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(ABSTRACT) 

A two-dimensional finite-element computational procedure is 

developed for the accurate analysis of the strains and stresses in 

adhesively bonded joints. The large displacements and rotations 

experienced by the adherends and the adhesive are taken into account 

by invoking the updated Lagrangian description of motion. The 

adhesive layer is modeled using Schapery's nonlinear single integral 

constitutive law for uniaxial and multiaxial states of stress. 

Effect of temperature and stress level on the viscoelastic response 

is taken into account by a nonlinear shift factor definition. 

Penetrant sorption is accounted for by a nonlinear Fickean diffusion 

model in which the diffusion coefficient is dependent on the 

penetrant concentration and the dilatational strain. A delayed 

failure criterion based on the Reiner-Weisenberg failure theory has 

also been implemented in the finite element code. The applicability 

of the proposed models is demonstrated by several numerical examples. 
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1.1 General Comments 

CHAPTER 1 

INTRODUCTION 

Adhesive bonding is increasingly used to fasten (metallic to 

metallic or metallic to composite) structural components together. 

This is because in many present day applications, conventional 

fasteners such as bolts, rivets, welds etc., are unsuitable, 

especially if the components are made of polymeric or composite 

materials. Penetration methods (i.e., drilling holes, etc.) cause 

high stress concentrations and, in the case of composites, sever the 

fiber reinforcement which in turn reduces the strength of the 

joint. On the other hand, bonded joints tend to be damage-tolerant 

due to the high damping .behavior of the adhesive layer and less 

expensive due to lower fabrication cost. The use of adhesives 

increases the joint strength, distributes the loads more evenly, and 

enables alternative jointing methods to be reduced or eliminated. 

Dissimilar materials (e.g., steel, aluminum, plastics, glass, etc.) 

can be joined together by bonding even where it is impossible to gain 

access to either side of the joint, thereby increasing the design 

flexibility. 

Adhesives are not free of disadvantages, however. Adhesives are 

polymers and as such have time dependent (viscoelastic) moduli and 

strength properties which are susceptible to environmental effects, 

especially temperature and moisture. Most polymeric adhesives are 

1 
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rate sensitive materials and hence exhibit viscoelasticity. 

Furthermore, certain types of epoxy resins have been found to be 

nonlinearly viscoelastic in character. The nonlinear viscoelastic 

behavior is typified by a stress-enhanced creep. Basically, at 

elevated stresses the material moduli seem to soften and the creep 

progresses at accelerated rates. Time dependent properties of 

adhesives raise serious questions regarding their long term 

reliability or durability under creep or other more complicated 

loading conditions. A delayed failure (creep rupture) long after the 

initial design and fabrication process is possible. Thus, methods 

are needed by which long term failures on the order of a structure 

design life time (perhaps as long as 5-20 years) can be anticipated 

and thereby avoided. Such a process is especially important in 

applications where failures may be life threatening as is the case 

for automobiles, airplanes, missiles, etc. 

Failure in an adhesive joint can occur in one of two ways: (i) 

adhesive failures that occur at the interfaces between the adhesive 

and adherends, and (ii) cohesive failures, which occur either in the 

adhesive or in the adherends. The determination of the strength, 

failure and reliability of an adhesive joint requires both an 

understanding of the mechanisms of adhesion and a knowledge of 

deformation and stresses in the joint. The mechanisms of adhesion is 

closely related to the chemical and physical properties of the 

adhesive polymers. The deformation and stress states can be 
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determined once the geometry, loading, boundary conditions and 

mechanical properties of the constituent materials of the joint are 

known. The mechanical properties of the adhesive and adherend 

materials enter the stress analysis via constitutive models, which 

relate strains, temperature and moisture gradients and density to 

stresses and fluxes in the joint. The chemical, physical and 

mechanics aspects of the constituent materials enable the formulation 

of appropriate constitutive models for adhesive joints. The 

determination of stresses allow the prediction of the strength, 

failure and reliability, in macromechanics sense, of adhesive joints. 

The stresses in an adhesive joint depend on the geometry, 

boundary conditions, the mechanical properties of the regions 

involved, and the type and distribution of loads acting on the 

joint. In practice, most adhesives exhibit, depending on the stress 

levels, nonlinear-viscoelastic behavior, and the adherends exhibit 

elasto-plastic behavior. Most theoretical studies conducted to date 

on the stress analysis of adhesively bonded joints have made 

simplifying assumptions of linear and elastic and/or viscoelastic 

behavior in the interest of obtaining closed form solutions. 

A good understanding of the process of adhesion from the 

mechanics view point and the predictive capability for structural 

failures associated with adhesive bonding require realistic 

theoretical analysis methods to determine stress distributions in the 

joint. The finite element method is the most powerful analysis tool 
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that can be used to determine stress and displacement fields in 

complicated structures. 

At present there are numerous computer programs available for 

analyzing bonded joints. However, most of these computer codes 

incorporate linearly elastic material behavior, and some allow for 

nonlinearly elastic and plastic behavior. Computer programs which 

incorporate viscoelastic material behavior are quite often limited to 

the simple spring-dashpot type of model for linear materials. Such 

inaccurate modelling of the constitutive behavior of the structure 

can seriously compromise the accuracy of the analytical predictions. 

1.2 Objectives of Present Research 

The primary objective of the present research is to present a 

finite-element computational procedure for the accurate analysis of 

adhesively bonded joints. With this aim in mind, a nonlinear 

viscoelastic analysis code (NOVA for short) has been developed. The 

finite element program NOVA uses linearly elastic elements to model 

the adherends. The adherends may be represented as isotropic, 

orthotropic or laminated composite materials. The large 

displacements and rotations experienced by the adherends in many 

types of loading are accounted for by the updated Lagrangian 

description of motion presented in Section 2.1. It should be noted 

that this description is valid only for small strains. 

The adhesive layer is modeled using a special element that 

employs a multi-axial extension of Schapery's nonlinear single 
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integral stress-strain law as the constitutive equation. The finite 

element formulation for the viscoelastic material representation has 

been described in detail in Chapter 3. The element library contains 

an eight noded isoparametric element which employs quadratic 

interpolation functions to.represent the displacement field as well 

as element geometry. The program can be used to conduct plane 

stress, plane strain, or axisymmetric analysis of an adhesively 

bonded structure subject to a time varying thermal and mechanical 

loading. A nonlinear Fickean moisture diffusion model and a energy-

based delayed failure criterion are also provided in NOVA. 

1.3. A Review of the Literature 

Adhesive bonding has been in use for many years. Most of the 

early bonds used animal and vegetable glues, and the structural use 

of these glues has been confined mostly to timber. The use of 

synthetic resins in the structural bonding of timber began in early 

1930 1 s. Synthetic resins are less susceptible to moisture, fungi and 

bacteria. In recent years, synthetic polymers, because of their 

strength and other bonding properties have been widely used to bond 

metals and composite materials. As noted in the introduction, 

adhesive joints have several advantages over the conventional 

mechanical fasteners (e.g. bolts, rivets and welding). These 

include: lighter weight, savings in production cost, avoid stress 

concentrations and thermal distortions due to the hole drilling or 

welding, and bonding of dissimilar and/or brittle materials. 
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An analysis of adhesive stresses in bonded joints which included 

the effects of load eccentricity was first performed by Goland and 

Reissner [3] in 1944 under the following assumptions: 

1. Adhesive flexibility is negligible, and joint is homogeneous 

(i.e., ignore the presence of the adhesive), 

2. No axial stress exists, and other stresses do not vary 

through the thickness of the adhesive layer. 

Under these simplifying assumptions, Goland and Reissner [3] 

developed one-dimensional elasticity solutions for two limiting 

cases: (i) the case in which the adhesive layer is homogeneous, thin 

and stiff so that its deformation can be neglected, the axial stress 

is zero and stresses do not vary through the adhesive layer; and (ii) 

the case in which the adhesive layer is soft and flexible and the 

joint flexibility is mainly due to the deformation of the adhesive 

layer (i.e., adherends are rigid}, the axial stress is zero and 

stresses do not vary through the adhesive layer. In the first case, 

the peel stress is found to be very high at the edge of the joint, 

while the shear stress is zero. In the second case, the maximum 

values of the peel and shear stresses occur at the edges of the 

joint. The Goland-Reissner analysis gives resonable solutions for 

shear and peel stresses in the interior of the adhesive layers; the 

joint-edge loads are not in equilibrium. 

Erdogan and Ratwani [4] presented analytical solution based on a 

one-dmensional model for calculating stresses in a stepped lap 
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joint. One adherend was treated as isotropic and the second as 

orthotropic, and linear elastic behavior was assumed. The thickness 

variation of the stresses in both the adherends and in the adhesive 

was neglected. 

Wooley and Carver [5] determined stress distributions in a 

simple lap joint using the finite element method. The constant 

strain quadrilateral obtained by combining four constant strain 

triangular elements was used. One end of the adherend was assumed to 

be hinged and other end was allowed to move freely in the direction 

parallel to the original bond line. They investigated the influence 

of the ratio of the Young's moduli of adherend to adhesive materials 

and geometries on the peel and shear stress distributions. The 

results compared favorably with the results of Goland and Reissner. 

Hart-Smith [6] improved upon the approach of Goland and Reissner 

by considering a third free-body-diagram for the adherend outside the 

joint in addition to the two free-body-diagrams from each of the 

upper and lower halves of the joint. With three separate sections to 

consider, three relations between displacements and bending moments 

were obtained. Additional boundary conditions involving 

displacements and their first derivatives, not considered by Goland 

and Reissner, were imposed in order to solve for the additional 

unknowns. In addition to the improvement on the analysis of Goland 

and Reissner, Hart-Smith [6] also established a quantitative 

influence of adhesive plasticity in shear. The elastic-plastic 
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theory used by Hart-Smith predicts an increase in joint strength, and 

was shown to be capable of explaining premature failure predictions 

found when using linear elastic analyses. The quantitative effects 

of stiffness imbalance were also accounted for. 

A finite-element stress analysis for adhesive lap joints using 

linear elasticity and elasto-plasticity theories was reported by Liu 

[7]. Stress distributions in the adhesive layer for different joint 

parameters (geometry, material properties, and loading conditions) 

were studied and compared. The existence of stress gradients through 

the thickness of the adhesive layer, close to the joint edges, was 

observed by Adams and Peppiatt [8]. They subsequently performed a 

linear elastic finite element analysis on adhesively bonded lap 

joints employing more than one element through the thickness of the 

adhesive layer, close to the joint edges. Adams and Peppiatt [9] 

also studied the adhesive yielding in double bevel and scarf 

joints. The adhesive was assumed to be elastic-perfectly plastic. A 

nonlinear finite-element analysis of single and double lap joints was 

presented by Humphreys and Herakovich [10]. The nonlinear stress-

strain response was represented by the Ramberg-Osgood 

approximation. Mechanical and thermal loadings were considered but 

only one element through the thickness of the adhesive layer was 

used. 

Allman (11] presented an elastic stress analysis based on the 

strain energy density of a particular joint. The effects of bending, 
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stretching and shearing of the adherends were included, and the 

shearing and tearing action in the adhesive was accounted for. All 

conditions of stress equilibrium in the joint and stress-free surface 

conditions were satisfied. It was assumed, however, that the axial 

stress varies linearly through the adherend thicknesses and that the 

shear stress is constant through the adhesive thickness. Allman 

obtained solutions for the single lap joint, although the method also 

appears to be applicable to other joint configurations. He found 

that the average shear stress concentration is 11% higher than that 

of Goland and Reissner's first analysis, while the average peel 

stress at the joint edge is 67% lower. Compared with the second 

analysis of Goland and Reissner, Allman's method yielded a shear 

stress concentration of 15% and 31% less for metal and composite 

adherends, respectively, while the average peel stress at the joint 

edge was 27% higher and 36% lower for the same types of adherends, 

respectively. 

Phenomenological considerations were discussed by Hart-Smith 

(12] which greatly improve our understanding of the sources of non-

uniform load transfer, viz., adherend extensivity, stiffness 

imbalance and thermal mismatch. He also explained how the lightly 

loaded central area of the joint, away from the joint edges, 

restricts cumulative creep damage, and suggests that this region is 

vital for long term durability. The amount of lightly loaded central 

area is a function of the overlap length. 
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Yuceoglu and Updike [13] presented a numerical method for 

solving peel and shear stresses in the adhesive of double lap, double 

strap and stiffner plate joints. Bending and transverse shear were 

included in the analytical model. Shear stresses were not required 

to drop to zero at the joint edges after reaching peak values close 

to the edges. Yuceoglu and Updike maintained that an analytical 

model which would allow the shear stresses to drop to zero at the 

joint edges would give approximately the same or slightly lower peak 

values of shear and peel stresses. Their method also reveals that 

adherend bending has a significant effect on both adhesive shear and 

peel stresses, especially the latter. 

Oelale and Erdogan [14,15] performed a plate analysis similar to 

that of Goland and Reissner on the single lap joint assuming linear 

elastic adherends and a linear viscoelastic adhesive. Separate 

stress distributions were calculated for membrane loading, bending, 

and transverse shear loading. They further extended their 

viscoelastic analysis of the single lap joint to include time-

dependent temperature variations approximated by a piecewise constant 

function. 

Gali and Ishai [16] performed a finite element analysis on a 

symmetric doubler model with linear elastic adherends and the 

adhesive obeying a nonlinear effective-stress-strain relationship. 

The effective-stress-strain relationship was derived from stress-

strain curves obtained by tensile and shear test data, and based on 
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the Von Mises deviatoric energy yield criterion. An iteration 

procedure was applied to the linearly elastic finite element problem 

using a specific secant modulus for each element separately. The 

secant modulus was found from the corresponding effective strain of 

the previous solution and the corresponding effective stress was 

found from the experimental stress-strain curves. Gali and Ishai 

analyzed their symmetric doubler model using both plane stress and 

plane strain and found that the plane strain solutions converged 

faster and yielded less conservative results, i.e., lower stresses, 

than the plane stress solutions. Nonlinear solutions were also found 

to be considerably lower than the linear solutions, the difference 

being more pronounced in the plane stress case. The problem was also 

solved with the adhesive following an elastic-perfectly-plastic 

effective-stress-strain law. The difference between these results 

and those of the continuous nonlinear effective-stress-strain case 

was found to be very small. 

Nagaraja and Alwar [17] analyzed a tubular lap joint with the 

finite element method assuming linear elastic adherends and a · 

nonlinear biaxial stress-strain law in the adhesive. The constants 

appearing in the nonlinear law were obtained from uniaxial tension 

test data. The stress-strain relationship, however, was assumed to 

be time-independent. Nagaraja and Alwar demonstrated that for low 

stress levels, of the order of 12% of the fracture stress, the 

nonlinear stresses were as much as 15% lower in shear and 8% lower in 
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peel than the linear stresses. Nagaraja and Alwar [18) also 

performed a finite element analysis on a single lap joint, treating 

the adherends as linear elastic materials but the adhesive as a 

linear viscoelastic material. The relaxation modulus was assumed to 

be equal to the inverse of the creep compliance, the latter being 

obtained experimentally. 

Only recently, work involving the time dependent fracture 

characteristics of adhesively bonded joints has been under way. 

Francis et al. [19) discussed the effects of a viscoelastic adhesive 

layer, geometry, mixed mode fracture response, mechanical load 

history, environmental history and processing variations on the 

fracture processes of adhesively bonded joints. However, their 

finite element analysis includes only linear elastic fracture 

mechanics. 

Dattaguru, et al. [20] have performed cyclic de-bond research on 

the crack lap specimen and performed analyses with a finite element 

program GAMNAS, developed in-house at NASA-Langley. Their program 

includes geometric and material nonlinearities but does not include 

viscoelastic capability. Also, fracture is modeled using linear 

elastic fracture mechanics but no failure law is included. 

Botha, JQnes and Brinson [21], Henriksen [22), Becker, et al. 

[23], and Yadagiri and Papi Reddy [24) reported results of 

viscoelastic finite-element analysis of adhesive joints. Henriksen 

used Schapery's [25) nonlinear viscoelastic model to verify the 
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experimental results of Peretz and Weitsman [26] for an adhesive 

layer. The work of Becker et al. [23] is largely concerned with the 

development of a finite-element stress analysis program, called 

VISTA, for adhesively bonded joints. The 'intrinsic nonlinear model' 

based on free-volume concept of Knauss and Emri [27] was used in 

VISTA. The work of Yadagiri and Papi Reddy [24] is limited to linear 

viscoelastic analysis. Botha et al. [21] considered linear and 

bilinear viscoelastic models in their study. 

Pickett and Hollaway [28] presented both classical and finite 

element solutions for elastic-plastic adhesive stress distributions 

in bonded lap joints. Single, double and tubular lap configurations 

having both similar and dissimilar adherends were considered. The 

results show how the development of adhesive yielding will occur as 

the joints are loaded to a failure condition. The detrimental effect 

of adherend-stiffness-imbalance on the adhesive stress distribution 

was also shown. 

An approximate method to analyze viscoelastic problems has been 

outlined by Schapery [29]. In this method, the solution to a 

viscoelastic problem is approximated by a corresonding elasticity 

solution wherein the elastic constants have been replaced by time 

dependent creep or relaxation functions. The method may be applied 

to linear as well as nonlinear problems. Weitsman [30] used 

Schapery's quasi-elastic approximation to investigate the effects of 

nonlinear viscoelasticity on load transfer in a symmetric double lap 
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joint. Introducing a stress-dependent shift factor, he observed that 

the enhanced creep causes shear stress relief near the edges of the 

adhesive joint. 

Aivazzadeh and Verchery [31] developed several special interface 

finite elements based on Reissner's principle which take into account 

all the continuity conditions at the adhesive-adherend interface. 

These elements were then used to perform a two-dimensional analysis 

of an adhesively bonded butt joint. It was observed that the 

interface stress distribution could be evaluated more accurately 

using the interface finite elements compared to classical ones. 
\ The analytical procedures reviewed in the preceding pages are 

primarily applicable for bonded joints with homogeneou~ isotropic 

adherends. These procedures have been modified for composite 

adherends to account for their anisotropic and heterogeneous 

nature. A comprehensive review of publications relating to all 

aspects of adhesively bonded joints in composite materials is 

presented in [32]. 

Reddy and Sinha [33] extended the work of Erdogan and Ratwani 

[4] to obtain analytically, the stress distribution in adhesively 

bonded joints between two orthotropic materials. Similarly, Renton 

and Vinson [34] extended the work of Goland and Reissner [3] to 

obtain the linear elastic response of two generally orthotropic 

adherends adhesively bonded together. Barker and Hatt [35] used 

linear elastic finite-element analysis to evaluate the behavior of an 
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adhesive joint bonding an advanced composite to a metallic 

substrate. A special element was used to model the adhesive layer as 

a separate elastic medium of finite thickness in order to remove the 

stress singularity that exists when dissimilar materials are 

joined. Adams and Peppiatt [36] performed two dimensional finite 

element stress analysis on lap, bevel and scarf joints. The 

adherends were treated as homogeneous anisotropic materials with 

linear elastic properties, while the adhesive was treated as an 

elastic-perfectly plastic material. The effect of adhesive spew 

fillets on the stress distribution was also taken into account in 

this analysis. It was observed that the predicted joint efficiency 

was almost doubled when non-linear adhesive behavior was accounted 

for. 

Renton and Vinson [37] used laminated plate theory coupled with 

a structural mechanics approach to obtain analytical solutions for 

stresses and deformations within a bonded single lap joint. The 

closed form solutions were then used to conduct a parametric study 

which revealed that changes in adhesive moduli, adherend longitudinal 

modulus, and bond overlap length have a significant effect on the 

magnitude of the peak stresses within the adhesive. However, changes 

in adherend ply orientation appeared to have only a modest influence 

on adhesive peak stresses. These predictions were verified by the 

authors from experimental observations. 
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Schaffer and Adams (38] carried out a nonlinear viscoelastic 

analysis of a unidirectional composite laminate using the finite 

element method. The nonlinear viscoelastic constitutive law proposed 

by Schapery (25] was used in conjunction with elastoplastic 

constitutive relations to model the composite response beyond the 

elastic limit. 

Ghoneim and Chen (39] developed a viscoelastic-viscoplastic law 

based on the assumption that the total strain rate tensor can be 

decomposed into a viscoelastic and a viscoplastic component. A 

linear viscoelasticity model is used in conjunction with a modified 

plasticity model in which hardening is assumed to be a function of 

viscoplastic strains as well as the total strain rate. The resulting 

finite element algorithm is then used to analyze the strain rate and 

pressure effects on the mechanical behavior of a viscoelastic-

viscoplastic material. 

Analysis of crack growth in viscoelastic media are mainly 

limited to linear isotropic, homogeneous materials. Schapery (40] 

proposed the use of parameters similar to the J integral for quasi-

static crack growth in a class of nonlinear viscoelastic materials 

subject to finite strains. 

Czarnecki and Piekarski (41] used a nonlinear elastic stress-

strain law for three-dimensional failure analysis of a symmetric lap 

joint. Taking into account the variation of Poisson's ratio with 

strain within the adhesive, the authors concluded that the failure of 
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the adhesive layer originates in the central plane of a joint (at the 

front edge). It was also observed that the joint width does not have 

any effect on the stress peaks in the central plane and that the 

application of a weaker but more flexible adhesive results in higher 

load carrying capacity and lower stress concentrations in the 

adherends. 

Over the years several time-dependent failure criteria have been 

proposed for predicting yield and fracture of polymeric materials. 

Nagdhi and Murch [42] and Crochet [43] have used a modified van Mises 

criteria for viscoelastic materials by assuming that the radius of 

the yield surface depends upon the strain history. An energy based 

delayed failure criterion for polymeric materials subjected to 

isothermal creep was developed by Reiner and Weissenberg [44]. 

According to this theory, failure occurs when the stored deviatoric 

strain energy in a viscoelastic material reaches a certain maximum 
.. 

value called the resilience, which is a material constant. Bruller 

[45] and Hiel et al. [46] applied the Reiner-Weisenberg failure 

criterion to various viscoelastic materials, including composite 

laminates, and obtained good agreement with experimental 

observations. 

It is now well known that moisture diffusion can have a 

significant effect on the stress field within an adhesive layer in a 

bond. Weitsman [47] used a variational method coupled with Fickean 

diffusion law to study the interfacial stresses in viscoelastic 



18 

adhesive-layers due to moisture sorption. From the results of this 

uncoupled linear thermoelastic analysis, he concluded that the 

location of the maximum interfacial tensile stress depends on the 

geometry of the joint as well as the progress of the diffusion 

process within the joint. Weitsman [48] used the correspondence 

principle to generate a linear viscoelastic solution from the linear 

elastic analysis of moisture sorption within an adhesive layer. He 

observes that the viscoelastic analysis predicts detrimental effects 

due to stress reversals caused by fluctuations in relative humidity, 

that are not predicted in an elastic analysis. However, he 

acknowledged the omission of the effect of moisture content on the 

viscoelastic response of the resins in his analysis. 

lobing, et al. [49] used the finite element method to study the 

micro-mechanical effect of moisture sorption in graphite-epoxy 

composites. Using a constitutive equation based on the Flory-Huggins 

lattice model for polymer solvent interactions, they concluded that 

the stresses at the graphite-epoxy interface have a strong dependence 

on moisture content, fiber spacing, and applied load. 

Yaniv and Ishai [50] developed a linear viscoelastic closed form 

solution as well as a nonlinear finite element solution algorithm to 

study the hygrothermal effects in a bonded fiber-reinforced 

plastic/aluminum system. The linear solution was used for short-term 

predictions at low strain levels, whereas the finite element solution 

was used for long term predictions in which geometric and material 
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nonlinearities were taken into account. The authors observed that 

the presence of moisture tends to considerably reduce the stress 

level in the adhesive layer and may lead to significant variation in 

the time-dependent deformation of the test specimen as compared to 

the dry state. 

In the references cited above, various authors have underscored 

the effect of moisture content on the viscoelastic response of the 

test specimen. However, the effect of the viscoelastic stress field 

on the diffusion coefficient was not considered. Lefebvre et al. 

[51] extended the free volume concept to define a diffusion 

coefficient that is a function of temperature, dilatational strain 

and solvent concentration. The proposed nonlinear diffusion model 

showed good predictive capability for different values of temperature 

and moisture conentrations. They concluded that in order to obtain 

an accurate solution for the hygrothermal effects within an adhesive 

bond, the nonlinear diffusion problem needs to be solved in 

conjunction with the nonlinear viscoelastic boundary-value problem 

until convergence is achieved. 

A review of the literature reveals that previous finite-element 

analyses of adhesive joints were either based on simplified 

theoretical models or the analyses themselves did not exploit the 

full potential of the finite element method. Also, several 

investigations involving finite element analyses of the same adhesive 

joint have reported apparent contradicting conclusions about the 
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variations of stresses in the joint [24,52]. Thus, there is a need 

for a closer examination of the theories, underlying assumptions on 

material behavior and boundary conditions, and the finite element 

formulations used in the analyses of adhesive joints. 



CHAPTER 2 

NONLINEAR DESCRIPTION OF SOLIDS 

2.1 Introduction 

In the linear description of the motion of solid bodies it is 

assumed that the displacements and their gradients are infinitely 

small and that the material is linearly elastic. In addition, it is 

also assumed that the nature of the boundary conditions remains 

unchanged during the entire deformation process. These assumptions 

imply that the displacement vector ~ is a linear function of the 

applied load vector~ , i.e., if the applied load vector is a scalar 

multiple a~ then the corresponding displacements are a~ • 

The nonlinearity in solid mechanics arises from two distinct 

sources. One due to the kinematics of deformation of the body and 

the other from constitutive behavior (e.g., stress-strain 

relations). The analyses in which the first type of nonlinearity is 

considered are called geometrically nonlinear analyses, and those 

in which the second type are considered are called materially 

nonlinear analyses. The geometrically nonlinear analysis can be 

subclassified according to type of nonlinearities considered. Two 

such cases are: (i) large displacements, large rotations, but small 

strains, and (ii) large displacements, large rotations and large 

strains. In the first case it is assumed that rotations of line 

elements are large, but their extensions and changes of angles 

between two line elements are small. In the second case the 

21 
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extension of a line element and angle changes between two line 

elements are large, and displacements and rotations of a line element 

are also large. 

2.2 Incremental Equations of Motion 

In the Lagrangian description of motion all variables are 

referred to a reference configuration, which can be the initial 

configuration or any other convenient configuration. The description 

in which all variables are referred to the initial configuration is 

called the total Lagrangian description, and the one in which 

all variables are referred to current configuration is called the 

updated Lagrangian description. 

The equations of the Lagrangian incremental description of 

motion can be derived from the principles of virtual work (i.e., 

virtual displacements, virtual forces or mixed virtual displacements 

and forces). Since our ultimate objective is to develop the finite 

element model of the equations governing a body, we will not actually 

derive the differential equations of motion but utilize the virtual 

work statements to develQp the finite element models. 

The displacement finite element model is based on the 

principle of virtual displacements-. The principle requires that the 

sum of the external virtual work done on a body and the internal 

virtual work stored in the body should be equal to zero (see [53]): 
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(2.1) 

~c 2F> = J 2fi ~ dv J 2t ds 0 oUi + i 6Ui 
v2 s2 

2, 1j = the Cartesian components of the Cauchy stress tensor in 

configuration c2 at time (t + At) occupying the volume 

v2 

2eij = the Cartesian components of the infinitesimal strain 

tensor associated with the displacements ui in going 

from configuration c1 at time t to c2 at 

time (t + At) : 

xi = Cartesian components of a point in configuration 

Cz 
2f i = Cartesian components of the body force vector 

measured in c2 
2ti = Cartesian components of the surface stress vector 

measured in c2• 

(2.2) 

Here 6 denotes the variational symbol (i.e., 6Ui denotes the virtual 

displacement in ui) and dV and dS denote the volume and surface 

elements in configuration over which the integrals are defined. 
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Equation (2.1) is not so useful in its present form because the 

integrals are defined over the volume v2 and surface s2 of the 

configuration c2, which is yet unknown. In the linear analysis, it 

is assumed that the configuration of the body remains unchanged and 

therefore Eq. (2.1) applies to the initial (undeformed) 

configuration. The fact that the configuration of the body changes 

continuously in a nonlinear analysis requires us to use appropriate 

measures of stress and strain and their interrelationship (i.e., 

constitutive equations) so that Eq. (2.1) can be used to calculate 

the configuration c2 • In order to compute the current configuration 

c2 (often, the displacements, strains and stresses) from the 

knowledge of applied forces and displacements, and known previous 

configuration c1, we must make some assumptions. A description of 

the procedure based on the updated Lagrangian approach is given 

below. 

The coordinates of a general point in c0 and c1 and c2 are 

denoted by (X~, X~, X~); (X1, x2, x3), and (x1, x2, x3), 

respectively. The displacements of a general point in c1 are denoted 
1 1 1 ( u1, u2, u3). In c2 they are given by 

(2.3) 

where ui are the components of the displacement vector from c1 to c2• 

During the motion of the body, its volume, surface area, 

density, stresses and strains change continuously. The stress 
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measure that we shall use is the 2nd Piola-Kirchhoff stress tensor. 

The components of the 2nd Piela-Kirchhoff stress tensor in c1 will be 

denoted by Sij• To see the meaning of the 2nd Piela-Kirchhoff stress 

tensor, consider the force dE on surface dS in c2• The Cauchy stress 

tensor ! is defined by 

(2.4a) 

A 

where ~ is the unit normal to dS in c2• Note that the Cauchy stress 

is the force per deformed area (i.e. measured in c2) and referred to 

c2• The 2nd Piela-Kirchhoff stress tensor at time t + 6t referred to 

c1 is defined by 

A 

(n_Ao . 215) dS = dF 
- 0 -o (2.4b) 

where ~o denotes the unit normal to the surface element dS0 in c1• 

The force dE0 is related to dE by 

where 

dF = J-l · dF -o -

ax T 
~-1 = <a;> . 

(2.4c) 

From the definition it is clear that the 2nd Piela-Kirchhoff stress 

is measured in c2 but referred to c1• It can be shown that that the 
2 2 components Sij and 'ij are related according to 

(2.5a) 
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(2.5b) 

where p0 denotes the density in c1 and p is the density in c2• The 

2nd Piela-Kirchhoff stress tensor is synunetric whenever the Cauchy 
2 2 2 stress tensor is symmetric. Note that 2sij = Tij = 2Tij" 

Similarly, the Green-Lagrange strain tensor Eij and the 

infinitesimal strain tensor e1j are related by 

2 axm axn 
lEij = axi axj 2emn· (2.6) 

It is also important to note that the 2nd Piela-Kirchhoff stress 

tensor is energetically conjugate to the Green-Lagrange strain tensor 

and the Cauchy stress is energetically conjugate to the infinitesimal 

strain tensor. In other words, we have 

(2.7) 

Substituting Eq. (2.7) into Eq. (2.1), we obtain 

f 2 2 2 o = 1sij o( 1E1j) dV - o( F). 
vl 

(2.8) 

Next we use the incremental decompositions of the stress and strains: 

2 1 
lsij = Tij + lsij 

2 
lEij = leij + lnij (2.9) 
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where 

= incremental components of 2nd Piela-Kirchhoff stress 
tensor 

= (incremental) components of the infinitesimal strain 
tensor 
1 aui ~ 

= 2 <ax+ ax >' j i 
1 aum aum 

lnij = 2 axi axj· (2.10) 

Recall that ui is the i-th displacement component of a generic point 

in c1 (in going from c1 to c2). Substituting Eq. (2.9) into Eq. 

(2.8), we have 

or 

f 1 2 - 'ij 6(leij)dV + 6( F). 
vl 

(2.11) 

Linearize the equations by assuming that 

{2.12) 

where 1cijrs are the components of the linear elasticity tensor. 

Constitutive equations of linear and nonlinear viscoelasticity will be 

presented later. We obtain the approximate equation of equilibrium, 
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I 1 2 - 'ij o(1eij)dV + o( F). 
vl 

(2.13) 

This linearization can be interpreted as a representation of the 

nonlinear curve between two consecutive load steps by linear line 

segments. 

2.3 Finite Element Model 

Here we construct the finite element model of Eq. (2.13) for the 

two-dimensional case (see Reddy [54]). Let each displacement increment 

be approximated as 

Substituting Eq. (2.14) into Eq. (2.13) we obtain 

where 

[
"'1,1 

[BL] = 0 
(3 x 2n) 1IJ 

1,2 

0 "'2,1 0 
"'1,2 ° "'2,2 
"'1,1 "'2,2 "'2,1 

"'n, 1 
0 

(2.14) 

(2.15) 

~n,2] 
"'n, 1 
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Tll T12 0 0 

T12 T22 0 0 
[T] = 0 0 Tll T12 

0 0 Tl2 T22 

ljll,1 0 "'2' 1 0 . . . ljln,1 0 

ljll ,2 0 ljJ2,2 0 . . . "'n,2 0 
[Ba] = 

(4 x 2n) 0 ljll, 1 0 ljl2, 1 0 ljln, 1 
0 ljll,2 0 ljl2,2 0 ljln,2 

[ 1jJ] [:l 0 1!12 0 "'n :J. (2 x 2n) = 
ljll 0 ljl2 • 0 

[Tu] {f) = (;~] {T} = '22 1 (2.16) 

'12 

It should be noted that 1Tij should be computed using the Almansi 

strain tensor, 
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(2.17) 

where, 
1 auk au au au 

£ = - (- + __.!!! - _..!l _n) 
1 km 2 axm axk axk axm 

Also, since Eq. (2.13) is a linearized version of Eq. (2.11), the error 

introduced into the calculation of the displacements ui between 

configurations can drift the solution away from the true solution 

(especially, if the load steps are large). Therefore, a correction 

should be made to the displacements at each load step. This can be done 

as follows: The solution {au} of Eq. (2.15) allows us [with the aid of 

Eq. (2.3)] to compute the total displacements at time (t +at) , 

2 1 ui = ui + aui 

which can be used to compute the strains and stresses (with appropriate 

constitutive equation) at time t + at. By the principle of virtual 

displacements, the true displacements, strains and stresses at any time, 

say at time t + ~t, are such that the internal virtual work is equal to 

the external virtual work done. Since ~ui (hence the strains and 

stresses computed from them) are approximations, there will be imbalance 

between the internal and external virtual works performed on the body. 

This imbalance can be minimized by updating the internal virtual work 

through an iteration (for a fixed system of loads and time); the 

iteration is continued until the imbalance is reduced to a preassigned 

value (i.e., a convergence limit). For example, displacement increment 
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at the (r + l)st iteration is calculated from the equations 

(2.18) 

wherein [•] and {•} are calculated using the displacements, 

(2.19) 

Equations (2.18) and (2.19) correspond to the Newton-Raphson 

iteration. If the left hand side (i.e. [K0 ]) is not updated during the 

iteration, the iterative scheme is known as the modified Newton-Raphson 

iteration. 



CHAPTER 3 

NONLINEAR VISCOELASTIC FORMULATION 

3.1 Introduction 

A thermodynamically consistent theory for a single integral 

representation of nonlinear viscoelasticity was first proposed by 

Schapery (25]. The law can be derived from fundamental principles using 

the concepts of irreversible thermodynamics. A comprehensive review of 

the thermodynamics basis of Schapery's theory has been presented by Hiel 

et al. (55]. 

The following two sections deal with the review and application of 

Schapery's single integral constitutive law to problems with uniaxial 

and multiaxial states of stress respectively. The consti~utive 

equations thus obtained are suitable for non-linear viscoelastic finite 

element analysis. 

3.2 Uniaxial Stress State 

The uniaxial nonlinear viscoelastic constitutive equation of 

Schapery (25] can be written for an isotropic material as, 

t 
et = g~atoo + gt f 60($t - ~s) ~s [g~as]ds 

0 
(3.1) 

In Eq. (3.1), et represents uniaxial kinematic strain at current time 

t, at is the Cauchy stress at time t, 00 is the instantaneous elastic 

compliance and 60($) is a transient creep compliance function. 

Superscript, t, denotes current time. The factor g~ defines stress and 

temperature effects on the instantaneous elastic compliance and is a 
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measure of state dependent reduction (or increase) in stiffness, 

g~ = g0 (a,T). Transient (or creep) compliance factor gf has similar 

meaning, operating on the creep compliance component. The factor 

g~ accounts for the influence of load rate on creep, and depends on 

stress and temperature. The function ,t represents a reduced time scale 

parameter defined by, 

t 
,t = f (as )-lds 

0 °T 
(3.2) 

where, a~T is a time scale 'shift factor'. For thermorheologically 

simple materials, a = a(T) 1s a function of temperature T only. This 

function modifies, in general, viscoelastic response as a function of 

temperature and stress. Mathematically, a~T shifts the creep data 

parallel to the time axis relative to a master curve for creep strain 

versus time. In this model, four material parameters (g~, gt, g~ and at) 

are available to characterize nonlinear behavior instead of only one 

with the time scale shifting procedure of Knauss and Emri [27]. 

The transient creep compliance, 60(,), can be expressed in the 

following exponential form, 

where Dr and Ar are constants. 

t 
£t = gto at+ gt I ~ D [1 o o 1 0 r r 

(3.3) 

Substituting (3.3) in (3.1), gives, 

-Ar(,t-,s) d s s 
- e 1 ds [g2a ]ds. (3.4) 
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Letting the product g~as be expressed as Gs and simplifying the 

integrand on the right hand side of Eq. (3.4) yields, 

t t t t t d s t t -xr(,t-,s) dGs 
e = g000 a + g1 2 Dr J ds G ds - g1 2 Dr J e d's- ds. 

r 0 r 0 
(3.5) 

The third integration term on the right hand side of Eq. (3.5) is 

now separated into two parts, the first part having limits from zero 

to (t - 6t) and the second integral spanning only the current load step, 

i.e., from (t - 6t) tot. Hence, 

t -xr('t - ,s) dGs t-6t -xr('t_,s) dGs 
J e d's- ds = J e d's- ds 
0 0 

The first term on the right hand side of Eq. (3.6) can be rewritten as, 

t-6t -xr(,t-,s) dGs 
J e crs- ds 

0 

(3. 7) 

where, 
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( t-tit s} t-tit t-tit -~r ~ -~ dGs 
qr = f e <Is- ds. (3.9} 

0 

The second integral on the right hand side of Eq. (3.6} is now 

integrated by parts. To carry out the integration, it is assumed 

that Gt varies linearly over the current time step tit. Hence, 

(3.10} 

In arriving at the second step, the fact that Gs is assumed to be 

linear, hence its second derivative is zero, is used. Since Gt has been 

assumed to be a linear function of time over the current load 

step tit, we can write, 
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or, 

Substituting (3.11) into (3.10), gives 

or, 

where, 
t 

8t = 1 - e-XrAlll 
r X Aljlt 

r 
Substituting (3.9): and (3.12) back into (3.5) and 

writing Gt = g~at 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Collecting those terms in Eq. (3.14) that are multiplied by current 

stress at yields, 

Et = [ t 0 + t t ~ 0 t t ~ 0 t 1 t go o 9192 l r - 9192 l r 8r 0 
r r 

-X Aljlt 
+ gi{2 Dr[g2t-Ats;at-At _ e r q;-At]}. 

r 
(3.15) 

Defining instantaneous compliance ai as the compliance term 

multiplying the instantaneous stress at, and the remaining terms in Eq. 
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(3.15) as hereditary strains Et, yields, 

(3.16) 

where, 

(3.17) 

(3.18) 

Hence, Eq. (3.16) expresses Schapery's single integral constitutive 

law in terms of a stress operator that includes instantaneous compliance 

and hereditary strains. 

It is to be noted that the term q;-6t in Eq. (3.18) is the rth 

component of the hereditary integral series at the end of the previous 

load step (i.e. at time equal~ t - 6t). The expression for the 

hereditary integral at the end of the current load step (i.e. at time t) 

can be derived in the form of a recurrence formula as shown below. 

By definition [see. Eq. (3.9)], 

t t -Ar(~t-~s) dGS 
q = f e - ds r 0 ds 

t s) t s t-6t -A (~ -~ dGS t -Ar(~ -~ ) dGS 
= f e r -d ds + f e -ds ds. (3.19) 

0 s t-6t 

Using the results from Eqs. (3.9) and (3.12), the above equation reduces 

to, 
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(3.20) 

where s; is defined by Eq. (3.13). 

3.3 Multiaxial Stress State 

For a thermorheologically simple anisotropic viscoelastic material 

under a multiaxial state of stress, the constitutive law proposed by 

Schapery [25] is, 
... 

aGR aamn ... 
e = - -- + -- l1e ij aaij aaij mn (3.21) 

_ t ij t T a "' 
l1emn - J i1Smn<' - ' ) ~ (aij/aG)dT 

-m 
(3.22) 

where, eij and aij are the strain and stress tensors respectively, GR is 

the Gibbs free energy, ~ij and i1S!~ are second and fourth order material 

property tensors respectively and ~ is a material kernel function 
... 

defined in [25]. The quantities GR, aG and amn are, in general, 

functions of ten variables, aij and temperature T. Note that all 

repeated indices in Eqs. (3.21) and (3.22) are to be summed out over 

their range (1,2,3). 

Due to the complex nature of Eq. (3.21) it is not possible to 

determine the material properties in this equation from the uniaxial 

tests outlined in [25]. However, it is possible to construct a set of 

small strain, three dimensional constitutive equations from (3.21), 

which is consistent with the thermodynamic theory in [25], and which yet 

enables all properties to be evaluated from uniaxial tests. The 
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assumptions which need to be made for this purpose are as follows: 

(a) The Gibb's free energy GR is a quadratic function of stress. 

(b) aij = a1j (3.23) 

When the free energy GR is a quadratic function of stress, 

a GR mn - - = S.j(O)a aaij l mn (3.24) 

where s~j(o) are the instantaneous components of the linear viscoelastic 

creep compliance tensor. Equation (3.24) implies that the initial 

response of the material is linearly elastic under suddenly applied 

stresses, which is often the case for metals and plastics. 

The second assumption, on the other hand, leads to the 

linearization of the coefficient of the transient term in Eq. (3.21). 

Mathematically, this is given by, 
A 

aam 1, if i = m and j = n _n={ 
30ij 0, if i * m and j * n 

(3.25) 

Equation (3.25) implies that the jump in strain due to load application 

equals the jump when the load is removed. This behavior is exhibited by 

some types of plastics [56). 

Substituting Eqs. (3.24) and (3.25) in (3.21) and (3.22), 

(3.26) 

(3.27) 

where, g2 = l/aG. Superscript, t, denotes current time. Equation 

(3.26) is a set of three dimensional constitutive equations for 
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anisostropic viscoelastic materials which includes the nonlinear 

functions g~ and a!r appearing in the uniaxial relations (3.1) and 

(3.2). Note that the functions g~ and a!r are expressed as a function 

of the octrahedral shear stress, which is a stress invariant. 

For a homogeneous isotropic nonlinear viscoelastic material, Eq. 

(3.25) reduces to the form presented by Schapery ((25] and (56]), 

where, 

t 
{J}{g~aij} = J(O)aij + f 0 aJ(~t - ~T) :T (g~aij)dT 

{o - J}{g~a~} = [O(O) - J(O)]a~ +ft [aO{~t - ~T) 
0 

- aJ(~t - ~T)] .!.._ (gTaT )dT aT 2 mm 

in which, 

Expanding Eq. (3.28) term by term for the strains, 

Arranging terms, 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Similarly, 

e~2 = {D - J}{g~ai 1 } + {D}{g~a~2 } + {D - J}{g~aj3 } 

Yiz = 2 {J}{g~0i2} 

e~3 = {D - J}{g~ai 1 } + {D - J}{g~a~2 } + {D}{g~a~3 } 

(3.33) 

(3.34) 

(3.35) 

The transient components of the creep and shear compliances can be 

written in the form of Prony series as, 

-\ ~ 
~D(~) = l D (1 - e r ] 

r r 
-n ~ 

~J(~) = l Jr[l - e r 1 
r 

(3.36) 

(3.37) 

where \r and nr are the reciprocal of the retardation times in creep and 

shear respectively. Also, let, 

D{O) = D 
0 

J(O) = J 
0 

(3.38) 

(3.39) 

Considering a term of the form {D}{g~aij} in Eq. (3.32) and substituting 

Eqs. (3.36) to (3.39) gives, 

t t t t -\r(~t-~T) d T T 
{D}{g2aij} = D0aij + f 0 ~ Dr[l - e I d, [g2aijld• (3.40) 

Recognizing that Eq. (3.40) is similar in appearance to Eq. {3.6) and 

making use of the results derived in Section 3.2, 

{ }{ t t } t t t D g2cr1j = Dlcrij + Qij (3.41) 

where oi is the instantaneous creep compliance function at time t, given 
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by, 

o} = 00 + g~ l Dr(l - s;), 
r 

(3.42) 

Qij are the hereditary strain components due to tensile creep at time 

t, 

(3.43) 

-A d,t 
st = 1 - e r (3.44) 
r A d,t r 

and, q~,ij are components of the hereditary integral given by the 

recurrence formula, 

(3.45) 

Similarly, a term of the form {J}{g~aij} in Eq. (3.32) can be 

expressed as, 

(3.46) 

where, J} is the instantaneous shear compliance function at time t, and 

is given by, 

J} =Jo+ g~ l Jr(l - r;), 
r 

(3.47) 

Pij are the hereditary strain components due to shear at time t, 

-n 6•t 
Pij = ~ [g~-dtr~aijdt - e r p~~~jl (3~48) 
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t -n 61'1 
rt = 1 - e r (3.49) 
r 6,,,t 

nr "' 
and, P;,ij are components of the hereditary integral given by the 

recurrence formula; 

Substituting Eq. (3.41) and (3.46) in Eqs. (3.32) to (3.35), and 

dropping superscripts, gives, 

ell = Dl0 11 + (DI - JI) 0 22 + (DI - JI) 0 33 + Hll (3.51) 

e22 = (DI - JI) 0 11 + DI 0 22 + (DI - JI) 0 33 + H22 (3.52) 

yl2 = 2JI 0 12 + Hl2 (3.53) 

e33 = (DI - JI) 0 11 + (DI - JI) 0 22 + DI 0 33 + H33 (3.54) 

where, 

Hll = Qll + Q22 + Q33 - p22 - P33 (3.55) 

H22 = Qll + Q22 + Q33 - pll - P33 (3.56) 

Hl2 = 2pl2 (3.57) 

H33 = Qll + Q22 + Q33 - pll - P22· (3.58) 

Written in form of a matrix equation, this becomes, 



44 

{e} = [N]{a} + {H}. (3.59) 

Note that the left hand side of Eq. (3.59) is a vector containing the 

algebraic difference of kinematic strains {£} and dilatational strains 

while, {a} contains four components of Cauchy stress, 

and {H} ·is a vector of hereditary strains given by, 

The matrix [NJ is a 4 x 4 coefficient matrix given by, 

[ N] = 

Dr 
(DcJr) 

0 

(DcJr) 

(Di-Jr) 0 
Dr 0 
0 2Jl 

(DcJr) 0 

<Dr-Jr) 
(DcJ r) 

0 

Dr 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

Pre-multiplying Eq. (3.59) by [N]-1, an explicit expression for stresses 

in terms of strains is obtained, 

{a} = [M]({e} - {H}) (3.64) 
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where, 

[M] = [N]-l (3.65) 

Equations (3.64) and (3.65) provide a general viscoelastic 

constitutive relation that can be applied to either plane stress, plane 

strain or axisynvnetric problems. For plane strain, the out-of-plane 

strain component e33 is identically zero. The corresponding stress 

component, 0 33 , may be obtained from Eq. (3.64) by setting e33 = O. 

Since for the plane stress case, 0 33 is identically zero, the 

corresponding strain component e33 can be evaluated from Eqs. (3.59) and 

(3.63) as, 

(3.66) 

Note that the us~ of creep and shear compliances as material property 

input allows the Poisson's ratio to be time-dependent. Hence, the 

present formulation is applicable to any thermorheologically simple 

isotropic viscoelastic material over any length of time. 

For the special case where the Poisson's ratio is a constant with 

time, then, 

J(~) = (1 + v)D(~). (3.67) 

The matrix (N] in Eq. (3.59) takes the form, 

1 -v 0 -v 

[N] = DI -v 1 0 -v (3.68) 
0 0 2(l+v) 0 

-v -v 0 1 
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and, the corresponding hereditary strains are, 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

If the viscoelastic properties of a material are defined by its 

bulk and shear compliances instead of the creep and shear compliances, 

then the creep compliance D(~) in Eq. (3.28) is replaced by the bulk and 

shear properties. Using the viscoelastic relationship betwen creep, 

bulk and shear compliances given by, 

D(~) = ~ M(~) + j J(~) (3.73) 

and substituting in Eq. (3.28), the matrix relation given by (3.59) is 

obtained. However, for this case the matrix [N] has the form, 

1 2 (9 MI + 3 JI) 1 1 (9 MI - 3 JI) 0 1 1 (9 MI - 3 JI) 
1 1 1 2 0 1 1 (9 MI - 3 JI) (9 MI + 3 JI) (9 Ml - 3 JI) 

[ N] = (3.74) 
0 0 2JI 0 

1 1 1 1 1 2 (9 MI - 3 JI) (9 MI - 3 JI) 0 (9 MI + 3 JI) 

and the corresponding hereditary strains are, 
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1 2 1 Hll = 9 (Qll + Q22 + Q33) + 3 pll - 3 (P22 + P33) (3.75) 

1 2 1 H22 = 9 (Qll + Q22 + Q33) + 3 p22 - 3 (Pll + P33) (3.76) 

H12 = 2pl2 (3. 77) 

1 2 1 H33 = 9 (Qll + Q22 + Q33) + 3 P33 - 3 (Pll + p22) (3.78) 

3.4 Finite Element Model 

Th1s section describes the finite element implementation of the 

nonlinear viscoelastic constitutive law presented in Sections 3.2 and 

3.3. Since viscoelastic materials often undergo large displacements 

especially when subjected to creep type of loading, the geometrically 

nonlinear analysis described in Chapter 2 has been incorporated into the 

viscoelastic formulation. 

Invoking the principle of virtual work and following the procedure 

outlined in Section 2.2 gives, 

I 1 I 1 I 1 = - Tij&( 1eij)dV + v f i&uidV + s ti&uidS 
vl 1 1 

(3.79) 

where, 1M1jrs are the components of the viscoelasticity constitutive 

tensor. The rest of the quantities and the superscripts 1n Eq. (3.79) 

have the same definitions as in Section 2.2. Let each displacement 

increment at any time t, be approximated as, 
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n j 
= j~l 6Ui~j(x1,x2>· 

Substituting Eq. (3.80) into Eq. (3.79) gives, 

([KL) + [Ka]){6u} = {FL} - {Fa} 

where, 

[KL) = hf [BL)T[M)[BL)dA, h = thickness 
Al 

(3.80) 

(3.81) 

(3.82) 

and [M) is the 4x4 viscoelastic constitutive matrix defined in Eq. 

(3.65). Note that for the nonlinear viscoelastic case, the 'linear' 

stiffness matrix [KL] is not really linear, but has nonlinearities 

imbedded in it due to the presence of the material kernel functions (g0 , 

g1, g2) in the matrix [M). The nonlinear stiffness matrix [Kai is the 

direct result of the geometrically nonlinear formulation and is given 

by, 

[Ka) =hf [Ba)T[,][Ba)dA (3.83) 
Al 

The definitions of matrices [BL], [Ba), {FL}, {Fa} and l•l are the same 

as in Eq. (2.16). The Cauchy stress components, are computed by using 

the viscoelastic relation, 

{a} = [M]({e} - {H}) (3.84) 

which has been derived in Section 3.3. For a geometrically nonlinear 

analysis, the vector {e} contains components of the Almansi strain 

tensor given by, 

(3.85) 
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It is evident that Eq. (3.81) contains two possible sources of 

nonlinearities: material nonlinearity due to Schapery's law and, 

geometric nonlinearity arising from the large displacement 

formulation. In order to obtain a solution to this nonlinear equation 

at any time step, the Newton-Raphson iterative technique is used. The 

incremental displacement {Au}r obtained at the end of the rth iteration 

is used to update the total displacement for the nth time step, 

nu = nu + Anu r r-1 r (3.86) 

The iterative procedure continues until a convergence criterion is 

satisfied. After that, the solution proceeds to th~ next time step. 

Note that for the first time-step, nu 1 = O. r-
The complete solution procedure for each individual time step is 

presented in a logical step-wise fashion and can be used directly for 

programming purposes: 

1. At the beginning of each time step, the stress vector 

{a} from the previous time step is accessed. Note that for 

the initial or starting time step, the stress vector 

a(t - At) denotes the initial stress state at t = 0, given 

by {a0 }. Since it is customary to assume a stress free state 

to exist at the start of the solution, {a0 } is usually set to 

be zero. 

2. Temperature T at time t is computed from T = f (t) which is 

supplied by the user for problems involving thermal loads. 
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t 3. The parameters g0 , g1, g2, and aaT' which are known functions 

of temperature and stress, are evaluated next, using the stress 

vector obtained from previous load step. 

4. Assuming a~T to be a linear function of time over the time 

step At, the average value of shift factor is given as 

atT = (atT-At + atT)/2 and the change in reduced time A~t 
a avg a a 

is computed as A~t = At/atT • In order for this assumption 
a avg 

to be valid At should be made sufficiently small. 

5. Hereditary integral {q~} is computed using the recursive 

formula given by Eq. {3.45). 

6. {Fext} = x[Fapp} where x is the load factor that corresponds 

to the time step under consideration. 

7. The residual vector {R} is computed for each element as, 

{R}e = {Fext}e - f [B]T{a}edV. 
Ve 

8. The tangent stiffness matrix [KT]e = f [B]T[M][B]dv. 
Ve 

9. Incremental displacement {6u} = [KTJ-1{R}. 

10. Total displacement {u} 1 = {u} 1_1 + {Au} 1 where the subscript i 

denotes the number of iterations. 

11. The strains and stresses are computed using the known 

displacement. 

12. Steps 3 through 12 are repeated till 
II {AU; }H 
--- < to 1 erance. 

11 {u 1} II 
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13. Solution proceeds to the next time step for which steps 1 
through 12 are repeated. 



CHAPTER 4 

MOISTURE DIFFUSION AND DELAYED FAILURE 

4.1 Governing Equations for Diffusion 

The nonlinear Fickean two-dimensional, diffusion model presented in 

the present study is the one investigated by Lefebvre, et al. [51). The 

diffusion model can also be applied for penetrants other than moisture. 

Fick's law for the two-dimensional diffusion of a penetrant within 

an isotropic material is given by, 

.L {D lf) + .L (D ac) ac ax ax ay ay = at (4.1) 

where, c is the penetrant concentration, which is a function of position 

and time, and D is the diffusion coefficient. 

In order to model the transport phenomena in polymeric materials, 

Lefebvre et al. [51) derived a nonlinear diffusion coefficient based on 

the concept of free volume. 

According to this theory, the diffusion coefficient for a polymeric 

material above its glass transition temperature is given by, 

D -B{l/f - l/f } 
D =~Te o 

To (4.2) 

where, D is the diffusion coefficient, T is the temperature, f is the 

free volume fraction, and B is a material constant. The subscript 1 0 1 

denotes values at the reference state. It is then postulated that the 

change in fractional free volume is due to changes in temperature, 

52 
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penetrant concentration, and the transient component of the mechanically 

induced dilatational strain. It is further assumed that these changes 

are additive, which is similar to the assumptions made by Knauss and 

Emri (27), giving, 
N f = f 0 + 3a6T + 6ekk + 3yc (4.3) 

In Eq. (4.3), a is the linear coefficient of thermal expansion, y is the 

linear coefficient of expansion due to moisture, N is an exponent for 

the saturated state, and 6ekk is the transient component of the 

mechanically induced dilatational strain. The dilatat1onal strain due 

to the ambient stress state can be written as, 

(4.4) 

where ekk(O) and 6ekk are the instantaneous and transient components of 

the mechanically induced dilatational strain ekk" Hence, 

(4.5) 

and 

(4.6) 

where M(~) is the bulk compliance of the material. Combining Eqs. (4.4) 
and(4.5), 

(4.7) 

Substituting (4.7) in (4.3), 
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Substituting (4.8) in (4.2) gives, 
N 1 00 8 3(aaT + yC ) + (ekk - 3 M0akk) 

D = y- T exp {~ [ N l ]} (4.9) 
o o f 0 + 3(aaT + yC ) + (ekk - 3 M0 akk) 

From the viscoelastic formulation presented in Chapter 3, it is evident 

that the dilatational strain ekk is dependent on the stress history, 

temperature and penetrant concentration, that is, 

(4.10) 
Hence, the two sources of nonlinearity in Eq. (4.1) are moisture 

concentration c, and dilatational strain ekk" Consequently, in order to 

accurately model the penetrant transport phenomena, the diffusion 

boundary-value problem needs to be solved in conjunction with the 

nonlinear viscoelasticity boundary-value problem by using an iterative 

procedure. The same solution procedure can also be applied for 

diffusion in polymeric materials where the plasticizing effect of the 

penetrant may cause the viscoelastic time-scale shift factor to be 

concentration dependent, that is, 
t aaTc = a(a,T,c) (4.11) 

One example of such a shift factor definition can be found in the work 

of Knauss and Emri [27], where the authors have used the unifying 

concept of free volume to define a shift factor given by, 

8 aaT + yC + oekk 
a(T,c,ekk) =exp{-~ (f + aaT + yc + oe )} 

0 0 kk 
(4.12) 

where o is the coefficient of the dilatation term. Note that the 

coefficients a and yin Eqs. (4.9) and (4.12) are, in general, functions 
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of T, c and ekk but have been assumed to be constant for the sake of 

simplicity. This assumption is valid for temperatures above the glass 

transition temperature. 

4.2 Finite Element Formulation 

Fick's law for two dimensional diffusion in a homogeneous isotropic 

material is given by, 

L (0 li) + L (li) ac in n ax ax ay ay = at 

subject to the boundary conditions, 

0 .!£ n + 0 .!£ n + q = 0 on r 1 , t ~ 0 ax x ay y 

and 

c = c on r2 , t ~ O 

with the initial condition, 

c = c in n , t = 0 
0 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

where, n is the two dimensional region in which diffusion occurs, 

and r is the boundary to this region. 

The finite element formulation for Eq. (4.13) incorporating the 

initial and boundary conditions (Eqs. (4.14) to (4.16}} was carried out 

following the variational procedure used by Reddy [54]. The time 

dependent moisture concentration is approximated as, 
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n 
c(x,y,t) = I ~.(x,y)cj(t) 

j=l J 
(4.17) 

The resulting finite element equations cast in a matrix form are given 

by, 

(4.18) 

where, 

(4.19) 

(4.20) 

F~e) = - J ~iqds (4.21) 
re 

The superscript (e) is used to denote that the equations are valid over 

each element. The range of the subscripts i and j is equal to the 

number of nodes per element. 

The time derivative {c} is approximated using a e family of 

approximations given by, 

{c} + - {c} 
e{c} +l + {l - e){c} = ~tl n for o ~a ~ 1 

n n n+l 
(4.22) 

where, n is the time step. Using the approximations (4.22) in (4.18) 

for time tn and tn+l gives, 

(4.23) 

where, 
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(4.24) 

(4.25) 

(4.26) 

Recognizing that a source of nonlinearity in the form of the diffusion 

coefficient D 1s imbedded in the matrix [K(e)], the Newton-Raphson 

technique is employed to solve for the concentration {c}n+l at each time 

step. Note that for n = 1, the value of {c} in Eq. (4.23} is known from 

initial conditions. 

4.3 Delayed Failure: Uniaxial Formulation 

When a viscoelastic material undergoes deformation, only a part of 

the total deformation energy is stored, while the rest of the energy is 

dissipated. This behavior is unlike elastic material where all the 

energy of deformation is stored as strain energy. Reiner and Weisenberg 

[44) postulated that it is this time-dependent energy 

storage capacity that is responsible for the transition from 

viscoelastic response to yield in ductile materials or fracture in 

brittle ones. According to this theory, failure occurs when the stored 

deviatoric strain energy per unit volume in a body reaches a certain 

maximum value called the resilience, which is a material property. Note 

that when there is no dissipation, that is, when the material is 

elastic, then Reiner-Weisenberg criterion becomes identical to the von 

Mises criterion. 
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Consider the single Kelvin element shown in Fig. 1, subject to the 

uniaxial tensile load a(t). The total strain response e(t) due to the 

applied stress can be divided into two components: the instantaneous 

respone e0 , and the transient response e1(t). Hence, 

e(t) = e0 + e1(t) (4.27) 

For uniaxial creep, the applied stress a(t) is given as, 

a{t) = a0H(t) 

where H(t) is the unit step function. 

(4.28) 

Substituting Eq. (4.28) into Schapery's ·nonlinear uniaxial single 

integral law given by Eq.(3.1), and expressing the transient creep 

compliance Dc(~) as, 

results in, 

where~ is the reduced time defined in Eq. (3.2). 

Comparing Eq. (4.30) with (4.27), 

eo = goDo0 o 
-A ~ 

el(~)= glDl(l - e r )g2ao 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

For a given applied stress a0 , stress developed in the nonlinear spring 

with compliance D0g0 is a~ and the corresponding strain is e~. For the 

spring with the nonlinear compliance D1g1, the stress is given by, 
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(4.33) 

where the superscript 's' denotes quantities related to the springs. 

From Fig. 1 it is evident that e~ and e1 are equivalent. Hence, 

s · -xl~ 
o1 = g2(1 - e )o0 (4.34) 

The total energy, ws, stored in the two springs over time t is (see Hiel 

et al. [55)), 

(4.35) 

Using results from Eqs. (4.31), (4.33), and (4.34), Eq. (4.35) becomes, 

(4.36) 

For a viscoelastic material represented by multiple Kelvin elements in 

series, Eq. (4.36) takes the form, 

1 1 n -x ~ 
Ws = - g 0 a2 + - g 92 2 l [O (1 - e r )2) 

2 o o o 2 1 2°0 r=l r (4.37) 

According to the Reiner-Weisenberg hypothesis, failure occurs when the 

stored energy W5 reaches the resilience of the material. Denoting the 

resilience as R, the expression for the time dependent failure stress 

obtained from Eq. (4.37) for uniaxial stress state is, 

(4.38) 
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4.4 Delayed Failure: Multiaxial Formulation 

If a1, a2 and a3 are the principal stresses at any point in a 

viscoelastic material, then by definition, the shear stresses are zero 

on the principal planes. In order to simplify the derivation, let it be 

assumed that the viscoelastic material is represented by means of a 

single Kelvin element (see Fig. 1) in each principal direction. The 

applied multiaxial creep stresses in the material principal directions 

are given by, 

a11 = a1H(t) 
a22 = a2H(t) 

(4.39) 

(4.40) 

a33 = a3H(t) (4.41) 

Substituting Eqs. (4.39), (4.40) and (4.41) in Eqs. (3.32), (3.33) and 

(3.35) result in the following expressions for the corresponding 

viscoelastic strains, 

-A $ Jl -~ ~ -A ~ 
+ {(l - e r ) +if"" (1 - e r )}g2a 2 + {(1 - e r ) 

1 

(4.42) 

From Eq. (4.42) it is evident that the effective stress developed in the 

spring with compliance 00 acting in principal direction 1 is given by, 

s Jo Jo 
a01 = a1 + (1 - [f")a2 + (1 - [f")a3 

0 0 
(4.43) 
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Similarly, the effective stress developed in the spring with compliance 

D1 and acting in principal direction 1 is, 

-x ~ -x ~ J -n ~ 
a~ 1 (~) = (1 - e r )g2a1 + {(l - e r) + D~ (1 - e r )}g2a2 

-x ~ J -n ~ 
+ {(l - e r ) + D~ {l - e r )}g2a3 (4.44) 

On the left hand side of Eqs. (4.43) and (4.44), the superscript 's' 

denotes the effective stress within the spring, the first subscript 

indicates the spring number, and the second subscript determines the 

principal direction in which the effective stress acts. 

The total energy, W~, stored in the two springs in material 

direction 1 over time t, can now be obtained by using Eq. (4.35). 

Hence, 

s 1 ( s )2 1 ( s )2 Wl = 2 Do 0 ol + 2 Dl 0 11 (4.45) 

Using a procedure similar to the one just described, it can be shown 

that for an isotropic material the total stored energies W~ and W~ may 

be expressed in a form similar to Eq. (4.45). Therefore, the total 

energy, wj, stored in the springs in direction j, over time t is given 

by, 

s 1 ( s )2 1 ( s )2 Wj = 2 Do 0 oj + 2 Dl 0 lj (4.46) 

If the viscoelastic material is represented by n Kelvin units in series 

in each material principal direction respectively, then, 



where, 

and, 
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J -n ~ 
+ g2 Dr (1 - e r )crioij i,j = 1,2,3 

r 

(4.46) 

(4.47) 

(4.48) 

Note that iR Eqs. (4.47) and (4.48), repeated indices imply summation, 

and 6ij is the Kronecker delta operator. Also, the Prony series for the 

creep and shear compliance are required to have the same number of 

terms. 

Equations (4.46), (4.47) and (4.48) define the energy stored in the 

jth principal direction in an isotropic viscoelastic material. 

Therefore, according to the Reiner-Weisenberg failure theory, the 

criterion for creep rupture in the jth principal direction is given as, 

W~ ~ R 
J 

where R is the resilience of the isotropic material. 

For a material with a constant Poisson's ratio, 

J(~) = (1 + v}D(~) 

(4.49) 

(4.50) 

For such cases, Eq. (4.46) is still valid, but Eqs. (4.47) and (4.48) 

simplify to, 
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(4.51) 

and, 
S -Arljl -A 1jl 

orj = -vg2(1 - e )(o1 + o2 + o3) + (1 + v)g2(1 - e r )o1oij 

(4.52) 



CHAPTER 5 

NUMERICAL RESULTS 

5.1 Preliminary Comments 

In this section results of a number of linear elastic, linear 

viscoelastic and nonlinear viscoelastic analyses are discussed in light 

of available experimental or analytical results. All results are 

obtained using NOVA on an IBM 3090 computer in double precision 

arithmetic. The first problem deals with linear elastic (both adhesive 

and adherend) analysis to show the effect of boundary conditions and 

mesh on the stress distributions. Next, results of geometric nonlinear 

analysis are presented and compared with those obtained with VISTA. 

Then linear and nonlinear viscoelastic analysis results are presented, 

first, to validate the finite element procedure described in the 

preceeding chapters and, second, to obtain new results for certain 

adhesive joints. 

5.2 Linear Elastic Analysis: Effects of Boundary 
Conditions and Mesh 

To investigate the influence of boundary cobnditions on the elastic 

stress distribution in a single lap joint, the three different boundary 

conditions. shown in Fig. 2 were used in the linear elastic analysis. 

During the present study it was also observed that the type of finite-

element mesh (i.e. uniform or nonuniform) has also an effect on the 

stress distribution in the bondline. The material properties used are 

given in Table 1. 

64 
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Figures 3 and 4 show plots of the peel stress obtained by uniform 

and nonuniform meshes, respectively, along the center of the bond 

line. Boundary conditions of Type 1 and 3 give almost the same 

distribution of the stress, while Type 2 differs significantly at the 

edges of the adhesive. Stresses obtained with Type 1 and 3 boundary 

conditions exhibit stress distributions that are almost symmetric about 

the vertical centerline of the joint (with Type 3 being the most 

syn111etric). It is also observed that the distribution is not quite 

smooth when a uniform mesh is used. For an accurate description of the 

stress gradients near the edges, a more refined mesh than that used at 

the center (i.e., nonuniform mesh) must be used. This observation is 

supported by the results shown in Fig. 3. 

The effect of boundary conditions (Type 1 to 3) on the distribution 

of the peel and shear stresses along the upper and lower bondlines 

(i.e., interface bewteen the adhesive and adherend) are shown in Figs. 

5-8. The nonuniform mesh was used in all cases. From these results it 

is clear that boundary condition of Type 2 gives significantly different 

results than Type 1 or 3, especially near the edges. 

5.3 Geometric Nonlinear Analysis 

Next, geometrically nonlinear analysis of a bonded lap joint was 

considered. The geometry and boundary conditions of Type 2 shown in 

Fig. 2 are used. The material constants used are given in Table 2. The 

present nonlinear elastic analysis results are compared with those 
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obtained using the VISTA program [23) in Figs. 9 and 10. The results 

are in excellent agreement. 

Next, the nonlinear response of a bonded cantilever plate under 

distributed transverse loads was investigated. The plate geometry and 

the two finite element meshes used are shown in Fig. 11. The material 

properties used are given in Table 3. Both the adhesive and the 

adherends were assumed to be linearly elastic and isotropic. 

The load on the plate was increased in steps until a fairly large 

free-end deflection was obtained. For the present analysis the 

magnitude of the deflection was over 50% of the beam length. The 

resulting load-deflection curves obtained by the two meshes are shown in 

Fig. 12. The results obtained by using linear analysis is also plotted 

for comparison purposes. Clearly, the nonlinear analysis predicts a 

stiffer response. This is due to the fact that the large transverse 

deflection causes a bending-extension coupling which results in an 

increase in the flexural stiffness of the beam. 

Figure 13 shows the compressive bending stress at a specified point 

(near the fixed end) in the lower adherend plotted against applied load 

for the two different meshes. The discrepancy in the two curves is due 

to the fact that the axial stress values for one curve were obtained at 

an x-location slightly different from the other curve. The flattening 

out of the stress curve at higher loads is a result of the shortening of 

the moment arm due to extensive bending of the beam. 



67 

Figures 14-16 show the variation of the flexural, peel and shear 

stresses in the lower half of the adhesive layer plotted along the plate 

axis for two different meshes. Adjacent to the clamped end, there 

exists a narrow region where both the flexural and peel stresses are 

tensile. However, as one moves further along the plate length, the 

flexural stress turns compressive, which conforms to what is predicted 

by the elementary plate theory. The shear stress attains its maximum 

value near the clamped end and decreases rapidly as one moves out 

towards the free end. All three stresses vanish at the free end of the 

plate, thus satisfying the stress free boundary condition. 

5.4 Linear Viscoelastic Analysis 

The nonlinear constitutive law due to Schapery may be linearized by 

assuming that the nonlinearizing parameters g0 , g1, and g2 have a value 

of unity. In addition, the stress dependent part of the exponent in the 

definition of the shift factor is set to zero. Consequently, the 

constitutive law reduces to the superposition integral form commonly 

used to describe a linear viscoelastic material. 

Two test cases are used to validate the linear viscoelastic 

analysis capability implemented in the present finite element program 

named NOVA. In the first case, the tensile creep strain in a single 

eight noded quadrilateral element was computed for both the plane stress 

and plane strain cases using the program NOVA. The results were then 

compared to the analytical solution for the plane strain case presented 

in [57]. A uniform uniaxial tensile load of 13.79 MPa was applied on 
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the test specimen. A three-parameter solid model was used to represent 

the tensile compliance of the adhesive. The following time dependent 

functions were used in [57] to represent the tensile compliance and the 

Poisson's ratio for FM-73M at 72°C: 

Jo Jl -t/0.85 
D(t) = 2[l+v(t)] + {2[l+v(t)]}(l - e ) (5.l) 

Approximating the Poisson's ratio with the elasticity relation gives, 

[~~ i -1] 
v{t) = 3K t 

[G t + l] 
(5.2} 

where G(t) and K{t} are the shear and bulk modulus {mm/mm/MPA) 

respectively, and J0 , J1 are the shear compliance coefficients. The 

analytical solution to the creep problem for the plane strain case is 

given in [57] as: 

&(t) = 2.728 x 10-2 + 1.334 x 10-2 e-t/o. 95 - 2.659 x 10-4 e-t/0. 3921 

It is to be noted that for the three-parameter solid charac-

terization of FM-73M the value of the Poisson's ratio actually increases 

with time. However, in the present analysis the Poisson's ratio is 

assumed to be independent of time~ Hence two discrete values of the 

Poisson's ratio are used to match the exact solution for few initial 

time steps and final time steps. The values of the Poisson's ratio 

chosen for this purpose are v = Lim v{t) = 0.32 and v = Lim v{t) 
O t+O m t+m 

= 0.417. Figure 17a shows the creep curve for v = 0.417 for both plane 

strain and plane stress finite-element analyses. As expected, the plane 

strain results exhibit close agreement with the exact solution for large 
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values of time, followed by progressive deterioration of predicted value 

as one moves towards smaller values of time. The finite element results 

for the plane stress case points to the fact that the strains are higher 

for plane stress than for plane strain. 

Figure 17b shows the creep curve corresponding to v = 0.32 for the 

plane strain case. In this case the finite element predictions are 

accurate only for first few time steps and deviates more and more from 

the analytical solution as time increases. This is not surprising since 

the choice of Poisson's ratio for this case makes the comparison 

meaningful only when t is small. 

The above results indicate that the program NOVA provides 

reasonably accurate results in regions where the input parameters are 

accurate, and that the variation of Poisson's ratio during the period of 

analysis may cause significant deviations from the actual solution. 

Next, the Model Joint analysis problem presented in [57] was used 

as the second validation example. In this case, a linear viscoelastic 

finite element analysis was carried out on a model joint under a 

constant applied load of 4448 N giving an average adhesive shear stress 

of 13.79 MPa. The specimen geometry, discretization and boundary 

conditions are shown in Fig. 18. The thickness of the adhesive layer is 

taken to be 0.254 mm. A nine parameter solid model was used to 

represent the tensile creep compliance of FM-73 at 72°C and is given by: 
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D(t) = 0.5988 x 10-3 + 1.637 x 10-5 (1 - e-t/O.Ol) 

+ 0.6031 x 10-4 (1 - e-t/O.l) 

+ 0.9108 x 10-4 (1 - e-t/l.O) 

+ 2.6177 x 10-4 (1 - e-t/lO.O) 

The adhesive Poisson's ratio is assumed to have a value of 0.417 and 

remains constant with time. The material properties for the aluminum 

adherends are presented in Table 3. 

Figures 19 and 20 contain plots of the bond normal and shear 

stresses, respectively for t = 50 secs. and t = 60 min. of loading. 

These stresses represent the value at 1/16 the thickness from the upper 

adhesive adherend interface. The sharp peak at the left hand edge is 

due to the singularity caused by the presence of a re-entrant corner in 

the vicinity of the edge. These results are in good agreement with the 

results presented in (57] which uses the linear viscoelastic finite 

element code, MARC. 

5.5 Axisymmetric Analysis of a Linearly Viscoelastic Rod 

The axial displacement of one end of a linearly viscoelastic rod, 

subjected to a spatially uniform end traction that varies sinusoidally 

with time, was obtained by using the program NOVA. The shift factor for 

the material is defined by the WLF equation and the temperature is held 

at a constant value. The specimen geometry and material properties are 
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presented in Table 4. The exact solution to this problem has been 

presented in [23] and was used to validate the finite element 

predictions. As can be seen from Fig. 21, the finite element results 

are in excellent agreement with the closed form solution over one cycle 

of loading and unloading. 

5.6 Nonlinear Viscoelastic Analysis of Adhesive Coupons 

In order to validate the nonlinear viscoelastic model, three 

uniaxial test cases are analyzed. The results are compared with the 

laboratory tests conducted on similar specimens by Peretz and Weitsman 

[26). The material properties used in the verification analysis are 

those reported in [22]. The creep data, together with other relevant 

material properties, are given in Table 5. A constant value for the 

Poisson ratio is assumed for the adhesive. The results from a linear 

viscoelastic analysis are also presented for comparison. 

In the first verification test, a uniaxial stress of 10 MPa is 

applied to the adhesive coupon for 1200 secs., followed by a step 

increase to 26.6 MPa for a further 1200 secs. The temperature of the 

specimen is held constant at 50°C and is assumed to be uniform 

everywhere. The finite element predictions for this test are plotted 

together with the experimental data in Fig. 22. The predictions are in 

good agreement with the experimental results of Peretz and Weitsman 

[26). 

The second test involves creep predictions under simultaneously 

varying stress and temperature, both increasing linearly with time. The 
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temperature is again assumed to be uniform throughout the test 

specimen. The finite element predictions (linear and nonlinear) and 

experimental data are compared in Fig. 23. There is a good agreement 

between the two sets of results. 

The third test involves creep under a constant stress of 10 MPa 

with a linearly varying temperature as a function of time. Figure 24 

shows the strain vs. time curves obtained in the experiments and finite 

element analysis. Satisfactory agreement between the experimental 

results and the analysis is observed. 

A further set of tests were conducted in order to evaluate the 

accuracy of the finite element code for the case where creep is followed 

by creep recovery. A qualitative depiction of the loading and the 

resulting creep strain is given in Fig. 25. Rochefort and Brinson [61) 

presented experimental data and analytical predictions on the creep and 

creep recovery characteristics of FM-73 adhesive at constant 

temperature. The Schapery parameters necessary to characterize the 

viscoelastic response of FM-73 at a fixed temperature of 30°C are 

obtained by applying a least squares curve fit to the data presented in 

[61]. The resulting analytical expressions for the creep compliance 

function D(~), the shift function a0 , and the nonlinear parameters g0 , 

g1 and g2 are presented in Table 6. From the point of view of 

progranuning convenience it is more suitable to work with an exponential 

series than a power law. Hence the power law creep compliance function 

was converted to an equivalent five term exponential series of the form 
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given by Eq. (3.5). The five constant coefficents for this series were 

obtained by means of fitting a curve to the aforementioned power law 

function and then minimizing the error in a least-squares sense. The 

exponential series form of the compliance function is presented in Table 

7 and it is plotted against the power law curve in Fig. 26 for 

comparison. 

Figure 27 shows the geometry of the tensile dogbone specimen used 

to carry out the creep and creep recovery tests. This geometry is 

identical to the one used by Rochefort and Brinson [6i]. Due to the 

symmetry of specimen geometry and applied load, only the upper right 

hand quadrant of the specimen was analyzed. The finite element · 

discretization consists of two elements along the length of the specimen 

and one element in the width direction. Eight-node quadrilateral plane 

stress elements are used for this analysis. A constant tensile load is 

applied on the specimen for the first 30 min. followed by creep recovery 

over an equal length of time. The procedure is repeated for three 

different stress levels at a fixed temperature of 30°C. 

The stress input for a uniaxial creep and creep recovery test is 

given by, 

(5.3) 

where H(t - ti) is the unit step function, and ti is the time at which 

stress is removed. 

Substitution of Eq. (5.3) into Eq. (3.i) coupled with a power law 

representation for the compliance yields, 
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(5.4) 

and 
6£1 n n 

e (t) = - [ (1 + a ).) - (a ).) ] (5.5) r g1 a a 

for the creep and creep recovery strains respectively. In the above 

expression, 

(5.6) 

is a nondimensional parameter, and 

(5.7) 

represents the transient component of creep strain just prior to 

unloading. Hence, Eqs. (5.4) to (5.7) provide a closed form solution to 

Schapery's nonlinear single integral law for the simple load history 

involving creep and creep recovery given by Eq. (5.3). 

Figures 28 a, b, and c show the results of the finite element 

analysis plotted along with the curve representing the closed form 

analytical solutions for applied stress levels of 21, 17 and 14 MPa 

respectively. The finite element predictions are in excellent agreement 

with the closed form solutions except at the beginning of creep and 

again at the onset of creep recovery. This discrepancy is clearly due 

to the discrepancy between the power law and the exponential series 

representation of the creep compliance function 60(~), as shown in Fig. 

26. The presence of too many data points in the far field region has 
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caused the least square curve fit to give less weight to the initial 

data points and therefore overlook the error present near the beginning 

of the time axis. The complete agreement between the closed form 

solution and the finite element prediction for large values of time 

corroborates this fact. From Fig. 28 it is also evident that the error 

in the predicted value of strain decreases as the applied stress is 

reduced. This is exactly what is expected since the stress dependent 

nonlinear parameters g1 and g2 act as scale factors on the transient 

component of the creep strain. Thus, a reduction in the applied stress 

causes the values of g1 and g2 to reduce, which results in a 

proportionate reduction in the error magnitude. 

5.7 Linear and Nonlinear Viscoelastic Analysis of a Model 
Joint 

The loading, boundary conditions and specimen geometry used in this 

analysis is the same as the one used in the earlier model joint (see 

Fig. 18). In addition, the same nine parameter solid model was used in 

this analysis. A linear viscoelastic finite element analysis was 

carried out over a period of one hour at a constant applied load of 

3336 N. The results for the linear analysis are shown in Figs. 29-30. 

The sharp peak at the left hand edge is due to the singularity caused by 

the presence of a re-entrant corner and dissimilar materials. All 

stress plots show the same basic trend in that the stresses are 

attempting to redistribute themselves to achieve a more uniform 

distribution. 



76 

For the nonlinear viscoelastic analysis of the model joint, the 

same specimen geometry and material properties were employed. However, 

the nonlinearizing parameters and the shift function were no longer held 

constant, but were allowed to change with the current stress state 

within the adhesive layer. The results from this analysis are presented 

in Figs. 31 and 32. It is immediately apparent that the effect of the 

nonlinearity causes a 'softening' of the adhesive, leading to a response 

that is less stiff compared to the linear case. Hence, even though the 

applied load is the same, the shearing strain for the nonlinear case is 

significantly larger as compared to the linear case (Figs. 30 and 32). 

Moreover, the increment in creep strain for the nonlinear case is 0.0058 

as compared to 0.0041 for the linear case over the same period of 

time. This is exactly what is expected since the nonlinear model takes 

into account the acceleration of creep caused by the stresses within the 

adhesive. 

The effect of the nonlinearity on the stress curves (Figs. 29 and 

31) is to create a more uniform stress distribution by reducing the 

stress peaks near the edges while increasing the stresses at the mid-

section of the overlap. The significant reduction of the stress peaks 

effected by the nonlinear model is very important from a design point of 

view since the reduction of stress levels at the critically stressed 

regions results in an improved joint efficiency. 
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5.8 Elastic Analysis of a Composite Single Lap Joint 

Renton and Vinson [37] used a closed form elastic solution to 

conduct a parametfic study of the effect of adherend properties on the 

peak stresses within the adhesive in a composite single lap joint. A 

similar parametric study was carried out using the finite element 

program NOVA. The ger/metry, finite element discretization and boundary 

conditions for the composite lap joint are shown in Fig. 33. For the 

sake of simplicity, only identical adherends are considered. Each 

adherend is made up of seven laminas of equal thickness. The 

orthotropic material properties for a lamina are given in Table 8. In 

order to maintain material synunetry about the laminate mid-plane and 

thus eliminate bending-stretching coupling, a eo/oo/-eo/Qo/-eo/oo/ao ply 

orientation was selected for the analysis. Note that this type of ply 

orientation places the ao ply immediately adjacent to the adhesive 

layer. The adhesive used is FM-73 and its isotropic linear elastic 

properties are listed in Table 9. The adhesive layer is modeled using 

sixteen eight-noded quadrilateral elements along its length and two 

elements through its thickness. A series of elastic finite element 

analyses is performed to study the effect of ply orientation, lamina 

primary modulus (Q11), and geometric nonlinearity on the peak stresses 

in the adhesive. 

In order to study the influence of ply orientation on the adhesive 

stress distribution, stress analyses were performed fore= 0°, e = 15°, 

e = 45°, and e = 90° respectively. The results are shown in Figs. 34 
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and 35. The plots show the variation of stresses along the upper 

bondline of the overlap. The parameter x/c is the normalized distance 

from the bond centerline such that the value x/c = -1 corresponds to the 

left-hand free edge of the bond overlap. It is evident from these 

figures that an increase in the ply orientation angle e, causes the peak 

stresses to increase near the free edge of the bond overlap. The 

adherend with a 0°/90° ply orientation (cross-ply) shows a 28% increase 

in peel stress and a 17% increase in shear stress over the corresponding 

values for a 0° (unidirectional) ply orientation. This is not 

surprising since a cross-ply adherend has a lower bending stiffness 

which results in a larger lateral deflection causing higher stress 

concentrations at the overlap ends. 

The influence of the lamina primary modulus (Q11) on adhesive peel 

and shear stresses can be seen in Figs. 36 and 37 respectively. A 0° 

(unidirectional) adherend ply orientation is used for this analysis. 

The two figures show a significant increase in the peak adhesive stress 

as the value of Q11 decreases. This is understandable as a more 

flexible adherend would undergo larger bending and hence produce higher 

stress concentrations at the overlap ends. 

Harris and Adams [65] conducted large displacement finite element 

analyses on a single lap joint with aluminum adherends and observed 

significant reduction in peak stresses at the edge of the adhesive as 

compared to linear results. In order to observe the effect of geometric 

nonlinearity on a single lap joint with laminated composite adherends, a 
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large displacement analysis was performed using the program NOVA. Due 

to its greater susceptibility to bending, cross-ply laminated adherends 

were used for this analysis. The results can be seen in Figs. 38 and 

39. The geometrically nonlinear analysis results in a 30% reduction in 

the peak peel stress and a 15% reduction in the peak shear stress. The 

horizontal shifting of the nonlinear curves is due to the configuration 

coordinate update required by the large displacement analysis. 

5.9 Nonlinear Viscoelastic Analysis of a Composite Single 
Lap Joint 

A nonlinear viscoelastic analysis of a lap joint made of composite 

material was carried out over a time period of forty hours using NOVA. 

The specimen geometry and the finite element discretization are the same 

as for .the elastic analysis as shown in Fig. 33. However, instead of a 

uniform end traction, a uniform end displacement of 0.363 mm is applied 

to the end of the joint and is held constant with time. The adherends 

are made of symmetric cross-ply laminates whose properties are given in 

Table 8, while the adhesive used is FM-73 and its creep compliance and 

Schapery parameters can be found in Table 5. 

Figures 40 and 41 show the variation of shear stress and shear 

strain respectively across the entire bond length over a period of 40 

hours. The sharp peak on the left-hand edge is due to the presence of a 

re-entrant corner and also due to the difference in material properties. 

Figures 42 and 43 provide a close-up view of the shear stress and strain 

gradients at the free edge. As might be expected, the shear stress 
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undergoes relaxation which results in a 36% decrease in the peak value 

at the left hand edge. The stresses have been normalized with respect 

to an average shear stress value of 4.5 N/mm2• The peak shear strain, 

however, shows an increase of 35% over the same period of time. 

Similarly, Figs. 44 to 47 reveal that while the peak values of the peel 

and axial stresses decrease by 26% and 32% respectively, the 

corresponding strains show a respective increase of 63% and 6%. The 

reason that the strains increase with time even though the joint end 

deflection remains fixed, is because the adherends are modeled as 

elastic continuums. As the stresses in the adhesive relax with time, 

the elastic adherends deform to attain a new equilibrium configuration 

and this leads to an altered state of strain within the adhesive. 

Hence, it is very important that the elastic nature of the adherends be 

taken into account in an analysis. Also, the significant increase in 

adhesive strains with time is a viscoelastic phenomenon and therefore it 

cannot be predicted by means of a purely elastic analysis. This fact 

emphasizes the need to model the adhesive layer as a viscoelastic medium 

in order to be able to predict the long-term durability of a bonded 

joint. 

5.10 Nonlinear Fickean Diffusion in Polystyrene 

In order to validate the diffusion model implemented in NOVA and 

discussed in Chapter 4, results from a nonlinear diffusion analysis 

presented in [66) are used. The test problem involves unsteady sorption 

of a penetrant in a semi-infinite medium for a diffusion coefficient 
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that is an exponential function of penetrant concentration, that is, 

D = 00 exp {kC/C0 ). Finite element predictions were obtained for k = 
0.614 and k = 3.912 and the results were compared with the published 

results represented by the solid lines in Fig. 48. Excellent agreement 

is observed for the two values of the coefficient k. 

Levita and Smith [67] conducted experiments to study gas transport 

in polystyrene and found that the diffusion coefficients for gases 

decreased with time when the polystyrene film was subject to a constant 

uniaxial strain. This effect was attributed to the continuous free 

volume recovery {densification) in the polystyrene specimen at constant 

strain. The study also indicated that larger free volume elements 

decrease in size faster than the smaller ones as volume recovery 

progresses. Using the results published in [67] as a guideline, NOVA 

was used to study the time dependence of the diffusion coefficient for 

carbon-dioxide gas in a polystyrene film at constant strain. For this 

case, the temprature and moisture concentration effects presented in Eq. 

(4.9) were neglected, resulting in a diffusion coefficient that is 

solely a function of the transient component of the dilatational strain 

which, in turn, is a measure of the change in the free volume. Figure 

49 shows the variation of the diffusion coefficient with time for three 

different strain levels. The material properties for polystyrene which 

were obtained from [68] are given in Table 10. From Fig. 49 it is 

evident that, independent of the strain level, the diffusion coefficient 

reaches a peak value t = 1 at hour and then slowly decays to the 
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reference value, 00 • This behavior can be attributed to an initial 

increase in free volume due to the application of the uniaxial strain, 

followed by a continuous recovery in free volume (densification) at a 

constant strain as the polystyrene film undergoes relaxation. A larger 

applied strain produces larger initial dilatation, and this results in a 

higher peak in the diffusion coefficient. Figure 49 also reveals that 

the time rate of free volume recovery, and hence the time rate of 

decrease in the diffusion coefficient, is proportional to the applied 

strain level. 

The influence of penetrant molecule size on the diffusion 

coefficient for gases in polystyrene was studied by varying the 

magnitude of the material parameter B in Eq. (4.9). The temperature and 

strain were held constant at 50°C and 1.8% respectively. The prediction 

obtained from NOVA are shown in Fig. 50 for two values of B. The faster 

rate of decrease in the diffusion coefficient for a higher value of B 

implies that the larger free-volume elements decrease in size faster 

than the smaller ones as volume recovery progresses. The NOVA 

predictions are qualitatively in good agreement with the results 

presented in [67]. 

When a polymeric material is in the rubbery state, equilibrium is 

reached very rapidly in response to variations in temperature, stress 

and penetrant conentration. By contrast, a material in the glassy state 

is not in thermodynamic equilibrium and the response of the free volume 

to changes in external conditions is delayed. This metastable state 
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causes the free volume to slowly collapse with time until equilibrium is 

reached. This phenomenon is known as physical aging and causes 

relaxation processes to take place over a longer time. Struik (69] 

proposed that for a material in the glassy state, effective time x is 

related tp actual time t by, 

t te µ 
X = f (t + ~) . d~ 

0 e 
(5.8) 

where te is the aging time at the start of service life or testing 

andµ is a constant such that 0 ~ µ ~ 1. For such a material, the 

definition of reduced time given by Eq. (3.2) is no longer,valid and 

should be modified to, 

(5.9) 

where a!r is the shift factor. 

The effect of physical aging on the diffusion coefficient for 

carbon-dioxide gas in polystyrene was studied by implementing Eqs. (5.8) 
and (5.9) in NOVA. The values of temperature, strain and te were set at 

50°C, 1.8% and 24 hours respectively. Figure 51 shows that an increased 

physical aging denoted by a higher value of the parameter µ, causes the 

diffusion coefficient to decay slower than the one for which µ is 

lower. This behavior is expected since increased physical aging causes 

the free volume recovery to take place over a longer period of time. 

Note that when there is no physical aging, µ and te are equal to zero 

and x is identically equal tot. 
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5.11 Linear Elastic Analysis of a Butt Joint 

A1vazzadeh et al. [31] used special linear elastic interface 

elements to study the effect of adhesive thickness and adhesive Young's 

modulus on the stresses within a bonded butt joint. A similar 

parametric study was carried out using NOVA where both the adhesive and 

adherend were assumed to be linearly elastic. The specimen geometry and 

loading are shown in Fig. 52. Due to symmetry, only a quarter of the 

butt joint was modeled. The finite element discretization is shown in 

Fig. 53, together with the boundary conditions. The various adhesive 

and adherend properties used in the parametric study are given in Table 

11. A plane stress elastic finite element analysis was performed and 

the normalized shear and normal stresses plotted along the interface 

close to the free edge. Figures 54 and 55 show the influence of the 

ratio b/e (where b is the width of the butt joint and e is the thickness 

of the adhesive layer) on the adhesive shear and normal stresses 

respectively. It is observed that the maximum value of shear stress and 

the minimum value of normal stress are nearly equal for different joint 

thicknesses. The influence of the ratio of adhesive to adherend Young's 

moduli on adhesive stresses are shown in Figs. 56 and 57. As this ratio 

increases, the maximum shear stress and the maximum normal stress 

increase in value for b/e = 60. 
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5.12 Nonlinear Viscoelastic Analysis of a Butt Joint 
Including Moisture Diffusion 

The effect of a change in the free volume of a polymer on its 

viscoelastic response was discussed by Knauss and Emri [27]. They used 

the unifying concept of the free volume by considering that fractional 

free volume depends on three variables: temperature T, moisture 

concentration c, and mechanically induced dilatation e. Lefebvre et al. 

[51] extended the free volume concept to define a nonlinear diffusion 

coefficient, which results in a coupling between the viscoelasticity and 

the diffusion boundary value problems (see Section 4.1). The influence 

of this coupling on the viscoelastic response and moisture diffusion 

within the adhesive layer of a butt joint was investigated by using the 

program NOVA. The specimen geometry and finite element discretization 

are the same as shown in Figs. 52 and 53, respectively. However, 

instead of a uniform end traction, a uniform axial displacement of 0.1 

mm is applied at the end of the joint and is held constant with time. 

The adherends are made of aluminum and the adhesive used is 

polystyrene. The various material properties are listed in Tables 10 

and 11. The selection of polystyrene as an adhesive was prompted by the 

fact that it is one of the few polymeric materials that have their 

viscoelastic properties and diffusion parameters adequately 

documented. The normalized moisture concentration at the free edge of 

the adhesive layer is unity, and the initial concentration throughout 

the adhesive layer is zero. The tests are conducted at the reference 

temperature of 50°C. 
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Figure 58 shows the moisture concentration profiles within the 

adhesive layer at three different times when there is no coupling. In 

this case the diffusion coefficient remains constant with time, that is, 

D = 00 • Fig. 59 shows the moisture concentration profiles for the case 

where there is viscoelastic coupling only, that is, when the diffusion 

coefficient depends on the transient component of the dilatational 

strain. Fig. 60 depicts the case where there is full coupling, that is, 

the diffusion coefficient is a function of the dilatational strain and 

the moisture concentration at any given point in the adhesive. 

Conversely, the viscoelastic shift factor is now a function of the 

dilatational strain and the moisture concentration (see Eq. 4.12). Fig. 

61 presents the results for each of these three cases for comparison at 

time t = 8 hours. From these figures it is evident that the effect of 

coupling is to accelerate moisture diffusion in the adhesive. The 

mechanically induced dilatation together with the swelling due to 

moisture sorption results in a higher free volume fraction within the 

adhesive which, according to Eq. 4.9, causes diffusion to proceed faster 

over the same period of time. It is to be noted that in Fig. 61, the 

curves become less concave as the coupling increases, which is in good 

agreement with the results published in [66]. 

Figures 62 to 65 show the variation of the stresses and strains 

with time within the adhesive layer in the butt joint when there is no 

coupling due to moisture induced swelling. Mathematically, this implies 

that y= 0 in equations 4.9 and 4.12. From Figs. 62 and 63 it is evident 
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that the stresses do not relax significantly over the time period of the 

analysis. This is because the elastic adherend acts as a spring causing 

the adhesive to creep even though the joint end displacement remains 

fixed. However, there is a slight relaxation in the normal stress as 

one moves towards the center of the bond. The large increase in the 

strains, as shown in Figs. 64 and 65, is due to the creep caused by the 

strain recovery in the elastic adherend. This observation is supported 

by Fig. 66 which shows that the normal strain in the adherend 

inunediately adjacent to the interface undergoes significant reduction 

with time. The decrease in the adherend normal stress, as shown in Fig. 

67, reflects the concurrent stress relaxation that occurs in the 

adhesive and triggers the strain recovery in the adherend. 

Figs. 68 to 71 show the effect of moisture induced swelling on the 

viscoelastic stresses and strains in the adhesive layer. 

Mathematically, this means y has a nonzero value in Eqs. 4.9 and 4.12. 

The actual value of y selected for this study is 0.001. For this value 

of y, the moisture absorbed causes large swelling strains within the 

adhesive, which increase in magnitude as the diffusion progresses. This 

moisture induced swelling strain causes a reduction in the mechanically 

induced normal strain and hence a lower value for the normal stress in 

the adhesive. This effect can be observed in Fig. 68 where progressive 

swelling has caused a 25% reduction in the peak normal stress over a 

period of 8 hours. It is interesting to note that the difference 

between the two stress curves diminishes as one moves towards the center 



of the bond. This behavior is expected since there is very little 

moisture near the center of the bond and so the stress reduction is 

primarily due to viscoelastic relaxation. The large increase in the 

adhesive strains, as seen in figs. 70 and 71, is due to the adherend 

acting as a elastic spring. 

fig. 72 shows the influence of the moisture coefficient y, on the 

normal stress in the adhesive layer after eight hours of sorption. As 

can be seen, the swelling induced for y = 0.001 results in a 

significantly lower normal stress near the free edge as compared to the 

case where y = O. Away from the free edge, the two stress curves appear 

to merge as one moves towards the interior of the bond. This is because 

the low moisture concentrations present in the bond interior is 

insufficient to cause any significant reduction in the normal stress due· 

to swelling. 

5.13 Delayed Failure of a Butt Joint 

The theory presented in Secs. 4.3 and 4.4 was applied to predict 

viscoelastic creep failure within the adhesive in a butt joint. The 

specimen geometry and the finite element discretization are the same as 

shown in figs. 52 and 53, respectively. The adherend is made of 

aluminum and its material properties are given in Table 11. The 

adhesive used is FM-73 and its tensile creep compliance is listed in 

Table 5. The failure parameter {R} for FM-73, also known as the 

resilience, was obtained by computing the area under the stress-strain 

curve presented in [70]. This procedure yielded a value of the 
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resilience as 1.3 N.mm/mm3. Note that the area under the visco-plastic 

yield plateau was not included in computing the value of R. According 

to the Reiner-Weisenberg theory, failure occurs when the stored energy 

per unit volume in the body reaches the resilience R, for the material. 

Using this postulate as a failure criterion, NOVA was utilized to 

predict failure in the adhesive layer of the butt joint subject to a 

constant uniaxial tension. The influence of applied stress level on 

delayed failure was studied by using a stress level of 69, 60, and 54 

MPa respectively. In all three cases, failure was initiated in the 

adhesive element located right at the free-edge and immediately adjacent 

to the interface. It was also observed that the direction of the plane 

of failure was always inclined at an angle of 18°, counter-clockwise to 

the x-axis. Since the direction of failure coincides with the direction 

of principal stress, it is evident that a multiaxial state of stress 

exists near the free edge, even though the applied stress is uniaxial. 

This observation is in agreement with the results presented in Secs. 

5.11 and 5.12. Fig. 73 shows the variation of normal (or creep) strain 

with time at 30°C for the element in which failure is first initiated. 

The right hand termination point on the curves indicate the point at 

which failure occured. It is observed that for an applied stress level 

of 69 MPa, the time to failure (tF) is 1.5 secs. In other words, for 

this stress level, failure occurs almost instantaneously. For an 

applied stress of 60 MPa, tF increases to 400 secs. Reducing the 

applied stress to 54 MPa results in a time to failure of approximately 
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10 hours. These results are qualitatively in good agreement with the 
-results presented by Bruller [45] for PMMA. 

From the above observations it is clearly evident that for 

viscoelastic polymers like FM-73, the time to failure depends strongly 

on the applied stress level. Fig. 74 shows the evolution of stored 

energy with time for different stress levels. For very high applied 

stress levels, almost all the strain energy is conserved as stored 

energy and failure occurs almost inunediately. For intermediate levels 

of applied stress, viscoelastic creep causes a part of the strain energy 

to be dissipated. As a result, only a fraction of the total strain 

energy is conserved as stored energy. Consequently, the stored energy 

builds up slowly, analogous to a "leaking vessel", resulting in delayed 

failure. For an applied stress level that is below a certain threshold 

value for a given material, the dissipated energy may constitute a large 

fraction of the total strain energy. In that case, the stored energy 

would increase too slowly to exceed the resilience of the material over 

any realistic length of time, and hence there would be no failure even 

if the applied stress acts indefinitely. 



6.1 General Summary 

CHAPTER 6 

SUMMARY ANO CONCLUSIONS 

A nonlinear viscoelastic computational model is developed, 

validated and applied to the stress analysis of adhesively bonded 

joints. The large displacements and rotations experienced by the 

adherends and the adhesive are taken into account by invoking the 

updated Lagrangian description of motion. The adhesive layer is modeled 

using Schapery's nonlinear single integral constitutive law for uniaxial 

and multiaxial stress states. The effect of temperature and stress 

level on the viscoelastic response is taken into account by a nonlinear 

shift factor definition. Optionally, a nonlinear shift factor 

definition based on the concept of free volume that was postulated by 

Knauss is also available. Penetrant sorption is accounted for by a 

nonlinear Fickean diffusion model in which the diffusion coefficient is 

dependent on the temperature, penetrant concentration, and the 

dilatational strain. A delayed failure criterion based on the Reiner-

Weisenberg failure theory has also been implemented in the finite 

element code. The program is validated by comparing the present results 

with analytical and experimental results available in the literature. 

Additional results for a bonded cantilever plate, single lap joint, 

thick adherend specimen, and butt joint are also presented. The program 

capability has been extended to account for laminated composite 

adherends and adhesives with a time dependent Poisson's ratio. In 

91 
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general, the computer program developed herein, named NOVA, is believed 

to provide accurate predictions over a wide range of specimen 

geometries, external loads, and environmental conditions. 

6.2 Conclusions 

The results presented in Ch. 5 underscore the importance of 

modeling the adhesive in a bonded joint as a viscoelastic material. 

This allows the analyst to predict the large increments in adhesive 

strains that occur with time and cannot be predicted by a purely elastic 

analysis. Furthermore, other events (such as moisture diffusion and 

delayed failure}, that are highly relevant for bonded joint analysis, 

cannot be accurately predicted unless viscoelasticity is taken into 

account. At high stress levels, nonlinear viscoelastic effects can 

produce creep strains that are significantly larger than the linear 

viscoelastic predictions and such effects, therefore, should be 

accounted for. The effect of change in Poisson's ratio with time in 

some polymers have a significant bearing on the final response and must 

be taken into account in order to obtain accurate results. 

The results in Chapter 5 also indicate that the stress boundary 

conditions at the free edges of the adhesive are not exactly 

satisfied. This deficiency in the model is expected because a 

displacement based finite-element formulation satisfies the boundary 

conditions only in a global sense. Even so, the shear stress, as 

presented in Chapter 5, shows a tendency to drop towards zero as it 

approaches the free edge. Any deviations from this behavior can be 
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attributed to either the presence of a re-entrant corner or the lack of 

a refined mesh near the free edge. 
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Table 1. Data for Linear Elastic Analysis. 

Adherend (Aluminum) 

E = 10.3 x 106 psi 

v = 0.3 

Adhesive (Araldite) 

E = 8.19 x 106 psi 

v = 0.33 
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Table 2. Data for Geometric Nonlinear Analysis of a Lap Joint. 

Adherend (steel) 

E = 29.3 x 106 psi 

" = 0.33 

Adhesive (FM-73) 

E = 0.2437 x 106 psi 

" = 0.32 
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Table 3. Data for Geometric Nonlinear Analysis of a Bonded Cantilever 
Plate. 

Adherend (Aluminum) 

E = 70 x 103 MPa 

v = 0.34 

Adhesive 

E = 2.8 x 103 MPa 

v = 0.4 
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Table 4. Data for V1scoelast1c Rod. 

c1 = 8.86 

c2 = 101.6 

Tr = 120 

T = 123.5734 

a1 = 1.0E- 4 

\I = 0.32 

E(t) = 5.0E5 + (l.OE6)e-t/2 psi 

F(t) = 4500 sin(2t) lb. 

L = 5 1n. 

A = 0.3 1n2. 
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Table 5. Material Data for FM-73 Unscrinuned at 30°C. 

Elastic Compliance, D0 : 360 x 10-6/MPa 

Poisson's Ratio, v: 0.38 

Coefficient of Thermal Expansion, a: 6.6 x 10-5 m/m/°K 

Prony Series Coefficients: 

D1 = ll.05xlo-6/MPa 

D2 = 12.27xlo-6/MPa 

D3 = 17.35x10-6/MPa 

D4 = 21.63xlo-6/MPa 

D5 = 31.13x10-6/MPa 

06 = 41.78x10-6/MPa 

•1 = 10 secs • 

• 2 = 102 secs. 

•3 = 103 secs. 

•4 = 104 secs. 

•5 = 105 secs. 

, 6 = 106 secs. 
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Table 6. Data for Creep and Recovery of FM-73 Adhesive. 

D(~) = D0 + DC(~) 

D0 = 227.573 x 10-6/MPa 

DC(~) = c~n 
c = 31.763 x 10-6/MPa 

n = 0.151 

a = 1 - 3.536 x l0-3a1•74 
a 

9 = 1 + 2.247 X l0-2a1·00S 
0 

91 = 1 + 6.981 X l0-4a1•88 

92 = 1 + 3.098 x 10-60 4•12 

where a is in MPa. 
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Table 7. Compliance Data for Creep and Recovery of FM-73. 

D($) = D0 + Dc($) 

Dri = 227.573 x l0-6/MPa 

5 -$/T 
D ($) = E [D (1 - e r)l 
c r=l r 

D1 = 19.86 x 10-6/MPa 

Dz = 28.99 x 10-6/MPa 

D3 = 17.66 x 10-6/MPa 

D4 = 36.20 x 10-6/MPa 

D5 = 8.51 x 10-6/MPa 

, 1 = 1 min. 

, 2 = 10 min, 

, 3 = 100 min. 

, 4 = 1000 min. 

, 5 = 10000 min. 
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Table 8. Orthotropic Material Properites for Composite Adherend. 

Q11 = 46.885xlo3 MPa 

Q12 = Q13 = 4.137xlo3 MPa 

Q22 = Q33 = 14.962xlo3 MPa 

Q23 = Q32 = 2.068xlo3 MPa 

Q44 = Q55 = Q66 = 3.447xlo3 MPa 
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Table 9. Isotropic Linear Elastic Properties for FM-73. 

E = 2.78xl03 MPa 

G = l.Olxl03 MPa 

\) = 0.38 
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Table io. Material Properties for Polystyrene at 50°C. 

Bulk Compliance: 

M0 = i.2xio-4/MPa 

Mi = 0.2896xio-4/MPa 

M2 = 0.2246xio-4/MPa 

M3 = 0.372ixio-4/MPa 

M4 = o.i354xio-4/MPa 

Shear Compliance: 

J0 = i.oxio-3/MPa 

Ji = 2.i6/MPa 

J2 = 2.92/MPa 

J3 = 1.38/MPa 

J4 = 2.88/MPa 

J5 = 2.3i/MPa 

J6 = 3.59/MPa 

J7 = 0.648/MPa 

'i = i.5i5xio2 sec. 

, 2 = i.5isxio3 sec. 

, 3 = i.51Sxio4 sec. 

, 4 = l.51Sxio5 sec. 

ni = l.51Sxio8 sec. 

n2 = l.515xloio sec. 

n3 = l.515xloi2 sec. 

n4 = l.515xlo13 sec. 

n5 = l.Slsxio14 sec. 

n6 = l.515xl0is sec. 

n7 = 1.515xlOi6 sec. 

Reference free volume f 0 = 0.033 

Diffusion coefficient D0 = 9xlo-6 nun2/sec 
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Table 11. Properties for Elastic Analysis of a Butt Joint. 

Materials E(MPa) " 
Steel 2.07xl05 0.29 

Aluminum O. 7xl05 0.33 

Eponal 5.8xl03 0.33 

Rigid Epoxy 2.2xl03 0.33 
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o, .,,,. 

e (t) CTO 

Figure I. A Single Kelvin Unit Subject to Uni axial Stress. 
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(a) Case 1 

(b) Case 2 

(c) Case 3 

Figure 2. Various Boundary Conditions Used In the Unear Elastic Analysis of a Single 
Lap Joint ( 11 - 1.26, c- 0.315, h - 0.0126, t - 0.063, all dimensions In Inches, 
applied Sfre9 • 1423 psi.). 



8 
~.,.-~~-y-~~-.-~~-r-~~--.~~~.--~~---~~-y-~~-

~ 

bo 
/8 
b~...: 

.. .,, .,, 
cu 
L ...., .,, -cu cu 

Q.. 

8 . 
0 

~ . 

X Case 1 
~ Case 2 

+ Case 3 

0.00 0.25 0.50 

Nondimensfonalized distance along the bond 

Figure 3. Variation of Peel Stress Along the Bond Centerline (Uniform Mesh). 

0.75 1.00 

.... 
0 ...... 



8 
m--r--~-.-~~~--~~--~~--....-~~--~~--..~~~--~~--. 

~~ 
x Case 1 
<> Case 2 bo 

~ ol\ + Case 3 
b>,~ -.. 
en en 
QI 
L-.µ ~ "' . 
r- 0 
QI 
QJ 

0.. 

2 . 
0 • 

8 . 
·--1 .00 -0.75 -0.50 -0.25 0.00 o-.2s 0.50 o-.75 1.00 

Nondimensionalized distance along the bond 

Figure 4. Variation of Peel Stres.s Along the Bond Centerline (Nonuniform Mesh). 

I-' 
0 
00 



be> 
/ 
b>. 

"' "' cu 
L. .... 
"' ,.... 
cu 
cu 

0.. 

8 . 
U> 

~1 
lO r-. 
N 

• lO . 

~ . 
0 

0 
U> 

.. 

x Case l 
<> Case 2 

+ Case 3 

~I \..A--"I I I I I I I I 
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 

Nondimensionalized distance along the bond 

Figure 5. Variation of the Peel Stress along the Upper Bondline. 

..... 
0 
'° 



0 
0 . 
(T) 

I 

bo 5t 
/~ 
b>,-

.. 
VI 
VI lD 
QJ (1l 
S- • 
.µ 0 
VI -QJ 
QJ 
a. m 

N 
0 

0 
~ 

x Case 1 
<> Case 2 

+ Case 3 

~I ='-1 I I I I I I I 
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 l.00 

Nondimensionalized distance along the bond 

Figure 6. Variation of the Peel Stress along the Lower Bondline. 

....... 

....... 
0 



bC> 
7 
~ .. .,, .,, 
cu s.. 
~ .,, 
s.. 
ltl cu 
..c 
V) 

8 . 
(f) 

L 

~ ll 
N 

0 
~ . 

0 
U> . 
0 

0 
N . 
0 
I 

0 
0 

.. 

II 

·-·1.00 

x 
0 

+ 

-0.75 

Case 1 
Case 2 

Case 3 

-0.50 -0.25 0.00 0.25 0.50 

Nondimensionalized distance along the bond 

Figure 7. Variation or the Shear Stress along the Upper Bondline. 

0.75 1.00 

...... 

...... ...... 



8 
N 

bo~l 
~ ~>< I /1 

0 .. CD "' . 111 0 cu 
L 
~ 
111 

L 0 
.U N cu • 

..c: 0 
Vl 

0 .... . 
0 • 

8 . 
·-• .00 

x Case 1 
<> Case 2 

+ Case 3 

-0.75 -0.SO -0.25 0.00 0.25 0.50 

Nondimensionalized distance along bond 

Figure 8. Variation or the Shear Stress along the lower Bondline. 

0.75 1.00 

..... ..... 
N 



04 I I I I I 1 • L I I 

0.3 

~ 
b~0.2 

en en 
~ 0.1 -U) 

-CD 
CD 

Q. 0.0 

o Present(FEM) 

o VIST A(FEM) 

~ I 
'§/ I ij uo 

,..,....o----o---<>--..o....0-0-0---

-0.11 I ")>-- n tff I I I I 1 I 

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 
Distance along bond centerline x/c 

Figure 9. Variation of Peel Stress along the Bond Centerline for Geometric Nonlinear 
Analysis of a Single Lap Joint. 

1.0 

..... ..... 
VJ 



bQ 
........... 

0.30 

... ~ 0.18 
(I) 
(I) 
G> 
!:: 0. 12 
(I) 

L.. as 
G> .c en 0.06 

o Present 

6 VISTA 

~ I "'( I ij o;, 

0.01---~--~~...._~---~~--~---~~--~----~~ 
-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0 

Distance along bond centerline x/c 

Figure 10. Variation of Shear Stress along the Bond Centerline for Geometric Nonlin-
ear Analysis of a Single Lap Joint. 

...... ...... 
-'=" 



115 

r 
1 / 0.1 mm thick adhesive layer 

~~~~~-~{~~~~~~~~~~~~~~~~~0.1~~ 
/: .,14---------100nvn1----------~·J 

L 

-
y 

l ~. Eight-node 
element 

l 1 

/ 

J 

l 

i 

~ 3 elements 
l l ~ 1 

(a) Geometry of the plate 

1 I 1 l 
I 

l l 1 

(b) Mesh 1 (Sx3-Q8 elements) 

l l I. l l 

i J. l _[ i J, 

of equa 1 ( ) ( 1 ) size (O. l) c Mesh 2 10x5-Q8 e ements 

l 

" J, 

I 

l 

! 

I 

..L ..-0. Snrn 
~J. lnrn 

-0.Smm 
T 

'-..( q0 / 2) N/ mrri2 

l 

1 II 

figure 11. The Geometry and finite Element Dlscretlzatfons for a Bonded Cantilever 
Plate. 



116 

-N 160 ;; 
c.; ........ 

:?: -
0 

CT 
Mesh 2 . --- M~sh 1 

~ 
r: 120 c ... 

..,..,.v'Qo di 

~llllllll(j VI 
L. 
(1.1 
> 
VI 
c: 
IO s.. 80 ~ 

QI 
..c: 
~ 

..... 
0 

>. 
'-' .,.. 

40 . VI 
c 
(1.1 
'-' --

0 
0 20 40 60 80 100 

Transverse deflection (mm~ 

Figure 12. Load • Defiectlon Cu"es for a Bonded Cantilever Plate. 



2 

16 -N 

~ 
.......... z 

"b 12 
r-........ 
bx .. 
"' "' 8 QJ 
L 

+-> 
"' -ta ·.-
>< 4 c:x: 

~ 

o•.1 

y v 
/' 

'/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

Mesh 2 

0 x ( 2. 1 »-4. 1} --------- ""\.._ Mesh 1 
,,,,...-- 0 x(4.1,-4.02) 

/ 
/ 

---

0 20 40 60 80 100 120 140 
Intensity of the transverse load, q0 (N/nvn2) 

F1gure 13. Axial Stres.s against Load Intensity for a Bonded Cantilever Plate. 

160 

i-
i-
....... 



1,000 ~-~---r---.-----,.----,.----,----.,-----. 

500 

N 

~ 
~ 0 -
b>< 
VI 

~ -500 
L ., 
VI 

r-
ro 

~ -1,000 

x Refined mesh (20x5) 
• Mesh 2 (10x5) 

• 
-1,500L-~~L-~~l--~~-1-~~-L~~-'-~~--L~~---''"--~---

o 6.25 12.5 18.75 25.0 31.25 37.5 43.75 50.0 
Distance along the length of the plate, x (nvn) 

figure 14. Plot of Axial Stress along the BondJine for a Bonded Cantilever Plate. 

...... ...... 
(X) 



1,000---~-...----.----..,----,----.---,----,.---, 

500 

-"',; 
........ z: 0 
b>t .. .,, 
~-500 L 
~ .,, -Cl.I 
cu 
~1.000 

Pt 

• 

X Refined mesh (20x5) 
• Mesh 2 (10x5) 

-1.soo ___________ ...._ __ _,__ __________ _...., __ __. 
0 6.25 12.5 18.75 25.0 31.25 37.5 43.75 50.0 

Distance along the length of the plate, x (nm) 

Figure JS. Plot of Peel Stress along the Bondline for a Bonded Cantile,·cr Plate. 

,_.. ,_.. 
\0 



8 
~-r-~~~~-r-~~~~.--~~~~.-~~~~-r-~~~~..-~~~~-r-~~~~-r-~~~~~ 

-8 N • 
::::: 0 E I ...... z 
oo -o - . 
b~ 

.. a .. 
I/) 

~ 8 
s.. -+-' I 
I/) 

; 8 
QJ • 

~ ~ 
I 

8 
2 

I . 0.00 

• Mesh 2 

x Refined Mesh 

• 

6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

Distance along the length of the plate 

Figure 16. Plot of Shear Stress along the Bondline for a Bonded Cantilever Plate. 

..... 
N 
0 



8 -I 
0 .. . -I 
~ -I -

• •• 
x Analytical solution - ~t • Plane strain (FEM} ..,, . 1 ...--"' N 

\IJ I • Plane stress (FEM} ...-
Ct 
0 

....J ~ 

N 
I 

8 
(T) 

1-2.00 -·1.so -·1.00 -tl.50 o·.po 0.50 l·:oo f.50 2.00 
Log t {hrs.) 

flgure 17a. Variation of Creep Strain ft"ifh Time for a Poisson's Ratio of 0.417. 



-~ -"' 

8 
l:' .... ~~~~~~ .... ~~~~~~-.~~~~~~..,.~~~~~~-,~~~~~~-..r-~~~~~~..-~~~~~~T""~~~~~~, 

2 . -• 
0 .. -• 
s -I 

• 

x Analytical solution 
• Plane strain (FEM) 

• • • • • • • • • • 

g a ...... . -I i. 0 6 9 • 9 r ...... 

8 . 
N-t--~~---11--~~--t-~~~-+-~~~+-~~~+-~~--1~~~-t-~~~~ 

1-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2;00 
Log t (hrs.) 

Figure 17b. Variation of Creep Strain with Time for a Poisson's Ratio of 0.32 • 

,..... 
N 
N 



L 132. 7 nm ----------------'--r .. y 

12.91 nm ra I I I 

2c~ .... x 

~I· ~ 
3. f1snm 12. 7nm 

(a) 

1111111111 rn l'llfl1l I I I I I I I I I I 
(b) 

flgure 18. The Geometry, Boundary Conditions, Loading and Finite Element Mesh 
used in the Model Joint Analysis. 

a;, 

...... 
N w 



8 . 
8-..--~---~---~~,.--~-,.--~--.~~,-~-.-~----, 

-
8 . 
an 
~ 

~ '8 :e: • - ~· 
b>. 
.; 8 "' . f le· 
~ 

"' -.,, 
E 8 
0 • z: 0 

8 . 

x Time t=SO sec. 

• Time t=3600 sec. 

~I I I I I. I I I l 
-1.00 -0. 75 -0.50 -0.25 o.oo 0.25 0.50 o. 75 1.00 

Distance along the interface, x/c 

Figure 19. Peel Stress along the Bondline for a Linear Viscocfastic Analysis of a Model 
Joint. 

.... 
N 
~ 



8 . 
~ 

8 . ... 
N - l x Time, t=SO sec. '° 0.. 

::E: ~ 11' • nme t=3600 sec • ->. a> 
t:) -VI 
VI 8 Cl.I s.. . 
~ 

~r .. 
TI VI 

s.. 
IG 
Cl.I 

.&: 
V') 8 . 

ca 

~~~~~ o--1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 l.00 

Distance along the interface, x/c 

Figure 20. Shear Stress along the Bondline for a Linear Viscoelastic Analysis of a 
Model Joint. 

....... 
N 
V1 



i o.oe 

0.04 

-0.02 

126 

X EXACT 8DWT1CN 

6 NOVA 

o.oo-+----------..----------------------..-----------
0 1 

TIE CMN9J 

Flgure 21. Plot of Axial Displacement against Time for a Viscoelastic Rod. 

2 



c: .... .,, 
!.. .., 
VI ..., 
c 
QJ 
u 
!.. 
QJ 
c.. 

127 

2.0 
I I I I I I T 

x Experiment 
.. • Nonlinear (FEM) ~ .. • • • • • • • -1.6 

• Linear (FEM) r . 
1.2 - - -

~ 

0.8 - -
- . 

·~ 0.4 -~ - -
0 . . I I . . . 

0 30 60 90 120 150 180 210 240 
Time (secs.) x 10 

Figure 22. Variation of Creep Strain with Time for a FM-73 Coupon Subject to Step 
Loads at Constant Temperature. 



128 

25~----,..----..,-----,------,.----..,-----r-----r-----, 

x Experiment 
20 • Uonl inear 

• Linear 

- 15 • .,, 
CL :c -
·r.l" 10. 
Ill 
Ill cu 
L. 
~ s.· 

O~----J'------'-----"----_...----....._~--"!'+-::.--~~--~ o · 0.2 o.4 o.6 o.a i.e 1.2 1.4 1.6 
Percent strain 

Figure 23. St~Straln Curve for a FM-73 Coupon Under Linearly V arylng Stre.M and 
Temperature. 



1. 

• 8 

c • 6 -"' t.. .., 
"' .., 
c 
QI 
u ,,_ 
QI a. o. 

129 

x Experiment 

• Nonlinear 

• Linear 

• 

100 150 200 250 300 350 400 
Time (sec.) x 10 

Figure 24. Variation of Creep Strain with Time for a FM-73 Coupon Subject to a 
Linearly Varying Temperature at Constant Stress. 



r Creep 
.. 1 .. 

Recovery 
I 

b Creep Recovery .. "' &I) .. 

"'" 
...... ~ 00 w c 
0 s.. .... c 

+' ~ 0 c_(t) C.I) 
.µ 
V) .. 

~ 

to to 
Time, t Time, t 

Flgure 2S. Load and Response for. a Creep and Reco,·cry Test. 



0 .... 

0 -
10 

131 

x Prony series 
• Power law 

20 30 .co 
Time (min.) 

so 60 

Figure 26. Comparison of Creep Compliances Obtained Using Prony Series and Power 
Law. 



132 . c: 
--. c: 
-

. 
N

 
c: 

' 
. 

-
-

c 
-

N
 

' 
"' 

-
I 

N
 

N
 

"" . 
...... c 
---

• 
c: 
-ca 

5 E 
1 C

l) 

-~ " = 
.8 ~
 

Q
 

1 ~ < r-= N
 e :s c.o 

rz 



133 

12 

10 -EXACT 

--¢--NOVA - 8 M 
I 
0 -- 6 c -"' Lo 4 ..,, 
en 

2 

0 
0 10 20 30 40 50 60 

Time (min.) 

Figure 28a. Creep and Creep Recovery In a FM-73 Adhc.o;ive Coupon for an Applied 
Stress of 21 MPa. 



134 

12 

10 -EXACT 

--<>--NOVA 
-a M 
I 
0 - ~ -5 ., 
c .... 
I'd 
"- 4 "' V) 

2 
~ ....... ~ 

0 . . . 
0 10 20 30 40 50 60 

Time (min.) 

Figure 28b. Creep and Creep Recovery in a FM-73 Adhesive Coupon for an Applied 
Stress of 17 MPa. 



135 

12 

10 - EXACT 

-a ··<>-- NOVA ,.., 
I 
0 
C.6 
c - ;r·~ 

"' L 4 +.> 
II) 

2 

0 ~--., ., 
0 10 20 30 40 50 60 

Time (min.) 

F1gure 28c. Creep :ind Creep Recovery in a FM-73 Adhesive Coupon for :in Applied 
Str~ of 14 MPa. 



8 . 
2--~--~---~--------~---,~~-,------r----. 

8 . 
i 

-~ 8 
:&: • 
- 0 
~"" b . 

tit 

: 8 s.. • 
t: 2 -l'O c 
.g 8 . 

c 

8 . 

x Time, t=l min. 

• Time, t=60 min. 

~I I I I I I I I I 
-1.00 -0. 7S -0.50 -0.25 0.00 0.25 0.50 O. 7S I .00 

Distance, x/c 

Flgure 29a. Peel Stress along the Upper Bondline for Linear Viscoelastic Analysis of a 
Model Joint. 

..... 
w 
0\ 



8 
_[(3 

~t x Time, t=l min. 

• Time, t 21 60 min • -IG a. 8 ~ - . an 
>t ->< 

t) . 
"' "' cu 
L. 
~ 
VI 

L. 
IG cu 
~ en 

8 . 
0 -, 
8 . 
U> 

~~~~~ 0-1.00 -0.75 -0.50 -0.25 o-.oo 
Distance, x/c 

o-.25 0.50 o-. 75 

figure 29b. Shear Stress along the Upper Bondline for Linear Viscoelastic Analysis of 
a Model Joint. 

\I ...... w 
-....J 

1.00 



~ 
o--------~~--------~~----~~----------------~--

~l x Tfme, tsl mfn. 
~-f- • Tfme, ts6Q mf n. 

C'1 
>,O 

"'w. ci . 
c -IQ 
'-., 
4" 

'-
IQ cu 

J:: 
V> 

~ . 
0 

-0 . 
0 

~I I I I I I I I I 
-1.00 -0. 75 -0.50 -0.25 0.00 0.25 0.50 O. 75 1.00 

Distance, x/c 

Figure 30. Shear Strain along the Upper Bondline for Linear Viscoelastic Analysis of 
a .Model Joint. 

.... w 
00 



8 . . 
~--~--~~--~-T"----------,.~~-r------ir-----, 

BL x Time, t=l min. 
g+ • Time, t=60 min. -ia 

a.. 
~8 ». 

11:1 0 .. 
11'1 
11'1 cu 

~~ 
';; 2 
E 
0 :;:: 

8 . c 

8 . 
·-·1.00 -0.75 -o.so -0.25 o·.oo o·.25 a.so o·.75 

Distance, x/c 

Figure 31a. Peel Stress along the Upper Bondline for Nonlinear Viscoelastic Analysis 
or a l\fodel Joint. 

1.00 

.-. w 
\0 



"' "' cu ... 
~ 

"' ... 
IQ 
cu 
~ 
V) 

8 • 
~.,.--------------------r-----,.-----r-----ir----~ 

8 . 
0 -

8 . 
U) 

I 

x Time. t=l mf n. 
• Time. t=60 min. 

\I 

8~~~~ 0 -1.00 -0.75 -o.so -o.zs 0.00 
Distance, x/c 

o.zs o-.so o-.75 1.00 

Figure Jib. Shear Stress along the Upper Bondline for Nonlinear Viscoelastic Analysis 
of a Model Joint. 

...... 
~ 
0 



8 
0...--~~--~~--~~-.-~~--~~---,r--~~r-~~~~~~ 

~-1- x Time, t•l min. 

• Time, t•60 min • 
~~ 

"' 0 
>i • 
>< 0 

"' .. 
c: - N '° s.. 0 ..... . 

II .,, 
01 ~ ~ s.. 

"' cu .s::. -V) 0 
0 

~~~~~ o-l .00 -0.75 -a.so -0.25 o-.oo o-.25 o-.so o-.75 I.CO 

Distance, x/c 

Figure 32. Shear Strain along the Upper Bondline for Nonlinear Viscoelastic Analysis 
of a Model Joint. 

t-' 
~ 
t-' 



'~ I 
~ 

Ir-
I 

~ 
I 

--,,, 
~D 
/ '-

~ -,. ..... I I 

"/ 

L ·I r -
I r I 

I 
I I I I I I - x 

f ! I 

I 
I 

I H I 

L : 
I 

111 I 

__.,2cr--

figure 33. Specimen Geometry, Boundary Condition, and finite Element Discretization 
for a Single Lap Joint with Composite Adhcrends (L-107.0, H = 1.61, 
C ... 4.0, 111ickness of Adhesi\·e Layer=- 0.05, all dimensions in mm., Applied 
Stress.,. 2763 MPa.). 

I 

I 

so 
~ .. , 

-.;; 
..., 
-.. -,. 
-
~ 

-,,.. 
_I 

~ .. 

...... 

.i:-
N 



143 

1-4 

12 x n£T',,,,. 0 DEG. 

~ TH:1',,,,. t; ceo.. 

I 10 0 nET,,,,. "8 ceo.. 
Cl) <> TH:1',,,,. 90 DEG. 

~ e 

I e 

.. 
2 

0 
-1.00 -0.99 -0.98 •0.97 

DISTNa., 'YJC 

Figure 34. Influence of Ply Orientation on Adhesive Peel Stres.c;. 



144 

8 

x 11£1'A • 0 DEG. 

6 11£1'A • 11 DEG. 

r a TH:TA•4'8 DEG. 

<> 11£1' A • 80 CEG. 

t 
t 

0----------..--.-----..-.----............... -----....... ----__.----............... -
-1.oo •0.99 -0.88 -0.87 

Figure 35. Influence of Ply Orientation on Adhesive Shear Stress. 



14 

1 12 

~ 10 

i 8 I e 

2 

145 

x Q11 • ~ t.PA. 

6. Q11 • '4e885 t.PA. 

CJ Q11 • 15830 t.PA. 

Q-+..... ........ ,...,..........,.....-r..,....... ........ ,...,..........,.....-r..,.......T"T"T""l""'l..,...,...,.......T"T",...,...r-r-r"T""l"' ........ ,...,...r-r-r""T"'I 

-1.00 -o.9a -0.98 -0.9-4 -0.92 -0.90 

Figure 36. Influence of Q 11 on Adhesive Peel Stress. 



146 

10 

x on • 8S770 .. A. 

8 A on • 48885 .. A. 

I a on • 1l5e30 .,.A. 

I e 

I 4 

2 

O-+-.--"l'""T""....,....,r""T"T.......,.."T"'T'""l'""T""....,....,r""T"T-..-r"T"'T'""l'""T"",..,...,.......,.."T"'T'""l'""T""....,....,r""T"T"T'"T""l'""T""....,....,r""T"T"T"i 

-1.00 -0.98 •0.98 ·0.9.4 •0.92 ·0.90 

DISTANCE,. X/C 

Figure 37. Influehce of QI 1 on Adhesive Shear Str~. 



147 

14 

12 x NOtUEAR f o 
A LIEM 

• 8 

~ • I 4 

2 

0 

-2 
-1.00 •0.76 -0.60 ·0.26 0.00 

DISTANCE. >VC 

Figure 38. Influence of Geometric Nonlinearity on Adhesive Pccl Stress. 



148 

O-t-T-r-T"""T"..,....,-r-,..,....,....,-r-.,..,...,...., ......... ..,...,...,...., ......... ..,...,..._ ................................................... ,........!::;.,_...-i 

-1.00 -0.76 -0.60 

DISTANCE. X/C 

-0.26 o.oo 

Figure 39. Influence of Geometric Nonlinearity on Adhesive Shear Str~. 



149 

18 

14 x TM:. 0 tfiS. 

I 12 6 TM: • "'° HRS. 

10 

I 8 

I 8 

4 

2 

0 
-1.0 -0.6 o.o 0.6 1.0 

OL43T Na. X/C 

Figure 40. Variation of Shear Stress with Time for Entire Overlap. 



0.08 

I o.oe 

! 0.04 

0.02 

•0.6 

150 

o.o 
DBTANCE. X/C 

0.6 

Figure 41. Variation of Shear Strain with Time for Entire Overlap. 

1.0 



151 

2 

0-t-T-,...,...,..,..,."T"T""r'T"'l"'T"T..,...,.."l""T",...,...,M""'l'..,..,...,..,...,..,...,..,...,....,.......,_.,..,..,...,............., ................... .__.i 

-1.00 •0.98 -o.9e •0.94 •0.92 -o.9o 

Figure 42. Variation of Shear Stre,s., with Time Near the Free Edge. 



0.08 

I o.oe 

I 0.04 

0.02 

152 

0.004-r-.................. ,...,...,..,...,...,...,.......,...,,...,...,....,..,...,...,...,..,.......,...,,...,...,...,...,...,...,...,..,.......,...,r-T'"l'-r-T"'T"'T'"T""Mr-T'"l'"'"l"'"i 

-1.00 •0.98 •0.98 -0.94 -o.a2 •0.90 

Flgure 43. Variation of Shear Strain with lime Near the Free Edge. 



153 

40 

x TME • 0 tfiS. 

f o 
/::). TME • '40 HRS. 

CIO 

~ 20 

I 
10 

Q;-r--r-,--r--r-r-r-,.....,.-.,.-,r-r-,........-.,_,..._,._....,_..._,_,._.._,_..,....... __ ~--J 

•1.00 -o.ee •0.98 -0.97 
OISTNCE, X/C 

Figure 44. Variation of Peel Stress with Time Near the Free Edge. 



0.04 

~ 0.03 

~ 0.02 

0.01 

154 

o.oo........, ........ -.-..,....., ........ -.-..,....., ........ -.-.._. ........ __ .._. ........ ____________ ......,;;..;_-i 

-1.00 -0.99 •0.98 -0.97 

Figure 45. Variation or Peel Strain wi_th lime Near the Free Edge. 



155 

26 

x TME • O tftL 

20 t::. TME•4'0tm 

I 
16 

~ 

I 10 

6 

o+-....-.--.--.-......... ,_...----------......... ------------.......... -------,.._,.-1 
-1.00 -o.ee -0.98 •0.97 

Figure 46. Variation of Axial Stress with Time Near the Free Edge. 



0.008 

I o.ooe 

~ 0.004' 

0.002 

156 

0.0004-......... -..-T--1--.---~-r-....-r-T" __ ..,....,....,.. __ T-T-r--r-,....,..-r-~-r-""'1'"-t 

-1.00 -0.99 -o.ea -0.87 

DISTANCE. X/C 

Figure 47. V arlation of Axial Strain with lime Near the Free Edge. 



0 
(I) . 
0 

0 
U> . 
0 

0 
Q'lf u· ,o 
u 

~ . 
0 

157 

(!) K=0.613947 

0 K=3.912000 
REF. [66] 

8 
9:i~.~oo~~--ti.-o-0~__;;2~.-o-o~--34,-o-o--~~4-,o-o--~~s.oo 

X/C4•DO•TJ 

Figure 48. Profiles for the Unsteady Sorption of a Penetrant in a Semi-Infinite Medium. 



0.20 

~ 0.16 

§ 0.10 

0.05 

-5 

x 8~·1.8Y. 
A 8~·2AY. 

0 8~ • .c.2 Y. 

-3 

158 

-2 -1 0 1 2 

LOG TU: o-ASJ 

Figure 49. Effect of Mechanical Strain on the Diffusion Cocffi.cicnt for Polystyrene. 



X B•o.25 

0 .20 6 B • Q.50 

I 0.1& 

§ 0.10 

0.06 

•6 •3 

159 

-2 -1 0 1 2 

Figure SO. Effect or Material Parameter B on the Diffusion Coefficient for Polystyrene. 



160 

x WrTHOUT AGMl 
0.10 . A AGNl 'MTH W • 0.50 

0 AGN3 wrTH W • 0.95 
0.08 

~ 
~ 0.08 
§ 

0.04 

0.02 

-6 -4 -3 -2 -1 0 1 2 

Figure Sl. Effect of Physical Aging on the Diffusion Coefficient for Polystyrene. 



161 

y 

Figure 52. Specimen Geometry and Boundary Conditions ror the Analysis or a Butt 
Joint (L • 200.S, b • 30.0, e.,. 0.25, all dimensions In mm., Applied Stress -
10 MPa.). 



162 

Figure 53. Finite Element Discretization and Boundary Conditions for the Analysis of 
a Butt Joint. 
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Moisture Coupling. 
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