift of �π can be induced by an OPD estima-
tion error of �775nm, which is very large. According
to computer simulation results, at high signal-to-
noise ratio (SNR) >30 dB, the first-step OPD estima-
tion errors fall within �200nm, which correspond to
a phase shift of �0:26π. If we predict the peak loca-
tions by inserting the first-step estimation result
OPDð1Þ into Eq. (12), the phase difference between
the real spectrum and predicted spectrum will have
a phase difference within the range ½−0:26π;þ0:26π�.
Fig. 6 illustrates this situation.

As shown in Fig. 6, the predicted peaks appear at
the vicinity of the real peaks within the phase range

½−0:26π;þ0:26π�. Mathematically, this can be written
as

kð1Þm •OPDð1Þ ¼ km •OPD: ð14Þ

We can obtain a better estimation of the value for
OPD by

OPDð2Þ ¼ kð1Þm

km
•OPDð1Þ: ð15Þ

This second-step estimation of the OPD has much
better accuracy, according to computer simulation.
The OPD estimation error is within �1nm.

The OPD demodulation algorithm described above
assumes that the additional phase term in Eq. (10) is
a constant. However, as mentioned in Section 1, this
term is not a constant and can vary with the OPD,
which adds to the complexity of the signal decoding.
We use Eq. (3) to calculate the interference spectro-
gram for our computer simulation. To calculate the
refractive indices of different modes in the SMF
and MMF with tolerable computational complexity,
we assumed that the fibers to satisfy the weakly
guiding condition and the orthogonal modes sup-
ported by the fibers are linearly polarized modes
(LP modes) [18]. The fiber characteristic equation
used for calculation of the effective refractive index
neff is given by [18]

JlðuÞ
uJl−1ðuÞ

þ KlðwÞ
wKl−1ðwÞ ¼ 0; ð16Þ

where JlðxÞ is the Bessel function of the first kind,
and KlðxÞ is the modified Bessel function of the sec-
ond kind, l corresponds to the azimuthal number of
the mode (in our case l ¼ 0; see discussion in
Section 2), u ¼ ð2πa=λÞðn2

1 − n2
eff Þ1=2, w ¼ ð2πa=λÞ×

ðn2
eff − n2

2Þ1=2, in which a is the radius of the fiber core,
and n1 and n2 are the refractive indices of the fiber
core and cladding, respectively.

To calculate the mode coupling coefficient
ηk ¼ j∬ R1

ϕ0ϕ�
kdxdyj, in which ϕ0 is the mode profile

Fig. 6. Spectral phase shift induced by OPD estimation error.
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for the fundamental mode in the SMF and ϕk is the
kth mode profile in the MMF, we applied the mode
profile formula [18]:

ϕk ¼
�

AJ0ðukr=aÞ=J0ðukÞ; r < a
AK0ðwkr=aÞ=K0ðwkÞ; r > a

; ð17Þ

where k denotes the kth root of Eq. (16) and the value
of A can be obtained by the normalization condi-
tion: j∬ R1

ϕkϕ�
kdxdyj ¼ 1.

Another approximation used to simplify the calcu-
lation is to consider only intermodal dispersion in the
MMF; the intramodal dispersion (which accounts for
the fact that neff of each mode also depends on wave-
number k) is ignored. This is a reasonable assump-
tion because in real applications one obtains the
spectral information only in a narrow spectral range
(for example, in our simulations and experiments,
from 1520 to 1570nm) in which neff can be regarded
as a constant.

Equation (8) will be applied for simulation of quan-
tities that induce only fiber dimensional change
while setting pe to a constant, and Eq. (9) will be ap-
plied for simulation of the temperature effect when
dimensional and refractive indices changes coexist.
The fiber parameters used for all the simulations
are the following: step-index MMF with ncore ¼
1:448, nclad ¼ 1:434, and rcore ¼ 25 μm, excited by
step-index SMFwith ncore ¼ 1:445, nclad ¼ 1:440, and
rcore ¼ 4:2 μm.

A. Physical Meaning of the OPD-Dependant Phase Term

By using Eq. (11) to estimate the OPD or, equiva-
lently, the angular speed of the total phase with k,
one assumes that the rotational speed (OPD) is a con-
stant such that least-squares (LS) linear fitting gives
the best estimation. As concluded in Section 2, the
measurable (obtainable) rotational speed is actually
represented by the rotation of the effective vector Σ.
From the discussion in Section 2, the rotational
speed of this vector depends on the alignments of
all the mode vectors υk. At a constant OPD, all the
mode vectors (υk) rotate at different but constant
speeds, resulting in evolution of the relative align-
ments of the mode vectors, and the rotational speed
of vector Σwill undergo a change as k increases. This
means the rotation of the effective vector has accel-
eration. As shown clearly in Fig. 5, the phase change
is not linearly related to k. If we carry out LS linear
fitting applying Eq. (11), instead of getting fitting
errors evenly distributed around zero (which cor-
responds to a constant rotation speed), the fitting
error shows a dispersive pattern. This is illustrated
in Fig. 7.

Because the rotational speed of the effective vector
is affected strongly by the relative alignments of all
the mode vectors, the best one can do is to look at the
spectrum and estimate its speed by linear fitting. As
a result, the first-step estimation OPDð1Þ can be mis-
leading: the cavity can appear to be longer or shorter
than it really is if the observation is made simply

based on looking at the interference spectrogram
generated by the cavity. Consequently, if Eq. (12) is
used to predict the peak positions, large phase error
can occur; as the OPD changes, the relative align-
ments of the mode vectors also change, resulting in
varying “estimation quality” of the OPD, and the
additional phase term will vary accordingly.

OPD change solely due to fiber dimensional
change was studied by computer simulation. The
cavity length was changed from 2000 to 2010 μm.
At a given cavity length, the total phase difference
between the real spectrum and predicted spectrum
based on OPDð1Þ was calculated; for the cavity length
range studied, this phase difference was plotted as a
function of the cavity length. During the simulation,
no noise was added to the signal to remove phase
ambiguity generated by external noise. As shown
in Fig. 8, a nearly −π phase change occurred during
this process.

Assume that, during the above-simulated experi-
ment, the exact value of the cavity length is known
in advance. Based on the OPD estimation result, we

Fig. 7. Simulated linear fitting error as a function of
wavenumber.

Fig. 8. Computer-simulated relative phase change as cavity
length increases.
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are able to calculate the effective index of the cavity
by neff ¼ OPDð1Þ=ð2LÞ, where OPDð1Þ is the first-step
OPD estimation, and L is the physical cavity length.
In principle, the value of neff should not vary during
the simulation process because all the refractive in-
dices were set to constants; however, as discussed
previously, the information obtained by looking at
the spectrum can be misleading because the esti-
mation of neff indeed varied a lot. In Fig. 9, the esti-
mated neff was plotted as the cavity length increases
from 500 to 2500 μm, while all the refractive indices
of the fibers were kept constant. As shown in the
figure, the variation in the measured effective refrac-
tive index is significant in this process.

Based on Eq. (6), the total phase can be expressed
as

φ ¼ ∠Σ ¼ ∠
�XN

k¼1

η2k exp½jð2kLnkÞ�
�
: ð18Þ

We can approximate the rotational speed of the total
phase with respect to k by

dφ
dk

¼ dφ
dðkLÞ

dðkLÞ
dk

≈ 2�nestL ¼ OPDð1Þ; ð19Þ

where �nest is the estimation of the effective refractive
index. From Eq. (19), we have dφ=dðkLÞ ¼ 2�nest.
Also, similar to Eq. (19), the following equation
can be obtained:

dφ
dL

¼ dφ
dðkLÞ

dðkLÞ
dL

≈ 2�nestk: ð20Þ

Based on Eq. (20), we have

dφ ≈ dð2k�nestLÞ ¼ 2kðLd�nest þ �nestdLÞ
≈ 2k�nestdL: ð21Þ

The total phase term can be estimated with better
accuracy to be

φ1 ≈
ZL

0

2k�nestdl; ð22Þ

while the total phase is routinely predicted by

φ2 ¼ 2k�nestL: ð23Þ

The relationship between φ1 and φ2 can be graphi-
cally illustrated as shown in Fig. 10. Because the in-
creasing rate of the total phase is not constant, using
Eq. (23) to estimate the total phase will result in an
additional phase term, and this error term keeps
changing with increasing L. If the OPD change dur-
ing the full measurement is small, the slope of the
total phase change in that range can be regarded
as constant, whereas the additional phase term will
change very little accordingly; for applications where
the change of OPD is large so that the slope can no
longer be treated as constant, the additional phase
term will change with OPD. The total phase differ-
ence is illustrated in Fig. 10 according to Eqs. (22)
and (23).

From Fig. 10, the OPD-dependent phase term ap-
pears as a result of the nonconstant slope of the φ–L
curve, which is equivalent to a nonconstant �nest.
Based on Eqs. (22) and (23), the phase estimation dif-
ference as a function of cavity length L is plotted in
Fig. 11. To emphasize the relationship between the
phase difference and the nonconstant value of the es-
timated neff , the range of L is set to the same as that
in Fig. 9. Shown clearly in Fig. 11 is the strong rela-
tionship between the change rate of the additional
phase and the value of the estimated neff . At regions
where neff changes rapidly, the additional phase term
also changes rapidly. Also evident from Fig. 11 is
the fact that there are regions where the phase
changes very slowly. These regions are good for
sensor application. There are also bad regions in
which the phase changes rapidly; working in such re-
gions will lead to large errors and even measurement
failure.

Not only the physical dimension but also the
refractive indices of the MMF will be varied during
temperature measurement, which adds an addi-
tional complexity problem to the sensor signal demo-
dulation. To have a better understanding of the

Fig. 9. Estimated neff as the cavity length increases while all the
refractive indices stay unchanged. Two horizontal lines mark the
refractive indices of the MMF core and cladding. Fig. 10. Graphic explanation of the additional phase term.
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temperature-dependent phase term, a similar proce-
dure can be followed as in the previous example. By
employing Eqs. (9) and (19), we get

dφ
dT

¼ dφ
dOPDð1Þ

dOPDð1Þ

dT
≈ kðαT þ σTÞOPDð1Þ: ð24Þ

It is straightforward to obtain a better estimation of
the phase term by integrating Eq. (24):

Δφ1jT2
T1

≈ kðαT þ σTÞ
ZT2

T1

OPDð1ÞðTÞdT: ð25Þ

This estimation is more accurate than the direct es-
timation by

Δφ2jT2
T1

¼ kðOPDð1ÞðT2Þ −OPDð1ÞðT1ÞÞ: ð26Þ

To simulate the temperature-induced phase shift,
a computer-simulated experiment was performed

using a 4mm cavity, the temperature was increased
to 600 °C from room temperature, and two methods
were applied to obtain the total phase change as a
function of temperature. The first approach com-
pared the real phase with the predicted phase [by
inserting OPDð1Þ into Eq. (10)], and the second ap-
proach directly compared the value of Eqs. (25)
and (26). The results are provided in Fig. 12. The
results obtained by these two approaches agree well
except for a little discrepancy in their magnitudes.

4. Experimental Demonstration

An SMS-IFPI sensor was fabricated by fusion spli-
cing a section of MMF (Thorlabs, MMF 625) sand-
wiched between two SMFs (Corning SMF-28). The
OPD of the sensor was measured to be around
7730 μm. The reflection spectrum of the sensor was
monitored by a spectrometer (Component Testing
System, Micron Optics Inc., Si-720) from 1520 to
1570nm with 2:5pm spectral resolution. The sensor
was heated by a homemade minifurnace; the tem-
perature of the sensor wasmeasured by a thermocou-
ple with 0:1 °C resolution. The temperature was

Fig. 11. Phase difference as a function of cavity length.

Fig. 12. Phase difference as a function of temperature, measured
by direct comparison of the predicted spectrum and the real
spectrum. Inset: measured by using Eqs. (25) and (26).

Fig. 13. Additional phase term as a function of OPD.

Fig. 14. Linear fitting error as a function of wavenumber
(experimental).
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controlled to scan continuously from room tempera-
ture to 600 °C multiple times, and interference spec-
tra were obtained at 2:5 °C intervals. From each
spectrogram recorded, the first-step OPD estimation
was performed to obtain OPDð1Þ, and based on the
first-step predicted value, the total phase was esti-
mated and compared with the phase of the real data
to calculate the additional phase term. Figure 13
plots the additional phase term as a function of
OPD. A phase change up to −π can be seen in the
figure.

Figure 14 shows the fitting error as a function of
wavenumber for 90 groups of experimental data.
As predicted by the theory, the fitting error manifests
a certain dispersive pattern. Although the pattern
obtained from the real sensor shows more ripples
than the simulation result (Fig. 7), the pattern itself
shows agreement with the prediction of the theory.
According to Fig. 13, the phase term could be
linearly fitted with OPD as ΔφðOPDÞ ¼ πð153:85−
20013 × OPDÞ; this term can be added into Eq. (12)
to precalibrate the sensor for spectral peak position
calculation to obtain second-step OPD estimation.
The estimated OPDð2Þ as a function of temperature
is plotted in Fig. 15.

5. Conclusion

Wavefront distortion in the MMF section of an SMS-
IFPI sensor is a direct result of the multimodal nat-
ure of the cavity. Similar to EFPI fiber sensors, the
wavefront distortion generates an additional phase
term in the interference spectrogram of the sensor.
The total phase in the spectrogram is modeled by
a rotating effective vector. The rotation of the vector
always happens at a nonconstant speed with wave-
number, resulting in a spectrum that seems denser
(corresponding to a faster rotation speed) or sparser
(slower rotation speed) than it is supposed to be by
the traditional treatment of the cavity as single
mode. Mathematically, the OPD demodulation pro-
cess is the estimation of the rotational speed of the
effective vector with respect to wavenumber by look-
ing at the interference spectrum; however, the infor-

mation obtained herein can be misleading to some
extent. Hence, the error in this first-step estimation
amounts to an additional phase shift in the formula
we used to calculate the total phase of the spectro-
gram. It is predicted that in a real application, if
the OPD change is small in a measurement, the
change of the additional phase term will not be sig-
nificant and high measurement accuracy can still be
obtained; however, for applications where OPD
changes are large, there exist either good or bad
zones. For those good zones, the OPD-dependent ad-
ditional phase term will not change much during the
full measurement range so that the phase term can
be precalibrated (as shown in Section 4); however, for
the bad zones, the phase term will change very ra-
pidly and accurate OPD decoding will be difficult.
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