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pecifications Table 

Subject Nuclear Energy and Engineering, Materials Science 

Specific subject area Graphite Microstructure and Chemical Reactivity 

Type of data Equations 

Tables 

Figures 

How data were acquired Raw data sets were acquired from X-ray diffraction (Bruker D8 

Discover X-ray Diffractometer) and Raman Spectroscopy (Thermo 

Scientific DXR Raman microscope) 

Data format Secondary data of crystallite edge area, based on Raman and XRD data 

And 

Secondary data of microstructural parameters calculated from Raman 

and XRD data 

Parameters for data collection XRD and Raman data were all collected in air atmosphere, at room 

temperature. Graphite sample preparation details are provided in the 

companion article [13]. 

Description of data collection XRD data was collected using 0.5 mm collimator in the 2 θ range of 

20 o to 90 o with an increment of 10 o . The scan time was 60 s. 

Raman Spectra were recorded with 200 exposures per spectrum and 

0.5 s per exposure. The data was recorded at five arbitrary points on 

the surface of each sample. 

Data source location The raw XRD and Raman spectra, which were collected at University of 

Wisconsin-Madison, can be found in the Supplemental Information (SI) 

of the companion article [13]. 

Data accessibility SI is provided with this Data in Brief article. The SI includes 

calculations and all analysed data from XRD and Raman spectra, and 

results of the CARBONX fitting of XRD spectra. 

Related research article Huali Wu, Ruchi Gakhar, Allen Chen, Stephen Lam, Craig P. Marshall 

and Raluca O. Scarlat 

Comparative Analysis of Microstructure and Reactive Sites for Nuclear 

Graphite IG-110 and Graphite Matrix A3 

Journal of Nuclear Materials 528 (2020) 151802. 

doi: https://doi.org/10.1016/j.jnucmat.2019.151802 

alue of the Data 

• This article provides data that is instrumental in comparative analysis of two grades of nu-

clear graphite: IG-110 and A3. 

• This article is useful for the researcher who wants to perform Raman and XRD analysis of

graphite for characterization of microstructure, defects and reactive carbon sites, and who

seeks to investigate sensitivity of the calculated microstructural parameters (d002, and La) to

the data reduction method employed. 

• Further comparative analysis can be performed between IG-110 and A3, based on the data

sets provided here, for each of three faces of cubic samples of IG-110 and A3 analysed by

XRD, and for five points on the surface of the samples analysed by Raman, and the data can

be used for further comparisons of crystallite surface area contributions from different facets

of crystallite surfaces. 

• This article provides several data reduction methods for in-plane crystallite size (L a ) from Ra-

man and out-of-plane lattice parameter (d 002 ) from XRD, and the calculated crystallite edge

surface area along with the derivation of the equations used in this calculation. 

• The multitude of data reduction methods used in the literature and reported here were the

basis for selecting the data reduction approach that was used in the companion article [13]. 

• CarbonXS fitting of XRD data for IG110 and A3 is provided. Based on the results provided

here, researchers can choose to perform additional CarbonXS fitting of the data for IG110

and A3, or draw conclusions about the necessity of CarbonXS fitting versus other methods of

microstructural analysis based on the XRD spectrum. 

https://doi.org/10.1016/j.jnucmat.2019.151802
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1. Data Description 

1.1. Estimation of Crystallite Edge Area 

The edge area of graphite crystallites that is perpendicular to the graphene planes is calcu-

lated as follows. Two metrics of interest are computed: edge area per gram of graphite sample
A edge, cryst 

m cryst 
, and atomic ratio of edge carbons to total carbon atoms in a sample 

C edge 

C total 
. 

A edge, cryst = P top L c (1) 

where A edge , cryst is the surface area of the crystallite edge (surface perpendicular to the graphene

layers), P top is the perimeter of the crystallite top (surface parallel to the graphene layers), ρcryst 

is the density of one crystallite, V cryst is the volume of the one crystallite, m cryst = V cryst ρcryst =
A top L c ρcryst is the mass of the crystallite, and A top is the surface of the crystallite top (surface

parallel to the graphene layers). 

Assumptions: 

1 
P top 

A top 
= 

4 
L a 

, which is valid for circle, square, and hexagonal shape. 

2 The density of a perfect graphite crystallite is used; ρcryst = 2 . 266 g 

c m 

3 = 2 . 266 E − 21 g/n m 

3 

for perfect graphite with c = 0.670, and a = 0.246 nm. The actual crystallite density is propor-

tional to a 2 · c ; therefore the assumption of a perfect crystal density introduces an error of

less than 1%. 

Incorporating the two assumptions above, we obtain the following expressions for specific

crystallite edge surface area. 

A edge, cryst 

m cryst 
= 

P top L c 

A top L c ρcryst 
= 

P top 

ρcryst A top 
= 

4 

ρcryst L a 
(2) 

A edge, cryst 

m cryst 
= 

1770 

L a [ nm ] 

[
m 

2 

g 

]
(3) 

The number of edge carbon atoms can be estimated similarly to the estimation of edge sur-

face area. 

N edge = N C,perimeter N layers (4) 

where N edge is the number of atoms on the edge of a crystallite, N C, perimeter is the number of

atoms on the edge of one graphene layer inside a crystallite, N layers is the number of graphene

layers in a crystallite. 

N layers = 2 
L c 

c 
(5) 

N C,perimeter = N arm −chair sides + N zig−zag sides (6) 

where N arm −chair sides is the number of atoms on the armchair edges of a graphene sheet,

N arm −chair sides is the number of atoms on the zig-zag edges of a graphene sheet 

N arm −chair sides = 

2 · 4 · L a 

3 a/ 
√ 

3 
= 4 . 62 

L a 

a 
( derived approximating to a square graphene sheet ) (7) 

N zig−zag sides = 2 · 2 · L a 

a 
( derived approximating to a square graphene sheet ) (8) 

N C,perimeter = 

(
4 + 

8 √ 

3 

)
L a 

a 
= 8 . 62 

L a 

a 
(9) 
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N edge = 17 . 24 
L c 

c 

L a 

a 
(10)

N cryst = 

V cryst ρcryst 

12 
(

g 
mol 

) N A 

(
at 

mol 

)
(11)

here N cryst is the number of atoms in a crystallite, N A is Avogadro’s number 

V cryst = A top L c = L 2 a L c ( derived approximating to a square graphene sheet ) (12)

N cryst = 

L 2 a L c ρcryst 

12 
(

g 
mol 

) N A 

(
at 

mol 

)
(13)

N edge 

N cryst 
= 

17 . 24 L c 
c 

L a 
a 

L 2 a L c 

[ 
1 e − 21 

(
c m 

3 

n m 

3 

)] 12 
(

g 
mol 

)
ρcryst 6 . 022 E23 

(
at 

mol 

) = 

34 E − 23 
(

g 
at 

)
ρcryst 

1 

c a L a 
(14)

C edge 

C total 

= 

N edge 

N cryst 
= 

0 . 15 
(
n m 

3 
)

c a L a 
(15)

here C edge is the total number of carbon atoms located on the edge of crystallites, C total is the

otal number of carbon atoms that comprise the crystallites. 

Table 1 provides C edge / C total calculated for IG110 and A3, based on microstructural parameters

stimated from XRD and Raman. 

.2. Raman Analysis: In-plane L a crystallite size 

Table 2 gives the L a values calculated based on the several empirical equations available in

he literature for estimating crystallite size L a . Empirical correlations relate the Raman spec-

ra (the peak maximum or area or FWHM of D and G bands) to L a calculated from XRD and

canning tunneling microscopy, valid across different types of graphite materials. Tuinstra and

oening proposed Eqn. 16 with C( λ) = 4.4 nm, which is only valid for λ= 514.5nm. I D and I G are

alculated as peak area [1] . 

L a ( nm ) = C 
(
λ
) I D 

I G 

−1 

(16)

Zheng et. al. [2] performs L a calculations based on maximum peak intensity. Maslova et al.

roposed the relationship between FWHM of G band and L a in Eqn. 17 , based on Ammar’s

esearch on polished samples [ 3 , 4 ], which holds for any excitation laser energy in the visible

ange: 

L a ( nm ) = 

430 

F W HM ( G ) − 14 
(17)

here 14 is the FWHM(G) for highly oriented pyrolytic graphite for which the D band is missing

5] . Table 2 provides the analyzed data for all sampled points on the surface of A3 and IG-110

nd the corresponding L a values from each of the available empirical correlations. 

.3. XRD Analysis 

Fig. 1 provides an overlay of raw XRD data for three orthogonal faces of IG-110 and A3. 
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Table 1 

Content of edge carbon in IG110 and A3, calculated from Eqn. 15 based on c from XRD and L a from XRD and Raman. XRD a 112 is used for all calculations. 

C edge /C total for IG110 C edge /C total for A3 

c Cryst.1 c Cryst.2 c c Cryst.1 c Cryst.2 c 

L a, XRD 0.0428 ± 0.0163 0.0431 ± 0.0164 0.0430 ± 0.0164 0.0390 ± 0.0025 0.0392 ± 0.0025 0.0392 ± 0.0025 

L a, Raman 0.0272 ± 0.0074 0.0274 ± 0.0075 0.0274 ± 0.0075 0.0265 ± 0.0093 0.0266 ± 0.0094 0.0266 ± 0.0094 

H/C edge at 10 kPa H 2 and 700 °C, for IG110 H/C edge at 10 kPa H 2 and 700 °C, for A3 

L a, XRD 561 ± 284 557 ± 282 558 ± 282 2309 ± 209 2296 ± 208 2296 ± 208 

L a, Raman 881 ± 380 876 ± 377 877 ± 378 3399 ± 440 3380 ± 438 3379 ± 437 

A edge,cryst /m cryst for IG110 A edge,cryst /m cryst for A3 

L a, XRD (101) 84 ± 32 77 ± 5 

L a, Raman 54 ± 12 52 ± 18 
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Table 2 

FWHM and L a for IG-110 and A3 Graphite 

Graphite Point (1) 

FWHM 

(cm 

−1 ) I D /I G L a _ Eqn. 16 L a _ Eqn. 17 I D /I G 

L a _ 

Eqn. 16 

L a _ 

Eqn. 17 

D G (area ratio) (nm) (Intensity ratio) 

A3 Point 1 55.3 26.3 0.78 6 35 0.38 12 35 

Point 2 54.1 23.0 0.57 8 48 0.24 18 48 

Point 3 53.5 26.3 0.77 6 35 0.38 12 35 

Point 4 55.5 27.3 0.31 14 32 0.14 31 32 

Point 5 52.6 24.6 0.74 6 41 0.35 13 41 

Average 54.2 25.5 0.64 8 38 0.30 17 38 

σ 1.0 1.5 0.18 3 5 0.09 7 5 

IG-110 Point 1 42 23.4 0.75 6 46 0.42 10 46 

Point 2 46 24.7 0.79 6 40 0.42 11 40 

Point 3 46 24.6 0.49 9 40 0.27 17 40 

Point 4 47 21.6 0.40 11 56 0.20 22 56 

Point 5 49 26.8 0.74 6 34 0.39 11 34 

Average 46 24.2 0.63 8 43 0.34 14 43 

σ 2 1.7 0.16 2 8 0.09 5 8 

Confidence level 

(A3 � = IG-110) 

99.9% 70.0% 0.0% 0.0% 0.0% 10.0% 10% 10% 

IG-110 (2) 0.34(10) (2) 62(23) 

IG-110 Zheng 

et.al (2) , (3) 

0.51(10) (2) , (3) 39(7) 

(1) The Raman spectrometer samples points on the surface of graphite of approximately 1 micrometer in diameter. 
(2) I D /I G and L a calculated based on D and G peak maximum intensity. 
(3) Standard deviation based on spectra at three points on the graphite surface. 

Figure 1. Comparison of XRD patterns of IG-110 graphite (orange solid lines) and A3 (blue dashed lines). Patterns from 

three orthogonal faces from each sample are shown. 

Table 3 

Interlayer spacing and degree of graphitization from XRD, using different approaches for determining d 002 . 

1 d 002 (nm) 1 ḡ 2 d 002 (nm) 3 d 002 (nm) 

IG-110 Cryst. 1 0.3389(3) 60(7) 0.3391(10) 0.3373(4) 

Cryst. 2 0.3367(3) 84(4) 0.3371(2) 

IG-110 Powder Cryst. 1 0.3387(14) 62(16) (extrapolation method does not 

apply) 

Cryst. 2 0.3365(1) 84(6) 

A3 Cryst. 1 0.3384(4) 65(5) 0.3380(9) 0.3364(2) 

Cryst. 2 0.3365(1) 88(2) 0.3365(3) 
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Figure 2. Determination of 3 d 002 parameter based on θ 002 , θ 004 , θ 006 peaks 

Table 4 

In-plane lattice parameter a for IG-110 and A3, without peak decon- 

volution. Peak maxima is used for computing a from (101), (100), 

(110), and (112) reflections. 

a ave (nm) 

IG-110 0.2463(2) 

A3 0.2461(4) 

IG-110 Powder 0.251(6) 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.1. Out of plane lattice parameter d 002 

Table 3 provides the values of d 002 calculated with three different calculation approaches,
1 d 002, 

2 d 002, and 

3 d 002 : 

◦ 1 d 002 is an average of (002) and (004) reflection calculations from Bragg’s law; the standard

deviation across the two reflections and three faces is reported. 

◦ 2 d 002 and 3d002 use the extrapolation method that takes into account x-ray absorption ef-

fects and instrumental setup [ 6 , 7 ]. For the powder IG-110 sample, the extrapolation method

is not applicable because the sample thickness was less than 1 mm and X-ray penetration

depth is larger than 5 mm. 

◦ 2 d 002 uses peaks (002) and (004) of the deconvoluted data that assumed two crystallite

groups. The standard deviation across the three faces is reported in Table 3 . 

◦ 3 d 002 uses non-peak fitted data (maximum value of the single peak), and hence assumes a

single crystallite group. The d002 extrapolation from all (00x) peaks for each of the samples

is shown in Fig. 1 . The standard deviation across the three faces is reported in Table 3 . 

1.3.2. In-plane lattice parameter a 

Table 4 provides the calculated in-place lattice parameter a . Averaged lattice parameters

without peak deconvolution (i.e. utilizing the location of the peak maximum) are reported, using

the calculation methodology reported in [ 2 , 9–11 ]. The standard deviation across the three faces

and four reflections is reported in Table 4 . Averaged a calculated from peak-fitted XRD data were

reported in the companion article [13] . 
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Figure 3. CarbonXS fitting results of Face 1 of IG110 and A3 sample 

Table 5 

Parameters calculated from CarbonXS for IG110 and A3, and comparison with prior microstructural analysis 

IG110 A3 IG110 vs. A3 Same Conclusion with: 

a 2.461499(1) 2.464806(7) < XRD PF Analysis 

La 266.1(1) 308.8(8) < XRD PF Analysis 

P Random staking 0.14688(9) 0.0671(6) > Raman G’_2D 

P 3R staking 0.08195(7) 0.1031(1) < XRD 3R Analysis 

Preferred Orientation 

Factor -0.0691(6) 2.1943(8) < XRD Bacon Factor 

1

 

e  

m  

a  

t  

w  

v  

b

2

 

c  

L  

d  

c  
.3.3. CarbonXS Peak Fitting Data 

The XRD pattern of IG110 and A3 was fitted with CarbonXS, which is a XRD fitting software

specially design for graphite [2 , 8 , 12] . A constant background was used, and the second layer

odel was used because both IG110 and A3 have quite high graphitization. CARBONXS does not

ccount for the instrument resolution. CarbonXS performs peak fitting and accounts for certain

ypes of layer misalignment defects in the graphite crystallites and for crystallite strain; the soft-

are does not account for non-Gaussian crystallite population distributions. Section 1.3.3 pro-

ides results of CarbonXS fitting. Fig.3 shows the fitting results. Asymmetry of the peaks cannot

e fully reproduced. Table 5 shows the calculated microstructural parameters. 

. Experimental Design, Materials, and Methods 

Two types of carbon materials were characterized with XRD and Raman Spectroscopy: nu-

lear graphite IG110 and graphite matrix A3. IG-110 was provided by the MIT Nuclear Reactor

aboratory and the material was originally procured from Toyo Tanso Co. Japan and A3 cylin-

rical compacts were prepared by Oak Ridge National Laboratory (ORNL). XRD patterns were

ollected using a Bruker D8 Discover X-ray Diffractometer, using Cu radiation (K α = 0.15418 nm).
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Raman Spectra were recorded using a Thermo Scientific DXR Raman microscope operated with a

532 nm laser. Both XRD and Raman spectra diffraction patterns were normalized to unity inten-

sity for the highest-intensity peak. Peak fitting was done with PeakFit v4 software using Voigt

functions, which are a combination of Gaussian and Lorentzian functions. Detailed description

of materials, data collection and data analyzing methods can be found in the companion article

[13] . 

3. Contributions 

H.W. proposed and performed the sample preparation, R.G. and A.C. performed the XRD and

Raman measurements; H.W. proposed and performed the XRD and Raman peak fitting analysis;

R. S. proposed and performed the numerical calculation of crystallite edge area. Z.Z. performed

the XRD fitting analysis with CARBONX. H.W., R.G., and A.C. analyzed the data and performed

the error analysis. H.W. and R.S. wrote the paper. 
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