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A total maximum daily load (TMDL) is required for water bodies in the U.S. that do not meet applicable
water quality standards. Computational watershed models are often used to develop TMDL pollutant
reduction scenarios. Uncertainty is inherent in the modeling process. An explicit uncertainty analysis
would improve model performance and result in more robust decision making when comparing alterna-
tive pollutant reduction scenarios. This paper presents a risk-based framework for evaluating alternative
pollutant allocation scenarios considering reliability in achieving water quality goals. We demonstrate a
generic routine for the application of Generalized Likelihood Uncertainty Estimation (GLUE) to
Hydrological Simulation Program-FORTRAN (HSPF) using existing softwares to evaluate two bacteria
reduction scenarios from a recently developed TMDL that addressed a bacterial impairment in a mixed
land use watershed in Virginia, U.S. Our probabilistic analysis showed that for reliability levels <25%,
the recommended TMDL bacterial load reduction scenario had the same exceedance rate as the full
reduction scenario (fully reducing all bacterial loads except wildlife), while for reliability levels between
25% and 50%, the exceedance rates for the two pollutant reduction scenarios were similar, with the TMDL
recommended scenario violating the water quality criteria only slightly more often. The full reduction
scenario performed better in higher reliability levels, although it could not meet the water quality crite-
ria. Our results indicated that, in this case, achieving water quality goals with very high reliability was not
possible, even with extreme levels of pollutant reduction. The risk-based framework presented here illus-
trates a method to propagate watershed model uncertainty and assess performance of alternative pollu-
tant reduction scenarios using existing tools, thereby enabling decision makers to understand the
reliability of a given scenario in achieving water quality goals.
� 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Section 303(d) of the Clean Water Act (U.S. Congress, 1972)
mandates that a total maximum daily load (TMDL) be developed
for water bodies in the U.S. that do not meet applicable water qual-
ity standards. A TMDL specifies the amount of a particular pollu-
tant that the water body can assimilate without violating
applicable water quality standards. Computational models are
widely used in TMDL development to simulate fate and transport
of pollutants and to evaluate existing watershed conditions and
proposed pollutant reduction scenarios (Borah et al., 2019). These
models are subject to many sources of uncertainty, including the
accuracy and spatiotemporal resolution of input datasets (e.g., cli-
matic, hydrologic, geologic, geomorphologic and pedologic), the
model structure and parameters, the model calibration and valida-
tion strategy (e.g., optimization method) and dataset (e.g., stream-
flow and water quality), the spatial resolution associated with the
watershed delineation and the choice of fit measures
(Ahmadisharaf et al., 2019; Shirmohammadi et al., 2006). A margin
of safety (MOS) is mandatory in TMDLs to reflect these uncertain-
ties. In practice, the MOS estimation is included by either making
conservative modeling-related assumptions (implicit) or by explic-
itly adding a subjectively determined fraction of the estimated
point and nonpoint source loads to the TMDL (ASCE-EWRI TMDL
Analysis and Modeling Task Committee, 2017; Dilks and
Freedman, 2004; Reckhow, 2003; Shirmohammadi et al., 2006).

While some studies have sought to apply uncertainty analysis
techniques to watershed-scale water quality models used to simu-
late nutrient and sediment loads, other pollutants like bacterial
pathogens have received limited attention. These include the
application of: first-order error analysis by Paul et al. (2004);
Monte Carlo simulation, Latin Hypercube Sampling (LHS) (McKay
et al., 1979) and Generalized Likelihood Uncertainty Estimation
(GLUE) (Beven and Binley, 1992) by Shirmohammadi et al.
(2006); Monte Carlo simulation by Wu et al. (2006) and Mitsova-
Boneva and Wang (2007); GLUE by Jia and Culver (2008); stochas-
tic analysis of model residuals by Chin (2009); Markov chain
Monte Carlo (MCMC) (Kass et al., 1998) and GLUE by Mishra
et al. (2018); and Monte Carlo simulation and two-phase Monte
Carlo simulation by Mishra et al. (2019). The reader is referred to
Ahmadisharaf et al. (2019) for a detailed review on uncertainty
analysis in watershed modeling. Despite these limited efforts,
uncertainty of watershed-scale bacteria modeling is not routinely
performed to compare alternative pollutant reduction scenarios.

While uncertainty analysis has the potential to allow decision
makers to make informed decisions about the relative risk/reliabil-
ity of alternate pollutant reduction scenarios (Jia and Culver, 2008),
in practice, clearly communicating the results of an uncertainty
analysis to stakeholders is challenging (Stow et al., 2007).
Ocampo-Duque et al. (2013) and Xie and Huang (2014) empha-
sized the need for more efficient methods to communicate the
uncertainty associated with water quality modeling to decision
makers. Simple transparent approaches, which could be effectively
communicated to the public, need to be developed.

The primary objective of this research is to present a risk-based
framework that provides the reliability of a given pollutant reduc-
tion scenario being able to achieve a given water quality criterion.
We seek to answer the following questions: What is the risk that a
pollutant allocation scenario achieves water quality goals? and
How much will the risk of not achieving water quality goals be
reduced with additional reductions in pollutant loads? A further
objective is to present a generic framework for application of a
Bayesian method (GLUE) for uncertainty analysis of a widely used
watershed model, Hydrological Simulation Program-FORTRAN
(HSPF) (Bicknell et al., 2005), when used for modeling E. coli (EC)
fate and transport by leveraging the capabilities of an existing
open-source software package, HSPF Enhanced Expert System
(HSPEXP+) (Mishra et al., 2017). The risk-based framework pre-
sented here illustrates and approach to propagate watershed
model uncertainty into the performance of pollutant reduction sce-
narios, thereby enabling decision makers to better understand the
reliability level of a given scenario with respect to achieving a
given water quality goal.

Our study has three major novel aspects compared to previous
watershed-scale water quality modeling uncertainty analysis
efforts. First, we use an objective likelihood function in Bayesian
modeling, while past studies like Jia and Culver (2008) and
Mishra et al. (2018) used subjective likelihood functions. As
described by Camacho et al. (2018), water quality calibration using
objective measures could improve the model performance. Second,
we present a generic framework for application of GLUE with a
watershed-scale water quality model using an existing open-
source software package. The lack of accessible tools often hinders
probabilistic watershed modeling and an explicit uncertainty anal-
ysis. Third, we present the performance of alternative pollutant
load reduction scenarios as a quantitative transparent risk measure
that enables modelers to communicate complex uncertainty anal-
yses with stakeholders. This is relevant because lack of transparent
measures often hinders watershed modelers as they try to effec-
tively communicate model uncertainties to stakeholders.
2. Case study

The 20.1 km2 Woods Creek watershed in Rockbridge County
and the City of Lexington in west-central Virginia, U.S. (Fig. 1),
was selected to demonstrate the risk-based decision making
framework. The 9.7 km main stream of Woods Creek—from the
headwaters to the confluence with Maury River—was declared
impaired due to excessive EC loading. A bacteria TMDL was devel-
oped for Woods Creek and approved by the U.S. Environmental
Protection Agency (USEPA) (Benham et al., 2018). This watershed
is predominantly residential (48.1%), followed by pasture (28.1%)
and forest (23.7%). Average annual precipitation is 1,029 mm and
the average daily temperature ranges from �6�C to of 31 �C. Pri-
mary sources of EC are nonpoint sources, including runoff from
pasture (60%) and residential (9%) as well as direct deposit by live-
stock (20%) and wildlife (10%) (Benham et al., 2018). Other EC
sources are pets, sanitary sewer overflows, failing septic systems
and a general sewage permit, infiltration and inflow (I&I) as well
as exfiltration of the sewer pipes.

The Woods Creek bacteria TMDL (Benham et al., 2018) included
two specific TMDL pollutant load reduction scenarios (Table 1). An
implicit MOS was included by conservatively estimating the pollu-
tant source loads. No effort was made to explicitly incorporate
uncertainties when evaluating the recommended ‘TMDL’ pollutant
reduction scenario. Benham et al. (2018) compared the recom-
mended TMDL pollutant reduction scenario alongside existing con-
ditions (no action scenario) and a hypothetical reduction scenario
that required full reduction of all bacterial sources except wildlife
(‘full reduction’ scenario; Table 1). The reason that wildlife load
reductions were not considered in the full reduction scenario
was that reducing this load is often not practical and the reduction
of sources from human activities are generally favored. Both the
TMDL and full reduction scenarios require that bacteria loading
from the failing septic systems and sewer overflow be fully
reduced, but the full reduction scenario requires additional reduc-
tions in other sources. The implementation of the proposed TMDL
will be challenging, given the large load reductions, particularly
from pasture and livestock direct deposit sources.



Table 1
Source-specific E. coli (EC) load reductions (%) in pollutant allocation scenarios.

Source-specific EC load reductions (%)

TMDL allocation Livestock direct deposit Pasture Failing septic systems Sewer overflow Residential Wildlife direct deposit

Existing 0 0 0 0 0 0
TMDL 85 70 100 100 25 0
Full Reduction 100 100 100 100 100 0

TMDL: Total maximum daily load.

Fig. 1. Woods creek watershed.
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2.1. Watershed modeling in the study watershed

We used a semi-distributed watershed model, HSPF, to simulate
the fate and transport of EC. HSPF simulates water quantity and
quality processes on the land surface, in soil profiles and within
stream reaches using three main modules: pervious land
(PERLND), impervious land (IMPLND) and reach (RCHRES)
(Bicknell et al., 2005). Bacteria is typically simulated as a plank-
tonic constituent. Multiple parameters are used to simulate in-
stream EC fate and transport. The EC loading rates depend on var-
ious factors, including species-specific feces production rates and
fecal densities, animal density, die-off rates and the fraction of time
livestock are confined (Zeckoski et al., 2005).

The deterministic HSPF model for the Woods Creek watershed
(Benham et al., 2018) was used as the initial setup for this study.
The watershed was delineated into five subwatersheds using a
10 m DEM from the U.S. Geological Survey’s (USGS’) National
Elevation Dataset. Climate datasets, including rainfall, evaporation,
percent sun, wind speed and solar radiation, were collected from
two National Climate Date Center stations (COOP IDs 444876 and
445120). Dew point temperature, which was not reported in the
two stations, was collected from NASA’s (National Aeronautics
and Space Administration’s) Prediction of Worldwide Energy
Resource project. Other datasets required to simulate in-stream
EC using HSPF included soil, land use, EC daily loading rates by
livestock, pets and wildlife, permitted point sources as well as
inflows and withdrawals from springs, golf courses and country
clubs. Animal population was initially taken from the U.S. Depart-
ment of Agriculture census database and was later nominally
adjusted during several meetings with local stakeholders. In-
stream bacteria data were collected at watershed outlet by the Vir-
ginia Department of Environmental Quality (VADEQ) during 2007–
2018 and 2015–2016 periods. Limited daily streamflow data were
also collected in 2015–2016 near the outlet by USGS (gauge #
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0202304110). All these observations were used to calibrate and
validate the HSPF Woods Creek model. The reader is referred to
Benham et al, (2018) for more information.
3. Methodology

3.1. Generalized Likelihood Uncertainty Estimation (GLUE)

Bayesian inference provides a robust framework for quantifying
the uncertainty within complex mathematical models parameter-
ized with observations, either stochastically or deterministically.
An important feature of Bayesian methods that makes them partic-
ularly advantageous in water quality modeling applications is their
independence from the degree of non-linearity of a given model
(Camacho et al., 2015). The basic premise of GLUE is equifinality;
i.e., there is not a single optimal parameter set for a given model,
rather, multiple parameter sets can satisfactorily represent a sys-
tem (Beven and Binley, 1992). In GLUE, Monte Carlo simulation
is often employed to generate numerous random sets of model
parameters from prior distributions. The model is run using a set
of parameters sampled from prior distributions. A likelihood
weight is then calculated for each parameter set as a function of
the variance of the residuals. In this case, the likelihood weight is
a function of the Nash-Sutcliffe efficiency (Nash and Sutcliffe,
1970):

L ¼ ðNSEÞ�N ð1Þ

where, L is the likelihood value, NSE is Nash-Sutcliffe efficiency and
N is the shaping parameter. As the value of N increases, the differ-
ence between the likelihood values of parameter sets with similar
variance increases and simulations with a greater performance
receive more accentuation (Freer et al., 1996). Different values of
N can lead to different model output uncertainty (Ratto et al.,
2001) and the greater the N, the narrower the uncertainty (Freer
et al., 1996). Beven and Freer (2001) recommended against using
very high values for N as these tend to underestimate the uncer-
tainty due to the peakedness of likelihood surface. Our use of
N = 2 was informed by previous GLUE applications with HSPF
(Mishra et al., 2018).
Table 2
Probability distribution of the uncertain parameters.

Parameter Parameter description

AGWETP Fraction of remaining evapotranspiration from
AGWRC Base groundwater recession
BASETP Fraction of remaining evapotranspiration from
CEPSC (mm) Interception storage capacity
DEEPFR Fraction of groundwater inflow to deep rechar
INFEXP Exponent in infiltration equation
INFILD Ratio of max/mean infiltration capacities
INFILT Index to infiltration capacity
INTFW Interflow inflow parameter
IRC Interflow recession coefficient
KS Weighting factor for hydraulic routing
KVARY (mm�1) Non-linear groundwater recession rate
LZETP Index to lower zone evapotranspiration
LZSN (mm) Lower zone nominal soil moisture storage

UZSN (mm) Upper zone nominal soil moisture storage
ACCUM and SQOLIM adjustment

factor
Adjustment factor for monthly ACCUM and SQ
pervious land)

FSTDEC (day�1) First order die-off rate
IOQC (cfu2 m�3) Bacteria concentration on the interflow outflow

WSQOP (mm hr�1) Rate of surface runoff that removes 90% of sto

1 Numbers in parentheses show lower and upper limits of the uniform distribution.
2 cfu: colony forming units.
Initial simulations from prior distributions are divided into
behavioral and non-behavioral sets based on likelihood values.
Behavioral simulations can be determined by using either a cutoff
threshold (a.k.a. limits of acceptability approach) (Beven, 2006) or
a percentage of the simulations with the ‘best’ likelihood values
(i.e., greatest correlation or least error). The former approach was
used in this study. Likelihood values of the behavioral parameter
sets were normalized to unity. These normalized likelihood values
can be treated as a probabilistic weighting function for the simu-
lated variables and can be used to assess the uncertainty associated
with the simulations. Parameter-specific plots of the normalized
behavioral likelihoods versus parameter values (a.k.a. dotty plots)
defined the cumulative probability and posterior parameter distri-
bution (Beven and Binley, 1992). The normalized likelihoods for
different parameter values were multiplied to the prior probability
to derive the posterior distributions that provide a description of
parameter uncertainty adjusted by the observations. Additional
information about GLUE can be found in Beven and Freer (2001),
Stedinger et al. (2008) and Beven and Binley (2014).

3.2. Probabilistic watershed modeling

3.2.1. Uncertain model parameters
HSPF uses several hydrologic and water quality parameters to

simulate EC. Sensitive hydrologic and water quality parameters
were initially determined from the literature (Ahmadisharaf
et al., 2019; Chin et al., 2009; Im et al., 2007; Jia and Culver,
2008; Lawson, 2003; Mishra et al., 2019, 2018; Yagow, 2001).
We then refined these parameters based on the deterministic HSPF
modeling of the study watershed (Benham et al., 2018). The ulti-
mate uncertain parameters were initially assigned uniform distri-
butions that were adjusted via GLUE during model calibration.
Plausible ranges of the selected uncertain parameters were derived
based on the minimum and maximum values recommended in the
literature (Mishra et al., 2019; USEPA, 2000). In HSPF, the EC accu-
mulation rate on land is represented by two tables, ACCUM and
SQOLIM, which vary monthly due to the application of animal
manures to agricultural fields. The basic values of these two were
derived from the Bacteria Source Load Calculator (BSLC), a tool
for bacteria source characterization (Zeckoski et al., 2005). To
Parameter
distribution

active groundwater Uniform (0.00, 0.20)1

Uniform (0.85, 0.99)
baseflow Uniform (0.00, 0.20)

Uniform (0.25, 10.16)
ge Uniform (0.00, 0.50)

Uniform (1.00, 3.00)
Uniform (1.00, 2.00)
Uniform (0.03, 12.70)
Uniform (1.0, 10.0)
Uniform (0.30, 0.85)
Uniform (0.00, 0.99)
Uniform (0.00, 0.20)
Uniform (0.10, 0.90)
Uniform (50.80,
381.00)
Uniform (1.27, 50.80)

OLIM tables (maximum bacteria accumulation on Uniform (0.10, 10.00)

Uniform (0.12, 2.52)
from pervious land surface Uniform (1246,

124600)
red bacteria from pervious land surface Uniform (0.25, 12.70)
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perturb the uncertainty of ACCUM and SQOLIM, the basic values
were multiplied by an adjustment factor, which was assumed to
range from 0.1 and 10 (Jia and Culver, 2008; Mishra et al., 2018).
Table 2 lists the prior distributions of the HSPF parameters.
3.2.2. Probabilistic watershed modeling
Ensemble parameter samples were generated by LHS with

random point in strata. LHS was preferred to standard Monte
Fig. 2. Posterior cumulative distribu
Carlo simulation as past studies like Janssen (2013) have shown
that it is more efficient in numerical convergence. We assumed
no correlation between the model parameters because while
some researchers like Stow et al. (2007) suggested that consid-
ering a correlation between the variables improves the sampling
accuracy, others like Omlin et al. (2001) and Wu et al. (2006)
argued that a correlation necessarily results in less sampling
error.
tions of the model parameters.
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Fig. 3. (a) 95% and (b) 90% prediction intervals of the simulated in-stream E. coli
(EC) bacteria alongside observations in the validation period.
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Generated random values from the prior parameter distribu-
tions were fed into a comma-separated values (CSV) file, the pri-
mary input for the HSPEXP+. We leveraged batch capabilities of
HSPEXP+ to perform ensemble simulations. Numerous HSPF simu-
lations were performed using the prior parameter distributions.
Ensemble model output time series generated by HSPEXP+ were
then post-processed to calculate NSE values and determine
likelihoods.

A likelihood cutoff threshold was used to determine behavioral
simulations. A NSE = 0.5 was used to determine behavioral hydro-
logic simulations (Ahmadisharaf et al., 2019; Moriasi et al., 2015).
For water quality, the threshold was extracted from past studies
where NSE was used to evaluate bacteria simulation model perfor-
mance (Baffaut and Sadeghi, 2010; Cho et al., 2010; Coffey et al.,
2013; Hernandez-Suarez et al., 2019; Niazi et al., 2015; Pandey
et al., 2012; Parajuli et al., 2009). Because a wide range of NSE val-
ues has been applied in the past studies (from �6.0 to 0.8), we used
a cutoff threshold of �0.4, which resulted in a reasonable number
of behavioral simulations (about 10% of the total simulations). It is
notable that while this threshold seems low for watershed-scale
simulation of other constituents (e.g., streamflow, nutrients and
sediment), it is reasonable for bacteria modeling. The reader is
referred to (Ahmadisharaf et al., 2019) for detailed discussion of
bacterial simulation calibration.

A generic code was developed to derive posterior distributions
via GLUE. Implemented in MATLAB, the code can separate behav-
ioral simulations using either a cutoff threshold or some percent-
age of the best simulations. The primary input is a spreadsheet
that includes generated random parameters from the prior distri-
butions, values of the likelihood function (NSE in this case), cutoff
threshold for the likelihood function and the shaping parameter
value. Taking this input file, the code produces the number of
behavioral samples and parameter-specific posterior distributions.
A number of random values can be then generated from the
derived posterior distributions. The generated random numbers
from posterior distributions were written to the CSV input file of
the HSPEXP+ to perform ensemble watershed simulations. This
process was repeated in model calibration-validation and simula-
tion of pollutant allocation scenarios (Table 1).

We used a two-stage process to calibrate and validate the prob-
abilistic watershed model via GLUE. A hydrologic calibration was
first done to derive posterior distributions of the hydrologic
parameters, which were used in subsequent water quality simula-
tions. A water quality calibration was then performed to derive
posterior distributions of the HSPF water quality parameters. These
distributions were later validated against an independently
observed bacteria dataset. Three metrics were used to evaluate
model performance during the validation period: (a) the number
of observations that fall inside the prediction intervals of average
daily EC concentration (Mishra et al., 2018), (b) the number of
observations that fall inside the prediction intervals of five-day
average daily EC concentration (Kim et al., 2007) and (c) the num-
ber of median of ensemble simulated average daily EC that fall
inside one-order of magnitude of the observations (Dorner et al.,
2006). These three measures should be greater than 70% for satis-
factory model performance (Dorner et al., 2006; Kim et al., 2007;
Mishra et al., 2018; Pandey et al., 2012).

3.3. Risk-based decision making

The allocation scenarios were modeled using the probabilistic
HSPF model. A six-year period (1999, 2001, 2003, 2009, 2015 and
2016) was used in allocation simulations. The simulation period
time series included two average rainfall years, two dry years
(below average rainfall), two wet years (above average rainfall)
and a range of water quality conditions (low and high bacteria
concentrations) (Benham et al., 2018). An ensemble of simulated
daily average in-stream EC concentration time series was used to
derive percentiles (e.g., 5th and 95th) and prediction intervals
(e.g., 90%). These time series were used to estimate the level of reli-
ability (as opposed to risk) of achieving two water quality criteria:
(i) daily exceedance rate of the maximum water quality assess-
ment (a.k.a. ‘daily single-sample’ criterion) calculated as the num-
ber of days with EC concentration >235 cfu/100 mL divided by the
number of days in the simulation period; and (ii) a monthly geo-
metric mean criterion calculated as the number of calendar
months with geometric mean (of the average daily EC concentra-
tions) > 126 cfu/100 mL. The former criterion must be less than
10.5% exceedance rate, while the latter criterion requires a zero
exceedance rate. For each allocation scenario, an empirical cumu-
lative distribution was constructed by computing different per-
centiles of the exceedance rates (a pth percentile means p%
reliability or [100-p]% risk in achieving the water quality criterion).
This distribution visualizes reliability levels in achieving the
desired water quality target. Using this distribution, decision mak-
ers can prioritize alternative pollutant reduction scenarios, select-
ing the scenario that meets the applicable water quality target at a
desired level of reliability.

4. Results and discussion

4.1. Model calibration and validation

Hydrologic calibration was performed to derive posterior distri-
bution of the 18 hydrologic parameters and four water quality
parameters for the 2015–2016 period. Of the 5,000 LHS
realizations that were settled for hydrologic calibration, only 110
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simulations were behavioral (NSE > 0.5). Using posterior distribu-
tion of the hydrologic parameters, 1,000 LHS realizations were set-
tled for water quality calibration. Only 91 of these simulations
were behavioral (NSE > �0.4). The prior and posterior distributions
of HSPF parameters, which were derived via GLUE, are presented in
Fig. 2. The difference between prior and posterior distributions
implied that the model was most sensitive to AGRWC, DEEPFR,
INFILD, IRC and KVARY for the hydrologic simulation and
ACCUM/SQOLIM adjustment factor and FSTDEC for the EC simula-
tion. Similar to past probabilistic HSPF studies like Mishra et al.
(2018), the difference was greater for the hydrologic parameters.
Fig. 4. Percentile time series of simulated in-stream E. coli (EC) bacteria for th
Next, we validated the posterior distributions of the water
quality parameters against observed EC data in the 2007–2008
period. Using either 90% or 95% prediction interval, 91.7% of
the observations fell inside the predicted daily EC (Fig. 3). This
percentage reduced to 83.3% when 80% prediction interval was
used. All the observations fell inside prediction intervals >80%
of the five-day average daily EC concentration and 83.3% of
the ensemble median of simulated average daily EC concentra-
tion were within an order of the magnitude of the observations.
All the three metrics were therefore met and the validation was
judged satisfactory.
e existing, total maximum daily load (TMDL) and full reduction scenarios.
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4.2. Risk-based decision making

Pollutant allocation scenarios (Table 1) were simulated using
the probabilistic watershed model, which used posterior distribu-
tions. One-thousand LHS simulations were performed via HSPEXP
+ for the six-year simulation period. The daily average simulated
EC concentration time series from each LHS simulation was used
to determine the 1st, 2.5th, 5th, 10th, 25th, 50th, 75th, 90th,
95th, 97.5th and 99th percentiles (50%, 80%, 90%, 95% and 98% pre-
diction intervals) for the existing, TMDL and full reduction scenar-
ios (Fig. 4).

We post-processed the model ensemble outputs to derive the
exceedance rates of the daily single-sample and monthly geomean
water quality criteria for the two pollutant reduction scenarios, the
TMDL scenario and the full reduction scenario (Fig. 5). The reliabil-
ity level at which the deterministically determined TMDL scenario
achieved the daily single-sample and monthly geomean water
quality criterion was 82.6% and 29.1%, respectively. For the full
reduction scenario, the reliability of achieving the daily single-
sample and monthly geomean water quality criterion was 91.7%
and 53.2%, respectively. Achieving the applicable water quality cri-
teria with a higher degree of reliability would require wildlife load
reduction, which is generally not favored and might be impractical.

For reliability levels <25%, the TMDL scenario had the same
exceedance rate as the full reduction scenario, while for reliability
levels between 25% and 50%, the exceedance rates for the two pol-
lutant reduction scenarios were similar, with the TMDL scenario
violating both water quality criteria only slightly more. For reliabil-
ity levels >50%, however, the TMDL scenario violated the water
quality criteria more often. The exceedance rate for the daily
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Fig. 5. (a) Daily single-sample and (b) monthly geomean exceedance rates for the
existing conditions, total maximum daily load (TMDL) and full pollutant reduction
scenarios.
single-sample criterion was as high as six times greater (80.6%
vs. 12.5% at the 99th percentile) for the TMDL scenario when com-
pared to the full reduction scenario, with a much greater difference
for the monthly geomean criterion. These results suggest that
higher levels of load reduction are more useful in situations where
very high reliability (i.e., very low risk) is warranted.

We also compared our probabilistic analyses of the TMDL sce-
nario from the deterministic analysis by Benham et al. (2018).
For the monthly geomean water quality criterion, the deterministic
model predicted an exceedance rate of 0.0%, while we predicted a
range of 0% (2.5th percentile) to 36.1% (97.5th percentile), with a
median of 11.1%. For the daily single-sample water quality crite-
rion, the deterministic model predicted a violation rate of 0.1%,
while the probabilistic model predicts a range of 0.0% (2.5th per-
centile) to 33.8% (97.5th percentile), with a median rate of 3.0%.
This inconsistency between the reliability of pollutant reduction
scenarios developed deterministically and probabilistically is con-
sistent with the analysis of others (Borsuk et al., 2002; Langseth
and Brown, 2011; Mishra et al., 2018). The risk-based framework
presented here allows the decision maker to more effectively com-
pare alternative pollutant reduction scenarios, and provides a sys-
tematic approach to include uncertainty in TMDL development
using Bayesian inference, which has direct impacts on public and
ecosystem health.

For nearly two decades, researchers have debated the practice
of uncertainty analysis and MOS estimation in TMDLs. The
National Research Council (2001) recommended the use of more
rigorous, less subjective approaches in MOS estimation. More
recently, ASCE-EWRI TMDL Analysis and Modeling Task
Committee (2017) recommended the need for major improve-
ments in MOS estimation using scientifically sound uncertainty
analysis approaches. Despite these, the practice of uncertainty
analysis in TMDLs has yet to advance substantially. The risk-
based framework demonstrated in this study supports uncertainty
analysis in TMDLs by using existing softwares and paves the way
for the application of a scientifically defensible approach to MOS
estimation. The simulation tools and implications for management
are directly transferable to watershed managers. This is a major
step forward in the application of Bayesian inference for TMDLs.
Ensemble time series (Fig. 4) and ECDFs (Fig. 5) serve as examples
to watershed modelers studying complex TMDLs in the U.S. and
more broadly pollution mitigation worldwide. Decision makers
could use this type of analysis and information to select a pollutant
reduction scenario based on the level of risk and reliability associ-
ated with achieving specific water quality targets. The framework
helps watershed managers answer the following question: At what
risk, will you implement this pollutant reduction scenario?

Limitations exist in this study suggest the need for future
research. The cost of implementation was not considered here.
Rather, we focused on a method for analyzing and prioritizing
alternative pollutant reduction scenarios during TMDL develop-
ment. Cost is an important decision criterion that should be exam-
ined along with reliability. Prioritizing alternative pollutant load
allocation scenarios by considering both reliability and implemen-
tation costs would aid in determining how a water quality target
can be achieved with a limited budget at different reliability levels.
An expensive scenario with high reliability level might be prefer-
able in a more fragile ecosystem (i.e., water quality violation has
large consequences), while a less expensive pollutant reduction
scenario with lower reliability might be preferable where the
ecosystem is more resilient or where funding is limited.

With the batch simulation capabilities of HSPEXP+, GLUE can be
used in practice for uncertainty estimation of HSPF-based EC mod-
eling. Additional research is also required to analyze the effects of
using different likelihood functions and parameter acceptance
criteria when applying GLUE for HSPF-based water quality
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applications (He et al., 2010). This work can be also replicated by
using advanced Bayesian methods such as MCMC. However, imple-
menting GLUE is simpler and more straightforward than complex
Bayesian methods like MCMC and the results can be more effec-
tively communicated to stakeholders.

We focused only on epistemic uncertainty resulting frommodel
parameterization. Future research should focus on other epistemic
uncertainties such as model inputs (e.g., climate datasets) and
structure as well as observed data used for calibration and valida-
tion. The uncertainty triggered by a changing climate and land use
change, which has been shown to have a major impact on pre-
dicted water quality (Fonseca et al., 2015; Whitehead et al.,
2009), was also not considered in our study. Future efforts to inves-
tigate the impact of these nonstationary stressors are vital for
proactive and adaptive watershed management.
5. Summary and conclusions

We presented a risk-based framework for evaluation of alterna-
tive pollutant reduction scenarios to meet the water quality
criteria associated with a bacteria TMDL. A Bayesian method—
GLUE—was applied for uncertainty analysis of watershed-scale
HSPF model used to simulate instream bacteria concentrations.
Our sole focus was on parametric uncertainty; other sources of
uncertainties were not explored. A generic framework was pre-
sented for application of GLUE with HSPF-based bacteria modeling
using a random generator software and HSPEXP+. Using this
framework, we evaluated two alternative pollutant load reduction
scenarios—TMDL and full reduction—that were included in a
recently developed USEPA-approved bacteria TMDL (Benham
et al., 2018) for Woods Creek in Virginia, U.S.

The reliability level at which the deterministically determined
TMDL recommended scenario achieved the daily single-sample
and monthly geomean water quality criterion was 82.6% and
29.1%, respectively. For the full reduction scenario, the reliability
of achieving the daily single-sample and monthly geomean water
quality criterion was 91.7% and 53.2%, respectively. Achieving the
applicable water quality criteria with a higher degree of reliability
would require wildlife load reduction, which is generally not
favored and might be impractical. For reliability levels < 25%, the
TMDL recommended scenario had the same exceedance rate as
the full reduction scenario, while for reliability levels between
25% and 50%, the exceedance rates for the two pollutant reduction
scenarios were similar, with the TMDL scenario violating the water
quality criteria only slightly more often. For reliability levels >50%,
the TMDL recommended scenario violated the water quality crite-
ria more often. These results suggest that higher levels of load
reduction are more useful in situations where very high reliability
(i.e., very low risk) is warranted. Achieving water quality goals,
particularly in this case, the geomean criterion, with very high reli-
ability was not possible even with the full reduction scenario.
Higher levels of reliability would require a wildlife source load
reduction, which is not practical.

The risk-based framework presented here illustrates a method
to propagate watershed model uncertainty into the performance
of alternative pollutant reduction scenarios, thereby enabling deci-
sion makers to understand the reliability level of a given scenario
in achieving water quality goals. To drawmore generalized conclu-
sions, future research should explore other sources of uncertainty
such as input climate data and model structure. Examining the
tradeoffs between the implementation costs and reliability of
achieving water quality goals would also help in better under-
standing the role of uncertainty by translating it into monetary
terms.
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