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Switched Markov Jump Linear Systems: Analysis and Control Synthesis

Collin C. Lutz

ABSTRACT

Markov jump linear systems find application in many areas including economics, fault-tolerant control,

and networked control. Despite significant attention paid to Markov jump linear systems in the litera-

ture, few authors have investigated Markov jump linear systems with time-inhomogeneous Markov chains

(Markov chains with time-varying transition probabilities), and even fewer authors have considered time-

inhomogeneous Markov chains with a priori unknown transition probabilities. This dissertation provides a

formal stability and disturbance attenuation analysis for a Markov jump linear system where the underly-

ing Markov chain is characterized by an a priori unknown sequence of transition probability matrices that

assumes one of finitely-many values at each time instant. Necessary and sufficient conditions for uniform

stochastic stability and uniform stochastic disturbance attenuation are reported. In both cases, conditions

are expressed as a set of finite-dimensional linear matrix inequalities (LMIs) that can be solved efficiently.

These finite-dimensional LMI analysis results lead to nonconservative LMI formulations for optimal con-

troller synthesis with respect to disturbance attenuation. As a special case, the analysis also applies to a

Markov jump linear system with known transition probabilities that vary in a finite set.

This research was made with Government support under and awarded by DoD, Air Force Office of

Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR

168a.
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Chapter 1

Introduction

1.1 Motivation

A discrete-time Markov jump linear system is a stochastic discrete-time linear time-varying system where

the time-variation of parameter matrices is determined by a realization of a Markov chain. The Markov

chain may be time-homogeneous (characterized by constant transition probabilities) or time-inhomogeneous

(characterized by time-varying transition probabilities), and terminology is slightly abused by referring to

a time-(in)homogeneous Markov jump linear system. This work addresses a switched Markov jump linear

system, which is simply a time-inhomogeneous Markov jump linear system where the underlying Markov

chain is characterized by an a priori unknown sequence of transition probability matrices that assumes

one of finitely-many values at each time instant; an a priori unknown switching sequence parameterizes

the transition probability matrices at each time instant. As a special case, the analysis also applies to

time-inhomogeneous Markov jump linear systems with known transition probabilities that vary in a finite

set.

In the existing literature, stability (resp. disturbance attenuation) of a time-inhomogeneous Markov

jump linear system is equivalent to an infinite-dimensional Lyapunov (resp. storage function) criterion that

in general lacks a practical technique for solving. In this dissertation, it is shown that stochastically stable

and contractive systems admit Lyapunov and storage functions with finite dependence on the future. This

observation leads to necessary and sufficient conditions for uniform stochastic stability and uniform stochastic

disturbance attenuation for a switched Markov jump linear system, expressed as a set of finite-dimensional

linear matrix inequalities (LMIs), which can be solved efficiently using well-known techniques. These finite-

dimensional LMI analysis results lead to nonconservative LMI formulations for optimal controller synthesis

1



CHAPTER 1. INTRODUCTION 2

with respect to disturbance attenuation for a switched Markov jump linear system.

The Markov jump linear system abstraction finds application in many areas including economics [12],

fault-tolerant control [9], and networked control [27, 61]. Despite the prevalence of Markov jump linear

systems, little attention has been paid to the case when the Markov chain transition probabilities are time-

varying, and almost no attention has been paid to the case when the Markov chain transition probabilities

are time-varying and a priori unknown.

Time-varying Markov chain transition probabilities may arise in a variety of situations. Consider, for

example, a control system where the plant and controller are connected via a wireless communications

network subject to random network delays and/or packet loss (see, e.g., [68]). Network delays and packet

loss probabilities are influenced by many factors, including ambient noise, distance between wireless nodes,

obstacles between the transmitter and receiver, the presence of other wireless communication nodes on the

same network, and sources of interference on the same frequency band [25, 50]. Thus, network delay and

packet loss probabilities may vary with time due to, e.g., solar activity, mobile network nodes, evolving

network topology, or adversarial disruption (jamming). In some of these scenarios, the time-varying Markov

chain transition probabilities may be known in advance, while in other scenarios, the time-variation may be

a priori unknown.

In some instances, the time-varying probabilistic structure may arise due to implementation details of

the control law. Chapter 7 discusses an energy-saving scheme for an autonomous underwater vehicle (AUV)

that can be cast as a switched Markov jump linear system.

1.2 Related Work

Time-homogeneous Markov jump linear systems have been studied quite extensively in the literature. Ji

and Chizeck [33] study various second moment stability concepts and the almost sure asymptotic stability

for the time-homogeneous case. Costa and Fragoso [11] provide coupled linear matrix inequality conditions

equivalent to mean square stability, and Ji and Chizeck [32] characterize the jump linear quadratic Gaussian

optimal control problem. More recently, Seiler and Sengupta [59] consider the H∞ control problem and

provide a stochastic bounded real lemma that can be used when the Markov chain is time-homogeneous.

Geromel et al. [22] address the H2 and H∞ dynamic output feedback control design problems for time-

homogeneous Markov jump linear systems. Lee and Dullerud provide necessary and sufficient conditions for

a time-homogeneous Markov jump linear system to be almost surely uniformly exponentially stable [38] and

almost surely uniformly strictly contractive [37]; LMI-based synthesis techniques are also reported for the

almost sure uniform stabilization and disturbance attenuation of a time-homogeneous Markov jump linear
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system.

Time-inhomogeneous Markov jump linear systems have received less attention. For the case when the

time-varying Markov chain transition probabilities are known, Krtolica et al. [36] provide a necessary and

sufficient condition for mean square stability in the form of an infinite set of coupled matrix equations, and

Aberkane [1] states a similar stability result in terms of an infinite set of LMIs. Fang and Loparo [17] reduce

the infinite set of matrix equations in [36] to a finite set when the transition probabilities of the Markov chain

are periodic. Aberkane [1] provides a necessary and sufficient condition for stochastic disturbance attenuation

in the form of an infinite set of LMIs, which reduces to a finite set when the transition probabilities of the

Markov chain are periodic.

For the case when the Markov chain transition probabilities are time-varying and a priori unknown,

only sufficient conditions for uniform stochastic stability and uniform stochastic disturbance attenuation

have been provided in the literature. Bolzern et al. [5] examine a continuous-time Markov jump linear

system with time-varying a priori unknown Markov process transition rates (see, e.g., [39, Sec. 11.4.2])

and provide a sufficient condition for uniform stochastic stability subject to a dwell-time constraint. Lutz

and Stilwell [43] examine a particular class of time-inhomogeneous Markov jump linear systems with a priori

unknown transition probabilities, provide sufficient conditions for uniform mean square stability and uniform

stochastic disturbance attenuation, and present a sufficient condition for uniform stochastic stability subject

to an average dwell-time constraint.

1.3 Organization

This dissertation is organized as follows. Notation, concepts, and results needed throughout the dissertation

are reviewed in Chapter 2. Markov jump linear systems and switched Markov jump linear systems are

formally introduced in Chapter 3.

Chapter 4 is concerned with stability for the different types of systems defined in Chapter 3. Stability

results for a Markov jump linear system are reviewed. To motivate the development, an example is given in

Chapter 4 where the time-variation of the transition probabilities of the Markov chain causes instability. In

Chapter 4, a necessary and sufficient LMI condition for uniform stability of a switched Markov jump linear

system is developed. A computationally simpler condition for uniform stability that can be applied when

the Markov chain is an independent sequence of random variables is also derived.

In Chapter 5, the disturbance attenuation properties of the systems defined in Chapter 3 are examined.

Disturbance attenuation results for Markov jump linear systems are reviewed. A motivating example is

presented in Chapter 5 where certain disturbance attenuation properties of a system are lost due to time-
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variation of the Markov chain transition probabilities. A necessary and sufficient condition for uniform

stochastic disturbance attenuation of a switched Markov jump linear system is obtained in Chapter 5 and is

expressed as a set of finite-dimensional LMIs. When the Markov chain is an independent sequence of random

variables, a simpler condition for uniform disturbance attenuation of a switched Markov jump linear system

is also developed in Chapter 5.

In Chapter 6, control synthesis for a switched Markov jump linear system is considered. The existence of

a controller that ensures the closed-loop system is uniformly stable and contractive is shown to be equivalent

to the feasibility of a set of finite-dimensional LMIs. This result leads to an iterative design procedure

for constructing an optimal controller with respect to disturbance attenuation for a switched Markov jump

linear system. A few examples are considered at the end of Chapter 6, and near-optimal (with respect to

disturbance attenuation) controllers are constructed via an iterative procedure.

In Chapter 7, an energy-saving scheme is examined for a control system implemented on a microprocessor

where the energy consumed by the microprocessor is nontrivial. The problem is cast as a switched Markov

jump linear system, and the analysis results of Chapters 4 and 5 are applied.



Chapter 2

Preliminaries

2.1 Introduction

This chapter establishes a common notation and reviews background material from mathematical analysis,

probability theory, matrix theory, and graph theory. Only the key ideas and tools needed for this work are

presented. For a more in-depth review, references are provided at the end of the chapter.

2.2 Notation

The set of integers is denoted Z. The positive and nonnegative integers are represented by N and N0,

respectively. The negative and nonpositive integers are represented by Z− and Z−0 , respectively. The

standard Euclidean vector norm and corresponding induced matrix norm are both denoted by ‖·‖. The

set of n × n symmetric matrices is denoted by Sn, and S+
n denotes the set of positive definite symmetric

matrices. For an n× n symmetric matrix X, the notation X > 0 simply means X ∈ S+
n , and X < 0 means

−X > 0. The set of N × N stochastic matrices is denoted TN and consists of matrices with nonnegative

elements where each row sums to one. The composition of two functions f, g is denoted by f ◦ g, and the

image of a function f is written Im f . A sequence is a function f whose domain is a subset of the set of

integers (usually N or N0) and may be equivalently viewed as an ordered list (f(1), f(2), . . . ). Given two

sets N and J , the Cartesian product is denoted by N × J , and the Cartesian power of a set J is denoted

by JM where M ∈ N. By convention, if M = 0 then JM = {∅}, a singleton set (e.g., see [29, p. 57]), and

N ×JM = N . If J is a set, the notation J∞ is used to denote the set of all sequences of elements of J . If

r = (r1, r2, . . . , rM ) ∈ JM where M ∈ N, the shorthand rm:n = (rm, rm+1, . . . , rn) ∈ J n−m+1 is sometimes

used where 1 ≤ m ≤ n ≤M .

5



CHAPTER 2. PRELIMINARIES 6

2.3 Mathematical Analysis

There are many excellent texts on mathematical analysis, and so definitions and facts needed in the disser-

tation are only briefly stated. Consult the references at the end of the chapter for more details.

Definition 2.1. A metric space is a set M equipped with a metric d : M ×M → R that satisfies

Nonnegativity: d(x, y) ≥ 0 for all x, y ∈M ;

Identity of indiscernibles: d(x, y) = 0 if and only if x = y;

Symmetry: d(x, y) = d(y, x) for all x, y ∈M ;

Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈M .

Definition 2.2. A sequence x : N → M taking values in a metric space M is Cauchy if for every ε > 0,

there exists N ∈ N such that d(x(m), x(n)) < ε for all m,n > N .

Definition 2.3. A metric space M is complete if every Cauchy sequence converges to an element of M .

Definition 2.4. A vector space over a field F is a nonempty set V of elements (called vectors) closed under

the algebraic operations of vector addition and scalar multiplication satisfying the following conditions

Commutative: u+ v = v + u for all u, v ∈ V ;

Associative: (u+ v) + w = u+ (v + w) and (ab)v = a(bv) for all u, v, w ∈ V and all a, b ∈ F ;

Additive identity: there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;

Additive inverse: for every v ∈ V , there exists w ∈ V such that v + w = 0;

Multiplicative identity: 1v = v for all v ∈ V where 1 denotes the multiplicative identity in F ;

Distributive: a(u+ v) = au+ av and (a+ b)u = au+ bu for all a, b ∈ F and all u, v ∈ V .

Definition 2.5. Let V1 and V2 be vector spaces over the same field F . A linear operator T is a function

T : V1 → V2 such that T (u + v) = Tu + Tv and T (av) = aTv for all a ∈ F and all u, v ∈ V1. For linear

operators, it is common to write Tv in lieu of T (v).

Definition 2.6. A norm on a real or complex vector space V is a real-valued function on V whose value at

v ∈ V is denoted by ‖v‖ and which has the properties

Nonnegativity: ‖v‖ ≥ 0 for all v ∈ V ;
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Definiteness: ‖v‖ = 0 if and only if v = 0;

Absolute homogeneity: ‖av‖ = |a| ‖v‖ for all scalars a and all v ∈ V ;

Triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V .

Definition 2.7. A normed space is a vector space V with a norm defined on it.

Definition 2.8. Let V1 and V2 be normed spaces. A linear operator T : V1 → V2 is bounded if there exists

c ≥ 0 such that ‖Tv‖ ≤ c ‖v‖ for all v ∈ V1. The norms on V1 and V2 are denoted by the same symbol, with

little risk of confusion.

Definition 2.9. Let T : V1 → V2 be a bounded linear operator with V1 and V2 being normed spaces. The

induced norm or simply norm of T is defined ‖T‖ = supv 6=0 ‖Tv‖ / ‖v‖. The induced norm is sometimes

denoted by ‖T‖V1→V2
to emphasize the role of the vector norms on V1 and V2.

Definition 2.10. An inner product on a vector space V is a function, denoted 〈·, ·〉, from V × V into F

with the following properties

Nonnegativity: 〈v, v〉 ≥ 0 for all v ∈ V ;

Definiteness: 〈v, v〉 = 0 if and only if v = 0;

Additivity in the first argument: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V ;

Homogeneity in the first argument: 〈av, w〉 = a 〈v, w〉 for all a ∈ F and all v, w ∈ V ;

Conjugate symmetry: 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

Definition 2.11. An inner product space is a vector space V equipped with an inner product on V .

Definition 2.12. An inner product on V induces a norm on V given by ‖v‖ =
√
〈v, v〉 and a metric on V

given by d(u, v) =
√
〈u− v, u− v〉.

Definition 2.13. A Hilbert space is a complete inner product space with respect to the metric induced by

the inner product.

Definition 2.14. Let T : H1 → H2 be a bounded linear operator where H1 and H2 are Hilbert spaces.

The Hilbert-adjoint operator or adjoint operator T ∗ of T is the operator T ∗ : H2 → H1 such that 〈Tx, y〉 =

〈x, T ∗y〉 for all x ∈ H1 and all y ∈ H2. The inner products on H1 and H2 are denoted by the same symbol,

with little risk of confusion.

Lemma 2.15 (Thm. 3.9-2 of [35]). The Hilbert-adjoint operator T ∗ of a bounded linear operator T exists,

is unique, and is a bounded linear operator with norm ‖T ∗‖ = ‖T‖.
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2.4 Probability and Random Variables

A probability space is a triple (Ω,F,P) where Ω is the sample space, F is a collection of events (subsets of Ω)

closed under complements and countable unions, and P is a probability measure which assigns probabilities

to events in F. A random variable is a measurable real-valued function defined on Ω. A random process (or

stochastic process) is an indexed family of random variables. If the index set is countable, the random process

is discrete-time; otherwise, the random process is continuous-time. Some important spaces of discrete-time

random processes defined on (Ω,F,P) are the spaces of mean square summable stochastic processes defined

`2e(Z) = {w : Z× Ω→ Rm s.t. ‖w‖2,e <∞} where ‖w‖22,e = E

[ ∞∑
k=−∞

‖w(k)‖2
]

`2e(N0) = {w ∈ `2e(Z) : w(k) = 0 for k 6∈ N0}

`2e(Z
−
0 ) = {w ∈ `2e(Z) : w(k) = 0 for k 6∈ Z−0 }

`2e[0, T ] = {w ∈ `2e(Z) : w(k) = 0 for k 6∈ [0, T ]}

`2e[−T, 0] = {w ∈ `2e(Z) : w(k) = 0 for k 6∈ [− T, 0]}.

The abbreviated notation `2e is often used for `2e(N0). In fact, all of the spaces listed above are Hilbert spaces

with inner product given by 〈v, w〉e = E
[∑∞

k=−∞ wT(k)v(k)
]
. Note that the dimension m of vector w(k)

is not explicitly reflected in the notation `2e. The same symbol `2e is used for spaces with different vector

dimensions, with little risk of confusion.

2.4.1 Results from probability theory

Definition 2.16. A collection of random variables X1, . . . , Xn are (mutually) independent if

P {X1 ∈ H1, . . . , Xn ∈ Hn} = P {X1 ∈ H1} · · ·P {Xn ∈ Hn} .

for all measurable subsets H1, . . . ,Hn of R. Equivalently,

P {X1 ≤ x1, . . . , Xn ≤ xn} = P {X1 ≤ x1} · · ·P {Xn ≤ xn} .

for all x1, . . . , xn ∈ R (e.g., see [4][Sec. 20]).

Definition 2.17. A discrete-time random process X : N0 × Ω → R is an independent sequence of random

variables if every finite subset of {X(0), X(1), . . . } is a set of mutually independent random variables. If,

in addition, X(0), X(1), . . . have the same probability distribution then X is an independent and identically
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distributed (i.i.d.) sequence.

Lemma 2.18. Let X,Y be independent random variables defined on a probability space (Ω,F,P), and let f

and g be measurable real-valued functions defined on ImX and ImY , respectively. Then f(X) and g(Y ) are

independent random variables.

Proof. Let A and B be measurable subsets of R.

P {f(X) ∈ A, g(Y ) ∈ B} = P
{
X ∈ f−1[A], Y ∈ g−1[B]

}
= P

{
X ∈ f−1[A]

}
P
{
Y ∈ g−1[B]

}
= P {f(X) ∈ A}P {g(Y ) ∈ B}

where f−1[A] = {x ∈ ImX : f(x) ∈ A} is the inverse image of A under f .

The law of iterated expectations, also known as the law of total expectation, will prove useful in the

sequel.

Lemma 2.19 (Law of iterated expectations). Let X,Y, Z be random variables defined on a probability space

(Ω,F,P). Then

E [X | Y ] = E [E [X | Y,Z] | Y ] .

The Cauchy-Schwarz inequality can be verified on any probability space.

Lemma 2.20 (Cauchy-Schwarz inequality for random variables). Let X,Y be random variables defined on

a probability space (Ω,F,P) such that E
[
X2
]

and E
[
Y 2
]

are finite. Then

|E [XY ]| ≤
√

E [X2] E [Y 2].

The Cauchy-Schwarz inequality may also be extended to random vectors.

Lemma 2.21 (Cauchy-Schwarz inequality for random vectors). Let X,Y be random vectors defined on a

probability space (Ω,F,P) such that E
[
XTX

]
and E

[
Y TY

]
are finite. Then

∣∣E [XTY
]∣∣ ≤√E [XTX] E [Y TY ].

A generalized version of the Cauchy-Schwarz inequality is sometimes useful.
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Lemma 2.22 (Generalized Cauchy-Schwarz inequality). Let X,Y be random vectors in Rn, and let A be

an n× n symmetric matrix whose entries are random variables. If A > 0 almost surely then

∣∣E [XTAY
]∣∣ ≤√E [XTAX] E [Y TAY ].

Proof. Let U = A1/2X and V = A1/2Y . Note that A1/2 > 0 almost surely. Then

∣∣E [XTAY
]∣∣ =

∣∣E [UTV
]∣∣

≤
√

E [UTU ] E [V TV ] (2.1)

=
√

E [XTAX] E [Y TAY ]

where (2.1) follows from Lemma 2.21.

2.4.2 Markov chains

A finite Markov chain θ : N0 × Ω → N is a discrete-time random process that takes values in a finite set

N = {1, . . . , N} and satisfies the Markov property

P {θ(kn+1) = in+1 | θ(kn) = in, . . . , θ(k1) = i1} = P {θ(kn+1) = in+1 | θ(kn) = in}

where 0 ≤ k1 < k2 < · · · < kn < kn+1 are arbitrary points in time. Thus, given the present state of the

Markov chain, the future is independent of the past. If θ(k) = i, the Markov chain is in mode i at time k.

For k ∈ N, define pij(k) = P{θ(k) = j | θ(k − 1) = i} and let P (k) be the N × N matrix with entries

pij(k). Let pi(k) = P{θ(k) = i} and define the row vector p(k) = [p1(k) p2(k) · · · pN (k)]. Note that

the initial distribution p(0) and the sequence P : N → TN of transition probability matrices give a full

probabilistic description of random process θ since

P {θ(k) = ik, θ(k − 1) = ik−1, . . . , θ(0) = i0} = P {θ(0) = i0}
k∏
j=1

P {θ(j) = ij | θ(j − 1) = ij−1} .

where k ∈ N, i0, i1, . . . , ik ∈ N , and P {θ(j) = ij | θ(j − 1) = ij−1} is an element of the matrix P (j).

Definition 2.23. The Markov chain θ is time-homogeneous if P is constant. Otherwise, the Markov chain

is time-inhomogeneous.

Remark 2.24. An independent sequence of random variables is a special type of Markov chain. If θ is an

independent sequence of random variables taking values in a finite set then θ is trivially a Markov chain. On
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the other hand, a Markov chain is an independent sequence of random variables exactly when pij(k) = pj(k)

for all i ∈ N and k ∈ N, i.e., each row of P (k) is identical. For example, a series of coin flips is an independent

and identically distributed sequence and is trivially a time-homogeneous Markov chain. On the other hand,

consider three coins, each with a different probability of landing heads up. Suppose the first coin is flipped,

followed by the second and third coins. If the coins continue to be flipped in this order indefinitely then the

sequence of flips is a time-inhomogeneous independent sequence of random variables.

Lemma 2.25. The distribution p(k) may be calculated via vector and matrix multiplications as

p(k) = p(0)P (1)P (2) · · ·P (k). (2.2)

Proof. Let N0∪N1 be a partition of N such that N0 = {i ∈ N : pi(k−1) = 0} and N1 = {i ∈ N : pi(k−1) 6=

0}. Then

pj(k) =

N∑
i=1

P {θ(k) = j, θ(k − 1) = i}

=
∑
i∈N0

0 +
∑
i∈N1

pij(k)pi(k − 1) (2.3)

=
∑
i∈N0

pij(k)pi(k − 1) +
∑
i∈N1

pij(k)pi(k − 1) (2.4)

=

[
p1(k − 1) p2(k − 1) · · · pN (k − 1)

]


p1j(k)

p2j(k)

...

pNj(k)


. (2.5)

Equations (2.3) and (2.4) indicate that while P {θ(k) = j | θ(k − 1) = i} is technically undefined for i ∈ N0,

the vector multiplication in (2.5) still gives the correct result regardless of the entries pij(k) for i ∈ N0.

Equation (2.5) is simply the multiplication of p(k−1) and the j-th column of P (k). Thus p(k) = p(k−1)P (k).

Equation (2.2) follows by iteration.

Definition 2.26. Let P (k) be a sequence of transition probability matrices, and suppose there exists a

distribution µ = [µ1 µ2 . . . µN ], µi ≥ 0,
∑N
i=1 µi = 1 such that

µj =

N∑
i=1

µipij(k) (2.6)

for all j ∈ N and k ∈ N. Then µ is invariant for the sequence P (k).
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Remark 2.27. Note that the conditions specified in (2.6) may be written in vector-matrix notation:

µ = µP (k)

for all k ∈ N. Thus, µ is a left eigenvector of each matrix P (k) with eigenvalue 1.

Lemma 2.28. Suppose there exists an invariant distribution µ for the sequence P (k) and p(0) = µ. Then

p(k) = µ for all k ∈ N.

Proof. The result follows via Lemma 2.25 and Remark 2.27.

Definition 2.29. If µ exists as in Definition 2.26 then µ is also called an equilibrium distribution for the

Markov chain θ.

Many time-inhomogeneous Markov chains do not admit an equilibrium distribution. In contrast, an

irreducible time-homogeneous Markov chain admits an equilibrium distribution if and only if every mode of

the Markov chain is positive recurrent (see [46, Thm. 1.7.7] for details). A large class of examples of time-

inhomogeneous Markov chains that do admit an equilibrium distribution is provided by time-inhomogeneous

random walks on groups (see [55]).

Definition 2.30. A Markov chain θ is instantaneously reversible if there exists µ = [µ1 µ2 . . . µN ] such

that µi ≥ 0,
∑N
i=1 µi = 1, and

µipij(k) = µjpji(k) (2.7)

for all i, j ∈ N and k ∈ N0.

Lemma 2.31. If a Markov chain θ is instantaneously reversible and µ satisfies Definition 2.30, then µ is

an equilibrium distribution of the Markov chain.

Proof. Sum both sides of equation (2.7) over i to arrive at (2.6).

If a Markov chain is instantaneously reversible and p(0) = µ, then

P {θ(k − 1) = i, θ(k) = j} = P {θ(k) = i, θ(k − 1) = j} (2.8)

for all k ∈ N. In words, relation (2.8) says that the probability of visiting (i, j) in forward-time is equal

to the probability of visiting (i, j) in reverse-time. Reversibility for time-inhomogeneous Markov chains has

been studied by Ge et al. [21]; see also [55].
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2.5 Matrix Theory

A few standard results from matrix theory are needed in the sequel.

Lemma 2.32 (Inverse of partitioned matrix). Let

A B

C D


be a block matrix with A and D nonsingular. Then

A B

C D


−1

=

 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

 .
Proof. See Chapter 0 of [28].

Lemma 2.33 (Sherman-Morrison-Woodbury matrix inversion lemma). Suppose A, C, A + BCD, and

C−1 +DA−1B are nonsingular. Then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.

Proof. See Chapter 0 of [28].

Lemma 2.34 (Singular value decomposition (SVD)). Let A ∈ Rn×m be given, let q = min(m,n), and

suppose that rankA = r.

a) There are unitary matrices U ∈ Rn×n and V ∈ Rm×m, and a square diagonal matrix

Σq =


σ1 0

. . .

0 σq


such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σq and A = UΣV T, in which

Σ = Σq if m = n

Σ =

[
Σq 0

]
∈ Rn×m if m > n

Σ =

Σq

0

 ∈ Rn×m if m < n
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b) The parameters σ1, . . . , σr are the positive square roots of the decreasingly ordered nonzero eigenvalues

of AAT, which are the same as the decreasingly ordered nonzero eigenvalues of ATA.

Proof. See, e.g., Theorem 2.6.3 of [28].

Lemma 2.35 (Fundamental subspaces via SVD). Let A ∈ Rn×m and suppose r = rankA < min(m,n). Let

A =

[
U1 U2

]Σr 0

0 0


V T

1

V T
2

 = UΣV T

be an SVD of A where Σr = diag(σ1, . . . , σr) > 0 and

U1 ∈ Rn×r, U2 ∈ Rn×(n−r)

V1 ∈ Rm×r, V2 ∈ Rm×(m−r).

Then

a) The columns of U1 form an orthogonal basis for ImA.

b) The columns of U2 form an orthogonal basis for kerAT.

c) The columns of V1 form an orthogonal basis for ImAT.

d) The columns of V2 form an orthogonal basis for kerA.

Proof. See, e.g., Theorem A.4.2 of [62].

Definition 2.36. The Moore-Penrose pseudoinverse of a matrix A ∈ Rn×m with r = rankA is defined to

be the m× n matrix

A† := V

Σ−1
r 0

0 0

UT

where Σr = diag(σ1, . . . , σr) and U , V , and σi i = 1, 2, . . . , r are from Lemma 2.34.

Lemma 2.37. The Moore-Penrose pseudoinverse is unique and satisfies the following properties:

AA†A = A, A†AA† = A†

(AA†)T = AA†, (A†A)T = A†A

Proof. See, e.g., Theorem 2.2.1 of [62].
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2.5.1 Linear matrix inequalities

A linear matrix inequality (LMI) is an inequality of the form

F (y) = F0 +

m∑
i=1

yiFi > 0 (2.9)

where Fi ∈ Sn are constant matrices for i = 0, . . . ,m, and y ∈ Rm is the variable. LMIs are commonly

encountered in matrix form where a symmetric matrix Y ∈ Sp is the variable, and the inequality is of the

form

F (Y ) > 0 ∈ Rn×n (2.10)

where F (·) is pointwise symmetric and linear as a mapping from Rp×p to Rn×n. Equation (2.10) can be

easily written in the form of (2.9). Let V1, . . . , Vm be a basis for the vector space of symmetric matrices in

Rp×p. Any matrix Y ∈ Sp may be written as Y =
∑m
i=1 yiVi where y1, . . . , ym are scalars. By linearity of

F (·),

F (Y ) =

m∑
i=1

yiF (Vi).

Defining F0 = 0 and Fi = F (Vi) for i = 1, . . . ,m gives (2.9).

LMIs are valuable as a theoretical and computational tool. Efficient methods for solving LMIs have been

developed [7, 8], and many excellent solvers are readily available (e.g., see [42,63]).

Lemma 2.38 (Congruence transformation). Let T ∈ Rn×n be nonsingular and A ∈ Sn. Then A > 0 if and

only if TTAT > 0.

The Schur complement is often used to convert nonlinear, convex inequalities to LMI form.

Lemma 2.39 (Schur complement). For all A ∈ Sn, B ∈ Rn×m, and C ∈ Sm, the following statements are

equivalent:

 A B

BT C

 > 0 (2.11a)

C > 0, A−BC−1BT > 0 (2.11b)

A > 0, C −BTA−1B > 0 (2.11c)
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Lemma 2.40 (Concavity of the Schur complement). Let µ1, . . . , µN ≥ 0 be such that
∑N
j=1 µj = 1. Suppose

A1, . . . , AN ∈ S+
n , C1, . . . , CN ∈ S+

m, and B1, . . . , BN ∈ Rn×m. Then

N∑
j=1

µjAj −

 N∑
j=1

µjBj

 N∑
j=1

µjCj

−1 N∑
j=1

µjB
T
j

 ≥ N∑
j=1

µj
(
Aj −BjC−1

j BT
j

)

Proof. See Corollary 1.5.3 of [3].

Lemma 2.41 (Projection Lemma). Given a symmetric matrix H ∈ Rm×m and two matrices P, Q of column

dimension m, consider the problem of finding some matrix K of compatible dimensions such that

H+ PTKTQ+QTKP < 0. (2.12)

Denote by WP , WQ any matrices whose columns form bases of the null spaces of P and Q, respectively.

There exists K satisfying (2.12) if and only if the following two conditions hold

WT
PHWP < 0 or kerP = {0} (2.13a)

WT
QHWQ < 0 or kerQ = {0}. (2.13b)

Moreover, suppose (2.13a) and (2.13b) hold. Let QT = FG and P = MN be full rank factorizations of QT

and P (see Section 0.4.6 of [28]). Then all solutions to (2.12) are given by

K = G†TM† + Z −G†GZMM†

where Z is an arbitrary matrix and

T := −R−1FTY NT
(
NYNT

)−1
+ S1/2L

(
NYNT

)−1/2

S := R−1 −R−1FT
(
Y − Y NT

(
NYNT

)−1
NY

)
FR−1

where L is an arbitrary matrix such that ‖L‖ < 1 and R is an arbitrary positive definite matrix such that

Y :=
(
FR−1FT −H

)−1
> 0.

Proof. See Theorem 2.3.12 of [62] or Lemma 3.1 of [20].

The Projection Lemma eliminates K from the feasibility problem in (2.12) and projects the inequality
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onto two subspaces, kerP and kerQ. Note that (2.13a) and (2.13b) may be equivalently stated yTHy < 0

for all y ∈ kerP ∪ kerQ, y 6= 0.

Lemma 2.42. Let matrices A ∈ Rn×`, B ∈ Rn×m, C ∈ Rk×`, R ∈ S+
n , and Q ∈ S+

` be given. There exists

a matrix X such that

(A+BXC)TR(A+BXC) < Q (2.14)

if and only if the following two conditions hold

WT
[
AQ−1AT −R−1

]
W < 0 or kerBT = {0} (2.15a)

V T
[
ATRA−Q

]
V < 0 or kerC = {0} (2.15b)

where W and V are any matrices whose columns form bases of kerBT and kerC, respectively.

Proof. The result is a slight modification of Theorem 2.3.11 in Skelton et al. [62]. For completeness, the proof

is provided; see [62] for more details. By the Schur complement, R > 0 and inequality (2.14) is equivalent to

−

 Q (A+BXC)T

A+BXC R−1

 = −

Q AT

A R−1

+

CT

0

 (−X)T
[
0 BT

]
+

 0

B

 (−X)

[
C 0

]
< 0. (2.16)

Application of Lemma 2.41 to (2.16) and the Schur complement yield (2.15a) and (2.15b).

Lemma 2.43. Suppose P ∈ S+
n and G ∈ Rn×n. Then

GTP−1G ≥ G+GT − P. (2.17)

Proof. P > 0 implies (G− P )TP−1(G− P ) ≥ 0, which implies (2.17).

Lemma 2.44. Suppose A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and X,Y ∈ S+
n . The follow LMIs

are equivalent:

A B

C D


T X 0

0 I


A B

C D

−
Y 0

0 I

 < 0 (2.18)
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

−X−1 A B 0

AT −Y 0 CT

BT 0 −I DT

0 C D −I


< 0 (2.19)

Proof. Rewrite (2.18) as

ATXA− Y ATXB

BTXA BTXB − I

−
CT

DT

 (−I)

[
C D

]
< 0 (2.20)

By Lemma 2.39, inequality (2.20) is equivalent to


ATXA− Y ATXB CT

BTXA BTXB − I DT

C D −I

 < 0 (2.21)

Now rewrite (2.21) as


−Y 0 CT

0 −I DT

C D −I

−

AT

BT

0

 (−X)

[
A B 0

]
< 0 (2.22)

Finally, by Lemma 2.39 inequality (2.22) is equivalent to (2.19).

Lemma 2.45. Suppose A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, X ∈ S+
n , Y ∈ S+

n , W1 ∈ Rn×q, and

W2 ∈ Rp×q. The follow LMIs are equivalent:


W1 0

W2 0

0 I


T 

AXAT − Y AXCT B

CXAT −I + CXCT D

BT DT −I



W1 0

W2 0

0 I

 < 0 (2.23)

W1

W2


T

A B

C D


X 0

0 I


A B

C D


T

−

Y 0

0 I



W1

W2

 < 0 (2.24)
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Proof. Define

W =

W1

W2

 , F =

AXAT − Y AXCT

CXAT −I + CXCT

 , G =

B
D


Then (2.23) is equivalently expressed

W 0

0 I


T  F G

GT −I


W 0

0 I

 < 0 (2.25)

Carry out the multiplication in (2.25) and apply the Schur complement to see that (2.25) is equivalent to

WTFW −WTG(−I)−1GTW < 0 (2.26)

The expression in (2.26) is easily shown to be equivalent to the expression in (2.24).

Lemma 2.46. Suppose A ∈ Sn, B ∈ Rn×m, C ∈ Sm, W ∈ R(n+m)×p, and D ∈ Sn. Then

WT

 A B

BT C

W < 0, D ≤ A ⇒ WT

 D B

BT C

W < 0.

Similarly if W ∈ Rn×p then

WTAW < 0, D ≤ A ⇒ WTDW < 0.

Proof. Note that

WT

D −A 0

0 0

W ≤ 0

so

WT

 D B

BT C

W = WT


 A B

BT C

+

D −A 0

0 0


W ≤WT

 A B

BT C

W < 0.

The second statement follows analogously.
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1

2

3

4 Λ =


0 1 1 1
1 1 1 0
0 1 0 1
1 0 1 1



Figure 2.1: A directed graph and its adjacency matrix.

2.6 Graph Theory

Only a few concepts from graph theory are needed. A directed graph is a pair (V,E) where V is a set of

vertices, and E is a set of ordered pairs (s, r) ∈ V × V where (s, r) is a directed edge from vertex s to vertex

r (e.g., see [52][Sec. 7.3]). Only graphs with a finite number of vertices are considered, so without loss of

generality V = {1, . . . , J} for some finite J . The set of directed edges E may be represented by a J × J

adjacency matrix Λ where Λsr, the sr-th element of Λ, is equal to one if (s, r) ∈ E, and Λsr = 0 if (s, r) 6∈ E

(see Fig. 2.1). A directed path is an M -tuple (M ≥ 2) of elements (r1, r2, . . . , rM ) in V composed of one or

more directed edges in E: (r1, r2) ∈ E, (r2, r3) ∈ E, etc. (e.g., see [52][Sec. 7.4]). The path (r1, r2, . . . , rM )

requires M − 1 edge traversals so is a path of length M − 1. If r1 = rM , the directed path (r1, . . . , rM ) is

called a cycle. If Ψ is the set of all infinite-length paths on a directed graph (V,E), then Ψ is generated by

the directed graph (V,E).

Definition 2.47. A directed graph is strongly connected or irreducible if, given any pair of vertices (s, r),

there exists a directed path from s to r.

Definition 2.48. A square matrix Λ is irreducible if for any index (s, r) there exists some l ∈ N such that[
Λl
]
sr
> 0 where

[
Λl
]
sr

denotes the sr-th entry of the matrix Λl, the l-th power of Λ.

Let Λ be the adjacency matrix of a directed graph and l ∈ N. The sr-th entry of Λl is the number of

directed paths of length l from vertex s to vertex r (e.g., see [6, Ex. 10.1.8] or [52][Sec. 8.4]). Thus, a

directed graph is irreducible if and only if its adjacency matrix Λ is irreducible.

A subgraph of a directed graph (V,E) is a directed graph (W,F ) where W ⊂ V and F ⊂ E (e.g.,

see [52][Sec. 8.2]). Any directed graph (V,E) may be decomposed into a partition of strongly connected

subgraphs such that each subgraph is not contained in a larger strongly connected subgraph (see Fig 2.2

and [52][Sec. 8.4]). If each of these strongly connected components is reduced to a single vertex, the resulting
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1
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2

4

5

6

7

v̂1

v̂2

v̂3

v̂1 v̂2 v̂3

Figure 2.2: Decomposition of a directed graph into strongly connected components and the resulting con-
densation graph.

directed graph is called the condensation of (V,E) and contains no directed cycles (e.g., see [6][Ex. 10.1.9]).

2.7 Notes and References

For facts concerning elementary real analysis, see Rudin [53]. Axler [2] provides an excellent reference for

linear algebra. Readers interested in Hilbert spaces and functional analysis should consult Kreyszig [35] or

Reed and Simon [51]. Consult Garcia [39] for an introductory reference on probability theory; see Billings-

ley [4] or Folland [19] for a more advanced approach. Time-homogeneous Markov chains have been studied

quite extensively, and many good references are available (see, e.g., [46]). In contrast, the theory concerning

time-inhomogeneous Markov chains is much less developed and remains an area of active research [13,55–57].

For an introduction to LMIs with application to control theory, see Boyd et al. [7]. Horn and Johnson [28]

is a standard reference for matrix analysis. See Bondy and Murty [6] or Wilson [67] for an introduction to

graph theory; the graph theory terminology used in this work is generally consistent with Rosen [52].



Chapter 3

Randomly Jumping Systems

3.1 Introduction

A randomly jumping system is a linear system with randomly jumping parameters. If the random jumps

can be modeled by the transitions of a Markov chain, the randomly jumping system is called a Markov

jump linear system. The transition probabilities of the Markov chain may be time-varying or time-invariant.

This work is mainly concerned with Markov chains that have time-varying transition probabilities. The

switched Markov jump linear system abstraction of Section 3.3 represents a Markov jump linear system with

time-varying Markov chain transition probabilities that are a priori unknown.

3.2 Markov Jump Linear Systems

In this section, a Markov jump linear system is defined. The Markov chain associated with a Markov jump

linear system is characterized by known transition probabilities. Fix a probability space (Ω,F,P) and let

θ : N0 × Ω→ N be a finite Markov chain defined on the probability space with initial distribution p(0) and

sequence P : N→ TN of transition probability matrices. Let

G = {(A(1), B(1), C(1), D(1)), . . . , (A(N), B(N), C(N), D(N))}

22
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be a finite set of matrices where A(i) ∈ Rn×n, B(i) ∈ Rn×m, C(i) ∈ Rp×n, and D(i) ∈ Rp×m. The

discrete-time Markov jump linear system, denoted (G, P, p(0)), is defined by the difference equation

x(k + 1)

z(k)

 =

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))


x(k)

w(k)

 (3.1)

and initial condition x(0), where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is a disturbance vector, and

z(k) ∈ Rp is an error vector.

Definition 3.1. If θ is time-homogeneous, (G, P, p(0)) is a time-homogeneous Markov jump linear system.

Otherwise, (G, P, p(0)) is a time-inhomogeneous Markov jump linear system.

The (random) state transition matrix

Φ(k, j) =


A(θ(k − 1))A(θ(k − 2)) · · ·A(θ(j)) : k > j

I : k = j

(3.2)

is defined only for k ≥ j. The solution of the state in (3.1) can be established via forward iteration (see,

e.g., [54])

x(k) = Φ(k, 0)x(0) +

k−1∑
j=0

Φ(k, j + 1)B(θ(j))w(j) (3.3)

where k ≥ 1. The solution formula in (3.3) appears as the sum of a zero-input (w ≡ 0) response and a

zero-state response (x(0) = 0).

Definition 3.2 (Def. 3 of [59]). The Markov jump linear system (G, P, p(0)) is weakly controllable if for

every initial (x0, θ0) and any final (xf , θf ), there exists a finite time kf and an input wc such that P{x(kf ) =

xf , θ(kf ) = θf | x(0) = x0, θ(0) = θ0} > 0.

3.2.1 Independent jump linear systems

An independent jump linear system is simply a Markov jump linear system where θ is an independent

sequence of random variables. As discussed in Remark 2.24, if θ is an independent sequence of random

variables, then each row of P (k) is identical. If, in addition, θ is time-homogeneous, then θ(1), θ(2), . . . is

an independent and identically distributed sequence.
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3.3 Switched Markov Jump Linear Systems

In this section, a time-inhomogeneous Markov jump linear system with a priori unknown time-varying

transition probabilities is examined. It is assumed that the sequence P of transition probability matrices is

not known in advance but takes values in some finite set of matrices {Π(1), . . . ,Π(J)} where Π(s) ∈ TN for

s ∈ J = {1, . . . , J}. Thus, P (k) = Π(ψ(k)) for some a priori unknown sequence ψ : N → J . The notation

πij(ψ(k)) denotes the ij-th element of matrix Π(ψ(k)).

A switched Markov jump linear system, denoted (G,Π,Ψ, p(0)), is defined to be the family of Markov

jump linear systems

{(G,Π ◦ ψ, p(0)) : ψ ∈ Ψ} (3.4)

where Ψ is the application-specific set of all sequences that may occur. Depending on the application, Ψ

could be the set of all sequences in J . Alternatively, some applications may disallow certain sequences from

occurring due to problem-specific information available. Each member of the family in (3.4) is driven by a

different time-inhomogeneous Markov chain with transition probabilities given by Π(ψ(k)), k ∈ N for some

sequence ψ ∈ Ψ. The switched modifier here is used to draw analogy to deterministic switched systems (see,

e.g., [40]), and ψ is often referred to as a switching sequence.

For M ∈ N and k ∈ N0, the notation

ψM (k) = (ψ(k + 1), ψ(k + 2), . . . , ψ(k +M))

is used to denote the next M values of the switching sequence. If M = 0, the convention that ψM (k) = ∅,

the empty sequence, is used. Additionally, the set of all sequences of length M that occur in Ψ is denoted

ΨM = {ψM (t) : ψ ∈ Ψ, t ∈ N0}

and is a subset of JM . If M = 0, then ΨM = {∅}, and N ×ΨM = N (see Section 2.2).

3.3.1 Switched independent jump linear systems

A switched independent jump linear system is simply a switched Markov jump linear system where θ is an

independent sequence of random variables for all ψ ∈ Ψ. If θ is an independent sequence of random variables

for all ψ ∈ Ψ, then each row of Π(s) must be identical for any s ∈ J that occurs in some sequence of Ψ.

Since πij(s) is constant for i = 1, . . . , N , the simplified notation πj(s) denotes the ij-th element of matrix



CHAPTER 3. RANDOMLY JUMPING SYSTEMS 25

Π(s) where i is irrelevant.

3.4 Notes and References

Markov jump linear systems have been thoroughly examined in the literature, with the time-homogeneous

case receiving the greatest scrutiny [10, 11, 22, 32, 33, 37, 38, 45, 59]. Markov jump linear systems with time-

inhomogeneous structure have also been examined, albeit less extensively [1,17,36]. Switched Markov jump

linear systems have received very little scrutiny [5].



Chapter 4

Stability

4.1 Introduction

This chapter begins by reviewing stability concepts and results for Markov jump linear systems and indepen-

dent jump linear systems. To motivate the need for formal stability results for switched Markov jump linear

systems, an example is given in Remark 4.9 of Section 4.4 where switching of the Markov chain transition

probabilities causes instability. The uniform stability (uniform over all possible sequences of Markov chain

transition probabilities) of a switched Markov jump linear system is examined in Section 4.4, and an LMI

condition equivalent to uniform stability is obtained. When the Markov chain is an independent sequence of

random variables, a computationally simpler LMI condition is shown to be equivalent to uniform stability

in Section 4.5.

4.2 Markov Jump Linear Systems

Among the various ways to address stochastic stability for Markov jump linear systems, mean square stability

is most appropriate for the approach taken in this dissertation.

Definition 4.1. The Markov jump linear system (G, P, p(0)) is exponentially mean square stable if there

exist c ≥ 1 and 0 ≤ λ < 1 such that

E
[
ΦT(k, j)Φ(k, j) | θ(j) = i

]
≤ cλk−jI (4.1)

for all i ∈ N and for all k, j ∈ N0 such that k ≥ j ≥ 0.

26
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It is well-known that exponential mean square stability implies almost sure (nonuniform) asymptotic

stability where P {limk→∞ ‖x(k)‖ = 0} = 1 (see [33]).

4.2.1 Time-inhomogeneous Markov chain

Exponential mean square stability of the time-inhomogeneous Markov jump linear system (G, P, p(0)) with

known transition probabilities may be characterized by a stochastic Lyapunov criterion.

Proposition 4.2 (Thm. 2 of [36], Prop. 1 of [1]). The time-inhomogeneous Markov jump linear system

(G, P, p(0)) is exponentially mean square stable if and only if there exist η, ρ, ν > 0 and a function X :

N × N0 → S+
n such that

ηI ≤ X(i, k) ≤ ρI (4.2a)

AT(i)X̃(i, k + 1)A(i)−X(i, k) ≤ −νI (4.2b)

for all i ∈ N and all k ∈ N0 where X̃(i, k + 1) =
∑N
j=1 pij(k + 1)X(j, k + 1). Moreover, if (4.2) holds, one

may take c = ρ/η and λ = 1− ν/ρ in Definition 4.1.

The matrix inequalities in (4.2) are a stochastic version of the familiar Lyapunov stability criterion

(e.g., [54, Thm. 23.3]) for discrete-time linear time-varying systems. If X satisfies (4.2) then V (i, k, y) =

yTX(i, k)y where i ∈ N , k ∈ N0, y ∈ Rn is a stochastic Lyapunov function for (G, P, p(0)) and satisfies

η‖y‖2 ≤ V (i, k, y) ≤ ρ‖y‖2

E [V (θ(k + 1), k + 1, x(k + 1))− V (θ(k), k, x(k)) | x(k) = y, θ(k) = i] ≤ −ν‖y‖2

for all i ∈ N , k ∈ N0, and y ∈ Rn. Of course, the utility of Proposition 4.2 for assessing stability of a given

system is limited due to the infinite number of matrices being prohibitively difficult to compute in practice.

4.2.2 Time-homogeneous Markov chain

If the Markov jump linear system (G, P, p(0)) is time-homogeneous, the stochastic Lyapunov criterion in (4.2)

may be simplified.

Proposition 4.3 (Thm. 2.1 of [32], Thm. 2 of [11]). The time-homogeneous Markov jump linear system

(G, P, p(0)) is exponentially mean square stable if and only if there exist a function X : N → S+
n such that

AT(i)X̃(i)A(i)−X(i) < 0 (4.3)
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for all i ∈ N where X̃(i) =
∑N
j=1 pijX(j). (The time dependence of pij(k) has been omitted since P is

constant.)

4.3 Independent Jump Linear Systems

If θ is an independent sequence of random variables, the stability definition in (4.1) is equivalent to a

seemingly less stringent requirement.

Lemma 4.4. Suppose that θ is an independent sequence of random variables. The following are equivalent.

a) There exist c1 > 0 and 0 ≤ λ1 < 1 such that

E
[
ΦT(k, j)Φ(k, j) | θ(j) = i

]
≤ c1λk−j1 I (4.4)

for all i ∈ N and for all k, j ∈ N0 such that k ≥ j ≥ 0.

b) There exist c2 > 0 and 0 ≤ λ2 < 1 such that

E
[
ΦT(k, j)Φ(k, j)

]
≤ c2λk−j2 I (4.5)

for all k, j ∈ N0 such that k ≥ j ≥ 0.

Proof. Note that (4.4) implies (4.5) by applying the expectation operator with respect to i to both sides

of (4.4). Conversely, suppose (4.5) holds so that

E
[
ΦT(k, j)Φ(k, j) | θ(j) = i

]
= AT(i)E

[
ΦT(k, j + 1)Φ(k, j + 1) | θ(j) = i

]
A(i)

= AT(i)E
[
ΦT(k, j + 1)Φ(k, j + 1)

]
A(i) (4.6)

≤ c2λk−j−1
2 A(i)TA(i)

≤
(
c2λ
−1
2 max

i∈N
λmax(AT(i)A(i))

)
λk−j2 I (4.7)

where (4.6) follows by the independence hypothesis, and λmax(·) denotes the maximum eigenvalue. Thus let

λ1 = λ2 and let c1 be defined by the term in parentheses in (4.7).

4.3.1 Time-inhomogeneous sequence

If θ is an independent sequence of random variables, exponential mean square stability may be characterized

by a simpler stochastic Lyapunov criterion than Proposition 4.2.
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Proposition 4.5. The time-inhomogeneous independent jump linear system (G, P, p(0)) is exponentially

mean square stable if and only if there exist η, ρ, ν > 0 and a function X : N0 → S+
n such that

ηI ≤ X(k) ≤ ρI (4.8a)
N∑
j=1

pj(k)AT(j)X(k + 1)A(j)−X(k) ≤ −νI. (4.8b)

for all k ∈ N0.

Proof. The proof is provided in Appendix A.

If X satisfies (4.8) then V (k, y) = yTX(k)y where k ∈ N0 and y ∈ Rn is a stochastic Lyapunov function

for the independent jump linear system (G, P, p(0)) and satisfies

η‖y‖2 ≤ V (k, y) ≤ ρ‖y‖2

E [V (k + 1, x(k + 1))− V (k, x(k)) | x(k) = y] ≤ −ν‖y‖2

for all k ∈ N0 and y ∈ Rn.

4.3.2 Time-homogeneous sequence

If θ is an independent sequence of random variables and time-homogeneous, then the stochastic Lyapunov

criterion in (4.8) reduces to solving a single LMI with a single matrix variable.

Proposition 4.6 (Cor. 1 of [11]). The time-homogeneous independent jump linear system (G, P, p(0)) is

exponentially mean square stable if and only if there exists X ∈ S+
n such that

N∑
j=1

pjA
T(j)XA(j)−X < 0.

(The time dependence of pj(k) has been omitted since P is constant.)

Remark 4.7. Proposition 4.6 requires solving a linear matrix inequality with n(n+ 1)/2 unknowns (since X

is symmetric). Proposition 4.3, on the other hand, requires solving a set of linear matrix inequalities with

Nn(n+ 1)/2 unknowns.
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4.4 Switched Markov Jump Linear Systems

When addressing time-inhomogeneous Markov jump linear systems where the sequence of transition proba-

bility matrices is not known a priori, the definition of stability must be modified so that it applies uniformly

over all possible sequences of transition probability matrices.

Definition 4.8. The switched Markov jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially mean

square stable if there exist c ≥ 1 and 0 ≤ λ < 1 such that

E
[
ΦT(k, j)Φ(k, j) | θ(j) = i

]
≤ cλk−jI (4.9)

for all i ∈ N , all k, j ∈ N0 such that k ≥ j ≥ 0, and all ψ ∈ Ψ.

Uniformity in Definition 4.8 refers to the uniform decay rate for all ψ ∈ Ψ. Thus, uniform exponential

mean square stability ensures that each individual Markov jump linear system in the family (G,Π,Ψ, p(0))

is exponentially mean square stable, and all members share a common uniform decay rate.

Remark 4.9. Consider the time-homogeneous Markov jump linear systems (G,Π ◦ ψs, p(0)) where ψs ≡ s,

s ∈ J are constant sequences. Stability of each time-homogeneous subsystem is not sufficient for uniform

stability of the switched Markov jump linear system. Consider the following example inspired by [40, p. 19].

A(1) =

0.999 −0.04

0 0.999

 , A(2) =

0.999 0

0.005 0.999

 , A(3) =

0.999 0

0.04 0.999

 , Ψ = J∞,

Π(1) =


1/4 2/7 13/28

1/4 2/7 13/28

1/4 2/7 13/28

 , Π(2) =


1/2 2/7 3/14

1/2 2/7 3/14

1/2 2/7 3/14

 , p(0) =

[
1/4 2/7 13/28

]
.

Since each row of Π(s), s = 1, 2 is identical, each ψ ∈ Ψ gives rise to an independent sequence θ of random

variables. Thus

E [x(k) | x(0) = x0] = E [A(θ(k − 1))A(θ(k − 2)) · · ·A(θ(0))]x0

= E [A(θ(k − 1))] E [A(θ(k − 2))] · · ·E [A(θ(0))]x0

= E [A(θ(k − 1))] E [x(k − 1) | x(0) = x0]
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Figure 4.1: The unstable trajectory of E[x(k) | x(0)] with x(0) = [−1 0]T and a particular switching sequence
ψ. The smaller points indicate that ψ(k) = 1, while the larger points indicate that ψ(k) = 2.

where

E [A(θ(k))] =



0.999 −0.01

0.02 0.999

 : ψ(k) = 1 or k = 0

0.999 −0.02

0.01 0.999

 : ψ(k) = 2

.

Note that each time-homogeneous subsystem (G,Π ◦ ψs, p(0)), s = 1, 2 is exponentially mean square stable

by the condition in Proposition 4.6. Furthermore, A(i) is Schur for i = 1, 2, 3. Even so, Fig. 4.1 shows that a

particular switching sequence can generate an unstable trajectory so that the switched Markov jump linear

system (G,Π,Ψ, p(0)) is not uniformly stable. The switching sequence ψ in Fig. 4.1 is such that ψ(k) = 1

when E [x(k)] is in the first or third quadrant, and ψ(k) = 2 when E [x(k)] is in the second or fourth

quadrant. Note that ‖E[x(k)]‖ ≤ E[‖x(k)‖] ≤
√
E[‖x(k)‖2] so that ‖E[x(k)]‖ → ∞ in Fig. 4.1 implies

E[‖x(k)‖2]→∞ so that the Markov jump linear system shown in Fig. 4.1 is not exponentially mean square

stable.

The goal in this section is to establish a necessary and sufficient condition for uniform stability that is

more tractable than an infinite set of LMIs. It is well-known that any stable discrete-time linear time-varying

system admits a time-varying quadratic Lyapunov function; it is less well-known that the usual construction

(e.g., see [54, Thm. 23.3]) can be modified so that at each time instant, the Lyapunov function depends

on only a finite number of the past system parameter matrices [38, Lem. 4]. Inspired by this fact, the

following lemma constructs a stochastic Lyapunov function for a stable time-inhomogeneous Markov jump

linear system that depends on only a finite number of the future transition probability matrices.
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Lemma 4.10. Suppose system (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable with stability

constant c and decay rate λ in Definition 4.8. Let M = max(
⌈

log(1/c)
log(λ) − 2

⌉
, 0) so that cλM+2 < 1. Then for

each ψ ∈ Ψ

Yψ(i, k) :=

k+M+1∑
j=k

E
[
ΦT(j, k)Φ(j, k) | θ(k) = i

]
(4.10)

satisfies

ηI ≤ Yψ(i, k) ≤ ρI (4.11a)

AT(i)Ỹψ(i, k + 1)A(i)− Yψ(i, k) ≤ −νI. (4.11b)

for all i ∈ N and all k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1), η = 1, ρ = c/(1− λ), and

ν = 1− cλM+2.

Proof. By (4.9) and (4.10)

I ≤ Yψ(i, k) ≤ c
∞∑
j=k

λj−kI =
c

1− λI. (4.12)

so η = 1 and ρ = c/(1− λ). For convenience, define Γ(j, k) = ΦT(j, k)Φ(j, k). Then

AT(i)Ỹψ(i, k + 1)A(i) = AT(i)

N∑
l=1

πil(ψ(k + 1))

k+M+2∑
j=k+1

E [Γ(j, k + 1) | θ(k + 1) = l]A(i)

=

k+M+2∑
j=k+1

E
[
AT(θ(k))Γ(j, k + 1)A(θ(k)) | θ(k) = i

]
(4.13)

=

k+M+2∑
j=k+1

E [Γ(j, k) | θ(k) = i]

= Yψ(i, k)− I + E [Γ(k +M + 2, k) | θ(k) = i] (4.14)

where (4.13) follows by interchanging the order of summation and recognizing an iterated expectation.

Equations (4.9) and (4.14) show (4.11b) with ν = 1− cλM+2 > 0 by the hypothesis on M .

Remark 4.11. Note that
∑k+M+1
j=k ΦT(j, k)Φ(j, k) from (4.10) is a function of the random variables (θ(k), θ(k+

1), . . . , θ(k +M)). The joint probability distribution

P {θ(k + 1) = i1, . . . , θ(k +M) = iM | θ(k) = i0} =

M∏
l=1

P {θ(k + l) = il | θ(k + l − 1) = il−1}
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=

M∏
l=1

πil−1il(ψ(k + l))

is required to compute the expectation in the definition of Yψ(i, k) in Lemma 4.10. Since the joint probability

distribution is determined by the conditional value of θ(k) and the value of ψM (k) = (ψ(k+1), . . . , ψ(k+M)),

Yψ(i, k) may be computed with knowledge of only i and ψM (k). Since N and J are finite sets, ∪ψ∈Ψ ImYψ

is a finite set of matrices with no more than NJM elements. Fix ψ ∈ Ψ arbitrarily. For i ∈ N , k ∈ N0, and

y ∈ Rn, define

Vψ(i, k, y) := yTYψ(i, k)y. (4.15)

By (4.11), Vψ is a quadratic stochastic Lyapunov function for system (G,Π◦ψ, p(0)). Thus, uniform stability

of the family (G,Π,Ψ, p(0)) guarantees the existence of a finite set of matrices that may be used to construct

a time-varying quadratic stochastic Lyapunov function for any member of the family.

The next theorem, inspired by [38, Thm. 9], provides a necessary and sufficient condition, expressed as

a set of finite-dimensional LMIs, for uniform exponential mean square stability of a switched Markov jump

linear system.

Theorem 4.12. The switched Markov jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially mean

square stable if and only if there exist M ∈ N0 and a function X : N ×ΨM → S+
n such that

AT(i)

N∑
j=1

πij(r1)X(j, r2, . . . , rM+1)A(i)−X(i, r1, . . . , rM ) < 0 (4.16)

for any (r1, . . . , rM+1) ∈ ΨM+1 and i ∈ N .

Proof. Suppose there exist M and X such that (4.16) holds. Let ψ ∈ Ψ be arbitrary. Define Yψ(i, k) :=

X(i, ψM (k)). Since N ×ΨM+1 ⊂ N ×JM+1 is a finite set, inequality (4.16) holds uniformly, so there exist

η, ρ, ν > 0 such that

ηI ≤ Yψ(i, k) ≤ ρI

AT(i)Ỹψ(i, k + 1)A(i)− Yψ(i, k) ≤ −νI

for all i ∈ N , k ∈ N0, and ψ ∈ Ψ. Thus, yTYψ(i, k)y is a stochastic Lyapunov function for the single

system (G,Π ◦ ψ, p(0)) and guarantees exponential mean square stability by Proposition 4.2 with c = ρ/η

and λ = 1−ν/ρ. Since ψ was arbitrary and the same c and λ work for any ψ ∈ Ψ, (G,Π,Ψ, p(0)) is uniformly
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exponentially mean square stable.

Conversely, assume that (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable with stability con-

stant c and decay rate λ. Fix M ∈ N0 such that cλM+2 < 1. Let (i, r1, . . . , rM+1) ∈ N ×ΨM+1 be arbitrary.

By definition of ΨM+1, there exist ψ ∈ Ψ and t ∈ N0 such that ψM+1(t) = (r1, . . . , rM+1). Construct

Yψ as in Lemma 4.10 and recall from Remark 4.11 that Yψ(i, t) depends only on (i, ψM (t)). Thus, define

X(i, r1, . . . , rM ) := Yψ(i, t) and define X(i, r2, . . . , rM+1) := Yψ(i, t + 1). One recovers every inequality

in (4.16) from (4.11).

Remark 4.13. For any M ∈ N0, ImX in Theorem 4.12 is finite. Thus, for each M ∈ N0, the number of LMIs

specified in (4.16) is finite. The stability of a switched Markov jump linear system may be investigated using

an iterative algorithm. First, set M = 0 and check if the LMIs in (4.16) are feasible. If not, increment M

and repeat. If the switched Markov jump linear system is stable, Theorem 4.12 says that this algorithm will

stop in a finite amount of time with some finite value of M . A conservative estimate for M is based on the

uniform decay rate of the switched Markov jump linear system (see Lemma 4.10).

Remark 4.14. Theorem 4.12 provides a practical approach for investigating the stability of a single time-

inhomogeneous Markov jump linear system with known transition probability matrices that vary in a finite

set (let Ψ be the set containing a single sequence).

Remark 4.15. Consider the case when J = 1 and Ψ = {(1, 1, . . . )}. The switched Markov jump linear system

(G,Π,Ψ, p(0)) reduces to a single time-homogeneous Markov jump linear system (G,Π ◦ ψ1, p(0)) where

ψ1 ≡ 1. For any M , the set ΨM contains only a single element (1, . . . , 1), and the set N ×ΨM contains only

N elements. For i ∈ N , define Z(i) := X(i, 1, . . . , 1) where X is as in Theorem 4.12. Then (4.16) reduces to

AT(i)

N∑
j=1

πij(1)Z(j)A(i)− Z(i) < 0

which is the well-known stability criterion (see [32, Thm. 2.1] or [11, Thm. 2]) for time-homogeneous Markov

jump linear systems; this well-known result is a corollary of Theorem 4.12.

Remark 4.16. If for some M ∈ N0 and some function X, (4.16) is satisfied, then for any K > M there

exists Z : N × ΨK → S+
n such that (4.16) is satisfied with Z in place of X and K in place of M . For each

(i, r1, . . . , rK) ∈ N ×ΨK , define Z(i, r1, . . . , rK) := X(i, r1, . . . , rM ).

If Ψ is generated via a directed graph (see Section 2.6), then—for purposes of stability—one need only

check that (4.16) holds on the strongly connected components of the directed graph. Suppose that Ψ is

generated via a directed graph (V,E), and decompose the directed graph (V,E) into n disjoint strongly

connected components (V1, E1), . . . , (Vn, En) (see Section 2.6). For each strongly connected component
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1 2 1 2

Figure 4.2: The directed graph on the left contains two strongly connected components, shown on the right.

(Vl, El), define Ψ(Vl, El) to be the set of sequences generated by (Vl, El) (see Section 2.6). Note that

Ψ(V1, E1)∪· · ·∪Ψ(Vn, En) ⊂ Ψ. For example, suppose Ψ is generated by the directed graph with two strongly

connected components shown in Fig. 4.2. In this case, Ψ(V1, E1) = {(1, 1, . . . )}, Ψ(V2, E2) = {(2, 2, . . . )},

and Ψ(V1, E1) ∪Ψ(V2, E2) ( Ψ since, for example, (1, 1, 1, 2, 2, . . . ) ∈ Ψ.

Theorem 4.17. Suppose that Ψ is generated by the directed graph (V,E) with disjoint strongly connected

components (V1, E1), . . . , (Vn, En), and for l = 1, 2, . . . , n, let Ψ(Vl, El) be the set of sequences generated by

(Vl, El). Let Ψ̂ = Ψ(V1, E1) ∪ · · · ∪ Ψ(Vn, En). The switched Markov jump linear system (G,Π,Ψ, p(0)) is

uniformly exponentially mean square stable if and only if there exist M ∈ N0 and a function X : N × Ψ̂M →

S+
n such that

AT(i)

N∑
j=1

πij(r1)X(j, r2, . . . , rM+1)A(i)−X(i, r1, . . . , rM ) < 0 (4.17)

for any (r1, . . . , rM+1) ∈ Ψ̂M+1 and i ∈ N .

Proof. Since Ψ̂ ⊂ Ψ, necessity of (4.17) follows from Theorem 4.12. The key to proving sufficiency of (4.17)

stems from the fact that the condensation of (V,E) (see Section 2.6) contains no directed cycles, so the tail

of any sequence in Ψ must lie in one of the strongly connected components. Indeed, suppose that there exist

M and X such that (4.17) holds. Then proceeding as in the proof of Theorem 4.12, there exists some c ≥ 1

and 0 ≤ λ < 1 such that (G,Π ◦ψ, p(0)) with ψ ∈ Ψ̂ is exponentially mean square stable where c and λ hold

uniformly for ψ ∈ Ψ̂. For simplicity of the argument, n = 2 is considered, but the general result is analogous.

Let ψ ∈ Ψ \ Ψ̂ be arbitrary. Suppose that


ψ(k) ∈ V1 : 0 ≤ k ≤ k0

ψ(k) ∈ V2 : k0 + 1 ≤ k <∞
.

Let j, k ∈ N0 such that 0 ≤ j ≤ k0 ≤ k (the cases where k0 < j or k0 > k are trivial). Then

E
[
ΦT(k, j)Φ(k, j) | θ(j)

]
= E

[
E
[
ΦT(k, j)Φ(k, j) | θ(j), . . . , θ(k0)

]
| θ(j)

]
= E

[
ΦT(k0, j)E

[
ΦT(k, k0)Φ(k, k0) | θ(k0)

]
Φ(k0, j) | θ(j)

]
≤ cλk−k0E

[
ΦT(k0, j)Φ(k0, j) | θ(j)

]
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1 2

Figure 4.3: Directed graph that determines Ψ in the example of Section 4.4.1.

≤ cλk−k0cλk0−jI

= c2λk−jI

Thus, (G,Π ◦ ψ, p(0)) is exponentially mean square stable with stability constant c2 and decay rate λ. In

general, the switched Markov jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially mean square

stable with stability constant cn and decay rate λ.

4.4.1 Example

Consider the switched Markov jump linear system (G,Π,Ψ, p(0)) with

A(1) =


0.08 0.15 0.30

0.20 0.60 0.10

0.50 0.20 0.40

 , A(2) =


0.30 0.60 0.50

0.30 0.70 0.20

0.90 0.70 0.10

 ,

Π(1) =

0.90 0.10

0.80 0.20

 , Π(2) =

0.60 0.40

0.75 0.25

 , p(0) =

[
0.4 0.6

]
.

Let Ψ be the set of sequences that could arise from traversing the directed graph in Fig. 4.3. Note that

matrix A(2) is not Schur and that Π(2) places a larger conditional probability on θ(k) = 2 than Π(1). Solving

the convex feasibility problem posed in Proposition 4.3, the time-homogeneous Markov jump linear system

(G,Π ◦ψ2, p(0)) where ψ2 ≡ 2 is not exponentially mean square stable, while the time-homogeneous Markov

jump linear system (G,Π ◦ ψ1, p(0)) where ψ1 ≡ 1 is exponentially mean square stable. Note from Fig. 4.3

that ψ1 ∈ Ψ while ψ2 6∈ Ψ. The LMIs in Theorem 4.12 are feasible with M = 1 so (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable. If ψ2 ∈ Ψ then (G,Π,Ψ, p(0)) cannot be uniformly exponentially mean

square stable (see the discussion after Definition 4.8). Thus, uniform stability may sometimes be gained by

imposing constraints on the set Ψ.

4.5 Switched Independent Jump Linear Systems

If θ is an independent sequence of random variables for all ψ ∈ Ψ, a result similar to Theorem 4.12 can be

obtained that is less computationally complex. The derivation closely mirrors that of Section 4.4, so the
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discourse in this section is brief. Under the independence hypothesis, a simpler characterization of uniform

exponential mean square stability is useful.

Lemma 4.18. The switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially mean

square stable if and only if there exist c ≥ 1 and 0 ≤ λ < 1 such that

E
[
ΦT(k, j)Φ(k, j)

]
≤ cλk−jI (4.18)

for all k, j ∈ N0 such that k ≥ j ≥ 0, and all ψ ∈ Ψ.

Proof. See Lemma 4.4.

Lemma 4.19. Suppose the switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponen-

tially mean square stable and M ∈ N0 is such that cλM+1 < 1 where c, λ are as in (4.18). Then for each

ψ ∈ Ψ

Yψ(k) :=

k+M∑
j=k

E
[
ΦT(j, k)Φ(j, k)

]
(4.19)

satisfies

ηI ≤ Yψ(k) ≤ ρI (4.20a)
N∑
j=1

πj(ψ(k))AT(j)Yψ(k + 1)A(j)− Yψ(k) ≤ −νI. (4.20b)

for all k ∈ N where η = 1, ρ = c/(1− λ), and ν = 1− cλM+1.

Proof. The inequalities in (4.20a) follow directly from (4.19). Proceeding as in the proof of Proposition 4.5,

N∑
j=1

πj(ψ(k))AT(j)Yψ(k + 1)A(j)− Yψ(k) = −I + E
[
ΦT(k +M + 1, k)Φ(k +M + 1, k)

]
≤ −(1− cλM+1)I

By hypothesis, ν = 1− cλM+1 > 0.

Remark 4.20. Note that
∑k+M
j=k ΦT(j, k)Φ(j, k) from (4.10) is a function of (θ(k), . . . , θ(k + M − 1)). One

may easily compute Yψ(k) in (4.10) given the joint probability distribution

P {θ(k), . . . , θ(k +M − 1)} = P {θ(k)} · · ·P {θ(k +M − 1)}
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For k ≥ 1, P {θ(k)} is an element of the matrix Π(ψ(k)) so Yψ(k) may be computed with knowledge of only

(ψ(k), . . . , ψ(k + M − 1)). Since J is a finite set, ∪ψ∈Ψ ImYψ is a finite set of matrices with no more than

JM elements. Fix ψ ∈ Ψ arbitrarily. For k ∈ N0 and y ∈ Rn, define

Vψ(k, y) := yTYψ(k)y.

By (4.20), Vψ is a quadratic stochastic Lyapunov function for system (G,Π◦ψ, p(0)). Thus, uniform stability

of the family (G,Π,Ψ, p(0)) guarantees the existence of a finite set of matrices that may be used to construct

a time-varying quadratic stochastic Lyapunov function for any member of the family.

Theorem 4.21. The switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially

mean square stable if and only if there exist M ∈ N0 and a function X : ΨM → S+
n such that

N∑
j=1

πj(r0)AT(j)X(r1, . . . , rM )A(j)−X(r0, . . . , rM−1) < 0 (4.21)

for any (r0, . . . , rM ) ∈ ΨM+1.

Proof. Suppose there exist M and X such that (4.21) holds. Let ψ ∈ Ψ be arbitrary. Define Yψ(k) :=

X(ψ(k), ψ(k+ 1), . . . , ψ(k+M − 1)). Since ΨM+1 ⊂ JM+1 is a finite set, inequality (4.21) holds uniformly,

so there exist η, ρ, ν > 0 such that

ηI ≤ Yψ(k) ≤ ρI
N∑
j=1

πj(ψ(k))AT(j)Yψ(k + 1)A(j)− Yψ(k) ≤ −νI

for all k ∈ N0 and ψ ∈ Ψ. Thus, yTYψ(k)y is a stochastic Lyapunov function for the single system (G,Π ◦

ψ, p(0)) but is only defined for k ∈ N. The first half of the proof of Proposition 4.5 shows that

E
[
ΦT(k, j)Φ(k, j)

]
≤ (ρ/η)λk−jI (4.22)

for k ≥ j ≥ 1 where λ = 1− ν/ρ. When j = 0,

E
[
ΦT(k, 0)Φ(k, 0)

]
= E

[
AT(θ(0))E

[
ΦT(k, 1)Φ(k, 1)

]
A(θ(0))

]
(4.23)

≤ (ρ/η)λk−1E
[
AT(θ(0))A(θ(0))

]
(4.24)

≤
(
ρλ−1 max

i∈N
λmax(AT(i)A(i))/η

)
λkI (4.25)
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where (4.23) follows from the independence hypothesis on θ, and (4.24) follows from (4.22). Let c be the

maximum of ρ/η and the expression in parentheses in (4.25) so that the single system (G,Π ◦ ψ, p(0)) is

exponentially mean square stable with this c and λ. Since ψ was arbitrary and the same c and λ work for

any ψ ∈ Ψ, (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable.

Conversely, assume that (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable. Let M ∈ N0 be

such that cλM+1 < 1 where c and λ are as in (4.18). Let (r0, r1, . . . , rM ) ∈ ΨM+1 be arbitrary. By definition

of ΨM+1, there exist ψ ∈ Ψ and t ∈ N0 such that (ψ(t), ψ(t+1), . . . , ψ(t+M)) = (r0, r1, . . . , rM ). Construct

Yψ as in (4.19) and recall from Remark 4.20 that Yψ(t) depends only on (ψ(t), . . . , ψ(t+M−1)). Thus, define

X(r0, . . . , rM−1) := Yψ(t) and define X(r1, . . . , rM ) := Yψ(t + 1). One recovers every inequality in (4.21)

from (4.20).

Remark 4.22. For each M , Theorem 4.21 requires solving a set of LMIs with no more than JMn(n + 1)/2

unknowns (some M -length sequences of elements in J may not be in ΨM so there are at most JM unknown

symmetric matrices). In contrast, for each M , Theorem 4.12 requires solving a set of LMIs with no more

than NJMn(n+ 1)/2 unknowns.



Chapter 5

Disturbance Attenuation

5.1 Introduction

This chapter begins by reviewing disturbance attenuation concepts and results for Markov jump linear

systems and independent jump linear systems. To motivate the need for formal disturbance attenuation

results for switched Markov jump linear systems, an example is given in Remark 5.12 of Section 5.4 where a

single switch of the Markov chain transition probabilities causes a system to lose the contractiveness property.

The uniform contractiveness (uniform over all possible sequences of Markov chain transition probabilities)

of a switched Markov jump linear system is examined in Section 5.4, and an LMI condition equivalent to

uniform contractiveness is obtained. When the Markov chain is an independent sequence of random variables,

a computationally simpler LMI condition is shown to be equivalent to uniform contractiveness in Section 5.5.

5.2 Markov Jump Linear Systems

At least two notions of disturbance attenuation for Markov jump linear systems have been examined in the

literature [37,59]. Mean square attenuation best suits the approach taken in this dissertation.

Definition 5.1. The Markov jump linear system (G, P, p(0)) is mean square strictly contractive if there

exists γ ∈ (0, 1) such that whenever x(0) = 0

‖z‖2,e ≤ γ ‖w‖2,e (5.1)

for all w ∈ `2e.

40
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Remark 5.2. If (G, P, p(0)) is not mean square strictly contractive, there may still exist some strict bound

0 < γ0 < ∞ such that ‖z‖2,e < γ0 ‖w‖2,e uniformly for all w ∈ `2e. Stated another way, there exist

0 < γ0 <∞ and γ ∈ (0, 1) such that ‖z‖2,e ≤ γγ0 ‖w‖2,e for all w ∈ `2e, which is equivalent to ‖(1/γ0)z‖2,e ≤

γ ‖w‖2,e for all w ∈ `2e. Hence, it suffices to consider the mean square strict contractiveness of (G0, P, p(0))

where G0 = {(A(i), B(i), (1/γ0)C(i), (1/γ0)D(i)) : i ∈ N}. Taking the infimum of the set {γ0 : ‖z‖2,e <

γ0 ‖w‖2,e , ∀w ∈ `2e} produces the `2e-induced norm of system (G, P, p(0)) viewed as a linear operator on `2e

(see Definition 2.9). The `2e-induced norm of system (G, P, p(0)) is denoted by ‖(G, P, p(0))‖∞.

5.2.1 Time-inhomogeneous Markov chain

Mean square strict contractiveness of the time-inhomogeneous Markov jump linear system (G, P, p(0)) with

known transition probabilities may be characterized by a stochastic Kalman-Yakubovich-Popov (KYP) cri-

terion.

Proposition 5.3 (Thm. 1 of [1]). Assume (G, P, p(0)) is weakly controllable and pi(k) > 0 for all i ∈ N and

k ∈ N0. The time-inhomogeneous Markov jump linear system (G, P, p(0)) is exponentially mean square stable

and mean square strictly contractive if and only if there exist η, ρ, ν > 0 and a function X : N × N0 → S+
n

such that

ηI ≤ X(i, k) ≤ ρI (5.2a)A(i) B(i)

C(i) D(i)


T X̃(i, k + 1) 0

0 I


A(i) B(i)

C(i) D(i)

−
X(i, k) 0

0 I

 ≤ −νI (5.2b)

for all i ∈ N and all k ∈ N0 where X̃(i, k + 1) =
∑N
j=1 pij(k + 1)X(j, k + 1).

The matrix inequalities in (5.2) are a stochastic version of the KYP lemma (e.g., see [14, Cor. 12]) for

discrete-time linear time-varying systems. When (G, P, p(0)) is contractive, the solutions to the inequalities

in (5.2) are obtained by solving associated Riccati difference equations [1]. Conversely, if X satisfies (5.2)

then V (i, k, y) = yTX(i, k)y where i ∈ N , k ∈ N0, y ∈ Rn is a stochastic storage function (see [65]) for

(G, P, p(0)) and satisfies

η‖y‖2 ≤ V (i, k, y) ≤ ρ‖y‖2

E
[
V (θ(k + 1), k + 1, x(k + 1))− V (θ(k), k, x(k)) + ‖z(k)‖2

]
≤ γ2E

[
‖w(k)‖2

]
(5.3)

for all i ∈ N , k ∈ N0, y ∈ Rn, and w ∈ `2e. That (5.3) follows from (5.2b) can be seen by multiplying
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inequality (5.2b) on the left by [xT(k) wT(k)] and on the right by [xT(k) wT(k)]T and applying the expec-

tation operator as in [1]. The stochastic storage function V may be thought of as a generalized measure

of the internally stored energy in the system. Inequality (5.3) is sometimes called the dissipation inequality

(see [65]) since the expected increase in stored energy is not greater than the expected energy supply rate

E
[
γ2‖w(k)‖2 − ‖z(k)‖2

]
[66, Sec. 11, Rmk. 9].

Note that a hypothesis in the statement of Proposition 5.3 can be expressed as a requirement on the

sequence P of stochastic matrices and the initial distribution p(0).

Proposition 5.4. For all i ∈ N and all k ∈ N0, pi(k) > 0 if and only if for all k ∈ N, each column of P (k)

is nonzero, and pi(0) > 0 for all i ∈ N .

Proof. The result can be shown using induction and the identity

P {θ(k) = i} =

N∑
l=1

pli(k)P {θ(k − 1) = l} .

5.2.2 Time-homogeneous Markov chain

If the Markov jump linear system (G, P, p(0)) is time-homogeneous, the stochastic KYP criterion in (5.2)

may be simplified.

Proposition 5.5 (Thm. 2 of [59]). Assume (G, P, p(0)) is weakly controllable. The time-homogeneous

Markov jump linear system (G, P, p(0)) is exponentially mean square stable and mean square strictly contrac-

tive if and only if there exist a function X : N → S+
n such that

A(i) B(i)

C(i) D(i)


T X̃(i) 0

0 I


A(i) B(i)

C(i) D(i)

−
X(i) 0

0 I

 < 0 (5.4)

for all i ∈ N where X̃(i) =
∑N
j=1 pijX(j). (The time dependence of pij(k) has been omitted since P is

constant.)

Remark 5.6. The weak controllability hypothesis of Proposition 5.5, as stated in [59], may be replaced by a

weaker hypothesis on the initial distribution p(0) and the transition probability matrix P (see Remark 5.32

of Section 5.4).
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5.3 Independent Jump Linear Systems

If θ is an independent sequence of random variables, Propositions 5.3 and 5.5 may still be used to investigate

contractiveness of (G, P, p(0)) since θ is trivially a Markov chain. However, different results that are more

computationally efficient are also available.

5.3.1 Time-inhomogeneous sequence

If θ is an independent sequence and time-inhomogeneous, mean square contractiveness of (G, P, p(0)) may

be characterized by a simpler stochastic KYP criterion than Proposition 5.3.

Proposition 5.7. The time-inhomogeneous independent jump linear system (G, P, p(0)) is exponentially

mean square stable and mean square strictly contractive if and only if there exist η, ρ, ν > 0 and a function

X : N0 7→ S+
n such that

ηI ≤ X(k) ≤ ρI (5.5a)

N∑
j=1

pj(k)

A(j) B(j)

C(j) D(j)


T X(k + 1) 0

0 I


A(j) B(j)

C(j) D(j)

−
X(k) 0

0 I

 ≤ −νI (5.5b)

for all k ∈ N0.

Proof. The proof Proposition 5.7 may be found in Appendix A.

If X satisfies (5.5) then V (k, y) = yTX(k)y where k ∈ N0 and y ∈ Rn is a stochastic storage function for

(G, P, p(0)) and satisfies

η‖y‖2 ≤ V (k, y) ≤ ρ‖y‖2

E
[
V (k + 1, x(k + 1))− V (k, x(k)) + ‖z(k)‖2

]
≤ γ2E

[
‖w(k)‖2

]
for all k ∈ N0, y ∈ Rn, and w ∈ `2e.

5.3.2 Time-homogeneous sequence

If θ is an independent sequence of random variables and time-homogeneous, then the stochastic KYP criterion

in (5.5) reduces to solving a single LMI with a single matrix variable.

Proposition 5.8 (Thm. 4 of [61]). Suppose that the time-homogeneous independent jump linear system

(G, P, p(0)) is weakly controllable. The time-homogeneous independent jump linear system (G, P, p(0)) is
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exponentially mean square stable and mean square strictly contractive if and only if there exists X ∈ S+
n such

that

N∑
j=1

pj

A(j) B(j)

C(j) D(j)


T X 0

0 I


A(j) B(j)

C(j) D(j)

−
X 0

0 I

 < 0

(The time-dependence of pj(k) has been omitted since P is constant.)

Remark 5.9. The weak controllability hypothesis of Proposition 5.8, as stated in [61], is shown to be unnec-

essary in Remark 5.49 of Section 5.5.

5.4 Switched Markov Jump Linear Systems

Disturbance attenuation for a time-inhomogeneous Markov jump linear system where the sequence of tran-

sition probability matrices is not known a priori is now addressed. Accordingly, the definition of disturbance

attenuation must be modified so that it applies uniformly over all possible sequences of transition probability

matrices.

Definition 5.10. The switched Markov jump linear system (G,Π,Ψ, p(0)) is uniformly mean square strictly

contractive if there exists γ ∈ (0, 1) such that whenever x(0) = 0

‖z‖2,e ≤ γ ‖w‖2,e (5.6)

for all w ∈ `2e and all ψ ∈ Ψ.

Uniformity in Definition 5.10 refers to the uniform bound, γ, holding for all ψ ∈ Ψ. Thus, uniform

mean square strict contractiveness ensures that each individual Markov jump linear system in the family

(G,Π,Ψ, p(0)) is mean square strictly contractive, and all members share a common bound, γ.

Remark 5.11. Define ‖(G,Π,Ψ, p(0))‖∞ = inf{γ0 ∈ (0,∞) : ‖z‖2,e < γ0 ‖w‖2,e , ∀w ∈ `2e, ∀ψ ∈ Ψ}. As in

Remark 5.2, if (G,Π,Ψ, p(0)) is not uniformly contractive, the quantity ‖(G,Π,Ψ, p(0))‖∞ may still be finite.

Note that ‖(G,Π,Ψ, p(0))‖∞ is uniform over all ψ ∈ Ψ.

Remark 5.12. Consider the time-homogeneous systems (G,Π ◦ ψs, p(0)) where ψs ≡ s, s ∈ J are constant

sequences. Contractiveness of each time-homogeneous subsystem is not sufficient for uniform contractiveness
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of the switched Markov jump linear system. Consider the scalar switched Markov jump linear system

A(1) = 0.3, B(1) = 1.5, C(1) = 0.2, D(1) = 0,

A(2) = 0.4, B(2) = 0.5, C(2) = 0.85, D(2) = 0,

Π(1) =

0.8 0.2

0.8 0.2

 , Π(2) =

0.3 0.7

0.3 0.7

 , p(0) =

[
0.8 0.2

]
, Ψ = J∞

Note that each time-homogeneous subsystem (G,Π ◦ ψs, p(0)), s = 1, 2 is exponentially mean square stable

and mean square strictly contractive by the condition in Proposition 5.8. Furthermore, the linear time-

invariant discrete-time system with parameter matrices (A(i), B(i), C(i), D(i)) is contractive for i = 1, 2.

Even so, a particular switching sequence shows that the switched Markov jump linear system is not uniformly

contractive. Each row of Π(s), s = 1, 2 is identical so each ψ ∈ Ψ gives rise to an independent sequence θ of

random variables. Fix τ ∈ N arbitrarily and consider the input and switching sequences

w(k) =


1 : k = τ

0 : k 6= τ

, ψ(k) =


1 : 1 ≤ k ≤ τ

2 : k ≥ τ + 1

.

Let x(0) = 0. Then

z(k) =


0 : 0 ≤ k ≤ τ

C(θ(k))Φ(k, τ + 1)B(θ(τ)) : k ≥ τ + 1

and

∞∑
k=0

E
[
zT(k)z(k)

]
=

∞∑
k=τ+1

E
[
B2(θ(τ))C2(θ(k))Φ2(k, τ + 1)

]
= E

[
B2(θ(τ))

](
E
[
C2(θ(τ + 1))

]
+

∞∑
k=τ+2

E
[
C2(θ(k))

]
E
[
A2(θ(k − 1))

]
· · ·E

[
A2(θ(τ + 1))

])
(5.7)

where (5.7) follows since θ(τ), θ(τ + 1), . . . , θ(k) are independent. Now

E
[
A2(θ(k))

]
=


(0.8)(0.3)2 + (0.2)(0.4)2 : 0 ≤ k ≤ τ

(0.3)(0.3)2 + (0.7)(0.4)2 : k ≥ τ + 1

=


0.104 : 0 ≤ k ≤ τ

0.139 : k ≥ τ + 1

(5.8a)
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E
[
B2(θ(k))

]
=


(0.8)(1.5)2 + (0.2)(0.5)2 : 0 ≤ k ≤ τ

(0.3)(1.5)2 + (0.7)(0.5)2 : k ≥ τ + 1

=


1.85 : 0 ≤ k ≤ τ

0.85 : k ≥ τ + 1

(5.8b)

E
[
C2(θ(k))

]
=


(0.8)(0.2)2 + (0.2)(0.85)2 : 0 ≤ k ≤ τ

(0.3)(0.2)2 + (0.7)(0.85)2 : k ≥ τ + 1

=


0.1765 : 0 ≤ k ≤ τ

0.51775 : k ≥ τ + 1

(5.8c)

By (5.7) and (5.8)

∞∑
k=0

E
[
zT(k)z(k)

]
= (1.85)(0.51775)

∞∑
l=0

(0.139)l

=
(1.85)(0.51775)

1− (0.139)
> 1 (5.9)

Since ‖w‖2,e = 1, inequality (5.9) shows that the switched Markov jump linear system is not uniformly

contractive. Remarkably, ψ switches only once in this example.

Remark 5.13. Let ψs ≡ s, s ∈ J be the constant switching sequences in Ψ. The example in Remark 5.12

shows that, in general, there can be separation between ‖(G,Π,Ψ, p(0))‖∞ and maxs∈J ‖(G,Π ◦ ψs, p(0))‖∞.

The goal of this section is to establish a KYP-like result for switched Markov jump linear systems in

terms of finite-dimensional LMIs similar to Theorem 4.12. The main result can be found in Theorem 5.29.

The necessity of the LMIs is the difficult part of the proof and hinges on the existence of the matrix-valued

functions in Lemma 5.14. Like Lemma 4.10, at any time instant each matrix-valued function depends only

on a finite number of the future transition probability matrices.

Lemma 5.14. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive then there exist η, ρ, ν > 0

and M ∈ N0 such that for each ψ ∈ Ψ, there exists Yψ : N × N0 → S+
n such that Yψ(i, k) depends only on i

and ψM (k) and satisfies

ηI ≤ Yψ(i, k) ≤ ρI (5.10a)A(i) B(i)

C(i) D(i)


T Ỹψ(i, k + 1) 0

0 I


A(i) B(i)

C(i) D(i)

−
Yψ(i, k) 0

0 I

 ≤ −νI (5.10b)

for all i ∈ N and all k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1).

The construction of the functions Yψ, ψ ∈ Ψ requires the intermediate results contained in this section

up to and including Lemma 5.26, and the proof of Lemma 5.14 follows directly from Lemma 5.27. For the
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moment, suppose that functions Yψ, ψ ∈ Ψ have been found that satisfy Lemma 5.14 and define

Vψ(i, k, y) = yTYψ(i, k)y (5.11)

for i ∈ N , k ∈ N0, and y ∈ Rn. Then V is a quadratic stochastic storage function for system (G,Π ◦ψ, p(0))

that at each time instant depends only on i and ψM (k). Since N and J are finite sets, ∪ψ∈Ψ ImYψ is a

finite set of matrices with no more than NJM elements. Thus, uniform stability and contractiveness of the

switched Markov jump linear system (G,Π,Ψ, p(0)) guarantees the existence of a finite set of matrices that

may be used to construct a time-varying quadratic stochastic storage function for any individual Markov

jump linear system in the family.

Riccati difference equations defined in terms of the following operators play a key role in the construction

of the functions Yψ, ψ ∈ Ψ in Lemma 5.14.

Definition 5.15. Let G be given. For i ∈ N and X ∈ Sn, define

L(i,X) = AT(i)XA(i) + CT(i)C(i)

R(i,X) = BT(i)XA(i) +DT(i)C(i)

W(i,X) = I −BT(i)XB(i)−DT(i)D(i)

M(i,X) =

L(i,X) RT(i,X)

R(i,X) −W(i,X)


For i ∈ N let Xi = {X ∈ Sn :W(i,X) invertible}. For i ∈ N and X ∈ Xi, define

S(i,X) = L(i,X) +RT(i,X)W−1(i,X)R(i,X).

Given a modified set of matrices {(A(i), B(i), Cε(i), Dε(i)) : i ∈ N}, let Lε(i,X), Rε(i,X), Wε(i,X), and

Sε(i,X) be defined as above but with Cε(i) in place of C(i) and Dε(i) in place of D(i).

Lemma 5.16. Let i ∈ N and X,Y ∈ Sn. The following algebraic identity holds

A(i) B(i)

C(i) D(i)


T X 0

0 I


A(i) B(i)

C(i) D(i)

−
Y 0

0 I

 =M(i,X)−

Y 0

0 0

 . (5.12)

Proof. The result can be shown by expanding the left side of (5.12)

Remark 5.17. By Lemma 5.16, inequality (5.10b) may be rewritten in terms of the operators in Defini-
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tion 5.15 as

A(i) B(i)

C(i) D(i)


T Ỹψ(i, k + 1) 0

0 I


A(i) B(i)

C(i) D(i)

−
Yψ(i, k) 0

0 I


=M(i, Ỹψ(i, k + 1))−

Yψ(i, k) 0

0 0

 . (5.13)

By the Schur complement, (5.13) is negative definite if and only if

W(i, Ỹψ(i, k + 1)) > 0 and Yψ(i, k) > S(i, Ỹψ(i, k + 1)). (5.14)

Using the inequalities in (5.14) as a guide, consider the finite-horizon Riccati difference equations defined

by the recursive relation and final condition

Xψ(i, k, T ) = S(i, X̃ψ(i, k + 1, T )) (5.15a)

Xψ(i, T + 1, T ) = 0 (5.15b)

where i ∈ N , T ∈ N0 (the horizon), 0 ≤ k ≤ T , ψ ∈ Ψ, and X̃ψ(i, k + 1, T ) =
∑N
j=1 πij(ψ(k + 1))Xψ(j, k +

1, T ). For a fixed ψ ∈ Ψ and T ∈ N0, the solution Xψ(·, ·, T ) to (5.15) may be computed iteratively

backwards-in-time starting with the final condition. However, one must first verify that the inverse specified

in (5.15a) is well-defined. The algebraic identity and special input in the next lemma aid in this task.

Lemma 5.18. Let k ∈ N0, θ(k) ∈ N , X ∈ Sn, and x(k), z(k), w(k) be as in (3.1). Then

zT(k)z(k)− wT(k)w(k) + xT(k + 1)Xx(k + 1) =

x(k)

w(k)


T

M(θ(k), X)

x(k)

w(k)

 . (5.16)

If X ∈ Xθ(k) and w(k) =W−1(θ(k), X)R(θ(k), X)x(k) then

x(k)

w(k)


T

M(θ(k), X)

x(k)

w(k)

 = xT(k)S(θ(k), X)x(k). (5.17)

Proof. The proof of Lemma 5.18 follows from simple matrix algebra.

Remark 5.19. If W(θ(k), X) > 0, the input specified in Lemma 5.18 arises from maximizing the quadratic

form in (5.16) over w(k) for a fixed x(k) [41, Lem. 2.1].
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The following lemma establishes that the Riccati recursive relation in (5.15a) is well-defined when

(G,Π,Ψ, p(0)) is uniformly mean square strictly contractive.

Lemma 5.20. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (G,Π,Ψ, p(0)) is uniformly mean

square strictly contractive then there exists ν > 0 such that

W(i, X̃ψ(i, k + 1, T )) ≥ νI

for all ψ ∈ Ψ, i ∈ N , T ∈ N0, and 0 ≤ k ≤ T where Xψ is defined by the recursive relation and final

condition in (5.15).

Proof. Let x(0) = 0. Arbitrarily fix ψ ∈ Ψ and T ∈ N0. Let i ∈ N and consider w of the form

w(k) =


0 : k 6= T

χ{θ(T ) = i}y : k = T

(5.18)

where y is an arbitrary vector, and χ{θ(T ) = i} is the indicator function of the set {θ(T ) = i} ⊂ Ω. Note

that E [χ{θ(T ) = i}] = P {θ(T ) = i}. With w defined in (5.18), x(k) = 0 for k ≤ T and z(k) = 0 for

k ≤ T − 1. Definition 5.10 gives

‖z‖22,e − ‖w‖
2
2,e ≤ −ν ‖w‖

2
2,e (5.19)

for any ψ ∈ Ψ and w ∈ `2e where ν = 1− γ2. Then

−ν ‖w‖22,e = −νP {θ(T ) = i} yTy (5.20)

≥
T∑
k=0

E
[
‖z(k)‖2 − ‖w(k)‖2

]
(5.21)

= E
[
zT(T )z(T )− wT(T )w(T ) + xT(T + 1)X̃ψ(θ(T ), T + 1, T )x(T + 1)

]
(5.22)

= E


x(T )

w(T )


T

M(θ(T ), X̃ψ(θ(T ), T + 1, T ))

x(T )

w(T )


 (5.23)

= E
[
−wT(T )W(θ(T ), X̃ψ(θ(T ), T + 1, T ))w(T )

]
(5.24)

= −P {θ(T ) = i} yTW(i, X̃ψ(i, T + 1, T ))y

where (5.20) follows from (5.18); (5.21) follows from (5.19); (5.22) follows since Xψ(i, T + 1, T ) = 0; (5.23)

follows from (5.16); and, (5.24) follows since x(T ) = 0. Since y was an arbitrary vector, W(i, X̃ψ(i, T +
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1, T )) ≥ νI.

Now fix 0 ≤ t ≤ T and assume W(i, X̃ψ(i, k + 1, T )) ≥ νI for t ≤ k ≤ T and i ∈ N . Consider w of the

form

w(k) =



0 : k ≤ t− 2

χ{θ(k) = i}y : k = t− 1

W−1(θ(k), X̃ψ(θ(k), k + 1, T ))R(θ(k), X̃ψ(θ(k), k + 1, T ))x(k) : t ≤ k ≤ T

0 : k ≥ T + 1

. (5.25)

Then x(k) = 0 for k ≤ t − 1 and z(k) = 0 for k ≤ t − 2. Define V(k) = xT(k)Xψ(θ(k), k, T )x(k) and

Ṽ(k) = xT(k)X̃ψ(θ(k − 1), k, T )x(k). Then

T∑
k=0

E
[
‖z(k)‖2 − ‖w(k)‖2

]
(5.26)

=

T∑
k=t−1

E
[
‖z(k)‖2 − ‖w(k)‖2 + V(k + 1)− V(k) + V(k)− V(k + 1)

]
=

T∑
k=t−1

E
[
‖z(k)‖2 − ‖w(k)‖2 + Ṽ(k + 1)− V(k)

]
(5.27)

=

T∑
k=t

E


x(k)

w(k)


T

M(θ(k), X̃ψ(θ(k), k + 1, T ))

x(k)

w(k)

− V(k)


+ E

[
−wT(t− 1)W(θ(t− 1), X̃ψ(θ(t− 1), t, T ))w(t− 1)

]
(5.28)

= E
[
−wT(t− 1)W(θ(t− 1), X̃ψ(θ(t− 1), t, T ))w(t− 1)

]
(5.29)

= −P {θ(t− 1) = i} yTW(i, X̃ψ(i, t, T ))y

≤ −νE
[
wT(t− 1)w(t− 1)

]
(5.30)

= −νP {θ(t− 1) = i} yTy

where (5.27) follows after applying an iterated expectation, recognizing a telescoping sum, and realizing

V(t− 1) = V(T + 1) = 0; (5.28) follows from x(t− 1) = 0; (5.29) follows from (5.17), (5.15a), and definition

of V(k); and, (5.30) follows from (5.19). Since y was an arbitrary vector, W(i, X̃ψ(i, t, T )) ≥ νI. The result

follows by induction.

Remark 5.21. The input specified in (5.25) is similar to disturbance inputs constructed in [59] and [1]. The



CHAPTER 5. DISTURBANCE ATTENUATION 51

techniques used in Lemma 5.20 show that if

w(k) =


W−1(θ(k), X̃ψ(θ(k), k + 1, T ))R(θ(k), X̃ψ(θ(k), k + 1, T ))x(k) : 0 ≤ k ≤ T

0 : k ≥ T + 1

(5.31)

then
∑T
k=0 E

[
zT(k)z(k)− wT(k)w(k)

]
= E

[
xT(0)Xψ(θ(0), 0, T )x(0)

]
. The disturbance input (5.31) maxi-

mizes the quantity in (5.26) (see [41, Lem. 2.1]).

The following property is key for finding a uniform upper bound on solutions to (5.15).

Lemma 5.22. Fix ψ ∈ Ψ and t ∈ N0. Define ψt to be a shifted version of ψ so that ψt(k) = ψ(t + k) for

k ∈ N, and define pt(0) = p(t). If (G,Π◦ψ, p(0)) is exponentially mean square stable and mean square strictly

contractive, then (G,Π ◦ ψt, pt(0)) is exponentially mean square stable and mean square strictly contractive.

Furthermore,

Xψ(i, t, T ) = Xψt(i, 0, T − t) (5.32)

for i ∈ N and 0 ≤ t ≤ T where Xψ and Xψt are defined by (5.15).

Proof. Consider the Markov jump linear system modulated by a shifted random process

xt(k + 1)

zt(k)

 =

A(θt(k)) B(θt(k))

C(θt(k)) D(θt(k))


xt(k)

wt(k)

 (5.33)

where θt(k) = θ(t+ k) for k ∈ N0 and wt ∈ `2e. Note that this system may be denoted by (G,Π ◦ ψt, pt(0)).

Now (G,Π ◦ ψt, pt(0)) is exponentially mean square stable since

E
[
ΦT
t (k, j)Φt(k, j) | θt(j)

]
= E

[
ΦT(t+ k, t+ j)Φ(t+ k, t+ j) | θ(t+ j)

]
≤ cλt+k−(t+j)I

where Φt is the random state transition matrix for the system in (5.33). Now let xt(0) = x(0) = 0, and let

wt ∈ `2e be arbitrary. Define w such that w(k) = 0 when k < t, and w(k) = wt(k− t) when k ≥ t. Note that

wt ∈ `2e implies w ∈ `2e, and ‖w‖2,e = ‖wt‖2,e. Furthermore, z(k) = 0 for 0 ≤ k ≤ t − 1, and x(k) = 0 for

0 ≤ k ≤ t. It is easily shown that zt(k) = z(t + k) for k ∈ N0 and ‖zt‖2,e = ‖z‖2,e. Since (G,Π ◦ ψ, p(0))

is mean square strictly contractive, ‖zt‖2,e = ‖z‖2,e ≤ γ ‖w‖2,e = γ ‖wt‖2,e. Since wt ∈ `2e was arbitrary,

(G, Pt, pt(0)) is mean square strictly contractive.

Now to prove (5.32), note that the base case Xψ(i, T, T ) = Xψt
(i, T−t, T−t) = S(i, 0) holds for all i ∈ N .
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For the inductive hypothesis, assume for some 0 ≤ k ≤ T −t−1 that Xψ(i, T −k, T ) = Xψt(i, T −t−k, T −t)

for all i ∈ N . Then

Xψ(i, T − (k + 1), T ) = S

i, N∑
j=1

πij(ψ(T − k))Xψ(j, T − k, T )


= S

i, N∑
j=1

πij(ψt(T − t− k))Xψt(j, T − t− k, T − t)

 (5.34)

= Xψt(i, T − t− (k + 1), T − t)

where (5.34) follows from the inductive hypothesis and the fact that ψ(T−k) = ψt(T−t−k). Equation (5.32)

follows by induction.

A uniform upper bound on solutions to (5.15) is established in the following lemma using Lemma 5.22

and a technique similar to [26, Sec. B.2.3].

Lemma 5.23. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive then there exists ρ > 0 such

that

0 ≤ Xψ(i, k, T ) ≤ ρI (5.35)

for all i ∈ N , any T ∈ N0, all ψ ∈ Ψ, and all 0 ≤ k ≤ T + 1 where Xψ is defined in (5.15).

Proof. Arbitrarily fix ψ ∈ Ψ and T ∈ N0. Define w as in (5.31). Then

E
[
xT(0)Xψ(θ(0), 0, T )x(0)

]
=

T∑
k=0

E
[
zT(k)z(k)− wT(k)w(k)

]
(5.36)

≤ ‖z‖22,e − ‖w‖
2
2,e (5.37)

where (5.36) follows from Remark 5.21. By linearity, z = zx0 + zw where zx0 is the zero-input response and

zw is the zero-state response (e.g., see [54, Ch. 20]). By the Cauchy-Schwarz inequality

‖z‖22,e ≤ ‖zw‖
2
2,e + ‖zx0

‖22,e + 2 ‖zw‖2,e ‖zx0
‖2,e . (5.38)

Since (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable,

‖zx0
‖22,e =

∞∑
k=0

E
[
xT(0)ΦT(k, 0)CT(θ(k))C(θ(k))Φ(k, 0)x(0)

]
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≤ max
i∈N

(
λmax(CT(i)C(i))

) ∞∑
k=0

cλkE
[
‖x(0)‖2

]
= δE

[
‖x(0)‖2

]
(5.39)

for all ψ ∈ Ψ where δ = maxi∈N
(
λmax(CT(i)C(i))

)
c/(1− λ). By Definition 5.10,

‖zw‖22,e − ‖w‖
2
2,e ≤ −ν ‖w‖

2
2,e (5.40)

‖zw‖2,e < ‖w‖2,e (5.41)

for all ψ ∈ Ψ and w ∈ `2e where ν = 1− γ2. Then

‖z‖22,e − ‖w‖
2
2,e ≤ −ν ‖w‖

2
2,e + δE[ ‖x(0)‖2 ] + 2

√
δE[ ‖x(0)‖2 ] ‖w‖2,e (5.42)

=

(
δ +

δ

ν

)
E[ ‖x(0)‖2 ]− ν

(
‖w‖2,e −

√
δ

ν

√
E[ ‖x(0)‖2 ]

)2

(5.43)

≤ ρE[ ‖x(0)‖2 ] (5.44)

for all ψ ∈ Ψ and all w ∈ `2e where ρ = δ + δ/ν; (5.42) follows from (5.38), (5.39), (5.40), and (5.41);

and, (5.43) follows by completing the square. Choose any i ∈ N and let x(0) = χ{θ(0) = i}y where y is an

arbitrary vector. Then (5.37) and (5.44) yield

P {θ(0) = i} yTXψ(i, 0, T )y ≤ ρP {θ(0) = i} yTy.

Since y was arbitrary

Xψ(i, 0, T ) ≤ ρI. (5.45)

Since ψ, i, and T were arbitrary, equation (5.35) follows for k = 0. The general case follows from Lemma 5.22.

That 0 ≤ Xψ(i, k, T ) for all i ∈ N , T ∈ N0, ψ ∈ Ψ, and 0 ≤ k ≤ T + 1 can be seen clearly from (5.15).

Consider now the perturbed finite-horizon Riccati difference equations defined by the recursive relation

and final condition

Xψ(i, k, T, ε) = S(i, X̃ψ(i, k + 1, T, ε)) + εI (5.46a)

Xψ(i, T + 1, T, ε) = 0 (5.46b)
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where i ∈ N , T ∈ N0, 0 ≤ k ≤ T , ψ ∈ Ψ, ε ≥ 0, and X̃ψ(i, k+ 1, T, ε) =
∑N
j=1 πij(ψ(k+ 1))Xψ(j, k+ 1, T, ε).

For fixed ψ ∈ Ψ, T ∈ N0, and ε, the solution Xψ(·, ·, T, ε) to (5.46) may be computed iteratively backwards-

in-time starting with the final condition. An augmented and perturbed system utilized in the following

theorem shows that solutions to (5.46) are uniformly positive definite as well as uniformly bounded.

Theorem 5.24. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive then there exist η, ρ, ν > 0

such that for all ε ∈ [0, η]

νI ≤ W(i, X̃ψ(i, k + 1, T, ε))

εI ≤ Xψ(i, k, T, ε) ≤ ρI (5.47)

for all i ∈ N , T ∈ N0, 0 ≤ k ≤ T , and ψ ∈ Ψ where Xψ is defined by the recursive relation and final

condition in (5.46).

Proof. Consider the augmented switched Markov jump linear system (Gε,Π,Ψ, p(0)) where

Gε = {(A(1), B(1), Cε(1), Dε(1)), . . . , (A(N), B(N), Cε(N), Dε(N))}

Cε(i) =

C(i)

√
εI

 , Dε(i) =

D(i)

0

 .
First note (Gε,Π,Ψ, p(0)) is uniformly exponentially mean square stable for any ε since G and Gε share the

same matrices A(i), i ∈ N . Since (G,Π,Ψ, p(0)) is uniformly mean square strictly contractive, there exists

η > 0 small enough so that for all ε ∈ [0, η] the augmented system (Gε,Π,Ψ, p(0)) is uniformly mean square

strictly contractive. By Lemma 5.20, there exists ν > 0 such that for all ε ∈ [0, η]

νI ≤ Wε(i, X̃ψ(i, k + 1, T, ε)) =W(i, X̃ψ(i, k + 1, T, ε))

for all i ∈ N , T ∈ N0, ψ ∈ Ψ, 0 ≤ k ≤ T where

Xψ(i, k, T, ε) = Sε(i, X̃ψ(i, k + 1, T, ε)) = S(i, X̃ψ(i, k + 1, T, ε)) + εI (5.48)

Xψ(i, T + 1, T, ε) = 0.

By Lemma 5.23, there exists ρ > 0 such that for all ε ∈ [0, η]

0 ≤ Xψ(i, k, T, ε) ≤ ρI
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for all i ∈ N , T ∈ N0, ψ ∈ Ψ, and 0 ≤ k ≤ T + 1. That Xψ(i, k, T, ε) ≥ εI for i ∈ N and 0 ≤ k ≤ T follows

clearly from (5.48).

The following lemma allows comparison of the solutions of two Riccati difference equations in (5.46) with

different values for ε.

Lemma 5.25 (Lem. 2.6 of [37]). For i ∈ N and X ∈ Xi, define

F(i,X) = A(i) +B(i)W−1(i,X)R(i,X). (5.49)

Let Y ∈ Xi and ∆ = X − Y . Then the following algebraic identities hold.

S(i,X)− S(i, Y ) = FT(i, Y )∆F(i, Y ) + FT(i, Y )∆B(i)W−1(i,X)BT(i)∆F(i, Y ) (5.50)

= FT(i,X)∆F(i, Y ) (5.51)

Before proceeding, the following technical lemma is needed which is similar in nature to [37, Thm. 2.7(a)].

The following lemma examines the random state transition matrix defined by

φ(k, j, T ) = F(θ(k − 1), X̃ψ(θ(k − 1), k, T, ε)) · · · F(θ(j), X̃ψ(θ(j), j + 1, T, ε)) (5.52)

when k and j are such that 0 ≤ j < k ≤ T + 1, and φ(k, j, T ) = I when k = j. Here, F(i,X) is defined as

in (5.49), and Xψ is defined in (5.46) for a stable and contractive system (G,Π,Ψ, p(0)). Note that φ is only

defined for 0 ≤ j ≤ k ≤ T+1 and that dependence of φ on ψ and ε is suppressed. The state transition matrix

in (5.52) arises from the recurrence x(k + 1) = F(θ(k), X̃ψ(θ(k), k + 1, T, ε))x(k), which is only defined for

0 ≤ k ≤ T .

Lemma 5.26. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive then there exists η > 0 such

that for any ε ∈ (0, η) there exist 0 ≤ λε < 1 and cε > 0 such that

E
[
φT(k, j, T )φ(k, j, T ) | θ(j) = i

]
≤ cελk−jε I (5.53)

for all i ∈ N , T ∈ N0, ψ ∈ Ψ, and all 0 ≤ j ≤ k ≤ T + 1 where φ is defined in (5.52).

Proof. Let η > 0 be as in Theorem 5.24 and fix ε ∈ (0, η). Fix ε0 ∈ (ε, η) and let ε̄ = ε0 − ε. Define

Zψ(i, k, T, ε̄) = Xψ(i, k, T, ε0)−Xψ(i, k, T, ε)
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Z̃ψ(i, k, T, ε̄) =

N∑
j=1

πij(ψ(k))Zψ(j, k, T, ε̄)

for i ∈ N , T ∈ N0, 0 ≤ k ≤ T + 1, ψ ∈ Ψ where Xψ are solutions to (5.46). Let T ∈ N0 and ψ ∈ Ψ be

arbitrary, and, for notational convenience, define

F (i, k) = F(i, X̃ψ(i, k + 1, T, ε))

where i ∈ N and 0 ≤ k ≤ T . Then

Zψ(i, k, T, ε̄) = S(i, X̃ψ(i, k + 1, T, ε0)) + ε0I − S(i, X̃ψ(i, k + 1, T, ε))− εI (5.54)

≥ FT(i, k)(X̃ψ(i, k + 1, T, ε0)− X̃ψ(i, k + 1, T, ε))F (i, k) + ε̄I (5.55)

= FT(i, k)Z̃ψ(i, k + 1, T, ε̄)F (i, k) + ε̄I (5.56)

where (5.54) follows from (5.46a), and (5.55) follows from (5.50). Additionally, from (5.56) and (5.47)

ε̄I ≤ Zψ(i, k, T, ε̄) ≤ ρ̄I (5.57)

for all ψ ∈ Ψ, T ∈ N0, i ∈ N , and all 0 ≤ k ≤ T where ρ̄ = ρ− ε. Inequality (5.57) yields

−ε̄I ≤ −ε̄/ρ̄ Zψ(i, k, T, ε̄). (5.58)

Then

E
[
FT(θ(k), k)Zψ(θ(k + 1), k + 1, T, ε̄)F (θ(k), k) | θ(k) = i

]
≤ Zψ(i, k, T, ε̄)− ε̄I (5.59)

≤ λεZψ(i, k, T, ε̄) (5.60)

where λε = 1− ε̄/ρ̄; (5.59) follows from (5.56); and, (5.60) follows from (5.58). Inequality (5.57) easily shows

0 ≤ λε < 1. Now

E
[
φT(k + 1, k − 1, T )Zψ(θ(k + 1), k + 1, T, ε̄)φ(k + 1, k − 1, T ) | θ(k − 1) = i

]
= E

[
FT(θ(k − 1), k − 1) E

[
FT(θ(k), k)Zψ(θ(k + 1), k + 1, T, ε̄)F (θ(k), k) | θ(k)

]
×F (θ(k − 1), k − 1) | θ(k − 1) = i

]
≤ λεE

[
FT(θ(k − 1), k − 1)Zψ(θ(k), k, T, ε̄)F (θ(k − 1), k − 1) | θ(k − 1) = i

]
(5.61)
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≤ λ2
εZψ(i, k − 1, T, ε̄). (5.62)

where (5.61) follows from (5.60), and (5.62) follows by another application of (5.60). Thus

E
[
φT(k, j, T )φ(k, j, T ) | θ(j) = i

]
≤ (1/ε̄)E

[
φT(k, j, T )Zψ(θ(k), k, T, ε̄)φ(k, j, T ) | θ(j) = i

]
(5.63)

≤ (1/ε̄)λk−jε Zψ(i, j, T, ε̄) (5.64)

≤ (ρ̄/ε̄)λk−jε I. (5.65)

where (5.63) follows from (5.57); (5.64) follows by iterating as in (5.61) and (5.62); and, (5.65) follows

from (5.57). Hence, the result follows with cε = ρ̄/ε̄.

An explicit construction for Yψ in Lemma 5.14 is now provided. The construction in the following lemma

ensures that for each k ∈ N0, Yψ(i, k) depends only on i and ψM (k).

Lemma 5.27. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive then there exist η, ρ > 0

such that for all ε ∈ (0, η), there exist M ∈ N0 and ν > 0 such that

Yψ(i, k) := Xψ(i, k, k +M, ε) (5.66)

satisfies

εI ≤ Yψ(i, k) ≤ ρI (5.67a)A(i) B(i)

C(i) D(i)


T Ỹψ(i, k + 1) 0

0 I


A(i) B(i)

C(i) D(i)

−
Yψ(i, k) 0

0 I

 ≤ −νI (5.67b)

for all ψ ∈ Ψ, i ∈ N , and k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1) and Xψ is defined

in (5.46).

Proof. Let η, ρ be as in Theorem 5.24 and choose ε ∈ (0, η) so that (5.67a) is verified automatically. Let λε

and cε be as in Lemma 5.26. Choose M ∈ N0 such that cελ
M+1
ε < ε/ρ. Then

S(i, Ỹψ(i, k + 1))− Yψ(i, k) + εI

= S(i, X̃ψ(i, k + 1, k +M + 1, ε))− S(i, X̃ψ(i, k + 1, k +M, ε))
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= FT(i, X̃ψ(i, k + 1, k +M + 1, ε))(X̃ψ(i, k + 1, k +M + 1, ε)− X̃ψ(i, k + 1, k +M, ε))

×F(i, X̃ψ(i, k + 1, k +M, ε)). (5.68)

where (5.68) follows from (5.51). But the middle term in (5.68) can be written

X̃ψ(i, k + 1, k +M + 1, ε)− X̃ψ(i, k + 1, k +M, ε)

=

N∑
j=1

πij(ψ(k + 1))
(
S(j, X̃ψ(j, k + 2, k +M + 1, ε))− S(j, X̃ψ(j, k + 2, k +M, ε))

)
(5.69)

= E

[
FT(θ(k + 1), X̃ψ(θ(k + 1), k + 2, k +M + 1, ε))

×
(
X̃ψ(θ(k + 1), k + 2, k +M + 1, ε)− X̃ψ(θ(k + 1), k + 2, k +M, ε)

)
×F(θ(k + 1), X̃ψ(θ(k + 1), k + 2, k +M, ε)) | θ(k) = i

]
(5.70)

where (5.69) follows from (5.46a), and (5.70) results after applying (5.68) to (5.69). Proceeding in an iterative

fashion,

S(i, Ỹψ(i, k + 1))− Yψ(i, k) + εI

= E

[
φT(k +M + 1, k, k +M + 1)

×
(
X̃ψ(θ(k +M), k +M + 1, k +M + 1, ε)− X̃ψ(θ(k +M), k +M + 1, k +M, ε)

)
×φ(k +M + 1, k, k +M) | θ(k) = i

]
. (5.71)

Note that the middle term in (5.71) satisfies

εI ≤ X̃ψ(θ(k +M), k +M + 1, k +M + 1, ε)− 0 ≤ ρI (5.72)

for all values of θ(k+M) ∈ N . Let y ∈ Rn be arbitrary, and for convenience define φ1 = φ(k+M + 1, k, k+

M + 1), φ2 = φ(k +M + 1, k, k +M), and X = X̃ψ(θ(k +M), k +M + 1, k +M + 1, ε). Then

yT
(
S(i, Ỹψ(i, k + 1))− Yψ(i, k) + εI

)
y

= yTE
[
φT1Xφ2 | θ(k) = i

]
y

= E
[
vT1Xv2 | θ(k) = i

]
≤
√

E
[
vT1Xv1 | θ(k) = i

]
E
[
vT2Xv2 | θ(k) = i

]
(5.73)

≤
√
ρ2E

[
vT1 v1 | θ(k) = i

]
E
[
vT2 v2 | θ(k) = i

]
(5.74)
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= ρ
√(

yTE
[
φT1φ1 | θ(k) = i

]
y
) (
yTE

[
φT2φ2 | θ(k) = i

]
y
)

≤ ρ
√(

cελ
M+1
ε yTy

) (
cελ

M+1
ε yTy

)
(5.75)

= ρcελ
M+1
ε yTy

< εyTy (5.76)

where v1 = φ1y and v2 = φ2y; (5.73) follows from Lemma 2.22; (5.74) follows from (5.72); (5.75) follows

from Lemma 5.26; and, (5.76) follows by choice of M . Let ε0 ∈ (0, ε) be such that

S(i, Ỹψ(i, k + 1))− Yψ(i, k) + εI ≤ ε0I < εI. (5.77)

By (5.77)

S(i, Ỹψ(i, k + 1))− Yψ(i, k) ≤ −νI. (5.78)

where ν = ε− ε0. Inequality (5.78) and the Schur complement formula yield (5.67b).

Lemma 5.27 uses techniques similar to those found in [37, Thm. 2.7(b)] where it is shown that the time-

varying version of the KYP inequality associated with a uniformly stable and contractive linear time-varying

system admits a solution with finite memory of past parameters.

Remark 5.28. The construction in Lemma 5.27 ensures that Yψ(i, k) may be computed with knowledge of

only i and ψM (k). Indeed, if t 6= k but ψM (k) = ψM (t) then Yψ(i, k) = Yψ(i, t). This claim can be easily

established using the recursive relation (5.46a) and base case Xψ(i, k + M + 1, k + M, ε) = Xψ(i, t + M +

1, t+M, ε) = 0.

The following theorem, inspired by [37, Thm. 3.3], provides a necessary and sufficient condition, expressed

as a set of finite-dimensional LMIs, for uniform exponential mean square stability and uniform mean square

strict contractiveness of a switched Markov jump linear system.

Theorem 5.29. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. The switched Markov jump linear

system (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable and uniformly mean square strictly

contractive if and only if there exist M ∈ N0 and a function X : N ×ΨM → S+
n such that

A(i) B(i)

C(i) D(i)


T ∑N

j=1 πij(r1)X(j, r2, . . . , rM+1) 0

0 I


A(i) B(i)

C(i) D(i)

−
X(i, r1, . . . , rM ) 0

0 I

 < 0 (5.79)

for any (r1, . . . , rM+1) ∈ ΨM+1 and i ∈ N .
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Proof. Suppose there exist M and X such that (5.79) holds. Note that the upper left block of (5.79)

implies (4.16) so uniform exponential mean square stability of (G,Π,Ψ, p(0)) follows from Theorem 4.12.

Since N × ΨM+1 ⊂ N × JM+1 is a finite set, inequality (5.79) holds uniformly, so there exists 0 < ν < 1

such that

A(i) B(i)

C(i) D(i)


T ∑N

j=1 πij(r1)X(j, r2, . . . , rM+1) 0

0 I


A(i) B(i)

C(i) D(i)

−
X(i, r1, . . . , rM ) 0

0 I

 ≤ −νI (5.80)

for any (i, r1, . . . , rM+1) ∈ N ×ΨM+1. Let ψ ∈ Ψ be arbitrary. Define Yψ(i, k) := X(i, ψ(k + 1), . . . , ψ(k +

M)). Using (5.13) and (5.16) to rewrite (5.80), it follows that

E[ ‖z(k)‖2 + xT(k + 1)Yψ(θ(k + 1), k + 1)x(k + 1)− xT(k)Yψ(θ(k), k)x(k) ]

≤ (1− ν)E[ ‖w(k)‖2 ]. (5.81)

Inequality (5.81), positive definiteness of Yψ(i, k), and x(0) = 0 yield

l∑
k=0

E
[
‖z(k)‖2

]
≤ (1− ν)

l∑
k=0

E
[
‖w(k)‖2

]

for all l ∈ N0. Since ψ ∈ Ψ was arbitrary, Definition 5.10 is satisfied with γ =
√

1− ν so (G,Π,Ψ, p(0)) is

uniformly mean square strictly contractive.

Conversely, assume that (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable and uniformly

mean square strictly contractive. Let η, ρ be as in Lemma 5.27, fix ε ∈ (0, η), and let M and ν be defined

as in Lemma 5.27. Let (i, r1, . . . , rM+1) ∈ N × ΨM+1 be arbitrary. By definition of ΨM+1, there exist

ψ ∈ Ψ and t ∈ N0 such that ψM+1(t) = (r1, . . . , rM+1). Construct Yψ as in Lemma 5.27 and recall from

Remark 5.28 that Yψ(i, t) depends only on (i, ψM (t)). Thus, define X(i, r1, . . . , rM ) := Yψ(i, t) and define

X(i, r2, . . . , rM+1) := Yψ(i, t+ 1). One recovers every inequality in (5.79) from (5.67).

Remark 5.30. Theorem 5.29 may be used to approximate ‖(G,Π,Ψ, p(0))‖∞. First, set γU equal to some

upper bound on ‖(G,Π,Ψ, p(0))‖∞, and set γL equal to some lower bound on ‖(G,Π,Ψ, p(0))‖∞. Use a

bisection search to approximate the smallest γ0 ∈ [γL, γU ] such that the LMIs in Theorem 5.29 with M = 0

are feasible for the system (G0,Π,Ψ, p(0)) where G0 = {(A(i), B(i), (1/γ0)C(i), (1/γ0)D(i)) : i ∈ N}. Next,

use a bisection search to approximate the smallest γ1 ∈ [γL, γ0] such that the LMIs in Theorem 5.29 with

M = 1 are feasible for the system (G1,Π,Ψ, p(0)) where G1 = {(A(i), B(i), (1/γ1)C(i), (1/γ1)D(i)) : i ∈ N}.

If ‖(G,Π,Ψ, p(0))‖∞ = γ∗, Theorem 5.29 says that γM → γ∗ as M →∞.
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Remark 5.31. Theorem 5.29 provides a practical method for investigating the contractiveness of a single

time-inhomogeneous Markov jump linear system with known transition probability matrices that vary in a

finite set (let Ψ be the set containing a single sequence).

Remark 5.32. Consider the case when J = 1 and Ψ = {(1, 1, . . . )}. The the switched Markov jump linear

system (G,Π,Ψ, p(0)) reduces to a single time-homogeneous Markov jump linear system (G,Π◦ψ1, p(0)) where

ψ1 ≡ 1. For any M , the set ΨM contains only a single element (1, . . . , 1), and the set N ×ΨM contains only

N elements. For i ∈ N , define Z(i) := X(i, 1, . . . , 1) where X is as in Theorem 5.29. Then (5.79) reduces to

A(i) B(i)

C(i) D(i)


T Z̃(i) 0

0 I


A(i) B(i)

C(i) D(i)

−
Z(i) 0

0 I

 < 0 (5.82)

where Z̃(i) =
∑N
j=1 πij(1)Z(j). Inequality (5.82) is the same inequality found in Proposition 5.5. Theo-

rem 5.29, however, does not require (G,Π ◦ ψ1, p(0)) to be weakly controllable as in Proposition 5.5. Thus,

the weak controllability hypothesis of Proposition 5.5 can be replaced by the weaker (see Proposition 5.33)

hypothesis that pi(k) > 0 for all i ∈ N and all k ∈ N0. Recalling Proposition 5.4, this hypothesis is equivalent

to pi(0) > 0 for all i ∈ N , and each column of Π(1) is nonzero.

Proposition 5.33. Let Π(1) be a stochastic matrix and ψ1 ≡ 1. If the time-homogeneous Markov jump

linear system (G,Π ◦ψ1, p(0)) is weakly controllable and pi(0) > 0 for all i ∈ N , then pi(k) > 0 for all i ∈ N

and k ∈ N0.

Proof. The contrapositive is proved. Suppose the conclusion of the conditional statement is false. Then by

Proposition 5.4, Π(1) has a zero column and/or pi(0) = 0 for some i ∈ N . If the j-th column of Π(1) is zero,

then πij(1) = 0 for all i ∈ N and P {x(k) = xf , θ(k) = j} ≤ P {θ(k) = j} =
∑N
i=1 πij(1)P {θ(k − 1) = i} = 0

for all k ≥ 1. Thus, the final state (xf , j) has zero probability for all k ≥ 1 and any input wc ∈ `2e so

(G,Π ◦ ψ1, p(0)) is not weakly controllable.

5.4.1 Example

Consider the switched Markov jump linear system (G,Π,Ψ, p(0)) where

A(1) =


0.08 0.15 0.30

0.20 0.60 0.10

0.50 0.20 0.40

 , B(1) =


0.10 0.70

0.50 0.80

0.20 0.40

 ,
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C(1) =


0.18 0.03 0.01

0.01 0.07 0.06

0.02 0.03 0.15

 , D(1) =


0.01 0

0.08 0.05

0 0.01

 ,

A(2) =


−0.06 0.40 0.70

0.35 −0.07 0.10

0.23 −0.04 0.51

 , B(2) =


0.41 −0.75

0.90 0.47

0.54 0.28

 ,

C(2) =


0.03 −0.02 0.03

0.07 0.09 0.10

0.07 0.02 0.08

 , D(2) =


0 0.03

0.01 −0.11

0 0.05

 ,

and

Π(1) =

0.46 0.54

0.40 0.60

 , Π(2) =

0.01 0.99

0.05 0.95

 ,
Ψ = J∞, p(0) =

[
0.5 0.5

]
.

Note that the linear time-invariant system with fixed matrices (A(1), B(1), C(1), D(1)) is exponentially stable

but not contractive. On the other hand, the linear time-invariant system with fixed matrices (A(2), B(2),

C(2), D(2)) is exponentially stable and contractive. The LMIs in Theorem 5.29 are not feasible with M = 0,

but are feasible with M = 1. Thus, the switched Markov jump linear system (G,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive.

5.5 Switched Independent Jump Linear Systems

If each ψ ∈ Ψ gives rise to an independent sequence θ of random variables, then a more computationally

efficient result (see Theorem 5.46) may be used to check contractiveness. Although the result does not follow

immediately from Theorem 5.29, a similar mathematical machinery may be employed. The derivation closely

mirrors that of Section 5.4, so the explanatory discussion in this section is brief. Recall from Section 3.3.1

that the notation πj(s) where j ∈ N and s ∈ J denotes the ij-th element of matrix Π(s) where i is irrelevant

since each row of Π(s) is identical (θ is an independent sequence).

Definition 5.34. Given G, s ∈ J , and X ∈ Sn, define

L(s,X) =

N∑
j=1

πj(s)L(j,X)
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R(s,X) =

N∑
j=1

πj(s)R(j,X)

W (s,X) =

N∑
j=1

πj(s)W(j,X)

M(s,X) =

N∑
j=1

πj(s)M(j,X)

where L(i,X), R(i,X), W(i,X), and M(i,X), i ∈ N , are defined in Definition 5.15. For s ∈ J let

Ys = {X ∈ Sn : W (s,X) invertible}. For X ∈ Ys define

S(s,X) = L(s,X) +RT(s,X)W−1(s,X)R(s,X)

Given a modified set of matrices {(A(i), B(i), Cε(i), Dε(i)) : i ∈ N}, let Lε(s,X), Rε(s,X), Wε(s,X),

Sε(s,X) be defined as above but with Cε(i) in place of C(i) and Dε(i) in place of D(i).

When θ is an independent sequence of random variables, the following finite-horizon Riccati difference

equations are used to establish an LMI condition equivalent to contractiveness.

Xψ(k, T ) = S(ψ(k), Xψ(k + 1, T )) (5.83a)

Xψ(T + 1, T ) = 0 (5.83b)

where T ∈ N0 (the horizon), 0 ≤ k ≤ T , and ψ ∈ Ψ. For a fixed ψ ∈ Ψ and T ∈ N0, the solution Xψ(·, T )

to (5.83) may be computed iteratively backwards-in-time starting with the final condition. Note that the

Riccati difference equations in (5.83) differ from the Riccati difference equations specified in (5.15). The

following lemma is used to establish that the inverse specified in (5.83a) is well-defined when the switched

independent jump linear system is contractive.

Lemma 5.35. Fix ψ ∈ Ψ. If X ∈ Yψ(k) and w(k) = W−1(ψ(k), X)R(ψ(k), X)x(k) then

E


x(k)

w(k)


T

M(θ(k), X)

x(k)

w(k)

 | x(k)

 = xT(k)S(ψ(k), X)x(k). (5.84)

Proof. The proof of Lemma 5.35 follows from straightforward algebra.

The next lemma verifies that the inverse specified in (5.83a) is indeed well-defined when the switched

independent jump linear system (G,Π,Ψ, p(0)) is uniformly mean square strictly contractive.
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Lemma 5.36. If the switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly mean square

strictly contractive then there exists ν > 0 such that

W (ψ(k), Xψ(k + 1, T )) ≥ νI

for all ψ ∈ Ψ, T ∈ N0, and 0 ≤ k ≤ T where Xψ is defined by the recursive relation and final condition

in (5.83).

Proof. The proof is very similar to the proof of Lemma 5.20 so only a sketch is provided. Let y ∈ Rm be

arbitrary and use the input

w(k) =


0 : k 6= T

y : k = T

(5.85)

to show that W (ψ(T ), Xψ(T + 1, T )) ≥ νI. Now fix 0 ≤ t ≤ T , assume W (ψ(k), Xψ(k + 1, T )) ≥ νI for

t ≤ k ≤ T , and use the identity (5.84) and the input

w(k) =



0 : k ≤ t− 2

y : k = t− 1

W−1(ψ(k), Xψ(k + 1, T ))R(ψ(k), Xψ(k + 1, T ))x(k) : t ≤ k ≤ T

0 : k ≥ T + 1

(5.86)

to show that W (ψ(t− 1), Xψ(t, T )) ≥ νI. The result then follows by induction.

Remark 5.37. In contrast to Lemma 5.20, the special inputs, (5.85) and (5.86), in the proof of Lemma 5.36

do not use an indicator function. Thus, the hypothesis pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0 from

Lemma 5.20 is not needed here.

Remark 5.38. The techniques used in Lemmas 5.20 and 5.36 show that if

w(k) =


W−1(ψ(k), Xψ(k + 1, T ))R(ψ(k), Xψ(k + 1, T ))x(k) : 0 ≤ k ≤ T

0 : k ≥ T + 1

(5.87)

then
∑T
k=0 E

[
zT(k)z(k)− wT(k)w(k)

]
= E

[
xT(0)Xψ(0, T )x(0)

]
.

Lemma 5.39. Fix ψ ∈ Ψ and t ∈ N0. Define ψt to be a shifted version of ψ so that ψt(k) = ψ(t + k) for

k ∈ N, and define pt(0) = p(t). If (G,Π◦ψ, p(0)) is exponentially mean square stable and mean square strictly
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contractive, then (G,Π ◦ ψt, pt(0)) is exponentially mean square stable and mean square strictly contractive.

Furthermore,

Xψ(t, T ) = Xψt
(0, T − t) (5.88)

for 0 ≤ t ≤ T where Xψ and Xψt
are defined by (5.83).

Proof. The proof is analogous to the proof of Lemma 5.22.

Lemma 5.40. If the switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive then there exists ρ > 0 such that

0 ≤ Xψ(k, T ) ≤ ρI (5.89)

for all T ∈ N0, all ψ ∈ Ψ, and all 0 ≤ k ≤ T + 1 where Xψ is defined in (5.83).

Proof. The proof is very similar to the proof of Lemma 5.23, so only a sketch is provided. Define w as

in (5.87) and proceed as in the proof of Lemma 5.23 to arrive at the inequality

E
[
xT(0)Xψ(0, T )x(0)

]
≤ ρE

[
‖x(0)‖2

]
where ρ is defined as in Lemma 5.23. Now let x(0) = y, a constant random variable, where y ∈ Rn is

arbitrary to get Xψ(0, T ) ≤ ρI. Apply Lemma 5.39 to get inequality (5.89).

Consider the perturbed finite-horizon Riccati difference equations defined by the recursive relation and

final condition

Xψ(k, T, ε) = S(ψ(k), Xψ(k + 1, T, ε)) + εI (5.90a)

Xψ(T + 1, T, ε) = 0 (5.90b)

where T ∈ N0, 0 ≤ k ≤ T , ψ ∈ Ψ, and ε ≥ 0. For fixed ψ ∈ Ψ, T ∈ N0, and ε, the solution Xψ(·, T, ε)

to (5.90) may be computed iteratively backwards-in-time starting with the final condition. An augmented

and perturbed system utilized in the following theorem shows that solutions to (5.90) are uniformly positive

definite as well as uniformly bounded.

Theorem 5.41. If the switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive then there exist η, ρ, ν > 0 such that for
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all ε ∈ [0, η]

νI ≤W (ψ(k), Xψ(k + 1, T, ε))

εI ≤ Xψ(k, T, ε) ≤ ρI (5.91)

for all T ∈ N0, 0 ≤ k ≤ T , and ψ ∈ Ψ where Xψ is defined by the recursive relation and final condition

in (5.90).

Proof. Given the augmented and perturbed system (Gε,Π,Ψ, p(0)) from the proof of Theorem 5.24, note

that

Wε(s,X) = W (s,X)

Sε(s,X) = S(s,X) + εI.

The rest of the proof is almost identical to the proof of Theorem 5.24.

The following lemma allows comparison of the solutions of two Riccati difference equations in (5.90) with

different values for ε.

Lemma 5.42. For i ∈ N , s ∈ J , and X ∈ Ys, define

A(i, s,X) = A(i) +B(i)W−1(s,X)R(s,X). (5.92)

Let Y ∈ Ys, and let ∆ = X − Y . Then the following algebraic identities hold.

S(s,X)− S(s, Y )

=

N∑
j=1

πj(s)AT(j, s, Y )∆A(j, s, Y )

+

 N∑
j=1

πj(s)AT(j, s, Y )∆B(j)

W−1(s,X)

 N∑
j=1

πj(s)B
T(j)∆A(j, s, Y )

 (5.93)

=

N∑
j=1

πj(s)AT(j, s,X)∆A(j, s, Y ). (5.94)

Proof. Equation (5.93) follows from the proof of [58, Lemma C.1]. To show (5.94), define

W̃ (s,∆) = W (s,X)−W (s, Y ) = −
N∑
j=1

πj(s)B
T(j)∆B(j). (5.95)
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Equations (5.92) and (5.95) yield

N∑
j=1

πj(s)
[
(A(j, s, Y )−A(j))

T
∆B(j)W−1(s,X)

]
= −RT(s, Y )W−1(s, Y )W̃ (s,∆)W−1(s,X). (5.96)

The following identities are straightforward to verify.

W−1(s, Y )W̃ (s,∆)W−1(s,X) = W−1(s, Y )−W−1(s,X) (5.97)
N∑
j=1

πj(s)A(j)T∆B(j) +RT(s, Y ) = RT(s,X) (5.98)

Equations (5.96), (5.97), and (5.98) yield

N∑
j=1

πj(s)AT(j, s, Y )∆B(j)W−1(s,X) = RT(s,X)W−1(s,X)−RT(s, Y )W−1(s, Y ). (5.99)

By equation (5.92),

N∑
j=1

πj(s)
[
(A(j, s,X)−A(j, s, Y ))

T
∆A(j, s, Y )

]
=
(
RT(s,X)W−1(s,X)−RT(s, Y )W−1(s, Y )

) N∑
j=1

πj(s)B
T(j)∆A(j, s, Y ).

Thus, (5.94) follows from (5.99).

The following lemma examines the random state transition matrix defined by

φ(k, j, T ) = A(θ(k − 1), ψ(k − 1), Xψ(k, T, ε)) · · · A(θ(j), ψ(j), Xψ(j + 1, T, ε)) (5.100)

when k and j are such that 0 ≤ j < k ≤ T + 1, and φ(k, j, T ) = I when k = j. Here, A(i, s,X) is defined

as in (5.92), and Xψ is defined in (5.90) for a stable and contractive system (G,Π,Ψ, p(0)). Note that φ is

only defined for 0 ≤ j ≤ k ≤ T + 1 and that dependence of φ on ψ and ε is suppressed. The state transition

matrix in (5.100) arises from the recurrence x(k + 1) = A(θ(k), ψ(k), Xψ(k + 1, T, ε))x(k), which is only

defined for 0 ≤ k ≤ T .

Lemma 5.43. If the switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive then there exists η > 0 such that for any
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ε ∈ (0, η) there exist 0 ≤ λε < 1 and cε > 0 such that

E
[
φT(k, j, T )φ(k, j, T )

]
≤ cελk−jε I (5.101)

for all T ∈ N0, ψ ∈ Ψ, and all 0 ≤ j ≤ k ≤ T + 1 where φ is defined in (5.100).

Proof. An outline of the proof is provided. For more details, refer to the proof of Lemma 5.26. Let η > 0 be

as in Theorem 5.41 and fix ε ∈ (0, η). Fix ε0 ∈ (ε, η) and let ε̄ = ε0 − ε. Define

Zψ(k, T, ε̄) = Xψ(k, T, ε0)−Xψ(k, T, ε).

Use (5.90a) and (5.93), and proceed as in the proof of Lemma 5.26 to get

E
[
AT(θ(k), ψ(k), Xψ(k + 1, T, ε))Zψ(k + 1, T, ε̄)A(θ(k), ψ(k), Xψ(k + 1, T, ε))

]
≤ Zψ(k, T, ε̄)− ε̄I

≤ λεZψ(k, T, ε̄) (5.102)

where λε = 1 − ε̄/ρ̄ and ρ̄ = ρ − ε. Apply the independence hypothesis on θ, iterate (5.102), and use the

inequality ε̄I ≤ Zψ(k, T, ε̄) ≤ ρ̄I to get (5.101) with cε = ρ̄/ε̄.

Lemma 5.44. If the switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive then there exist η, ρ > 0 such that for all

ε ∈ (0, η), there exist M ∈ N and ν > 0 such that

Yψ(k) := Xψ(k, k +M − 1, ε) (5.103)

satisfies

εI ≤ Yψ(k) ≤ ρI (5.104a)

N∑
j=1

πj(ψ(k))

A(j) B(j)

C(j) D(j)


T Yψ(k + 1) 0

0 I


A(j) B(j)

C(j) D(j)

−
Yψ(k) 0

0 I

 ≤ −νI (5.104b)

for all ψ ∈ Ψ and k ∈ N0 where Xψ is defined in (5.90).

Proof. Let η, ρ be as in Theorem 5.41 and choose ε ∈ (0, η) so (5.104a) is verified automatically. Let λε and
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cε be as in Lemma 5.43. Choose M ∈ N such that cελ
M
ε < ε/ρ. Then

S(ψ(k), Yψ(k + 1))− Yψ(k) + εI

= S(ψ(k), Xψ(k + 1, k +M, ε))− S(ψ(k), Xψ(k + 1, k +M − 1, ε)) (5.105)

=

N∑
j=1

πj(ψ(k))
[
AT (j, ψ(k), Xψ(k + 1, k +M, ε)) (Xψ(k + 1, k +M, ε)−Xψ(k + 1, k +M − 1, ε))

×A (j, ψ(k), Xψ(k + 1, k +M − 1, ε))
]

(5.106)

where (5.105) follows from (5.90a) and (5.106) follows from (5.94). Using (5.90a) and (5.94), the middle

term in (5.106) may be written

Xψ(k + 1, k +M, ε)−Xψ(k + 1, k +M − 1, ε)

=

N∑
j=1

πj(ψ(k + 1))
[
AT (j, ψ(k + 1), Xψ(k + 2, k +M, ε)) (Xψ(k + 2, k +M, ε)−Xψ(k + 2, k +M − 1, ε))

×A (j, ψ(k + 1), Xψ(k + 2, k +M − 1, ε))
]
. (5.107)

Then

S(ψ(k), Yψ(k + 1))− Yψ(k) + εI

= E
[
φT(k +M,k, k +M) (Xψ(k +M,k +M, ε)−Xψ(k +M,k +M − 1, ε))

×φ(k +M,k, k +M − 1)
]

(5.108)

= E
[
φT(k +M,k, k +M)Xψ(k +M,k +M, ε)φ(k +M,k, k +M − 1)

]
≤ ρcελMε yTy (5.109)

< εyTy (5.110)

where φ is defined in (5.100); equality (5.108) follows by proceeding iteratively as in (5.107) and using the

independence hypothesis on θ; inequality (5.109) follows from arguments similar to those found in the proof

of Lemma 5.27; and, inequality (5.110) follows by choice of M . Let ε0 ∈ (0, ε) be such that

S(ψ(k), Yψ(k + 1))− Yψ(k) + εI ≤ ε0I < εI

so that

S(ψ(k), Yψ(k + 1))− Yψ(k) ≤ −νI (5.111)
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where ν = ε− ε0. Expanding the left side of (5.104b) yields

N∑
j=1

πj(ψ(k))

A(j) B(j)

C(j) D(j)


T Yψ(k + 1) 0

0 I


A(j) B(j)

C(j) D(j)

−
Yψ(k) 0

0 I


=

L(ψ(k), Yψ(k + 1))− Yψ(k) RT(ψ(k), Yψ(k + 1))

R(ψ(k), Yψ(k + 1)) −W (ψ(k), Yψ(k + 1))


The Schur complement formula combined with inequality (5.111) yields (5.104b).

Remark 5.45. The construction in Lemma 5.44 ensures that Yψ(k) may be computed with knowledge of

only (ψ(k), . . . , ψ(k + M − 1)). Indeed, if t 6= k but (ψ(k), . . . , ψ(k + M − 1)) = (ψ(t), . . . , ψ(t + M − 1))

then Yψ(k) = Yψ(t). This claim can be easily established using the recursive relation (5.90a) and base case

Xψ(k +M,k +M − 1, ε) = Xψ(t+M, t+M − 1, ε) = 0.

Theorem 5.46. The switched independent jump linear system (G,Π,Ψ, p(0)) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive if and only if there exist M ∈ N and a

function X : ΨM → S+
n such that

N∑
j=1

πj(r0)

A(j) B(j)

C(j) D(j)


T X(r1, . . . , rM ) 0

0 I


A(j) B(j)

C(j) D(j)

−
X(r0, . . . , rM−1) 0

0 I

 < 0 (5.112)

for any (r0, . . . , rM ) ∈ ΨM+1.

Proof. Suppose there exist M and X such that (5.112) holds. Note that the upper left block of (5.112)

implies (4.21) so uniform exponential mean square stability of (G,Π,Ψ, p(0)) follows from Theorem 4.21.

Since ΨM+1 is a finite set, inequality (5.112) holds uniformly, so there exists 0 < ν < 1 such that

N∑
j=1

πj(r0)

A(j) B(j)

C(j) D(j)


T X(r1, . . . , rM ) 0

0 I


A(j) B(j)

C(j) D(j)

−
X(r0, . . . , rM−1) 0

0 I

 ≤ −νI. (5.113)

for any (r0, . . . , rM ) ∈ ΨM+1. Let ψ ∈ Ψ be arbitrary. Define Yψ(k) := X(ψ(k), . . . , ψ(k +M − 1)). Then

E[ ‖z(k)‖2 − ‖w(k)‖2 + xT(k + 1)Yψ(k + 1)x(k + 1)− xT(k)Yψ(k)x(k) ]
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= E


x(k)

w(k)


T

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))


T Yψ(k + 1) 0

0 I


A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))



−

Yψ(k) 0

0 I



x(k)

w(k)


 (5.114)

= E


x(k)

w(k)


T

N∑
j=1

πj(ψ(k))


A(j) B(j)

C(j) D(j)


T Yψ(k + 1) 0

0 I


A(j) B(j)

C(j) D(j)



−

Yψ(k) 0

0 I



x(k)

w(k)


 (5.115)

≤ −νE
[
‖w(k)‖2

]
(5.116)

where (5.114) follows from Lemmas 5.16 and 5.18; (5.115) follows by an iterated expectation and the inde-

pendence hypothesis on θ; and, (5.116) follows from (5.113). Thus

E[ ‖z(k)‖2 + xT(k + 1)Yψ(k + 1)x(k + 1)− xT(k)Yψ(k)x(k) ] ≤ (1− ν)E[ ‖w(k)‖2 ]. (5.117)

Inequality (5.117), positive definiteness of Yψ(k), and x(0) = 0 yield

l∑
k=0

E
[
‖z(k)‖2

]
≤ (1− ν)

l∑
k=0

E
[
‖w(k)‖2

]

for all l ∈ N0. Since ψ ∈ Ψ was arbitrary, Definition 5.10 is satisfied with γ =
√

1− ν so (G,Π,Ψ, p(0)) is

uniformly mean square strictly contractive.

Conversely, assume that (G,Π,Ψ, p(0)) is uniformly exponentially mean square stable and uniformly

mean square strictly contractive. Let η, ρ be as in Lemma 5.44, fix ε ∈ (0, η), and let M ∈ N and ν be

defined as in Lemma 5.44. Let (r0, . . . , rM ) ∈ ΨM+1 be arbitrary. By definition of ΨM+1, there exists ψ ∈ Ψ

and t ∈ N0 such that (ψ(t), . . . , ψ(t + M)) = (r0, . . . , rM ). Construct Yψ as in Lemma 5.44 and recall from

Remark 5.45 that Yψ(t) depends only on (ψ(t), . . . , ψ(t + M − 1)). Thus define X(r0, . . . , rM−1) := Yψ(t)

and define X(r1, . . . , rM ) := Yψ(t+ 1). One recovers every inequality in (5.112) from (5.104).

Remark 5.47. Note that Theorem 5.46 does not require the hypothesis pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and

k ∈ N0 as in Theorem 5.29.

Remark 5.48. For each M , Theorem 5.46 requires solving a set of LMIs with no more than JMn(n + 1)/2

unknowns (there are at most JM unknown symmetric positive definite matrices that must satisfy (5.112)).
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Thus, Theorem 5.46 is more computationally efficient than Theorem 5.29, which requires solving a set of

LMIs with no more than NJMn(n+ 1)/2 unknowns.

Remark 5.49. Consider the case when J = 1 and Ψ = {(1, 1, . . . )}. The switched independent jump linear

system (G,Π,Ψ, p(0)) reduces to a single time-homogeneous independent jump linear system (G,Π◦ψ1, p(0))

where ψ1 ≡ 1. For any M , the set ΨM contains only a single element, the M -tuple (1, . . . , 1). Define

Z := X(1, . . . , 1) where X is as in Theorem 5.46. Then (5.112) reduces to

N∑
j=1

πj(1)

A(j) B(j)

C(j) D(j)


T Z 0

0 I


A(j) B(j)

C(j) D(j)

−
Z 0

0 I

 < 0 (5.118)

Inequality (5.118) is the same inequality found in Proposition 5.8. Theorem 5.46, however, does not require

(G,Π ◦ ψ1, p(0)) to be weakly controllable as in Proposition 5.8. Thus, the weak controllability hypothesis

of Proposition 5.8 is unnecessary.



Chapter 6

Control Synthesis

6.1 Introduction

The aim of this chapter is to construct feedback controllers that ensure the design objectives of stability and

a specified level of disturbance attenuation are met. The open-loop plant to be controlled is expressed

x(k + 1) = A(θ(k))x(k) +

[
B1(θ(k)) B2(θ(k))

]w(k)

u(k)

 (6.1a)

z(k)

y(k)

 =

C1(θ(k))

C2(θ(k))

x(k) +

D11(θ(k)) D12(θ(k))

D21(θ(k)) D22(θ(k))


w(k)

u(k)

 (6.1b)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rm1 is a disturbance vector, z(k) ∈ Rp1 is an error vector,

y(k) ∈ Rp2 is the output vector available to the controller, u(k) ∈ Rm2 is the controlled input vector, and

θ : N0 ×Ω→ N is a finite Markov chain characterized by the a priori unknown sequence Π ◦ ψ of transition

probabilities and initial distribution p(0), where ψ ∈ Ψ is an a priori unknown switching sequence. Without

loss of generality (see [24]), it is assumed that D22(i) = 0 for all i ∈ N .

The results developed in this chapter address the question of existence of a controller for the plant

in (6.1) that ensures the closed-loop system is uniformly exponentially mean square stable and uniformly

mean square strictly contractive.

To motivate the types of controllers examined in this chapter, consider the control system in Fig. 6.1

where the sensor and controller are connected via a wireless communications network subject to Markovian

packet loss. The closed-loop system may be modeled as a Markov jump linear system where θ(k) indicates

73
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Plant

Controller

w(k)z(k)

u(k)

y(k)

Figure 6.1: Control system where the controller and actuator are physically connected, while the sensor and
controller are connected via a network.

whether or not the most recent packet was dropped (see, e.g., [60, 61, 68]). If network communications

are time-stamped, then θ(k) is measurable at time k. Suppose that the transition probabilities governing

packet loss are time-varying and a priori unknown. Many factors affect packet loss probabilities, but it

might be reasonable to assume that the current packet loss probabilities are a function of the signal-to-noise

ratio (SNR) (e.g., see the discussion in [50]) so that measurement of the SNR at time k yields the current

transition probabilities Π(ψ(k)) of the Markov chain. In this scenario, both θ(k) and ψ(k) are measurable at

time k. Accordingly, in Section 6.4, synthesis of a feedback controller for the plant in (6.1) is examined that

at time k has access to the plant output y(k), the current mode θ(k) of the Markov chain, and the current

value ψ(k) of the switching sequence.

Before the control synthesis results of Section 6.4 can be stated, some preliminary results need to be

developed. A few technical results that are needed for control synthesis are presented in Section 6.2. In

Section 6.3, a controller is constructed that at each time k has access to the plant output y(k), the current

mode θ(k) of the Markov chain, and knowledge of some finite number of future values ψ(k+ 1), . . . , ψ(k+L)

of the switching sequence. Depending upon the application, the controller construction in Section 6.3 may

be useful in its own right. The results of Section 6.3, however, are applied in Section 6.4 under an additional

assumption to construct a controller dependent only on the present and the past.

6.2 Technical Prerequisites

The synthesis results of the chapter require the technical results reported in this section. Stability and

disturbance attenuation results for a Markov jump linear system where the parameter matrices depend

explicitly on time, as well as on the current mode of the Markov chain are stated in Section 6.2.1. The

adjoint state equation associated with a time-varying Markov jump linear system is examined in Section 6.2.2,

and Section 6.2.3 contains uniform stability and uniform disturbance attenuation results for a time-varying

Markov jump linear system where the sequence of transition probability matrices of the Markov chain is a
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priori unknown.

6.2.1 Time-varying Markov jump linear systems

Let Gk = {(A(i, k), B(i, k), C(i, k), D(i, k)) : i ∈ N , k ∈ N0} where A(i, k) ∈ Rn×n, B(i, k) ∈ Rn×m,

C(i, k) ∈ Rp×n, and D(i, k) ∈ Rp×m are bounded for i ∈ N and k ∈ N0. For technical reasons, consider the

time-varying, time-inhomogeneous Markov jump linear system, denoted (Gk, P, p(0)) and described by the

difference equation

x(k + 1)

z(k)

 =

A(θ(k), k) B(θ(k), k)

C(θ(k), k) D(θ(k), k)


x(k)

w(k)

 (6.2)

and initial condition x(0), where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is a disturbance vector, z(k) ∈ Rp

is an error vector, and θ : N0 × Ω→ N is a finite Markov chain characterized by the sequence P : N→ TN

of transition probability matrices and initial distribution p(0).

The (random) state transition matrix is expressed

Φ(k, j) =


A(θ(k − 1), k − 1)A(θ(k − 2), k − 2) · · ·A(θ(j), j) : k > j

I : k = j

(6.3)

Exponential mean square stability of the time-varying, time-inhomogeneous Markov jump linear system

(Gk, P, p(0)) in (6.2) may be characterized by a stochastic Lyapunov criterion similar to Proposition 4.2.

Proposition 6.1. The time-varying, time-inhomogeneous Markov jump linear system (Gk, P, p(0)) in (6.2)

is exponentially mean square stable if and only if there exist η, ρ, ν > 0 and a function X : N × N0 → S+
n

such that

ηI ≤ X(i, k) ≤ ρI (6.4a)

AT(i, k)X̃(i, k + 1)A(i, k)−X(i, k) ≤ −νI (6.4b)

for all i ∈ N and all k ∈ N0 where X̃(i, k + 1) =
∑N
j=1 pij(k + 1)X(j, k + 1). Moreover, if (6.4) holds, one

may take c = ρ/η and λ = 1− ν/ρ in Definition 4.1.

Proof. The proof follows the same format as the proof of Proposition 4.2 (found in [36]). Namely, V (i, k, y) =

yTX(i, k)y is a stochastic Lyapunov function if (6.4) holds, and X(i, k) = E
[∑∞

j=k ΦT(j, k)Φ(j, k) | θ(k) = i
]

satisfies (6.4) if the system is exponentially mean square stable.
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Mean square strict contractiveness of the time-varying, time-inhomogeneous Markov jump linear system

(Gk, P, p(0)) in (6.2) may be characterized by a stochastic Kalman-Yakubovich-Popov (KYP) criterion similar

to Proposition 5.3.

Proposition 6.2 (Thm. 2 of [1]). Assume the time-varying, time-inhomogeneous Markov jump linear system

(Gk, P, p(0)) in (6.2) is weakly controllable and pi(k) > 0 for all i ∈ N and k ∈ N0. The system (Gk, P, p(0))

is exponentially mean square stable and mean square strictly contractive if and only if there exist η, ρ, ν > 0

and a function X : N × N0 → S+
n such that

ηI ≤ X(i, k) ≤ ρI (6.5a)A(i, k) B(i, k)

C(i, k) D(i, k)


T X̃(i, k + 1) 0

0 I


A(i, k) B(i, k)

C(i, k) D(i, k)

−
X(i, k) 0

0 I

 ≤ −νI (6.5b)

for all i ∈ N and all k ∈ N0 where X̃(i, k + 1) =
∑N
j=1 pij(k + 1)X(j, k + 1).

6.2.2 Adjoint system

As discussed in Section 2.3, every bounded linear operator defined on a Hilbert space has an associated

Hilbert-adjoint operator, and the induced norm of the bounded linear operator and its adjoint are equal.

Thus, it is sometimes fruitful to work with the Hilbert-adjoint operator when trying to establish an upper

bound on the induced norm of the original linear operator. The Hilbert-adjoint of a time-varying Markov

jump linear system, viewed as an input-output operator, is derived in this section.

Lemma 6.3. Let x(0) = 0 and consider the bounded linear operator G : `2e[0, T ] → `2e[0, T ] defined by the

system in (6.2), i.e., w
G7→ z. The Hilbert-adjoint, G∗ : `2e[0, T ] → `2e[0, T ], is the linear map v

G∗

7→ f defined

by the difference equation

s(k − 1)

f(k)

 =

AT(θ(k), k) CT(θ(k), k)

BT(θ(k), k) DT(θ(k), k)


s(k)

v(k)

 (6.6)

and final condition s(T ) = 0 where 0 ≤ k ≤ T , s(k) ∈ Rn is the adjoint state vector, v(k) ∈ Rp is the adjoint

disturbance vector, and f(k) ∈ Rm is the adjoint error vector.

Proof. By Definition 2.14, it suffices to show that G∗ is the operator that satisfies 〈Gw, v〉e = 〈w,G∗v〉e for

all v, w ∈ `2e[0, T ].

〈Gw, v〉e = 〈z, v〉e
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= E

[
T∑
k=0

vT(k)z(k) + sT(k)x(k + 1)− sT(k − 1)x(k)

]
(6.7)

= E

 T∑
k=0

s(k)

v(k)


T x(k + 1)

z(k)

− sT(k − 1)x(k)



= E

 T∑
k=0

s(k)

v(k)


T A(θ(k), k) B(θ(k), k)

C(θ(k), k) D(θ(k), k)


x(k)

w(k)

− sT(k − 1)x(k)



= E

 T∑
k=0

s(k − 1)

f(k)


T x(k)

w(k)

− sT(k − 1)x(k)


= E

[
T∑
k=0

fT(k)w(k)

]
= 〈w,G∗v〉e

where (6.7) follows since s(T ) = x(0) = 0.

The solution to (6.6) with arbitrary final condition (i.e., s(T ) is not necessarily zero) is expressed

s(k) = ΦT(T + 1, k + 1)s(T ) +

T∑
j=k+1

ΦT(j, k + 1)CT(θ(j), j)v(j)

for −1 ≤ k ≤ T and is the sum of the zero-input (v ≡ 0) response and zero-state (s(T ) = 0) response,

respectively. Since λmax

(
ΦT(k, j)Φ(k, j)

)
= λmax

(
Φ(k, j)ΦT(k, j)

)
the adjoint state equation is stable if and

only if the original state equation is stable. By Lemma 2.15, ‖G‖`2e[0,T ]→`2e[0,T ] = ‖G∗‖`2e[0,T ]→`2e[0,T ]. Thus,

the adjoint state equation in (6.6) is mean square strictly contractive if and only if the original state equation

in (6.2) is mean square strictly contractive.

If the time-varying Markov jump linear system in (6.2) is exponentially mean square stable, let T →∞

so that the adjoint system is generated by the difference equation

s(k − 1)

f(k)

 =

AT(θ(k), k) CT(θ(k), k)

BT(θ(k), k) DT(θ(k), k)


s(k)

v(k)

 (6.8)

with final condition limT→∞ s(T ) = 0 where k ∈ N0. Now make the following change of variables

ś(t) := s(−t), f́(t) := f(−t), v́(t) := v(−t), θ́(t) := θ(−t),
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ÁT(i, t) ĆT(i, t)

B́T(i, t) D́T(i, t)

 :=

AT(i,−t) CT(i,−t)

BT(i,−t) DT(i,−t)


where t ∈ Z−0 and i ∈ N . Then by (6.8),

ś(t+ 1)

f́(t)

 =

ÁT(θ́(t), t) ĆT(θ́(t), t)

B́T(θ́(t), t) D́T(θ́(t), t)


ś(t)
v́(t)

 (6.9)

where t ∈ Z−0 . The Markov jump linear system (6.9) progresses forward in time from an initial condition in

the infinite past.

6.2.3 Time-varying switched Markov jump linear systems

In this section, the time-varying, time-inhomogeneous Markov jump linear system in (6.2) is examined when

the sequence P of transition probability matrices which describes θ is a priori unknown but varies in the finite

set {Π(1), . . . ,Π(J)}. Thus, P (k) = Π(ψ(k)) where ψ ∈ Ψ is some a priori unknown switching sequence in

the set Ψ of all possible switching sequences. Define the switched Markov jump linear system

(Gk,Π,Ψ, p(0)) = {(Gk,Π ◦ ψ, p(0)) : ψ ∈ Ψ}. (6.10)

Many of the results derived in Sections 4.4 and 5.4 can be extended to apply to the switched Markov

jump linear system in (6.10). The relevant results are stated here with minimal discussion, and the proofs

largely mirror those in Sections 4.4 and 5.4.

Lemma 6.4. Suppose system (Gk,Π,Ψ, p(0)) is uniformly exponentially mean square stable and M ∈ N0 is

such that cλM+2 < 1 where c, λ are as in (4.9). Then for each ψ ∈ Ψ

Yψ(i, k) :=

k+M+1∑
j=k

E
[
ΦT(j, k)Φ(j, k) | θ(k) = i

]
(6.11)

satisfies

ηI ≤ Yψ(i, k) ≤ ρI (6.12a)

AT(i, k)Ỹψ(i, k + 1)A(i, k)− Yψ(i, k) ≤ −νI. (6.12b)

for all i ∈ N and all k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1), η = 1, ρ = c/(1− λ), and

ν = 1− cλM+2.
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Proof. Replace A(i) with A(i, k) in the proof of Lemma 6.4 and proceed in the same manner.

Lemma 6.5. The switched Markov jump linear system (Gk,Π,Ψ, p(0)) is uniformly exponentially mean

square stable if and only if there exist η, ρ, ν > 0 and functions Yψ : N × N0 → S+
n , ψ ∈ Ψ such that

ηI ≤ Yψ(i, k) ≤ ρI (6.13a)

AT(i, k)Ỹψ(i, k + 1)A(i, k)− Yψ(i, k) ≤ −νI. (6.13b)

for all ψ ∈ Ψ, i ∈ N , and k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1).

Proof. Necessity of (6.13) follows from Lemma 6.4. For sufficiency, (6.13) implies that Yψ is a Lyapunov

function for the individual system (Gk,Π◦ψ, p(0)) and satisfies (6.4) in Proposition 6.1. Thus the individual

system (Gk,Π ◦ψ, p(0)) is exponentially mean square stable with decay rate λ = 1− ν/ρ and c = ρ/η. Since

η, ρ, ν are independent of ψ in (6.13), λ and c apply uniformly to all systems in the family (Gk,Π,Ψ, p(0)).

Let L(i, k,X), R(i, k,X),W(i, k,X),M(i, k,X), and S(i, k,X) be defined analogously to Definition 5.15

by replacing A(i), B(i), C(i), D(i) with A(i, k), B(i, k), C(i, k), D(i, k), respectively. Consider the Riccati

difference equations

Xψ(i, k, T, ε) = S(i, k, X̃ψ(i, k + 1, T, ε)) + εI (6.14a)

Xψ(i, T + 1, T, ε) = 0 (6.14b)

where i ∈ N , T ∈ N0, 0 ≤ k ≤ T , ψ ∈ Ψ, ε > 0, and X̃ψ(i, k+ 1, T, ε) =
∑N
j=1 πij(ψ(k+ 1))Xψ(j, k+ 1, T, ε).

Following the same steps in Section 5.4, one may show that solutions to the Riccati difference equations (6.14)

are well-defined, uniformly positive definite, and uniformly bounded when (Gk,Π,Ψ, p(0)) is uniformly stable

and contractive. Proceeding as in Section 5.4, one can prove the following result.

Lemma 6.6. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. If (Gk,Π,Ψ, p(0)) is uniformly

exponentially mean square stable and uniformly mean square strictly contractive then there exist η, ρ > 0

such that for all ε ∈ (0, η), there exist M ∈ N0 and ν > 0 such that

Yψ(i, k) := Xψ(i, k, k +M, ε) (6.15)
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satisfies

εI ≤ Yψ(i, k) ≤ ρI (6.16a)A(i, k) B(i, k)

C(i, k) D(i, k)


T Ỹψ(i, k + 1) 0

0 I


A(i, k) B(i, k)

C(i, k) D(i, k)

−
Yψ(i, k) 0

0 I

 ≤ −νI (6.16b)

for all ψ ∈ Ψ, i ∈ N , and k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1) and Xψ is defined

in (6.14).

Proof. Time-varying counterparts to Lemma 5.20, Lemmas 5.22–5.23, Theorem 5.24, and Lemmas 5.25–5.27

involving the Riccati difference equations in (6.14) and the matrices A(i, k), B(i, k), C(i, k), D(i, k) can be

proved with only slight modifications to the original proofs. Lemma 6.6 is the time-varying counterpart to

Lemma 5.27.

Lemma 6.7. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. The switched Markov jump linear system

(Gk,Π,Ψ, p(0)) is uniformly exponentially mean square stable and uniformly mean square strictly contractive

if and only if there exist η, ρ, ν > 0 and functions Yψ : N × N0 → S+
n , ψ ∈ Ψ such that

ηI ≤ Yψ(i, k) ≤ ρI (6.17a)A(i, k) B(i, k)

C(i, k) D(i, k)


T Ỹψ(i, k + 1) 0

0 I


A(i, k) B(i, k)

C(i, k) D(i, k)

−
Yψ(i, k) 0

0 I

 ≤ −νI (6.17b)

for all ψ ∈ Ψ, i ∈ N , and k ∈ N0 where Ỹψ(i, k + 1) =
∑N
j=1 πij(ψ(k + 1))Yψ(j, k + 1).

Proof. Necessity of (6.17) follows from Lemma 6.6. For sufficiency,

E
[
‖z(k)‖2 − ‖w(k)‖2 + xT(k + 1)Yψ(θ(k + 1), k + 1)x(k + 1)− xT(k)Yψ(θ(k), k)x(k)

]
(6.18)

= E


x(k)

w(k)


T

A(θ(k), k) B(θ(k), k)

C(θ(k), k) D(θ(k), k)


T Ỹψ(θ(k), k + 1) 0

0 I


A(θ(k), k) B(θ(k), k)

C(θ(k), k) D(θ(k), k)



−

Yψ(θ(k), k) 0

0 I



x(k)

w(k)


 (6.19)

≤ −νE[ ‖w(k)‖2 ]. (6.20)

where the appearance of Ỹψ(θ(k), k+1) in (6.19) follows from an iterated expectation applied to the third term

of the sum in (6.18). Note that Yψ(i, k) is positive definite and x(0) = 0. Sum both sides of inequality (6.20)
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to get

l∑
k=0

E
[
‖z(k)‖2

]
≤ (1− ν)

l∑
k=0

E
[
‖w(k)‖2

]

for all l ∈ N0. Since ψ ∈ Ψ was arbitrary, Definition 5.10 is satisfied with γ =
√

1− ν so (Gk,Π,Ψ, p(0)) is

uniformly mean square strictly contractive.

6.3 Control Synthesis with Finite Knowledge of the Future

In this section, the goal is to synthesize a feedback controller for the plant in (6.1) under the assumption

that at time k, the controller has access to the plant output y(k), a perfect measurement of the current mode

θ(k) of the Markov chain, and knowledge of some finite number of future values ψ(k + 1), . . . , ψ(k + L) of

the switching sequence.

In some applications, knowledge of ψ(k + 1), . . . , ψ(k + L) may be available at time k. For example, if

the sequence of transition probability matrices of the Markov chain is in fact known (i.e., Ψ = {ψ}), then

the results of Section 6.3 provide synthesis results for the class of time-inhomogeneous Markov jump linear

systems where the sequence of transition probability matrices is known and varies in a finite set. To the

author’s knowledge, the nonconservative controller synthesis reported in Section 6.3 for this class of Markov

jump linear systems is the first of its kind. In other applications, the sequence of transition probability

matrices may not be fully known a priori, but a receding horizon view of the sequence is available.

In any case, the results of Section 6.3 are important as theoretical tools and are applied in Section 6.4 to

construct controllers with access to only the plant output y(k), the current mode θ(k) of the Markov chain,

and the current value ψ(k) of the switching sequence. As discussed in the introduction of the chapter, this

type of controller may be more realistic for some applications.

6.3.1 Dynamic output feedback controller

Suppose that the output y(k) of the plant in (6.1) is available for feedback, and suppose that θ(k) and the

next L values, ψL(k), of the switching sequence are available to the controller at time k where L ∈ N0 is

some finite horizon and ψL(k) = (ψ(k + 1), ψ(k + 2), . . . , ψ(k + L)) as defined in Section 3.3. Consider a

finite-future-dependent output feedback controller of the form

x̂(k + 1) = Â(θ(k), ψL(k))x̂(k) + B̂(θ(k), ψL(k))y(k) (6.21a)

u(k) = Ĉ(θ(k), ψL(k))x̂(k) + D̂(θ(k), ψL(k))y(k) (6.21b)
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where x̂(k) ∈ Rn is the controller state; Â : N ×ΨL → Rn×n, B̂ : N ×ΨL → Rn×p2 , Ĉ : N ×ΨL → Rm2×n,

and D̂ : N × ΨL → Rm2×p2 are the controller parameter matrices; and, ΨL is the set of sequences

of length L that occur in Ψ, as defined in Section 3.3. Synthesis methods for the controller matrices

{(Â(i, r), B̂(i, r), Ĉ(i, r), D̂(i, r)) : i ∈ N , r ∈ ΨL} that ensure design objectives of stability and/or distur-

bance attenuation are investigated in Section 6.3.5.

Define x̄(k) = [xT(k) x̂T(k)]T. The closed-loop system is expressed

x̄(k + 1)

z(k)

 =

Ā(θ(k), ψL(k)) B̄(θ(k), ψL(k))

C̄(θ(k), ψL(k)) D̄(θ(k), ψL(k))


x̄(k)

w(k)

 (6.22)

where

Ā(i, r) =

A(i) +B2(i)D̂(i, r)C2(i) B2(i)Ĉ(i, r)

B̂(i, r)C2(i) Â(i, r)

 , B̄(i, r) =

B1(i) +B2(i)D̂(i, r)D21(i)

B̂(i, r)D21(i)

 ,
C̄(i, r) =

[
C1(i) +D12(i)D̂(i, r)C2(i) D12(i)Ĉ(i, r)

]
, D̄(i, r) = D11(i) +D12(i)D̂(i, r)D21(i).

for i ∈ N and r ∈ ΨL. The closed-loop matrices can be rewritten

Ā(i, r) = A(i) + B2(i)K(i, r)C2(i), B̄(i, r) = B1(i) + B2(i)K(i, r)D21(i), (6.23a)

C̄(i, r) = C1(i) +D12(i)K(i, r)C2(i), D̄(i, r) = D11(i) +D12(i)K(i, r)D21(i), (6.23b)

where

A(i) =

A(i) 0

0 0

 , B1(i) =

B1(i)

0

 , B2(i) =

0 B2(i)

I 0

 , C1(i) =

[
C1(i) 0

]
, (6.24a)

C2(i) =

 0 I

C2(i) 0

 , D12(i) =

[
0 D12(i)

]
, D21(i) =

 0

D21(i)

 , K(i, r) =

Â(i, r) B̂(i, r)

Ĉ(i, r) D̂(i, r)

 . (6.24b)

Note that the closed-loop matrices in (6.23) depend affinely on the controller matrices.

6.3.2 Full state feedback controller

If y(k) = x(k), consider a finite-future-dependent state feedback controller of the form

u(k) = F (θ(k), ψL(k))x(k) (6.25)
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where F : N × ΨL → Rm2×n. Synthesis methods for the controller matrices {F (i, r) : i ∈ N , r ∈ ΨL} that

ensure design objectives of stability and/or disturbance attenuation are examined in Section 6.3.5.

The closed-loop system with the plant in (6.1) and the controller in (6.25) is expressed

x(k + 1)

z(k)

 =

F̄ (θ(k), ψL(k)) B1(θ(k))

H̄(θ(k), ψL(k)) D11(θ(k))


x(k)

w(k)

 (6.26)

with

F̄ (i, r) = A(i) +B2(i)F (i, r), H̄(i, r) = C1(i) +D12(i)F (i, r) (6.27)

where i ∈ N and r ∈ ΨL.

6.3.3 Lyapunov and KYP criteria for the closed-loop system

Lyapunov and KYP criteria, similar to Theorems 4.12 and 5.29, for the closed-loop switched Markov jump

linear systems of Sections 6.3.1 and 6.3.2 are reported in this section. These criteria are used in the control

synthesis results of Sections 6.3.4 and 6.3.5.

Output feedback

Let T ∈ N0 and r = (r1, r2, . . . , rT+1) ∈ ΨT+1. For the remainder of this chapter, the notation established

in Section 2.2 is used, where rm:n = (rm, rm+1, . . . , rn) for m and n such that 1 ≤ m ≤ n ≤ T + 1.

Lemma 6.8. The closed-loop switched Markov jump linear system in (6.22) with the output feedback con-

troller in (6.21) is uniformly exponentially mean square stable if and only if there exist M ∈ N0 and a

function X : N ×ΨM+L → S+
2n such that

ĀT(i, r1:L)

N∑
j=1

πij(r1)X(j, r2:M+L+1)Ā(i, r1:L)−X(i, r1:M+L) < 0 (6.28)

for any i ∈ N and any r = (r1, r2, . . . , rM+L+1) ∈ ΨM+L+1.

Proof. For sufficiency of (6.28), define Yψ(i, k) := X(i, ψM+L(k)) and Ā(i, k) := Ā(i, ψL(k)). Since N ×

ΨM+L+1 is a finite set, there exist η, ρ, ν > 0 such that (6.13) holds with Ā in place of A. Now appeal to

Lemma 6.5.

For necessity of (6.28), define Ā(i, k) := Ā(i, ψL(k)). Let (i, r) ∈ N × ΨM+L+1 be arbitrary. By

definition of ΨM+L+1, there exist ψ ∈ Ψ and t ∈ N0 such that ψM+L+1(t) = r. Construct Yψ for the
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closed-loop system using Lemma 6.4. By construction, Yψ(i, t) depends only on i and ψM+L(t). Indeed, if

t 6= k but ψM+L(t) = ψM+L(k) then Yψ(i, t) = Yψ(i, k). To see why, note that

Ā(i, t+ τ) = Ā(i, ψL(t+ τ)) = Ā(i, ψL(k + τ) = Ā(i, k + τ)

for τ = 0, 1, . . . ,M and

P {θ(t+M) = iM , . . . , θ(t+ 1) = i1 | θ(t) = i0} = πi0i1(ψ(t+ 1))πi1i2(ψ(t+ 2)) · · ·πiM−1iM (ψ(t+M))

= πi0i1(ψ(k + 1))πi1i2(ψ(k + 2)) · · ·πiM−1iM (ψ(k +M))

= P {θ(k +M) = iM , . . . , θ(k + 1) = i1 | θ(k) = i0} .

Therefore

Yψ(i, t) = E

t+M+1∑
j=t

ΦT(j, t)Φ(j, t) | θ(t) = i

 = E

k+M+1∑
j=k

ΦT(j, k)Φ(j, k) | θ(k) = i

 = Yψ(i, k)

where Φ is the closed-loop state transition matrix. Thus, define X(i, r1:M+L) := Yψ(i, t) and define

X(i, r2:M+L+1) := Yψ(i, t+ 1). One recovers every inequality in (6.28) via Lemma 6.4.

Lemma 6.9. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. The closed-loop switched Markov

jump linear system in (6.22) with the output feedback controller in (6.21) is uniformly exponentially mean

square stable and uniformly mean square strictly contractive if and only if there exist M ∈ N0 and a function

X : N ×ΨM+L → S+
2n such that

Ā(i, r1:L) B̄(i, r1:L)

C̄(i, r1:L) D̄(i, r1:L)


T ∑N

j=1 πij(r1)X(j, r2:T+1) 0

0 I


Ā(i, r1:L) B̄(i, r1:L)

C̄(i, r1:L) D̄(i, r1:L)

−
X(i, r1:T ) 0

0 I

 < 0

(6.29)

for any i ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1 where T := M + L.

Proof. For sufficiency of (6.29), define Yψ(i, k) := X(i, ψT (k)), and define Ā(i, k) := Ā(i, ψL(k)), B̄(i, k) :=

B̄(i, ψL(k)), C̄(i, k) := C̄(i, ψL(k)), and D̄(i, k) := D̄(i, ψL(k)). Since N × ΨT+1 is a finite set, there exist

η, ρ, ν > 0 such that (6.17) holds with Ā, B̄, C̄, D̄ in place of A,B,C,D. Now appeal to Lemma 6.7.

For necessity of (6.29), again define Ā(i, k) := Ā(i, ψL(k)), B̄(i, k) := B̄(i, ψL(k)), C̄(i, k) := C̄(i, ψL(k)),

and D̄(i, k) := D̄(i, ψL(k)). Let (i, r) ∈ N × ΨT+1 be arbitrary. By definition of ΨT+1, there exist ψ ∈ Ψ

and t ∈ N0 such that ψT+1(t) = r. Construct Yψ for the closed-loop system using Lemma 6.6. Since the
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time-variation of the closed-loop matrices is parameterized in terms of ψ, Yψ(i, t) may be computed with

knowledge of only i and ψT (t). Indeed, if t 6= k but ψT (t) = ψT (k) then Yψ(i, t) = Yψ(i, k). To establish this

claim, note that the base case holds from (6.14b):

Xψ(i, t+M + 1, t+M, ε) = Xψ(i, k +M + 1, k +M, ε) = 0. (6.30)

Now

Xψ(i, t+M, t+M, ε) = S(i, t+M, X̃ψ(i, t+M + 1, t+M, ε)) + εI (6.31)

= S(i, k +M, X̃ψ(i, k +M + 1, k +M, ε)) + εI (6.32)

= Xψ(i, k +M,k +M, ε)

where (6.31) follows from the recursive relation (6.14a), and (6.32) follows from (6.30) and the fact that

Ā(i, t+M) B̄(i, t+M)

C̄(i, t+M) D̄(i, t+M)

 =

Ā(i, ψL(t+M)) B̄(i, ψL(t+M))

C̄(i, ψL(t+M)) D̄(i, ψL(t+M))

 (6.33)

=

Ā(i, ψL(k +M)) B̄(i, ψL(k +M))

C̄(i, ψL(k +M)) D̄(i, ψL(k +M))

 (6.34)

=

Ā(i, k +M) B̄(i, k +M)

C̄(i, k +M) D̄(i, k +M)

 (6.35)

where (6.33) and (6.35) follow by definition, and (6.34) follows since ψL(t+M) = ψL(k+M) by assumption.

Induction yields Yψ(i, t) = Yψ(i, k). Thus, define X(i, r1:T ) := Yψ(i, t) and define X(i, r2:T+1) := Yψ(i, t+1).

One recovers every inequality in (6.29) from (6.16).

State feedback

Lemma 6.10. The closed-loop switched Markov jump linear system in (6.26) with the state feedback con-

troller in (6.25) is uniformly exponentially mean square stable if and only if there exist M ∈ N0 and a

function X : N ×ΨM+L → S+
n such that

F̄T(i, r1:L)

N∑
j=1

πij(r1)X(j, r2:M+L+1)F̄ (i, r1:L)−X(i, r1:M+L) < 0 (6.36)

for any i ∈ N and any r = (r1, r2, . . . , rM+L+1) ∈ ΨM+L+1.
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Proof. The proof mirrors that of Lemma 6.8.

Lemma 6.11. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. The closed-loop switched Markov

jump linear system in (6.26) with the state feedback controller in (6.25) is uniformly exponentially mean

square stable and uniformly mean square strictly contractive if and only if there exist M ∈ N0 and a function

X : N ×ΨM+L → S+
n such that

F̄ (i, r1:L) B1(i)

H̄(i, r1:L) D11(i)


T ∑N

j=1 πij(r1)X(j, r2:T+1) 0

0 I


F̄ (i, r1:L) B1(i)

H̄(i, r1:L) D11(i)

−
X(i, r1:T ) 0

0 I

 < 0

(6.37)

for any i ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1 where T := M + L.

Proof. The proof mirrors that of Lemma 6.9.

6.3.4 Stabilizability and detectability

An important question is the existence of a controller of the form (6.25) that ensures the closed-loop system

is uniformly exponentially mean square stable. A related question is the existence of an observer that ensures

the error between the system state and the observer state decays exponentially in mean square.

Definition 6.12. The open-loop plant in (6.1) is uniformly mean square stabilizable by a finite-future-

dependent state feedback controller if there exists L ∈ N0 and a function F : N × ΨL → Rm2×n such

that

x(k + 1) = A(θ(k))x(k) +B2(θ(k))u(k)

u(k) = F (θ(k), ψL(k))x(k)

is uniformly exponentially mean square stable.

Definition 6.13. The open-loop plant in (6.1) is uniformly mean square detectable by a finite-future-

dependent observer if there exists L ∈ N0 and a function O : N ×ΨL → Rm2×n such that the error

e(k + 1) = [A(θ(k)) +O(θ(k), ψL(k))C2(θ(k))] e(k), e(0) = e0

is uniformly exponentially mean square stable where

e(k) := x(k)− x̂(k)
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and

x(k + 1) = A(θ(k))x(k) +B2(θ(k))u(k), x(0) = x0

y(k) = C2(θ(k))x(k)

x̂(k + 1) = A(θ(k))x̂(k) +B2(θ(k))u(k)−O(θ(k), ψL(k)) (y(k)− ŷ(k)) , x̂(0) = x̂0

ŷ(k) = C2(θ(k))x̂(k).

In Section 6.3.5, it is shown that a mean square stabilizing output feedback controller of the form (6.21)

exists if and only if the open-loop plant in (6.1) is uniformly mean square stabilizable by a finite-future-

dependent state feedback controller and uniformly mean square detectable by a finite-future-dependent

observer.

LMI conditions equivalent to the concepts of stabilizability and detectability in Definitions 6.12 and 6.13

are now derived.

Lemma 6.14. The open-loop plant in (6.1) is uniformly mean square stabilizable by a finite-future-dependent

state feedback controller if and only if there exists T ∈ N0 and U : N ×ΨT → S+
n such that

WT(i)

A(i)U(i, r1:T )AT(i)−

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1
W (i) < 0 (6.38)

for all i ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where W (i) is any basis of kerBT
2 (i).

Proof. Suppose the open-loop plant in (6.1) is uniformly mean square stabilizable by a finite-future-dependent

controller. Let L and F be as in Definition 6.12, and let F̄ be the closed-loop system matrix in (6.27). By

Lemma 6.10, there exist M and X such that (6.36) holds. Two applications of the Schur complement show

that inequality (6.36) is equivalent

(A(i) +B2(i)F (i, r1:L))U(i, r1:T ) (A(i) +B2(i)F (i, r1:L))
T −

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

< 0 (6.39)

where T := M +L and U := X−1. Pre- and post-multiply (6.39) by WT(i) and W (i), respectively, to arrive

at (6.38).

Conversely, suppose there exist T and U such that (6.38) holds. Application of Lemma 2.42 implies that



CHAPTER 6. CONTROL SYNTHESIS 88

there exists F : N ×ΨT+1 → Rm2×n such that

(A(i) +B2(i)F (i, r))
T

N∑
j=1

πij(r1)X(j, r2:T+1) (A(i) +B2(i)F (i, r))−X(i, r1:T ) < 0 (6.40)

holds where X := U−1. Define F̄ (i, k) := A(i) + B2(i)F (i, ψT+1(k)) and Yψ(i, k) := X(i, ψT (k)). In-

equality (6.40) and Lemma 6.5 ensure that the closed-loop system is uniformly exponentially mean square

stable.

The matrices W (i), i ∈ N in Lemma 6.14 may be readily computed using singular value decomposition

(see Lemma 2.35). The inequalities in (6.38) are in general not LMIs. However, Lemma 6.14 can be stated

in an equivalent LMI form using a trick from [22].

Lemma 6.15. The open-loop plant in (6.1) is uniformly mean square stabilizable by a finite-future-dependent

state feedback controller if and only if there exists T ∈ N0, U : N × ΨT → S+
n , G : N × ΨT+1 → Rn×n,

Z : N ×N ×ΨT+1 → S+
n such that

WT(i)
[
A(i)U(i, r1:T )AT(i) + Z(i, r)

]
W (i) < 0 (6.41a)Z(i, j, r) GT(i, r)

G(i, r) U(j, r2:T+1)

 > 0 (6.41b)

for all i, j ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where W (i) is any basis of kerBT
2 (i), and

Z(i, r) :=

N∑
j=1

πij(r1)Z(i, j, r)−G(i, r)−GT(i, r).

Proof. First, suppose that the open-loop plant in (6.1) is uniformly mean square stabilizable by a finite-

future-dependent state feedback controller. Thus, there exist T and U from Lemma 6.14 such that the

inequalities in (6.38) hold. The nonlinear inequalities in (6.38) can be converted to LMIs using a trick

from [22]. Let ε > 0 be small enough so that

WT(i)

A(i)U(i, r1:T )AT(i)−

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

+ εI

W (i) < 0 (6.42)

for all i ∈ N and r ∈ ΨT+1. Define

G(i, r) :=

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

, Z(i, j, r) := G(i, r)U−1(j, r2:T+1)G(i, r) + εI. (6.43)
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Note that

N∑
j=1

πij(r1)Z(i, j, r) = G(i, r)

N∑
j=1

πij(r1)U−1(j, r2:T+1)G(i, r) + εI

= G(i, r) + εI. (6.44)

Noting that G(i, r) = GT(i, r) by the definition in (6.43) and using the equality in (6.44)

Z(i, r) = −G(i, r)−GT(i, r) +

N∑
j=1

πij(r1)Z(i, j, r)

= −G(i, r) + εI

= −

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

+ εI. (6.45)

Inequality (6.41a) follows from (6.45) and inequality (6.42). To show inequality (6.41b), note by definition

of Z and symmetry of G

Z(i, j, r)−GT(i, r)U−1(j, r2:T+1)G(i, r) = εI > 0. (6.46)

Applying the Schur complement to (6.46) yields (6.41b).

Conversely, suppose that there exist T , U , G, and Z such that (6.41) holds. By the Schur complement,

inequality (6.41b) implies

Z(i, j, r) > GT(i, r)U−1(j, r2:T+1)G(i, r). (6.47)

Thus

N∑
j=1

πij(r1)Z(i, j, r) > GT(i, r)

N∑
j=1

πij(r1)U−1(j, r2:T+1)G(i, r) (6.48)

≥ GT(i, r) +G(i, r)−

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

(6.49)

where (6.48) follows by summing both sides of (6.47), and (6.49) follows from Lemma 2.43. Therefore

−

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

≤ Z(i, r) (6.50)

so that inequality (6.41a) implies (6.38) via (6.50) and Lemma 2.46.
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In addition to providing a numerical test for stabilizability, Lemma 6.15 implicitly provides a stabilizing

state feedback controller. Indeed, suppose the LMIs in Lemma 6.15 have been solved, and T , U , G, and Z

are given. As the proof of Lemma 6.15 shows, the inequalities in (6.41) ensure that the inequalities in (6.38)

from Lemma 6.14 hold with the same T and U . As the proof of Lemma 6.14 shows, a stabilizing state

feedback controller F that satisfies (6.40) is guaranteed to exist by Lemma 2.42. By the Schur complement,

inequality (6.40) is equivalent to

−
(∑N

j=1 πij(r1)X(j, r2:T+1)
)−1

A(i) +B2(i)F (i, r)

(A(i) +B2(i)F (i, r))
T −X(i, r1:T )

 < 0 (6.51)

With U (and hence X) fixed, inequality (6.51) is an LMI in variable F and can be solved using standard

numerical techniques. A solution to this LMI is guaranteed to exist. Alternatively, the proof of Lemma 2.42

and the formulas given in Lemma 2.41 can be used to algebraically construct a solution F .

Lemma 6.16. The open-loop plant in (6.1) is uniformly mean square detectable by a finite-future-dependent

observer if and only if there exists T ∈ N0 and S : N ×ΨT → S+
n such that

V T(i)

AT(i)

N∑
j=1

πij(r1)S(j, r2:T+1)A(i)− S(i, r1:T )

V (i) < 0 (6.52)

for all i ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where V (i) is any basis of kerC2(i).

Proof. Suppose the open-loop plant in (6.1) is uniformly mean square detectable by a finite-future-dependent

observer. Let L and O be as in Definition 6.13. By Definition 6.13 and Lemma 6.10, there exist M and S

such that

[A(i) +O(i, r1:L)C2(i)]
T

N∑
j=1

πij(r1)S(j, r2:M+L+1) [A(i) +O(i, r1:L)C2(i)]− S(i, r1:M+L) < 0 (6.53)

Pre- and post-multiply (6.53) by V T(i) and V (i), respectively, to arrive at (6.52) with T = M + L.

Conversely, suppose there exist T and S such that (6.52) holds. Lemma 2.42 implies that there exists

O : N ×ΨT+1 → Rn×p2 such that

[A(i) +O(i, r)C2(i)]
T

N∑
j=1

πij(r1)S(j, r2:T+1) [A(i) +O(i, r)C2(i)]− S(i, r1:T ) < 0 (6.54)

where i ∈ N and r ∈ ΨT+1. Define Ō(i, k) := A(i) + O(i, ψT+1(k))C2(i) and Yψ(i, k) := S(i, ψT (k)).

Inequality (6.54) and Lemma 6.5 ensure that the error e(k) in Definition 6.13 is uniformly exponentially
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mean square stable.

For a fixed T , the inequalities in (6.52) of Lemma 6.16 are LMIs in variable S. In addition to providing

a numerical test for detectability, Lemma 6.16 implicitly provides an observer that ensures the error in

Definition 6.13 decays exponentially in mean square. Indeed, if T and S satisfy the LMIs in (6.52), the

proof of Lemma 6.16 ensures that a solution O exists to the inequality in (6.54). For fixed S, the Schur

complement can be used to convert (6.54) to an LMI in variable O, which can be solved using standard

numerical techniques.

6.3.5 Controller construction via LMIs

Output and state feedback controllers of the forms (6.21) and (6.25), respectively, are now constructed that

ensure design objectives of stability and/or disturbance attention are met.

Output feedback

Theorem 6.17 shows that existence of an output feedback controller of the form (6.21) which ensures that the

closed-loop system is stable and contractive is equivalent to the feasibility of a number of matrix inequalities.

These matrix inequalities are not LMIs, but are converted to LMIs in Theorem 6.21. Theorem 6.17 is

analogous to the LMI characterization of H∞ controllers for deterministic linear time-invariant systems

found in Gahinet and Apkarian [20].

Theorem 6.17. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. There exists a finite-future-dependent

output feedback controller as in (6.21) such that the closed-loop system in (6.22) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive if and only if there exist T ∈ N0 and

functions S,U : N ×ΨT → S+
n such that


W1(i) 0

W2(i) 0

0 I


T 

A(i)U(i, r1:T )AT(i)− U(i, r) A(i)U(i, r1:T )CT
1 (i) B1(i)

C1(i)U(i, r1:T )AT(i) −I + C1(i)U(i, r1:T )CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.55a)
V1(i) 0

V2(i) 0

0 I


T 

AT(i)S̃(i, r)A(i)− S(i, r1:T ) AT(i)S̃(i, r)B1(i) CT
1 (i)

BT
1 (i)S̃(i, r)A(i) −I +BT

1 (i)S̃(i, r)B1(i) DT
11(i)

C1(i) D11(i) −I



V1(i) 0

V2(i) 0

0 I

 < 0

(6.55b)
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S(i, r1:T ) I

I U(i, r1:T )

 > 0

(6.55c)

for all i ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker

[
BT

2 (i)DT
12(i)

]
;[

V T
1 (i)V T

2 (i)
]T

is any basis of ker [C2(i)D21(i)]; and,

S̃(i, r) :=

N∑
j=1

πij(r1)S(j, r2:T+1), U(i, r) :=

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

.

Proof. Suppose there exists a finite-future-dependent controller such that the closed-loop system is uniformly

exponentially mean square stable and uniformly mean square strictly contractive, and let L, Â, B̂, Ĉ, D̂ be

as in (6.21). By Lemma 6.9 there exist M and X such that (6.29) holds. Let T = M + L and extend the

controller matrices Â, B̂, Ĉ, D̂ to be defined on N ×ΨT+1 so that for r ∈ ΨT+1Â(i, r) B̂(i, r)

Ĉ(i, r) D̂(i, r)

 :=

Â(i, r1:L) B̂(i, r1:L)

Ĉ(i, r1:L) D̂(i, r1:L)

 (6.56)

for all rL+1:T+1 ∈ ΨM+1. The closed-loop system with the controller defined on N × ΨT+1 in (6.56) thus

satisfies

Ā(i, r) B̄(i, r)

C̄(i, r) D̄(i, r)


T ∑N

j=1 πij(r1)X(j, r2:T+1) 0

0 I


Ā(i, r) B̄(i, r)

C̄(i, r) D̄(i, r)

−
X(i, r1:T ) 0

0 I

 < 0 (6.57)

for any r ∈ ΨT+1 and i ∈ N . By Lemma 2.44, inequality (6.57) is equivalent to



−
(∑N

j=1 πij(r1)X(j, r2:T+1)
)−1

Ā(i, r) B̄(i, r) 0

ĀT(i, r) −X(i, r1:T ) 0 C̄T(i, r)

B̄T(i, r) 0 −I D̄T(i, r)

0 C̄(i, r) D̄(i, r) −I


< 0 (6.58)

Using the decompositions in (6.23), inequality (6.58) can be expressed

H(i, r) +QT(i)KT(i, r)P(i) + PT(i)K(i, r)Q(i) < 0 (6.59)



CHAPTER 6. CONTROL SYNTHESIS 93

where r ∈ ΨT+1, i ∈ N , and

H(i, r) =



−
(∑N

j=1 πij(r1)X(j, r2:T+1)
)−1

A(i) B1(i) 0

AT(i) −X(i, r1:T ) 0 CT1 (i)

BT1 (i) 0 −I DT
11(i)

0 C1(i) D11(i) −I


P(i) =

[
BT2 (i) 0 0 DT

12(i)

]
Q(i) =

[
0 C2(i) D21(i) 0

]

For a fixed (i, r) ∈ N ×ΨT+1, Lemma 2.41 shows that (6.59) is feasible in K(i, r) if and only if

WT
P(i)H(i, r)WP(i) < 0 (6.60a)

WT
Q(i)H(i, r)WQ(i) < 0 (6.60b)

where WP(i) and WQ(i) are any matrices whose columns form bases of kerP(i) and kerQ(i), respectively.

Proceeding as in Section 5 of [20], inequalities (6.60a) and (6.60b) are respectively equivalent to


W1(i) 0

W2(i) 0

0 I


T 

A(i)U(i, r1:T )AT(i)−R(i, r) A(i)U(i, r1:T )CT
1 (i) B1(i)

C1(i)U(i, r1:T )AT(i) −I + C1(i)U(i, r1:T )CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.61a)
V1(i) 0

V2(i) 0

0 I


T 

AT(i)S̃(i, r)A(i)− S(i, r1:T ) AT(i)S̃(i, r)B1(i) CT
1 (i)

BT
1 (i)S̃(i, r)A(i) −I +BT

1 (i)S̃(i, r)B1(i) DT
11(i)

C1(i) D11(i) −I



V1(i) 0

V2(i) 0

0 I

 < 0

(6.61b)

where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker

[
BT

2 (i)DT
12(i)

]
;
[
V T

1 (i)V T
2 (i)

]T
is any basis of ker [C2(i)D21(i)];

S̃(i, r) =
∑N
j=1 πij(r1)S(j, r2:T+1); and, R, U , and S are defined by the partitions

X(i, r1:T ) =

 S(i, r1:T ) N(i, r1:T )

NT(i, r1:T ) F (i, r1:T )

 X−1(i, r1:T ) =

 U(i, r1:T ) L(i, r1:T )

LT(i, r1:T ) ∗


 N∑
j=1

πij(r1)X(j, r2:T+1)

−1

=

 R(i, r) M(i, r)

MT(i, r) ∗

 ;
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where the entries denoted by ∗ are of no importance. Now note that

R−1(i, r) =

N∑
j=1

πij(r1)S(j, r2:T+1)

−
N∑
j=1

πij(r1)N(j, r2:T+1)

 N∑
j=1

πij(r1)F (j, r2:T+1)

−1
N∑
j=1

πij(r1)NT(j, r2:T+1) (6.62)

≥
N∑
j=1

πij(r1)
(
S(j, r2:T+1)−N(j, r2:T+1)F−1(j, r2:T+1)NT(j, r2:T+1)

)
(6.63)

=

N∑
j=1

πij(r1)U−1(j, r2:T+1) (6.64)

where (6.62) follow from Lemma 2.32, inequality (6.63) follows from Lemma 2.40, and (6.64) follows from

Lemma 2.32. By Lemma 2.46, R(i, r) in (6.61a) may be replaced with
(∑N

j=1 πij(r1)U−1(j, r2:T+1)
)−1

,

which yields (6.55a). Note also by Lemma 2.32

U−1(i, r1:T ) = S(i, r1:T )−N(i, r1:T )F−1(i, r1:T )NT(i, r1:T ) (6.65)

Without loss of generality, N(i, r1:T ) may be assumed invertible. If N is not invertible, perturb X so that

N is invertible and (6.57) still holds. Thus, by (6.65) and Lemma 2.38, U−1(i, r1:T ) < S(i, r1:T ). The Schur

complement yields (6.55c).

Conversely, suppose there exist T ∈ N0 and functions S, U that satisfy (6.55). Define

X(i, r) =

 S(i, r) U−1(i, r)− S(i, r)

U−1(i, r)− S(i, r) S(i, r)− U−1(i, r)

 (6.66)

where i ∈ N and r ∈ ΨT . Inequality (6.55c) implies S(i, r) − U−1(i, r) > 0; coupled with the Schur

complement, this ensures X(i, r) > 0. By Lemma 2.32,

X−1(i, r) =

U(i, r) U(i, r)

U(i, r) U(i, r)
(
U(i, r)− S−1(i, r)

)−1
U(i, r)


 N∑
j=1

πij(r1)X(j, r2:T+1)

−1

=

U(i, r) U(i, r)

U(i, r) U(i, r)

(
U(i, r)−

(
S̃(i, r)

)−1
)−1

U(i, r)


Thus, for the choice of X in (6.66), inequalities (6.61) hold with R(i, r) = U(i, r). Starting with the

inequalities in (6.61), run the previous arguments in reverse to show that X in (6.66) satisfies (6.57) for
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some K(i, r), i ∈ N , r ∈ ΨT+1 which can be found via Lemma 2.41. With (6.57) in hand, define Ā(i, k) :=

Ā(i, ψT+1(k)), B̄(i, k) := B̄(i, ψT+1(k)), C̄(i, k) := C̄(i, ψT+1(k)), and D̄(i, k) := D̄(i, ψT+1(k)). Define

Yψ(i, k) := X(i, ψT (k)). With these definitions, inequality (6.57) and Lemma 6.7 ensure that the closed-loop

system is uniformly exponentially mean square stable and uniformly mean square strictly contractive.

Remark 6.18. Consider the case when N = {1}, J = 1, Π(1) = 1, and Ψ = {(1, 1, . . . )} so that (6.1)

reduces to a deterministic linear time-invariant system. Let U := U(1, 1, . . . , 1) and S := S(1, 1, . . . , 1) in

Theorem 6.17, and note that U = U and S = S̃. Then (6.55a)–(6.55c) reduce to equations (50)-(52) from

Gahinet and Apkarian [20], which is the well-known LMI solution for deterministic linear time-invariant H∞
control.

Existence of an output feedback controller of the form (6.21) that merely ensures closed-loop stability is

equivalent to the simpler matrix inequalities stated in Corollary 6.19.

Corollary 6.19. There exists a finite-future-dependent output feedback controller as in (6.21) such that the

closed-loop system in (6.22) is uniformly exponentially mean square stable if and only if there exist T ∈ N0

and functions S,U : N ×ΨT → S+
n such that

WT(i)

A(i)U(i, r1:T )AT(i)−

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1
W (i) < 0 (6.67a)

V T(i)

AT(i)

N∑
j=1

πij(r1)S(j, r2:T+1)A(i)− S(i, r1:T )

V (i) < 0 (6.67b)

S(i, r1:T ) I

I U(i, r1:T )

 > 0 (6.67c)

for all i ∈ N and any r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where W (i) is any basis of kerBT
2 (i), and V (i) is any

basis of kerC2(i).

Proof. Apply Theorem 6.17 to the plant in (6.1) with B1(i) = 0, C1(i) = 0, D11(i) = 0, D12(i) = 0,

D21(i) = 0, D22(i) = 0.

In fact, the third matrix inequality stated in Corollary 6.19 is unnecessary.

Corollary 6.20. There exists a finite-future-dependent output feedback controller as in (6.21) such that

the closed-loop system in (6.22) is uniformly exponentially mean square stable if and only if the open-loop

plant in (6.1) is uniformly mean square stabilizable by a finite-future-dependent state feedback controller and

uniformly mean square detectable by a finite-future-dependent observer.
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Proof. From Corollary 6.19 and Lemmas 6.14 and 6.16, stabilizability and detectability is clearly necessary.

Conversely, if S and U satisfy (6.67a) and (6.67b), S may be replaced with αS and U with αU for any

positive α without affecting (6.67a) or (6.67b). For α large enough, inequality (6.67c) holds with S replaced

by αS and U replaced by αU .

Note that the inequalities in (6.55) from Theorem 6.17 are in general not LMIs due to the presence of

U(i, r). However, they can be converted to LMI form.

Theorem 6.21. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. There exists a finite-future-dependent

output feedback controller as in (6.21) such that the closed-loop system in (6.22) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive if and only if there exists T ∈ N0 and

functions S,U : N ×ΨT → S+
n , G : N ×ΨT+1 → Rn×n, Z : N ×N ×ΨT+1 → S+

n such that


W1(i) 0

W2(i) 0

0 I


T 

A(i)U(i, r1:T )AT(i) + Z(i, r) A(i)U(i, r1:T )CT
1 (i) B1(i)

C1(i)U(i, r1:T )AT(i) −I + C1(i)U(i, r1:T )CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.68a)
V1(i) 0

V2(i) 0

0 I


T 

AT(i)S̃(i, r)A(i)− S(i, r1:T ) AT(i)S̃(i, r)B1(i) CT
1 (i)

BT
1 (i)S̃(i, r)A(i) −I +BT

1 (i)S̃(i, r)B1(i) DT
11(i)

C1(i) D11(i) −I



V1(i) 0

V2(i) 0

0 I

 < 0

(6.68b)S(i, r1:T ) I

I U(i, r1:T )

 > 0

(6.68c)Z(i, j, r) GT(i, r)

G(i, r) U(j, r2:T+1)

 > 0

(6.68d)

for all i, j ∈ N and r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker

[
BT

2 (i)DT
12(i)

]
;[

V T
1 (i)V T

2 (i)
]T

is any basis of ker [C2(i)D21(i)]; and,

S̃(i, r) :=

N∑
j=1

πij(r1)S(j, r2:T+1), Z(i, r) :=

N∑
j=1

πij(r1)Z(i, j, r)−G(i, r)−GT(i, r).

Proof. Inequality (6.55a) can be shown to be equivalent to inequalities (6.68a) and (6.68d) via the same

technique used in the proof of Lemma 6.15.
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Suppose the LMIs in Theorem 6.21 have been solved and T , S, U , G, Z are given. As the proof of

Theorem 6.21 shows (via Lemma 6.15), the inequalities in (6.68) ensure that the inequalities in (6.55) hold

with the same T , S, and U . As the proof of Theorem 6.17 shows, one may construct X from S and U

using (6.66) so that X satisfies (6.60). For each (i, r) ∈ N ×ΨT+1, the formulas in Lemma 2.41 can be used

to find some K(i, r) that satisfies (6.59), which is equivalent to (6.57). Alternatively, K can be constructed

by solving a second LMI problem. Namely, plug the solution X constructed in terms of S and U into the

inequality (6.59) and solve for K numerically; with X fixed, inequality (6.59) is clearly an LMI in variable K

and may be solved via standard numerical techniques. A solution K is guaranteed to exist by Lemma 2.41.

State feedback

Note that the stabilization problem with state feedback was considered in Section 6.3.4. See Lemmas 6.14

and 6.15. Theorems 6.22 and 6.23 below consider synthesis of state feedback controllers that, in addition to

stability, ensure some bound on closed-loop disturbance attenuation. The matrix inequalities in Theorem 6.22

are not LMIs, but are converted to LMI form in Theorem 6.23.

Theorem 6.22. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. There exists a finite-future-dependent

state feedback controller as in (6.25) such that the closed-loop system in (6.26) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive if and only if there exist T ∈ N0 and

function U : N ×ΨT → S+
n such that


W1(i) 0

W2(i) 0

0 I


T 

A(i)U(i, r1:T )AT(i)− U(i, r) A(i)U(i, r1:T )CT
1 (i) B1(i)

C1(i)U(i, r1:T )AT(i) −I + C1(i)U(i, r1:T )CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.69a)−U(i, r) B1(i)

BT
1 (i) −I +DT

11(i)D11(i)

 < 0

(6.69b)

for all i ∈ N and r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker

[
BT

2 (i)DT
12(i)

]
and

U(i, r) :=

 N∑
j=1

πij(r1)U−1(j, r2:T+1)

−1

.

Proof. Suppose there exists a finite-future-dependent state feedback controller such that the closed-loop
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system in uniformly exponentially mean square stable and uniformly mean square strictly contractive, and

let L and F be as in (6.25). By Lemma 6.11 there exist M and X such that (6.37) holds. Multiply out the

expression in (6.37) and note that the lower-right entry of the resulting partitioned matrix must be negative

definite, i.e.,

−I +BT
1 (i)

N∑
j=1

πij(r1)X(j, r2:T+1)B1(i) +DT
11(i)D11(i) < 0. (6.70)

Application of the Schur complement to (6.70) yields

−
(∑N

j=1 πij(r1)X(j, r2:T+1)
)−1

B1(i)

BT
1 (i) −I +DT

11(i)D11(i)

 < 0

which is equivalent to (6.69b) with U := X−1. Turning our attention to establishing (6.69a), note that two

applications of the Schur complement to (6.37) yield

F̄ (i, r1:L) B1(i)

H̄(i, r1:L) D11(i)


X−1(i, r1:T ) 0

0 I


F̄ (i, r1:L) B1(i)

H̄(i, r1:L) D11(i)


T

−


(∑N

j=1 πij(r1)X(j, r2:T+1)
)−1

0

0 I

 < 0

(6.71)

Pre- and post-multiply inequality (6.71) by
[
WT

1 (i)WT
2 (i)

]
and

[
WT

1 (i)WT
2 (i)

]T
, respectively, to arrive at

W1(i)

W2(i)


T

A(i) B1(i)

C1(i) D11(i)


U(i, r1:T ) 0

0 I


A(i) B1(i)

C1(i) D11(i)


T

−

U(i, r) 0

0 I



W1(i)

W2(i)

 < 0 (6.72)

where U = X−1. Now Lemma 2.45 shows that (6.72) is equivalent to (6.69a).

Conversely, suppose that T and U have been found such that (6.69) holds. Define X := U−1. Note that

0

I


T

A(i) B1(i)

C1(i) D11(i)


T ∑N

j=1 πij(r1)X(j, r2:T+1) 0

0 I


A(i) B1(i)

C1(i) D11(i)

−
X(i, r1:T ) 0

0 I



0

I


= −I +BT

1 (i)

N∑
j=1

πij(r1)X(j, r2:T+1)B1(i) +DT
11(i)D11(i)

< 0 (6.73)

where inequality (6.73) follows from the Schur complement and (6.69b). Inequalities (6.72) and (6.73),
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combined with Lemma 2.42, show that for each (i, r) ∈ N ×ΨT+1, there exists F (i, r) such that

(M(i) + B(i)F (i, r)C)TR(i, r) (M(i) + B(i)F (i, r)C) < Q(i, r1:T ) (6.74)

where

M(i) =

A(i) B1(i)

C1(i) D11(i)

 , B(i) =

 B2(i)

D12(i)

 , C =

[
I 0

]
,

R(i, r) =

∑N
j=1 πij(r1)X(j, r2:T+1) 0

0 I

 , Q(i, r1:T ) =

X(i, r1:T ) 0

0 I

 .
Inequality (6.74) is equivalent to

F̄ (i, r) B1(i)

H̄(i, r) D11(i)


T ∑N

j=1 πij(r1)X(j, r2:T+1) 0

0 I


F̄ (i, r1:L) B1(i)

H̄(i, r1:L) D11(i)

−
X(i, r1:T ) 0

0 I

 < 0 (6.75)

Define F̄ (i, k) := F̄ (i, ψT+1(k)), H̄(i, k) := H̄(i, ψT+1(k)), and Yψ(i, k) := X(i, ψT (k)). Inequality (6.75),

finiteness of the set N × ΨT+1, and Lemma 6.7 ensure that the plant in (6.1) with the state feedback

controller u(k) = F (θ(k), ψT+1(k))x(k) is uniformly exponentially mean square stable and uniformly mean

square strictly contractive.

Theorem 6.23. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. There exists a finite-future-dependent

state feedback controller as in (6.25) such that the closed-loop system in (6.26) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive if and only if there exist T ∈ N0 and

functions U : N ×ΨT → S+
n , G : N ×ΨT+1 → Rn×n, Z : N ×N ×ΨT+1 → S+

n such that


W1(i) 0

W2(i) 0

0 I


T 

A(i)U(i, r1:T )AT(i) + Z(i, r) A(i)U(i, r1:T )CT
1 (i) B1(i)

C1(i)U(i, r1:T )AT(i) −I + C1(i)U(i, r1:T )CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.76a)Z(i, r) B1(i)

BT
1 (i) −I +DT

11(i)D11(i)

 < 0

(6.76b)
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Z(i, j, r) GT(i, r)

G(i, r) U(j, r2:T+1)

 > 0

(6.76c)

for all i, j ∈ N and r = (r1, r2, . . . , rT+1) ∈ ΨT+1, where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker

[
BT

2 (i)DT
12(i)

]
and

Z(i, r) :=

N∑
j=1

πij(r1)Z(i, j, r)−G(i, r)−GT(i, r).

Proof. The result follows from Theorem 6.22 and the technique used in the proof of Lemma 6.15.

6.3.6 Control synthesis algorithm

Theorems 6.21 and 6.23 can be used to construct output feedback and state feedback controllers, respec-

tively, that approximately minimize the worst-case gain from ‖w‖2,e to ‖z‖2,e of the closed-loop system. For

concreteness, an algorithm to design an output feedback controller of the form (6.21) that approximately

minimizes the worst-case gain from ‖w‖2,e to ‖z‖2,e of the closed-loop system in (6.22) is examined. Con-

struction of a state feedback controller of the form (6.25) that approximately minimizes the worst-case gain

from ‖w‖2,e to ‖z‖2,e of the closed-loop system in (6.26) follows analogously.

Suppose that the plant in (6.1) is uniformly mean square stabilizable by a finite-future-dependent state

feedback controller and uniformly mean square detectable by a finite-future-dependent observer. Let γ be

the minimum worst-case gain from ‖w‖2,e to ‖z‖2,e of the closed-loop system in (6.22) that is achievable by

an output feedback controller of the form (6.21). Consider the following algorithm:

1. Set γ−1 = −ε.

2. Set T = 0.

3. Use a bisection search to approximate the smallest γT > 0 such that the LMIs in (6.68) from Theo-

rem 6.21 with C1 replaced by (1/γT )C1, D11 replaced by (1/γT )D11, D12 replaced by (1/γT )D12, and

the current value of T are feasible.

4. If (γT − γT−1) < ε then stop. Otherwise, set T = T + 1 and go to step 3.

Here, ε is some small threshold that prompts the algorithm to exit when the sequence γT stops changing by

a significant amount. Note that scaling the matrices C1, D11 and D12 converts the general bound problem,

‖z‖2,e < γT ‖w‖2,e, to a contractiveness problem, ‖(1/γT )z‖2,e < ‖w‖2,e (see Remark 5.2). Also note that
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γT is monotonically nonincreasing and γT → γ as T → ∞. To see why γT is monotonically nonincreasing,

note that any controller of the form (6.21) that is dependent on the next T values of the sequence ψ can be

extended as in (6.56) to be dependent on the next T + 1 values of the sequence ψ. The closed-loop system

with this extended controller will have the same `2e-induced norm as the closed-loop system with the original

controller.

When the algorithm terminates with some T , S, U , G, and Z, a controller K(i, r), (i, r) ∈ N ×ΨT+1 can

be constructed by either solving a second LMI problem or by using the algebraic formulas in Lemma 2.41

(see the discussion immediately following Theorem 6.21).

6.4 Control Synthesis with Finite Knowledge of the Past

The aim of Section 6.4 is to construct a controller that at time k has access to the output y(k) of the plant

in (6.1), the current mode θ(k) of the Markov chain, and the current value ψ(k) of the switching sequence.

The controller is also assumed to have a finite memory of past observed values ψ(k− 1), . . . , ψ(k−L) of the

switching sequence.

Unfortunately, nonconservative synthesis for a controller with measurements y(k), θ(k), and ψ(k) is

only possible in two special cases. If either of the following two assumptions hold, then controllers can be

synthesized that depend only on the present and past and satisfy the design objectives of stability and a

certain level of disturbance attenuation.

Assumption 6.24 (Common Invariant Distribution). There exists a distribution µ = [µ1 µ2 . . . µN ],

µi ≥ 0,
∑N
i=1 µi = 1 that is invariant for the collection of matrices {Π(1), . . . ,Π(J)}:

µ = µΠ(s)

for all s ∈ J . Additionally, p(0) = µ.

Assumption 6.25 (Switched Independent Jump Linear System). The Markov chain θ is an independent

sequence of random variables for all switching sequences ψ ∈ Ψ.

For k ∈ N0, define the reverse transition probabilities qij(k) = P {θ(k) = j | θ(k + 1) = i}, and let Q(k)

be the N ×N reverse transition probability matrix with entries qij(k).

If Assumption 6.24 holds then µ is invariant for the sequence Π(ψ(k)) for any ψ ∈ Ψ (see Definition 2.26).
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Thus, p(k) = µ for all k ∈ N0 (see Lemma 2.28). It follows that

qij(k) = P {θ(k) = j | θ(k + 1) = i}

=
P {θ(k + 1) = i | θ(k) = j}P {θ(k) = j}

P {θ(k + 1) = i}

=
P {θ(k) = j}

P {θ(k + 1) = i}πji(ψ(k + 1))

=
µj
µi
πji(ψ(k + 1)).

For s ∈ J and i, j ∈ N , define

ξij(s) =
µj
µi
πji(s). (6.77)

For s ∈ J , let Ξ(s) be the N ×N matrix with entries ξij(s). Thus, Assumption 6.24 ensures that the reverse

transition probability matrix Q(k) varies in the finite set {Ξ(1), . . . ,Ξ(J)}.

Alternatively, if Assumption 6.25 holds, then

qij(k) = P {θ(k) = j | θ(k + 1) = i}

= P {θ(k) = j | θ(k − 1) = i}

= πij(ψ(k))

Thus, Assumption 6.25 ensures that the reverse transition probability matrix Q(k) varies in the finite set

{Π(1), . . . ,Π(J)}.

Both assumptions ensure that the Markov chain running in reverse time is described by a finite number

of reverse transition probability matrices. This property of the Markov chain is crucial for the results that

follow.

Remark 6.26. Note that (6.77) implies that the diagonal elements of Ξ(s) and Π(s) are the same. If N = 2,

one can show that Ξ(s) = Π(s) since the off-diagonal elements of each matrix are determined by the diagonal

elements (i.e., each row must sum to one). In this case, (6.77) shows that µiπij(s) = µjπji(s), which implies

that when N = 2, the Markov chain with the sequence Π ◦ ψ of forward transition probability matrices is

instantaneously reversible (see Definition 2.30).
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6.4.1 Dynamic output feedback controllers

Dynamic output feedback controllers of two different forms are considered, depending on whether Assump-

tion 6.24 or 6.25 holds.

Common invariant distribution

If Assumption 6.24 holds, consider a finite-past-dependent output feedback controller of the form

x̂(k + 1)

u(k)

 =

Â B̂

Ĉ D̂

 (θ(k), ψ(k), ψ(k − 1), . . . , ψ(k − L+ 1))

x̂(k)

y(k)

 (6.78)

where x̂(k) ∈ Rn is the controller state; Â : N ×Ψ∗L → Rn×n, B̂ : N ×Ψ∗L → Rn×p2 , Ĉ : N ×Ψ∗L → Rm2×n,

and D̂ : N ×Ψ∗L → Rm2×p2 are the controller parameter matrices; and,

Ψ∗L = {(rL, rL−1, . . . , r1) : r = (r1, . . . , rL−1, rL) ∈ ΨL}

is the set of reversed sequences in ΨL.

Proceeding as in Section 6.3.1, the closed-loop system with the plant in (6.1) and controller in (6.78) is

expressed

x̄(k + 1)

z(k)

 =

Ā B̄

C̄ D̄

 (θ(k), ψ(k), . . . , ψ(k − L+ 1))

x̄(k)

w(k)

 (6.79)

where x̄(k) = [xT(k) x̂T(k)]T, and the closed-loop matrices are defined in (6.23) with (i, r) ∈ N ×Ψ∗L.

For k ∈ N0, define σ(k) = ψ(k+1). Since ψ(k) is available to the controller at time k, σ(k−1) is available

to the controller at time k. The controller in (6.78) can be expressed in terms of σ as follows

x̂(k + 1)

u(k)

 =

Â B̂

Ĉ D̂

 (θ(k), σ(k − 1), . . . , σ(k − L))

x̂(k)

y(k)

 (6.80)

The closed-loop system in (6.79) is equivalently expressed

x̄(k + 1)

z(k)

 =

Ā B̄

C̄ D̄

 (θ(k), σ(k − 1), . . . , σ(k − L))

x̄(k)

w(k)

 (6.81)
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For t ∈ Z−0 , define θ́(t) := θ(−t), and σ́(t) := σ(−t). Note that P{θ́(t+ 1) = j | θ́(t) = i} = ξij(σ́(t+ 1)).

Consider the switched Markov jump linear system defined by the difference equation

ś(t+ 1)

f́(t)

 =

ĀT C̄T

B̄T D̄T

 (θ́(t), σ́(t+ 1), . . . , σ́(t+ L))

ś(t)
v́(t)

 (6.82)

where t ∈ Z−0 , ś(t) ∈ R2n is the state vector, v́(t) ∈ Rp1 is a disturbance vector, f́(t) ∈ Rm1 is an error

vector, the initial condition is specified by limT→−∞ ś(T ) = 0, and θ́ : Z−0 ×Ω→ N is a finite Markov chain

characterized by the a priori unknown sequence Ξ ◦ σ́ of transition probability matrices for some a priori

unknown switching sequence σ́ ∈ Ψ∗0 where

Ψ∗0 = {σ : Z−0 → J s.t. σ(t) = ψ(−t+ 1),∃ψ ∈ Ψ,∀t ∈ Z−0 }

is the set of reversed and shifted sequences from Ψ.

Appealing to Section 6.2.2, the closed-loop system (6.81) is uniformly exponentially mean square stable

and uniformly mean square strictly contractive if and only if the system (6.82) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive.

Switched independent jump linear system

Alternatively, if Assumption 6.25 holds, then it suffices for the controller to have access to a delayed measure-

ment ψ(k− 1) at time k. Under Assumption 6.25, consider a finite-past-dependent output feedback controller

of the form

x̂(k + 1)

u(k)

 =

Â B̂

Ĉ D̂

 (θ(k), ψ(k − 1), ψ(k − 2), . . . , ψ(k − L))

x̂(k)

y(k)

 (6.83)

where x̂(k) ∈ Rn is the controller state, and Â : N × Ψ∗L → Rn×n, B̂ : N × Ψ∗L → Rn×p2 , Ĉ : N × Ψ∗L →

Rm2×n, and D̂ : N ×Ψ∗L → Rm2×p2 are the controller parameter matrices.

Proceeding as in Section 6.3.1, the closed-loop system with the plant in (6.1) and controller in (6.83) is

expressed

x̄(k + 1)

z(k)

 =

Ā B̄

C̄ D̄

 (θ(k), ψ(k − 1), . . . , ψ(k − L))

x̄(k)

w(k)

 (6.84)
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where x̄(k) = [xT(k) x̂T(k)]T, and the closed-loop matrices are defined in (6.23) with (i, r) ∈ N ×Ψ∗L.

For t ∈ Z−0 , define θ́(t) := θ(−t); and, for t ∈ Z−, define ψ́(t) := ψ(−t). Note that P{θ́(t+ 1) = j | θ́(t) =

i} = πij(ψ́(t+ 1)). Consider the switched Markov jump linear system defined by the difference equation

ś(t+ 1)

f́(t)

 =

ĀT C̄T

B̄T D̄T

 (θ́(t), ψ́(t+ 1), . . . , ψ́(t+ L))

ś(t)
v́(t)

 (6.85)

where t ∈ Z−0 , ś(t) ∈ R2n is the state vector, v́(t) ∈ Rp1 is a disturbance vector, f́(t) ∈ Rm1 is an error

vector, the initial condition is specified by limT→−∞ ś(T ) = 0, and θ́ : Z−0 ×Ω→ N is a finite Markov chain

characterized by the a priori unknown sequence Π ◦ ψ́ of transition probability matrices for some a priori

unknown switching sequence ψ́ ∈ Ψ∗ where

Ψ∗ = {σ : Z− → J s.t. σ(t) = ψ(−t),∃ψ ∈ Ψ,∀t ∈ Z−}

is the set of reversed sequences from Ψ.

Appealing to Section 6.2.2, the closed-loop system (6.84) is uniformly exponentially mean square stable

and uniformly mean square strictly contractive if and only if the system (6.85) is uniformly exponentially

mean square stable and uniformly mean square strictly contractive.

6.4.2 Controller construction via LMIs

Common invariant distribution

If a common invariant distribution exists as in Assumption 6.24 for the set of transition probability matrices

{Π(1), . . . ,Π(J)}, then the LMI condition in Theorem 6.27 below may be used to construct an output

feedback controller of the form (6.78) that is dependent only on the present and past and ensures that

the closed-loop system in (6.79) is uniformly exponentially mean square stable and uniformly mean square

strictly contractive.

Theorem 6.27. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. Under Assumption 6.24, there exists

a finite-past-dependent output feedback controller as in (6.78) such that the closed-loop system in (6.79) is

uniformly exponentially mean square stable and uniformly mean square strictly contractive if and only if

there exists T ∈ N0 and functions S,U : N ×Ψ∗T → S+
n , G : N ×Ψ∗T+1 → Rn×n, Z : N ×N ×Ψ∗T+1 → S+

n
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such that


W1(i) 0

W2(i) 0

0 I


T 

AT(i)U(i, r1:T )A(i) + Z(i, r) AT(i)U(i, r1:T )B1(i) CT
1 (i)

BT
1 (i)U(i, r1:T )A(i) −I +BT

1 (i)U(i, r1:T )B1(i) DT
11(i)

C1(i) D11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.86a)
V1(i) 0

V2(i) 0

0 I


T 

A(i)S̃(i, r)AT(i)− S(i, r1:T ) A(i)S̃(i, r)CT
1 (i) B1(i)

C1(i)S̃(i, r)AT(i) −I + C1(i)S̃(i, r)CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



V1(i) 0

V2(i) 0

0 I

 < 0

(6.86b)S(i, r1:T ) I

I U(i, r1:T )

 > 0

(6.86c)Z(i, j, r) GT(i, r)

G(i, r) U(j, r2:T+1)

 > 0

(6.86d)

for all i, j ∈ N and r = (r1, r2, . . . , rT+1) ∈ Ψ∗T+1, where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker [C2(i)D21(i)];[

V T
1 (i)V T

2 (i)
]T

is any basis of ker
[
BT

2 (i)DT
12(i)

]
; and,

S̃(i, r) :=

N∑
j=1

ξij(r1)S(j, r2:T+1), Z(i, r) :=

N∑
j=1

ξij(r1)Z(i, j, r)−G(i, r)−GT(i, r).

Proof. Apply Theorem 6.21 to the closed-loop system in (6.82).

Note that Theorem 6.27 is a restatement of Theorem 6.21 with the following replacements:


A(i) B1(i) B2(i)

C1(i) D11(i) D12(i)

C2(i) D21(i) D22(i)

 7→

AT(i) CT

1 (i) CT
2 (i)

BT
1 (i) DT

11(i) DT
21(i)

BT
2 (i) DT

12(i) DT
22(i)

 , π 7→ ξ, Ψ 7→ Ψ∗.

Now to construct a controller using Theorem 6.27, suppose the LMIs in Theorem 6.27 have been solved

and T , S, U , G, Z satisfying (6.86) are given. Define X in terms of S and U as in (6.66), and define

Ṕ(i) =

[
C2(i) 0 0 D21(i)

]
, Q́(i) =

[
0 BT2 (i) DT

12(i) 0

]



CHAPTER 6. CONTROL SYNTHESIS 107

where i ∈ N . As in the proof of Theorem 6.17, it follows that

WT(i)H́(i, r)W (i) < 0

V T(i)H́(i, r)V (i) < 0

where W (i) and V (i) are any matrices whose columns form bases of ker Ṕ(i) and ker Q́(i), respectively, and

H́(i, r) =



−
(∑N

j=1 ξij(r1)X(j, r2:T+1)
)−1

AT(i) CT1 (i) 0

A(i) −X(i, r1:T ) 0 B1(i)

C1(i) 0 −I D11(i)

0 BT1 (i) DT
11(i) −I


with (i, r) ∈ N ×Ψ∗T+1. Now Lemma 2.41 guarantees the existence of K(i, r), (i, r) ∈ N ×Ψ∗T+1 such that

H́(i, r) + ṔT(i)KT(i, r)Q́(i) + Q́T(i)K(i, r)Ṕ(i) < 0. (6.87)

Note that (6.87) is an LMI in variable K since X is fixed. Thus, K that satisfies (6.87) can be found either

by using the formulas in Lemma 2.41 or by solving the LMI (6.87) for K. Note the intentional difference

between the placement of K and KT in the expressions (6.87) and (6.59). Using the partition in (6.24b) for

K and the expressions in (6.23), inequality (6.87) is equivalently expressed



−
(∑N

j=1 ξij(r1)X(j, r2:T+1)
)−1

ĀT(i, r) C̄T(i, r) 0

Ā(i, r) −X(i, r1:T ) 0 B̄(i, r)

C̄(i, r) 0 −I D̄(i, r)

0 B̄T(i, r) D̄T(i, r) −I


< 0 (6.88)

where i ∈ N and r ∈ Ψ∗T+1. As in the proof of Theorem 6.17, the inequalities in (6.88) ensure that the system

in (6.82) is uniformly exponentially mean square stable and uniformly mean square strictly contractive, which

ensures that the system in (6.79) is uniformly exponentially mean square stable and uniformly mean square

strictly contractive.

Switched independent jump linear system

Theorem 6.28 may be applied to any switched independent jump linear system for the purpose of noncon-

servative controller synthesis.
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Theorem 6.28. Assume pi(k) > 0 for all ψ ∈ Ψ, i ∈ N , and k ∈ N0. Under Assumption 6.25, there exists

a finite-past-dependent output feedback controller as in (6.83) such that the closed-loop system is uniformly

exponentially mean square stable and uniformly mean square strictly contractive if and only if there exists

T ∈ N0 and functions S,U : N ×Ψ∗T → S+
n , G : N ×Ψ∗T+1 → Rn×n, Z : N ×N ×Ψ∗T+1 → S+

n such that


W1(i) 0

W2(i) 0

0 I


T 

AT(i)U(i, r1:T )A(i) + Z(i, r) AT(i)U(i, r1:T )B1(i) CT
1 (i)

BT
1 (i)U(i, r1:T )A(i) −I +BT

1 (i)U(i, r1:T )B1(i) DT
11(i)

C1(i) D11(i) −I



W1(i) 0

W2(i) 0

0 I

 < 0

(6.89a)
V1(i) 0

V2(i) 0

0 I


T 

A(i)S̃(i, r)AT(i)− S(i, r1:T ) A(i)S̃(i, r)CT
1 (i) B1(i)

C1(i)S̃(i, r)AT(i) −I + C1(i)S̃(i, r)CT
1 (i) D11(i)

BT
1 (i) DT

11(i) −I



V1(i) 0

V2(i) 0

0 I

 < 0

(6.89b)S(i, r1:T ) I

I U(i, r1:T )

 > 0

(6.89c)Z(i, j, r) GT(i, r)

G(i, r) U(j, r2:T+1)

 > 0

(6.89d)

for all i, j ∈ N and r = (r1, r2, . . . , rT+1) ∈ Ψ∗T+1, where
[
WT

1 (i)WT
2 (i)

]T
is any basis of ker [C2(i)D21(i)];[

V T
1 (i)V T

2 (i)
]T

is any basis of ker
[
BT

2 (i)DT
12(i)

]
; and,

S̃(i, r) :=

N∑
j=1

πij(r1)S(j, r2:T+1), Z(i, r) :=

N∑
j=1

πij(r1)Z(i, j, r)−G(i, r)−GT(i, r).

Proof. Apply Theorem 6.21 to the closed-loop system in (6.85).

Note the only difference between the condition in Theorem 6.27 and that of Theorem 6.28 is the presence

of ξ in the former and π in the latter. If the LMIs in (6.89) from Theorem 6.28 are feasible, a controller can

be constructed by following the steps outlined immediately after the proof of Theorem 6.27.

6.4.3 Control synthesis algorithm

Depending on whether Assumption 6.24 or 6.25 holds, Theorem 6.27 or Theorem 6.28 may be used to

construct output feedback controllers that approximately minimize the worst-case gain from ‖w‖2,e to ‖z‖2,e
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of the closed-loop system. The algorithm is analogous to the one proposed in Section 6.3.6. For concreteness,

suppose that Assumption 6.24 holds and consider the following iterative algorithm using Theorem 6.27:

1. Set γ−1 = −ε.

2. Set T = 0.

3. Use a bisection search to approximate the smallest γT > 0 such that the LMIs in (6.86) from Theo-

rem 6.27 with B1 replaced by (1/γT )B1, D11 replaced by (1/γT )D11, D21 replaced by (1/γT )D21, and

the current value of T are feasible.

4. If (γT − γT−1) < ε then stop. Otherwise, set T = T + 1 and go to step 3.

Here, ε is some small threshold that prompts the algorithm to exit when the sequence γT stops changing by

a significant amount. In contrast to the algorithm in Section 6.3.6, note that the matrices B1, D11 and D21

are scaled by γT .

6.4.4 Remarks on Assumptions 6.24 and 6.25

The assumptions required in Section 6.4 are somewhat restrictive. Whether or not these assumptions can be

weakened or disposed of remains an open question. The important consequence of both Assumptions 6.24

and 6.25 is that the Markov chain running in reverse time is described by a finite number of reverse transition

probability matrices; this fact allows us to apply the results of Section 6.3 to the adjoint system, where the

Markov chain is reversed. A first step toward weakening Assumption 6.24 might be to remove the restriction

that p(0) = µ. To that end, ergodicity results for time-inhomogeneous Markov chains may prove fruitful.

Roughly speaking, a time-inhomogeneous Markov chain is strongly ergodic if there exists some probability

distribution q such that limk→∞ p(m)P (m+ 1)P (m+ 2) · · ·P (k) = q independently of the starting time m

and the initial distribution p(m) (see, e.g., [30, Chap. V]).

6.5 Examples

6.5.1 Scalar example from Remark 5.12

Consider the plant in (6.1) with parameter matrices from the example in Remark 5.12:

A(1) = 0.3,

[
B1(1) B2(1)

]
=

[
1.5 1

]
,

C1(1)

C2(1)

 =

0.2

1

 ,
D11(1) D12(1)

D21(1) D22(1)

 =

0 0

1 0

 , (6.90a)
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Figure 6.2: Plot generated by applying Theorem 6.28 and the algorithm in Section 6.4.3 to the plant with
parameter matrices specified in (6.90).

A(2) = 0.4,

[
B1(2) B2(2)

]
=

[
0.5 1

]
,

C1(2)

C2(2)

 =

0.85

0

 ,
D11(2) D12(2)

D21(2) D22(2)

 =

0 0

0 0

 , (6.90b)

Π(1) =

0.8 0.2

0.8 0.2

 , Π(2) =

0.3 0.7

0.3 0.7

 . (6.90c)

Notice that C2(2) = 0, D21(2) = 0, and D22(2) = 0, so the plant in (6.1) with the matrices in (6.90)

provides no information about the state to the controller when θ(k) = 2. Alternatively, when θ(k) = 1,

y(k) = x(k) + w(k). In Remark 5.12, it was established that the open-loop system is not contractive. By

using Theorem 5.46 and scaling the problem as in Remark 5.2, the worst-case gain from ‖w‖2,e to ‖z‖2,e of

the open-loop system is approximately 1.2.

Fig. 6.2 shows the result of applying Theorem 6.28 and the algorithm in Section 6.4.3 to the plant with

parameter matrices specified in (6.90). From Fig. 6.2, the best disturbance attenuation of the closed-loop

system that is achievable by a controller of the form (6.83) is approximately 0.721. In addition, Fig. 6.2

indicates that increasing T does not yield better performance. Solving a second LMI problem yields a

controller which guarantees that the worst-case gain from ‖w‖2,e to ‖z‖2,e of the closed-loop system is no

greater than 0.721:

x̂(k + 1)

u(k)

 =

Â(θ(k), ψ(k − 1)) B̂(θ(k), ψ(k − 1))

Ĉ(θ(k), ψ(k − 1)) D̂(θ(k), ψ(k − 1))


x̂(k)

y(k)


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whereÂ(1, 1) B̂(1, 1)

Ĉ(1, 1) D̂(1, 1)

 =

−0.0283 −0.0015

−0.7969 −1.1002

 ,
Â(1, 2) B̂(1, 2)

Ĉ(1, 2) D̂(1, 2)

 =

 0.0363 0.0035

−0.8720 −1.1059

 , (6.91a)

Â(2, 1) B̂(2, 1)

Ĉ(2, 1) D̂(2, 1)

 =

0.0314 0

1.1423 0

 ,
Â(2, 2) B̂(2, 2)

Ĉ(2, 2) D̂(2, 2)

 =

−0.0178 0

1.2052 0

 . (6.91b)

Notice that when θ(k) = 2, B̂ and D̂ are zero; this reflects the fact that y(k) = 0 when θ(k) = 2.

The closed-loop system with the plant matrices in (6.90) and the controller matrices in (6.91) was simu-

lated 1 × 105 times, with each simulation being 1, 000 time-units long. The disturbance w(k) was sampled

uniformly from the interval (−1, 1), the switching sequence ψ was generated randomly, and θ(k) was sam-

pled from the appropriate distribution Π(ψ(k)). Table 6.1 shows the average (over 1× 105 realizations) and

maximum gains encountered from the disturbance input to the error output of the closed-loop system with

the plant matrices in (6.90) and the controller matrices in (6.91).

6.5.2 Mass-spring-damper example

Consider the mass-spring-damper system shown in Fig. 6.3 that consists of two frictionless carts with masses

m1 and m2 coupled together with a spring and damper. The first cart is attached to a fixed end point

through a spring. The goal is to control the position and velocity of the second cart by applying a force F to

it. A disturbance force Fd is applied to the first cart. Only a noisy measurement of the position and velocity

of the first cart is available to the controller, and the measurement is sent over a wireless network at each

sampling time that is subject to packet loss (see Fig. 6.1). The controller is able to detect a lost or corrupted

measurement, but retransmission does not occur. Packet losses in the wireless channel are assumed to be

Table 6.1: Gains encountered from disturbance input to error output of the closed-loop system with the
controller matrices given in (6.91).

Quantity Value(
mean

(∑1000
k=0 z

T(k)z(k)
))1/2

(
mean

(∑1000
k=0 w

T(k)w(k)
))1/2

0.350

max

(∑1000
k=0 z

T(k)z(k)
)1/2

(∑1000
k=0 w

T(k)w(k)
)1/2

0.401
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m1 m2

k2

b

k1 FFd

x1 x2

Figure 6.3: Mass-spring-damper system.

Markovian. The transition probabilities governing packet loss are a priori unknown, but vary in a finite

set. As discussed in the chapter introduction, it is assumed that measurement of the signal-to-noise ratio at

the receiver yields the current transition probabilities of the Markov chain. For this example, it is assumed

that network delays are negligible, but delays may also be modeled within the Markov jump linear system

framework (see, e.g., [68]).

Let xi be the position of the i-th cart as indicated in Fig. 6.3. The continuous-time, open-loop dynamics

of the system in Fig. 6.3 are expressed



ẋ1(t)

ẋ2(t)

ẍ1(t)

ẍ2(t)


=



0 0 1 0

0 0 0 1

(−k2 − k1)/m1 k2/m1 −b/m1 b/m1

k2/m2 −k2/m2 b/m2 −b/m2





x1(t)

x2(t)

ẋ1(t)

ẋ2(t)


+



0

0

1/m1

0


Fd(t) +



0

0

0

1/m2


F (t) (6.92)

The open-loop system in (6.92) was discretized using a zero-order hold on the inputs and a sampling

time of 0.02 s. The discrete-time error output is expressed

z(k) =


0 α 0 0

0 0 0 β

0 0 0 0

x(k) +


0

0

1

u(k)

where x(k) is the discretized state from (6.92); α > 0 and β > 0 are relative weights on the position and

velocity, respectively, of the second cart; and, u(k) is the discretized signal F (t). The controlled input is

included in z(k) to ensure that large control effort is penalized.

Let θ(k) = 1 indicate that the measurement at time k was lost or corrupted, and let θ(k) = 2 indicate a

successful transmission of the measurement at time k. Let w1(k) and w2(k) be additive measurement noise

for the position and velocity, respectively, of the first cart, and let w3(k) be the discretized signal Fd(t). The
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discrete-time output available to the controller is expressed

y(k) =

θ(k)− 1 0 0 0

0 0 θ(k)− 1 0

x(k) +

(θ(k)− 1)δ 0 0

0 (θ(k)− 1)ρ 0

w(k)

where w(k) = [w1(k)w2(k)w3(k) ]T, and δ, ρ > 0 are weights that determine the relative size of the mea-

surement noise.

It is assumed that at each time instant, the Markov chain θ may be described by one of the following

transition probability matrices

Π(1) =

0.85 0.15

0.1 0.9

 , Π(2) =

0.55 0.45

0.3 0.7

 , (6.93a)

Π(3) =

0.925 0.075

0.05 0.95

 , Π(4) =

0.5 0.5

1/3 2/3

 . (6.93b)

Note that for the matrices in (6.93), the probability of a packet loss following a packet loss is large (π11(s) ≥

π12(s)), and the probability of a successful packet following a successful packet is also large (π22(s) ≥ π21(s)).

This property of the transition probability matrices is characteristic of bursty errors encountered in wireless

networks [16,23,25]. Also, it is easily verified that

[
0.4 0.6

]
Π(s) =

[
0.4 0.6

]

for all s ∈ J = {1, 2, 3, 4} so that Assumption 6.24 is satisfied with µ = [ 0.4 0.6 ]. For this example, the

switching set is not restricted, so Ψ = J∞.

Using Theorem 6.27 and the algorithm in Section 6.4.3, a finite-past-dependent output feedback controller

of the form (6.78) is constructed for the mass-spring-damper system of Fig. 6.3 with the parameter values

in Table 6.2. Fig. 6.4 shows the results of applying the algorithm in Section 6.4.3.

Each point on the graph in Fig. 6.4 corresponds to a controller

x̂(k + 1)

u(k)

 =

Â B̂

Ĉ D̂

 (θ(k), ψ(k), ψ(k − 1), . . . , ψ(k − T ))

x̂(k)

y(k)


with a memory of the past T transition probability matrices. As Fig. 6.4 shows, diminishing improvements

in disturbance attenuation are obtained as the controller’s memory of past transition probability matrices is

increased. Clearly, there is a trade-off between controller complexity and disturbance attenuation. For exam-
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Table 6.2: Parameter values for the mass-spring-damper system in Section 6.5.2.

Parameter Value Units

m1 0.5 kg

m2 1.0 kg

k1 12.0 N/m

k2 7.0 N/m

b 0.2 Ns/m

α 10 -

β 1 -

δ 0.08 -

ρ 0.12 -

0 1 2 3 4 5
3

3.5

4

4.5

5

T

γ
T

Figure 6.4: Plot generated by applying Theorem 6.27 and the algorithm in Section 6.4.3 to the mass-spring-
damper system in Section 6.5.2.

ple, with T = 5 and Ψ = J∞, one must compute 2× 46 = 8, 192 different controller matrices corresponding

to K(i, r) with (i, r) ∈ N × J T+1 (see the discussion immediately following Theorem 6.27). Alternatively,

with T = 0, only 2 × 41 = 8 different controller matrices must be computed. Computing the controller

matrices for T = 0 takes approximately 4 seconds on a standard desktop computer with 8 GB of system

memory and an Intel Core i7 processor clocked at 3.40 GHz. On the other hand, for T = 5, computing the

controller matrices takes approximately 60 minutes.

The closed-loop system is simulated with the two different controllers:

x̂(k + 1)

u(k)

 =

Â B̂

Ĉ D̂

 (θ(k), ψ(k), ψ(k − 1), . . . , ψ(k − 5))

x̂(k)

y(k)

 (6.94a)
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x̂(k + 1)

u(k)

 =

Â B̂

Ĉ D̂

 (θ(k), ψ(k))

x̂(k)

y(k)

 (6.94b)

where the controller matrices in (6.94a) correspond to T = 5 in Fig. 6.4, and the controller matrices in (6.94b)

correspond to T = 0 in Fig. 6.4. A simulation of the closed-loop system was performed 5× 103 times, each

1, 000 time-units long, where

• x̄(0) = 0;

• wi(k), i = 1, 2, 3 were sampled uniformly from the interval (−1, 1);

• ψ was chosen as follows:

– for simulation iterations 1–100, ψ ≡ 1,

– for simulation iterations 101–200, ψ ≡ 2,

– for simulation iterations 201–300, ψ ≡ 3,

– for simulation iterations 301–400, ψ ≡ 4,

– and, for simulation iterations 401–5000, ψ(k) is sampled uniformly from {1, 2, 3, 4};

• θ(0) was sampled from µ;

• and, θ(k) for k ≥ 1 was sampled from the appropriate distribution Π(ψ(k)).

For each iteration of the simulation, the same realizations for w, ψ, and θ were applied to both closed-

loop systems with controllers (6.94a) and (6.94b), respectively. Table 6.3 shows the average (over 5 × 103

realizations) and maximum gains encountered from the disturbance input to the error output using the

controllers in (6.94a) and (6.94b). Table 6.3 shows that in terms of disturbance attenuation, the controller

in (6.94a) outperforms the controller in (6.94b), which is expected from Fig. 6.4. In all but 3 out of 5× 103

simulation iterations, the gain from w to z of a realization, which is expressed

(∑1000
k=0 z

T(k)z(k)
)1/2

(∑1000
k=0 w

T(k)w(k)
)1/2

,

was smaller with the T = 5 controller when compared to the gain with the T = 0 controller.

Both of the controllers in (6.94) guarantee that the closed-loop system is uniformly exponentially mean

square stable. Fig. 6.5 shows representative realizations of the quantities xT(k)x(k) and x̂T(k)x̂(k) for the

closed-loop systems when w ≡ 0, x(0) = [ 1 − 1 0 0 ]T, and x̂(0) = 0.
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Table 6.3: Gains encountered from disturbance input to error output with the T = 5 controller in (6.94a)
and the T = 0 controller in (6.94b).

Quantity T = 5 T = 0(
mean

(∑1000
k=0 z

T(k)z(k)
))1/2

(
mean

(∑1000
k=0 w

T(k)w(k)
))1/2

0.315 0.343

max

(∑1000
k=0 z

T(k)z(k)
)1/2

(∑1000
k=0 w

T(k)w(k)
)1/2

0.378 0.418

6.6 Notes and References

The problem of LMI-based synthesis of H∞ controllers for deterministic linear time-invariant systems was

solved independently by Gahinet and Apkarian [20] and Iwasaki and Skelton [31]. The book by Skelton

et al. [62] demonstrates the versatility of LMI-based methods in control theory. The Projection Lemma,

Lemma 2.41, and its counterpart, Lemma 2.42, are important tools for control synthesis, and are related to

Finsler’s Lemma (the original paper is in German [18]; see also [64]).
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Figure 6.5: Zero-input response (w ≡ 0) of the closed-loop system with the controller in (6.94a) (top plot)
and with the controller in (6.94b) (bottom plot).



Chapter 7

Energy-Aware Control

7.1 Introduction

Long duration autonomous underwater vehicles (AUVs) motivate much of the development in this chapter.

For long duration AUVs operating at slow speeds, the energy consumed by the electronics on-board the

vehicle may greatly exceed the energy consumed by the propulsion system. Thus, reducing energy consumed

by the embedded microprocessor and the other electronics on-board the vehicle is important to extend the

duration of the vehicle’s mission.

A variety of techniques may be used to reduce the energy consumed by the processor. For example,

system designers may choose a low-power processor appropriate for the computing needs of the system. In

addition, power-management techniques such as dynamic voltage and frequency scaling (DVFS) or idle and

sleep states of the processor may provide energy-saving benefits. In these cases, system designers may need

worst-case estimates of the total processing power required by the system and the time required to execute

certain tasks within the system. These estimates can be conservative due to unpredictability introduced

by the system architecture (e.g., pipelined execution units, cache memory hierarchy, multiple processing

cores [34,47]) or unpredictability introduced by a task itself (e.g., image processing, optimization routines).

A few interesting questions emerge when considering how to reduce the conservatism associated with a

particular energy-saving technique:

1. What if system designers intentionally choose a processor that is undersized in relation to the worst-

case processing power required of the system with the knowledge that task deadlines will occasionally

be violated? In particular, what if the control algorithm occasionally fails to generate an updated

control signal before the next sampling time?

118
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2. If DVFS is used, what if the processor voltage and frequency are occasionally reduced so much that

the control algorithm fails to generate an updated control signal before the next sampling time?

3. If low-power idle and sleep states of the processor are used, what if the control signal is not updated

before the next sampling time due to the time required to wake the processor from a sleep or idle state?

The remainder of this chapter is organized as follows. In Section 7.2, the power consumption of a slowly

moving AUV is examined, and the power consumed by the electronics on-board the vehicle is shown to

be large compared to the propulsive load. Section 7.3 shows how a control system subject to probabilistic

control signal failures can be cast as a switched Markov jump linear system. Finally, in Section 7.4, the

formal results of Chapters 4 and 5 are applied to an AUV that may occasionally fail to update the control

signal before the next sampling time.

7.2 Power Analysis for an AUV

The power consumption of an AUV may be divided into three categories: the propulsive load, the hotel load,

and the instrument load. The propulsive load, Pp, is defined to be the electrical power required to overcome

the force of drag and maintain a constant speed. The drag force, Fd, and power required to overcome drag,

Pd, are modeled by

Fd =
1

2
ρv2CdA

Pd = Fdv

where ρ is the fluid density (ρ = 1000 kg/m3 for fresh water), v is the speed of the object relative to the

fluid, Cd is the drag coefficient, and A is the vehicle’s cross-sectional area. The propulsive load is calculated

by

Pp =
Pd
ηe

where the overall propulsive efficiency ηe represents the available mechanical power generated by one unit of

electrical power supplied to the propeller’s motor.

The hotel load, Ph, is defined to be the power consumed by all essential electronics on-board the vehicle,

and the instrument load is defined to be the power consumed by any payload instruments. For the remainder

of the chapter, the instrument load is neglected, and emphasis is placed on the hotel and propulsive loads.

The total available electrical energy, E, is determined by the type and number of batteries used to power



CHAPTER 7. ENERGY-AWARE CONTROL 120

Table 7.1: Parameter values for an AUV.

Parameter Value

Cd 0.19

A 0.0241 m2

ηe 0.40

Ph 7 W

E 1.9 kW-h

Ph
13%

Pp

87%

v = 2 m/s
Range = 260 km

Ph

91%

Pp

9%

v = 0.5 m/s
Range = 440 km

Figure 7.1: Power consumption due to hotel load and propulsive load for an AUV at different operating
speeds.

the AUV. Table 7.1 provides parameter values for an AUV developed at Virginia Tech. The AUV has a

maximum range of approximately 260 km when operating at 2 m/s and a maximum range of about 440 km

when operating at 0.5 m/s. Since the power required to overcome drag depends on the cube of operating

speed, a small change in the vehicle’s operating speed can have a large effect on the propulsive load. As

shown in Figure 7.1, the hotel load accounts for 13% of the overall power consumption at 2 m/s and 91% of

overall power consumption at 0.5 m/s. Thus, for long duration missions operating at slow speeds, the hotel

load becomes the critical component of power consumption.

7.3 Modeling Control Signal Failures

A control system subject to Markovian control signal failures can be cast as a randomly jumping system.

The control system experiences a missed control update if the control algorithm fails to generate an updated

control signal before the next sampling time. Suppose the open-loop plant is expressed

xp(k + 1) = Apxp(k) +

[
Bp1 Bp2

]w(k)

u(k)

 (7.1a)
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z(k)

y(k)

 =

Cp1
Cp2

xp(k) +

Dp11 Dp12

Dp21 Dp22


w(k)

u(k)

 (7.1b)

where xp(k) is the plant state, u(k) is the control input to the plant, w(k) is a disturbance vector, z(k)

is an error output to be kept small, and y(k) is the output measurement provided to the controller. The

failure-prone dynamic output feedback controller can be expressed

xc(k + 1) =


Acxc(k) +Bcy(k) : θ(k) = 2

xc(k) : θ(k) = 1

(7.2a)

u(k) =


Ccxc(k) +Dcy(k) : θ(k) = 2

u(k − 1) : θ(k) = 1

(7.2b)

where xc(k) is the controller state, θ(k) = 1 indicates a missed control update, and θ(k) = 2 indicates a

successful control update. Define x(k) = [xTp (k) xTc (k) uT(k − 1)]T. If θ(k) = 1 then

x(k + 1) = A(1)x(k) +B(1)w(k)

z(k) = C(1)x(k) +D(1)w(k)

where

A(1) =


Ap 0 Bp2

0 I 0

0 0 I

 , B(1) =


Bp1

0

0

 , C(1) =

[
Cp1 0 Dp12

]
, D(1) =

[
Dp11

]
.

If θ(k) = 2, it is assumed that the feedback interconnection is well-posed (e.g., see [15, Ch. 5]) so that

the matrix I −Dp22Dc is invertible. By Lemmas 2.32 and 2.33, if θ(k) = 2 then

u(k)

y(k)

 =

DcHCp2 (I +DcHDp22)Cc

HCp2 Dp22(I +DcHDp22)Cc


xp(k)

xc(k)

+

DcHDp21

HDp21

w(k) (7.3)

where H = (I−Dp22Dc)
−1. If θ(k) = 2, the identity in (7.3) may be used to show (e.g., see [26, Lem. 4.1.2])

x(k + 1) = A(2)x(k) +B(2)w(k)

z(k) = C(2)x(k) +D(2)w(k)
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where

A(2) =


Ap +Bp2DcHCp2 Bp2(I +DcHDp22)Cc 0

BcHCp2 Ac +BcHDp22Cc 0

DcHCp2 (I +DcHDp22)Cc 0

 , B(2) =


Bp1 +Bp2DcHDp21

BcHDp21

DcHDp21


C(2) =

[
Cp1 +Dp12DcHCp2 Dp12(I +DcHDp22)Cc 0

]
, D(2) =

[
Dp11 +Dp12DcHDp21

]
.

Thus, the closed-loop system subject to probabilistic control signal failures can be expressed

x(k + 1)

z(k)

 =

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))


x(k)

w(k)

 (7.4)

where θ(k) = 1 indicates a missed control update, and θ(k) = 2 indicates a successful control update.

7.4 Energy-Aware Implementation for an AUV

An energy-aware control implementation for the Virginia Tech Self-Mooring AUV [44] is now analyzed. The

results of Chapters 4 and 5 are used to obtain formal guarantees of stability and disturbance attenuation.

The dynamic model for the AUV, found in McCarter et al. [44], was developed using the system identification

process described in [48]. An inner-loop H∞ attitude controller was designed in [44] using the same weighting

filters for control design via loop shaping as in [49]. The plant and dynamic output feedback controller are

discretized at a sampling rate of 10 Hz. In this example, it is assumed that the sequence of control signal

updates may be modeled by an independent sequence of random variables. As in Section 7.3, the closed-

loop system subject to probabilistic control signal failures can be described by (7.4) where A(i) ∈ R58×58,

B(i) ∈ R58×14, C(i) ∈ R14×58, and D(i) ∈ R14×14 for i ∈ N = {1, 2}.

7.4.1 Fixed probability of a missed control update

If the probability of a missed control update, P {θ(k) = 1}, is constant (and hence P is constant), a bisection

search and Proposition 5.8 can be used to approximate ‖(G, P, p(0))‖∞ with arbitrary precision. Fig. 7.2

plots the `2e-induced norm of the time-homogeneous independent jump linear system (G, P, p(0)) versus the

probability of a missed control update. For P {θ(k) = 1} > 0.45, (G, P, p(0)) is not exponentially mean

square stable (the LMI in Proposition 4.6 becomes infeasible), and the `2e-induced norm is unbounded.
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Figure 7.2: The approximate `2e-induced norm of the time-homogeneous independent jump linear system
versus the probability of a missed control update.

Table 7.2: Results of applying Theorem 5.46.

M γM

0 8.9

1 8.6

2 8.4

7.4.2 A priori unknown time-varying probability of a missed control update

Suppose that the probability of a missed control update varies with time in a finite set, P {θ(k) = 1} ∈

{0.01, 0.15, 0.20}. Thus, define

Π(1) =

0.01 0.99

0.01 0.99

 , Π(2) =

0.15 0.85

0.15 0.85

 , Π(3) =

0.20 0.80

0.20 0.80


and let Ψ = J∞. Let the initial distribution p(0) be arbitrary. The uniform induced norm ‖(G,Π,Ψ, p(0))‖∞
is approximated using Theorem 5.46 and Remark 5.30. For each M , Table 7.2 shows the smallest γM such

that the LMIs in Theorem 5.29 are feasible for the system (GM ,Π,Ψ, p(0)) where

GM = {(A(1), B(1), (1/γM )C(1), (1/γM )D(1)), (A(2), B(2), (1/γM )C(2), (1/γM )D(2))}.

As discussed in Remark 5.30, γM → ‖(G,Π,Ψ, p(0))‖∞ as M → ∞. For M ≥ 3, the semidefinite program-

ming problem associated with the LMIs in Theorem 5.29 becomes very large due to the large state dimension
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(n = 58) in this example. Let ψs ≡ s, s = 1, 2, 3, be the constant switching sequences in Ψ. From Fig. 7.2,

‖(G,Π ◦ ψ1, p(0))‖∞ = 5.5, ‖(G,Π ◦ ψ2, p(0))‖∞ = 7.0, ‖(G,Π ◦ ψ3, p(0))‖∞ = 8.0.

Since ψs ∈ Ψ for s = 1, 2, 3, ‖(G,Π,Ψ, p(0))‖∞ ≥ 8.0. On the other hand, Table 7.2 indicates that

‖(G,Π,Ψ, p(0))‖∞ ≤ 8.4. Thus, Theorem 5.46 ensures that the closed-loop system remains stable regardless

of the time-variation of the probability of a missed control update and provides an upper bound on the

worst-case performance that could be experienced due to switching of the probability of a missed control

update. These formal guarantees are important since switching of the transition probability matrices can

cause a system to become unstable (see Remark 4.9), or can cause a system to lose the contractiveness

property (see Remark 5.12).



Chapter 8

Conclusions

Despite finding application in many areas, Markov jump linear systems with time-varying, possibly unknown,

transition probabilities lack tools that are of practical use for assessing stability and disturbance attenuation,

and for synthesizing optimal controllers. Nonconservative analysis and control synthesis results that are of

practical use have been developed in this dissertation for switched Markov jump linear systems. As a special

case, these results may also be applied to Markov jump linear systems with known transition probabilities

that vary in a finite set.

In proving the analysis results of Chapters 4 and 5, a key observation was that a stochastically stable and

contractive system admits Lyapunov and storage functions with finite dependence on the future transition

probabilities of the Markov chain. This observation led to analysis criteria for stability and disturbance

attenuation in terms of a set of finite-dimensional linear matrix inequalities. If the switching set Ψ is

generated via a directed graph, Theorem 4.17 shows that—for purposes of stability—one need only consider

switching sequences generated by the strongly connected components of the directed graph. When the

Markov chain is an independent sequence of random variables, the computationally simpler LMI criteria

found in Sections 4.5 and 5.5 for stability and disturbance attenuation, respectively, may be used.

A few academic examples were considered in Chapters 4 and 5. The example found in Remark 4.9 il-

lustrates that time-variation of the transition probabilities can cause instability in the mean square. The

example in Section 4.4.1 shows that stability may sometimes be gained by restricting the switching set Ψ.

The example found in Remark 5.12 of Section 5.4 shows that a single switch of the Markov chain transition

probabilities may cause a system to lose the contractiveness property. Finally, the example found in Sec-

tion 5.4.1 shows that the constituent systems of a switched Markov jump linear system, considered as linear

time-invariant systems, need not be contractive in order for the switched Markov jump linear system to be
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contractive.

Chapter 6 considers control synthesis for a switched Markov jump linear system. Stability and disturbance

attenuation for the closed-loop system may be characterized by Lyapunov and storage function criteria and

stated in terms of a set of finite-dimensional matrix inequalities. These matrix inequalities are not LMIs due

to the presence of the unknown controller parameter matrices in addition to the standard unknown matrix-

valued function corresponding to the Lyapunov or storage function. The controller parameter matrices can

be eliminated from the feasibility problem by using the Projection Lemma (Lemma 2.41). The resulting

matrix inequalities may be equivalently represented as LMIs after a few manipulations and substitutions.

After solving the resulting LMIs, a controller can be constructed by solving a second LMI problem, or by

using the formulas of Lemma 2.41. If the transition probabilities of the Markov chain are known and vary in

a finite set, the results of Chapter 6 provide construction of a controller that depends on the future transition

probabilities. Alternatively, a controller that depends only on the present and past transition probabilities

may be constructed in two special cases. In both of these cases, the critical property required is that the

Markov chain running in reverse-time is also characterized by finitely-many transition probability matrices.

A controller for the system in the example of Remark 5.12 is constructed in Section 6.5.1 such that the

closed-loop system is stable and contractive. A mass-spring-damper system where the sensor is connected

to the controller via a network is considered in Section 6.5.2. Two different controllers are constructed, and

the trade-off between controller complexity and disturbance attenuation is discussed.

In Chapter 7, an energy-saving strategy for an autonomous underwater vehicle is cast as a switched

Markov jump linear system, and the analysis results of Chapters 4 and 5 are applied. In this case, the

stochastic nature of the system is due to implementation details of the control law, as opposed to wireless

communications.

Future research may focus on weakening or removing the assumptions required for finite-past-dependent

output feedback controllers in Section 6.4. Another future direction may consider the case when the se-

quence P of transition probability matrices varies in a convex polytope with finitely-many vertices, as

opposed to a finite set.



Appendix A

Proofs

Proof of Proposition 4.5. Suppose there exists a function X that satisfies (4.8). Define the stochastic Lya-

punov function V (k, y) = yTX(k)y and let w ≡ 0.

E [V (k, x(k))− V (k − 1, x(k − 1)) | x(k − 1) = y]

= yT
(
E
[
AT(θ(k − 1))X(k)A(θ(k − 1))

]
−X(k − 1)

)
y

≤ −νyTy (A.1)

where (A.1) follows from (4.8b).

E [V (k, x(k)) | x(k − 1) = y] ≤ (1− ν/ρ)V (k − 1, y) (A.2)

where (A.2) follows from (A.1) and (4.8a). Let λ = 1− ν/ρ. Then 0 ≤ λ < 1 by (4.8).

E [V (k, x(k)) | x(k − 2) = y] = E [E [V (k, x(k)) | x(k − 1)] | x(k − 2) = y] (A.3)

≤ λE [V (k − 1, x(k − 1)) | x(k − 2) = y] (A.4)

≤ λ2V (k − 2, y) (A.5)

where (A.3) follows from the law of iterated expectations, (A.4) results after application of (A.2), and (A.5)

follows from a second application of (A.2). In general,

yTE
[
ΦT(k, j)Φ(k, j)

]
y ≤ (1/η)yTE

[
ΦT(k, j)X(k)Φ(k, j)

]
y (A.6)

= (1/η)E [V (k, x(k)) | x(j) = y] (A.7)
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≤ (1/η)λk−jV (j, y) (A.8)

≤ (ρ/η)λk−jyTy

where (A.6) follows from (4.8a), (A.7) follows from the independence hypothesis, and (A.8) follows by

iteration as in (A.4) and (A.5). Since y was arbitrary, (G, P, p(0)) is exponentially mean square stable.

Conversely, suppose (G, P, p(0)) is exponentially mean square stable. Let c and λ be as in (4.5) and define

X(k) =

∞∑
j=k

E
[
ΦT(j, k)Φ(j, k)

]
.

Note I ≤ X(k) ≤ c/(1− λ)I.

N∑
j=1

pj(k)AT(j)X(k + 1)A(j) =

N∑
j=1

pj(k)AT(j)

∞∑
l=k+1

E
[
ΦT(l, k + 1)Φ(l, k + 1)

]
A(j)

=

∞∑
l=k+1

E
[
AT(θ(k))ΦT(l, k + 1)Φ(l, k + 1)A(θ(k))

]
(A.9)

= X(k)− I (A.10)

where (A.9) follows by interchanging the order of summation and applying the independence hypothesis.

Proof of Proposition 5.7. Suppose there exist η, ρ, ν > 0 and a function X : N0 7→ S+
n such that (5.5) holds.

Without loss of generality, suppose 0 < ν < 1. Note that the upper left block of (5.5) implies (4.8b) so

exponential mean square stability of (G, P, p(0)) follows from Proposition 4.5. Now

E
[
zT(k)z(k)− wT(k)w(k) + xT(k + 1)X(k + 1)x(k + 1)− xT(k)X(k)x(k)

]
= E


x(k)

w(k)


TM(θ(k), X(k + 1))−

X(k) 0

0 0



x(k)

w(k)


 (A.11)

= E


x(k)

w(k)


T

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))


T X(k + 1) 0

0 I


A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))



−

X(k) 0

0 I



x(k)

w(k)


 (A.12)
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= E

E


x(k)

w(k)


T

A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))


T X(k + 1) 0

0 I


A(θ(k)) B(θ(k))

C(θ(k)) D(θ(k))



−

X(k) 0

0 I



x(k)

w(k)

 | x(k), w(k)




= E


x(k)

w(k)


T

N∑
j=1

pj(k)


A(j) B(j)

C(j) D(j)


T X(k + 1) 0

0 I


A(j) B(j)

C(j) D(j)



−

X(k) 0

0 I



x(k)

w(k)


 (A.13)

≤ −νE
[
xT(k)x(k) + wT(k)w(k)

]
(A.14)

≤ −νE
[
wT(k)w(k)

]
where equality (A.11) follows from Lemma 5.18; equality (A.12) follows from Lemma 5.16; equality (A.13)

follows from the independence hypothesis on θ; and, inequality (A.14) follows from (5.5). Thus

E
[
zT(k)z(k) + xT(k + 1)X(k + 1)x(k + 1)− xT(k)X(k)x(k)

]
≤ (1− ν)E

[
wT(k)w(k)

]
. (A.15)

Let x(0) = 0, sum both sides of inequality (A.15), and use the positive-definiteness of X(k) to get

‖z‖22,e ≤ γ2 ‖w‖22,e

where γ =
√

1− ν.

Conversely, suppose (G, P, p(0)) is exponentially mean square stable and mean square strictly contractive.

Fix t ∈ N0 and consider the independent jump linear system defined by the difference equation

xt(k + 1)

zt(k)

 =

A(θt(k)) B(θt(k))

C(θt(k)) D(θt(k))


xt(k)

wt(k)


where θt(k) = θ(t+k) for k ∈ N0 and wt ∈ `2e. Note that this system may be denoted by (G, Pt, pt(0)) where
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Pt(k) = P (t+ k) for k ∈ N and pt(0) is the distribution P {θ(t)}. Define the random state transition matrix

Φt(k, j) =


A(θt(k − 1))A(θt(k − 2)) · · ·A(θt(j)) : k > j

I : k = j

Note that (G, Pt, pt(0)) is exponentially mean square stable since

E
[
ΦT
t (k, j)Φt(k, j)

]
= E

[
ΦT(t+ k, t+ j)Φ(t+ k, t+ j)

]
≤ cλt+k−(t+j)I.

Now let xt(0) = 0, x(0) = 0, and let wt ∈ `2e be arbitrary. Define

w(k) =


0 : k < t

wt(k − t) : k ≥ t
. (A.16)

Note that wt ∈ `2e implies w ∈ `2e and ‖w‖2,e = ‖wt‖2,e. Now

zt(k) = C(θt(k))

k−1∑
j=0

Φt(k, j + 1)B(θt(j))wt(j) +D(θt(k))wt(k) (A.17)

= C(θ(t+ k))

k−1∑
j=0

Φ(t+ k, t+ j + 1)B(θ(t+ j))w(t+ j) +D(θ(t+ k))w(t+ k)

= C(θ(t+ k))

t+k−1∑
l=t

Φ(t+ k, l + 1)B(θ(l))w(l) +D(θ(t+ k))w(t+ k)

= C(θ(t+ k))

t+k−1∑
l=0

Φ(t+ k, l + 1)B(θ(l))w(l) +D(θ(t+ k))w(t+ k)

= z(t+ k) (A.18)

where (A.17) follows from (3.3). Note that z in (A.18) is the solution to (3.1) for the particular w in (A.16)

and x(0) = 0. Also note that z(k) = 0 for 0 ≤ k ≤ t− 1. Now

‖zt‖22,e =

∞∑
k=0

E
[
‖zt(k)‖2

]
=

∞∑
k=0

E
[
‖z(t+ k)‖2

]
=

t−1∑
l=0

E
[
‖z(l)‖2

]
+

∞∑
l=t

E
[
‖z(l)‖2

]
= ‖z‖22,e
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≤ γ2 ‖w‖22,e (A.19)

= γ2 ‖wt‖22,e

where (A.19) follows from contractiveness of (G, P, p(0)). Since wt ∈ `2e was arbitrary, (G, Pt, pt(0)) is mean

square strictly contractive. With this fact, one may proceed as in Section 5.5 to construct a solution to (5.5)

using the finite-horizon Riccati difference equations

X(k, T, ε) =

N∑
j=1

pj(k)L(j,X(k + 1, T, ε)) +

N∑
j=1

pj(k)RT(j,X(k + 1, T, ε))

×

 N∑
j=1

pj(k)W(j,X(k + 1, T, ε))

−1
N∑
j=1

pj(k)R(j,X(k + 1, T, ε)) + εI

X(T + 1, T, ε) = 0.
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