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Iv. SYMBOLS AND DEFINITIONS

A aspect ratio, be/s

a speed of sound, feet per second

b wing span, feet

c wing local chord, feet

c wing sversge chord, feet

¢, wing root chord, feet

Cy wing tip chord, feet

d spanwvise distence from wing centerline to center of
rotation of yewing wing

F. force vector

L 1ift, pounds

L rolling moment, foot pounds

M free-stream Mech mumber

Mt pitching moment, foot pounds

N vewlng monment, foot pounds

P rate of roll, radians per second

P’ pressure, pounds per square oot

q pitching velocity, redians per second

R universal gas constant

r yaving angular velocity, radians per second

S wing area, square feet

s perpendicular distance to vortex line for case of zero
sldeslip

T absolute temperature, degrees Rankiine
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(x)c/h
(=),

oy

e

melu

time, seconds

wind velocity in x~direction, feel per second

velocity wvector

free-stream wind velocity, feet per second

velocity at moment center for yewing wing, feet per
second

wind velocity in y-direction, feet per second

gpecific volume, cubic feet per slug

wind velocity in zedirection, aend also downwash velocity
feet per second

chordwise distance between aerodynamic center (a. c.) and
noment center (or center of gravity, c. g., in flight),
positive vhen c¢. g. is upstrean of a. c., feet

displacement vector

displacements along reference axes, feet

x~llistance to quarter-chord line, feet

x=digtance to wing trailing edge, feet

side force, pounds

spanwise position of centroid of the angle~of-attack span
loading, feet

radius of gyration of angle-of-attach span loading, feet

angle of attack (or incidence), redians

induced angle of ettack, radiens

sidesllp engle, radiens

circulation or vortex strength
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circulation strength related to spanwice position

circulation strength related to displacement along
cuarter-chord line

del operstor

sweep angle of quarterechord line, radians

wing taper ratioc, cg/cp

distence along the quarter«chord line, measured from
wing centerline, feet

nass density, slugs per cubic foot

veloclty potential

1ift per unit length of vortex

1ift per unit span of quaerter~chord-line vortex, pounds

1ift per unit length of chordwise~bound vortex, pounds

angle-of ~atitack span-losd parsmeter at zero Mach mumber
span-logad parameter associated with yawing

span-load parameter associated with sideslip

dreg coefficient, D/% e ‘VQS

1ift coefficient, L/é- o V8
rolling-moment coefficient, L’/% o Vo5b
pitching-moment coefficient, M‘% ol VES?:"

yewing moment coefficient, N/; o VeSh
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side~force coefficient, Y/z; Iy ves
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Note: A star (*) superseript indicates that the guentity has been

nondimensionalized by &lvision by 'b/‘é’,; Tor example
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Ve INTTOTUCTION

As  The Probliom

The safety of sn eireraft and its osccupents depenis to & larze
extent on the structurel integrity and irnherent stabiliiy charactere
iatice of the ajrcraft. Both the structurzl recuiresemts and the
irherent (or notuval) stability cherscterictics depend on the nerve
dynsmle cheracterictics and the expected or proboble £iight envelope
of the aircreft. Therefore, in oxier nct to cxecessively pennlize
the airceraft Ly overdesign based on uncerteinties of aerodymenic
loeding, ond in oxder to predict stebility cheracterictics Juring the
design ctoge, an sceurate knowledge of ceroiynamics of the proposed
sircrait is necesecary. The aerodynamdc charncteristics of sircraft
are predicted by ocstimating the charmcteristics of the aircrsft componentc
(wing, fuselege, teil, etc.) snd by proper addition of the charsctere
istics of the cosponants with due regord for Iinterference effects.
In this procaess, the basic ingrediemt is the accurete prediction of
the aerodynsmice of the aircraft components. The 1ifting surfaces
(ving and t2il surfaces) gemerslly produce the predominent sorce
dynamic forces, therefore much effort has beem expended in developing
methods of predicting the serodynemics of lifting surfeces. MNost of
this effort, howaever, has been directed toward detarminstion of serne
dynamic charactoeristics sasociated with angle of attack. Acrodynemics
ssapciatod with other efreraft motionw (rolling, vyswing, pitching,
sideslipping) have ison investigntel to o lesser degree, and genernlly

by soawhat eruder methods. This is particularly twue for tkhe lov

speed regice. The mature of the governing equatione for suparsonic




speeds 1s such that it has been possible to obtein equations for loads
and serodynamic derivatives for wings performing various modes of
motion (see refec. 1 through 4, for example).

The purpose of the present psper is to exsmine the problem of
wing characteristics in subsonic compressible fiow and to develop a

theory and method for computing these characteristics.

B. Background for the Present Study

There are a number of problems associated with attempting to
predict serodynamic characteristics of wings performing the possible
modes of motion. One problem is that ol finding an adeguate mathe=
matical model for the wing, and the second is that associated with
solution of the equations which arise from use of the mathematical
models. Throughout the yeers, various methods for predicting cers
tain aerodynenic characteristics of unswept wings having falrly high
aspect ratio, and teper rastios in the range from sbout 0.25 to 1.0
have been developed by a number of investigetors, and numerous reporits
published from which certain characteristics can be obtained for
specific wings (see refs. 5 and G, for example).

The use of high-aspect ratio, unswept wings for aircraft was
acceptable for a number of years, primarily becsuse the low thrusteto«
weight ratio of aircraft engines seriously limited the speed of alr-
craft. As engine efficiency increesed, however, sircraft veloclties
increased and reached the region vhere Mach number effects become ine

portant. The designer was now faced with a nev phenomenon, the
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“transonic drag rise” {fig. 1). Aerodynamic theory indlecated thet wing
drag (for a specific wing incidence) would begin to rise quite rapidly
& the Mach mmber increased beyond about 0.7, and would become infi-
nitely grest at Mach number 1. Experimentol data showed similor trends,
but the meximm drag coefficlent reached some finite limit, as shown
in the exampie of figure 1. The transonic drag rise was sufficiently
great that it appeered that aircraft speeds would be limited to Moch
mabers less thon unity unless (&) some memns were found to reduce the
transonic drag rise, or (b) extremely powerful light-weight sircraft
propulsion systems could be developed.

A close examination of aerciynmaic theory indicated that the Mach

mmber of the flow normel to the wing leading edge, rather than the

free-stresm Mach number, was the importent paremeter in Getermining
compreesibllity effects. In cther words, the transonic drag rise
could be delayed to higher alrereft speeds by resorting to sweptback
wings (see ref. 7, for exnmple).

The aerodynamacist and alrcreft desigrer were now faced with an

additional variable, sweep, in predicting the serodynsmic chersctere
istics of wings. Three general approaches were used in determining
the merodynamics of swept wings, these were: |
(2) Computations based on mathematical models associated with
the use of wvortices, sources, sinks, or cther concepts to
represent the wing. (Refs. O through 12, for example.) |

(t) Determination of approximate ecguations based on treeting

ecach wing semigpan as one half of an wnswpt vwing. The




‘unswept” panels are skewed relative to each

other to simulate o swept wing. (Refs. 13 thoough 15,
for example.)

(¢) Development of design charts based on tests of & great
mmber of wings of various sweep angles, aspect rmtio, and
taper rotio. (Ref. 16, for exauple.)

The first of thesc gpproaches ie very difficult, snd for this resson
only e few sercdynamic parsmeters (primorily Cr,, eand CZP) have been
attacked by fairly rigorous mathematical methods.

The second spproach has been cuite successful in predicting trends
and, with some modifications, has been used to cbtain good quantstive
results for certaln aserodynamic charocteristics. (See vef. 17, for
example.) These approximate methods, however, zre not mathemeticslly
Mporous and do not give a good inegight intc the basic sorodynamics
involved.

The third approach is sdequate for englineering dnta provided the
gvailable data envelope the range of geometric variables of intercst.
Unfortunately, the amount of dsta available for some of the wing
éerlvatives is wvery limited because of the scarcity of experimental
facilities for determiring such derivetives. One night esk, for
exsmpie, how many fecilities are curvently svaiiable which can be used
to messure yowing or pitching derivebtives?

Yhere is, then, & requirement for a theory which will permit
asccurate estimation of the important wing derivetives by & rigorous

method vhich provides an insight regording the origin of the derlvatives.
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C. Purpuse of the Present Study

The preceeding discussion pointe out the desirebility of the
development of & theory vhich will permit the use of a fairly simple,
consistent rethod of predicting the serciynanic characteristics of
wings of arbitrer; planform with little computational effort. The
yreeént "res s Jevelops such a theory and method, besed on a simplified
vortex systen representstion of a wing. It is shown that the theory
end nethod are appliceble to wings of arbitrary plenform. In addition,
the developed methods are used to prepare charte from which various
agrodynamic yaraneters of arbitrary wings con be obtained. Numerous
comparisons between resulte of the theory developed herein, and those
of other theories and experimental results are shown. Most of the
experimental results used in the comparisons were obtained in the forner
langley Gtability Tumnel. This facility, vhich is presently located on
the VPI campus in Blacksburp, Virglinia, is unigque in that it can be uged
t¢ obtain experimental date under conditions simulating linear, rolling,
pitching, or yawing flight under steady-ctoie conditions. In odidition,
several mechanisms hove been developed vhich pernit teste of sirplane
model components under oscillating conditions. [eferences containing
descriptions of the tumnel and complementary mechanisms vill be mentioned

in those sections concerned with comparisons of experimental and theo-

retical resulis.
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VI. REVIEW OF THE LITERATURE

A. Aerodynsmic Forces and Monents

In classical aerodynamic theory, the forces and moments on s
body immersed in e moving fluid sre assumed to depend on the fiuwid
velocity end the angle between the free-stream velceity and sone
reference plene or references planes in the body. For example, the
1ift on a wing is dependent on the sirspeed and on the angie of attack.
If one assigne a2 set of orthogonal axes to the body, then there is
the possibility of obtaining a force and a moment component related
to each axis as shown in figure 2. In determining the motions or
stability of & body in a moving fluid, one is generally concerned with
motion following a small disturbance from an equilibrium condition.
A basic sssumption made in such an analysis is that the resulting
additional forces and moments scting on the body are linear functions

of the resulting change in incidence of the alrstresm relative to the

body. The six equations of motion of the rigid body can then be written,

that is - one force and cne moment equetion relasted to each axis. The
equations of motion for a purely arbitrary body can be gquite complex.
However, because serodynemic shepes of interest, particularly aircraft,
have & plane of symmetry, some simplifications are possible. A full
development of the equations can be found in meny publications on the
dynamic stability of aireraft (ref. 18, for exampie). The equations
show that the forces and moments scting on the aircraft are functions

of certaln aerodynamic derivatives, namely, CLc,’ Cma, CDO s Cyﬁ, Cy 3’
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the various derivatives in estimating eirplane stability depends to &
lorge extent on the airplene geometry and the flight speed. Thisc is
pointed out quite clearly in reference 13, which ic an excellent susmary
of the current state of the art in estimation of derivatives. Since the
geometry of current alreraft veries from that of high-sspect-ratio=wing,
thin-body, low speed craft, to low-aspect-ratio-wing, thick-bc;:‘iy crait
it is spparent that there exisis a need for methods of accurately

predicting most, if not all, of the derivatives.

B. Estimation of the Aerodynamic Forces, Moments, and
Derivatives

1. Governing equations of fiuld motion.- The forces and momente

acting on & body immersed in & moving fluld can be determined by use of
the clessical inviselid-~fluid-flow equations. The pertinent eguations
are given here in index or swmation notation 26 o madter of convenlence.
This notation is not used elsevhere in the thesis. The pertinent
equations are:

Buler's eguations of motion

Py Z}D' )
Fia.ql-)il..«(--j;.&» ial,ﬁ,j
Dt £3xl
Continuity eguation
z}v E) 134
.414-..52—35-)»:.0 i:—l, 3’5
t Oxy

and the equation of state for a perfect ges

p' = CRT
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The following essumptions are cormonly mede in clossical aero-
dynanicse:
1. No body forces exist, therefore, the equations of motion

recuce to
Dus Imy
e PR A M 121,02,
ot e 4

n

« The flow is isentropic, go that a unigue pres:ure<snsity
relationshly exict, that is
% The fluld is initially at rest or moving with uniform veloce
ity and is, therefore, imitisily irrcotaticnal. Consequently,
from Kelvin's circulation theorem, the flow will remsin
irrotational. The flow, thereiore, is always irrotational,
and the concept of the velocity poteantial is applicoble.
With these sscumptions, the egquations of motion and continuity
can be manipulated to yield the governing equation {or the veloelty

potential

P = .

4
o
g

Lol ‘
TRy
-~

which is the vector form of the three~dimensionnl wave equatlon. For
steady flows, vhich is of primpry interest In this study, the sbove

equation reducec to Iaplece's equation

“7{@;(‘3
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The boundary conditions which ave used with the goverming
equations to solve specific flow problems are:

1« There is no component of flow veloecity normal to the wing.

Z« The £low hes Tinlte velocity inflinitely far from the wing.

The Ileplece eguation and the above two boundexry conditions ars,
in principle, sufficient to solve specific flow problems (and have been

used for a large mmber of flow problems).

2« Acrodynmeic forces on unswept wings.- The direct spproach
of attempting to solve the linear lLaplace cquabion for stecdy-state
{lows, subject to the proper boundary conditions, is quite complex.
Therefore, o comwn practice is to sttemt a solubion by investigabing
the characteristics of flows bullt up by addition of elomentary solue
tions of the Laplace eguation. The vortex potential is a solution of
the laplace equetion and satisfies the second voundory condition stated
shove. Since the laplace egquaetion is o linesyr differentisl egquation,
the principle of superposition of solutions is appliceble. In deaiing
with lifting wings, the genersl approech is to construct @ solution by
use of & free-streen potantisl and o suwitable distribution of vortices.
In classical eercdynemics solutions ere obtained for very thin wings et
low angles of attack, and these resbrictions permit placement of the
vortices in the plane of the free stresn, and pemnit the boundary ccne
dition, j»:) » gzﬁ 0, t0 be satisfied in the same plane. The boundary
condition can be restated as requiring that the flow direction over
the wing be parallel to the sctual wing surfzec. This condition is Lo
be satisiied over the wing surface. DBefore proceading with the golution

of wing sercdyoemics, a few fundsnmental cuestions rust e answered
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(a) mat vortex distribution should be used to represent the
wing, and how chould the vortices be placed relative to
the wing?

{v) Is it necessary 4o satisfy the boundary condition condition
at all points on the wing?

(c) MHow does one determine the strength of the vortices, and

{d) How is the vortex strength related to the wing 1ift?

. Two-ddmensionsl sirfoils

One of the esrliest sercdynemic problems attempbed was thet of
1if% on o wing at some angle of incidence. The fundsmentel law
relating 1ift, stream wvelocity, and circulation ig given Ty the Kutta-
Joukowski law

1= Ve (1)
vhere ! ig the 1ifi per unit length of vortex, V iz the velocity
cogporent nomwl to the vortex, and ° is the strength of the vorbtex.
The 1ift, and circuiatdion, can be related o the angle of incidence of
a twoedinensionsl aivioil as follows. The 119t per undd spen of & e

dmensional airfoll is relsted to incidence by

Therefore, the circulation ic relsted to incidence Ly
e % Ve oy @ (=)
Aerodynenic theory gives & value foz the twedimensionsl 1ift=curve-
siope c;@ of 2z, theroefore, the circulstion strength is given by
P = aVeo ()
A Tow observabions should now be made. Ixpoerimentel pressure

on tuws-dinensionel alrfoils have shown thot the centroid of 1ifY is




located close to the wing quarterechord line. It appesrs resscnable,

.J

therelore, to iocate the lifting wvorter ot the wing quarterechord line.

Cne could nov ack vhere, 1F any piace, 1o the owadery condition

satielled for s singleevortex represcntatlion of the wing? This oo be
coneidered as followm. The velooity dlstribution around & twow
dimenelionol vortex Lo glven by
'»i’"
ot
Thereiore, in the wing plane, the fiow angle iz given by
- ™
G 5 L 2 i (%)

-
. 4

2m5 'V

from vhich

Thic shows that the ilow direction is perallel to the wing ot oneehnll

chord froa the MHiting vortex, ¢r at o distance ol threeeguarter chord

Treg the wing leading edge. The gpplication of thic observation will
pe pointed sue in o lsbter section.

h)

. Threeedimencicnsl eirfolis; Prandtl wing theory

In the cupe of & two-linenscional wing, the flow is identical in
all pilsnes verpendicular o the span. This c¢bviocusly is not taue for

three-dinensional wings since the 1ift is known to drop off rapidly



- 350 -

near the tips. A4 trestment of the problem of the threc«iimensional
flow over an unswept wing of finite span was given by Prandtl in 1910,
although the basic concepls were discusged by him in 1911 snd realizesd
54111 earlier by Lancaster. Prandtl's wing theory it closely related
to the importent laws for vortices

ls A vortex filament cannot heve an end, but nmust continue to

infinity or form s closcd path.

2. The strength of = vortex filament is constant slong its

length.
%. Vortices in a fiuid sliwmys romein sttached to the sanme
particles of fluid.
These are the Helmholtz vortex theorems esnd were first given by him in
eighteen fifty=-eight.

The vortex filament which replaces the wing in twoe-dimensional
wing theory was called the "lifting line” or "bound vortex" by Prandtl.
His basic conception wes to reelize thet Helmholtz vortex laws applied
to sueh bound vortices just as 1f they were ordinery vortices having a
physical existence in the fluid. Vortex theorems 1 and 2 indicste that
the bound vortex cennot end at the wing tip, nor can the vortex Lecome
weaker as the wing tip is approached. The only possibility of making
the load drop to zero gt the wing tip sppeared to be to permit the vore
tex to turm 90° snd extend downstream parsllel to the Trec-stream velocs
ity. This resulted in the Prandtl horseshoe vortex shown in figure 3.
It is apparent thet the "bound" vortex will produce constant lift across
the span, and that the "trailing" or free vortices will produce no 1iit.
This simple representation of the wing has two glaring faults, (1) the

constant spenwise load which is equal to that of a two-limensional
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vortex, and (b) the infinite downwach at the wing tips. The first of
these difficulties was met, in pert, Ly assuming that the downwash due
to the tip vortices reduced the effective angle of attack. Since the
downwash varied with spanwise position, a value often used is that
associsted uith the center of the bound vortes. The section 1ift on
the wing now remeined constant, but had & lower magnitude, snd was
given by

¢, = 2a(a - ay) ()

vhere . is the induced engle et the wing (bound vortex center) and

mmerically sgual to

ey =A§
The sbjectioﬁs regarding constant 1i€4 zeross the span and infinlte
downwash st the wipg tips remsined.

Prondtl's group was finally able to resolve thees Jifficulties by
proposing that o series of horseshoe vortices be used to represent the
wing. The vortices were placed so that the 1ifting lines were coincie
dent (see iz, Y). The circulation shrength 2i-ng the guarter-chorl
line at eny position along the span is then equal o the sum of the
circulations of the individual vortices ot that spanwise positiaon.

The superposition principle can be carried to the limit in vhich an
infinite mmber of horseshoe wvortices, each of Inflinitesimal strength
is used to represent the wing. This results in a trailing vortex cheet
instead of a number of discrete vortices, and it 2 continuous distrie
bution of circulation over the span. Eince the strength of each vortex

is infinitesimel, there is no infinite value of downwesh on the wing.

Thus the difficulties assoclated with the one<horseshoe-vortes
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reprecentatiocn were eliminated.

The vortex pettern described above is very flexible and can be
used to determine a circulation distribution which corresponds to any
desired 1lift distribution over the wing. The spanwise circulstion
distribution determines the distribution of the streugth of ihe
trailing vortices, and aleo the local downwash distribubtiocn. Therefore N
the 1ift, downwesh veloeity, and effcctive angle of attack are all
closely related. Working cut this complex set of interceletionships to
obtain the characteristics of a given wing involve very lengthy aand
elaborate caliculations.

The liftingeline theory described sbove has been used extensively
to determine the characteristice of unswept wings of fairly large aspect
ratio (see ref. 5, for example). However, the vortex sycbes desciibed
above cannot adecuately predict the characteristics of wings having
sweep and low aspect ratio. Consequentliy, it has Leesn lfound necessary
to turn to more complex liftingesurtface thecries ur modificaticns to

the liftinge-line theory.

C. Lifting-Surface Theories for Computing Spen
Iosds due to Angle of Attack
A number of methods have been developed for predicting the load
due to angle of sttack [ond conseguently the Liftingecurve-slope cLa)
for vinge of arbitrary plenform ornd sweep. Of thepe, three have been
used quite extensively; thet of V. M. Falkner (ref. 10), of Wm.
Mutterperl (ref. 11), and of Weissinger (ref. 12). These methods
invelve vortex systems to represent the wing, with the bound vortex

produeing "ift. Howvever, the methods depart from lifting-line concepts
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by consideration of dowvmvash eway from the 1ifting line, and satisfying
boundary conditions at various locations. These methods can be conside
ered to be lifting=surface methods or modified 1liftingsline theories.
Here again the basic assumptions of the theories are:

(1) The fiuid is {ncompressible

(2) whe flov is potential

(3) e circulstion is such thet the Kutta condition exists at

the trailing edge
(1) The wing is represented by a thin vortex sheet in the wing
plane

(5) A1 vertical displacements ere ignored

In these methods, the wing is replaced by e vortex system end the
strength of the vorticity is related to the difTerential pressure or
1ift at any point by the KuttawJoukouwski equation

1oy

The problem of determining the losding or pressure distribution is that
of finding the distribution of vorticity T within the wing planform.
The boundary condition is that no flow can occur through the verticity
sheet - thet is, the resultant flow direction is parallel to the wing
surface. This meens that the local dowrwash velocity must be cgual
and of opposite sense to the nowmal velocity component due to angle of
attack. The determination of T would be exact if its distribution
were considered to be continuous and if the boundary condition were
satisfied at all points on the wing. Such sn exsct determlination is
impractical (if not impossidle), hence sinplifying sssumptions must e
made. The usual simplifying sssunpticns ere those of
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(1) concentrating the continuous vorticity spanwise andfor
chordwise
(2) representing the vorticity distribution by a mathematical
expression, usually a series containing s finite number of
unknown coefficlents
(3) limiting the number of points at which the boundary condie
tion is satiefied.
The differences in the varlous methods vwhich have been developed for
deternining vorticity distribution, therefore, srise from
(a) the manner of concentrating the vorticity
{(b) the differences in the form of the methematical expression
for vorticity distribution
{c) +the choice in number and locstion of the control points
{(d) the mathematical procedure used to obtain a solubion.
The vortex distribution and control points used in the methods of
Ferlkner, Mutterperl, and Weissinger are chown in figures 5, 6, and 7,
respectively:. The mathematics of the three methods is quite complex.
These methods are explained in some detail and compared in reference 20.
Note that the control points for the methods of Welssinger and Mutterperl
sre at the threeeguarter chord line. The comparison presented in refer«
ence 20, based on comparing experimentel spanioed distributions of Tive
swept wings with distributions computed by each of the three methods,
indicated that the Felkner method gave the best sccuracy but at a cone
giderable expense in computing effort. The Welssinger method would be
best suited for overall studies of wing characteristics and gave good
resulte with by far the least computing effort. The Mutterperl method

offered no advantages in accuracy or faclility over either of the other

methods.
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The Weissinger method, therefore, oo beon cxtoncively used in
camputing span loads due to engle of sttack (ref. U, for example), and
span loads due to roll {(ref. 21). MNirced use of the alssinger method
or other svailable methods to the computation of the othor wing nerce
dynsnlc characteristics proved tc be guite Qifficuit and sometimes
inaccurate, cousequerrtly other methods fop dobernining these characteore

istice {or derivatives) were sought.

D. Approximate Relations for Stebility Derivetbtives
ol Swept Wings

One ol the esriiest papers giving spproximate equetions for the
derivatives of swepi wings was authored by Toll and Queijo (ref. 13).
The basic concept of reference 1) ls that a rough approximation of any
wing derivative can be obtained by strip theory (load distribution is
proportional to local geometric angle of attack). Further, although
strip theory yields crude results, the ratio of a derlvative of &
swept wing to en unswept one of the came taper ratlo and aspect ratio
should be fairly accurste. An anaslogy to this concept, for example,
ig that i one has a rubber scale vhich has been extended so that the
inch marks no longer ropresent inches, one nmay still obbain the correct
ratio of the lengths of two objects even though one cannot find the
sctual lenpth of elther object. If one vow hes the correct ratic of

Dordivative of swept wing for specified A gnd A
Derivative of unsvept wing Lfox same A and A

he could uce thic ratio and sccurate values of unswept wing charsciers

istics (obtainad by a better theory) o obtain swent wing characters

istvics. Accuratc unswept wing charecteristics were availsble in soveral




vapers (ref. 5, for evample). Although this method generslly predicted
proper trends, i1t wms mot as accurate ac might be desired in neny cases.
One of the basic difficulities of the method was that strip theory
predicted certain derivatives for which there were no corresponding
values for unswept wings. Ancther difficuliy, which appeared somew
vhet later and vhich will be mentioned in & later section, was in the
method of determining the wing aspect ratio on which induchtion elfects
should be baséd. Nevertheless, refersnce 135 proved to be guite useiul
apd is still used for estimates of certain derivatives for vwhich nore
exact methods are not available (see ref. 13). The ctrip analysis
method has been extended to study effects of dibedrel (ref. 1L), twist
and camber (ref. 22) and is & very wseful tool.

A survey of current literature on aerodynamic derivatives indicates
that rigorous estimates of certaln derivetives are still lacking, end
that there iz no general vortex reprecentetion vhich hes been used for
estimating all or most of the ving derdvotives. An initisl stert in
this direction was made by the author in HACA TR 1259 (ref. 23), for
the estimation of the derivative ng. The purpose of the present
theslies is to extend the theory of reference 2% and develop it tc permit
eptination of several other stability derdivatives. Iun sddition, the
precent thecis includes the effects of compressibility, whereas refer-

ence 23 was limited to incompressible flow.




A. Genernl Consideration

The first ctep ir devieing 2 theory and method for obiteining wing
charaecteristice is thal of selecting o suiteble vortex systen fop
representing the wing.

1. Unewept wings.- At this point, 1t is well to review vortex
gystems as used to represent unswept wings ot some small nngle of
attack in streight flipght. As 8 genersl cose, the wing coull be repre-
sented by o pyetem of many spanwise and chordwise vortices ag shown in
figure 8{z). TFor wings of high sspect ratio, the sponwise vortices sre
generzlly replaced by & " vartex, end the resulting systen is the
common lifting-line~-theory representation of the wing (fig. O(2)). It
should he noted that the chordwise vortices are parallel to the freee
stresm direction and, therefore, can »roduce no pressure diiferential
(or 1ift).

At this point, orne might esk how these vortex systems should be
chenged if the wing bad some motion other than streight symetric
flight. Concider, for example, the wing in sidesliip. One plausible
vortex arrangement would be that shown in fipure U{ec}. Here the trailing
vorticee cdepart from the lifting line in o directlon parsllel to the
free stream. The lifting line produces 1ift per unit spon according to
the equation

l = prc Vcoe 3
The only factor which could produce & resultant rolling moment would be

caused by the unsymuetric dowrwssh distribution due to the skewed
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vortices. This arrengement vas used by Biemk (ref. 2h}, however, the
estimated resulting rolling moments were not verified either in sigh
or megnitude by experiment.

A different vorter system wes tried by Weissinger (ref. &) anc
this is illustrated in figure 8(d). In this case, it wos assumed thab
the trailing wvortices rewained parallel to the 7 7 o-
vortex pozition (c¢/b) to the wing trailing edge, and then were bent so
as to be parallel to the airstrean. The fect thet pari of the trailing
vortices were essentially Tixed 4o the wing neant thet they could
develop 1ift due to the laterel (or sideclip) velocity componert. This
vorbex systen yvielded yolling moments due to sideslip vhich were in
good agreement with experiment.

2. Swept wings.- The carly snalyses of swept wings characteristics
reverted to use of the Weissinger method end vortex systen of refere
ence 12, vhere the vortices from the quarter-chord line were pewmitted
to follow the free-strean velocity direction., The success of the
HWelssinger spproach for angle-of«attack loed computations led to its
use in estimating the rolling moment of rolling winges in reference 21,
which also permitied the ftrailing vortlces to be parailel to the free
stresm. The analytical results of reference 21 compared fovorably with
experimental resultes. However, the renge of plan:omms ixzvestige;tea Was
somevhat limited, and the comparisons with experinent generslly were
for wings of nmoderate and high aspect ratio. Reference 21 also pre-
sents rolling moments due to sideslip for wings with goometric dihedral,
but dees not predict the rolling momente of plane wings in sicaeslip.

A géneral vortex system appliceble to wings of arbitrary planfora vhich

could be used to estimete vayicus derivebives still was lacking.
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B. Selection of a Vorbex Syohen
The cdbove discussion of vorter sycbems leads ome to wonder i¥ a
eyston beoed on modified Liftinjelinc-concenbs, and whbilizing tho
chorduise “bound” vortices sz used by Weissinger (ref. €) for vncwept
vings mig:af ve suitalle for determining serodypamic cherecteristics of
swept wingc. Such o vortex systen woo proposed by the outhor (ref. 23)
and ic shown in figure 9. Thic gysten

in referemnce 25, ond proved Lo be very

of the morsneter € sor & vide ranse
25

-

experinmental resulis vere available. The priority o0 other wmrl nre-

veated the exteusion of the work of reforence 2%5. However, o wecens

- 2
eppraisal of this vortex system indlceted thalt 1t would ho epplicable
o the estimpiion of several other wing darivativez. The vortos cysten

shown in iigure 7, therefore, is wsed in the nresent pader.

C. Genersal Consideretions of Zelatlonships
Between Circwlation Distritution,
Wind Velocity Components, and Load Dstribution
The vortex eysiem adopted for this study ellows the poscibility of
genereting 11it by the bound vortices, which ere:
e. the quarterwchordeline vorbex, vhich cxbends acrocg the
entire wing span, and
b. the chordwiseebound vortices, which sre parallcol 4o the wing
plane of symmetry and extend Jrom the wing ouarterechord
line to the wving~tralling edpe.
The trailing vortices behind the wing ere "Ifrec™vortices which

are parsllel to the frec-strean velocity and hence develop no 1ift. The
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strength of the chordwise~bound vortices is determined by the strength
distribution of the quarter-chord-line vortex; therefore the 1lif't dise
tribution of the wing can be detemmined if the vortex strength die-
tritution of the quarterechord-line is known, and if the wind velocity
components are known. The distribution of the wind velocity components
relative to the wing can be determined easily for each possible motion
of the wing, The besic problem in determining wing load distridution,
therefore, is that of determining the vortex {or circulation) distrie
bution for all wing moticns, The three types of motion to be cone
sidered in this paper are sideslip, yawing, ané rolling. The problem
now is to determine the circulation distribution assocleted with each
of these motions.

1. Circulstion distribution for wings in sideslip.~ Thie case wes

studied in reference 235, however, & review of thet study is helpful in
subsequent discussions.

Assume & wing at some angle of attack and at zero sidesiip. The
circulation distribution cen be determined by the methods of refers
ences 10, 11, or 12, or by use of available charts generated from these
methods (see refs. 8 or 9, for exemple). One now asks, "How will the
circulation distribution be altered if the wing maintains its geometric
angle of attack, but is given a lateral (sideslip) velocity?" The
following arguments indicate that for small sideslip angles {consistent

with linear theory) the change in circulation due to sideslip is very

small. The vortex system for & wing in sidesllip is shown in figure 10.
Consider an element of the quarterschordeline vortex of the right wing
semispan., The lift per unit length of vortex of a swept wing in sidee

slip is given by
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and also by
b [ AT o A1
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2= 3o Pencln - 0)] o, oy (0

.

Fron these equations it is sean that the cirewlation 7. io given Dy

. 1
.‘i."\g;e = » Ve Cza(ﬁ'& - @,3') (\))

3

»

Similorly, for the wing at zero sideslip anrie, the civelaotion is

given by

1
(tx) ==Vecy (o =as) (2)

Y

. o ety

The relationship Letwean circulaiion at o sideslip anglie and circulation

ab zero sidecsiip, therefore,is given Ly

(10)

It appecrs, therefore, that the local circulstion of the quarterechorde
line vortex at o given sungle of abttack will Te changed by sideslip only
if sideslip chances the induced angle of attack. Now consider the fol-
lowing crgamento:

s. A fundamental sssmaption of Prandtl's lifting line theory

ig that the dowmumeh veloclty is very smell {see p. B of ref. ™).

Since the methods in use for computine opan loads are Lased on applie-

cationc or modifications of Prandtl's theory, the seme assumption
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should be valid. There does exist a posgibility that this cssiwwpe
tion nmight be violated for very low sspect ratiosc. At infinite
agpect ratios the induced angle is, of course, equal 4e zero since
the circulation ic constant ecross the spen end there are no treiling
vortices. If «; is small in comperison with «, then

T -

T xS

(e - ﬁ‘i)ﬁ

b. In liftingeline theory, the induced angle of attock ot any
point on the wing is due to the dowmrvesh at thet point coused by all
of the vortices of the system, in secordance with the Biot-lovart
law. In most current methods of computing spon losds, the bounlary
condition iz satisfied at the three~quarter~chord line. Thereforsa,
one must concider how dowmwash at the three~quariter-chord line
might be allered by sideslip. According to the vortex syotom
adopted in this study, the only chenge in vortex pattern caused

by sideslip ls that the treiling vortices behind the wing tmiling

gdge bend to follow the frese-strean direction. As a crude cslinmate
of the effect of the bent wvortices, consider the two zseba of

trailing vortices in the {ollowing sketch, and a control point as

shown
!
—N —*———
— .
¥




In thic case, the dowmwash at the control point due to the two infie
nitely long vertices is given by
i
Ghp=o =
For the seme control point, and & sideslip angle 3, the following

sketeh is applicabl

Th
Dats
Y

In this cace, the dowmench veloclty is given by

o
W= -
245 cos B
or for smell sideslip angles

()
Lo+ 2

W e, -‘.. +
298 ( 2 )

It appeers then that the downwesh angie is affected as 82 and therce
fore negligivle vhen § is small. Note that this discussion neglects
the nutual interaction between I’ and § bub this effect should be
guite small end was, in fact, investigated by Welssinger as will be

yointed cut next.
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¢.  then the author wae gdeveloping the theory of sideciipplng
ewept wings (ref. 23) he neglected the effects of the Lent vore
tives. He then checked his thecory cgrinst crperiament oy plotiting

on one graph the estimated value of €, |vp cgainosd the experi-
3

>

N
Py s

b ot

mental value for e great mery wiuzo. 4.“11. reculis plotted as & o9
line ags would e expected for correletion, however, the experie
mental poings felil ayound o line which wus aluost eusctly O.00
t00 negative, that is for all wings the aversge costimated value
of €y / C;, wac too negative Ly 0.0.. At this stage, Weissinger's
m'part; on unswapt wings in sideslip wvae brought to the author’s
attention. A cereful study of the report showed the similaridy
in ¢oncepis of the vortex potterns, and further, inkicated that

[ 4
Weissinger had computed the effecis of the hent frailing vortices
on the circulation smxd on cl;} /CL Por a wide range of aspect
mtic and toper ratio of unswept wings. Hls results chowed
that the erfects of the bent trailing vortices was to meke ngl%
more positive (or less negative) by e value vhich was, for e.z.lx
praciical purposes,; independent of sspect ratic and taper retlio,
snd in fect, mede ©; 5 /CL more positive by a velue of 0.00.
Tais is a relstively smell correction, and again indicates that
the effect of the Lepd in the vortices om the circulation dlstrie
ution is swell. Based on the sbove armments, 1t is a basic
asocugption of the present theory that the circulsation distrivution

for s wing in sideslip is esgentislly the same as that of the wing

Y

gt = sideslip i Ce

2. Circulation distribution for = yauwing wing. The bound vorbex
pattern of o yewing wing is, of course, the besic systen shown ir




Yigure 9. The free trailing vortices, however, are curved to match the
air flow stream lines {fig. 1l1). The geometry of the flow shows that
there is 2 lateral velocily component over the wing, and that the mage
nitude of the component varies over the wing surface. The wing,
thereiore, can be considered to be in sﬁ.deslip » where the effective
gideslip angle varies over the wing. The arguments presented with
regard to the circulation distribution of the wing in sidesllp can be
carried over in principle to the yawing wing. Therefore, the cone

clusion and assumption of the present theory is thet the circulation

distribution for a yawing wing is essentiaily the same as that of the

3+ Circulation distribution for & rolling wing. The rolling

wing presents o somewhat different provlem than do the sideslipping

and yswing wing with regard to circulation distribution. As pointed

out above, the geometric angle of attack is not affected by sidee

slipping or yawing, it is only the induced angle which might be

slightly altered. However, in the case of the rulling wing, the local |

geometric angle of attack is increased by

42
Ry

N o=

Therefore the primery cause of circulation and hence the circulation
itself is eltered by rolling. The net circulation of a rolling wing

therefore is made up of
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2, Circulation due to the symietric angle of attack, and
be Circulation due to the antisyrmetric angle of atiack
distribution sssociated with rolling velocity.
The zssumed wing vortex system, and the circulation distributions
discussed above form the basis for the present theory for the compu=

tation of certain wing serodynemic characteristics.

D. Derivetion of Equations for Verious Aerodynamic
Derivatives for Wings in Incompressible Flow
1. BSideslipping wing.~ The equations pertalning to wings in
sldeslip were derived by the suthor in reference 235, but will be
repeated in somevhat more detall here since 1t will ald in the develop~
ment of the more complicated yawing wing concepts and slso for the sake
of completeness.
a. General equations
Iin the followlng derivations, all equations refer to the
right wing semispan unless othervise noted. As pointed out in the
section entitled "General Consideration of Relaticnships Between
Circulation Distritution, Wind Velocity Camponents, and Load
Distribution,” forces can be obtained from interaction of the wind
veloclty components with the quarterechordeline and the chordwicee
bounéd vortices. By referring to figure 12, it is seen thet the
1t per element of length of the quarter-chord<line wvortex is
given by the interaction of the vortex end the streem velocity
noymel to the vortex;

} = pV cos (A - BT (21)




or, per unit leagith of wing span, by

.
Zl = oV cos (."& - 3)?; m {4,2)

Tae 11i7% due to one chordwise~bound vortex isc coused hy inter=

actlion of the vortex end the lateral velocity component

3

1n = ¥ 243 8 & (13)

pes

1]

|

I
3
A

For small sldeslip angles, such that oin P~ 8 and cos B = 1.0,

- e

the two 1ift componends can be writien os

bpo= oV Ty (14 3 tan A) (%)
and
Iy = =7 oV cp =7 (25)

Wing spen load distributions arc gonerally given in terms of spane
wise poeition, y, rather than in distance along the quorter«-chorde
line vortex {. The next step ic to recest the equations for the
1if% components in tems of spenvice load distridution. Consider

a ving at zero sideslip angle. The 143t per unit spen is given by

(Dpp = oV I, (26)

[

and clso by

(D)pag = AUV cos ATy —=

viser S
[

Comparison of these cquations zhows {thet IY

e angd i‘g are equal

Tor the wing ol zerc sideslip. BSinee 2 basic premise of the
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present theory is that sideslip will not alter the spanwise

circulaiion istribution, then Iy and 'y are aleo equal for

YT

the wing in sidesiip, Bguatione (1%) end {15) therelore can be

written s

21 = oY E‘L"(:A + 3 tan i‘.) (1F )

3 _ ar., .
22 T - E oV ot ,::}g’_ (lu)

The circulstion distribution E‘S_ Tox s wing et apglie of attack

can be deterulped in terms of the opun Lotle open loed distrie

ce
butlons are gemerally given in terme of the palauecter ...-3'.. The
ce &y,

quantities ge— snd Iy can be ralabed through equation (26)

ag ioilows

ccz 23
L/ is
or

1 CCy

[

- .

Substltusing this irto oguations (1)) anc {13) resuwits in




- 55 -

The load parameter corresponding to 1, sand 2;3 can now be formed

(.cf;i) = °h = (:2) {1 + 5 tan A) (21)
"""ng %, (3 oVe) <Cr,

eey
cl d(w)
P2 3 L
(iﬂ) T L -'z— cB e (22)
&Lgﬁ&L(ng"c) oy
The totel load per unit span of the right wing semispan is given
by the sum of these two terms, that is
(C:Cz)
&
ccz cey P ﬁi
e | 2 [ e (14-}3'3&111&)-?(::3 - (23)
E‘CL 4 EL /. t gy

Similarly, the load pearameter for the left semispan is given by

z(ccl
o A=)
(fi'l) u<ff-§.) (L~ 8 tan A) = %’- cB (&; : (a4)

i T C
Lﬁ L

[

The span load for e wing in sid&élip therefore, can be determined
by use of equations (23) and (24).

The rolling moment of & wing can be determined by an inte-
gration of the span load multiplied by the proper moment arme. A
general form of o rolling«moment equation can be obteined from
equations (23) and (2h), to vhich mist be added the increment
determined enalytically by Welssinger in reference 0, and by the
author from empirical data (see section on "Circulation Distribue
tion for Wings in Sideslip"). The mlling«mo@ent equation

(neglecting the correction just mentianed) can be derived ms follows:
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L' = -J{ iy v = = i = oVe - ¥ O
.b/a Y oaufe §'§Vﬂc
or, 1n coefficient form
T . Cufe <t “Bfce
CZ",‘ 'J~ =-:’1-:- { , CCZQ‘Q}Y&.—:% i ; :—ig{b’
= oviey B0 B v pf T
2

The dimension Yy can be nundimensionalized in terns oL the somie

gpen so that the rollingenoment oguation Lecomes

by, + ey,
CZ = -01-——-& ! X .;:?“ o (23)

;

beh el Tp bfE bl

Now

c{*
o
&
[

and Yy dedinition

therefore

The Toud parvemecers glven by ecuetions (2%) and (24) can nov be

subetituted into equation (2C) to yield the rolling moment of a
