

Pebbles and Urns: A Tangible, Presence-Based Service
Delivery Framework

William Otho Plymale

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy
in

Computer Engineering

Scott F. Midkiff, Chair
Luiz A. DaSilva

Thomas L. Martin
Deborah G. Tatar
Joseph G. Tront

December 14, 2012
Blacksburg, Virginia

Keywords: pervasive computing, opportunistic, situated
Copyright 2012, William O. Plymale

Pebbles and Urns: A Tangible, Presence-Based Service Delivery
Framework

William Otho Plymale

Abstract

Wireless and pervasive computing research continues to study ways the Internet of Things (IoT)
can make lives easier and more productive. Areas of interest include advances in new
architectures and frameworks that support large-scale IoT deployments beyond research
prototypes, simple and inexpensive human-to-device and device-to-device interfaces, and user
decision making support with opportunistic information services.

This dissertation investigates the design and implementation of a general-purpose framework
upon which IoT and opportunistic computing (OC) systems can be built.

The result of this work is Pebbles and Urns (P&U), a casually accessible system designed to
deliver information to a person that is pertinent and beneficial to them with respect to their
current activity, location and other contexts. P&U is a proximity-based information delivery
framework that leverages a simple, inexpensive tangible interface and context-rich, physically-
situated, distributed information repositories. By its proposed use of enforced proximity, local
context, and location-specific services, P&U can support the situated interaction between user
and place.

The P&U framework is based on a layered architecture consisting of an isolated physical
communication layer, a data repository supporting opportunistic service composition and
delivery, and a controller/interface providing user feedback. Serving as a potential IoT design
pattern, P&U application developers can use the framework API’s and software tools to build
and deploy P&U systems.

As validation of this work, P&U prototypes are constructed using the framework, API’s and
software tools. The prototypes are based on use cases depicting a person engaged in the day-to-
day activities of attending class, going to the gym and grocery shopping. Performance
measurements are performed on the prototypes profiling core components of the framework.
Results indicate proper functioning of P&U tangible interfaces, communication connections,
service request and delivery, and internal framework operations.

Contributions of this research include a general-purpose framework, a simple IoT interface and
an opportunistic engine.

 iii

Acknowledgements

Completing this dissertation marks the end of a long journey. As the traveler, I was and am

defined by three events: the launching of Sputnik 1, science fiction and the “circle.”

I was five years old when the Soviet Union launched the first artificial Earth satellite. The

launching of Sputnik 1 began the Space Race. The US reacted to this technological feat by

creating ARPA, NASA and the National Defense Education Act. The federal government began

pouring unmatched amounts of money into science education, engineering and mathematics at

all levels of education placing a new emphasis on science and technology in American schools. I

remember the tests; aptitude and achievement tests administered throughout my time in

elementary school. During the course of this testing, I was officially labeled an “underachiever”.

Performing less than expected by my teachers, I tended toward procrastination, distractions and

wandering. I would excel on occasion, but just barely.

I read my first science fiction book while in the second grade. It was named “Zip-Zip and his

Flying Saucer”. I was hooked with Heinlein, Clark, Asimov, Bradbury, Niven, Vonnegut, Seuss,

Doc Smith and others becoming my new companions. I read “The New Tom Swift Jr.

Adventures” instead of the Hardy Boys. I remember wanting to be like Tom Swift, teenage

scientist saving the world with his marvelous inventions, and still taking time to help his mother

wash the dishes after the evening dinner. To me, science fiction is fiction only for the moment.

The “circle” began when I entered college, accepted as “early decision” into the electrical

engineering program. Over the next five years, underachieving at a remarkable level, I spiraled

through changes in major from electrical engineering to computer science to psychology, finally

managing to graduate. My first job was a freight “cracker” at a local department store. I

eventually realized I very much needed to climb out of this particular rabbit hole. I managed to

 iv

get a job working “midnight shift” as a computer operator at a local furniture company. I started

taking data processing classes at a nearby community college. I desperately wanted to return to

the college where I spent those embarrassing five years. I wanted to atone for my failures. The

“circle” continued as I retraced and back-tracked previous steps. I got a job back at the college.

Working full-time, I started a second undergraduate degree in computer science. I completed it

in six years. Armed with this new CS degree, I left the university in search of a “real” job. I

found one, but for reasons including continued pursuit of the “circle,” I returned to the

university, assumed another fulltime job, and started a master’s in electrical engineering. This

one took ten years to complete, but I did it. By that time, academia and research were in my

blood. Never quite fitting into my professions, often a target of re-definement by others, I was

driven to complete the “circle”. I was accepted into computer engineering’s doctoral program.

Still distracted and a wanderer, my progress was often at a standstill. However, 55 years after

Sputnik 1, I approach completion of this degree and my “circle.” I still procrastinate, I still

honor distractions and I still wander. But this dissertation process has made me realize that these

are not my weaknesses, they are my strengths. My distractions consist of journeys down paths

with no destinations and no intentions. I always return with something useful, perhaps not at the

time of return, but certainly later in the future. I wander, but I wander with purpose, collecting

thoughts and experiences that I instinctively know I need. And now, like Tom Swift, I feel like a

scientist.

Despite, and because of, my “strengths,” it would have been impossible to complete this

dissertation and PhD process without the help and support of others.

Two people understood what it would take for me to finish, and their belief and support of me

was unrelenting.

Simply put, this dissertation would not have been possible without the support, guidance and

patience of my advisor and friend, Dr. Scott Midkiff.

 v

My wife, Patricia, has been proud and supportive of my work. She has shared the many

uncertainties, challenges and sacrifices of completing this dissertation, especially during the last

15 months. This work is my gift to her. Now we can play.

Each member of my committee has inspired and directed me on this journey. Dr. Tom Martin

introduced me to pervasive computing. It would take me days to decipher HCI and CSCW

topics discussed during conversations with Dr. Deborah Tatar. Dr. Luiz DaSilva asked me the

“killer app” question during my qualifying exam. A question I think about almost every day.

Dr. Joe Tront, in handing back my first VLSI test, commented “this is not your area of interest, is

it?”

The following individuals “saved” me during my traversal of the “circle”.

Mrs. Madeline Key was my 9th, 11th and 12th grade science teacher. Even though I was not her

brightest student, she encouraged me to become president of the high school scientist club. A

role I assumed for two years. She instilled my interest in science and I am forever grateful.

Dr. Robert Frary was my first mentor as I started out the rabbit hole. He taught me sound

concepts pertaining to so many areas including academics, finances, and good food and wine. I

adopted a good portion of Dr. Frary’s view of the world.

Dr. George Gorsline, CS professor, was instrumental in my achieving my undergraduate

computer science degree. He specialized in helping students like me.

I was the only CS student in Dr. Charles Nunnally’s EE microcomputer design course. I learned

a number of funny CS jokes from the EE students in the class. I used two weeks of annual leave

completing the lab assignments. “Power, data and control,” Dr. Nunnally.

 vi

Other individuals to whom I am thankful include my sister, June. Her sacrifices during the past

years enabled me to finish this degree. Priorities and decisions can sometimes be difficult and

cold.

My stepson Warren is an “anti-underachiever”. I will always admire his study habits, work

ethics and resulting successes. Now it is his turn for another degree.

In closing, I would like to remember Edward McPherson. He was a friend and coworker who

demonstrated passion and vision for his interests. Our conversations challenged me. I had

hoped we could have shared our experiences in pursuit of our respective degrees.

All photos by author.

 vii

Table of Contents

Chapter 1: Introduction .. 1

1.1 Background and Motivation ... 1

1.2 Research Objectives and Questions .. 4

1.3 Overview of Research Methodology .. 6

1.4 Anticipated Contributions ... 7

1.5 Document Organization .. 8

Chapter 2: Pebbles and Urns Conceptual Model 9

2.1 Pebbles and Urns Concepts ... 9

2.2 Pebbles and Urns Core Elements .. 11

2.2.1 Pebble .. 11

2.2.2 Urn .. 15

2.2.3 Information Repository ... 17

2.2.4 Pebbles and Urns Architecture ... 18

2.3 Pebbles and Urns Interactions ... 20

2.4 Urn Services .. 23

2.5 Pebbles and Urns Cyber Foraging .. 24

 viii

2.6 Pebbles and Urns Use Cases ... 25

2.6.1 Elderly and Assisted Living Care ... 25

2.6.2 Grocery Store .. 26

2.6.3 Apparel Shopping ... 27

2.6.4 Freshman Orientation ... 28

2.6.5 Trip to the Arcade ... 29

2.6.6 Pebbles and Urns Deployment .. 29

2.7 Summary ... 30

Chapter 3: Overview of Interactions, Information, and Services .. 32

3.1 Human and Device Interactions .. 32

3.1.1 Tangible User Interfaces ... 34

3.1.2 Context and Situated Interaction ... 34

3.1.3 Physical Mobile Interaction .. 35

3.1.4 Place-Specific Computing .. 37

3.1.5 Opportunistic Computing ... 38

3.2 Information Management and Sources ... 39

3.2.1 Pervasive Computing Database Technologies .. 39

3.2.2 Sensor-generated Information ... 40

 ix

3.2.3 User-generated Content .. 41

3.3 Services ... 42

3.3.1 Service Discovery ... 42

3.3.2 Cloud Services .. 44

3.4 Cyber Foraging ... 44

3.5 Summary ... 46

Chapter 4: Pebbles and Urns Framework....................................... 49

4.1 P&U Design Elements .. 49

4.1.1 P&U Interoperability .. 50

4.1.2 P&U Service Composition .. 51

4.1.3 P&U Cyber Foraging .. 53

4.2 Initial P&U Design and Framework ... 54

4.2.1 P&U Early Architecture .. 55

4.2.2 Initial P&U Component and Connector Design ... 56

4.2.2.1 Pebble ... 57

4.2.2.1.1 Pebble Controller ... 57

4.2.2.1.2 Pebble Repository ... 58

4.2.2.1.3 Pebble and Urn Communication Link ... 59

 x

4.2.2.2 Urn .. 59

4.2.2.2.1 Urn Controller ... 60

4.2.2.2.2 Urn Repository .. 61

4.2.2.2.3 Pebble and Urn Communication Link ... 63

4.2.2.3 Pebble and Urn Messages .. 64

4.2.3 Evolution of Pebbles and Urns ... 65

4.3 Pebbles and Urns Framework Design ... 66

4.3.1 P&U Architectural and Operational Overview ... 67

4.3.2 P&U Framework Layers ... 68

4.3.2.1 P&U Interaction Framework .. 70

4.3.2.2 P&U Common Framework .. 71

4.3.2.2.1 P&U Repository Structures ... 71

4.3.2.2.2 P&U Transport .. 73

4.3.2.3 P&U Application Framework .. 75

4.3.2.3.1 Components ... 79

4.3.2.3.2 Application APIs and Internal Functions .. 79

4.3.2.3.2.1 Common Framework ... 80

4.3.2.3.2.2 User Interface ... 80

 xi

4.3.2.3.2.3 External Services .. 81

4.3.2.3.2.4 P&U Developer Tools .. 81

4.4 Summary ... 82

Chapter 5: Instantiation of the Pebbles and Urns Framework 84

5.1 Initial P&U Prototype – Pebble of Interest ... 84

5.1.1 Coding Details of the Initial Prototype ... 86

5.1.2 Outcomes and Discoveries .. 90

5.2 Evolved P&U Prototypes .. 92

5.3 P&U Prototype: Read-Only Pebble .. 95

5.3.1 Scenario .. 96

5.3.2 Application Considerations and Coding Details ... 98

5.3.3 Testing and Performance Profiling ... 101

5.3.4 Outcomes and Discoveries .. 106

5.4 P&U Prototype: Read/Write Pebble ... 107

5.4.1 Scenario .. 108

5.4.2 Application Considerations and Coding Details ... 110

5.4.3 Testing and Performance Profiling ... 113

5.4.4 Outcomes and Discoveries .. 116

 xii

5.5 P&U Prototype: Smart Pebble .. 116

5.5.1 Scenario .. 117

5.5.2 Application Considerations and Coding Details ... 119

5.5.3 Testing and Performance Profiling ... 122

5.5.4 Outcomes and Discoveries .. 125

5.6 Performance Analysis ... 126

5.7 Summary ... 133

5.7.1 P&U Interactions – Research Question 1.1 .. 133

5.7.2 P&U Opportunistic Elements – Research Question 1.2 134

5.7.3 P&U Cyber Foraging – Research Question 1.3 .. 134

5.7.4 P&U Innovative Features – Research Question 2 134

5.7.5 P&U Problematic Features – Research Question 2 135

Chapter 6: Conclusions ... 137

6.1 Research Summary ... 137

6.1.1 Research Motivation ... 137

6.1.2 Research Questions ... 139

6.1.3 Research Approach ... 140

6.2 Research Questions and Answers ... 142

 xiii

6.2.1 Research Question 1 ... 142

How would properties and characteristics of the P&U architecture advance

the design and deployment of IoT and opportunistic computing

implementations?

6.2.1.1 Research Question 1.1 .. 143

What interoperability and interaction features and characteristics of the P&U

architecture provide a stable and flexible communication connection supporting

near, situated, tangible interaction between devices participating in the

application domain of opportunistic computing?

6.2.1.2 Research Question 1.2 .. 144

Within the P&U architecture, what protocols, rule sets, algorithms, abstractions,

and context management identify a relevant service domain for parties

participating in a P&U-based opportunistic computing session?

6.2.1.3 Research Question 1.3 .. 145

How can P&U designs utilize cyber foraging strategies such as power

management and cloud services?

6.2.2 Research Question 2 ... 146

What innovative, or problematic, features are revealed through the design and

implementation of a P&U instance and, for problematic features, can the problem

areas be addressed?

6.3 The Meaning of it All ... 148

 xiv

6.3.1 P&U Framework ... 149

6.3.2 Simple IoT Interface ... 150

6.3.3 Opportunistic Engine .. 150

6.4 Future Research .. 151

References .. 153

Appendix ... 160

Appendix A: Initial P&U Design Elements 160

A.1 Data Structures ... 160

A.2 P&U Functions ... 160

A.3 P&U Tables .. 161

A.4 P&U Message .. 162

Appendix B: P&U Framework Layers ... 163

B.1 Interaction Framework ... 163

B.2 Common Framework .. 164

B.2.1 Transport Functions .. 164

B.3 Application Framework .. 165

B.3.1 Common Framework APIs ... 165

Appendix C: P&U Repository Data Dictionary 168

 xv

C.1 Pebble Repository .. 168

C.2 Pebble Directory Structure ... 169

C.3 Pebble Repository Data Elements .. 169

C.4 Urn Repository ... 172

C.5 Urn Directory Structure .. 173

C.6 Urn Repository Data Elements ... 174

Appendix D: P&U Application Developer Notes 177

D.1 Developer Tools ... 177

D.2 How to Create a Pebble .. 177

D.3 How to Create an Urn .. 178

Appendix E: Glossary .. 180

 xvi

Figures

Figure 1 - Examples of Pebbles .. 11

Figure 2 - Examples of Hybrid Pebbles .. 15

Figure 3 – Examples of Urns .. 16

Figure 4 - P&U Architecture Components ... 19

Figure 5 - Potential P&U Interactions .. 21

Figure 6 - P&U Interfaces ... 22

Figure 7 - Urn Coordination of Multiple Pebbles ... 23

Figure 8 – Example P&U Grocery Store System ... 27

Figure 9 - P&U Concept Map ... 30

Figure 10 - Interaction Research in Pervasive Computing ... 33

Figure 11 - Mobile Interaction with the Real World through Devices ... 36

Figure 12 - Cloudlet and P&U Concepts .. 45

Figure 13 - Urn Repository Tiered Storage .. 46

Figure 14 - P&U Interoperability Attributes ... 50

Figure 15 - P&U Service Composition Attributes .. 52

Figure 16 - P&U Cyber Foraging Attributes .. 53

 xvii

Figure 17 - P&U Components and Connectors .. 55

Figure 18 - Pebble Repository Data Groups ... 58

Figure 19 - Urn Repository Data Groups .. 62

Figure 20 - Simple Pebble Message.. 64

Figure 21 - TCP and P&U State Diagrams ... 67

Figure 22 - P&U Framework .. 69

Figure 23 - Data Elements of Pebble Repository .. 71

Figure 24 - Data Elements of Urn Repository .. 72

Figure 25 - P&U Transport - Pebble Repository Replication Process.. 74

Figure 26 - Role Selection on a Smart Pebble .. 75

Figure 27 - P&U Smart Pebble Application Flow Diagram ... 76

Figure 28 - P&U Urn Application Flow Diagram .. 77

Figure 29 - Urn Message Relay .. 79

Figure 30 - Components of the Initial P&U Prototype ... 85

Figure 31 - Control Flow of the Pebble of Interest P&U Prototype ... 86

Figure 32 - QR Pebble .. 87

Figure 33 - P&U Prototype State Diagram ... 88

Figure 34 - P&U Prototype Architecture .. 89

 xviii

Figure 35 - Pebble Instances (R-O:QR, R/W:USB, Smart:BT) .. 92

Figure 36 - P&U Framework - Read-Only Pebble ... 96

Figure 37 - Control Flow - Read/Only Pebble .. 99

Figure 38 – Example of Read-Only Pebble Repository .. 100

Figure 39- Read-Only (QR) Text Format ... 100

Figure 40 - Read-Only Program Flow and Code .. 101

Figure 41 - Code Blocks of the Read-Only P&U Instance ... 104

Figure 42 - P&U Framework - Read/Write Pebble .. 108

Figure 43 - Control Flow - Read/Write Pebble ... 111

Figure 44 - Example of Read/Write Pebble Repository ... 112

Figure 45 - Read/Write Program Flow and Code ... 113

Figure 46 - Code Blocks of the Read/Write Pebble Instance ... 114

Figure 47 - P&U Framework - Smart Pebble ... 117

Figure 48 - Control Flow - Smart Pebble.. 120

Figure 49 - Smart Pebble Repository .. 121

Figure 50 - Smart Program Flow and Code .. 122

Figure 51 - Code Blocks of the Smart Pebble Instance .. 123

Figure 52 - WRAP_Comm Execution Times ... 126

 xix

Figure 53 - Prototype Performance - Execution Times (Average) ... 127

Figure 54 - Prototype Performance - Execution Times (Std Dev) .. 129

Figure 55 - Prototype Performance (Code Block % of Total Time) ... 130

Figure 56 - Prototype Performance (includes Smart Pebble WRAP_Comm time) 131

Figure 57 - Early P&U Concept Sketch .. 140

 xx

Tables

Table 1 – Platform Aspects of Pebble Classes .. 13

Table 2 - Architecture Aspects of Pebble Classes .. 14

Table 3 - Pebble Controller Functions and APIs .. 57

Table 4 - Pebble Repository Functions and APIs ... 58

Table 5 - Pebble Repository Data Group Descriptions ... 59

Table 6 - Pebble Communication Link Functions and APIs .. 59

Table 7 - Urn Controller Functions and APIs ... 61

Table 8 - Urn Repository Functions and APIs .. 62

Table 9 - Urn Repository Data Group Descriptions ... 63

Table 10 - Urn Communication Link Functions ... 63

Table 11 - Urn Communication Link APIs ... 64

Table 12 - Physical Interaction Technologies of different Pebble classes 70

Table 13 – Interaction Framework Functions ... 70

Table 14 - Pebble Repository Data Element Description ... 72

Table 15 - Urn Repository Data Element Description .. 73

Table 16 – P&U Transport Functions ... 74

 xxi

Table 17 – Common Framework Urn APIs .. 80

Table 18 - Common Framework Smart Pebble APIs ... 80

Table 19 - P&U User Interface APIs .. 81

Table 20 - P&U External Services APIs ... 81

Table 21 – P&U Developer Tools .. 82

Table 22- Urn Repository Precepts ... 93

Table 23 - P&U Framework Code Blocks .. 102

Table 24 - Comm Link and Transport Code Blocks and Wrapper Functions 103

Table 25 - Execution Times of Read-Only Pebble Code Blocks .. 105

Table 26 - Execution Times of the Read/Write Code Blocks ... 115

Table 27 - Execution Times of the Smart Code Blocks .. 124

Table 28 - Execution Times of the Smart Code Blocks (N810) ... 125

 1

Chapter 1: Introduction

This document proposes a new pervasive computing conceptual architecture called

Pebbles and Urns (P&U) and describes preliminary and expanded research based on this new

architecture. To explore the feasibility and utility of the P&U conceptual architecture, an

instance of the P&U architecture is investigated, designed, and implemented. This P&U

instance, or framework, is used as the foundation for a tangible, situated opportunistic computing

system. Feasibility studies are performed on using this P&U framework to build application

prototypes. Factors relating to P&U components are identified and discussed. Finally, findings

based on the P&U framework and prototypes are used to assess the fulfillment of research

objectives.

1.1 Background and Motivation

The concept of the Internet of Things (IoT) became popular in 1999 when the Auto-ID

Center at the Massachusetts Institute of Technology (MIT) designed Radio-Frequency

Identification (RFID) technology. Kevin Ashton, co-founder and director of AutoID Labs, in an

article published in Forbes Magazine, in 2002, said [1]:

“We need an ‘Internet-for-things,’ a standardized way for computers to

understand the real world.”

At the same time, researchers at MIT’s Media Lab referred to the IoT with respect to the World

Wide Web [2]:

“In retrospect it looks like the rapid growth of the World Wide Web may have

been just the trigger charge that is now setting off the real explosion, as things

start to use the Net.”

 2

The IoT has evolved to represent a physical world saturated by fixed and portable devices

with computing and communication capabilities. The IoT provides a foundation for connecting

things, sensors, actuators, and other “smart” technologies, thus enabling person-to-object and

object-to-object communications. While an area of continuing research interest in the wireless

and pervasive computing domain, there is no clear understanding of how the IoT will make our

lives easier and more productive. Currently, it is perceived as affording information visibility.

Researchers claim the IoT needs to support autonomous decision making to reduce everyday

decision tasks and avoid delays between information availability and decisions [3].

With the proliferation of networked devices connecting people and things, the amount of

accessible, real-time information enabling choice and decision making will increase

dramatically. A new IoT “ecology” consisting of the relations and interactions between people,

these devices, and the environment is expected to form. Devices in this ecology will be based on

new technologies, as well as traditional computing, networking, and storage devices. As

connected devices number in the billions, approaching trillions, there is a realization that current

computer and network technologies are unable to handle the complexities of interaction

associated with this volume of devices [4]. New service migration and coordination

infrastructures are needed to support the types of services offered in this new “ecology.” The

real-time data storage and retrieval needs of this large number of devices will require new

distributed data storage and shared memory models. These numerous heterogeneous devices

will possess varying communication, computation, and network abilities, and varying levels of

reliability. In addition, the nomadic behavior of users will add interaction complexities.

Systems of unstable networks and devices will require new, robust, scalable network and

messaging models. New human-to-device and device-to-device interfaces are also needed.

Consideration of simple, dedicated personal devices instead of multi-purpose devices like

smartphones is one motivation for this research. Although successful IoT research prototypes

have been developed, advances in new architectures and frameworks are needed to support large-

scale deployment of the IoT. Researchers from the Institute for Pervasive Computing

summarize the technical challenges associated with the underlying technologies of the IoT [5]:

1. Scalability – Communication and service discovery components of the IoT need to

function in large-scale environments.

 3

2. “Arrive and Operate” – Interactions between humans and devices in the IoT require

spontaneous connection and organization.

3. Interoperability – The diversity of many different smart objects require common practices

and standards.

4. Discovery – Services for “things” must be automatically identified.

5. Software complexity – Software infrastructures are needed to manage smart objects and

provided services.

6. Data volumes – “Real-world” awareness scenarios require volumes of local and remote

data.

7. Data interpretation – The interpretation of local context to trigger further action is not

trivial.

8. Security and personal privacy –Personal privacy within the IoT requires support of

selective access control of services and information among users and the many smart

objects.

9. Power supply –The many devices in the IoT need to take advantage of energy saving

advances in hardware and software.

10. Interaction and short-range communication – Development of new interaction techniques

and processes between humans and devices in the IoT is needed.

Within the world of the IoT, intentional and random encounters between users and

devices become opportunistic. In fact, the frequent likelihood of opportunities is a motivation

for this research. Humans carry mobile devices, and human mobility generates communication

opportunities when two or more devices come into contact. When two devices come into

contact, an opportunity occurs to share and exploit each other’s software and hardware resources,

exchange information and execute tasks remotely. This interaction, referred to as opportunistic

computing (OC), is considered one of the next major challenges in pervasive computing [6].

The design and implementation of an OC system offers several challenges. One

challenge is how to manage the stability, duration, and frequency of the often wireless

connection between OC devices. Connections among mobile devices are intermittent, short in

 4

duration, and suffer from insufficient, or unavailable, wireless infrastructures. Another challenge

is resource availability and discovery. How are appropriate resources identified and used in

opportunistic meetings? Researchers acknowledge the difficulties in defining a standard

composition of services that would be available during OC sessions. Creating incentives, or

reasons for initiating device conversations, is a difficult challenge given the random encounters

of multiple mobile devices. OC systems include a social awareness component based on context

management describing user behavior within social groups. Context representing human

behavior can consist of current user location, social links with other users, and user activity

within a place. This is another aspect of OC that is extremely difficult to implement and manage

due to the multiple mobile entities involved. Finally, the challenges associated with power

management of mobile devices are ever present.

1.2 Research Objectives and Questions

As a contribution to this research domain, a new conceptual architecture called Pebbles

and Urns (P&U) is proposed to better understand and address some of the key needs described

above. Pebbles and Urns is, at its core, an information delivery system that explicitly supports

context-rich, physically-situated, distributed information repositories.

Urns are associated with a specific, physical location and represent a context and content

repository pertaining to that physical location. Urns provision services and information specific

to their physical location and of interest to mobile users nearby. Information consists of content

relative to the physical location and, perhaps, other context. For example, information could

include “Today’s Specials” if the location is in or near a restaurant. A portion of the content at

an Urn can be information generated through user interaction. For instance, keeping with the

dining theme, information could include a log of menu item selections by different users. An

urn’s information may also contain a context portion of real-time environmental data about the

place, such as current noise level in the dining area.

Pebbles are a tangible means of conveyance for an information-bearing message sent to

or received from an Urn. Pebble information can be a query message or service request,

 5

information returned from one of those interactions, or even an executable program. A user

exchanges Pebbles with an Urn through various forms of physical, situated interaction. The

Pebble may be a tangible object physically placed in or removed from the urn by the user. The

Pebble might also be a virtual object, for instance if the Urn is accessed by a command protocol

issued by the user from his or her mobile phone or other mobile device. Urn interactions might

be in the form of pointing or scanning actions performed by the user with their mobile device.

Regardless of the physical form of the Pebble itself and the mechanism for Pebble interaction

with an Urn, a Pebble is conveyed to or from an Urn only through physical proximity. Thus,

while the Pebble and Urn may be physical or virtual, the P&U architecture is predicated on

enforcing physical proximity and enriching the interaction through context.

There are usually lessened power concerns for the Urn since it can typically be powered

by a continuous power source. Also, the Urn is expected to be connected to a reliable and fast,

perhaps wired, network infrastructure. This reliable network component facilitates access to

external service. Pebble resources are expected to be less than those of an Urn. This discrepancy

in resources provides an opportunity to explore the use of cyber foraging strategies in Pebbles

and Urns. Cyber foraging is the transient and opportunistic use of computing resources by

mobile devices [7].

Given the challenges of the Internet of Things and opportunistic computing presented in

Section 1.1, research questions (RQ) associated with the proposed new P&U architecture to be

addressed in this research are as follows.

RQ 1. How would properties and characteristics of the P&U architecture advance the design

and deployment of IoT and opportunistic computing implementations? Guiding

components of this research question include the following.

RQ 1.1 What interoperability and interaction features and characteristics of the

P&U architecture provide a stable and flexible communication connection

supporting near, situated, tangible interaction between devices

participating in the application domain of opportunistic computing?

 6

RQ 1.2 Within the P&U architecture, what protocols, rule sets, algorithms,

abstractions, and context management identify a relevant service domain

for parties participating in a P&U-based opportunistic computing session?

RQ 1.3 How can P&U designs utilize cyber foraging strategies such as power

management and cloud services?

RQ 2. What innovative, or problematic, features are revealed through the design and

implementation of a P&U instance and, for problematic features, can the problem

areas be addressed?

Research Question 1 is the primary question that this research attempts to answer.

Pertaining to technical challenges associated with the underlying technologies of the IoT and

OC, RQ 1.1, RQ 1.2 an RQ 1.3 identify specific research areas that were examined for key P&U

properties and characteristics. Research Question 2 addresses areas explored during the course

of this research and in future research. In addressing these questions, new questions presented

themselves and, in turn, were investigated as time permitted.

1.3 Overview of Research Methodology

Several high-level design models of different Pebbles and Urns instances were defined.

Analysis of these models were performed to determine how closely each represents the Pebbles

and Urns conceptual architecture, described in further detail in Chapter 2 of this document.

To answer Research Question 1 presented in Section 1.2, prototypes based on the Pebbles

and Urns architecture were constructed. Guided by Research Questions 1.1, 1.2 and 1.3

presented in Section 1.2, these prototypes were used to explore and instantiate the contributing

utility of a Pebbles and Urns system relative to unique, reusable OC structures and properties.

Experimental evaluation of this prototype includes a feasibility study identifying implementation

considerations and performance factors associated with Pebbles and Urns system components.

 7

New questions arose as a result of this experience. Questions that, when explored, will

contribute to a better understanding in answering Research Question 2 in Section 1.2.

1.4 Anticipated Contributions

This research has led to the proposed Pebble and Urn architecture. While the full realization and

investigation of all aspects of Pebbles and Urns is beyond the scope of this dissertation, this

research explores ways in which novel elements of a Pebbles and Urns system can assist in the

design and implementation of Internet of Things and opportunistic computing applications. In a

P&U system, one node, the Urn, is stationary. Pebbles represent the many mobile or nomadic

users and their devices. Pebble and Urn interactions remain opportunistic given the dynamic

nature of user intent and the ever-changing context of user and place. The Urn is situated in a

physical place and represents that place in terms of consistent, trusted, well-known services and

information. The social context of an OC system is managed by the Urn, as it maintains a cache

of information “residue” pertaining to its physical place [6]. Location context is a constant and

social behaviors are generally defined and bounded by the nature of the place associated with its

Urn. Contributions, as indicated by the Research questions in Section 1.2, are the studies of

interoperability, service domains and cyber foraging strategies within the framework of a new

P&U architecture that is used to better understand and address IoT and OC implementations.

Another contribution of Pebbles and Urns is the support of information conveyance in the

approaching new “ecology” of the Internet of Things. The Pebbles and Urns architecture

supports systems that augment the numerous ways a person deploys, obtains, and realizes

information in their daily activities. Types of interactions include the human-to-device

relationship of a person and their Pebble, the device-to-device communications between Pebbles

and Urns, and the human and device communications with supporting pervasive services.

Pebbles and Urns services include context management, personalization, service discovery and

composition, session management, UI mechanisms, and privacy and security features.

 8

1.5 Document Organization

This chapter has discussed the background and motivation for the design of a pervasive

computing conceptual architecture called Pebbles and Urns. Chapter 2 covers the core elements

of the P&U conceptual model including descriptions of a Pebble and an Urn, P&U interactions

and information flow, Pebble and Urn repositories, and Urn services. Chapter 3 provides an

overview of background and prior work contributing to the P&U architecture. Design models of

a P&U architecture are described and analyzed in Chapter 4. Chapter 5 details the design,

implementation and testing of a minimalist P&U instance based on the initial P&U architecture

discussed in Chapter 4. Chapter 5 next presents research based on this early P&U work, and its

application to the research questions presented in Section 1.2. Finally, Chapter 6 summarizes the

research discoveries and contributions of this study and identifies areas of future work.

 9

Chapter 2: Pebbles and Urns Conceptual Model

As presented in Chapter 1, Pebbles and Urns is a tangible, presence-based messaging

architecture that can serve as a foundation for situated opportunistic computing systems. This

chapter describes the core elements of the base P&U architecture. Section 2.1 provides a

conceptual overview of the P&U architecture. P&U core components, including the Pebble, the

Urn and associated information repositories, are introduced in Section 2.2. Section 2.3 describes

aspects of Pebble and Urn interaction and communication. A discussion of situated user services

delivered by an Urn is presented in Section 2.4. Use cases demonstrating the potential utility of

the P&U architecture are described in Section 2.5. Section 2.6 summarizes the P&U topics

covered in this chapter.

2.1 Pebbles and Urns Concepts

Relevant is defined as pertinent to the matter at hand [8]. The P&U system is designed to

deliver relevant information, computation, and communication that is pertinent and beneficial to

a person with respect to their current context, including their activity and location. Their

personal experience is enhanced by this additional information. P&U is intended to be casually

accessible, supporting situated interaction with its use of locally-generated content, contextual

data, and distributed services. P&U can meet the goals discussed in [9] by embedding

interaction and computation deeply into the natural flow of everyday tasks, activities and

collaborations. The elements of P&U that enable this utility include a natural user interface, a

situated component, a strong physical association between user and activity, up-to-date content

about the user, location, and timely services.

The P&U user interface involves the association of a token, the Pebble, owned and

carried by the user with a receptacle object, the Urn, fixed to a specific place or physical

location. The user may be represented by their Pebble, at least at that instant of time and for the

user’s intended purpose. A user may possess several different Pebbles, each representing them

in a different role. The Pebble contains information about the person that facilitates activities

within their environment. Examples of this information could include user identification data,

 10

content pertaining to upcoming activities and other information. The Urn receives the user’s

Pebble, initiates an exchange of Pebble and Urn identifying information, and then establishes a

connection or association between the user and information services relevant to the user’s current

activity. Urns can be distributed and located throughout the relevant portions of a user’s

environment, including their home, workplace, shopping locations, and/or recreational locations.

Places in the environment are embodied by Urns at those places. An Urn represents a place by

containing information about its physical location, nature of business, environmental

characteristics, and current state. The current state of a place describes its attributes. For

example, a possible attribute of a restaurant is the number of currently available seats. An Urn

has a strong physical association with the place or location that it represents. An Urn is a focal

point of information about that place. It is that location’s omphalos, where omphalos is defined

as a central part or focal point. Omphalos is the name of the rounded stone in the shrine at

Delphi, regarded by the ancients as the center of the world [10].

People move about their daily activities following both established patterns and random

deviations caused by choice, decision making, casual encounters and social behaviors. Given the

mobility of the user and their pebble and the distribution and association of Urns with numerous

places of interest, Pebble and Urn interactions will occur. With its computational, informational,

and service composition capabilities, the P&U architecture assists with the formation of

opportunistic user and place interactions.

P&U leverages a simple, inexpensive tangible interface and context-rich, physically-

situated, distributed information repositories. A result of this design is that much of P&U’s

underlying infrastructure and operation are hidden from the user. Privacy issues arise regarding

the nature of personal information exchanged between a user’s Pebble and an Urn. Mark

Weiser stated that “the real problem [associated with ubiquitous computing] while often couched

in terms of privacy is really one of control” [11]. Controls within the P&U system that help

manage user roles and privacy includes:

 Pebble Repository data structures that support master and place-specific user

profiles allowing the segregation of user profile information

 11

 Multiple Pebbles per user each representing different user roles

 Encrypted QR Pebble

 Role support on Smart Pebble

2.2 Pebbles and Urns Core Elements

This section introduces the core elements of the P&U architecture. They are the Pebble,

the Urn and their respective information repositories.

2.2.1 Pebble

 As introduced in Section 1.2, a Pebble is a form of an information-bearing message sent

to or received from an Urn. Examples of Pebble instances are illustrated in Figure 1.

Figure 1 - Examples of Pebbles

 12

Pebble information can be or represent a query message or service request, information

returned from one of those interactions, or an executable program. A Pebble may be treated by a

user in the same manner as their keys, wallet, or eyeglasses in that a user’s Pebble or Pebbles are

always with them. Alternatively, possession of a Pebble may be transient being associated with

temporary state or situation. Storage elements of a user’s Pebble can contain digital identity

certificates, program executables, and other types of information relating to their current

activities and behaviors. The Pebble enables user interaction with a physical location and

associated services via an Urn.

Pebbles possess varying capabilities based on their underlying implementation

technologies. A Pebble classification system based on different Pebble implementations defines

particular Pebble and Urn interactions. A Pebble may be implemented using RFID or 2D code

technologies. The physical form factor of such a Pebble is a small object containing an RFID tag

or displaying a two-dimensional (2D) code such as a quick response (QR) code. This type of

Pebble is read-only and incapable of receiving updated information from the Urn with which it is

interacting. Another Pebble form factor is the ubiquitous Universal Serial Bus (USB) or thumb

drive. A Read/Write Pebble based on a USB drive can have considerable storage capacity and

can be updated with information from the Urn. More sophisticated “smart” Pebbles with UI

interfaces and computation capabilities can be implemented with small embedded

microcontrollers like the Gumstix Computer-on-Module [12]. For instance, an Urn interacting

with a “dumb” RFID Pebble capable of only identifying itself would assume greater

responsibility for areas of storage and service management. A near-field communication (NFC)

interface can be based on Bluetooth or radio frequency identification (RFID). Table 1 lists

implementation platform characteristics and benefits of several Pebble classes with respect to

cyber foraging, form factor, communication interface, storage and Urn dependency.

 13

Table 1 – Platform Aspects of Pebble Classes

P&U
Platform

Pebble Class

Read-Only Read/Write Smart

Cyber
Foraging

No power
requirements

No power
requirements

Power required
(processors and radios)

Example
Form Factor

Small physical tokens
using QR codes or

RFID tags
USB (thumb) drive

Embedded
microcontroller or

personal mobile device

Communication
Interface

One-way technologies
 Scanning
 Touching

Two-way technologies
 Touching

Two-way technologies
 NFC
 Hybrid

Typical
Storage

2K to 4K bytes 128 GB 128 GB

Urn
Dependency

Significant Moderate Peer relationship

Table 2 lists architectural characteristics of the Pebble classes with respect to session

initialization, storage structure, message format, physical link isolation and Pebble decision

making.

 14

Table 2 - Architecture Aspects of Pebble Classes

P&U
Architecture

Pebble Class

Read-Only Read/Write Smart

Session
Initialization

Blocking
Device event

notification like the
Linux udev process

Service discovery

Storage
Structure

 Simple text strings
 Limited storage
 Read-Only

 File directories
 Ample storage
 Read /Write by Urn

 File directories
 Ample storage
 Read /Write by

Pebble and Urn

Message
Format

 Simple
 Constrained by

Storage size

 More sophisticated
 Similar to USB

storage capabilities
 Urn (OS) access

 Similar to
Read/Write

 Opportunities for
active Pebble/Urn
dialog

Physical
Link

Isolation

Wrapper code around
PMI technologies
handles one-way
communications

Wrapper code around
PMI technologies

supporting bi-
directional

communication

Wrapper code around
PMI technologies

including NFC

Urn
Interaction

Urn pulls Urn pulls and pushes
Urn/Pebble pulls and

pushes

Pebble
Decision
Making

Restricted to static
information in message

(text string)

Urn interactions via
R/W capability of

Pebble.

Yes, given presence of
Pebble Controller

An extension to Pebble classes is a Pebble incorporating multiple physical-mobile

interaction (PMI) interfaces [13]. Figure 2 shows three examples of a hybrid Pebble: an RFID

keychain dongle with added QR code, a USB drive with added RFID tag and QR Code and a

card form factor with magnetic stripe, QR code and RFID tag. A hybrid Pebble is capable of

performing more sophisticated actions while still maintaining a minimal resource configuration.

 15

Multiple interfaces on a single Pebble form factor can associate separate external services by

combining separate pieces of information. For example, the QR code on the ID card might

present the combined information contained on the magnetic stripe and the RFID tag.

Figure 2 - Examples of Hybrid Pebbles

2.2.2 Urn

An Urn is a physical object that is a receptacle of Pebbles. Examples of Urns are

illustrated in Figure 3. An Urn is anchored to a specific physical entity and its location. An

entity can be a store, a sporting arena, a restaurant, a classroom, or any space encountered by a

person going about their daily activities. The Urn represents that entity. The user placing their

Pebble in an Urn facilitates the user’s embodied interaction with the corresponding physical

 16

space. User proximity to the Urn is required for the interaction to occur. Characteristics

common across Urns include local computational and storage capabilities, some form of on-

board environmental sensors, Pebble store and retrieve mechanisms, and user interface elements

like visual displays and indicators, printers, and audio devices. Urns may be connected to a

network or may be stand-alone. Numerous urns can be situated across an environment, each

associated with a physical place. The Urn located in the user’s home serves as a platform for

managing the user’s Pebbles by loading and updating user profile and service request

information.

Figure 3 – Examples of Urns

One service consideration of these urns is whether or not they share information with

each other. An urn can be “standalone,” unconnected to other urns, managing its own content

and context repositories. Advantages of “standalone” urns include no network infrastructure

requirements, an enforced physical presence with place, and an ad-hoc, user-based message

 17

transfer mechanism from urn to urn. Advantages of connected urns are coordinated information

transfers to multiple locations, access to non-place specific information via cloud services, and

reduced local processing and storage resource requirements. This concept is expanded upon in

Section 2.2.3.

Information stored in a Pebble can be read, and updated by the Urn containing it if the

Pebble has writeable storage. Urn interactions enhance user experiences by incorporating

contextual information.

2.2.3 Information Repository

Both Pebbles and Urns have information storage and management capabilities. Different

Pebble classes have different storage characteristics. If a Pebble is capable of storing data, its

Pebble Repository contains objects associated with the user’s anticipated or opportunistic

activities. Information stored on the Pebble can consist of data files such as a grocery list, a

user’s current prescription drug regimen, or service and program references. RFID-based and

similar Pebbles possess limited amounts of read-only storage. Such a minimalist Pebble

containing only a unique identifier would have its data store functions managed by an Urn.

Information about the Urn’s place and user interactions is contained in the Urn

Repository. The kinds of information and data in the Repository differ depending on whether the

Urn is standalone or federated. A standalone Urn is not connected to a network and manages

local information in its repository. Even when not network-attached, standalone Urns offer

unique service opportunities because their local Repositories are updated only by the nomadic

activities of their users. Federated Urns are network-attached and have access to external

services. This concept is further explained when describing types of Urn services in Section 2.4.

The Urn Repository of a standalone Urn contains:

1. local place-specific content;

2. user-generated content (activity history and/or social cache);

3. local environmental (sensor) data;

4. program executables implementing place-specific services; and/or

 18

5. state information about Pebble and Urn interactions.

In addition, the Repository of a federated Urn contains information harvested from other Urns,

either directly or via external services. Federated Urns could provide place and user information

selected by place type or geographical location. This type of information access supports

opportunistic situations through context awareness of nearby locations. For example, a person

using a P&U instance to shop for clothes may be made aware of a lunch special at a nearby

restaurant.

An Urn Repository manages several sources of user-generated content. One source is the

content generated by users of the system. Information stored on the user’s Pebble is collected

and stored as part of the Pebble-Urn interaction. This user-generated content is further

supplemented by actions performed by the Urn when the Pebble information is processed. For

example, a user places a Pebble containing their grocery list in the grocery store Urn. Additional

local content is generated by the Urn as it updates its “demand” content by the items requested

on this user’s grocery list. The other source of local content is the data produced by the various

environmental sensors attached to an Urn.

2.2.4 Pebbles and Urns Architecture

Depending on the Pebble classes, the Pebble architecture consists of some combination of

a Pebble controller, a Pebble repository, a P&U protocol/interface, and a physical

communication layer. These components are described in more detail in Chapter 4. The Urn

architecture, consisting of an Urn controller, an Urn repository, a P&U protocol/interface, and a

physical communication layer, is described in more detail in Chapter 4. Figure 4 shows a high-

level view of the P&U architecture. P&U interactions shown in Figure 4 are discussed in

Section 2.3.

 19

Figure 4 - P&U Architecture Components

The term “pattern”, in software engineering, describes a proven solution to a common

problem in a specific context [14]. Design patterns have been studied widely in the field of

software and are known to improve the transfer of knowledge [15]. The use of design patterns

can help software designers to design better software. Design patterns provide a common

vocabulary for computer scientists across the domain barrier and enhance the documentation of

software [16]. The overall architecture of a system and related design decisions can be explained

by giving a set of patterns used.

P&U protocols and application programming interfaces (API) are comprised of a mix of

current architectural patterns. Another aspect of this research, driven by Research Questions 1,

1.1, 1.2 and 2 presented in Section 1.2, is the investigation of layered protocol stacks that lead to

a P&U hourglass-shaped or “thin waist” architecture [17] .

 20

2.3 Pebbles and Urns Interactions

This section examines the interactions between Pebbles and Urns. This situated, physical

interaction between the Pebble and an Urn is a distinguishing feature of the P&U system and is

examined based on Research Questions 1 and 2. Reasons for this type of interaction include the

following.

 Real-time, physical adjacency affords the most accurate information about a

place.

 As a requirement of interaction or information exchange, the user or pebble must

be physically present at a place, for example to pick up a ticket for an event or

meet with a physician.

 P&U interaction involves physical activities specific to location, for example to

unlock a door with a key.

 Interaction requires, or is facilitated by, characteristics of short-range

communication (PMI), for example as might be used for a security scheme.

A user associates Pebbles with an Urn through various forms of interaction. The Pebble

may be a tangible object physically placed in or removed from the urn by the user. The Pebble

might also be a virtual object, for instance if the Urn is accessed by a command protocol issued

by the user from his or her mobile phone or other device. Urn interactions might be in the form

of pointing or scanning actions performed by the user with their mobile device. Regardless of

the physical form of the Pebble itself and the mechanism for Pebble interaction with an Urn, a

Pebble is conveyed to or from an Urn only through physical proximity. Thus, while the Pebble

and Urn may be physical or virtual, the P&U architecture is predicated on enforcing physical

proximity and enriching the interaction through context. By its proposed use of enforced

proximity, local context, and location-specific services, P&U can support the situated interaction

between user and place.

 21

Figure 5 - Potential P&U Interactions

Possible P&U interactions are illustrated in Figure 5. P&U supports the situated interaction

between a person and the places they encounter during their day-to-day activities (Interaction A

in Figure 5). These activities may require an exchange of information about the place and related

services. P&U can enhance the information exchanged between a user and a place and facilitate

decision making. The relationship between the user and their Pebble (Interaction B) allows the

Pebble to identify the user and provide content relating to current activities. Communication

between Pebble and Urn (Interaction C) is a focal point of this research. This connection can

vary based on specific P&U implementations or the connection characteristics of a particular

user’s Pebble.

Possible Pebble connection types include touching via near-field communication, such as

using RFID or Bluetooth, scanning of tags like QR codes, or direct physical connection such as

USB or Dallas Semiconductor’s iButton. Rukzio and Broll refer to these connection types as

 22

physical mobile interactions or PMI [18]. An Urn could have several different physical

interfaces to handle a heterogeneous mix of Pebbles. This concept encourages the investigation

of a layered architecture where the physical communication layer uses “wrappers” to support

different mechanisms for Pebble-Urn communication. The Urn can coordinate Pebble

information with sources of place information (Interaction D). Opportunistic service

identification, another research area of this proposal as identified by Research Question 1.2,

occurs here. Information and services can be returned to the user (Interaction E).

Figure 6 - P&U Interfaces

Figure 6 shows another representation of P&U interfaces. In addition to PMI connection

types, the research focuses on novel ways Pebbles and Urns can manage communication

sessions. For example, communication could be performed with a shared memory architecture

using the Pebble Repository and Urn Repository. The other interfaces shown in Figure 6

represent traditional implementations and are not considered as part of the proposed research.

 23

Figure 7 illustrates feature extensions of a P&U system. Shown here, the Urn controls

actuators that alter the place environment, in this case lighting. The user’s environment reacts to

the presence of the user’s Pebble. Lighting color within this place is controlled by a preference

stored in the Pebble’s user profile. In addition, the Urn alters the environment by coordinating

the presence of multiple, different Pebbles.

Figure 7 - Urn Coordination of Multiple Pebbles

2.4 Urn Services

P&U enhances the user’s ability to accomplish common tasks in everyday life by

augmenting their activities with information and services passed to them by a specific Urn. Urn

information consists of user-generated content and context influenced by the Urn’s place,

environmental attributes provided by the Urn’s sensors, content provided by users of the place,

and, if supported by the local P&U infrastructure, information from a cloud of external services.

This section describes aspects of P&U services.

P&U services are closely related to a specific physical location and to a particular

situation of the user. Given these characteristics, P&U services may not be developed based on

 24

goal-directed activities [19]. Instead, P&U services possess a flexible composition formed by

user and location contexts [20].

The need for several service discovery components is recognized in the P&U design. For

example, service discovery scope, one of the challenges of opportunistic computing, is

minimized by the P&U architecture due to the Urn being anchored to a physical location. The

services provided by a particular Urn are bounded by the nature of its associated place.

Similarly, services sought by a user interacting with a particular Urn are in a specific domain.

2.5 Pebbles and Urns Cyber Foraging

Cyber foraging is the opportunistic use of nearby computing resources (surrogates) by

small, mobile devices [7]. Mobile devices achieve faster compute performance, access larger

data stores, and conserve power by offloading tasks to more capable, nearby surrogate

computers. Characteristics of the P&U system encourage and facilitate the use of cyber foraging

strategies.

Section 2.2.1 describes Pebbles with varying capabilities based on their underlying

implementation technologies. Pebbles that use microcontrollers and require power might take

advantage of cyber foraging to reduce energy consumption when interacting with the Urn.

Section 2.2.2 discusses the Urn’s fixed location in a facility like a building or public area.

This would insure to a large degree availability of continuous power and connectivity. Cyber

foraging strategies could leverage these capabilities during Pebble and Urn interactions.

A network-attached Urn as discussed in Section 2.2.3 has access to external services such

as remote execution and distributed storage. Strategies to move local responsibilities for these

services away from the Urn could improve Urn implementation considerations of cost,

performance or form factor.

 25

2.6 Pebbles and Urns Use Cases

The following scenarios demonstrate ways in which P&U have the potential to enhance

user experiences in common everyday activities.

2.6.1 Elderly and Assisted Living Care

Paul, a 78-year old man suffering from mild dementia, is intent on living alone and

remaining self-supported as long as possible. This scenario describes how P&U assists Paul with

remaining independent. Paul’s dementia along with other medical conditions now prevent him

from driving, He depends on public and other transportation services to attend to medical

appointments, grocery shopping, the pharmacy, and other general travel activities. In addition,

Paul’s relatives live some distance from him, and are unable to visit him often.

Paul’s P&U system is of a standard configuration. The Urn is a physical container with

computing, network, and signaling capabilities. The Urn is located in the area of the house that

Paul most frequently occupies. In Paul’s case, the Urn is connected to a 24/7 “caregiver’s”

service that uses P&U to monitor Paul’s presence in his house, manage schedules and

appointments, assist in medication management, and determine travel routes. Paul’s Pebble is a

small physical artifact with data storage, biometric reader, and an Urn interface. Static

information on the Pebble authenticates Paul’s identity. Currently, Paul is at home and his

Pebble is in the house Urn. The fact that the Urn contains the Pebble is of situational

significance. Using established behavioral patterns, the caregiver service has some assurance

that Paul is in his house because his Pebble is in the Urn. By accessing the caregiver service,

loved ones can also see Paul is at home. In addition, when the Pebble is in the Urn, the Pebble’s

local storage is loaded with credentials and other information needed in conjunction with today’s

activities.

Paul has two appointments today. One is with a doctor’s office across town, and the

other is to refill medical prescriptions at the local pharmacy. Paul studies the appointment

information on the Urn’s visual display. As he removes the Pebble from the Urn and puts it in

his pocket, a printed copy of his schedule is produced for him to take. According to the

 26

schedule, a driver from the caregiver service will arrive in five minutes to take Paul to his

doctor’s appointment.

Stepping into the doctor’s office, Paul scans his thumbprint with his Pebble, and places

the Pebble in the office Urn. The office Urn accepts his identity, notifies the office system of his

arrival, and returns his Pebble. The office system now retrieves Paul’s medical records for the

staff and the caregiver service is notified of Paul’s arrival at the doctor’s office. After his

appointment, the caregiver driver returns to take Paul to his home.

That afternoon, Paul prepares to visit the pharmacy. Since the pharmacy is on the local

bus route, Paul will take public transit. Removing his Pebble from the house Urn, he notices that

the bus will arrive at his stop five minutes later than originally specified. At the pharmacy, Paul

places his Pebble in the pharmacy Urn. Even though the pharmacy’s network connection is

down, Paul’s prescriptions can be filled since his house Urn loaded his Pebble with current

medication information and doctor certificates that morning.

Back home, Paul returns his Pebble to the house Urn, and promptly falls asleep in his

recliner.

2.6.2 Grocery Store

Arriving at the grocery store, Pete deposits his Pebble containing his grocery list into the

Urn located next to the carts. The Urn produces a printout, several coupons related to his

grocery list, and returns his Pebble. Looking over the coupons, Pete certainly prefers receiving

coupons prior to his checking out as opposed to afterwards. The printout contains his grocery

list annotated with item and aisle locations. The current price of each item is also on the printout

along with the total cost of the grocery list items.

 27

Figure 8 – Example P&U Grocery Store System

This location information speeds up shopping and the provided total cost of the shopping trip

allows Pete to make any necessary budget decisions at the time. Pete notices from the printout

that a couple of the items on his list are out-of-stock. The store system has recommended a

replacement selection for one of the out-of-stock items. Figure 8 illustrates this simple P&U

system.

2.6.3 Apparel Shopping

It is Saturday and not snowing; a good day for shopping. Donna begins her shopping day

at Warmwater Brook, her favorite clothing store. The Warmwater Brook Urn is physically

located in the store next to a large touch screen. Donna drops her Pebble into the Urn. Donna's

Pebble contains the usual set of identifying credentials plus shopping information such as her

clothing sizes and style preferences. As her Pebble connects to the Urn, the touch panel comes

to life first welcoming Donna to the store. Next, the display contains a number of general store

specials, including an unadvertised special of 25% off of all items in the store. The store Urn has

 28

access to inventory information not only for this store, but other area stores. Checking Donna's

style preferences, in-stock items in her sizes appear on the touch screen. Donna navigates

through the displayed inventory picking a style that she likes. Unfortunately, it is not the right

color. However, the desired item in the correct size and color is in-stock at another store.

Through the touch screen, Donna requests that this item be delivered to her local store that

afternoon. Finished with her shopping, Donna retrieves her Pebble. The farewell message on

the display informs Donna that she has just been issued a 10% discount coupon at Leaf and Nut

that is valid for the next hour. Leaf and Nut is a restaurant near Donna’s current location.

2.6.4 Freshman Orientation

Alice, an incoming freshman at Virginia Tech, walked out of the new Visitor’s Center.

She was excited that freshman orientation was finally here. Alice examined the object she had

been given during check-in. The orientation staff had called it a Pebble, and described it as her

key to information all over campus. The Pebble was a small cube with colored sides, except for

one side that was marked with the text “QRP2751”. The staff explained that she could use her

Pebble to interact with Urns. Urns are located in every building on campus, and when activated

by her Pebble would provide her with useful information about where she happened to be at the

time. In most cases, Urns would be located inside the main entryway of each building. Most of

the Urns looked the same; a Hokie Bird stature with camera lens for eyes and a large display on

its chest. Alice was told that each color on her Pebble had meaning. If she held the blue side of

her Pebble facing the Urn’s camera, the Urn display would show her a room directory of the

building she was standing in. If she used the red side of the Pebble, a map indicating locations of

exits, stairways and restrooms would appear. Alice was told that the green side of her Pebble

represented her identity. She could use this feature to mark her location on campus as she moved

from Urn to Urn.

Continuing her orientation exploration, Alice headed for Squires Student Center. As she

entered the building, she saw the Urn off to her left. Alice held the purple side of her Pebble

next to the Urn’s camera. This action displayed a list of current activities taking place in

Squires. One activity starting in a few minutes was an introduction to the Credit Union. This is

 29

an area she wanted to know more about so she decided to go to this session. After the session,

Alice decided to head back to her dorm. It was after 5:00pm so all dorms were now locked. A

camera lens was mounted in the wall next to the entry door of her dorm. This camera was part of

a Pebbles and Urns system responsible for access control to buildings. Alice showed the green

side of her Pebble to the camera. The Urn knew that it was Alice’s Dorm Urn and that it was

being shown Alice’s Pebble, so it unlocked the door for Alice.

2.6.5 Trip to the Arcade

Grabbing his Pebble from the family Urn, 12-year-old Kyle heads to the mall to meet his

friends. He passes his Pebble though the Urn at the mall entrance, thinking this will make his

mom happy. Upon sensing Kyle’s Pebble, the mall Urn sent his mother a text message with a

time, date, and entrance id stamp of Kyle’s arrival. Kyle meets his friends at the FunTime

Arcade. Kyle’s and his friends’ Pebbles contain a FunTime data extension. Stored in this data

area are FunTime game statistics such as highest scores and most played games. Each time Kyle

plays a game, he places his Pebble in an Urn receptacle on the game console. Game statistics are

updated real time and scores authenticated against the player. Kyle’s Pebble also contains

FunTime approval information digitally signed by his mother, allowing him to play certain

games with age limits or mature content.

2.6.6 Pebbles and Urns Deployment

Jonathan, a pervasive computing systems administrator (PC SysAdmin), is headed to his

first job of the day, an installation of the latest P&U system in the local coffee shop. Jonathan is

pleased this IoT phenomenon is catching on; business is crawling out of, or rather into, the

woodwork. The version of the P&U system is one of the more popular configurations: a

networked Urn with USB Pebble interface and standard sensor package. Arriving at the coffee

shop, Jonathan saw that the baristi had set up a location for the Urn off to the side of the main

entrance. Power and network attachments were easily accessible and Jonathan quickly had the

Urn in place ready for initialization. Once activated, the Urn successfully went through its

power-on and system test procedures. Jonathan plugged his administrative and diagnostic

Pebble into the Urn. The Urn loaded its standard set of service routines from the Pebble. The

 30

Urn first activated the network routines to check its Internet connection. Other routines

registered this Urn with a P&U administration center. Others, using the Urn unique identifier,

loaded external routines specialized to handle service requests that routinely occur in a coffee

shop. Another routine tapped this Urn into the federation of Urns already up and running in this

local geographical region. One of the final initialization steps involved this Urn connecting its

local Urn Repository to the coffee shop’s administrative data stores. Finally, the Urn transferred

all installation logs back to the administrative and diagnostic Pebble. Jonathan removed his

Pebble. The coffee shop Urn was up and running. Customers could now use this Urn to queue

up and place orders and perform other P&U activities. Before leaving, he left 100 USB Pebbles

with the baristi to be handed out to customers.

2.7 Summary

This chapter described conceptual aspects of the P&U architecture. The concept map in

Figure 9 represents P&U components and their relationships.

Figure 9 - P&U Concept Map

 31

Key areas of the P&U architecture discussed in this chapter include enforced physical

proximity of P&U interactions using PMI interfaces, Urn support of different Pebble classes, a

layered P&U architecture, bounded context defined by the Urn’s fixed location, and delivery of

opportunistic, place-specific services

Chapter 3 provides technical background on the P&U concepts presented in this chapter.

 32

Chapter 3: Overview of Interactions, Information, and
Services

This research considers the proposed P&U architecture as a potential enabling technology

for the design and implementation of the Internet of Things and opportunistic computing

systems. The areas of pervasive computing and other fields contributing or relating to this

architecture and its application cover vast bodies of prior and current research. This chapter

provides necessary minimal background on the technical and conceptual areas germane to the

P&U architecture and the related research questions presented in Section 1.2. Section 3.1

provides background and current work on mobile human-device and device-device interactions

including tangible user interfaces, situated interaction and context, physical mobile interactions,

place-specific computing, and opportunistic computing. Section 3.2 describes research areas

contributing to the information management aspects of the P&U architecture. P&U information

sources include place-generated and user-generated content. Pervasive computing service

elements, including service discovery and cloud services, are discussed in Section 3.3. Cyber

foraging is discussed in Section 3.4. Finally, Section 3.5 summarizes the distinctive

characteristics of the P&U architecture when compared to current, related research activities.

3.1 Human and Device Interactions

The ongoing study of human-computer interaction (HCI) aggregates a collection of semi-

distinct fields of research and practice in human-centered informatics. Although the P&U

architecture contains HCI elements, the analysis of P&U from a HCI perspective is beyond the

scope of this research and document. This section provides background on interaction concepts

that influence the design of the P&U architecture. The research areas of tangible user interfaces,

situated interaction, physical mobile interaction, place-specific computing, and opportunistic

computing are represented in the pervasive computing timeline shown in Figure 10. A

representative foundational paper for each research area is indicated in the figure.

 33

Figure 10 - Interaction Research in Pervasive Computing

This timeline illustrates how areas of research in interaction have evolved into new areas

of research. The HCI research that led to tangible user interfaces (TUI) moved computing from

the desktop into our physical environment. Researchers began to explore the influences of

situated awareness on computing interactions as they became part of a person’s surrounding

environment. Advances in the design and availability of mobile devices like personal digital

assistants (PDA) and cellphones and the proliferation of wireless infrastructures offered new

research opportunities to explore a person’s computational interaction with other places, things,

and people. Research in the field of interaction design, referred to as place-specific computing,

stems from advances and previous studies in situated and context awareness, embodied

interaction, and physical mobile interaction. Based on aspects of these research areas, people

and places become physical components of a pervasive networking environment saturated with

distributed resources. The studies of situation and context, mobile user interactions, place-

specific computing, and emerging social networks lead to research on opportunistic computing

where casual encounters between people and places offers opportunistic use of services and

resources.

 34

3.1.1 Tangible User Interfaces

Bishop’s marble answering machine is one of the earliest illustrations of linking the

physical and digital world [21]. The physical embodiment of phone messages as marbles

illustrates a graspable physical container of information as part of a user interface. Tangible user

interfaces are a collection of interfaces allowing users to interact collaboratively with augmented

physical objects in order to access and manipulate digital information [22]. P&U is considered

to have a TUI where the Pebble is a physical object containing information and the Urn is a

physical container of pebbles.

3.1.2 Context and Situated Interaction

Dey and Abowd offer an application-oriented definition of context as [23]:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.

Architect McCullough describes situation as when abilities connect with settings [24].

Situation defines how contexts shape perceptual selectivity, physical places focus social

proceedings, and people act in their physical settings [24]. Situated interaction enables a

computational system to support the users’ activities in the context of use. Two classes of

computational devices well-suited to use situational awareness are: 1) personal, mobile devices

operated and operational while on the move, and 2) stationary devices in common spaces and

changing environments [25].

German philosopher Heidegger proposes how computing artifacts can assist people in

their daily activities and how they are situated in these activities [26]. Heidegger uses the term

“available” to describe a relationship between a computing artifact, the user, and the task at hand.

An “available” computing artifact allows the user to focus on what he or she wants to do.

Heidegger believes there is a future aspect to people dealing with the present. According to

Heidegger, human beings simultaneously: (a) exist in the world with particular interests

 35

(‘thrown’); (b) absorb in coping with the present (‘amidst’); and (c) press forward into future

possibilities (‘projecting’) [26]. Given this orientation toward the future, a person’s everyday

action in the world is guided by what he or she perceives to be the opportunities for action.

Opportunistic computing systems, described in Section 3.1.5, rely on the identification

and use of correct contextual information to facilitate opportunistic encounters among people and

places. Research Question 1.2 presented in Section 1.2 asks how the P&U architecture can assist

in identifying the correct contextual information to use in a particular OC session. Two aspects

of the P&U architecture supporting the use of situational awareness are: 1) Pebbles are personal

devices operated by the user as they go about their daily activities, and 2) Urns are shared

stationary devices associated with common places. Since the Urn is situated with a specific

physical location, types of contextual information available in the Urn’s data repository are well-

known prior to the occurrence of opportunistic encounters. This relationship contributes to

research addressing Research Question 1.2 presented in Section 1.2. The Pebble can be

considered as one of Heidegger’s “available” computing artifacts used to identify opportunities

for action by the user.

3.1.3 Physical Mobile Interaction

Physical mobile interaction is an interaction paradigm that facilitates the use of mobile

services through interaction with augmented physical objects. PMI uses mobile devices to

extract information from augmented objects and to apply it for a more intuitive and convenient

interaction with associated services [27]. Due to its increased simplicity and directness, physical

interaction can make mobile interactions with “people, places, and things” more convenient and

intuitive. This concept of the user perceiving the real world through device (computer) to device

(computer) interactions is represented in Figure 11. This type of interaction occurs in the P&U

architecture where the user’s Pebble (the mobile device) exchanges information with the Urn

(the augmented physical object).

 36

Figure 11 - Mobile Interaction with the Real World through Devices

PMI user interactions include touching, pointing, scanning, user-mediated data entry, and

indirect remote control [18]. The touching interaction triggers an event when the user touches a

smart object with a mobile device. Examples of technologies used to realize the touching

interaction include near-field communication and proximity sensors. Pointing initiates an action

when the user points at a smart object with a mobile device. Infra-red (IrDA) and visual marker

(e.g., 2D code) technologies can be used to realize this interaction. The scanning interaction

invokes an action when a user’s mobile device is in proximity with a smart object. Bluetooth

and other low-power radio frequency (RF) technologies can be used to implement this

interaction type. With user-mediated interaction, the user communicates with the smart object

via a mobile device text application. The Extensible Messaging and Presence Protocol (XMPP)

could be used to implement this type of interface [28]. Indirect remote control involves the use

of a mobile application to control a remote display.

 37

In the P&U architecture, the Pebble is associated with an Urn in a physical manner. The

physical device interactions described by PMI are ways that an association between a Pebble and

an Urn can occur. The type of P&U interaction depends on the connection capabilities of a

Pebble and an Urn. For example, a minimalist Pebble consisting of an RFID tag would be

considered a PMI touching interaction. A Pebble with Bluetooth capabilities would be an

example of a PMI scanning interaction. A Pebble-to-Urn USB interface would extend the PMI

touching interaction.

3.1.4 Place-Specific Computing

Messeter defines place-specific computing as the shaping of interactions between people

and place-specific resources, mediated by digital systems and services, and connected to global

socio-technical networks [29]. He states that systems and services should be designed to cater to

the people that, temporarily or regularly, visit or dwell in a particular place by providing cues for

potential, or opportunistic, interactions. Systems designed in this way demonstrate a shift in

mobile and ubiquitous computing perspectives from anytime-anywhere to here-and-now. Also,

an Urn is a source of place-specific resources.

Seamon describes the importance of habitual movement in everyday life [30]. He

classifies these movements into three categories: body routine, time-space routine, and place

ballet. A body routine is a set of integrated actions that sustain a particular task like buying

groceries. A time-space routine is a set of habitual bodily actions that extends for a considerable

amount of time. Seamon defines a place ballet as an interaction of body routines and time-space

routines rooted in a particular environment. When considering Research Question 1.2 presented

in Section 1.2, future work would study the feasibility of incorporating Seamon’s concept of a

place ballet into the P&U architecture to identify relevant service domains and correct contextual

information in support of an OC system.

The theory of ecological rationality accounts for how people make reasonable decisions

given the constraints of limited time, information and computational resources that characterize

most day-to-day experiences[31]. This research suggests that most decisions are made on the

 38

basis of short-cut strategies where people simply ignore most information available and focus

only on the most useful and most prominent information [32]. Further examination of this

research will address Research Question 1.2 and assist in the design of the P&U service

composition component.

3.1.5 Opportunistic Computing

The emerging Internet of Things is producing a physical world saturated by fixed and

portable devices with computing and communication capabilities. When two or more such

devices come into contact, an opportunity occurs to share and exploit each other’s software and

hardware resources, exchange information, and execute tasks remotely. This interaction is called

opportunistic computing [6].

OC systems include a social awareness component based on context management

describing user behavior within social groups. Context representing human behavior can

include, among other things, current user location, social links with other users, and users

currently demonstrating similar social behaviors. This contextual information can be managed to

provide cues for opportunistic interactions.

 Anticipated challenges regarding the design and implementation of an OC system include

[33]:

 the stability, duration, and frequency of a typical wireless connections among mobile

users;

 availability and discovery of appropriate services and resources;

 incentives or reasons for initiating opportunistic conversations;

 implementation, management, and use of context describing user behaviors within social

groups and physical places; and

 power management and other cyber foraging aspects of resource-constrained mobile

devices.

 39

The P&U architecture is proposed to help better understand and address the design and

implementation challenges of an OC system. Research Questions 1.1, 1.2 and 1.3 listed in

Section 1.2, address this objective.

3.2 Information Management and Sources

An integral part of the P&U architecture is the Urn Repository (UR). Information

contained within the UR includes place information related to the Urn’s location and user-

generated content contributing to the location’s social cache. Place information includes local

content such as a restaurant’s menu, inventory, and specials, and context generated by the Urn’s

sensor components like temperature, noise level, available seating, as well as location and

current time. Program executables representing services tied to user activities are also stored in

the UR. Contributing areas of research discussed in this section include database technologies,

integration of sensor-generated information, and user-generated content.

3.2.1 Pervasive Computing Database Technologies

Considerations involving the design and implementation of an Urn Repository include

decisions on the type of database to use, such as a traditional file system, tuple spaces, or an

embedded database.

For a minimalist P&U architecture, the native file system of an operating system serves

as the Urn Repository data store. As an example, guidelines on how to use the Linux file system

as a database, including directory structure definitions and file naming conventions, are

referenced in this article [34].

The Urn Repository of a more sophisticated P&U architecture involving federated Urns

may best be implemented using tuple spaces. A tuple space is a model of distributed, associative

memory within a concurrency framework [35]. Tuples are data elements in a tuple space. A

tuple space provides asynchronous storage and retrieval of tuples, and access to tuples from any

process on a distributed network. There are research activities that use the tuple space

 40

framework to implement resource discovery, context management, and other pervasive

computing applications [35-37].

A P&U architecture supporting a large number of concurrent users, services and data

transactions may require more sophisticated or specialized database technologies. A possible

database candidate is a real-time, embedded database [38]. P&U is a data-driven system whose

data resides in multiple locations and is accessible from multiple places involving connected or

disconnected Urns. Embedded databases are designed to handle increased data sizes and the

need for enhanced data processing capabilities required by mobile applications like P&U.

Repositories of federated Urns using embedded databases would support transient data storage

where data is streamed through the P&U applications in real-time and not permanently stored.

Embedded databases are tightly coupled to the applications that use them. Data manipulation

requirements of a P&U system are light to moderate, not complex in nature, and designed to

perform a specific function. With a focus on the P&U application, everything is embedded in the

application, including its database. Embedded databases are not separate from the application

accessing them, and are deployed as part of that application installation. Embedded databases

have the following characteristics [38].

1. Embeddable in applications

2. Small footprint

3. Run on mobile devices

4. Componentized data base management system (DBMS)

5. In-memory DBMS

6. Portable databases

7. Synchronize with back-end data sources

3.2.2 Sensor-generated Information

Data about the Urn’s associated physical place can be generated by sensors attached to

the Urn or supplied by sensors distributed throughout the physical location. Implementations of

sensor-based information systems vary in complexity. A small number of sensors directly

attached to an Urn could be polled by the Urn Controller (UC) with resulting data stored in the

 41

Urn Repository data store. More sophisticated distributed sensor arrays require enabling

components that include a sensor database, sensor query structure, and a sensor query processing

model. Cornell’s COUGAR system is an example of a distributed sensor database system [39].

Message Query Telemetry Transport (MQTT) is an open-source publish/subscribe

messaging protocol designed for resource-constrained devices and low-bandwidth, high-latency

or unreliable networks [40, 41]. These characteristics make MQTT an ideal protocol to support

connected devices in the IoT [42]. IBM Zurich Research Laboratory is developing an extension

of the MQTT protocol called MQTT-S for use in wireless sensor networks (WSN) [43].

Protocol candidates for the P&U architecture are MQTT used in the Pebble-to-Urn

communication layer, and MQTT-S used in the Urn-to-sensor communication layer.

3.2.3 User-generated Content

Researchers are studying ways in which user-generated content can improve

understanding of user-place interactions and, thus, enable improved, customized services [44].

Digital footprints, produced by active and passive data collection during mobile device use,

reveal individual and social behaviors of tourists with unprecedented detail [45].

Researchers at MIT are studying the phenomenon of information scraps, which are

ubiquitous encodings of personal digital information generated by users during their day-to-day

activities [46]. Examples of this loose form of information include electronic purchases, digital

text files, self-addressed e-mails and electronic reminders. While this type of user-generated

content might contribute to the support of opportunistic computing, its collection and use

suggests a set of unmet design needs in current information systems. Design considerations of

Urns and Urn Repositories in the P&U architecture offer ways to study how this information can

be captured, used, and stored. For example, restaurant visitors would leave information like

critiques of menu items and other content of potential value on the Urn location such as

consumer patterns such as item preferences and queuing information.

Mamei and Zambonelli are studying a form of user-generated content in a distributed

environmental memory based on the nature concepts of pheromones and stigmergy [47]. Users

 42

leave self-generated content as they interact with services within a physical location. Later

visitors to this location encounter and interact with these information trails, and as stigmergy

defines the actions of social insects, the visitors’ local interactions are similarly mediated by the

environment. Consideration of this work in the design of the P&U architecture addresses

Research Question 1.2 presented in Section 1.2.

3.3 Services

A problem and solution interpretation of the P&U architecture is that the context of the

user is the problem and the service is the solution. The support of opportunistic computing

systems requires the P&U architecture be able to understand a user’s activities and intentions and

in turn provide the appropriate service or services. Service discovery, cloud services and cyber

foraging relate to this need.

3.3.1 Service Discovery

More and more often, normal day-to-day activities include situations where embedded

computational devices offer their services to the user. Mechanisms and processes are needed to

support the identification of and interaction with services of most interest to the user in a given

situation. Service discovery protocols facilitate interactions between heterogeneous devices with

the aim of freeing users from tedious administrative and configuration work. Zhu has defined a

service discovery protocol taxonomy that includes the following service discovery protocol

components: service and attribute naming, initial communication methods, service discovery

infrastructure, service information state, discovery scope, service selection, service invocation,

service usage, and service status inquiry [48]. Zhu has defined three service discovery models

[49].

1. Trivial – a client knows a service in advance, or the client has already cached the

information about the service.

2. Client-Server – a client inquires about all services, and the server responds if a

match occurs.

 43

3. Client-Service-Directory – the client queries a directory of services, and then

contacts the identified service of interest.

Kazhamiakin presents a model of service discovery based on the activities of the user

[19]. Pervasive services accomplish tasks that are related with common tasks in the life of the

user such as paying for parking or buying a bus ticket. These services are often closely related to

a specific location and to the situation of the user. They are not characterized by a strong notion

of a goal that must be achieved as part of a much broader plan, but they are used to address the

contingent situation. This view presents a new way to look at service discovery that is centered

on the activities of the user and the information that the user has available rather than the goals

that a given service achieves.

A related area of research studies context-aware service discovery. With this type of

service discovery, context is used to filter transmission of relevant information and services to

the user. Current research by Rasch, et al. proposes a proactive service discovery approach

named Hyperspace Analogue to Context (HAC) that continuously presents the most relevant

services to the user in response to changes of context, services or user preferences [50]. Other

research activities in this area of context-aware service discovery include [51-54].

As a proposed foundation for an OC system, the P&U architecture requires service

discovery elements. As discussed, service discovery research indicates that only a small

percentage of available services will be of interest to the user in any given situation. This

condition is implicitly supported by the P&U architecture due to the situated location of the Urn

relative to a physical place. Assuming a person is intentionally in a specific place for specific

purposes, the Urn is able to offer only those services in support of those purposes. To support

opportunistic sessions, the P&U architecture does depend on other service discovery features like

service and attribute naming, initial communication methods, service information state, and

service selection and invocation. The modeling and analysis of a P&U instance will help

identify service discovery needs that could be implemented with existing or new protocols.

 44

3.3.2 Cloud Services

One means of P&U service delivery is cloud computing. Cloud computing is a natural

progression of service-oriented architecture. The definition of cloud computing used here is a

computing paradigm that allows users to temporarily utilize computing infrastructure over the

network, supplied as a service by the cloud-provider at possibly one or more levels of abstraction

[55]. The levels of services described in this particular cloud computing ontology are listed

below [55].

 Cloud Application – Software as a Service (SaaS)

 Cloud Software Environment – Platform as a Service (PaaS)

 Computational Resources – Infrastructure as a Service (IaaS)

 Data Storage – Data Storage as a Service (DaaS)

 Communications – Communication as a Service (CaaS)

 Firmware / Hardware – Hardware as a Service (HaaS)

Configured as a distributed model, the Urn Repository (UR) of the P&U system can be

considered to be a cloud client [56]. A cloud client consists of computer hardware and software

designed for access and delivery of cloud services. The UR would access the cloud DaaS if

requested information is not locally available.

3.4 Cyber Foraging

Cyber foraging is the opportunistic use of nearby computing resources (surrogates) by

small, mobile devices [7]. Mobile devices achieve faster compute performance, access larger

data stores, and conserve power by offloading tasks to more capable, nearby surrogate

computers. Task scheduling is an important component of any system using cyber foraging.

Even in the simplest cyber foraging system, a task scheduler chooses where program execution

occurs: the mobile device or the single, specific surrogate.

Kristensen, et al. describe a three-tier cyber foraging approach where a mobile device can

choose between a local surrogate or remote cloud for resources [57]. There are three tiers of

 45

resources in this model: 1) the mobile device, 2) an opportunistically discovered surrogate, and

3) an Internet-connected cloud surrogate. A scheduling process checks appropriateness and

availability of the resources in this order.

A different tiered approach to cyber foraging introduces the concept of cloudlets [58]. A

cloudlet is a trusted, resource-rich surrogate computer that is well-connected to the Internet and

is available for use by nearby mobile devices. The cloudlet infrastructure supports numerous

decentralized cloudlets whose compute cycles and storage resources can be leveraged by nearby

mobile computers. The cloudlet infrastructure demonstrates the use of cyber foraging techniques

supporting mobile devices. Figure 12 shows cloudlet and P&U concepts.

Figure 12 - Cloudlet and P&U Concepts

A number of cyber foraging frameworks have been developed. As an example, Spectra

monitors the availability of resources and application resource usage in the local environment to

decide when and where to use cyber foraging [59].

Research Question 1.3 presented in Section 1.2 specifically references cyber foraging

techniques. Aspects of cyber foraging can be applied to the P&U architecture. The three-tiered

cyber foraging model suggests a tiered structure for the Urn Repository. Figure 13 shows one

 46

possible configuration where a Pebble service request requires information not in the Urn

Repository’s local database.

Figure 13 - Urn Repository Tiered Storage

Examination of the cloudlet infrastructure suggests ways in which P&U can leverage cyber

foraging features. Cyber foraging monitor applications like Spectra demonstrate possible

functionalities to include in the P&U architecture when multiple Pebbles of different classes

interact with Urns in different physical locations.

3.5 Summary

This chapter provided minimal necessary overview and background on technical and

conceptual areas relevant to the P&U architecture and the associated research questions

presented in Section 1.2. Types of human-device and device-device interactions were introduced

in Section 3.1. Interaction topics included tangible user interfaces, situated interactions, physical

mobile interactions, place-specific computing, and opportunistic computing. Next, Section 3.2

described research areas contributing to information management of the P&U architecture.

Current work in the areas of pervasive computing databases, user-generated content and sensor-

generated data were briefly described. Finally, pervasive computing service elements, including

service discovery, cloud services and cyber foraging, were discussed in Section 3.3.

Research areas discussed in this chapter were selected based on their relevance to the

P&U architecture. The following paragraphs describe P&U architecture characteristics that

share or complement characteristics and other aspects of these areas.

 47

A piece of the P&U architecture’s TUI is the Pebble carried by a person as they go about

their daily activities. The Pebble can “know” the identity of its owner. The Urn is physically

situated in the place that it embodies. The short-range characteristic of the PMI techniques used

in the P&U architecture ensures the nearness of the user to the Urn and, consequently, to the

place he or she is visiting.

Place-specific computing attempts to provide cues for opportunistic interactions during a

person’s activities within a specific location. Opportunistic computing is the interaction that

occurs between two devices when they are able to share and exploit each other’s resources and

information. Urn characteristics, that include a fixed location, a capable computing platform,

large amounts of storage including cloud access, a reliable network connection, and a continuous

power supply, help alleviate several of the challenges associated with opportunistic computing

described in Section 3.1.5.

Service discovery taxonomies include components to handle discovery scope. Recent

and current research is investigating service discovery models that incorporate contextual

information about user activities. The Urn knows who, what, and where it is with regards to

location, time, Pebble owner, and a set of predictable activities. The activities are predictable in

that, for example, a person shopping in a grocery store will not normally enter a waiting line to

see a physician. The application of place-specific computing techniques using local sensor and

user-generated information will refine the set of predictable activities within a place.

Determining a set of predictable activities helps identify a relevant service domain and define

correct contextual information used in an OC system; both contributing factors in addressing

Research Question 1.2 presented in Section 1.2.

By the definition of cyber foraging systems, the P&U architecture with its small, mobile

devices (Pebbles) and computationally-strong, situated surrogates (Urns) is a cyber foraging

system. The study of service discovery models and cyber foraging systems provide insight into

Research Questions 1.2 and 1.3 presented in Section 1.2 and assist with the P&U architecture

interface design developed in Chapter 4.

 48

The following chapter, Chapter 4, builds on the P&U conceptual framework presented in

Chapter 2 by refining the P&U architecture to include service, information repository and

application programming interface (API) definitions. Chapter 5 discusses prototypes of this

model that are implemented and analyzed in conjunction with the research questions presented in

Section 1.2.

 49

Chapter 4: Pebbles and Urns Framework

Chapter 3 introduced technical and conceptual areas that influence and contribute to

design of the P&U architecture. Topics including tangible interfaces, device-device interactions,

place-specific computing, cyber foraging and service discovery were discussed to better

understand P&U architectural features.

The design of the P&U architecture is influenced by multiple design factors, as

introduced in Chapter 3. Each component of the architecture, including the Pebble, the Urn,

each of their information repositories and the underlying communication infrastructure, has its

own design requirements. This chapter examines the evolution of a P&U design model leading

to the P&U framework. Section 4.1 examines design approaches and issues influenced by the

research questions presented in Chapter 1 and the P&U conceptual model presented in Chapter 2.

In Section 4.2, an initial design of the P&U architecture is studied. The evolved P&U

framework, including descriptions of components, operational details, and API’s, internal

functions, and data structures, is presented in Section 4.3. Section 4.4 summarizes the design

analysis of the P&U framework.

One area of work in this research consists of expanding the minimalist P&U design to

include additional architectural components. Activities include continued evaluation of existing

architectural styles and their application to P&U designs as well as development of new styles

specifically designed to support a general P&U framework. Additional P&U instances based on

these designs have been implemented and tested.

4.1 P&U Design Elements

This section discusses P&U architecture design paths and related issues derived from the

research questions presented in Section 1.2 and a review of the P&U concepts and use cases

presented in Chapter 2. Design analysis of these P&U concepts take into account the intended

use of the P&U architecture to facilitate the implementation of opportunistic computing systems.

 50

These derived attributes, discussed in the following sections, represent novel features of the P&U

architecture.

4.1.1 P&U Interoperability

As presented in Section 1.1, interoperability is identified as one of the technical

challenges associated with the underlying technologies of the IoT. Common practices and

standards are required to support the diversity of the many different smart objects comprising the

IoT. In the context of this research, interoperability is defined as the ability of an Urn to

exchange information with different Pebble classes and to use the information that has been

exchanged. P&U interoperability is substantiated by the extensible design of the framework’s

physical communication layer. Figure 14 shows the mapping of the research questions from

Section 1.2 and the concepts discussed in Chapter 2 (with sections noted) into a list of P&U

attributes related to interoperability.

Figure 14 - P&U Interoperability Attributes

 51

Research Question 1.1 and Section 2.3 identify a key feature of the P&U’s

interoperability design as the enforced physical proximity of Pebble and Urn interactions via

tangible interfaces like Physical Mobile Interaction. The design requirement that P&U

interactions occur in close proximity to each other results in situated interactions between the

Pebble’s owner and the Urn’s place. Section 2.3 describes how the P&U infrastructure offers

enhanced support of this situated interaction.

Another important interoperability feature established by Research Question 1.1 and

Sections 2.2.2, 2.3 and 2.6 is the Urn’s ability to interact with different Pebble classes using PMI

interface technologies. Urn design includes specifications for multiple physical connections

matching Pebbles based on RFID, QR code, Bluetooth or other mechanisms.

A supporting feature described in Section 2.2.4 is the specification for a layered P&U

architecture that isolates the Urn from its physical layer of differing communication protocols

and processes. A layered design also provides the opportunity to study P&U component

interactions with a focus on identifying potential “thin waist” protocol implementations [60].

Section 2.2 presented the core components of the layered P&U architecture from a conceptual

perspective.

Research Question 1 elicits research of these P&U interoperability features as advancing

components of IoT and OC implementations. Research Question 2 addresses the innovative, or

problematic, features encountered when implementing these features.

4.1.2 P&U Service Composition

P&U service composition involves the construction and delivery of an aggregate of

opportunistic, place-specific services by the Urn. Figure 15 represents the mapping of the

research questions and concepts from Chapter 2 into a list of P&U service composition

attributes.

 52

Figure 15 - P&U Service Composition Attributes

The Urn’s unchanging physical association with a place allows the Urn to represent that

place as discussed in Section 2.1. The Urn’s fixed location described in Section 2.2.2 is a key

feature of P&U. The Urn’s Repository contains information specific to its associated place such

as the place’s location coordinates, nature of business, offered services, customer activity and

attributes such as current product inventories.

Section 2.4 extends this concept by explaining that the information and, therefore,

services provided by a particular Urn are bounded by the nature of its associated place. This

concept assists in addressing Research Question 1.2. Service requests and deliveries within the

service domain of a P&U system can be bound by information contained in the Urn. A

restaurant Urn need only provide information and services about the restaurant with which it is

paired.

 53

Research Question 1 considers P&U service composition as part of the proposed P&U

framework. Research Question 2 identifies the innovative or problematic realizations made

when implementing this service composition feature in a P&U instance.

4.1.3 P&U Cyber Foraging

Characteristics of the P&U system encourage and facilitate the use of cyber foraging

strategies, described in Section 3.3.3, in areas of the P&U architecture. Figure 16 represents the

mapping of the research questions and concepts discussed in Chapter 2 into a list of P&U cyber

foraging attributes.

Figure 16 - P&U Cyber Foraging Attributes

Section 2.2.1 describes classes of Pebbles with varying capabilities based on their

underlying implementation technologies. Pebbles that use microcontrollers and require power

 54

might take advantage of cyber foraging to reduce energy consumption when interacting with the

Urn.

Section 2.2.2 discusses the Urn’s fixed location in a facility like a building or public area.

This would insure to a large degree availability of continuous power and connectivity. Cyber

foraging strategies could leverage these capabilities during Pebble and Urn interactions.

A network-attached Urn as discussed in Section 2.2.3 has access to external services such

as remote execution and distributed storage. Strategies to move local responsibilities for these

services away from the Urn could improve Urn implementation considerations of cost,

performance or form factor.

Pebble classes and the Urn’s available power and connectivity are P&U characteristics

facilitating the study of Research Question 1.3. Research Question 1 considers the use of cyber

foraging strategies as part of the proposed P&U framework. Research Question 2 identifies the

innovative or problematic realizations made when implementing cyber foraging features in a

P&U instance.

The attributes described in Sections 4.1.1, 4.1.2, and 4.1.3 aid in identifying the principal

components, interactions, and configuration of the P&U system presented in Section 4.2.

4.2 Initial P&U Design and Framework

This section examines an initial design of a P&U general framework. Design

considerations for this P&U architecture were obtained by applying the P&U requirements from

Section 4.1 to the P&U diagram described in Section 2.2.4. The initial P&U design and

framework are presented here as a foundation for the evolved P&U design and framework as

discussed in Section 4.3.

 55

4.2.1 P&U Early Architecture

The architectural design of P&U is based on the principal characteristics of proximity-

based information delivery and simple, personal device interaction. Pebbles of different classes

can possess different capabilities. This representation of the P&U architectural components and

connectors considers a sophisticated “smart” Pebble with a UI, computational capabilities and

read/write storage. The layered P&U architecture, where a function within one layer can obtain

services from the layer below it, as illustrated in Figure 17, is comprised of two stacks of

components.

Figure 17 - P&U Components and Connectors

The Pebble stack contains the functional components of a Pebble: the Pebble Controller

(A), the Pebble Repository (B), and Pebble communication to the Urn (C). In a similar

composition, the Urn components are the Urn Controller (E), the Urn Repository (F), and the

 56

Urn communication links to the Pebble (G). Place Services (I) support the interactions between

the Urn and attached sensors that monitor the Urn’s surrounding physical environment. External

Services (J) consists of components and connectors that link the Urn to Internet-connected

facilities or “cloud” services. The Urn interactions with Place and External Services are areas of

future investigation and not discussed in this dissertation. The P&U communication protocol is

represented by the dotted lines connecting pair (C, G). The P&U Repository protocol connects

pair (B, F). The lowest layer protocol of the P&U architecture (D, H) is the physical

communication mechanism that links a Pebble to an Urn. The layered design effectively isolates

Urn components (G) and above from any coding or implementation changes in the physical

communications layer. Layer (D, H) can use different networking and communication protocols

and procedures to support the interoperability of different Pebble classes and Urn connectors.

Possible Pebble connection types include touching via near-field communication (NFC), such as

radio frequency identification (RFID) or Bluetooth, scanning of tags like quick response (QR)

codes, or direct physical connection such as universal serial bus (USB). An Urn could have

several different physical interfaces to handle a heterogeneous mix of Pebbles.

Communication with the Urn is facilitated via the message construct called the Pebble

Message. Message fields include Pebble Identifier (PID), Pebble Class Identifier (CID), Pebble

User Identifier (UID) and Urn Service Request (Svc_Req).

Section 4.3 contains a preliminary description of components and connectors that

comprise the configuration of the P&U architecture. This architecture reflects the P&U

attributes from Section 4.1 and aspects of architectural styles discussed in Section 4.2.

4.2.2 Initial P&U Component and Connector Design

This section describes the responsibilities and functions of the initial P&U architecture

components and connectors (API’s) depicted in Figure 17. The initial P&U architecture is

incomplete in that some functionality is not described in detail or referenced. The evolved P&U

architecture, described in Section 4.3, includes changes to several aspects of the initial

architecture that follow from discoveries made during the research and addition design efforts.

 57

A subset of the functions and data structures described in this section is used to

implement and test a minimalist Pebble and Urn design in Chapter 5. Appendix A contains

function parameters and data definitions for this subset.

4.2.2.1 Pebble

As discussed in Section 2.2.1, Pebbles of different classes possess different capabilities.

This section considers a sophisticated Pebble with a UI, computational capabilities and

read/write storage when describing Pebble components and connectors. Communication with

the Urn is facilitated via the message construct called the Pebble Message.

4.2.2.1.1 Pebble Controller

The main responsibility of the Pebble Controller is to prepare the Pebble for presentation;

to enable the Pebble to be detectable by an Urn. As the core component of the “smart” Pebble

discussed further in Section 5.5 the Pebble Controller is also responsible for system initialization,

Pebble UI management and communication with the Pebble Repository. Pebble Controller

functions and their descriptions are contained in Table 3.

Table 3 - Pebble Controller Functions and APIs

Functions Description
Pebble_Init () Performs initialization tasks on “smart” Pebbles

Initializes Pebble UI
Initializes Pebble Repository
Sets Pebble state – state tables maintained in Pebble Repository

Pebble_UI () Manages “smart” Pebble user interface
Pebble_State () Monitors storage, memory and power on “smart” Pebbles

API Description
PRA_Init () Initializes Pebble Repository
PRA_Data () Manages data for Pebble classes that support R/W storage
PRA_Urn () Defines contents of Pebble Message

The Pebble Controller communicates with the Pebble Repository through API functions

PRA_Init(), PRA_Data(), and PRA_URN().

 58

4.2.2.1.2 Pebble Repository

The Pebble Repository is the data storage component of the Pebble. The Repository

consists of data management functions defined in Table 4 and data groups described in Figure

18. Responsibilities of the Pebble Repository include file input/output operations related to the

Pebble UI and state management and the construction of the Pebble Message.

Table 4 - Pebble Repository Functions and APIs

Functions Description
PRA_Init () Performs Pebble Repository initialization, open files
PRA_Data () Performs specified data operation on Pebble Repository
PRA_Urn () Constructs Pebble Message via PUCA API call

API Description
PUCA_Present_Pebble () Additional preparation of Pebble Message – adds hash

The Pebble Repository communicates with the P&U Communications Link through the

PUCS_Present_Pebble() API.

Figure 18 - Pebble Repository Data Groups

Table 5 contains descriptions of the Pebble Repository data groups.

 59

Table 5 - Pebble Repository Data Group Descriptions

Data Groups Description

Pebble Attributes
Files containing Pebble-specific information such as Pebble ID
and Class ID

UI Data
Information displayed on or retrieved from the Pebble user
interface

User Identity
Identity components of the Pebble owner used for authentication
and authorization purposes

Activity Data
Tables containing information about state and session information
and activity log

Services
Table containing Pebble service name and data and Pebble
Message structure

Note that the Pebble Repository of the initial P&U design has limited functionality. Data

groups are expressed in more detail for more capable Pebbles, as discussed in Section 4.3.

4.2.2.1.3 Pebble and Urn Communication Link

The P&U Communication Link component attaches a hash value of the constructed

Pebble Message and passes the Pebble Message to the appropriate wrapper function for

presentation to an Urn. Functions are described in Table 6.

Table 6 - Pebble Communication Link Functions and APIs

Functions Description
PUCA_Present_Pebble () Generates hash of Pebble Message and sends to Comm

Link for presentation

API Description
PCLA_Urn_Comm () Invokes Comm wrapper

The P&U Comm Link invokes a communication wrapper function with the

PCLA_Urn_Comm() API.

4.2.2.2 Urn

The Urn components and connectors described in this section mirror to a degree the

Pebble elements of Section 4.3.1. As indicated in Section 4.3, the design of P&U’s layered

composition has evolved beyond this initial design.

 60

4.2.2.2.1 Urn Controller

The Urn Controller is the core component of the Urn. It is responsible for processing the

Pebble Message of a detected Pebble. Other Urn Controller operations include the following.

 Perform P&U system initialization

 Manage Urn UI

 Provide service delivery

 Process service requests

 Monitor for opportunistic conditions

 Communicate with Urn Repository via URA API

 Authenticate and authorize Pebble user

 Maintain P&U system state

These functions and APIs are described in Table 7.

 61

Table 7 - Urn Controller Functions and APIs

Functions Description
Urn_Init () Performs Urn initialization and startup

 Initializes Urn UI
 Initializes Urn Repository – URA_Init ()
 Sets Urn state

Urn_Shutdown () Performs orderly Urn shutdown
Urn_Restart () Performs Urn restart initiated by external trigger or error

exception
Urn_UI () Controls Urn user interface
Urn_Opp () Determines additional service invocations given context of

current Pebble-Urn interaction
Urn_Auth () Performs user authentication and authorizes access to

services and information
Urn_Service () Handles service requests generated by Pebble contact

 Invokes requested service
 Accesses external and place services if needed
 Sends service results to Urn UI
 Updates Pebble Repository
 Updates Urn logs and state tables

API Description
URA_Init () Initializes Urn Repository
URA_Data () Data access to Urn Repository (logs, state tables, other data)
URA_Pebble() This call blocks until a Pebble is ready to be processed

The Urn Controller accesses the Urn Repository by means of the URA_Init(),

URA_Data() and URA_Pebble() function calls.

4.2.2.2.2 Urn Repository

The Urn Repository manages the information access and storage needs of the Urn. The

Urn Repository is responsible for parsing an incoming Pebble Message into a data structure that

is then passed up to the Urn Controller for further processing. Functions in the Repository

maintain log and state tables with information about Pebble and Urn transactions. The Urn

Repository honors information requests from the Urn Controller with access to Pebbles, external

services and place-specific sensor data via function calls in their respective APIs. These function

calls are UPCA_Get_Pebble(), ESCA_Ext_Svc() and PCA_Place(). Table 8 contains Urn

Repository function descriptions.

 62

Table 8 - Urn Repository Functions and APIs

Functions Description
URA_Init () Performs Urn initialization

 Initializes Urn Repository
 Initializes Urn Comm Link

URA_Data () Performs specified data operation
URA_Pebble () Requests Pebble via UPCA API call – returns Pebble Message

structure
UR_Process_Pebble() Deconstructs Pebble Message, stores tokens in log file, loads

Pebble Message data structure

API Description
UPCA_Get_Pebble () Gets Pebble Message from active Pebble
ESCA_Ext_Svc () Accesses external services
PCA_Place () Accesses Urn sensors

Repository data groups are illustrated in Figure 19.

Figure 19 - Urn Repository Data Groups

Descriptions of the Urn Repository data groups are in Table 9.

 63

Table 9 - Urn Repository Data Group Descriptions

Data Groups Description
Urn Attributes Tables containing information regarding a specific Urn (ex.

Urn ID)
Activity Data Tables containing information pertaining to Pebble and Urn

interactions such as POI, Pebble encounters, place
(sensors) and log files

UI Data Tables containing information displayed on Urn user
interface

OC Data Tables containing rulesets used in determining
opportunistic situations

Local Service Data Tables containing information regarding services available
from a particular (this) Urn

Urn State Table containing Urn state information such as Urn status
and current Pebble interactions

An anticipated outcome of this research is the refinement of the Urn Repository data

groups as progress on implementation and testing of P&U design progresses.

4.2.2.2.3 Pebble and Urn Communication Link

The P&U Communication Link verifies the hash of the Pebble Message obtained from

the Pebble wrapper function. Function descriptions are in Table 10.

Table 10 - Urn Communication Link Functions

Functions Description
UPCA_Get_Pebble () Invokes specific Pebble Comm wrapper via

UCLA_Wrapper () API call. Performs hash check on
returned Pebble Message.

ESCA_Ext_Svc () Accesses external services
PCA_Place () Accesses place sensors

Table 11 describes the Urn Communication Link APIs’

 64

Table 11 - Urn Communication Link APIs

API Description
UCLA_Wrapper() Invokes one of following functions:

 QR_Code_Reader ()
 RFID_Tag_reader ()
 USB_Device_Driver ()
 Hybrid_Pebble_Reader ()
 Smart_Pebble_Reader ()
 Urn_Sensors ()
 Cloud_Access ()

The UCLA_Wrapper() API isolates the above Urn layers from different physical

communication links. The initial P&U architecture is demonstrated using QR codes as the PMI

method. Additional PMI techniques are utilized in the evolved P&U including USB and “Smart”

Pebble interfaces, in addition to QR codes.

4.2.2.3 Pebble and Urn Messages

This section describes an initial Pebble Message format presented in Figure 20. More

involved message formats are likely to be developed during the course of this research.

PID CID UID
Svc_Req Msg_Hash

Figure 20 - Simple Pebble Message

Message fields are as follows.

 PID – Pebble Identifier

 CID – Pebble Class Identifier

 UID – Pebble User Identifier

 Svc_Req – Urn Service Request

 Msg_Hash – Computed hash of the Pebble Message

 65

4.2.3 Evolution of Pebbles and Urns

This section describes the evolutionary factors contributing to the transformation of the

initial P&U design presented in Section 4.2 into the P&U design and framework presented in

Section 4.3.

The Pebble of Interest (POI) application described in Section 5.1 is a simple P&U

instance built on the initial P&U design presented in Section 4.2.2. An examination of this

prototype with respect to the research questions discussed in Section 1.2 reveals several open

issues with the original P&U design. To further address and answer the research questions, a

more complete P&U model and collection of derived prototypes are required.

Research Question 1.2 focuses on ways in which a P&U system might be able to deliver

opportunistic services and information. Combining the research motivation provided by

Research Question 1.2 with a review of current work in the areas of service composition,

delivery, and knowledge management identified the need to enhance the initial P&U model’s

management and composition of Repository content and context. An example of current work in

knowledge discovery involves studying the effects of user profiles and preferences on the

accuracy of selection in online dating services [61]. This and other work encouraged the

exploration and development of Repository profile and preference data structures. Other

Repository enhancements include the addition of data elements supporting a simple service

request process and a caching mechanism that collects P&U session information. These

additional P&U Repository data structures and associated data manipulation routines aid in better

understanding RQ 1.2 by defining elements of a P&U service domain that assist with the

identification of opportunistic situations. Sections 4.3.2.2.1 and 4.3.2.3.2 provide detailed

discussions of these data structures and routines.

The layered architecture of the initial P&U model served as a starting point in addressing

RQ 1.1. To further study the flexible Pebble and Urn interactions noted in RQ 1.1, the isolated

communication layer in this architecture is now extended to support different Pebble classes.

 66

Research Question 1 emphasizes investigating ways to make P&U suitable as an Internet

of Things deployment framework. Study in this area has resulted in the further design and

development of APIs and toolsets that can be used by P&U developers to create various and

unique P&U applications supporting different Urn locations and Pebble classes.

With respect to RQ 1.3, the ability of the P&U framework to support different Pebble

classes allows the exploration of ways in which cyber foraging techniques might apply to P&U.

Different Pebble classes and Urn interactions also offer the opportunity to obtain performance

metrics within areas of the P&U framework.

Experience gained by developing P&U prototypes incorporating different Pebble classes

led to insights into user privacy and roles. Developing controls afforded by lessons learned

during Read/Write and Smart Pebble design efforts resulted in the P&U user having the ability to

actively select facets of personal information used to represent them during a P&U session.

Section 4.3 presents an evolved P&U model with the following features.

 Distinct, well-defined architecture layers

 Expanded APIs and toolsets supporting P&U application development

 Design of additional Pebble classes and instance implementations

 Detailed Repository data structures providing contextual information in support of
opportunistic service delivery

 Added controls for user management of privacy and roles

4.3 Pebbles and Urns Framework Design

This section describes the P&U framework that is based on research guided by the initial

P&U design described in Section 4.2 and activity to address and answer the research questions

presented in Chapter 1.

 67

4.3.1 P&U Architectural and Operational Overview

The P&U architecture state diagram is modeled after a network protocol state diagram,

specifically the Transmission Control Protocol (TCP) [62]. Figure 21 shows the state diagram

for TCP which can be compared to the state model developed in this research for P&U.

Figure 21 - TCP and P&U State Diagrams

The initial state of the P&U system is the Urn, in its fixed location, waiting for the

presence of a Pebble. When a Pebble is detected, a Pebble initialization message (PIM) and an

Urn initialization message (UIM) are processed by the Urn Controller. Next, the P&U session is

established. Pebble and Urn Repository elements are enabled and made available to the Urn

 68

Controller. In the next phase, the Urn Controller executes P&U session activities. These

activities include service request and delivery, profile and preference comparisons, and previous

session log traversals. At the end of session activity, the Pebble and Urn Repository elements are

updated. Next, the P&U session completes and Urn control returns to the wait-for-Pebble state.

4.3.2 P&U Framework Layers

Due to the evolution and maturity of this P&U design, the following P&U framework

representation emphasizes the architectural layers instead of the stack description used in Section

4.2.2. Two versions of the P&U framework are presented in Figure 22.

Figure 22(a) represents the architecture layers and components that support Read-Only

and Read/Write Pebble classes. These Pebble classes do not have a Pebble Controller

component. These Pebble classes only provide or provide and store information for the Read-

Only or Read/Write Pebble class, respectively. These two Pebble classes also do not actively

control communication with the Urn, so there is, also, no P&U Transport component. Figure

22(b) shows the layers and components that support the Smart Pebble class. The Pebble

Controller component allows a Smart Pebble to process and control information, as well as

provide and store information. A Smart Pebble can also actively control the communication

through the P&U Transport component.

 69

F
igu

re 22 - P
&

U
 F

ram
ew

ork

 70

The following sections describe each layer and its components, programming interface,

and internal functions.

4.3.2.1 P&U Interaction Framework

The P&U Interaction Framework manages the physical communication link between

Pebble and Urn. This framework layer is the isolated physical layer identified as a P&U design

element in Section 4.1.1. This framework supports Urn interaction with the three Pebble classes

described in Section 2.2.1 by providing communication wrapper services to the P&U Common

Framework layer. The communication wrapper for each Pebble class uses a physical interaction

technology that supports the P&U interaction characteristics described in Research Question 1.1.

New Pebbles and Pebble classes can be supported by writing additional wrappers. Table 12

shows the interaction technology used by each Pebble class.

Table 12 - Physical Interaction Technologies of different Pebble classes

Pebble Class Physical Interaction Technology
Read-Only QR Code Scan
Read-Write USB / udev

Smart Bluetooth

P&U Interaction Framework functions are described in Table 13.

Table 13 – Interaction Framework Functions

Urn Functions Description

WRAP_Comm()
Provides Pebble Repository access to the Urn Common
Framework by means of the following wrapper functions

Get_QR() Transfers text from Read-Only QR Pebble

Link_USB()
Links the Read/Write Pebble Repository to the Urn
Repository

Transfer_BT()
Transfers Smart Pebble Repository to and from the Urn
Repository

Smart Pebble Functions Description

Transfer_BT()
Transfers Smart Pebble Repository to and from the Urn
Repository

Appendix B.1 contains function parameters and data definitions for this subset.

 71

4.3.2.2 P&U Common Framework

The P&U Common Framework supports P&U system development and deployment by

connecting the P&U application environment to the P&U physical interaction link by means of

application and physical interaction API’s and consistent data repositories. The following

sections describe the P&U Common Framework data repository structures and the P&U

Transport component.

4.3.2.2.1 P&U Repository Structures

Pebble Repository data elements are shown in Figure 23. Repositories of different

Pebble classes contain all or a subset of these data elements based on their storage and data

access capabilities.

Figure 23 - Data Elements of Pebble Repository

Descriptions of the Pebble Repository data elements are contained in Table 14 and the glossary

in Appendix E. Appendix C.1 contains the data dictionary for the Pebble Repository data

elements.

 72

Table 14 - Pebble Repository Data Element Description

Data Elements Description
Place

Preferences
User preferences relative to services provided by a place

PIM
Pebble Initialization Message containing Pebble ID (pid) and
Pebble class interface (cid)

Precepts Service requests

User Roles Pebble owner profiles (Smart Pebble)

Urn Remnants
Snapshot data representing previous Urn sessions involving this
Pebble

Figure 24 shows the data elements comprising the Urn Repository. This repository configuration

is consistent across all Urn’s with respect to naming conventions, data types and data formats.

Figure 24 - Data Elements of Urn Repository

Table 15 contains descriptions of the Urn Repository data elements.

 73

Table 15 - Urn Repository Data Element Description

Data Elements Description
Place Profile Profile information of the place represented by the Urn

Working Precept
(WP)

Data mashup of Pebble and Urn precept elements supporting a
successful service delivery/request process

Precepts Services offered by this Urn
Pebble

Remnants
Snapshot data representing previous Pebble sessions involving this
Urn

UIM
Urn Initialization Message containing Urn ID (uid) and Urn
physical interface

Precepts
Directory

Urn Repository area containing service executables and data

PR Mirror Mirrored Pebble Repository during active P&U session

A data dictionary of the Urn Repository data elements is contained in Appendix C.4.

4.3.2.2.2 P&U Transport

The P&U Transport component is responsible for providing Pebble Repository access to

the P&U Application Framework. P&U Transport accomplishes this task by replicating, or

mirroring, the Pebble Repository onto an Urn Repository data element. Specific

implementations of the access process vary based on Pebble class. The details of the different

access implementations are hidden from the P&U developer. At the end of the P&U session, the

Pebble Repository is reloaded with updated data elements from the P&U session. Figure 25

illustrates the Pebble Repository replication process. The WRAP_Comm functions are described

in Table 13.

 74

Figure 25 - P&U Transport - Pebble Repository Replication Process

P&U Transport functions and their descriptions are contained in Table 16.

Table 16 – P&U Transport Functions

Urn Functions Description
MIRROR_Load_PR() Loads a Pebble Repository into the Urn Repository at the

beginning of the P&U session
MIRROR_Store_PR() Sends mirrored image back to Pebble at the end of the

P&U session

Smart Pebble
Functions

Description

MIRROR_Send_PR() Sends Pebble Repository to the Urn at the beginning of the
P&U session

MIRROR_Receive_PR() Stores mirrored image back onto the Pebble Repository at
the end of the P&U session

 75

4.3.2.3 P&U Application Framework

The unique qualities and functions of a particular P&U session are implemented using the

P&U Application Framework. Using the APIs in this framework and the Repository’s data

dictionaries, P&U developers can build Urn services specific to the Urn’s place. If developing

for a Smart Pebble, user-specific applications controlling roles and privacy can be developed. As

depicted in Figure 26, users of Smart Pebbles have the option of selecting a specific user role

during their P&U session. This action adjusts the configuration of the Pebble Repository

transported to the Urn.

Figure 26 - Role Selection on a Smart Pebble

This action adjusts the configuration of the Pebble Repository transported to the Urn.

Figure 27 shows the program flow of a P&U application developed with the Application

Framework running on a Smart Pebble.

 76

Figure 27 - P&U Smart Pebble Application Flow Diagram

Execution steps of the Smart Pebble application include:

1. The Pebble owner selects the role they wish to assume during the P&U session.

2. The Pebble Controller reorganizes the Pebble Repository to reflect the role

selection. Actions include selecting the appropriate user role that will be sent to

the Urn during the Pebble Repository replication process. Repository objects not

needed for the P&U session are moved to other Smart Pebble storage locations

outside of the Pebble Repository directory. Future work includes encryption of

Pebble Repository objects not involved in the P&U session.

 77

3. The Pebble Repository is sent to the Urn by means of the Pebble Repository

replication process.

4. The Smart Pebble waits for updated mirrored Pebble Repository from the Urn.

5. The Pebble restores its Repository with the contents of the mirrored Pebble

Repository.

6. Pebble owner notified of end of P&U session.

Figure 28 shows the program flow of a P&U application developed with the Application

Framework running on an Urn.

Figure 28 - P&U Urn Application Flow Diagram

 78

An assessment of opportunistic situations is performed during the following phases of execution:

1. Precept Processing – This step performs a simple service discovery and delivery

operation. The user’s service requests contained in the Pebble’s precept data element are

compared against the available services contained in the Urn’s Precept data element. If a

match is detected, the service is executed on the Urn by the Urn Controller and results

presented to the user on the Urn UI.

2. Remnant Traversal – The remnant data elements on the Pebble and Urn can be analyzed

to determine prior P&U interactions. Types of interactions include identifying the

number of times that a particular Pebble has interacted with a particular Urn or generating

a list of Pebbles encountered by an Urn on a given date. Remnant traversal allows a P&U

system to maintain a sense of persistence. With this, an Urn could potentially offer a

reconstruction service leveraging previous experiences of people, places and events.

3. Urn Message Relay – Messages including state information can be carried from one Urn

to another by a Pebble. This feature supports synchronization of stand-alone Urns. Urn-

to-Urn messages reside, or “piggy-back”, in the Urn Remnant placed in the Pebble

Repository during P&U sessions. Another function of a message would be to trigger a

user event in the current P&U session based on a message from an Urn encountered in a

prior P&U session. Figure 29 illustrates the Urn Message Relay function. The UMR

data structures are defined. Work on the UMR processing function is not complete and

the P&U UMR feature is considered future work.

 79

Figure 29 - Urn Message Relay

4. Profile Evaluation – The profile and preference information contained in the Pebble and

Urn Repositories are compared. Matches are used to tune Urn service responses to the

user. An example is a generated list of on-site items that match user characteristics.

Knowledge gained from the use of these functions contributes to the designs of opportunistic

engines.

4.3.2.3.1 Components

Within the field of human-computer interaction (HCI), control through feedback is

considered one of the most accepted guidelines in the design of interaction [63]. The Pebble

owner receives feedback acknowledging correct P&U use from the Urn’s user interface (UI).

Service request output is also presented by the Urn UI. The Pebble UI on the Smart Pebble

allows explicit control by the user in selecting the types of information, such as different user

roles, they want presented to an Urn. The Pebble UI is managed by the Pebble Controller. The

Urn Controller is responsible for the execution of the P&U states described in Section 4.3.1.

4.3.2.3.2 Application APIs and Internal Functions

The Application Framework APIs are grouped into three categories:

 80

1. Common – These APIs provide data access to the data elements in the P&U Repositories.

2. User Interface – This API controls the Urn UI.

3. External Services – This API provides access to services external to the Urn.

4.3.2.3.2.1 Common Framework

The Urn Common Framework API prefixes are precept (PRE), profile/preference (PRO),

remnant (REM), and utility (PUU) on the Urn. Table 17 provides a brief description of the

Common Framework APIs.

Table 17 – Common Framework Urn APIs

API Description
PRE_Precept() Executes all matching Precepts
PRO_Comp() Performs comparison of user and place profiles
PRO_Update() Updates user profile in Pebble Repository
REM_Get_Remnant() Retrieves Urn and Pebble remnants
PUU_UIM() Retrieves Urn UIM
PUU_PIM() Retrieves Pebble PIM

Detailed descriptions of these APIs including calling sequences and return values are contained

in Appendix B.3. Table 18 describes the Smart Pebble Common Framework API,

SP_Select_Role.

Table 18 - Common Framework Smart Pebble APIs

API Description
SP_Select_Role() Performs role selection

Detailed descriptions of these APIs including calling sequences and return values are contained

in Appendix B.3.1.

4.3.2.3.2.2 User Interface

Table 19 describes the User Interface API responsible for input/output control of the Urn

UI.

 81

Table 19 - P&U User Interface APIs

API Description
UI_Text_Out() Displays text on Smart Pebble or Urn display

Detailed descriptions of these APIs including calling sequences and return values are contained

in Appendix B.3.1.

4.3.2.3.2.3 External Services

External services such as e-mail and remote data access are provided by the External

Services API described in Table 20.

Table 20 - P&U External Services APIs

API Description
ES_Send_Email() Urn external service – send email

Detailed descriptions of this API including the calling sequence and return values are contained

in Appendix B.3.1.

4.3.2.3.2.4 P&U Developer Tools

Tools designed to assist the P&U developer with Pebble and Urn creation are described

in Table 21. Source code of the P&U framework and developer tools is contained in a software

repository at https://sourceforge.net/projects/pebblesandurns/.

 82

Table 21 – P&U Developer Tools

Function Description
Create_UIM() Create Urn initialization message
Print_UIM() Print Urn initialization message
Create_PIM() Create Pebble initialization message
Print_PIM() Print Pebble initialization message
Create_Urn_Precept() Create Urn precept
Print_Urn_Precept() Print Urn precept
Create_Pebble_Precept() Create Pebble precept
Print_Pebble_Precept Print Pebble precept
Create_Place_Profile() Create place profile
Print_Place_Profile() Print place profile
Create_User_Profile() Create user profile
Print_User_Profile() Print user profile
Print_Pebble_Remnant() Print Pebble remnant
Print_Urn_Remnant() Print Urn remnant

Appendix D describes the use these developer tools to construct a Pebble and an Urn.

4.4 Summary

This chapter described the rationale used in expanding the P&U conceptual view

presented in Chapter 2 to a create an early instance of a P&U architecture. Research activities

described in Section 4.2.3 have produced a more complete P&U development framework, as was

described in Section 4.3.

The evolved P&U framework of Section 4.3 addresses, at least in part, Research

Questions 1.1 and 1.2. For Research Question 1.1, the isolated communication layer of the

initial architecture was extended to support different Pebble classes further supporting near,

situated, tangible interactions. For Research Question 1.2, the expanded Repository elements

and associated data operations are used to investigate ways opportunistic situations can be

identified during a P&U session.

 83

Chapter 5 builds on an initial P&U design by extending work to include several P&U

designs based on the P&U framework described in Section 4.3. Chapter 5 discusses the

implementation and testing of the P&U instances based on these designs.

 84

Chapter 5: Instantiation of the Pebbles and Urns
Framework

This chapter describes the implementation of Pebbles and Urns prototypes based on the

P&U designs presented in Chapter 4. The approach in implementing a prototype based on the

initial P&U design described in Section 4.2 is discussed in Section 5.1. Section 5.2 introduces

the construction of prototypes based on the evolved P&U design described in Section 4.3.

Prototypes based on each of the Pebble classes described in Section 2.2.1 are presented in

Sections 5.3 through 5.5. Section 5.6 examines overall testing and performance results for the

prototypes. Section 5.7 provides a summary of findings and conclusions resulting from the

instances of P&U implementations described in this chapter.

5.1 Initial P&U Prototype – Pebble of Interest

As discussed in Section 2.3, the interaction between a Pebble and an Urn is a focal point

of the initial phase of this research. This first P&U prototype is an implementation of the portion

of the P&U architecture that is highlighted in Figure 30. The Pebble and the Urn are endpoints

of this specific implementation.

 85

Figure 30 - Components of the Initial P&U Prototype

Two design attributes of the P&U architecture described in Section 4.1.1 are: (i) the

enforced near, situated interaction of the Pebble and Urn; and (ii) the isolation of the Urn from its

physical communication mechanism. These two attributes are demonstrated in this P&U

prototype implementation.

The prototype is based on a Read-Only class of Pebble interacting with the Urn via a

short-distance, scanning interface. Not all components of the Pebble stack are implemented in

this prototype given the simple characteristics of this Pebble. The function of this relatively

simple P&U prototype is to indicate the presence of a “pebble-of-interest” (POI). A POI is a

Pebble possessing attributes that make it a suitable participant in a specific Pebble and Urn

interaction. The Urn can verify a POI by comparing the Pebble’s PID against a list of known

POIs stored in the POI table in the Urn Repository. Using the blocking approach described in

 86

Section 4.2, the Urn waits for the presence of a Pebble. The Urn UI flashes green when a POI is

detected as being present. The control flow of the P&U prototype is shown in Figure 31.

Figure 31 - Control Flow of the Pebble of Interest P&U Prototype

The next section describes the coding details of the P&U prototype.

5.1.1 Coding Details of the Initial Prototype

The code for the P&U prototype (just the Urn, in this case) is written in Python 2.5.2 [64]

and runs in a Lubuntu 11.10 Unix environment [65]. The Urn’s UI display is simulated using the

Python GUI toolkit wxPython [66]. The wrapper communication link uses the barcode reader

library, ZBar [67]. The Urn in the prototype is represented by a small laptop computer with

built-in camera. The QR Pebble, shown in Figure 32, is a one-inch cube with QR code surfaces.

The QR code surfaces were generated from the goQR.me website [68]. The QR code format

used in the prototype is a 250  250 pixel text code with 2-pixel margins. Data encoding is UTF-

 87

8 and the error correction code is “L” [69]. Data pixel and background colors are of the

0xhhhhhhhh format. The generated QR code image is transferred to a 1-inch  1-inch Microsoft

Word template. A 1-point solid line border is applied to the image after reducing image size to

0.94 inch  0.94 inch.

Figure 32 - QR Pebble

Figure 33 is the state diagram for the prototype Urn. The diagram illustrates the blocking

read technique used in the Pebble and Urn interaction. The Urn waits for the presence of a QR

code. Once detected, the QR code is analyzed to determine if it is a valid Pebble. If a valid

Pebble is present, updates to Urn Repository tables occur. If the Pebble is a POI, the Urn’s UI

presents a green display. If the Pebble is not a PI, then the Urn’s URI presents a red display.

After this event, the Urn Controller initiates another read and waits for another Pebble.

 88

Figure 33 - P&U Prototype State Diagram

The code module for each component of the prototype uses the functions and APIs

described in Section 4.3. The subset of the P&U architecture used in the prototype is shown in

more detail in Figure 34. Hashed areas of the Pebble architecture represent components and

connectors not present in the QR Pebble. The Communications Link in this prototype is the

short-range visual scanning of a QR image on a Pebble by the Urn’s camera.

 89

Figure 34 - P&U Prototype Architecture

The call sequence during execution of the P&U prototype is as follows.

 Step 1. The Urn Controller initiates the “wait for Pebble” by calling the Urn

Repository API function URA_Pebble(PM_Structure). At this point,

PM_Structure is empty.

 90

 Step 2. The Urn Repository pushes the Pebble request down the stack with a call to

UPCA_Get_Pebble(Pebble_Message,PM_Structure). Pebble_Message is a

null string.

 Step 3. The P&U Communication component calls the wrapper code, which

invokes the PMI method needed to interact with the designated Pebble

class.

 Step 4. In the POI prototype, the wrapper code invokes the QR reader function.

 Step 5. The QR reader function blocks until a QR code is read. The QR code text

is returned in the Pebble Message string.

 Step 6. The UCLA wrapper code generates a hash of the Pebble message body and

compares it to the hash message trailer. If the hash value is valid, the

Pebble Message is parsed into the PM_Structure. PM_Structure is returned

to the Urn Repository.

 Step 7. The Urn Repository checks the PID portion of PM_Structure for POI

status. Status is returned to the Urn Controller.

 Step 8. The Urn Controller displays the POI status on the Urn UI. The call

sequence repeats after the POI status is displayed.

5.1.2 Outcomes and Discoveries

This section describes the outcomes and discoveries realized during the implementation

of the Pebble of Interest prototype.

The P&U prototype executed as described in Section 5.1. Key elements of the initial

P&U architecture were successfully incorporated into the prototype’s design: a layered

 91

composition with APIs, a PMI-style tangible interface, and the Urn’s isolated physical

communication layer. The prototype validated the design.

The following list summarizes key points learned during the implementation of this P&U

prototype. The limitations observed are, in part, motivation for the evolved P&U design.

 The Pebble message communication format as implemented in the prototype is

incomplete. The use of simple token delimiters (‘<:>’) of message fields does not

support the stable communication requirement stated in Research Question 2. P&U

message design requires more robust formats, possibly derived from TCP or a similar

reliable protocol.

 Variability in QR code characteristics used on the QR Pebble affected the Urn’s ability to

read the Pebble. For example, the Urn could not read low-contrast (yellow/white) color

combinations. While this may be considered a QR code issue, the use of QR codes with

a QR Pebble also makes it a Pebble design issue.

 The prototype Urn was unable to read multiple QR Pebbles simultaneously. The

blocking QR reader code returns when one QR code is recognized. The P&U

interoperability task described in Section 6.2.1.1 will address design considerations to

support concurrency.

 Data structures used in the prototype are simple. More complex structures will be

required as concepts such as state management are added to the P&U architecture.

 The wrapper code performing the QR code read represents a solution to a specific PMI

interface need. Interface standardization is required to truly isolate the Urn’s physical

communication layer from its upper layers.

 As a general point, challenges exist when deciding the “division of labor” distributed

across the components of a layered architecture. Responsibilities of the P&U components

will change as future designs are considered.

These initial findings contributed to the evolved design of the P&U framework. This

iterative refinement process has continued with the design, implementation and analysis of

additional P&U prototypes. Details of these prototypes are covered in the following sections.

 92

5.2 Evolved P&U Prototypes

This section describes the approach used in constructing prototypes based on the evolved

P&U framework. Each of the following prototypes interacts with a Pebble instance from one of

the Pebble classes discussed in Section 2.2.1. Section 5.3 presents a P&U system prototype that

uses a Read-Only Pebble. The prototype in Section 5.4 uses the Read/Write Pebble. Section 5.5

describes a P&U system based on a Smart Pebble. Figure 35 illustrates the Pebble instances

used in the P&U prototypes. The Read-Only Pebble uses a QR code interface. The Read/Write

Pebble is based on a USB “thumb drive”. The Smart Pebble is implemented on a Nokia N810

handheld Internet appliance and uses Bluetooth as its P&U interaction technology.

Figure 35 - Pebble Instances (R-O:QR, R/W:USB, Smart:BT)

While an actual Urn in a P&U system may be designed and implemented to interact with

all Pebble classes, these prototypes each interact with Pebbles of a single class. The prototypes

address aspects of the research questions presented in Section 1.2 by demonstrating the

advantages and disadvantages of each of the different Pebble classes. Each prototype is built

upon the P&U framework described in Section 4.3 using the API’s and developer tools presented

in Sections 4.3.2.1, 4.3.2.2.2, 4.3.2.3.2.1, and 4.3.2.3.2.4. Construction of the prototypes also

identifies fundamental application development decisions the P&U developer must make each

time a P&U system is built. With the goal of building a P&U system that creates opportunistic

situations, the developer considers the design of the Pebble within the feature set of its Pebble

class, the design of the applications within the Urn’s Application Framework and the interactions

between these two elements.

 93

The Urns depicted in the prototypes described in Sections 5.3.3, 5.3.4, and 5.3.5 are built

on the P&U framework. Each Urn’s Comm Link and Transport layers support the different

Pebble class interaction technologies by means of the Interaction Framework functions described

in Section 4.3.2.1. Urn Repository data elements, as described in Section 4.3.2.2.1, are the same

regardless of interactions with Read-Only, Read/Write, or Smart Pebbles. Different content and

contextual data in the Urn Repositories include Precepts comprising Urn services, Remnants

containing interaction snapshots specific to a place, and place profiles. Specific Urns in the

prototype scenarios are the Classroom Urn located in a classroom, the Gym Urn in a public

workout facility and the Grocery Urn in a local grocery store.

Common Precept Names (CPN) denoting requested services reside in the Pebble

Repository’s Precepts data structure. Corresponding CPN’s stored in the Urn’s Repository

Precepts area identify services provided by the Urn. Urn CPN’s link to the corresponding

programs and data, located in the Urn’s Precepts directory, that define and provide the available

services. Urn Repository Precepts used in the scenarios are described in Table 22.

Table 22- Urn Repository Precepts

Classroom Urn Precepts
CPN CPN Executable CPN Data

CR01 group_assign.py ---
CR02 assignment_collect.py ---
CR03 new_assignment.py ---

Gym Urn Precepts
CPN CPN Executable CPN Data
G01 gym_access.py ---
G02 avail_equip.py gym_sensors
G03 current_resist.py user_pref

Grocery Urn Precepts
CPN CPN Executable CPN Data
GS01 item_loc.py store_inventory
GS02 item_price.py store_inventory
GS03 award_coupon.py ---

The prototypes are written in Python 2.6.2. Urns in the prototypes are implemented on a

Dell Mini 9 netbook (1.60 GHz processor, 2G RAM, 3991 BogoMips) running the Linux Ubuntu

12.10 operating system. The Smart Pebble is implemented on a Nokia N810 internet tablet

 94

(400 MHz TI OMAP 2420 ARM processor, 256 MB + 2 GB Flash, 164 BogoMips) running the

Maemo 4.1 operating system (a Unix/Linux variant).

A scenario describes how the use of these prototypes affects a user’s experience while

performing several typical daily activities. Each of the following prototype sections contain a

scenario about the use of a particular Pebble class, application considerations, coding details,

quantitative analysis of prototype components and a discussion of outcomes and discoveries.

Prototype scenarios are based on the following scenario describing an environment in which

P&U does not exist.

It’s Wednesday evening, and Alice has just finished dinner. Now it’s time

to run an evening of errands. Alice makes sure she has her grocery list and her

pass card to the gym. Tonight is class night, so she also takes her textbook off the

nightstand as she leaves her apartment. Her first stop tonight is class.

Alice enters the classroom and takes a seat. Starting class, the instructor

asks the students to turn in their homework. As she looks through her textbook,

Alice realizes she left her homework on her study desk. Class continues as the

instructor assigns each student to a group. Alice leaves her seat to go join her

group members in another area of the classroom. Class ends, and Alice, still

disappointed about the forgotten homework assignment, heads to the gym.

Arriving at the multi-story exercise facility, Alice enters using her pass

card. Her exercise routine consists of a sequence of exercises using different

equipment located throughout the facility. On busy nights, Alice has to spend

time searching for equipment not in use. Completing her exercise routine, Alice

leaves for her last stop of the evening, the grocery store.

Alice enters the large FoodShop store with grocery list in hand. Taking a

cart, Alice begins to shop for the items on her list. She quickly realizes, much to

her dismay, that FoodShop has once again rearranged store items to different

 95

locations in the store. Alice continues to now search for the items on her grocery

list. She becomes more frustrated when she discovers, after finding the correct

shelf, that the store is out of an item. Finally locating most of the items, Alice

proceeds to the grocery store checkout. Irritated that her favorite TV show has

been on for fifteen minutes, Alice gets in her car and heads home after a

somewhat stressful evening of errands.

The following sections describe three alternative scenarios that illustrate how the user’s

experience can be improved over the scenario above. The alternative scenarios require

progressively more capable P&U systems.

5.3 P&U Prototype: Read-Only Pebble

This section describes a P&U prototype based on the Read-Only Pebble class, one of the

Pebble classes discussed in Section 2.2.1. Read-Only Pebbles have a limited amount of non-

volatile storage and possess no processing capabilities. Pebbles in this class are simple,

inexpensive physical objects. Developers would take these characteristics into consideration

when developing P&U systems designed to use Read-Only Pebbles. Figure 36 represents the

architecture layers and components that support the Read-Only Pebble class.

 96

Figure 36 - P&U Framework - Read-Only Pebble

As discussed in Section 4.3.2, the Read-Only Pebble, without a controller or transport

component, only provides information to the Urn. Information flow is in one direction from the

Pebble to the Urn.

5.3.1 Scenario

The following scenario takes place in an environment with a P&U system that supports

Read-Only Pebbles.

 97

It’s Wednesday evening, and Alice has just finished dinner. Now it’s time

to run an evening of errands. Alice makes sure she has her grocery list and her

Pebble. Tonight is class night, so she also takes her textbook off the nightstand as

she leaves her apartment. Her first stop tonight is class.

As Alice enters the classroom, she holds her Pebble next to the classroom

Urn. The characters “3F” appear on the Urn’s display. For this particular class

session, Alice is in group 3 and assuming a role of facilitator. Alice locates a seat

with the other group 3 class members. Starting class, the instructor asks the

students to turn in their homework. As she looks through her textbook, Alice

realizes she left her homework on her study desk. Class continues as the

instructor gives assignments to the different groups. Class ends, and Alice, still

disappointed about the forgotten homework assignment, heads to the gym.

Arriving at the multi-story exercise facility, Alice gains access by

displaying her Pebble to the gym Urn. Her exercise routine consists of a

sequence of exercises using different equipment located throughout the facility.

On busy nights, Alice has to spend time searching for equipment not in use.

Completing her exercise routine, Alice leaves for her last stop of the evening, the

grocery store.

Alice enters the large FoodShop store with grocery list in hand. She

shows her Pebble to the grocery store Urn. The Urn acknowledges that it is her

fifth visit this month and dispenses a 5% off coupon for this store purchase.

Taking a cart, Alice begins to shop for the items on her list. She quickly realizes

much to her dismay, that FoodShop has once again rearranged store items to

different locations in the store. Alice continues to now search for the items on her

grocery list. She becomes more frustrated when she discovers, after finding the

correct shelf, that the store is out of an item. Finally locating most of the items,

Alice proceeds to the grocery store checkout. Irritated that her favorite TV show

 98

has been on for ten minutes, Alice gets in her car and heads home after a

somewhat stressful evening of errands.

5.3.2 Application Considerations and Coding Details

The scenario presented in Section 5.3.1 contains the following P&U service interactions.

 Assignment of a group designation to a student in a classroom setting

 Access request to a physical space

 Opportunistic interaction enforcing user participation

Each of these interactions, involving the same Pebble owner and her Pebble, consist of different

service applications running on different Urns located in different places. The P&U developer

uses the P&U framework to build the different Urns and service applications. Construction of

Pebble instances based on the different Pebble classes is also guided by the P&U framework.

For example, the structure and content of Pebble Repositories are modeled after comparable Urn

Repository components.

The classroom application assigns a group and role designation to the student as they

enter the classroom and present their Pebble to the Classroom Urn. Assignment is configurable

based on either a random selection without replacement from a predefined pool of group and role

designations, or programmatic selection based on student identification number and instructor

preference.

The gym application unlocks the gym door when the user presents her Pebble to the Gym

Urn. Access is granted if the user’s userid on their Pebble matches an entry in the gym’s active

membership. A prior registration process adds the user’s userid to the gym’s active member list.

The grocery store application running on the Grocery Urn demonstrates the use of

Remnants to present an opportunistic situation to the user. A discount coupon is presented to the

user if they demonstrate a certain activity pattern relative to their interaction with the Urn’s

place. An example is the award of a store discount coupon if the user has visited the store a

 99

certain number of times over a certain period. Randomization strategies can be incorporated in

the coupon award application to protect against user behaviors intended to take advantage of the

system.

The QR code scanning interface used in this prototype is similar to that used in the initial

P&U prototype described in Section 5.1. Construction of the Read-Only Pebble used in this

prototype follows the QR code generation guidelines presented in Section 5.1.1. The control

flow diagram of this P&U prototype is shown in Figure 37.

Figure 37 - Control Flow - Read/Only Pebble

 100

Due to storage constraints, the Read-Only Pebble Repository contains a subset of the

Repository elements described in Section 4.3.2.2.1. The Read-Only Pebble Repository does not

contain Urn Remnants or user preference data elements. Read-Only Pebble Repository’s

Precepts data element contains only CPNs, lacking space for the additional CPN data element.

In addition, the Read-Only Pebble Repository data elements cannot be updated by the Urn during

a P&U session. As a result, P&U systems using Read-Only Pebbles do not support inter-Urn

messaging or user preference/place profile matching. Lack of these functions, described in

Section 4.3.2.3, could reduce the Urn’s effectiveness in identifying and delivering opportunistic

services. The Read-Only Pebble Repository shown in Figure 38 consists of the PIM and a

Precepts list.

Figure 38 – Example of Read-Only Pebble Repository

Figure 39 illustrates the QR code text string representing the Read-Only Pebble

Repository. The added hash tag is used to assess Pebble validity during data transmission.

Figure 39- Read-Only (QR) Text Format

 101

Figure 40 shows the program flow and code for applications performing the interactions

described in the Read-Only scenario. Step 1 represents the Pebble Repository replication process

where the Pebble Repository is transferred to the Urn Repository. P&U session execution occurs

in Step 2. In the Read-Only Pebble scenario, Precept processing and Remnant query are actions

that occur during session execution. Step 3 creates an Urn Remnant of snapshot data for this

P&U session. For Read-Only Pebbles, there is no Pebble Repository update step.

Figure 40 - Read-Only Program Flow and Code

This view of the Read-Only P&U system is expanded in Section 5.3.3 to include

descriptions of the basic code blocks of the P&U framework used to build a P&U system.

5.3.3 Testing and Performance Profiling

This section describes testing and performance profiling of the Read-Only Pebble

prototype. This study addresses data movement and Urn resource utilization and performance.

Profiles and performance metrics of the basic P&U code blocks are obtained by applying a

custom profile module. This module uses the efficient Python cProfile module [70] and

Python’s logging facility to generate and capture performance metrics of basic P&U code blocks.

This profile module can be applied to code segments during runtime and supports module

 102

parameter passing and return values. Instrumented P&U code using this profile module can

analyze and capture performance metrics from multiple points within a running P&U system.

The P&U code blocks described in Table 23 perform the core functions of the P&U

framework. Each code block is configured for analysis by the profile module.

Table 23 - P&U Framework Code Blocks

Generic Code Block Function

1 WRAP_Comm
 Wrapper code that handles physical communication

between Pebble and Urn

2 Mirror_Load_PR

 Replicates Pebble Repository data on Urn

 Mirrored Pebble Repository resides in Urn Repository

data object

3 PRE_Precept

 Matches Pebble service requests with Urn’s provided

services

 Executes Precept matches

4 REM_Put_Remnant

 P&U session information is captured and stored

a. Pebble Remnants on Urn

b. Urn Remnants on Pebble

5 Mirror_Store_PR  Stores updated mirror Pebble Repository back to Pebble

Table 24 lists the Comm Link and Transport code blocks mapped to their specific Pebble class

wrapper functions.

 103

Table 24 - Comm Link and Transport Code Blocks and Wrapper Functions

Code Block Read-Only Read/Write Smart

WRAP_Comm Get_QR Link_USB Transfer_Bt

Mirror_Load_PR load_QR_mirror load_USB_mirror load_Bt_mirror

Mirror_Store_PR --- store_USB_mirror store_Bt_mirror

The use of these functions in the Pebble Repository replication process is illustrated in Figure 12

in Section 4.3.2.2.2.

Figure 41 shows the subset of code blocks that make up a Read-Only Pebble P&U

instance. This is the program structure of the P&U system depicted in the scenario presented in

Section 5.3.1. Code block 1 is named WRAP_Comm and handles the physical communication

between Pebbles and Urns. This code adds the PMI functionally described in Section 2.3 to the

P&U framework. The module named Get_QR reads the text encoded in a QR code. Code block

2, Mirror_Load_PR, replicates the Pebble Repository onto the Urn. Code block 3 executes any

matching Precepts. The last action of this P&U session performed by code block 4(a) is the

addition of a Pebble Remnant to the Urn’s Remnant data area.

 104

Figure 41 - Code Blocks of the Read-Only P&U Instance

 105

Analysis of the P&U code areas is performed using the profile module described earlier.

Performance data is generated by running ten iterations of a P&U session involving the

interaction of an Urn and a Read-Only Pebble. The Urn used in this test is the Grocery Urn

described in Section 5.3.2. Table 25 summarizes the results from this experiment.

Table 25 - Execution Times of Read-Only Pebble Code Blocks

Generic Read-Only

Average
Execution

Time
(seconds)

Standard
Deviation
(seconds)

1 WRAP_Comm Get_QR 0.878 0.031

2 Mirror_Load_PR Load_QR_Mirror 0.080 0.008

3 PRE_Precept PRE_Precept 0.199 0.007

4a REM_Put_Remnant REM_Put_Remnant 0.024 0.005

The execution times are from code blocks run during the P&U session where Alice

interacts with the Grocery Urn using a QR-based Read-Only Pebble. In this experiment,

variables associated with the scanning of a QR code are controlled as follows. The Read-Only

Pebble is mounted on a fixed support and positioned in front of the Urn’s camera. Lighting

conditions, Pebble to Urn distance and Pebble movement do not change during the performance

measurement iterations.

Operations in the Get_QR step are the decoding of the encoded QR image and a

verification check of a hash tag of the decoded text string. The Load_QR_Mirror step parses the

decoded QR text string and places the parsed tokens into mirror Repository elements using

Python dictionary operators. Step PRE_Precept executes an Urn Precept consisting of an Urn

Remnant traversal and match operation using Python dictionary operators. Step

REM_Put_Remnant performs a single Python dictionary update operation.

The Get_QR step takes the longest to execute at 0.878 seconds. Removing the hash tag

verification step resulted in a Get_QR execution time of 0.856 seconds. The QR code decode

 106

operation is the slowest operation in this P&U session. Longer execution times are expected for

this step when the Read-Only Pebble is hand-held next to the Urn’s camera.

Given that the Rem_Put_Remnant step represents a single Python dictionary update

operation of 0.024 seconds, the Load_QR_Mirror step is broken into two string parsing

operations (one for PIM elements and one for Precept elements) and two dictionary update

operations. Estimated time for the string parsing operation is (0.080 – 2(0.24))/2 or 0.16

seconds.

This particular PRE_Precept step execution time will increase over time as the number of

entries in the Urn Remnant structure increases.

5.3.4 Outcomes and Discoveries

This section describes the outcomes and discoveries realized during the implementation,

testing, and analysis of the P&U prototype and Read-Only Pebbles.

 Execution of the prototype produces results accurately depicting events described in the

scenario presented in Section 5.3.1.

The QR-based Pebble is easy to use addressing the “Arrive and Operate” IoT challenge

listed in Section 1.1. The need to hold the QR-based Pebble next to the Urn’s camera in

conjunction with the Urn’s fixed location enforces the Pebble owners near, situated, tangible

interaction with the prototype Urns. As specified in Research Question 1.1 in Section 1.2, this

demonstrates a required characteristic of the P&U architecture.

Services delivered during the P&U sessions match the service domains defined by the

different physical locations. For instance, the Grocery Urn provided services relevant to a person

buying groceries in a grocery store. Research Question 1.2 in Section 1.2 asks how the P&U

architecture supports these service domains.

 107

The Read-Only Pebble did not need to assist with computation and communication tasks

requiring a power source during the P&U session. This work was performed by the different

Urns. This example of a cyber foraging strategy addresses Research Question 1.3 in Section 1.2.

High-level coding of the Urn prototype using the P&U API can be accomplished in a

straight-forward manner. While this is a subjective statement, it is true that the functions could

be programmed using the P&U API without needing to include any code that performed lower

layer functions of the P&U architecture as described in Section 4.3.2.1. This characteristic of the

P&U framework address Research Question 1 in Section 1.2 with regards to supporting IoT and

OC implementations.

In consideration of Research Question 2 in Section 1.2, a problematic feature of the P&U

prototype is described. The QR-based Read-Only Pebble’s limited amount of non-volatile

storage reduces the Urn’s ability to delivery opportunistic services during the P&U session.

5.4 P&U Prototype: Read/Write Pebble

This section describes a P&U prototype in which Pebbles are based on the Read/Write

Pebble class. The prototype Read/Write Pebble based on a USB “thumb drive” has more storage

than the prototype Read-Only Pebble based on a QR code, although other physical realizations of

a Read-Only Pebble could provide a similar amount of storage as the Read/Write Pebble. The

larger storage space present in the prototype allows a larger Pebble Repository that contains

additional data elements. In addition, a Read/Write Pebble’s storage is rewritable enabling an

Urn to update data elements in the Pebble’s Repository. These characteristics of the Read/Write

Pebble class afford new capabilities within a P&U system as shown in the next section. Figure

42 represents the architectural layers and components that support the Read/Write Pebble class.

Information flow is bi-directional between Pebble and Urn.

 108

Figure 42 - P&U Framework - Read/Write Pebble

5.4.1 Scenario

The following scenario takes place in an environment with P&U systems that support

Read/Write Pebbles.

It’s Wednesday evening, and Alice has just finished dinner. Now it’s time

to run an evening of errands. Alice makes sure she has her Pebble. Tonight is

 109

class night, so she also takes her textbook off the nightstand as she leaves her

apartment. Her first stop tonight is class.

As Alice enters the classroom, she attaches her Pebble to the classroom

Urn. The text “Assignment Accepted”, “3F”, and “Next Assignment Loaded”

appear on the Urn’s display. Alice acknowledges to herself that for this

particular class she is in Group 3 assuming a role of facilitator. See also sees

that her assignment due this class period has been moved from her Pebble to the

classroom Urn and her next assignment is now on her Pebble. Removing her

Pebble from the Urn, Alice continues to the area of the classroom designated for

Group 3 members. Class begins as the instructor gives assignments to the

different groups. Class ends, and Alice heads to the gym.

Arriving at the multi-story exercise facility, Alice gains access by

attaching her Pebble to the door receptacle of the gym Urn. The following

message appears on the Urn’s display: “1st floor treadmill available, 2nd floor

elliptical available”, “Current Resistance Level: 5”. Her exercise routine

consists of a sequence of exercises using different equipment located throughout

the facility. The Urn has just displayed available equipment from her exercise

profile. The Urn has also reminded Alice that her current resistance setting for

the exercise equipment is level 5. Alice heads to the treadmill on 1st floor.

Completing her exercise routine, Alice leaves for her last stop of the evening, the

grocery store.

Alice enters the large FoodShop store with Pebble in hand. She inserts

her Pebble into the grocery store Urn. The Urn acknowledges that it is her fifth

visit this month and dispenses a 5% off coupon for this store purchase. The Urn

also produces a printout showing each item on Alice’s grocery list associated

with current store location and price. Aided by this printout, Alice begins her

grocery shopping. Alice proceeds to the grocery store checkout already knowing

the cost of her shopping trip. Alice gets in her car, turns on the radio, and heads

 110

home after another evening of errands. The reporter on the radio is discussing

the growing concerns of identity theft. In spite of their convenience, Alice

wonders how safe are these Pebbles? Never mind, she thinks, my favorite TV

show begins in 10 minutes.

5.4.2 Application Considerations and Coding Details

The scenario in Section 5.4.1 describes additional service interactions resulting from the

increased capabilities of the Read/Write Pebble. These service interactions include:

 Assistance with operational management of classroom assignments

 Provisioning of user-specific information

 Reduced effort resulting from place-based information

The classroom application now performs P&U interactions involving bi-directional

transfer of large data objects. The Read/Write Pebble’s Precepts list includes service requests to

load completed assignments onto the classroom Urn and to retrieve and store new assignments

on the Pebble.

The gym application accesses user preference and place profile information to assist the

Pebble owner in locating available exercise equipment. The Pebble owner’s current equipment

resistance setting is retrieved from a user/place profile and displayed.

The Precept structure in the Read/Write Pebble Repository associates data with Common

Precept Names. In the grocery store application, this data is the grocery list. The Grocery Urn

has access to grocery item inventory data stored in its Precepts directory. The GS01 and GS02

Precepts merge grocery list and item inventory producing grocery list item locations and prices.

The Read/Write Pebble is implemented on a conventional USB “thumb drive”. The

Pebble Repository on the USB drive is based on the same data structures and data operators as

those used with Urn Repositories. P&U developer tools are used to build both Pebble and Urn

Repository instances. This Pebble is associated with an Urn by physically plugging it into a

 111

USB connector on the Urn. This physical connection supports Research Question 1.1 by

demonstrating the use of a tangible interface and the enforced physical proximity between

Pebble and Urn. When the Read/Write Pebble is plugged into the Urn, the Linux operating

system’s device manager, udev, mounts the Pebble’s Repository as part of the Urn’s file system

[71]. The control flow diagram of this P&U prototype is shown in Figure 43.

Figure 43 - Control Flow - Read/Write Pebble

The Pebble Repository of the Read/Write Pebble is illustrated in Figure 44. In addition to

the data elements of the Read-Only Pebble Repository, the Read/Write Pebble Repository

contains a user profile, user preferences, Remnants and an extended Precepts structure.

 112

Definitions and use descriptions of these data elements are contained in Sections 4.3.2.2.1 and

4.3.2.3, respectively.

Figure 44 - Example of Read/Write Pebble Repository

 Figure 45 shows the program flow and code for applications performing the interactions

described in the Read/Write scenario in Section 5.4.1. Step 1 represents the Pebble Repository

replication process where the Pebble Repository is transferred to the Urn Repository. P&U

session execution occurs in Step 2. In the Read/Write Pebble scenario, Precept processing,

Remnant queries and user preference and place profile comparisons are actions that occur during

session execution. In Step 3, new Pebble and Urn Remnants are created containing snapshot data

about this P&U session. The updated Pebble Repository is transferred from the Urn back to the

Pebble in Step 4.

 113

Figure 45 - Read/Write Program Flow and Code

5.4.3 Testing and Performance Profiling

This section describes testing and performance profiling of the Read/Write Pebble

prototype. This study follows the rationale and procedures described in Section 5.3.3.

Figure 46 shows the P&U code blocks that are active during a P&U session with a

Read/Write Pebble. This is the program structure of the P&U system depicted in the scenario

presented in Section 5.4.1. The code block numbering scheme is defined in Table 23. Code

block 1, WRAP_Comm, mounts the USB thumb drive’s file system. Code block 2,

MIRROR_Load_PR, links the mounted file system to the Urn Repository’s PR_Mirror directory.

Code block 3, PRE_Precept, executes any matching Precepts. Code block 4,

REM_Put_Remnant, adds a Pebble Remnant to the Urn’s Remnants data area. Code block 5,

Mirror_Store_PR, updates the Pebble’s Repository with the PR_Mirror contents.

 114

Figure 46 - Code Blocks of the Read/Write Pebble Instance

 115

The P&U code blocks indicated in Figure 46 are analyzed using the profile module described in

Section 5.3.3. Ten iterations of a P&U session using a Read/Write Pebble are analyzed. The

Urn in this performance analysis exercise is the Grocery Urn. Table 26 contains the summarized

information generated by this exercise.

Table 26 - Execution Times of the Read/Write Code Blocks

Generic Read / Write

Average
Execution

Time
(seconds)

Standard
Deviation
(seconds)

WRAP_Comm Link_USB 0.133 0.005

Mirror_Load_PR Load_USB_Mirror 0.018 0.006

PRE_Precept PRE_Precept 0.490 0.007

REM_Put_Remnant REM_Put_Remnant 0.021 0.002

Mirror_Store_PR Store_USB_Mirror 0.057 0.002

 The execution times are from code blocks run during the P&U session where Alice

interacts with the Grocery Urn using a Read/Write Pebble based on a USB “thumbdrive”. Alice

initiates a P&U session by plugging her Pebble into the Grocery Urn.

 Because of the Read/Write Pebble’s increased storage and additional Repository

elements, the P&U session processes additional code blocks. UMR_Message processing is now

supported because the Pebble can now store Urn Remnants. The Mirror_Store_PR block

detaches the replicated Pebble Repository at the end of the P&U session.

 WRAP_Comm and Mirror_Load_PR code block execution times are shorter than those

times reported for the Read_Only Pebble (Table 25). The USB Read/Write Pebble interacts with

the Urn by means of a different physical interface. This interface and related differences in

execution times are discussed in more detail in Section 5.6.

 116

5.4.4 Outcomes and Discoveries

Outcomes observed and discoveries made during the implementation, testing and analysis

of the P&U prototype and Read/Write Pebble are discussed in this section.

One observed outcome was the demonstration of increased functionality in the scenario

attributed to the Read/Write Pebble’s expanded, rewritable storage.

An aspect of the P&U framework design is the isolated physical communication layer.

This design feature allows the changing of a P&U system’s Pebble class interface by switching

only the communication wrapper modules on the Urn. The Grocery Urn in this prototype

interacts with a USB Read/Write Pebble.

The form factor of a Read/Write Pebble based on a USB thumb drive represents a tangible

interface. The familiar USB interface is extremely easy to use. A P&U session is initiated by

simply plugging the Pebble into the Urn; another example of an “Arrive and Operate” interface.

The act of physically connecting a Read/Write Pebble to an Urn enforces physical proximity. A

demonstration of near, situated, tangible interaction as discussed in Research Question 1.1 in

Section 1.2.

5.5 P&U Prototype: Smart Pebble

This section describes a P&U prototype that uses a Smart Pebble. Pebbles in the Smart

Pebble class have a Pebble Controller component. The Pebble Controller affords the Smart

Pebble owner additional control over a P&U session. Figure 47 represents the architectural

layers and components that support the Smart Pebble class.

 117

Figure 47 - P&U Framework - Smart Pebble

5.5.1 Scenario

The following scenario takes place in an environment that offers P&U systems

supporting Smart Pebbles.

It’s Wednesday evening, and Alice has just finished dinner. Now it’s time

to run an evening of errands. Alice makes sure she has her Pebble. Tonight is

 118

class night, so she also takes her textbook off the nightstand as she leaves her

apartment. Her first stop tonight is class.

As Alice enters the classroom, she activates her Pebble. A list of roles

appears on the Pebble’s display. She selects the “Virginia Tech student” role

and holds her Pebble next to the classroom Urn. The text “Assignment

Accepted”, “3F”, and “Next Assignment Loaded” appear on the Urn’s display.

Alice acknowledges to herself that for this particular class she is in Group 3

assuming a role of facilitator. See also sees that her assignment due has been

moved from her Pebble to the classroom Urn and her next assignment is now on

her Pebble. Alice continues to the area of the classroom designated for Group 3

members. Class begins as the instructor gives assignments to the different

groups. Class ends, and Alice heads to the gym.

Arriving at the multi-story exercise facility, Alice again activates her

Pebble, and this time selects a role labeled “NewTown Fitness”. She gains

access by holding her Pebble next to the door receptacle of the gym Urn. The

following message appears on the Urn’s display: “1st floor treadmill available,

2nd floor elliptical available”, “Current Resistance Level: 5”. Her exercise

routine consists of a sequence of exercises using different equipment located

throughout the facility. The Urn has just displayed available equipment from her

exercise profile. The Urn has also reminded Alice that her current resistance

setting for the exercise equipment is level 5. Alice heads to the treadmill on 1st

floor. Completing her exercise routine, Alice leaves for her last stop of the

evening, the grocery store.

Alice enters the large FoodShop store with grocery list in hand. She

activates her Pebble, selects a user role of “FoodShop grocery shopper”, and

holds the Pebble next to the grocery store Urn. The Urn acknowledges that it is

her fifth visit this month and dispenses a 5% off coupon for this store purchase.

The Urn also produces a printout showing each item on Alice’s grocery list

 119

associated with current store location and price. Looking over the printout, Alice

sees that one item on her grocery list is out of stock, and also that the Grocery

Urn has recommended a replacement for another item on her list. Aided by this

printout, Alice begins her grocery shopping. Alice proceeds to the grocery store

checkout already knowing the cost of her shopping trip. Alice gets in her car,

turns on the radio, and heads home after another evening of errands. The

reporter on the radio is discussing the growing concerns of identity theft. No

worries here Alice thinks, knowing that she has control over her personal

information and her Pebble. Now, my favorite TV show begins in 10 minutes.

5.5.2 Application Considerations and Coding Details

The scenario in Section 5.5.1 illustrates the identity management support the Smart

Pebble provides the Pebble owner during their interactions with different Urns. For each of the

P&U sessions presented in the scenario, the Pebble owner selects the user role they wish to

present to an Urn. This action controls the types of information transferred from the Smart

Pebble to an Urn during a P&U session.

The Nokia N810 internet tablet is selected as the implementation platform for the Smart

Pebble used in this prototype. This device was chosen because of its Unix/Linux operating

system, Python interpreter and Bluetooth communication support. P&U framework API’s,

internal functions and tools run unmodified on the N810. The Bluetooth radio supports the

physical communication link used in this prototype. Using the P&U framework, a Nokia N810

can perform as a Smart Pebble or an Urn, with neither implementation requiring any framework

modifications. The Smart Pebble provides user feedback by means of a Pebble UI implemented

on the N810’s touchscreen display.

Prior to beginning a P&U session, the Pebble owner selects a particular role defining how

they wish to be perceived by the Urn. Based on this role selection, the Pebble Controller

modifies certain data elements in the Pebble’s Repository. As an example, a role selection of

“anonymous” would relocate Pebble Repository elements containing identifying user

 120

information to outside the Pebble Repository. This action prevents transfer of this information to

the Urn during the Pebble Repository replication phase. A related consequence of role selection

is the ability to configure a Pebble’s Repository to better match a particular Urn. Selection of a

“Virginia Tech student” role would alter Precepts, user profiles and preferences to align closer to

services provided by the Classroom Urn.

In this prototype, the Urn advertises itself as a Bluetooth service. When the Smart Pebble

discovers the Urn, a RFCOMM connection between the two devices is established and Pebble

Repository replication begins. Pebble and Urn Bluetooth communication is implemented using

Python’s PyBluez library [72].

Figure 48 - Control Flow - Smart Pebble

 121

The control flow diagram of this P&U prototype is shown in Figure 48. The Pebble

Repository of the Smart Pebble is shown in Figure 49. Multiple user roles are implemented.

Figure 49 - Smart Pebble Repository

Figure 50 shows the program flow and code for applications performing the interactions

described in the Smart Pebble scenario.

 122

Figure 50 - Smart Program Flow and Code

5.5.3 Testing and Performance Profiling

This section describes testing and performance profiling of the Smart Pebble prototype.

These exercises follow the rationale and procedures described in Section 5.3.3.

Figure 51 shows the P&U code blocks that are active during a P&U session with a Smart

Pebble. The code block numbering scheme and descriptions are identical to those used with the

Read/Write Pebble analysis presented in Section 5.4.3.

 123

Figure 51 - Code Blocks of the Smart Pebble Instance

 124

The P&U code blocks indicated in Figure 51 are analyzed using the profile module described in

Section 5.3.3. Ten iterations of a P&U session using a Smart Pebble are analyzed. The Urn in

this performance analysis exercise is the Grocery Urn. Table 27 contains the summarized

information generated by this exercise.

Table 27 - Execution Times of the Smart Code Blocks

Generic Smart

Average
Execution

Time
(seconds)

Standard
Deviation
(seconds)

WRAP_Comm Transfer_Bt 18.026 0.737

Mirror_Load_PR Load_Bt_Mirror 0.032 0.003

PRE_Precept PRE_Precept 0.510 0.008

REM_Put_Remnant REM_Put_Remnant 0.038 0.002

Mirror_Store_PR Store_Bt_Mirror 0.021 0.002

The execution times are from code blocks run during the P&U session where Alice

interacts with the Grocery Urn using a Smart Pebble. Alice initiates a P&U session by selecting

a role of “FoodShop Shopper” on her Smart Pebble. The Smart Pebble rearranges elements of its

Repository to match the selected role, and initiates the Bluetooth client side application to

connect with the Grocery Urn.

Incompatibilities between the Urn prototype platform (Dell Mini 8 laptop) and the Smart

Pebble platform (Nokia N810) prevented the Bluetooth file transfer of the mirrored Pebble

Repository from the Urn to the Pebble. Bluetooth file transfer does successfully work between

two Nokia N810’s. In order to analyze this step, the Urn prototype is implemented on a second

Nokia N810 using the P&U framework and profile tools. Table 28 contains the performance

data for this analysis.

 125

Table 28 - Execution Times of the Smart Code Blocks (N810)

Generic Smart

Average
Execution

Time
(seconds)

Standard
Deviation
(seconds)

WRAP_Comm Transfer_Bt .499 0.218

Mirror_Load_PR Load_Bt_Mirror 0.182 0.026

PRE_Precept PRE_Precept 1.15 0.148

REM_Put_Remnant REM_Put_Remnant 0.193 0.022

Mirror_Store_PR Store_Bt_Mirror 0.152 0.031

WRAP_Comm Transfer_Bt .397 .143

The WRAP_Comm code block’s average execution time of 18 seconds is discussed in

Section 5.6.

5.5.4 Outcomes and Discoveries

Outcomes observed and discoveries made during the implementation, testing and analysis

of the P&U prototype and Smart Pebble are discussed in this section.

The role-selection process executed by the Pebble Controller performed as depicted in the

scenario. Pebble Repository elements were successfully reorganized as defined by the selected

user role.

The amount of time required to perform the Bluetooth service discovery step represents a

P&U initialization time substantially longer than that of the Read-Only and Read/Write Pebbles.

This observation warrants investigation of other wireless technologies for use in Smart Pebbles.

Plotting the Smart Pebble’s WRAP_Comm time of 18 seconds against the other Pebble

results dominates the graph as shown in Figure 52.

 126

Figure 52 - WRAP_Comm Execution Times

The code performing the service discovery phase of the Smart Pebble prototype was

removed from the process to obtain additional information from comparison plots of the different

Pebble classes. Restated, for results presented below, performance results for the Smart Pebble’s

WRAP_Comm code block begin after the RFCOMM Accept() statement. Running the profile

module against the Smart Pebble prototype now yields an average WRAP_Comm execution time

of 0.256 seconds with a standard deviation of 0.018 seconds.

5.6 Performance Analysis

Performance data obtained by analyzing the basic P&U code blocks of the P&U sessions

running on each of the three prototypes is represented in the following graphs.

 127

The stacked column graph in Figure 53 shows the relationship of average code block

execution times to the total execution time of a P&U session. The contribution of each execution

time is compared to total execution times across the Pebble classes. Each column segment is

labeled with the code block execution time it represents.

Figure 53 - Prototype Performance - Execution Times (Average)

Observations based on interpretation of this graph are as follows.

 The Read/Write Pebble based on the USB interface provides the fastest P&U session

execution time because its WRAP_Comm execution time as shown on the graph is less

than the WRAP_Comm execution times of the Read-Only or Smart Pebble. This is

because the USB interface's WRAP_Comm code block uses file system mount and link

 128

operations that are faster than the Read-Only Pebble's QR decode operation or the Smart

Pebble's file transfer operation.

 Precept processing times vary based on the nature and number of Precepts executed. The

Urn Controller executes matching Pebble and Urn Precepts. The graph shows the Precept

execution time of each Pebble class with the Grocery Urn. The Precepts offered by the

Grocery Urn, as indicated in Table 1, are GS01, GS02 and GS03. The Read-Only

Pebble, as shown in Figure 10, requests only the GS03 Precept. The GS03 Precept

performs an Urn Remnant traversal to determine if the user qualifies to receive a store

coupon. The Read/Write and Smart Pebbles with their larger storage capacity are

configured to request all three grocery store Precepts offered by the Grocery Urn.

Precept processing times are greater for the Read/Write and Smart Pebble than times for

the Read-Only Pebble because of the additional Precepts executed. The graph also shows

that the Precept processing times of the Read/Write and Smart Pebbles are equal. This is

because their Precept requests are identical.

 Remnant processing times are similar across the three Pebble classes. In all three

prototypes, the Put_Remnant method executed by the Urn Controller is performing the

same operation.

The stacked column graph in Figure 54 represents the variability of execution times of

the code blocks in the three prototypes.

 129

Figure 54 - Prototype Performance - Execution Times (Std Dev)

Observations are as follows.

 The greatest variability is shown in the Comm_WRAP code blocks of the Read-Only and

Smart Pebbles. The Get_QR function of the Read-Only Pebble involves image

processing steps and has the longest code block execution time of the prototypes. The

Transfer Bt function of the Smart Pebble performs a file transfer of the Smart Pebble

Repository across Bluetooth. The QR decoding and Bluetooth file transfer times are

more likely to be affected by other operating system activities at runtime.

 Common framework operations like Precept processing and Remnant traversal

demonstrate the same execution times with all Pebble classes over the ten profile run

iterations. All P&U prototypes access and update the mirrored Pebble Repository

 130

(PR_Mirror) through the P&U Common Framework. Also, Pebble and Urn Repository

data structures are the same for all Pebble classes. Low execution time variability is the

result of the same code executed against the same data storage on the same hardware.

Figure 55 contains a column graph comparing percentages that each code block execution

time contributes to the total P&U session execution times.

Figure 55 - Prototype Performance (Code Block % of Total Time)

Figure 56 is the performance graph of the Smart Pebble code blocks where both mirror

Pebble Repository transfers are analyzed. File transfer times in each direction are similar.

 131

Figure 56 - Prototype Performance (includes Smart Pebble WRAP_Comm time)

Observations from this graph are as follows.

 The Read/Write USB-based Pebble prototype spent the least processing time (20% of

total session time) establishing contact between Pebble and Urn. This is attributed to

characteristics of the direct “wired” USB connection.

 75% of the total session time for the Read-Write prototype session was spent in the

PRE_Precept code block. This is attributed to fewer Precepts executed in the Read-Only

session prototype. The Read/Write prototype session also demonstrated faster Pebble

and Urn connect times than in the Read-Only prototype session.

 74% of the total session time of the prototype using the Read-Only Pebble was spent in

the WRAP_Comm code block. This is attributed to the execution times of the QR text

decoding process in the Get_QR function.

 132

 97% of the Smart Pebble prototype’s total execution time as shown in Figure 52 is spent

in the WRAP_Comm code block performing Bluetooth service discovery. Bluetooth

service discovery and connection times are acknowledged issues. To address this

problem, researchers are studying ways to speed up the Bluetooth service discovery and

connection phase [73], or couple Bluetooth implementations with other wireless

technologies like IrDA [74].

Conclusions and observations regarding P&U performance based on this analysis are as

follows.

 Initial tuning exercises on the P&U framework should focus on improving Pebble and

Urn initial contact within the Comm WRAP layer. Comm_WRAP executions times

represent 74% and 97% (Figure 56) of the total execution times of prototypes based on

Read-Only and Smart Pebble instances respectively.

 The Read/Write Pebble based on a USB thumb drive offers the best performance in terms

of execution time of the three Pebble instances tested. The Read/Write Pebble

demonstrated the shortest Pebble to Urn connection and Repository transfer times.

 Stages of the all P&U prototype sessions using the Common Framework functions

(PRE_Precept and Put_Remnant) demonstrated similar execution times. To restate, all

P&U prototypes access and update the mirrored Pebble Repository (PR_Mirror) through

the P&U Common Framework. Also, Pebble and Urn Repository data structures are the

same for all Pebble classes.

 Not reflected in the graphs, the WRAP_Comm block in each of the prototypes

successfully executed during all ten iterations of the testing. This observation

demonstrates the stability of the P&U communication connections using the chosen PMI

technologies.

 133

5.7 Summary

This chapter describes the implementation of prototypes using the evolved P&U

framework presented in Section 4.3. Experiences gained form this P&U instantiation work

address the research questions established in Section 1.2. The following sections examine how

these experiences answer the research questions.

5.7.1 P&U Interactions – Research Question 1.1

The performance analysis of the prototypes built on the P&U framework presented in

Section 4.3.2 demonstrate stable and flexible communication connections between Urns and

instances of the three Pebble classes. The communication technologies used in the framework’s

Comm layer enforced near, situated, tangible interactions between Pebble and Urn in all

prototypes. Performance measurements of the code blocks managing the communication

connections demonstrated consistent transfer times over multiple runs. Supporting the definition

of interoperability presented in Section 4.1.1, the prototypes demonstrate the ability of an Urn to

exchange information with different Pebble classes and to use the information that has been

exchanged.

Tables 1 and 2 in Section 2.2.1 describe platform and architecture aspects of the three

Pebble classes implemented in the P&U prototypes described in Section 5.2. Analysis of

prototype performance discussed in Section 5.6 relates these aspects to the pros and cons of the

physical interaction schemes used in each of the Pebble classes. The storage structure of the QR-

based Read-Only Pebble is simple and constrained by storage size, limiting the functionality of

P&U systems based on its use. The Smart Pebble’s Bluetooth communication component with

its multi-second service discovery delay fails to address the “Arrive and Operate” IoT challenge

discussed in Section 1.1. The Read-Only and Read/Write Pebbles did not require their own

power sources to interact with Urns.

 134

5.7.2 P&U Opportunistic Elements – Research Question 1.2

The effects on user experiences by the prototypes demonstrate several opportunistic

mechanisms provided by the P&U framework. Algorithms defining Remnant processing created

an opportunity to encourage user participation by the award of a grocery store coupon.

Operations on contextual information stored in a user profile Repository element facilitated the

act of locating available exercise equipment in the gym. Rule sets controlling Precept matching

enable services to manage homework assignments and effectively locate grocery items.

5.7.3 P&U Cyber Foraging – Research Question 1.3

Two of the three Pebble classes supported by the prototypes do not use power. The

Read-Only Pebble instance based on a QR code does not perform computation, active

communication, or user feedback. These functions are performed by the Urn. The same Urn

relationship holds true for the Read/Write Pebble instance based on a USB “thumbdrive”. The

Smart Pebble instance based on an internet tablet requires power for computation

5.7.4 P&U Innovative Features – Research Question 2

Innovative features revealed through the design and implementation of the P&U

prototypes include the following.

1. The P&U framework displays a “thin waist” when used in construction of Internet of

Things and opportunistic computing systems. Sections 2.2.4 and 4.1.1 describe the “thin

waist” or hourglass-shaped characteristic of architectures containing layered protocols.

2. The use of the Python language as a development tool aligned well with the requirements

of P&U framework and prototype implementations.

Python is an interpreted, object-oriented, high-level programming language [75]. Python

is well-suited to rapid application development given its high-level built-in data

 135

structures, dynamic typing and dynamic binding. Supporting modularity and code reuse,

Python serves as a “glue” language used to connect existing components.

Initial P&U research identified tuplespaces as the Pebble and Urn Repository datastore.

Decisions on tuplespace implementations, language interfaces, and in some cases cost

made a tuplespace selection difficult. Python’s dictionary data structure provides

tuplespace functionality including associative memories indexed by immutable-type

keys. Core Repository elements and data operators are built using Python’s dictionary

data structure.

3. Repository data elements and associated operations can be combined programmatically to

identify place-specific opportunistic situations. The following P&U code segment

awards a discount coupon to the Pebble owner on an item identified as a specific personal

preference if they have visited the store over ten times.

Tom presents his Pebble to the store Urn as he enters his favorite clothing

store. The store Urn presents him with a 15% discount coupon on all

shoes in the store that are his size.

if count(Get_Remnant('pid')) >= 10:

 if preference_matchs = PRO_Comp() >= 1:

 item_preference_match = pick(preference_matchs)

 /* award discount on matched preference item */

5.7.5 P&U Problematic Features – Research Question 2

Problematic features revealed through the design and implementation of the P&U

prototypes include the following.

1. The P&U session characteristic of the Urn waiting for Pebbles using a “block on wait”

strategy is inefficient. A more efficient implementation would need to handle the various

 136

P&U interface technologies. One approach is the modification of wrapper code to

support event driven Pebble and Urn initialization.

2. P&U sessions do not support multiple Pebbles simultaneously. A session feature such as

place adaptation to multiple Pebbles and their owners is not implemented. A framework

modification to resolve this issue requires the addition of a Pebble registry sub-system

that would track active Pebbles, a Pebble coordination data element in the Urn

Repository, and a common framework function to map and interpret multiple user

profiles.

3. While the use of Python is generally supportive of the implementation of Pebbles and

Urns, there are caveats.

Python’s sophisticated data structures may make porting of the P&U framework to other

languages and development environments difficult. Framework re-design may be

required if different development and deployment environments are used. The degree to

which P&U framework design was effectively isolated from its implementation is

unknown at this time.

4. As described in Section 5.7.1, the prototypes focus on P&U support of the different

Pebble classes. At this time, research has not extended Urn capabilities beyond the

standalone Urns represented in the scenarios and prototypes. This area of research can be

addressed as future work.

5. Earlier framework designs of the Comm and Transport layers did not provide an isolated

physical communication layer. This issue has been resolved with the addition of the

Pebble Repository replication step in the evolved P&U design, as presented in Section

4.3.2.2.2.

Chapter 6 concludes this dissertation by summarizing the research and identifying

contributions. Possible future research directions are then discussed, followed by closing

remarks.

 137

Chapter 6: Conclusions

This chapter presents conclusions based on findings obtained from the exploration,

design and implementation of a general Pebbles and Urns framework. Section 6.1 summarizes

the body of work presented in this dissertation. This section restates the motivations for this

research, presents the research questions derived from the motivations, and justifies the approach

of this study to answer these research questions. Section 6.2 examines and interprets findings

with respect to each of the research questions, relates the answers and findings of the study back

to the conceptual framework upon which the study was designed and discusses additional issues

raised during the course of this research. Section 6.3 identifies contributions of this research.

Section 6.4 presents recommendations and directions for potential future research.

6.1 Research Summary

The following sections summarize the motivation for and approach taken by this

research.

6.1.1 Research Motivation

The exploration of Pebbles and Urns takes place within the context of the Internet of

Things and opportunistic computing. As presented in Section 1.1, prior research in these two

areas of pervasive computing identified challenges associated with their underlying technologies

[3, 5, 6]. These are listed and discussed below.

1. Decision support – IoT systems need to support autonomous decision making to

reduce everyday decision making tasks.

2. New device interfaces – The study of new human-to-device and device-to-device

interfaces should consider simple, dedicated personal devices that are easier to

operate than smartphones.

3. Deployment – Architectures and frameworks are needed to support large-scale

IoT and OC system deployments.

 138

4. Scalability – Communication and service discovery components of the IoT need

to function in large-scale environments.

5. “Arrive and Operate” – Interactions between humans and devices in the IoT

require spontaneous connection and organization.

6. Interoperability – The diversity of many different types of smart objects require

common practices and standards.

7. Discovery – Services for “things” must be automatically identified.

8. Software complexity – Software infrastructures are needed to manage smart

objects and provided services.

9. Data volumes – “Real-world” awareness scenarios require volumes of local and

remote data.

10. Data interpretation – The interpretation of local context to trigger further action is

not trivial.

11. Security and personal privacy –Personal privacy within the IoT requires support

of selective access control of services and information among users and the many

smart objects.

12. Power supply –The many devices in the IoT need to take advantage of energy

saving advances in hardware and software.

13. Interaction and short-range communication – Development of new interaction

techniques and processes between humans and devices in the IoT is needed.

14. Connectivity – Ways to manage the stability, duration, and frequency of OC

devices must be studied.

15. Incentives – There is a need to create reasons for initiating OC device

conversations.

16. Context management – There is a need for OC systems to manage context

representing user activity within a place.

These challenges serve as motivation for the design and implementation of the P&U framework.

As a contribution to IoT and OC research domains, P&U is proposed to better understand and

address some, but not all, of the key needs described above.

 139

6.1.2 Research Questions

 Research questions derived from the IoT and OC challenges discussed in Section 1.1 and

restated in Section 6.1.1 define and drive the design, implementation, and analysis of the P&U

framework. Challenges contributing to RQ 1.1, RQ 1.2 and RQ 1.3 are denoted in brackets (<>).

RQ 1. How would properties and characteristics of the P&U architecture advance the design

and deployment of IoT and opportunistic computing implementations? Guiding

components of this research question include the following.

RQ 1.1 <2, 5, 6, 8, 13, 14> What interoperability and interaction features and

characteristics of the P&U architecture provide a stable and flexible

communication connection supporting near, situated, tangible interaction

between devices participating in the application domain of opportunistic

computing?

RQ 1.2 <1, 7, 8, 9, 10, 11, 15, 16> Within the P&U architecture, what protocols,

rule sets, algorithms, abstractions, and context management identify a

relevant service domain for parties participating in a P&U-based

opportunistic computing session?

RQ 1.3 <2, 8, 12, 13> How can P&U designs utilize cyber foraging strategies such

as power management and cloud services?

RQ 2. What innovative, or problematic, features are revealed through the design and

implementation of a P&U instance and, for problematic features, can the problem

areas be addressed?

 140

6.1.3 Research Approach

Serving as a summary of this dissertation, this section describes the approach taken in the

research of Pebbles and Urns. Topics include the concept of Pebbles and Urns, the study of prior

related work, the initial and evolved design of a general P&U framework, and the

implementation, testing and analysis of P&U prototypes.

The research motivation and derived research questions discussed in Sections 6.1.1 and

6.1.2 respectively, guided initial P&U concept design. Figure 57 shows a sketch of an early

P&U concept. This early concept evolved and was refined by investigating related research

areas and by exploring the use of P&U for application scenarios.

Figure 57 - Early P&U Concept Sketch

Core elements of the P&U architecture, Pebble, Urn, and Information Repository, are

introduced in Chapter 2. Attention to the research questions focused design efforts on P&U

interactions, services, and cyber foraging. Use cases were written to demonstrate and better

understand the application of P&U to everyday settings. A review of current research activities

 141

relevant to the P&U architecture is discussed in Chapter 3. Topics include mobile human and

device interactions, information management of user-generated content, service discovery and

cyber foraging.

Information obtained by this research helped refine the P&U concepts and architecture

introduced in Chapter 2. Addressing the research questions in Section 1.2 with respect to the

P&U concepts produced an initial P&U architecture described in Section 4.2. An initial P&U

framework was implemented based on the components and connectors of the initial architecture.

A simple prototype was constructed using this framework. The prototype successfully

demonstrated a near, tangible interface and an isolated physical communication layer.

Examination of the simple prototype with respect to the research questions discussed in

Section 1.2 revealed several open issues with the initial P&U design. A review of current work

in the areas of service composition, service delivery and knowledge management identified the

need to enhance the initial P&U model’s composition and management of Repository contents

and context. Repository enhancements included the addition of data elements supporting a

simple service request process and a caching mechanism that collects P&U session information.

New APIs and internal functions required to manage the new Repository data elements were

designed and implemented. These additions addressed Research Question 1.2 by defining

elements of a P&U service domain that assisted with the identification of opportunistic

situations. To further study P&U interactions noted in Research Question 1.1, the isolated

communication layer of the initial architecture was extended to support different Pebble classes.

Pebble class support required a re-design of the P&U Comm layer in the initial framework. The

layer, renamed as the P&U Transport layer, is responsible for the Pebble replication process

described in Section 4.3.2.2.2.

Three Pebble classes were characterized in Section 2.2.1, a Read-Only Pebble, a

Read/Write Pebble, and a Smart Pebble. Introduction of the Smart Pebble expanded the P&U

framework as discussed in Section 5.5. The addition of a Pebble Controller provided increased

capabilities including computation, active communication and Repository management. A

realization during the course of this work is that, while all Pebble classes enable the goal of near,

 142

situated, tangible interaction, the configuration and structure of the different Pebble classes

defines the specific capabilities of the P&U system with which they are used.

Section 5.2 describes the validation process for the P&U framework. Prototypes of P&U

systems interacting with Pebble instances of the three Pebble classes were built using the

framework. The prototypes demonstrate system behaviors that address the research questions.

Sections 5.3.3, 5.4.3 and 5.5.3 analyze the performance of the three prototypes. Results are

presented in Section 5.6.

6.2 Research Questions and Answers

The following sections apply the observations and findings obtained from the design,

implementation and analysis of the P&U prototypes described in Chapter 5 to the research

questions presented in Section 1.2. Each research question is restated followed by discussion.

6.2.1 Research Question 1

How would properties and characteristics of the P&U architecture advance the

design and deployment of IoT and opportunistic computing implementations?

As discussed below in Section 6.2.1.1, the P&U framework provides a stable and flexible

communication connection supporting near, situated, tangible interactions.

As discussed in Section 6.2.1.2, abstractions and contextual elements of the P&U

Repositories define a relevant service domain for parties participating in a P&U-based

opportunistic computing session.

As discussed in Section 6.2.1.3, the P&U framework design demonstrates cyber foraging

strategies.

 143

This P&U framework represents an instance of the components and connectors of the

P&U architecture. The Interaction Framework defines a standard communication mechanism

using extendable wrapper code modules to link Pebbles and Urns. Repositories in the Common

Framework layer contain well-defined contextual data structures. The Application Framework

uses an API to access and manipulate Repository data elements with specific operations designed

to identify opportunistic situations. These P&U features contribute to the definition of a P&U

design pattern, discussed in Section 2.2.4. Functioning as a common vocabulary used by

software developers to build P&U systems, the P&U framework can serve as a design pattern to

advance the design and deployment of IoT and opportunistic computing implementations.

6.2.1.1 Research Question 1.1

What interoperability and interaction features and characteristics of the P&U

architecture provide a stable and flexible communication connection supporting

near, situated, tangible interaction between devices participating in the

application domain of opportunistic computing?

The near, situated, tangible aspects of the interaction between the Pebble and the Urn are

defining characteristic of the P&U system. These characteristics are enforced by the P&U

Interaction Framework described in Section 4.3.2.1 and its use of the physical mobile interaction

(PMI) technologies described in Section 2.3 and 3.1.3.

The P&U framework design based on the layered architecture discussed in Sections 4.3.2

and 4.3.2.1 supports a flexible communication connection by means of interchangeable

communication wrappers.

Testing of the P&U prototypes described in Section 5.6 demonstrated stability of the

P&U communication connection. There were no failures of P&U communication connections

during execution of the three prototypes. The timing of data transfer activities of a P&U session

contribute to communication connection stability. There are two periods of communication

activity during a P&U session. The first is the transfer of the Pebble Repository to the Urn at the

 144

start of the P&U session. The second is the transfer of the Pebble Repository back to the Pebble

from the Urn. No communication occurs between the Pebble and the Urn at other times during

the P&U session.

6.2.1.2 Research Question 1.2

Within the P&U architecture, what protocols, rule sets, algorithms, abstractions,

and context management identify a relevant service domain for parties

participating in a P&U-based opportunistic computing session?

The following abstractions and contextual elements define a relevant service domain for

parties participating in a P&U-based opportunistic computing session.

Remnants are the “digital footprints” and “information scraps,” described in Section

3.2.3, of a P&U system. Remnant traversal, discussed in Section 4.3.2.3, provides a view of past

Pebble and Urn interactions stamped with user, time and location information. This information

can be used to generate opportunistic situations as described in Section 5.7.4. Performing

analysis of Remnant data in a P&U system could assist areas like social behavior research and

marketing and sales planning.

User profiles and place preferences are used by the P&U system to provide

individualized services. Profile evaluation is described in Section 4.3.2.3.

Precepts represent Pebble service requests and Urn provided services. Precept matching

is discussed in Section 4.3.2.3.

Urn Message Relay described in Section 4.3.2.3 is a mechanism that transports messages

residing on Pebbles from one Urn to another Urn. Messages could serve as an event trigger

activating a particular service on the user’s behalf.

As described in Section 5.7.4, these contextual data elements and associated operations

can be combined programmatically to identify place-specific opportunistic situations.

 145

6.2.1.3 Research Question 1.3

How can P&U designs utilize cyber foraging strategies such as power

management and cloud services?

 As discussed in Section 3.4, cyber foraging is the opportunistic use of nearby computing

resources by small mobile devices. Mobile devices can achieve faster compute performance,

access larger datastores, and conserve power by offloading tasks to more capable, nearby

surrogate computers.

Cyber foraging is opportunistic in that mobile devices take advantage of each other’s

resources during random encounters. Pebble and Urn encounters are less random given the

Urn’s fixed location associated with the place it represents, and the Pebble owner’s sense of

purpose in visiting that place. Nevertheless, P&U design utilizes cyber foraging strategies.

As described in Section 5.7.3, two of the three Pebble class instances, the Read-Only

Pebble and Read/Write Pebble, do not perform computation, active communication or user

feedback activities. They do not require power. These Pebbles demonstrate a passive interaction

role with the Urn assuming the cyber foraging responsibility of offloading Pebble information by

means of the Pebble Repository replication process described in Section 4.3.2.2.2. The Urn

performs computation on the offloaded Pebble information and provides user feedback through

the Urn UI. Like the cloudlet described in Section 3.4, the Urn represents the surrogate

computer in the P&U session.

Both the cloudlet infrastructure and the three-tier cyber foraging system described in

Section 3.4 facilitate cloud access by means of an intermediary device. The P&U design

presented in Sections 4.2.1 and 5.1 supports this cyber foraging concept with the Urn serving as

the intermediary device. P&U cloud access is a function of the Urn Repository. This

functionality is an area for potential future work.

 146

6.2.2 Research Question 2

What innovative, or problematic, features are revealed through the design and

implementation of a P&U instance and, for problematic features, can the problem

areas be addressed?

Section 5.7.4 identified the following innovative features revealed through the design and

implementation of the P&U prototypes.

1. The P&U framework uses a layered structure that displays a “thin waist” when used in

construction of Internet of Things and opportunistic computing systems. Sections 2.2.4

and 4.1.1 describe the “thin waist” or hourglass-shaped characteristic of architectures

containing layered protocols. This “thin waist” allows the Pebble and Urn application

functionality and the communication functionality to be decoupled, thus simplifying

system design and implementation.

2. The use of the Python language as a development tool aligned well with the requirements

of P&U framework and prototype implementations.

Python is an interpreted, object-oriented, high-level programming language [75]. Python

is well-suited to rapid application development given its high-level built-in data

structures, dynamic typing and dynamic binding. Supporting modularity and code reuse,

Python serves as a “glue” language used to connect existing components.

Initial P&U research identified tuplespaces as the Pebble and Urn Repository datastore.

Decisions on tuplespace implementations, language interfaces, and in some cases cost

made a tuplespace selection difficult. Python’s dictionary data structure provides

tuplespace functionality, including associative memories indexed by immutable-type

keys. Core Repository elements and data operators are built using Python’s dictionary

data structure.

 147

Python also provided a convenient mechanism for profiling for performance evaluation.

This allows system implementers using the P&U framework to identify and understand

bottlenecks and other performance issues.

3. Repository data elements and associated operations can be combined programmatically to

identify place-specific opportunistic situations. The following P&U code segment

awards a discount coupon to the Pebble owner on an item identified as a specific personal

preference if they have visited the store over ten times.

Tom presents his Pebble to the store Urn as he enters his favorite clothing

store. The store Urn presents him with a 15% discount coupon on all

shoes in the store that are his size.

if count(Get_Remnant('pid')) >= 10:

 if preference_matchs = PRO_Comp() >= 1:

 item_preference_match = pick(preference_matchs)

 /* award discount on matched preference item */

As discussed in Section 5.7.5, this research identified the following problematic features

that were revealed through the design and implementation of the P&U prototypes.

1. The P&U session characteristic of the Urn waiting for Pebbles using a “block on wait”

strategy is inefficient. A more efficient implementation would need to handle the various

P&U interface technologies. One approach is the modification of wrapper code to

support event driven Pebble and Urn initialization.

2. P&U sessions do not support multiple Pebbles simultaneously. A session feature, such as

place adaptation to multiple Pebbles and their owners, is not presently implemented. A

framework modification to resolve this issue requires the addition of a Pebble registry

sub-system that would track active Pebbles, a Pebble coordination data element in the

 148

Urn Repository, and a common framework function to map and interpret multiple user

profiles.

3. While the use of Python is generally supportive of the implementation of Pebbles and

Urns, there are caveats.

Python’s sophisticated data structures may make porting of the P&U framework to other

languages and development environments difficult. Framework re-design may be

required if different development and deployment environments are used. The degree to

which P&U framework design was effectively isolated from its implementation using

Python is unknown at this time.

4. As described in Section 5.7.1, the prototypes focus on P&U support of the different

Pebble classes. At this time, research has not extended Urn capabilities beyond the

standalone Urns represented in the scenarios and prototypes. This area of research can be

addressed as future work.

Earlier framework designs of the Comm and Transport layers did not provide an isolated

physical communication layer. Implementation of new Pebble interfaces required code

modifications to higher layers in the P&U architecture. This issue has been resolved with the

addition of the Pebble Repository replication step in the evolved P&U design, as presented in

Section 4.3.2.2.2.

6.3 The Meaning of it All

A persistent question is “What will be the “killer app” of pervasive computing?” A clear

answer is not currently available. But, this section provides some thoughts. As presented in

Section 1.1, current pervasive computing research acknowledges there is no clear understanding

of how the Internet of Things will make our lives easier and more productive. Existing within

the IoT, opportunistic computing is considered one of the next major challenges of pervasive

computing.

 149

It is asserted here that continued research in the areas of IoT and OC will lead to the

discovery of pervasive computing’s “killer app.” Based on the discussions of the research

questions in Section 6.2, a summary of the contributions of this work follows.

6.3.1 P&U Framework

The implementation and testing of the P&U prototypes described in Section 5.2 validate

the P&U framework presented in Section 4.3.2. The P&U framework validates the P&U

architectural model discussed in Section 2.2.4. Aspects of the P&U framework contribute to the

wider audience of pervasive and ubiquitous computing applications.

As discussed in Section 1.1, researchers acknowledge the need to develop more general

infrastructures to facilitate the rapid development and deployment of pervasive computing

applications [5, 76]. Although successful IoT research prototypes have been developed, these

prototypes are constructed using application- or system-specific “top-to-bottom” software and,

often, hardware components [77-79]. It is believe that the need for more general design

approaches and infrastructure will be even more important as IoT progresses from research

prototypes to deployed production systems.

The following P&U framework characteristics address this need for a more general

pervasive computing infrastructure:

 A layered systems architecture with a thin waist”

The term “thin waist”, referenced in Sections 2.2.4, 4.1.1, 5.7.4 and 6.2.2, describes the

particular layer of a layered systems architecture that provides commonality connecting

the more complex upper application and lower communication layers. The Common

Framework layer represents the P&U framework’s “thin waist”. This hourglass

architecture is what makes the P&U design elegant and powerful. It allows lower and

upper layer technologies to innovate in a largely independent manner without

unnecessary constraints. Different pervasive computing applications can be built using

the P&U framework without changing the framework’s “thin waist.”

 150

 Isolated physical layer

The Interaction Framework layer of the P&U framework defines a standard

communication mechanism using interchangeable and extendable wrapper code modules

to link Pebbles and Urns. This design feature allows the changing of a P&U system’s

Pebble class interface by switching only the communication wrapper modules on the Urn.

A pervasive computing application built on the P&U framework need only switch

wrappers to interact with different devices.

 Design pattern

As discussed in Section 2.2.4, a design pattern is a software engineering construct that

provides a common vocabulary used by software developers to explain a system’s design

and architecture. Insights gained from the design of the P&U architecture and the

implementation and application of the P&U framework, as discussed in Section 6.2.1,

define a new design pattern for describing, implementing and deploying Internet of

Things and opportunistic computing systems.

6.3.2 Simple IoT Interface

As stated in Section 3.1, the analysis of P&U from a human-computer interface

perspective is beyond the scope of this research and dissertation. With this understanding, one

contribution of this work is the insight gained from the design and implementation of the P&U

framework’s tangible interface. The prototype Pebbles and interfaces, as described in Sections

5.3.4 and 5.4.4, are simple and easy to use while providing the necessary functionality for

situated interactions in P&U sessions. The design of the P&U Interaction Framework supports

interfacing with different Pebble classes. New Pebble class interfaces can be implemented and

tested using the wrapper code scheme described in Section 4.3.2.1.

6.3.3 Opportunistic Engine

Sections 4.3.2.3 and 6.2.1.2 discuss the contextual data elements of the P&U

Repositories. Common Framework APIs defined in Section 4.3.2.3.2 manage these data

 151

elements. As described in Section 5.7.4, these contextual data elements and associated

operations can be combined programmatically to identify place-specific opportunistic situations.

The work in this area of P&U contributes to better understanding designs of opportunistic

engines in OC research.

6.4 Future Research

This section presents recommendations and directions for areas of future research.

 Simultaneous support of multiple, different Pebbles by an Urn would allow it to

adjust its place environment based on combined user profiles and preferences.

 In a P&U session, the Urn blocks and waits for Pebbles. More efficient P&U

session initialization strategies should be investigated.

 The addition of Urn Repository access to external services would extend P&U’s

use of cyber foraging strategies. Urn access to cloud resources would extend Urn

services.

 Common Precept Name is an example of a standard naming convention linking

Pebble Precept requests to Urn services. Additional formal data specifications

and metadata for Repository objects like user profile and place preference data

would result in more powerful matching capabilities.

 A hybrid Pebble is capable of performing more sophisticated actions while still

maintaining a minimal resource configuration. Multiple interfaces on a single

Pebble form factor can associate separate external services by combining separate

pieces of information. P&U support of hybrid Pebbles should be investigated.

 152

 Certain P&U interactions involve the use and transfer of identifying information

describing the Pebble owner. Privacy and security features of P&U should be

explored and implemented to ensure Pebble owner confidentiality.

 153

References

[1] C. R. Schoenberger. (2002, March 18) The Internet of Things. Forbes Magazine.

[2] N. Gershenfeld, When Things Start to Think: Henry Holt and Company, 1999.

[3] D. Uckelmann, M. Harrison, and F. Michahelles, Architecting the Internet of Things:
Springer, 2011.

[4] P. Lucas, "The Trillion-Node Network," MTR-00001, 1999.

[5] F. Mattern and C. Floerkemeier, "From the Internet of Computers to the Internet of
Things," in From Active Data Management to Event-Based Systems and More, S. Kai, P.
Ilia, and G. Pablo, Eds., ed: Springer-Verlag, 2010, pp. 242-259.

[6] M. Conti and M. Kumar, "Opportunities in Opportunistic Computing," Computer, vol.
43, pp. 42-50, 2010.

[7] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang, "The Case for
Cyber Foraging," presented at the Proceedings of the 10th workshop on ACM SIGOPS
European Workshop, Saint-Emilion, France, 2002.

[8] "relevant," in in Dictionary.com Unabridged,
http://dictionary.reference.com/browse/relevant. ed: Source Location: Random House,
Inc. Available: http://dictionary.reference.com. Accessed: March 04, 2012.

[9] D. Bohus and E. Horvitz, "Dialog in the Open World: Platform and Applications,"
presented at the Proceedings of the 2009 International Conference on Multimodal
Interfaces, Cambridge, Massachusetts, USA, 2009.

[10] "omphalos," in in Dictionary.com Unabridged,
http://dictionary.reference.com/browse/omphalos. ed: Source Location: Random House,
Inc. Available: http://dictionary.reference.com. Accessed: February 16, 2012.

[11] M. Weiser, R. Gold, and J. S. Brown, "The Origins of Ubiquitous Computing Research at
PARC in the Late 1980s," IBM Systems Journal, vol. 38, pp. 693-696, 1999.

[12] E. Larson, "Introduction to GumStix Computers," University of West Florida2006.

[13] E. Rukzio, G. Broll, and S. Wetzstein, "The Physical Mobile Interaction Framework
(PMIF)," Technical Report LMU-MI-2008-2, 2008.

 154

[14] V. Savikko, "Design Patterns in Python," in Proceedings of the 6th International Python
Conference, CNRI, 1997, pp. 63-68.

[15] Z. Cheng and D. Budgen, "What Do We Know about the Effectiveness of Software
Design Patterns?," Software Engineering, IEEE Transactions on, vol. 38, pp. 1213-1231,
2012.

[16] E. Agerbo and A. Cornils, "How to Preserve the Benefits of Design Patterns," presented
at the Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Vancouver, British Columbia,
Canada, 1998.

[17] S. Akhshabi and C. Dovrolis, "The Evolution of Layered Protocol Stacks Leads to an
Hourglass-Shaped Architecture," SIGCOMM Comput. Commun. Rev., vol. 41, pp. 206-
217, 2011.

[18] E. Rukzio, G. Broll, K. Leichtenstern, and A. Schmidt, "Mobile Interaction with the Real
World: an Evaluation and Comparison of Physical Mobile Interaction Techniques,"
presented at the Proceedings of the 2007 European Conference on Ambient Intelligence,
Darmstadt, Germany, 2007.

[19] R. Kazhamiakin, V. Kerhet, M. Paolucci, M. Pistore, and M. Wagner, "Discovery
Pervasive Services based on their Expected Use," presented at the 3rd International
SMR2 2009 Workshop on Service Matchmaking and Resource Retrieval in the Semantic
Web, Washington, DC, 2009.

[20] Y. Yamato, H. Ohnishi, and H. Sunaga, "Study of Service Processing Agent for Context-
Aware Service Coordination," in IEEE International Conference on Services Computing,
SCC '08, 2008, pp. 275-282.

[21] H. Ishii and B. Ullmer, "Tangible Bits: Towards Seamless Interfaces Between People,
Bits and Atoms," presented at the Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, Atlanta, Georgia, United States, 1997.

[22] O. Shaer, N. Leland, E. H. Calvillo-Gamez, and R. J. K. Jacob, "The TAC Paradigm:
Specifying Tangible User Interfaces," Personal Ubiquitous Comput., vol. 8, pp. 359-369,
2004.

[23] G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles, "Towards a Better
Understanding of Context and Context-Awareness," in Handheld and Ubiquitous
Computing. vol. 1707, H.-W. Gellersen, Ed., ed: Springer Berlin / Heidelberg, 1999, pp.
304-307.

 155

[24] M. McCullough, "On Typologies of Situated Interaction," Hum.-Comput. Interact., vol.
16, pp. 337-349, 2001.

[25] A. Schmidt, W. V. d. Velde, and G. Kortuem, "Situated Interaction in Ubiquitous
Computing," presented at the CHI '00 Extended Abstracts on Human Factors in
Computing Systems, The Hague, The Netherlands, 2000.

[26] V. Waller and R. B. Johnston, "Making Ubiquitous Computing Available," Commun.
ACM, vol. 52, pp. 127-130, October 2009.

[27] G. Broll, S. Siorpaes, E. Rukzio, M. Paolucci, J. Hamard, M. Wagner, and A. Schmidt,
"Supporting Mobile Service Usage through Physical Mobile Interaction," presented at the
Pervasive Computing and Communications, 2007. PerCom '07. Fifth Annual IEEE
International Conference on, 2007.

[28] P. Saint-Andre, K. Smith, and R. TronCon, XMPP: The Definitive Guide : Building Real-
Time Applications with Jabber Technologies: O'Reilly, 2009.

[29] J. Messeter, "Place-Specific Computing: A Place-centric Perspective for Digital
Designs," International Journal of Design, vol. 3, pp. 29-41, April 2009.

[30] D. Seamon, "A Lived Hermetic of People and Place: Phenomenology and Space Syntax,"
presented at the 6th International Space Syntax Symposium, Istanbul, Turkey, 2007.

[31] P. M. Todd and G. Gigerenzer, "Environments That Make Us Smart: Ecological
Rationality," Current Directions in Psychological Science, vol. 16, pp. 167-171, 2007.

[32] V. Kalnikaite, Y. Rogers, J. Bird, N. Villar, K. Bachour, S. Payne, P. M. Todd, J.
Schning, A. Krger, and S. Kreitmayer, "How to Nudge in Situ: Designing Lambent
Devices to Deliver Salient Information in Supermarkets," presented at the Proceedings of
the 13th International Conference on Ubiquitous computing, Beijing, China, 2011.

[33] M. Conti, S. Giordano, M. May, and A. Passarella, "From Opportunistic Networks to
Opportunistic Computing," IEEE Communications Magazine, vol. 48, pp. 126-139, Sept
2010.

[34] J. Peek. (2008, October 15) Filenames by Design, Part One. Linux Magazine. Available:
http://www.linux-mag.com/id/7158/

[35] M. Mamei, R. Quaglieri, and F. Zambonelli, "Making Tuple Spaces Physical with RFID
Tags," presented at the Proceedings of the 2006 ACM Symposium on Applied
Computing, Dijon, France, 2006.

 156

[36] S. Kolahdooz, S. Rahmani, and M. Sharifi, "Discovering Resources in Tuple-Based
Pervasive Systems using Resource-Aware Routing," presented at the IEEE International
Performance, Computing and Communications Conference, Austin, Texas, 2008.

[37] D. Balzarotti, P. Costa, and G. P. Picco, "The LighTS Tuple Space Framework and its
Customization for Context-Aware Applications," Web Intelli. and Agent Sys., vol. 5, pp.
215-231, April 2007.

[38] A. Nori, "Mobile and Embedded Databases," presented at the Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, Beijing, China, 2007.

[39] P. Bonnet, J. Gehrke, and P. Seshadri, "Towards Sensor Database Systems," presented at
the Proceedings of the Second International Conference on Mobile Data Management,
2001.

[40] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, "The Many Faces of
Publish/Subscribe," ACM Comput. Surv., vol. 35, pp. 114-131, 2003.

[41] D. Locke, "MQ Telemetry Transport (MQTT) V3.1 Protocol Specification," IBM
Corporation, developWorksAugust 2010.

[42] MQ Telemetry Transport. Available: http://mqtt.org/

[43] U. Hunkeler, T. Hong Linh, and A. Stanford-Clark, "MQTT-S - A Publish/Subscribe
Protocol for Wireless Sensor Networks," presented at the 3rd International Conference on
Communication Systems Software and Middleware and Workshops, 2008. COMSWARE
2008., 2008.

[44] J. Krumm, N. Davies, and C. Narayanaswami, "User-Generated Content," IEEE
Pervasive Computing, vol. 7, pp. 10-11, 2008.

[45] F. Girardin, F. Calabrese, F. D. Fiore, C. Ratti, and J. Blat, "Digital Footprinting:
Uncovering Tourists with User-Generated Content," IEEE Pervasive Computing, vol. 7,
pp. 36-43, October 2008.

[46] M. Bernstein, M. V. Kleek, D. Karger, and M. C. Schraefel, "Information Scraps: How
and Why Information Eludes Our Personal Information Management Tools," ACM
Trans. Inf. Syst., vol. 26, pp. 1-46, Sept 2008.

[47] M. Mamei and F. Zambonelli, "Pervasive Pheromone-Based Interaction with RFID
Tags," ACM Trans. Auton. Adapt. Syst., vol. 2, p. 4, 2007.

 157

[48] F. Zhu, M. W. Mutka, and L. M. Ni, "Service Discovery in Pervasive Computing
Environments," IEEE Pervasive Computing, vol. 4, pp. 81-90, Oct-Dec 2005.

[49] F. Zhu, W. Zhu, M. W. Mutka, and L. M. Ni, "Service Discovery Architecture and
Protocol Design for Pervasive Computing," in Advanced Design Approachers to
Emerging Software Systems: Principles, Methodologies and Tools, X. Liu and Y. Li,
Eds., ed: IGI Global, 2011, pp. 83-101.

[50] K. Rasch, F. Li, S. Sehic, R. Ayani, and S. Dustdar, "Context-Driven Personalized
Service Discovery in Pervasive Environments," World Wide Web, vol. 14, pp. 295-319,
July 2011.

[51] C. Doulkeridis, N. Loutas, and M. Vazirgiannis, "A System Architecture for Context-
Aware Service Discovery," Electron. Notes Theor. Comput. Sci., vol. 146, pp. 101-116,
January 2006.

[52] P. Patel and S. Chaudhary, "Context Aware Semantic Service Discovery," presented at
the Proceedings of the 2009 World Conference on Services - II, 2009.

[53] M. Weber, T. Roth-Berghofer, V. Hudlet, H. Maus, and A. Dengel, "Context-Aware
Service Discovery Using Case-Based Reasoning Methods," presented at the Proceedings
of the 32nd Annual German Conference on Advances in Artificial Intelligence,
Paderborn, Germany, 2009.

[54] L. Yu, S. Luo, and A. Glenstrup, "Rough Sets Based Context-Aware Service Discovery
Framework," presented at the Proceedings of the 2010 International Conference on
Service Sciences, 2010.

[55] L. Youseff, M. Butrico, and D. Da Silva, "Toward a Unified Ontology of Cloud
Computing," in Grid Computing Environments Workshop, 2008. GCE '08, 2008, pp. 1-
10.

[56] M. Hofer and G. Howanitz, "The Client Side of Cloud Computing," ed: University of
Strausburg, 2009.

[57] M. D. Kristensen, M. B. Kjaergaard, T. Toftkjaer, S. Bhattacharya, and P. Nurmi,
"Improving Pervasive Positioning Through Three-Tier Cyber Foraging," presented at the
2011 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2011.

[58] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, "The Case for VM-Based
Cloudlets in Mobile Computing," IEEE Pervasive Computing, vol. 8, pp. 14-23, 2009.

 158

[59] J. Flinn, P. SoYoung, and M. Satyanarayanan, "Balancing Performance, Energy, and
Quality in Pervasive Computing," presented at the 22nd International Conference on
Distributed Computing Systems, 2002. Proceedings., 2002.

[60] T. Abdelzaher, C. Qing, R. Ganti, D. Henriksson, M. Khan, H. Jin, H. Chengdu, P.
Jayachandran, L. Hieu Khae, L. Liqian, and T. Yu-En, "Towards a Layered Architecture
for Object-Based Execution in Wide-Area Deeply Embedded Computing," in Object and
Component-Oriented Real-Time Distributed Computing, 2007. ISORC '07. 10th IEEE
International Symposium on, 2007, pp. 133-140.

[61] J. Akehurst, I. Koprinska, K. Yacef, L. Pizzato, J. Kay, and T. Rej, "Explicit and Implicit
User Preferences in Online Dating," presented at the Proceedings of the 15th
International Conference on New Frontiers in Applied Data Mining, Shenzhen, China,
2012.

[62] J. Postel, "Transmission Control Protocol," 1981.

[63] S. Spiekermann, User Control in Ubiquitous Computing: Design Alternatives and User
Acceptance: Shaker, 2007.

[64] (November 19, 2012). Python 2.5.2 Release. Available:
http://http://www.python.org/download/releases/2.5.2/

[65] (November 19, 2012). lubuntu. Available: http://http://lubuntu.net/

[66] (November 19, 2012). wxPython. Available: http://http://www.wxpython.org/

[67] (November 19, 2012). ZBar Bar Code Reader. Available:
http://http://zbar.sourceforge.net/

[68] A. Haerter. (2010). QR Code Generator goQR.me. Available: http://goqr.me/

[69] H. Kato and K. T. Tan, "Pervasive 2D Barcodes for Camera Phone Applications," IEEE
Pervasive Computing, vol. 6, pp. 76-85, 2007.

[70] (November 19, 2012). The Python Profilers. Available:
http://http://docs.python.org/2/library/profile.html

[71] (November 19, 2012). ubuntu manuals - udev. Available:
http://manpages.ubuntu.com/manpages/oneiric/man7/udev.7.html

[72] (November 19, 2012). PyBluez. Available: http://code.google.com/p/pybluez/

 159

[73] S. B. Handurukande, S. Ganguly, and S. Bhatnagar, "Fast Bluetooth Service Discovery
for Mobile Peer-to-Peer Applications," ed, 2006.

[74] W. Ryan, J. Derek, C. Trevor, and K. D. Charles, "Rapid Heterogeneous Connection
Establishment: Accelerating Bluetooth Inquiry Using IrDA," in Proceedings of the Third
Annual IEEE Wireless Communications and Networking Conference (WCNC'02), 2002.

[75] (November 19, 2012). python. Available: http://www.python.org/

[76] P. Wozniak and A. Romanowski, "Everyday Problems vs. UbiComp: A Case Study,"
presented at the Proceedings of the 2nd International Conference on Web Intelligence,
Mining and Semantics, Craiova, Romania, 2012.

[77] R. Caceres and A. Friday, "Ubicomp Systems at 20: Progress, Opportunities, and
Challenges," Pervasive Computing, IEEE, vol. 11, pp. 14-21, 2012.

[78] G. D. Abowd, "What Next, Ubicomp? Celebrating an Intellectual Disappearing Act,"
2012.

[79] B. S. Chouhan and C. K. Chhatlani, "A Study of Ubiquitous Computing Applications &
Its Framework," International Journal of Computer Applications & Natural Sciences, p.
53.

 160

Appendix

Appendix A: Initial P&U Design Elements

This appendix presents more detailed specification of portions of the initial P&U design

presented in Section 4.2.2.

A.1 Data Structures
PM_Structure

Description: Data structure containing parsed Pebble Message elements

Data Elements
Str PID
Str CID
Str UID
Str Svc_Req
Int Msg_Hash

A.2 P&U Functions
URA_Pebble(PM_Structure)

Description: Requests Pebble via UPCA API call–passes PM_Structure

Parameters
Output Str PM_Structure

Return Value: Null

UR_Process_Pebble(Pebble_Message)

Description: Deconstructs Pebble_Message, loads PM_Structure, log file

Parameters
Input Str Pebble_Message
Output Str PM_Struct

Return Value: Null

 161

UPCA_Get_Pebble(Pebble_Message)

Description: Gets Pebble_Message via wrapper code, performs hash check

Parameters
Output Str Pebble_Message

Return Value: Null

UCLA_Wrapper(Pebble_Message)

Description: Invokes one of the physical communication link routines

Parameters
Output Str Pebble_Message

Return Value: Null

A.3 P&U Tables

Pebble of Interest
Name: POI Location: Urn Repository

Column Name Type

PID Str

Pebble Log
Name: Plog Location: Urn Repository

Column Name Type

PID Str

CID Str

UID Str

Svc_Req Str

Msg_Hash Int

TimeDate Str

 162

A.4 P&U Message

Pebble Message
Message_Body Message_Hash

PID CID UID Svc_Req

Svc_Name Svc_List

Pebble Message

Position Length Name Notes

0-71 72 Message_Body Body of Pebble Message

72-79 8 Message_Hash Hash of Message_Body

Message Body

Position Length Name Notes

0-3 4 PID Pebble Identifier

4-7 4 CID Pebble Class Identifier

8-11 4 UID Pebble Owner Identifier

12-71 60 Svc_Req Service Request to Urn

Svc Req

Position Length Name Notes

12-19 8 Svc_Name Requested Service Name

20-71 52 Svc_List Service Request Data

 163

Appendix B: P&U Framework Layers

B.1 Interaction Framework
WRAP_Comm(urn_interface)

Description: Provides Pebble Repository access to the Urn Common Framework by
means of wrapper functions

Parameters Input Str urn_interface
 “QR”
 “USB”
 “BT”

Return Value: object returned from called wrapper code

Get_QR()

Description: Transfers text from Read-Only QR Pebble

Parameters

Return Value: decoded QR text string

Link_USB()

Description: Links the Read/Write Pebble Repository to the Urn Repository

Parameters

Return Value: return code from filesystem mount operation
 (0=successful, -1=unsuccessful)

 164

Transfer_BT()

Description: Transfers mirrored Smart Pebble Repository to and from the Urn
Repository

Parameters

Return Value: file transfer status (0=successful, -1=unsuccessful)

B.2 Common Framework

B.2.1 Transport Functions

MIRROR_Load_PR(urn_interface)

Description: Loads a mirrored Pebble Repository into the Urn Repository at the
beginning of the P&U session

Parameters Input str urn_interface
 “QR”
 “USB”
 “BT”

Return Value: Null

MIRROR_Store_PR(urn_interface)

Description: Sends mirrored image back to Pebble at the end of the P&U session

Parameters Input str urn_interface
 “QR”
 “USB”
 “BT”

Return Value: Null

 165

MIRROR_Send_PR()

Description: Sends mirrored Pebble Repository to the Urn at the beginning of the
P&U session

Parameters

Return Value: Null

MIRROR_Receive_PR()

Description: Stores mirrored image back onto the Pebble Repository at the end of the
P&U session

Parameters

Return Value: file transfer status (0=successful, -1=unsuccessful)

B.3 Application Framework

B.3.1 Common Framework APIs

PRE_Precept()

Description: Executes all matching Precepts

Parameters

Return Value: Null

 166

PRO_Comp()

Description: Performs comparison of user profiles and place preferences

Parameters

Return Value: Null

PRO_Update()

Description: Updates user profile in Pebble Repository

Parameters

Return Value: Null

REM_Get_Remnant(target)

Description: Retrieves Urn and Pebble remnants

Parameters Input Str target
 “pebble_most_recent”
 “pebble_list”
 “urn_most_recent”
 “urn_list”

Return Value: “most recent” request returns Remnant in dictionary structure
 “list” request returns list of Remnant identifiers

 167

PUU_UIM(item)

Description: Retrieves item from Urn UIM structure

Parameters Input Str item
 “uid”

Return Value: requested item as str data type

PUU_PIM(item)

Description: Retrieves item from Pebble PIM structure

Parameters
 “pid”
 “cid”
 “userid”

Return Value: requested item as str data type

SP_Select_Role()

Description: Performs role selection function on Smart Pebble

Parameters

Return Value: Null

UI_Text_Out(text)

Description: Displays text on Smart Pebble or Urn display

Parameters Input Str text

Return Value: Null

 168

Appendix C: P&U Repository Data Dictionary

C.1 Pebble Repository

 169

C.2 Pebble Directory Structure

C.3 Pebble Repository Data Elements

PIM

Pebble Initialization Message

Item Type Description

pid str Pebble id

userid str Pebble owner id

 170

Pebble Precepts

Pebble service requests

Item Type Description

CPN str Common Precept Name

uid str Urn id

data str Pebble data for Urn Precept

 171

Urn Remnants

A representation of an Urn’s interaction with a particular Pebble

Item Type Description

ur_lk str Instance name linking to Urn remnant equivalent

td str Remnant creation time/date stamp

umr str Userid of Pebble owner

source_urn str Urn generating the UMR

target_urn str Recipient Urn of the UMR

umr_message str UMR message

umr_created Str UMR creation time/date stamp

 172

C.4 Urn Repository

 173

C.5 Urn Directory Structure

 174

C.6 Urn Repository Data Elements

UIM

Urn Initialization Message

Item Type Description

interface str Instance name linking to Pebble remnant equivalent

uid str Remnant creation time/date stamp

 175

Urn Precepts

Urn services

Item Type Description

CPN str Common Precept Name

upc str Urn Precept executable

upcd str Urn Precept data

 176

Pebble Remnants

A representation of a Pebble’s interaction with a particular Urn.

Item Type Description

pr_lk str Instance name linking to Pebble remnant equivalent

td str Remnant creation time/date stamp

userid str Pebble owner’s id

 177

Appendix D: P&U Application Developer Notes

D.1 Developer Tools

 The P&U application developer uses these tools to create and maintain Pebbles and Urns.

Function Description
Create_UIM() Create Urn initialization message
Print_UIM() Print Urn initialization message
Create_PIM() Create Pebble initialization message
Print_PIM() Print Pebble initialization message
Create_Urn_Precept() Create Urn precept
Print_Urn_Precept() Print Urn precept
Create_Pebble_Precept() Create Pebble precept
Print_Pebble_Precept() Print Pebble precept
Create_Place_Profile() Create place profile
Print_Place_Profile() Print place profile
Create_User_Profile() Create user profile
Print_User_Profile() Print user profile
Print_Pebble_Remnant() Print Pebble remnant
Print_Urn_Remnant() Print Urn remnant
Change_Urn_Interface() Changes the Urn’s physical interface

D.2 How to Create a Pebble

The Read-Only Pebble used in the prototypes discussed in Chapter 5 is based on a QR

code. Text following the Pebble Repository format in Section 5.3.2 is encoded into a QR code

using the procedure discussed in Section 5.1.1.

A Read/Write Pebble is primarily a Pebble Repository. The repository is created in the

following steps. This example assumes a USB Pebble mounted on a system running the Unix

operating system.

1. Create directory /Pebble/Repository

2. Make the Pebble’s PIM with the Create_PIM command

 178

Create_PIM ‘P0005’ ‘tswift’ ‘USB’

3. Make the Precepts file. Repeat for multiple CPN’s.

Create_Pebble_Precept ‘GS03’ ‘U0003’

4. Create user profile.

Create_User_Profile ‘tswift’ ‘Tom Swift’ ‘222-33-4444’

The developer tools run directly on the Smart Pebble. Follow the same steps to create the

Smart Pebble Repository.

D.3 How to Create an Urn

The Urn Repository is created following the same steps as those for Pebble Repository

creation described in Appendix D.2. Urn applications are developed using the API’s presented

in Table 16 and Appendix B.3.1. This example Urn application performs a check for an Urn

message, processes Precepts, updates Remnants on the Pebble and the Urn. At completion of

session, the Urn waits for another Pebble.

 179

 180

Appendix E: Glossary

Architecture – fundamental organization of a system embodied in its components, their
relationship to each other and the environment.

Common Precept Name (CPN) – a standard naming convention that associates a Pebble Precept
request with an Urn Precept service.

Component – an architectural entity that encapsulates a subset of the systems functionality
and/or data, restricts access to that subset via an explicitly defined interface and has
explicitly defined dependencies on its required execution context.

Connector – an architectural element tasked with effecting and regulating interactions among
components.

Configuration – a set of specific associations between the components and connectors of a
software system’s architecture.

Framework – a bridge between an architectural style and a set of implementation techniques.

Opportunistic engine – a concept component of opportunistic computing that is capable of
identifying opportunistic situations. P&U demonstrates a rudimentary version of this
concept with Precept processing and Remnant traversal.

Orchestration – the coordination and deployment of services considering the contextual
framework within which a service request is made.

Pattern – a named collection of architectural design decisions that are applicable to a recurring
design problem, parameterized to account for different software development contexts in
which that problem appears.

Publish/subscribe – a messaging system in which messages are exchanged without using targeted
recipients. Messages containing references of specific interests are published and
subscribers obtain messages by expressing an interest.

Service Composition – the process of constructing a composite service from atomic services in
order to achieve a specific task.

SOA – Service-Oriented Architecture – software engineering design principles emphasizing the
development of software as interoperable services.

 181

Style – a named collection of architectural design decisions that are applicable in a given
development context, constrain architectural design decisions that are specific to a
particular system within that context and elicit beneficial qualities in each resulting
system.

Thin-waist – The Internet architecture is a layered architecture with specific applications at the
top and physical layer protocols at the bottom. The middle layer (network layer) contains
only one protocol (IP) thus representing a “thin-waist” architecture. IP in the “thin waist”
of the Internet protocol provides the commonality connecting the more complex upper
and lower layers.

Working Precept (WP) – working storage on the Urn where the executable command string is
built during Precept processing.

