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Abstract

Given a finite set of points in a plane, a triangulation is a maximal set of non-
intersecting line segments connecting the points. The weight of a triangulation is the
sum of the Euclidean lengths of its line segments. Given a set of points in a plane,
the minirum weight ftriangulation problem is to find a triangulation whose weight s
minimum. No polynomial time algorithm is known to solve this problem, and it is also
unknown whether the problem is NP-hard. The current best polynomial time approxi-
mation algorithm produces a triangulation that can be O(log n) times the weight of the
optimal triangulation. We propose an algorithm that triangulates a set P, of n points
in a plane in O(n?) time and that never does worse than the greedy triangulation. The
algorithm produces an optimal triangulation if the points in P are the vertices of a
convex polygon. The algorithm has the flavor of a heuristic proposed by Lingas and
an analysis similar to his can be performed for our algorithm also, but experimental
results indicate that our algorithm performs much better than the heuristic of Lingas.
The results of experiments comparing the optimal triangulation with the performance
of our algorithm, the heuristic of Lingas, and the greedy algorithm lead us to conjec-
ture that the triangulations produced by our algorithm are within O(1) of an optimal
triangulation. We investigate issues of local optimality pertaining to known triangu-
lation algorithms. We define the notion of k-optimality which suggests an interesting
new approach to studying triangulation algorithms. We restate the minimum weight
triangulation problem as a graph problem and show the NP-hardness of a closely re-
lated graph problem. Finally, we show that the constrained problem of computing the
minimum weight triangulation, given a set of points in a plane and enough edges fo
form a triangulation, is NP-hard. These results are an advance towards a proof that
the minimum weight triangulation problem is NP-hard.

Key words. Minimum weight triangulation, greedy triangulation, Delaunay triangulation,

minimum spanning tree, local optimality, NP-hardness.



1 Introduction

Let P = {p; : i =1,2,...,n} be a set of points in a plane, where each point p; has the
coordinates (z;,%). To simplify our exposition, we assume that no three points in P are
collinear. Let (p;,p;) where ¢ # § denote the line segment with endpoints p; and p;. Let
E(F) denote the set of line segments with endpoints in P, given by E(P) = {(pi,p;): i # j}.
We often think of the points in P as vertices and the line segments in E(P) as edges of
a graph and define various graph problems related to the minimum weight triangulation
problem. Two line segments crossif they intersect at a point that is not a common endpoint.
A triangulation T(P) is a maximal set of mutually non-crossing line segments. Let CH(P)
denote the set of line segments bounding the convex hull of P, and let {S] denote the
cardinality of a set §. Then two properties of any triangulation T(P) are

1. CH(P)C T(P) C E(P), and
2. 2n— 3 < [T(P)| < 3n— 6,

The weight of aline segment (p;,p;), denoted by w(p;, p; ), 1s the Euclidean distance between
pi and p; and is given by w(p;,p;) = ((zi—; ) + (i —%;)?)"/2. The weight of a triangulation
T'(P)is given by W(T(P)) = E(pi,pj)ET(P) w(p;,p;). A minimum weight triangulation of a
set of a planar set of points P is a triangulation of P that has minimum weight among all

triangulations. The minimum weight triangulation problem is

Given P = {p; :i=1,2,...,n}, a set of n points in a plane, find a minimum

weight triangulation of P.

We shall denote an arbitrary minimum weight triangulation of P by MWT(P) and its
weight by W(MWT(P)).

To illustrate these concepts, Figure 1 shows a minimum weight triangulation and an
arbitrary triangulation of a set of 10 points.

The minimum weight triangulation problem has applications in the numerical approxi-
mation of bivariate data. Davis and McCullagh [3) suggest an approach called the polyhedral
approach to calculate the value of a function f at any arbitrary point p, given the value of f

at, irregularly spaced points p;, for i = 1,2,...,n. In this approach, the function surface is
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Figure 1: A minimum weight trian

gulation and an arbitrary triangulation for a set of 10
points.



approximated by a triangulation of the points p;, for i = 1,2,...,n. The point p lies within
some face of the triangulation and f(p) can be approximated by the linear interpolation
of the three vertices of that face. A minimum weight triangulation has good numerical
properties and provides a close approximation of the function surface.

The complexity of the minimum weight triangulation problem has been open since 1975
when it was mentioned by Shamos and Hoey [18]. Since then, several algorithms have been
proposed to solve this problem [12,16,18]. None of these is known to produce even a constant
approximation of a minimum weight triangulation. On the other hand, though Lloyd [13)
and Lingas [11] have proved the NP-completeness of related problems, efforts to show the
minimum weight triangulation problem NP-hard have failed. In this paper we address
this problem from two directions. We propose an algorithm that produces triangulations
that are better approximations of a minimum weight triangulation than those produced by
previous algorithms and also prove new NP-hardness results for two generalizations of the
minimum weight triangulation problem.

We present an algorithm, called the greedy spanning tree triangulation algorithm (in
brief, G-ST-T) that triangulates a set of n points in O(n®) time. G-ST-T has the flavor
of a heuristic by Lingas [12], which we shall call the minimum spanuing tree triangulation
algorithm (briefty, MST-T). Both G-ST-T and MST-T follow a two step paradigm. In the
first step, P is viewed as the vertices of a graph and E(P) as its edges. Fach algorithm
choses a minimal subset E°(P) of pairwise non-crossing edges that span P. The choice
of this set is crucial, and G-ST-T and MST-T differ in this choice. In the second step,
an optimal triangulation containing E*(P) is obtained. optimally using a dynamic pro-
gramming algorithm that is an extension of an algorithm due to Gilbert [5] that optimally
triangulates the interior of a simple polygon. If every point of P isin the convex hull, then
both algorithms optimally triangulate P. MST-T never produces a triangulation that has
weight greater than that of the Delaunay triangulation, while G-ST-T never produces a.
triangulation that has weight greater than that of the greedy triangulation. This implies
that the average case performance analysis of greedy algorithm due to Lingas [11] also ap-
plies to our algorithm. Experiments indicate that G-ST-T rarely produces a non-optiral

triangulation and produces an optimal triangulation far more frequently than the greedy



algorithm. Even when G-ST-T fails to produce an optimal trangulation, its closeness to
optimality is remarkable and certainly much better than any current algorithm.

We advance the notions of local optimality and k-optimality, and determine the local
optimality of the known triangulation algorithms. We present an open question regarding
the k-optimality of greedy triangulations, which if answered would provide further insights
into the minimum weight triangulation problem.

We also present a formulation of the minimum weight triangulation problem as a graph
problem. This leads to a variety of graph theoretic problems whose solution may have
a bearing on the status of the minimum weight triangulation problem. We prove the
NP-hardness of one such problem. Qur other NP-hardness result s motivated by the NP-
completeness result of Lloyd [13]. We show that given P, and E?(P), a subset of E(P)
that contains at least one triangulation of P, the problem of finding a minfmum weight
triangulation of P that is a subset of E*(P) is NP-hard.

The paper is organized as follows. In Section 2, we survey previous work related to
the minimum weight triangulation problem. In Section 3, we discuss a dynamic program-
ming algorithm that optimally triangulates the interior of a convex polygon in O(n?) time.
We present an extension of this algorithm that optimally triangulates more general planar
regions called “cells”. In Section 4, we present Lingas’ algorithm (MST-T) and our new
algorithm (G-ST-T). Both algoriths run in O(®) time. Though neither always produces
an optimal triangulation, G-ST-T possesses properties that ensure that non-optimal trian-
gulations are extremely rare. Thisis supported by experiments that compare the minimum
weight triangulation with the performance G-S8T-T, MST-T, and the greedy triangulation.
These we present in Section 5. In Section 6, we investigate issues of local optimality related
to the known triangulation algorithms. In Section 7, we present a graph theoretic formula-
tion of the minimum weight triangulation problem and prove two new NP-hardness results.
The final section of the paper, Section 8, contains some open problems and conjectures that

arise from this work.



2 Previous approaches

Shamos and Hoey [18) first mention the minimum weight triangulation problem. They
present a divide and conquer algorithm to construct a Voronoi diagram of n points in a plane
in O(nlog n) time. This implies that the Delaunay triangulation, which is the planar dual of
the Voronoi diagram, can be constructed in O (nlogn) time. A greedy triangulation is one
that is produced by the greedy algorithm. The greedy algorithm always chooses the smallest
edge not yet chosen that does not cross any previously chosen edge. Goldman (6] presents
the most efficient known algorithm for producing a greedy triangulation; her algorithm
runs in O(n?logn) time and O(n) space. Shamos and Hoey [18] state that both the greedy
and the Delaunay triangulations are optimal and hence the Delaunay algorithm is a more
efficient way of computing a minimum weight triangulation than the greedy algorithm.
Lloyd [13] provides counterexamples to show that both the Delaunay triangulation and the
greedy triangulation are not always optimal. In fact, his counterexamples show that neither
triangulation is optimal even for a convex set of points.

The complexity of the minimum weight triangulation is one of only four problems that
remains open from Garey and Johnson’s [4] original list of twelve open problems. In fact,
there is no known polynomial time algorithm that produces a constant approximation of
the minimum weight triangulation. Attempts to show the minimum weight triangulation
problem NP-hard have resulted in two related NP-hardness results. In the earliest result,
Lloyd [13] shows that given a set P of points in a plane and a subset E® of E(P), the
problem of determining whether FE?(P) contains even one triangulation is NP-complete.
In a later result, Lingas [10] shows that the problem of determining the minimum weight
geometric triangulation of multi-connected polygons is NP-complete.

The greedy and the Delaunay triangulations have been studied closely as approximations
of minimum weight triangulation. That the greedy algorithm and the Delaunay algorithm
do not produce an optimal triangulation is shown by the examples in Figures 2 and 3
respectively. Both examples are due to Lloyd [13] and consist of a set of vertices of a
convex polygon. In the example of Figure 2 the greedy algorithm choses the line segments
BD and AD for the triangulation, while a better triangulation is given by line segments AC

and EC. In the example of Figure 3 the dashed lines constitute the Voronoi diagram and
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Figure 2: A counterexample to optimality of the greedy triangulation.
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Figure 3: A counterexample to optimality of the Delaunay triangulation.



the solid lines constitute the Delaunay triangulation. The Delaunay triangulation contains
line segment BD while an optimal triangulation is obtained by chosing line segment AC.

Let GT(P), DT(P), and MWT(P) denote a greedy triangulation, the Delaunay trian-
gulation, and a minimum weight triangulation of P, respectively. A measure of how close
a triangulation T°(P) is to a minimum weight triangulation is given by the ratio

(P
AT = ey
Since neither the greedy triangulation nor the Delaunay triangulation are optimal, the
worst-case ratios B(GT(P)) and R(DT(P)) give an indication of how well these triangu-
lations approximate MWT(P). Manacher and Zobrist [14] construct sets of points Py and
P, |Fy| = |P1] = n such that

R(GT(Fy)) = 0 (n?)

and
R(DT(P ))-«9( n )
V= logn/~
Levcopoulos [9] improves on the lower bound for the greedy triangulation by showing that

for each n > 4, there exists a set Pa, |P| = n, such that
R(GT(Ry)) =  (n3).

These results imply that sets of points can be constructed for which the greedy triangulation
and the Delaunay triangulation can be arbitrarily bad as compared to the minimum weight
triangulation. Kirkpatrick [7] showed that for any triangulation T(P), R(T(P)) = O(n).
Hence for the greedy triangulation there is a gap between the known upper bound of
O(n) and the lower bound of Q(nl/ ?) as demonstrated by Levcopoulos. Kirkpatrick [7]

demonstrated that for each n, a set of points P, | P3| = 7, can be constructed such that
R(DT(P)) = 8(n).

This indicates that for certain sets of points, the Delaunay triangulation is as poor an
approximation as possible.

Plaisted and Hong [16] present a triangulation algorithm and show that the weight
of the triangulation that their algorithin produces is within O(logn) of the weight of the

8



optimal triangulation. Their implementation of the heuristic has a time complexity of
O(n®). Smith [19] improves on this by implementing the algorithm of Plaisted and Hong
in O(n*logn) time. The algorithm of Plaisted and Hong is in two steps. The first step
takes as input a set P and produces a set of line segments that partitions the convex hull
of P into convex polygons. The weight of the partition is the sum of the lengths of the
convex hull and the interior line segments. Plaisted and Hong show that the weight of this
partition is within a constant factor of the weight of an arbitrary partition of P into convex
polygons. The second step triangulates each of the convex polygons produced in the first
step. The weight of an optimal triangulation of an n point convex polygon is Oflog n) times
the perimeter of the polygon. This leads to the result that if PHT(P) is the triangulation
produced by their algorithm, then R(PHT(P)) = O(log n). Plaisted and Hong use the ring
heuristic [20] for their second step. The ring heuristic applied to a convex polygon produces
a sequence of convex polygons B, P, .. . P, where F; is the input convex polygon, P is
a triangle and P,y is obtained from F; by connecting alternate vertices of F;. The union
of these polygons is the triangnlation that the ring heuristic produces. Plaisted and Hong
conjecture that in fact R(PHT(P)) = O(1). Olariu, Toida and Zubair [15] point out that
this conjecture is false if the second step is performed using the ring heuristic. But this
conjecture remains intact if the second step is performed using dynamic programming to
optimally triangulate each convex polygon, though the time complexity of this step and
hence of the whole algorithm will then be O(n3),

Lingas {12] presents an algorithm (MST-T) for the minimum weight triangulation prob-
lem that takes O(n3) time. The heuristic generates a polygon whose vertices are all the
points in the input set. This polygon is the union of the convex hull and the minimum
weight forest that connects all the interior points to the convex hull. The polygon is then
triangulated optimally by dynamic programming. Lingas derives an upper bound that
shows that

R(MST-T(P)) = 0 (10g ni M)

W(MWT(P))
where MST-T(P) is the triangulation produced by his heuristic for a set of points P, and
Jump(P) is the length of the longest line segment in the minimum weight spanning forest.

Since n x jump(P)/W(MWT(P)) can be as bad as }(n), this does not provide a non-trivial



worst case bound on the performance of this heuristic.
Using certain separator theorems, Smith [19] gives the first subexponential time algo-

rithm to compute a minimum weight triangulation.

3 A Special Case

A special case of the trianguiation problem arises when the points are the vertices of a
convex polygon. Dynamic programming can be used to obtain an O(ns) solution to the
problem [5]. The algorithm can be described as follows. Let po,pi,---pn_y be the n
vertices of a convex polygon in clockwise order. Let ¢ [P, s], where i = 0,1,...,n = 1 and
8 =1,2,...,n, denote the cost of the interior edges of the minimom weight triangulation
of the convex polygon (p;,piy: .. -Pits-1), Where the subscripts are taken modulo #n. The
problem we wish to solve is that of determining C[pg,n], (or equivalently any problem
Clpi,nl,i=1,...,n— 1). Then, Clp;,s]=0,i = 0,1,...n - 1,1 <5< 3 and

Clonel = 0 (w(i5) + Wi+ s~ 1) 4 Clpiyj — i+ 1]+ Clpgyi 45— 31} (1)
where w(i,7) = 0 if {(p:, ;) is on the convex hull of (Posp1 -+ .Pre1). Al additions and
subtractions in the above equation are taken modulo n. Computing C[p;, s] can be thought
of as filling in the entries of an O(n?) size table. Fach computation of ' [pi, 5] takes O(n)
time and hence the entire algorithm runs in O(n?) time.

The problem of optimally triangulating a convex polygon in time less than O(n) time
is still open, Yao [22,23] presents a technique by which the time complexity of certain
dynamic programming algorithms is reduced from O(n?) to O(n?). This technique requires
the monotonicity of certain bivariate functions. For example, Equation (1) can be rewritten
as

Clpispi] = min {w(i, k) + w(k, ) + Clpi,pi] + Clpi, i1} @)
where Clp;,p;] is the cost of optimally triangulating the convex polygon (p;,p;y1 e )

Using Equation (2), the following bivariate function can be defined

If K(4,7) is monotonic in i and j, i.e., if K(i,j) S K(i,j+1) < K(i + 1,5 + 1), then

filling in the O(n?) entries of the cost table can be accomplished in O(n?) time instead of
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O(n®) time. But counterexamples can be easily constructed to show that J¢ {i,7) is not
monotonic in ¢ and j for the minimum weight triangulation of convex polygons, and hence
Yao’s technique does not directly apply to this algorithm.

Note that the dynamic programming algorithm does not use the geometry of the prob-
lem. This indicates that a more general problem, which does not involve any geometry,
can also be solved in O(n®) time. To state the problem we need some definitions. Let
P = {P0,P1,.. ., Pn_1} and let E(P) = {(pi,p;) PP € Vi < j). Two elements,
(pi;p;) € E(P) and (Pk,p1) € E(P) intersect if i < k < J < l. To each element in
(pi,p;) € E(P) we associate a positive real cosi ((Pi,pi)). The cost of a subset E*(P)is
o E5(P)} = 2 (pip;)eBe(P) €(Pi,p;)- The problem can then be stated as

Given P and E(P), find a maximal subset of E(P) of minimum cost that consists

of pairwise non-intersecting elements.

Though we only presented the special case of a convex polygon, Gilbert’s dynamic
programming algorithm [5] optimally triangulates the interior of a simple polygon. We
extend this algorithm to triangulate a more general figure that we call a cell. A cell is
any interior face of a straight line planar embedding of a graph. Any cell can be uniquely
represented by a sequence of vertices Po,P15---,Pn—1 encountered if the boundary of the
cell is traversed in, say, a counterclockwise order. Note that the vertices in the sequence
are not, in general, distinct and that there may be edges that are traversed twice. A cell
with the points labeled is shown in Figure 4. It can be represented completely by the
sequence 1,2,3,2,4,5,6,7,8,9,10, 11,10,9,12,9,8. For the purposes of the algorithm every
occurrence of the same point in the sequence is treated as being different. The dynamic
programming algorithm that optimally triangulates the interior of a cell is similar to the
one that optimally triangulates the interior of a convex polygon except that now the only
line segments that can be considered are those that do not cross any line segments of the
cell. This can be accomplished by assigning a weight of 400 to any line segment that crosses

a line segment of the cell. Hence, we have the proposition
Proposition 8.1 A cell of n points can be optimally triangulated in O(n®) time,

In the next section we employ the above algorithm, which we call Optimal cell triangu-
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Figure 4: A 12 point cell.
lation (OCT).
4 An improved triangulation algorithm

We propose an algorithm (G-ST-T) that triangulates a set P = iP1:p2,...,pa} of points in
a plane in O(r®) time. G-ST-T has two distinct phases. In the first phase a spanning tree
of the graph (P, GT(P)) is chosen. How the spanning tree is chosen is explained later. The
spanning tree along with the convex hull produce a single cell. In the second phase, the cell
obtained in the first phase is optimally triangulated using the QCT algorithm. G-ST-T is
similar in structure to the algorithm (MST-T) proposed by Lingas [12]. In fact, a similar
analysis applies to G-ST-T also, and we include MST-T in our experimental analysis.

To introduce the two phase paradigm that is common to both MST-T and G-ST-T, we
first present the minimum spanning tree triangulation algorithm.
Minimum spanning tree triangulation algorithm ( MST-T)
Input: P = {P1,72,...,pa}.
Output : A triangulation MST-T(P).

12



1. Compute the Delaunay triangulation DE(P).

2. To each line segment (i,pj) € E(P) assign a cost as follows.

o =4 0 if (pi,p;) € CH(P)
((Pi,pi)) _{ w(pi,p;) otherwise
Utilizing DT(P), compute a minimum spanning tree M ST(P) of (P, E(P)) using the

costs defined above.

3. Use OCT to optimally triangulate the single cell defined by CH(P)U MST(P), pro-
ducing MST-T(P).

The effect of the weights used in Step 2 is that all but one of the line segments in CH (F)
is in MST(P). Steps 1 and 2 can each be performed in O(nlogn) time while step 3 can
be performed in O(7n®) time. An example of a cell produced at the end of Step 2 in the
MST-T algorithm is shown in Figure 5. The dark line segments constitute the minimum
spanning tree chosen in step 2.

Lingas provides an upper bound on the performance of his algorithm as compared to
the minimum weight triangulation. Let Af ST(P) be a minimum spanning tree of the graph
(P, E(P)). Let I(P) = MST(P)~ CH(P) be the interior line segments of the minimum
spanning tree and let jump(P) = max{w(pi,p;} : (pi,p;) € I (P)}. For a triangulation
T{P) and a line segment /, let A(T(P),1) be a set of line segments # such that  crosses /
and at least one of the two pieces of ¥ between the crossing point and the endpoint of I is
not crossed by any other line segments in I(P). The bound on the performance of MST-T

follows from the following proposition that Lingas[12] proves.

Proposition 4.1 (Lingas[12]) Let T(F) be a triangulation of P. There exists a triangula-
tion of the interior of the cell CH (PYuMSs T(P) of weight at most
6- > JAT(P),e)| x wle) + (8logn +9) x W(T(P)) + (3logn + 2) x W(I(P)).
eEI(P)
This leads to the following bound on the weight of the triangulation produced by the M§T-T
algorithm

WMST-T(P)) n X jump(P)
WOMWT(P)) (W(MWT(P))+IOgn) '
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4

Figure 5: A simple polygon created at the end of step 2 in the MST-T algorithm.

Lingas gives an example for which n x jum?(P) J/W(MWT(P)) = Q(n) and yet the minimum
weight triangulation is exactly the same as the triangulation produced by the MST-T
algorithm. This shows that the bound is quite loose.

The following propositions follow immediately from the MST-T algorithm.

Proposition 4.2 If P contains only vertices of a convex polygon, then MST-T(P) is op-

ttmal.

Proposition 4.3 For any set of points P s MST-T(P) is never worse than the Delaunay
triangulation of P, ie., W(MST-T(P)) < W{DT(P)).

The MST-T algorithm will produce an optimal triangulation if and only if all the line
segments in the spanning tree that we chose are also in some particular minimum weight

triangulation. That this is not always the case is shown in Figure 6. Here, three of the four
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(0,0)
*
c
(1,-4.5)

IAE| = ICE| = 10.06, [DE} = 10, JAC| = 9, [BE{ = 11.

Figure 6: Counterexample to the MST-T algorithm.

convex hull edges are chosen to be in the minimum spanning tree. Whatever the choice
may be, AC cannot be in the minimum spanning tree because it creates a cycle. Since,
w(DE) < w(BE) < w(AE) = w(CE), ED is the next edge chosen to be in the minimum
spanning tree. The triangulation thus computed by MST-T algorithm is obviously non-
optimal, since the optimal triangulation can be obtained by choosing edges AC, AE, CFE
-and BE along with the convex hull edges.

The MST-T algorithm does not produce a non-optimal triangulation for any of the
counterexamples in the literature (13,14] that have been used to show either the greedy
triangulation or the Delaunay triangulation to be non-optimal. This can be attributed
to the fact that the algorithm picks the least number of edges needed to keep the set of
input vertices connected and then proceeds to select the optimal set of the remaining edges.
So far we have not been able to say anything about the asymptotic behavior of the ratio
R(MST-T(P)). We conjecture that R(MST-T(P)) = O(1). This conjecture is motivated
by the observation that the effects of a “bad” minimum spanning tree edge are local.

There are many ways of choosing a spanning tree in the first phase of the paradigm.
The spanning tree chosen in the MST-T algorithm is one such choice. We now present an
algorithm that differs from the MST-T algorithm in the choice of a spanning tree. Though
the theoretical bound on the weight of the triangulation produced by our algorithm is loose,

experimental results indicate that the choice of spanning tree that we prescribe produces
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triangulations that are almost always optimal. The time complexity of this algorithm
remains O(n®). We call this algorithm the greedy spanning tree triangulation algorithm.
Greedy spanning tree triangulation algorithm. (G-ST-T).
Input : P = {p,ps,...,pn}.
Output : A triangulation G-ST-T(P).

1. Compute a greedy triangulation GT(P) of P and the convex hull CH (P).

2. Compute a minimum spanning iree GM ST(P) of (P,GT(P)) using the following

assignment of costs to line segments

00 if (pi,p;) & GT(P)
((pi,pi)) =4 0 if (pi,p;) € CH(P)
w((pi,p;)) otherwise

3. Use OCT to optimally triangulate the single cell in CH(P)U GMST(P), producing
G-ST-T(P).

An analysis of the time complexity of each step follows.

1. Preparata and Shamos [1 7] present an algorithm that produces a greedy triangulation.
Their algorithm takes O(n?log n) time and O(n?) space. Goldman [6] presents a space

efficient greedy triangulation algorithm that runs in O(n?logn) time and O(n) space.

2. Since the number of edges in any planar graph is O(n) the greedy triangulation
contains O(n) line segments. This implies that the second step can be accomplished

in O(nlogn) time.
3. Asin the MST-T algorithm, the third step is performed in O(n®) time.

As before, the time complexity of the third step dominates and the time complexity of the
algorithm is O(n®) time,
The following two propositions follow quite directly from the G-ST-T algorithm.

Proposition 4.4 If P contains only vertices of a convex polygon, then G-ST-T(P) is op-

timal.
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Proposition 4.5 For any set of points P, G—ST-T(P) 8 never worse than the greedy
triangulation of P, i.e,, W(G-ST-T(P)) < W(GT(P)).

Hence all upper bounds for the greedy triangulation also hold for triangulation produced by
the G-ST-T algorithm. In particular all results about the asymptotic behavior of E(GT(P))
[8] are true for R(G-ST-T(P)). While minimal counterexamples for the greedy and the
Delaunay triangulation require only five and four points respectively, any counterexample
to G-ST-T must contain at least six points. This follows from the following theorem. In
the proof we use the notation ABCD to denote a quadrilateral with points A, B, ', and

D in clockwise order.,

Theorem 4.1 There ezists no five point set P for which G-ST-T(P) is not optimal, i.e.,
Jor which R(G-ST-T(P)) # 1.

Proof: Let P be a set of five points. The configurations possible with five points are
1. CH(P) contains three points,
2. CH(P) contains four points.

We need .not consider the case where all five points lie on the convex hull because of
Proposition 4.4. The two cases are shown in Figure 7.

First consider Case 1. Line segment DE will be in any triangulation T(P), because no
line segment crosses DE. Of the quadrilaterals that line segment DE forms with the line
segments of the triangle ABC, only one can be convex. (In Figure 7(a) the 6 quadrilaterals
formed are DADEC, DAEDC, OCEDB, 0CDEB, OBDEA, and OBEDA). Without
loss of generality, let the convex quadrilateral be DADEC. The diagonals AE and DC
ofl DADEC cross, and hence only one of them can be in any triangulation. None of the
remaining line segments mutually cross, and hence they are in every triangulation. Since
both the greedy triangulation and the minimum weight triangulation contain the smaller
of line segments AE and DC we have that GT(P) = MWT(P), from which it follows that
G-ST-T(P) = MWT(P).

Now consider Case 2 (Figure 7(b)). Suppose the diagonals AC and BD cross at a
point 0. The diagonals partition DABCD into 4 quadrants, and point E lies in one of
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D

Case 1 : 3 points on the convex hull. Case 2 : 4 points on the convex hull,

Figure 7: The two possible configurations with 5 points.

them. Without loss of generality, we may assume that E lies in quadrant BO¢'. Hence
line segments BE and CE will be members of every triangulation. A minimum spanning
tree of the greedy triangulation contains one of AE, BE, CFE or DE. If this spanning
tree contains either BE or CF then the triangulation produced by the G-ST-T algorithm
is optimal. Consider the case where the greedy spanning tree contains either AE or DE.
Without loss of generality, we may assume that the greedy spanning tree contains AE. Let
L be the smaller of the two line segments DE and AC. The triangulation produced by the
G-5T-T algorithm is CH ({4, B,C, D, E})U{AE,BE,CE,L}. If the optimal triangulation
contains AF then it is the same as the greedy spanning tree triangulation. Hence consider
the case where the optimal triangulation contains line segment BD. Here the optimal
triangulation is CH{A,B,C,D,E})u {BD,BE,CE,DE}. But, w(AE) < w(BD) since
AFE and BD cross and AFE is in the greedy triangulation. Also w(L) < DFE. Hence,
the weight of the greedy spanning tree triangulation is no greater than the weight of the
minimum weight triangulation. |

The G-ST-T algorithm will produce an optimal triangulation if and only if the line
segments of the minimum spanning tree of the greedy triangulation are always in some

particular minimum weight triangulation. That this is not always the case can be seen
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B:(217,256). |BGI = 48.38, |BD)| = 49.49,
D:(210,207). |BE| = 48.30, |BF| = 47.80,
E:(195213). |GD|=51.74,
F:(179.227). |GE| = 36.80, [FD| = 36.89.
G: (171,241).

Figure 8: Counterexample to the G-ST-T algorithm.

from the seven point counterexample in Figure 8. Here, GT(P) contains line segments B(,
BD, GF, FE, ED, GE and BE (among others). The minimum spanning tree chosen
from the line segments of GT(P) contains G F, FE, ED and BE (as well as two convex
hull line segments). The triangulation that the G-ST-T algorithm computes is the same
as the greedy triangulation. A slight improvement in the weight of the triangulation can
be obtained by choosing line segments FI and BF instead of GE and BE. Examples
for which both the MST-T and the G-ST-T algorithms produce non-optimal trianguiations
can be constructed by combining the examples in Figure 6 and Figure 8. G-ST.T produces
an optimal triangulation for the example in Figure 6, while MST-T produces an optimal
triangulation for the example in Figure &, thus showing that G-ST-T and MST-T are not
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Number of failures
Set Size || Greedy] MST-T | G-ST-T
15 44 5 1
20 61 11 0
25 69 12 1
Total 174 28 2
Table 1

comparable as the G-ST-T and the greedy algorithm are.

Proposition 4.1 can be used to construct an upper bound on the size of the triangulation
produced by the G-ST-T algorithm. For this we define greedy_jump(P) as the largest line
segment in GMST(P) — CH(P). Then we have the following theorem.

Theorem 4.2 For any set of points P,

n X greedy_jump(P)
WMWT(P)) + logn)) .

It is clear that for any set of points P, greedy_jump(P) > Jump(P). If for all sets of points

R(G-ST-T(P)) = O (

P, greedy_jump(P) = O(jump(P)), then the bound specified in proposition 4.1 also holds
for the G-ST-T algorithm.

53 Experimental results.

The greedy, MST-T, and G-ST-T algorithms were tested with sets of sizes 15, 20 and 25
with 400 sets of each size. Testing larger sets was impractical due to the time required by
the exhaustive search for finding a minimum weight triangulation algorithm. The points
in each set were generated randomly with integer coordinates between 0 and 2'6 — 1. The
performance of these algorithms was compared to the weight of the optimal triangulation,
which was computed through an exhaustive search of the space of triangulations. Three
kinds of comparisons were made.

Table 1 lists, for each set size, the number of times each algorithm fails to produce an
optimal triangulation for that set size. It should be noted that the G-ST-T algorithm failed
to produce the optimal triangulation only twice in 1200 trials as compared to the greedy
algorithm which failed 174 times. The MST-T algorithm also does quite well as compared
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Average triangulation weight

Set Size [ Optimal Greedy MST-T G-ST-T
15 298697.76 | 309873.34 | 295236.84 298697.76
20 349238.62 | 373288.61 | 350176.36 349238.62
25 437233.88 | 479283.36 | 439846.97 | 437233.88

Table 2

Worst case % over optimal
Set Size || Greedy | MST-T G-ST-T
15 4.4963 | 0.9701 | 0.0017
20 10.1832 | 1.0017 | 0.0000
25 17.3897 | 1.5323 | 0.0003

Table 3

to the greedy algorithm, failing 28 times in 1200 trials. These results are evidence that
MST-T and G-ST-T rarely produce non-optimal trianguiations.

Table 2 is a comparison of the average size of the triangulations produced by each
algorithm for each set size, G-ST-T fails only once each for set size 15 and set size 25,
and never for set size 20. Even when the algorithm fails, the weights of the triangulations
produced by G-ST-T algorithm are very close to the minimum weight triangulation. These
results are evidence that in the average case G-ST-T and MST-T produce triangulations
that are within a small constant of approximation of the minimum weight triangulation.

Table 3 compares the worst case triangulation produced by each algorithm. For each
triangulation T'(P) and for each set size the worst case ratio

W(T(P)) ~ W(MWT(P))
W(MWT(P)).

is shown in Table 3. The results in this table are evidence that in the worst case both MST-T
and G-ST-T algorithms produce triangulations that are within O(1) of the minimum weight

triangulation.
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6 Issues of Local optimality

Throughout the paper we have been calling a minimum weight triangulation “optimal”. We
will now elaborate on the notion of optimality. Given a set of points P and a triangulation
T(P) of P, we say that T(P) is locally optimal if and only if every convex quadrilateral in
T(P) is optimally triangulated.

It follows from the definition that for every convex quadrilateral @ in a locally optimal
triangulation T'(P), the shorter diagonal of @ belongs to T(P). While a minimum weight
triangulation is always locally optimal, the converse does not always hold. The status of
the four triangulations discussed in this paper with regard to local optimality is presented

in the following theorem.
Theorem 6.1 With local optimality as defined above, we have that

1. A greedy triangulation is always locally optimal.
2. A Delaunay triangulation is not always locally optimal,
3. A minimum spanning tree triangulation is not always locally optimal.

4. A greedy spanning tree triangulation is not always locally optimal.

Proof: From the definition of a greedy tfiangulation, it follows immediatrely that the greedy
triangulation is locally optimal. An example showing that the Delaunay triangulation is
not always locally optimal can be found in Figure 3. In this example, D BCDA is a convex
quadrilateral in the triangulation that is not optimally triangulated. An example showing
that the MST-T algorithm does not always produce a locally optimal triangulation can be
found in Figure 6. In this example, D DAEC is a convex quadrilateral in the triangulation
that is not optimally triangulated. That the G-ST-T is also not always locally optimal is
a surprising result, and the example in Figure 9 shows this. In this example the points A,
B, C, D, E, and F are in the interior of a large convex polygon. In the upper figure the
greedy triangulation of these points is shown with the minimum spanning tree indicated by
the darkened line segments. In the lower figure the output of G-ST-T is shown. The two
triangulations differ in that, the greedy triangulation contains line segments DF and DB
while the triangulation produced by G-ST-T contains line segments AE and BE. AB is in

22



#{ F (6.3227966,13)

B(10,0)

C (0.0001, 0.25)
F (6.3227966,13)

|AC] = 0.25
IDE| = 2.1213203
|EF] = 7.2268714
|AD} = 8.1394103
[CD| = 8.3852728
IDF| = 9.284188
JAE| =95

|CE| =9.75

|AB| = 10

ICB| = 10.003025
|BFI = 13.510084
IBE| =13.793114
[DB| = 14.008926
IAF] = 14.456063
ICF| = 14.681246

E (0,9.5)

C (0.0001, 0.25)

Figure 9: An example to show that G-ST-T algorithm does not always produce locally
optimal triangulations.
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the greedy triangulation and also in the minimum spanuning tree of the greedy triangulation.
In the output of G-ST-T AP is the diagonal of quadrilateral AEBC and diagonal AB is
longer than diagonal EC. O
The really surprising result of Theorem 3 is that a triangulation produced by G-ST-T is
not always locally optimal. The G-ST-T triangulation is derived from the locally optimal
greedy triangulation, yet fails to inherit the local optimality,

We extend the notion of local optimality and define the notion of k-optimality in the

following manner. A triangulation T(P) is k-optimal, k > 3, if every k vertex convex
polygon belonging to T'(P) is optimally triangulated.
By this definition any triangulation is 3-optimal, while any locally optimal triangulation is
4-optimal. Observe that if a triangulation is k-optimal, & > 4, then the triangulation is also
(k — 1)-optimal. A triangulation is k-non-optimal if it is not k-optimal. A triangulation is
strictly k-non-optimal if it is not k-optimal, yet it is J-optimal for all 7 < k. An interesting
question regarding the local optimality of the greedy triangulation is the following:

Is there a constant N such that there is no set of points P, for which GT(P)is
strictly ¢-non-optimal, for all { > N ?

The same question can be restated as

Is there a constant N such that for any set of points P, if GT(P) is k-non-
optimal, where k > N then GT(P) is j-non-optimal for some i<k

If there were a constant N satisfying the above question, then a minimum weight triangula-
tion can be constructed by first constructing a greedy triangulation and then searching for
every convex polygon of size N — 1 or less, that is not optimally triangulated. Every such
convex polygon is retriangulated using dynamic programming to yield a minimum weight
triangulation. The worst case time complexity of this algorithm will depend on the number
of non-optimal convex polygons that are created each time a non-optimal convex polygon
is retriangulated. We shall call the constant N, the threshold of strict local non-optimality

and prove a surprising lower bound for it.

Theorem 6.2 If N is the threshold of strict local non-optimality then N > 5.
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not optimally triangulated, but all quadrilaterals are. We also present an example with six
points for which the greedy triangulation contains a, non-optimal hexagon, yet all pentagons
in the triangulation are optimally triangulated. This is shown in Figure 10. Here the
hexagon ABECDF is not optimally triangulated but the two pentagons ABCDF and
ABECD are optimally triangulated in the greedy triangulation. ]

The answer to the above would be very interesting in its own right. As % increases,
maintaining strict k-non-optimality imposes more and more constraints on the points and
we believe that for some k, meeting all the constraints would be geometrically impossible

and hence we conjecture the existence of the constant A,

7 NP-hardness results

In keeping with the notation of Garey and Johnson, the minimum weight triangulation

problem can be stated as a decision problem as follows

MINIMUM WEIGHT TRIANGULATION (MWT)
INSTANCE. A set P of points in a plane, a positive rational number k.
QUESTION: Is there a triangulation of P whose weight is no more than 4?7

The computational complexity of this problem remajns open. The minimum weight tri-
angulation problem can be viewed in various ways. A particular view is to consider P
as the set of vertices of a graph ¢ and E(P) as the set of edges of . (7 is the com-
plete graph on |P| vertices. The lengths of the line segments in K(P) can be thought
of as weights associated with the edges of (. This graph G = (P, E(P)) made from
the points and line segments has an obviouns straight line embedding in the plane. Let
C = {(ei,e;) € E(P)YX E(P) : ¢; and €; cross } be the set of crossings in the embedding.
Then G° = (E(P),C) is the crossing graph of G. Fach vertex (line segment) of G° has
weight equal to its Euclidean length.

Figure 11 illustrates a graph ¢ and its crossing graph G°. The minimum weight trian-

gulation problem can be posed in terms of the crossing graph G° as follows:
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E(0,0.04)

F(0,-1.7684)
BC| = 1, |AC|=1.7614, |AD| = 1.9

E (0,0.04)

B (-0.5,0)

F (0,-1.7684)

|AE| = 1.4086, |DE| = 1.4086, |EF| = 1.8084

Figure 10: A greedy triangulation with a non-optimally triangulated hexagon and with all
pentagons optimally triangulated.
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D © 0 o 0o o

AB BC CD DA CE

Figure 11: A complete straight line graph and its crossing graph.

Given g crossing graph, G, find o mazimal independent vertes set of minimum

total weight.

The problem can be restated ag a decision problem as follows:

RESTRICTED MINIMUM MAXIMAL INDEPENDEN T SET

- INSTANCE. A crossing graph G° = (E, C), positive rational weight w(e) for each ¢ € £ ,
and a positive rational number k,

QUESTION: Is there a maximal independent set J in G such that >eel w(e) < k.

K we discard the restriction that the graph under consideration is a crossing graph, then

we have a more general problem.

MINIMUM MAXIMAL INDEPENDENT SET
INSTANCE. A vertex weighted graph G = (V, E), positive rational weight w(v) for each
vertex v € V, and a positive rational number £,

QUESTION: Is there a maxima] independent set I, such that 2ver w(v) < k7

We show that the above problem is NP-hard. The reduction is in two steps and it makes

use of the following problems.

SMALLEST MAXIMAL INDEPENDENT SET
INSTANCE. A graph G' = (v, E), integer k > 0.
QUESTION: Is there a maximal independent set 7 ¢ such that |7] < £7?
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MINIMUM MAXIMAL MATCHING
INSTANCE. A graph G = (V, E), integer k > 0.
QUESTION: Is there a maximal matching M in G such that |M| < k7

Yannakakis and Gavril [21] show that MINIMUM MAXIMAL MATCHING is NP-complete.
We now show that MINIMUM MAXIMAL INDEPENDENT SET is NP-hard.

Theorem 7.1 MINIMUM MAXIMAL INDEPENDENT SET is NP-hard.

Proof: It is obvious that if SMALLEST MAXIMAL INDEPENDENT SET is NP-hard,
then so is MINIMUM MAXIMAL INDEPENDENT SET. We show that SMALLEST
MAXIMAL INDEPENDENT SET is NP-hard by reduction from MINIMUM MAXIMAL
MATCHING. Let G = (V, FE) and an integer ¥ > 0, be an instance of MINIMUM MAX-
IMAT, MATCHING. Then an instance of SMALLEST MAXIMAL INDEPENDENT SET
is G' = (V!,E'Y and k, where G' is the line graph of G. G contains a maximal matching
M, such that |M| < k, if and only if G contains a maximal independent set 7 such that
1] < k. O

If P is the set of vertices of a convex polygon, then the complete straight edge graph in-
duced by these vertices G = (P, E(P)) can be embedded in a circle with O(n?) chords while
maintaining all crossings. The crossing graph of G is, therefore, a circle graph with O(n?)
vertices. Buckingham [2] presents an algorithm to determine the maximal independent set
with the maximum weight in a weighted circle graph. The algorithm assumes the following
labeling of the endpoints of the chords. The la.beiing begins at an arbitrary point on the
circle and proceeds in the clockwise direction. The first endpoint encountered is labeled
1 and its paired endpoint is labeled 1’. If ¢ chords are labeled, then the next endpoint
encountered is labeled (7 4 1) and its paired endpoint labeled (i +1Y. This labeling can be
seen in Figure 12. Corresponding to such a labeling of the endpoints of the chords we can
say that certain chords are contained in certain other chords. A chord (4,7') is contained
in a chord (4,7") if, when traversing the circle in clockwise direction the order in which the
four endpoints occur is (7,4,4,7'). The algorithm presented in [Buc80] takes O(c+ n) time

» Where n is the number of vertices in the circle graph and ¢ is the number of instances of a
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5

Figure 12: The labeling of the endpoints of the chords of a circle,
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chord being strictly contained within another chord. This algorithm can be modified easily
to obtain an algorithm that determines the maximal independent set with the minimum
weight in O(e + n) time. It is clear that G has O(n?) chords and that ¢ = O(n3). Hence,
this can be thought of as an alternate O (n3) time algorithm that optimally triangulates a
set of points which are the vertices of a convex polygon. While this is not an improvement
over the existing best time complexity for this problem, this may provide insights into ways
{o improve on this time complexity.

The second NP-hardness result that we prove is for a geometric decision problem. This
problem is a generalization of MWT. Lloyd proved the following problem N P-complete. In
keeping with Lloyd’s notation we denote E(P) by E.

TRIANGULATION EXISTENCE (TRI)
INSTANCE: A set P of points in a plane, a set of line segments F' C F.
QUESTION: Does E’ contain a triangulation of P?

This problem was shown to be NP-complete by a reduction from SAT. Motivated by the
above problem, we propose the following generalization of MWT.

GENERALIZED MINIMUM WEIGHT TRIANGULATION (GMWT)
INSTANCE: A set P of points in a plane, a set of line segments E' C FE, such that F'
contains a triangulation of P, a positive rational number k.

QUESTION: Is there a triangulation in £’ whose weight is no more than k?

Theorem 7.2 GMWT is NP-hard.

Proof: GMWT is shown to be NP-hard by a reduction from SAT. This reduction is a
modification of the reduction that Lloyd [13] used to show TRI N P-complete and hence
after an overview we only mention the modifications to Lioyds proof.

Assume that we have clauses C1,Ch,...,Cy each of which is a disjunction of literals
drawn from the variables z1,29,...,2,. The building block of the construction is a switch
S8;; corresponding to each clause, literal pair. The instance of GMWT corresponding to

the instance of SAT is a rectangular array of switches called a network. The switches are
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labeled as points with Cartesian coordinates with the indices of the variables on the X-axis
and the indices of the clauses on the y-axis. The switches are of three types : 5i; is positive
if z; € Cy, Sij is negative if 77 € C; and Sy is neutral if 2; ¢ C; and z; ¢ C;. In any
triangulation of this network we can think of streams of current flowing in two directions.
A vertical stream of current flowing upwards represents the truth value of variable while
a horizontal stream of current flowing to the right represents the evaluation of the truth
value of a clause. For each variable i, the same truth value flows through each switch
Sii, 1 <7 < k. The construction forces the horizontal current Hlowing into each switch
515 to be false while the horizontal current flowing out of each switch Snj can be true or
false. Lloyd’s construction forces the truth value flowing out of each switch S,; to be true;
our construction differs from his in this regard. A smaller triangulation corresponds to a
horizontal current that changes truth value to true while a larger triangulation carresponds
to a truth value that remains false. Hence, the smallest triangulation corresponds to every
clause being satisfied.

A switch suitable for our reduction can be constructed from the one used by Lloyd by

making the following changes to Lloyd’s construction.

1. Each of the squares in the corners of a switch is shrunk, keeping the coordinates of
points Ey, Es, Fs and £y the same. The octagon at the center of the switch is shrunk
into a geometrically similar octagon that has the same center as the original octagon.
The shrinking continues until each of the switches seems to contain 5 points, 4 at each
of the corners of a square and 1 at the center. It can be verified that this shrinking

preserves the pairwise intersection of line segments,

2. The coordinates of the special points V" are changed from (160 - 7,100 (5 — 1)+ 50)
to (2,100 - (5 — 1) + 50). & > 100 - n is chosen such that point V™% ig “far enough”
from points IV and H", The notion of “far enough” is made precise later in the

proof. Let the length of edge (V”j,fnj) and edge (V”j,H“j) be d.

3. For each switch 5™ we add a new point X™ to the set of points V. We do not specify
the coordinates of X7 beyond saying that X™ lies in the intersection of the interior
of AP H™ | AR i ni ACHH™ Y| ADP i ri ang AQUEM YT (al]
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the new set of points V7.
4. For each switch $ add the following edges to E.
{X™9} x {C, DY, 1, 109, QM v} 1<i<k
(M, HM) (@, VM) 1< <k
(vra, vty 1 <<k
Call the new set of edges F’.

To complete the instance of GMWT we let
M = (1600-v/2+100) - n-k+350-k+100-n+2-d - &.

The next step is to show that an instance of SAT is satisfiable if and only if an instance of
GMWT constructed in the above manner contains a triangulation whose weight is no more
than M.

If the given instance of SAT is satisfiable, than by Lloyd’s proof it follows that there
exists a triangulation T of V in E. A triangulation T of ¥ implies that the east-connected
‘point in switch §™ is either CT 7 or D;‘j . A triangulation 7" of V' can be constructed from

T as follows:

T'=T u {(X™, ™), (X" ), (B, "1<j <k}

U {(X™,C)1 < j <k and CMis exposed }
U {(X™, D)1 <4 <k and Dis exposed}
U {(V, VUt < < k)

We now compute the weight of 7' and show that it is no greater than M.
As Lloyd showed, in any triangulation of the network, a switch $¥ can be triangu-
lated in one of four ways, called A-triangulation, B-triangulation, C-triangulation and D-

triangulation. The edges in any triangulation of a switch are of four types. They are
1. corner edges : connect frame vertices to frame vertices in the same corner.

2. diagonal edges : connect frame vertices to frame vertices in the opposite corner,
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3. half-diagonal edges : connect frame vertices to terminal vertices.

4. center edges : connect terminals.

The corner edges and the center edges have weights approximately equal to 0, while each
diagonal edge has a weight approximately equal to 100 - +/2 and each half-diagonal edge
has weight approximately equal to 100/+/2. An A-triangulation and a D-triangulation of
a switch contain 26 half-diagonals and 3 diagonals. A B-triangulation or a C-triangulation
contain 24 half diagonals and 2 diagonals. Hence, the weight of an A-triangulation or
a D-triangulation is 1600 - +/2 and the weight of a B-triangulation or a C-triangulation is
1400-/2. Hence, the weight of the largest triangulation of a switch is 1600 /2. The weight
of each inter-switch edge is approximately 100 and since X™ can be made arbitrarily close
to H™ | the weight of the interior edges of the triangulation of AC} i {ni [rd op AD7 9 i e
is approximately 150. The weight of the convex hull of V is 2.n-100+2.%.100. The
weight of the set of edges {(V™/,V2U+D)1 < j < k} is (k— 1) -100 and the weight of the
edges (V™ I"7) and (V™ H"Yis d each. Hence the total weight of the triangulation 77 is
given by

W(T') = 1600-v2-n-k+100-(n—1)-(k— 1)+ 150 & + 200 -1 +
200 k4100 (k—1)+2-d-k
(1600 -v2+100) -2 -k + 350 -k + 100 - n+2-d - &.

Since W(T') = M, we have shown that if SAT is satisfiable then there exists a triangulation
T’ of V' such that the weight of 7" is no more than M.

To show the only if part, we assume that E' contains a triangulation 77 of V¥’ such
that the weight of 77 is no more than M. In triangulation 77, if By* 7 is exposed then since
there is no edge (Bf’j,X{Lj) in E’, the pentagon (I”j,ij,Q”j,H”j,V”j) containing X™
Is triangulated by the edges (@™, V™), (B} yni X", QM) (X, H™) and (X7, Y ).
The weight of the interior edges of the triangulation of this pentagon is greater than 3 - d
and the weight of the triangulation of this switch is 3 - d + 1350 - /2. The situation when
A{‘j is exposed is exactly the same. Hence, the weight of a triangulation 77 which contains

a switch $™ with A7 or B™ exposed is greater than

1400 v2-(n -k ~1)+100- (n — 1)~ (k — 1) + 100 - & -+ 200 - 7 -+
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(k—1)-1004+2-d-k+3-d+ 1350 . /3.
Let N denote the above number. By comparing M with N it can be scen that, if
3-d+1350-v/2 > 1600 - v/Z -1 - &

then N is greater than M. Hence, by choosing V% “far enough” such that d satisfies the
above inequality, we ensure that if 7' has size no greater than M, then for all switches
8§79, either vertex CT U is exposed or vertex D} i is exposed. This implies that £ contains a
triangulation T of V and by Lioyd’s proof this implies that the corresponding instance of
SAT is satisfiable. 0
GMWT is the closest problem to MWT that has been shown to be NP-hard. Additional
insights may allow the above proof to be extended to MWT,

8 Conclusions and Conjectures

We have made progress in two directions towards determining the complexity of the mini-
mum weight triangulation problem. In the first direction, we present two algorithms, one of
which is due to Lingas (MST-T) {12] which experimentally perform much better than previ-
ous algorithms. While MST-T never performs worse than the Delaunay triangulation, our
algorithm (G-ST-T) never performs worse than the greedy triangulation. The bound proved
by Lingas in proposition 4.4 will hold for Q-ST-T provided greedy_jump(P) = O(jump(P))
for any set of points P. We conjecture that this is true. Experimental results show that
our algorithm rarely produces non-optimal triangulations as compared to the greedy trian-
gulation and the triangulation produced by Lingas’ algorithm. Even when a non-optimal
triangulation is produced by our algorithm, it is very close in weight to the minimum wej ght
triangulation. Both algorithms also produce a minimum weight triangulation when P only

contains vertices of a convex polygon. These results lead us to the following conjecture

Conjecture 1: MST-T and G-ST-T algorithms produce triangulations that

are within O(1) of the minimam weigh triangulation in the worst case.

Our algorithm also is a specific instance of a general strategy of choosing a small subgraph

from the complete graph of line segments induced by a set of points P and then using
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dynamic programming to optimally triangulate the interior of the straight line embedding of
the subgraph. This strategy can be applied to Plaisted and Hong’s triangulation algorithm
also, to produce a triangulation which is always within O(log n) of the optimal and probably
much better than the triangulation produced by their algorithm.

The OCT algorithm that we use in the G-ST-T algorithm, pays no attention to the
geometry of the problem and hence solves a more general problem with the same time
complexity. We conjecture that using the geometry will improve the time complexity of
the OCT algorithm and hence also the time complexity of our algorithm. Even for special
cases of a convex polygon such as a semicircular polygon, the best known algorithm that
optimally triangulates the interior of the polygon, still takes O(n?) time. Hence, it is an
open question whether there are some classes of convex polygons for which the dynamic
programming algorithm can be improved from O(n?) time complexity.

There are many questions regarding the time complexity of algorithms that produce a
greedy triangulation. Currently the best is an O (n*logn) time and O(n) space algorithm
by Goldman [6]. The greedy triangulation of a convex polygon can be computed in O(n?)
time and the greedy triangulation of a semicircular polygon can be computed in O(nlogn)
time [11]. It is unknown whether these time complexities can be further improved. In
the G-ST-T algorithm we compute 2 minimum spanming tree of a greedy triangulation by
first constructing the greedy triangulation and then choosing a minimum spanning tree.
This takes O(n?logn) time but we conjecture that the minimum spanning tree of a greedy
triangulation can be computed without computing the greedy triangulation completely.
Hence, it might be possible to improve the time complexity of this step of our algorithm
further.

In the second direction, we present two NP-hardness results. These results show two
generalizations of the minimum weight triangulation problem to be NP-hard. For our first
NP-hardness result we formulate the minimum weight triangulation as a graph theoretic
problem. This provides a new way of looking at the minimum weight triangulation problem.
The second NP-hardness result is for a geometric decision problem that is a generalization
of the minimum weight triangulation problem. Motivated by our results in both directions

we present two conjectures, which if true will determine the complexity of the minimum

35



weight triangulation problem completely.
Conjecture 2: The MWT problem is NP-hard.

In our graph theoretic formulation of the minimum weight triangulation problem we de-
fined the class of graphs called crossing graphs. The determination of the computational
complexity of standard graph problems such as minimum vertex cover, for the family of
crossing graphs might be of interest in itself. Alternate characterizations of crossing-graphs
are currently lacking but would help in designing algorithms. Solutions to these problems

may provide some insight into the minimum weight triangulation problem.
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