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(ABSTRACT)

This work presents the method of calculating the core loss in ferrite cores by using a
linear and sinusoidal finite element solver based on the material property data (the
complex permeability, the dielectric constant, and the AC conductivity) measured in the
laboratory. Due to the lack of published material data and fundamental test procedures,
this work also demonstrates the measurement techniques of material data which are
necessary for the finite element analysis (FEA) of the ferrite core loss.

First, a linear mathematical model of the ferrite core loss is formulated to characterize
the hysteresis loss and the eddy current loss. The magnetic properties (the real and the
imaginary components of the complex permeability) and the electric properties (the
dielectric constant and the conductivity) are required.

Second, the experimental procedures of those four properties are first presented.
Toroids with 1.1 OD/ID ratios are selected as samples to obtain the magnetic properties.
It is illustrated that the hysteresis loss should be measured at the frequency of interest,

instead of DC, due to its frequency-dependence. The electric property data of ferrites are



collected by using a disk sample which forms a capacitor. The conductivity tested is
frequency-dependent due to the combination of the dielectric loss and the DC conduction
loss.

Finally, core loss simulations for the sample toroid, an EE core, and an RM10 core
are performed and compared with the measurements. The flux and loss distributions are

demonstrated in the last two cores. The hot spots are identified from the field plots.
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1. Introduction

1.1 Background and Objective

The trend of power electronics circuit development is towards high efficiency and
miniaturization. Magnetic device design is critical to reducing the size and increasing the
efficiency of power electronics circuits.

In order to minimize the size for a given throughput power, inductors and
transformers are usually subject to high-frequency and large-amplitude excitations. A
designer must be able to accurately compute the losses in the magnetic components which
affect the efficiency of the whole circuit.

Generally speaking, the power dissipation in inductors or transformers is composed of
the winding loss and the core loss. The winding loss at high frequencies is the summation
of the DC conduction loss, the eddy effect loss, and the proximity loss. Numerous papers

[1,2,3,4, 5,6,7,8, 9,10,11] have been published to date dealing with winding loss analysis
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by using one- or two- dimensional analytical calculations. Several commercial finite
element solvers [12,13,14,15] are available to deal with winding loss analysis easily which
feature visualization of flux distribution and current distribution in the winding. The broad
topic on the winding loss examination will not be addressed here. This work only
concentrates on the loss analysis of ferrite cores.

Power ferrites are widely used as the core materials of the transformers and inductors
in the power electronics circuits. Such core materials are of both ferromagnetic and
semiconductive natures so that they have high permeability and low eddy current loss at
high frequencies. Therefore, they are widely used for the high-frequency applications.
Since power ferrites have non-linear permeability (saturation and hysteresis), frequency-
dependent conductivity, and temperature-sensitive permeability and conductivity
[16,17,18,19}—those characteristics are not provided by the manufacturers[20] — core
loss analysis cannot be readily performed based on the material data. Core loss values are
normally obtained from the measurements[21,22].

The experimental method proposed by Thottuvelil [21] is to measure total core losses
for any specific devices under sinusoidal or arbitrary excitation conditions. However, the
measurements require expensive specialized instruments and are usually limited to a
certain frequency and flux density range. The measurement provides only the value of total
core loss. The information about loss distributions is unknown, and the hot spots due to

non-uniform loss distribution in the devices cannot be identified.
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Mulder proposed an empirical method [22], where a representative small toroidal
core was selected to ensure that the hysteresis loss dominated the eddy current loss in the
core. Therefore, the measured loss was assumed to be the hysteresis loss only. After the
loss density data were acquired at different frequency and flux density levels under
sinusoidal excitation conditions, the hysteresis loss density, P, 4, was expressed as an
exponential function of the frequency, f, and the peak flux density, B, at a particular

temperature by using the curve-fitting technique
Phd--kBmfn, (11)

where k, m, and n are constants. For any other shape cores with the same core material,
the hysteresis loss density can be calculated from Eq. (1.1), the eddy current loss density,

P. 4, can be computed according to a standard expression,

P

e d = J'thszeO' /4, (1.2)
where A, and o stand for the effective cross-sectional area and conductivity of the core
material, respectively. The major advantage of this method over the previous experimental
method [21] is its capability of calculating the core loss in a variety of cores analytically.
This method makes possible the computer-aided design (CAD) for magnetic devices.
However, the loss distributions within a core are still unavailable.

The FEA is obviously a useful numerical method to analyze the loss distributions and

calculate the total loss in the transformers and inductors, and it should be widely used for

the core loss analysis. Ideally, the complete FEA solution for the core loss must be capable

Introduction 3



of addressing the nonlinear ferrite material characteristics, making electro-thermal
simulation possible, and offering provision to cope with anisotropic and inhomogeneous
materials. Unfortunately, such an FEA solver has not been developed yet. Also, the
material characteristic data for ferrites under a variety of excitation and environmental
conditions must be available for the numerical simulation. But manufacturers generally
provide only some limited data under DC or sinusoidal excitation conditions. Particularly,
only DC conductivity, curves of initial permeability vs. frequency, initial permeability vs.
temperature, and amplitude permeability for some particular frequency and temperature
points are provided. Dielectric constant information is usually not available, or is available
at DC. The lack of needed material data impedes the use of FEA to quantify the ferrite
core loss.

In Reference [23], a nonlinear FEA program (EMAS®) was used in combination with
other programs to compute total loss in iron cores under sinusoidal input conditions. But
the applicability of extending such a method to ferrite cores was not addressed.

The FEA of the ferrite core loss was investigated by the authors in [24] using the
following approximations:

1. the excitation waveform is sinusoidal;

2. the ferrite material properties are linear, isotropic, and homogenous;

3. the hysteresis loss is represented by the imaginary component of permeability.

Two approaches towards the core loss simulations were presented: the combined loss

approach which lumps all the core losses into one loss term, and the separated loss
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approach which divides the total core loss into the eddy current loss and the hysteresis
loss. The former method was not able to produce the correct breakdown of losses and
provided incorrect loss distribution, even though the calculated total core loss was
accurate. The latter method assumed that the measured core loss from a toroidal sample at
1 kHz represented the hysteresis loss. The eddy current loss accounts for the difference
between the high-frequency loss and low-frequency loss of the sample core. Then an
effective conductivity, O.s, which was used as one of the core material data in the
simulation, can be calculated from the loss difference according to Eq. (1.2). The
successful simulations of the sample toroid were presented in the paper. However, since
the o is much greater than the material conductivity, it results in the smaller skin depth
and the overestimation of the eddy effect. After the paper was published, the latter method
was used to simulate the core loss in an RM10 core as a part of our research.
Unfortunately, the calculated losses were much smaller than the measured loss. It means
that this type of the hysteresis loss and the eddy current loss separation is impractical so
that it is hard to apply to differently shaped cores, such as an RM core.

The objective of this thesis is to improve the separated loss method proposed in [24]
and to simulate the core loss in ferrite cores correctly by a linear and sinusoidal FEA
solver, Maxwell®. Since the ferrite material properties (the complex permeability, the
conductivity, and the dielectric constant) are used as the input data of the simulations, the
characterization of the ferrite materials is the most important to the accuracy of the loss

analysis. The error existing in the latter method[24] was due to the misuse of the
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imaginary permeability and the conductivity. This work will initiate a characterization
approach towards ferrite materials based on the understanding of the loss mechanisms of
the ferrites. Eventually, the FEA of the core loss will be performed on a sample toroid
core, an EI core, and an RM core, to show the correctness of the material characterization

and the ability to visualize field and loss distributions.

1.2 Outline of the Work

Since MnZn ferrites are popular core materials for the magnetic devices in the power
electronics circuits, this work concentrates only on MnZn ferrites. But all the rules found

in MnZn ferrites can be applied to NiZn ferrites as well.

1.2.1. Loss Mechanisms and a Mathematical Model of Ferrites

In order to simulate the core loss correctly by using a linear FEA solver, it is essential
to understand the real physics of the ferrite losses. Such an understanding will explain the
approximations made in the linearization process and will facilitate the development of a
mathematical model for the core loss in a ferrite core.

The first part of Chapter 2 discusses the physical background of the core loss. The

second part illustrates how a nonlinear hysteresis loop is modeled by an ellipse. In the end,
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the core loss formula derived from Maxwell’s equations and the Poynting theorem shows
how the total loss is classified into the hysteresis loss and the eddy current loss.

On the one hand, Chapter 2 provides the theoretical basis for the core loss analysis by
using a linear FEA solver; on the other hand, it reveals that the complex permeability, the

AC conductivity, and the dielectric constant are required in the simulations.

1.2.2 Characterization of MnZn Ferrite Materials

Chapter 2 clearly states which material data are needed in the simulation of the ferrite
core loss. Chapter 3 demonstrates the acquisition procedures of the material characteristic
data and the test setups. Also, the sample selections which affect the accuracy of the
material data measurements are discussed.

Since ferrites combine the ferromagnetic and dielectric characteristics, the magnetic
and the electric property measurements need to be performed separately.

The magnetic properties include the real component of the permeability and the
imaginary component of the permeability which can be converted from the measured core
loss. This work uses impedance approach[25] to characterize the two components of the
complex permeability and core loss. The permeability of ferrites are the frequency, the flux
density, and the temperature dependent. The room temperature (23~25°C) is used in this

work to limit the permeability variation due to the temperature.
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The electric properties of ferrites, the conductivity and the dielectric constant, are
measured. A lossy capacitor model [16] is employed to measure these two properties
under different frequencies. They are tested at the room temperature also and under small-
signal excitations.

In order to provide the measurement data for the simulations to compare with, the
core loss values are obtained from experimental testing on an EI and an RM10 cores. The
effective dimensions are included in the measurements to deal with a device with uneven
flux distribution as an ideal device with uniform flux distribution. The inaccuracy of those

dimensions are examined theoretically

1.2.3 Examples of Finite Element Simulations for Core Loss

Chapter 4 describes the simulations with a 2D or 3D linear FEA solver, Maxwell®.
Three differently shaped cores (a very thin toroid, an EI core and an RM10 core) with the
same ferrite material are simulated. The simulated losses are compared with the measured
core losses. They match very well with less than 5% error for the very thin toroid. They
have 25% and 15% differences for the EI and the RM10 cores, respectively. The main
reason for the deviations is the use of the effective dimensions in the core loss tests.

Since the advantage of using FEA to examine the core loss is the ability to see the

field and the loss distributions, Chapter 4 shows the pictures of those distributions in the
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EI core and the RM10 core. The pictures provide a lot of information on the field and the

core losses, such as the hot spot locations in the core.
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2. Loss Mechanisms and a Mathematical Model of

Ferrite Core Loss

2.1 Loss Mechanisms of Magnetic Cores

The core loss is usually divided into the hysteresis loss, the eddy current loss, and the
residual loss [26]. For the power electronics applications which are under large-amplitude
and high-frequency operating conditions, the hysteresis loss is mainly caused by the
irreversible rotation of magnetization[17] and only depends on the chemical composition,
microscopic structure, and internal stresses of the core material. The eddy current loss is
due to the current induced in the core under the alternating magnetic flux, and determined
by the conductivity of the core material and the cross-sectional area which the flux goes
through. The residual loss is generated by the power dissipation resulting from the
reversible domain wall damping [27] and the reversible rotation of domains [28]. Under
large magnitude conditions, most of the domain walls are extinct so that the residual loss

can be ignored [29].
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Figure 2.1 shows the nonlinear B-H curve with hysteresis which reflects the principal
characteristics of the ferromagnetic material. When an unmagnetized ferromagnetic core is
excited, the trajectory starts from the origin and increases along the B-H curve without
hysteresis (the initial magnetization curve). The slope of the initial magnetization curve at
the original point is defined as the initial permeability, p;. If the core is excited by
an alternating cyclical signal, B increases with H in the lower limp and decreases in the
upper limp. If H keeps increasing, but B stops going up, the maximum flux density is
called the saturation, Bsat. When H vanishes, the flux density is not equal to zero. This
flux density is referred to as the remanence of the material, B,. When B becomes zero, the
non-zero value of H is referred to as the coercivity, H.. When the peak flux density of the
alternating cyclical excitation changes, the ratio of B to H at the tip of the loop is defined
as the amplitude permeability, n.. The amplitude permeability, not the initial permeability,
reflects the characterization of the magnetic devices in the power electronics circuits
because of the large amplitude excitations in the circuits.

The nonlinear hysteresis loop has been successfully described in analytical forms in the
past [17,30,31]. However, the developed formulae are rather complicated. In order to
represent core material properties more conveniently, Snelling proposed the concept of the
complex permeability under sine wave excitation conditions [16]. Assuming that the core
operates at the linear region, the hysteresis loop can be approximated as an ellipse as
shown in Fig. 2.2. Although the linearized hysteresis model cannot handle saturation, it is

very useful to the loss examinations for most of the magnetic devices in power electronics.
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Fig. 2.1 The B-H curve of a ferromagnetic material
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Fig. 2.2 An approximate B-H curve with hysteresis (an ellipse)
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The hysteresis loss occurs when B lags H. The permeability now is a complex

number, W, which includes the real component, u', and the imaginary component, ",
p=p'-ju' (2.1)

In Fig. 2.3, u", which is associated with the hysteresis loss, can be represented by

T r_. 2.2)

n'=-—r — . (2.3)

2.2 An FEA Mathematical Model of the Ferrite Core Loss

The purpose of this research is to use a linear FEA solver, Maxwell®, to calculate the
ferrite core loss under sinusoidal excitation conditions. The total loss, EP , in a ferrite

core can be derived based on Maxwell’s equations combined with Poynting theorem (see

Appendix A) in the form,
SP =-;- [RelH™ - (joB) +E-J - E-(jwD )ldv, (2.4)

where H is the magnetic field intensity,

Loss Mechanisms and A Mathematical Model of Ferrite Core Loss 14



B is the magnetic flux density,
E is the electric field intensity,
D is the electric-flux density,
J is the conduction current density,
H, B, E, D, and J are phasors, and
* is complex conjugate.
In linear, homogeneous and isotropic media, there are several constitutive relations

between field quantities,

B=pH (2.5)
D=¢E (2.6)
J =coE, (2.7)

where u, €, and o are the amplitude permeability, the dielectric constant, and the
conductivity, respectively. As has been discussed in the previous section, p in a ferrite
material is a complex number under sine wave excitations. Similarly, € is also a complex
number in a ferrite material[16],

g=¢'—je", (2.8)
where the real part, €', is related to the electric energy in the field; the imaginary part, €,

is related to the dielectric loss.

Substitution of Egs. (2.1) and (2.5) ~ (2.8) into Eq. (2.4) yields
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SP= % [Re[H" - (jou'H) - E - (jwe'E")dv
I (2.9)
+5J“§Re[wu"H‘ ‘H+we"E-E" +E-J ]dv.

Since both H* *H and E" - E are real phasors, H ™ - (jou'H)-E- (j(ne'E*) is
a purely imaginary term, and therefore its real component equals zero. As a result, the first
term in Eq. (2.9) is zero. Similarly, since oop" H “"H+we"E-E" +E-J" isreal,

Re(wn"H ‘H +we"E-E" +E-J)

. . . (2.10)
=ou"H H+we"E-E +E-]J .

Eventually, Eq. (2.9) can be simplified to,
1 " * 1 " * 1 *
SP =5_[(cou H -H)dv +5_[(we E-E)dv + —z—f(E -J v, (2.11)
v v v

The first, second, and third terms in Eq. (2.11) represent the hysteresis loss, the dielectric
loss, and the ohmic loss, respectively. These are the loss mechanisms existing in a linear,
homogeneous, and isotropic medium with complex permeability and complex dielectric
constant. The last two terms can be combined into one eddy current loss term, P., which

can be expressed by either Pe; or Pea:

P, = %f((ue ac E -E)dv (2.12)
J-J

P, = —f—d (2.13)
v Oac
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where €"5c in Eq. (2.12) is the AC value of the imaginary part of the dielectric constant
and o©ac in Eq. (2.13) is the AC conductivity. Both €"sc and gac cover the DC
conduction loss and the dielectric loss. The solver, Maxwell®, uses osc as one of the
input material data and uses Eq. (2.13) to calcula}e the eddy current loss.

In other words, the total core loss is computed in Maxwell® by,

SP =%f(u)u"H' -H)dv + %f‘l J dv. (2.14)

v O 4C

The material data required are p', u”, €, and Oac.

Loss Mechanisms and A Mathematical Model of Ferrite Core Loss 17



3. Characterization of MnZn Ferrites

Chapter 2 has illustrated that the complex permeability, the AC conductivity, and the
dielectric constant are the material properties required in the FEA of the ferrite core loss.
This chapter will discuss how to measure those properties in the laboratory.

Since ferrites are ferromagnetic and semiconductive materials, they have the magnetic
properties (the real and imaginary components of the permeability) and the electric

properties (the AC conductivity and the dielectric constant).

3.1 Magnetic Property and Core Loss Measurements

3.1.1 Magnetic Property Measurement

The impedance approach [25] is employed to measure the complex permeability in

this study. When an N-turn winding is wound on an ideal loss-free toroidal core with
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cross-sectional area, A, and magnetic mean length, 1, the impedance of the winding is a

pure reactance,
Z = joL = jop uN>A/l, (3.1)

where p is the real permeability of the toroid. Practically, the core is lossy and the

impedance of the winding has a resistive part, 1, as well as a reactive part, L,

Z=r, + joL, = jou,niN2A /1, (3.2)
where [ is the complex permeability (see Eq. 2.1). 1, can be expressed as the imaginary
component, u", of the complex permeability,

r,=wuu"N2A/l. (3.3)

Such a series lossy inductance model can be alternatively represented by a parallel

inductive circuit which is shown in Fig. 3.1. The impedance can be also expressed as,

1
Z = 'ﬁ, (34)
—+
r, JoL,

where 1, and L, can be represented by the imaginary component, pn”, and the real

component, p', of parallel complex permeability,

T =wu0up"N2A/l (3.5)

L, = jopou,'N?A/1. , (3.6)
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Ls

I's

(a) (b)

Fig. 3.1 A lossy inductor model

(a) Series model  (b) Parallel model
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If a voltage driving source is used in the experiment, it is appropriate to select the
parallel model because the voltage applied to the lossy inductor is the voltage dropped
across the pure inductor, L. The peak flux density, By, in the core can be specified by
adjusting the voltage applied to the device under test (DUT), Vpyr,

In the series model, however, the voltage across Ly is a function of the frequency and the
source voltage. Therefore, it is not easy to control the flux density by monitoring the
source voltage.

The test setup is shown in Fig. 3.2. A Hewlett-Packard HP 4194A impedance
analyzer is controlled by a personal computer through the GPIB interface. The small signal
sinusoidal output of the impedance analyzer — which is less than 1.2 V — is amplified to
a large AC signal by a wideband power amplifier, Amplifier Research 10A250 or
700A1, and then applied to the DUT through the HP 4194A impedance probe. The probe
can withstand currents up to 0.5 A and voltages of 150 V. This voltage across and the
current in the DUT are then reduced by the 30-dB attenuators (PASTERNACK PE7010-
30) and input to the test channel (T ch.) and the reference channel (R. ch.), respectively.
The software controls the voltage across DUT, Vpyr, according to the required flux
density, By, and frequency, f. Since the maximum voltage specified in the test channel is 1
V, the maximum voltage which can be applied to the DUT, Vpuyrmax, is 30 dBV(=31.62V).
Once Vpurmax Teaches 30 dBV, the software will shut down the measurement

automatically.
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PGIB
IBM PC
HP 4194A
: = Impedance
[ Analyzer
Output Input
Power Amplifier Rch. | T ch.
|
Input Output - o
| 2| |3
] <
HP 4194A

Impedance Probe J ‘
LL
DUT Probe

Fig. 3.2 Setup of a high-frequency core loss measurement system by using impedance approach
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The Amplifier Research 700A1 is very powerful, with high gain and variable output
impedance. It should be noted that the voltage gain of the amplifier cannot be set too large
when the specified flux density is relatively high. Although this restriction may limit the
measurable range of the flux density, it will protect the amplifier from overload. The
reference and test channels have two options for input signals: 0 dB or 20 dB. Normally,
the test channel, which detects relative large voltage of the DUT through a 30-dB
attenuator, selects 20 dB, while the reference channel, which detects the relatively small
current signal of the DUT through a 30-dB attenuator, employs 0 dB. Under a large flux
density condition, the current flowing to the reference is large enough to overload the
channel. The software enables the user to choose a proper attenuation.

The accuracy of the measurements depends, to a great extent, on eliminating parasitic
effects in the system through proper calibrations (zero-short, zero-open, and 50-Q). The
calibration setup is shown in Fig. 3.3. The winding loss introduced by the test coil can be
calibrated out by an identical coil with an air core during zero-short compensation process.
Considering that this portion of loss is very small compared with the core loss, a (-2
standard is used instead. Since two 30-dB attenuators exist, the maximum output (OSC
level = 1.2 V) should be used to get more accurate calibration data. The accuracy of the
calibrations can be examined by the impedance test for 0-€2 and 50-Q2 standards.

The selection of the sample toroid is very important to the accuracy of the complex

permeability. Commercial toroids normally have a 1.5 ~ 2.0 OD/ID ratio [32], which
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Fig. 3.3 Calibration setup of the core loss measurement system shown in Fig. 3.2
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makes the flux density greatly non-uniform in the cross section. The effective dimensions
— the effective cross-sectional area, A., the effective magnetic length, 1., and the effective
core volume, V. — are used to approximate an actual toroid by a hypothetical toroid with
a uniform flux distribution on any cross sections of the core. Those effective dimensions
are defined[16] assuming that the flux density is low enough for the Rayleigh or Peterson

relation to hold:

B v Y@ -, (3:8)
Ko 2

where B and H are momentary values, H is the peak value of field strength, p; is the
relative initial permeability, and v is the Rayleigh hysteresis coefficient. However, the
magnetic devices in power electronics circuits are under large amplitude conditions, such
that Rayleigh or Peterson relation is not valid. Although the effective dimensions are still
used in practice under large amplitude of flux density conditions for convenience, they
should not be used here because accurate material data are required. To be rigorous,
toroids with very small radial thicknesses (i.e. OD/ID ratios close to unity) should be
selected to guarantee uniform flux distribution in the cores. In this research, the MnZn
BE2 ferrite toroids, manufactured by Ceramic Magnetics with 1.1 OD/ID ratio listed in
Table 3.1 are used as sample cores. There are three sizes and four samples for each size.
In such thin cores, the eddy current loss is negligibly small and is assumed to be zero. In
other words, another advantage of using those thin cores is that the measured loss can be

taken as the hysteresis loss.
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Table 3.1 Dimensions of MnZn BE2 ferrite toroidal cores made by Ceramic Magnetics

Core (0])] ID THK* A* 1*

Name mm mm mm m? m
BE2 #1a 33.11 30.11 5.06 7.59E-6 9.93E-2
BE2 #1b 33.07 30.05 4.99 7.53E-6 9.90E-2
BE2 #1c 33.11 30.09 5.07 7.65E-6 9.93E-2
BE2 #1d 33.12 30.08 5.06 7.69E-6 9.93E-2
BE2 #2a 39.39 35.66 4.96 9.25E-6 1.18E-1
BE2 #2b 39.39 35.67 5.06 9.42E-6 1.18E-1
BE2 #2c 39.41 35.69 5.01 9.32E-6 1.18E-1
BE2 #2d 39.37 35.65 5.07 9.44E-6 1.18E-1
BE2 #3a 21.90 19.96 4.96 4.81E-6 6.58E-2
BE2 #3b 21.88 19.85 5.00 5.08E-6 6.55E-2
BE2 #3c 21.89 19.95 4.89 4.74E-6 6.57E-2
BE2 #3d 21.87 19.83 5.00 5.10E-6 6.55E-2

* where THK, A, and | are the thickness, the cross-sectional area, and the magnetic length of the
toroids, respectively.

The hysteresis loss is defined as the loss which is proportional to the area of the static
B-H loop in the low flux density region [16]. Reference [33] proposed that the hysteresis
loss increases with the frequency for “non-conducting” magnetic materials due to the
effects of magnetic relaxation. The “non-conducting” material is the medium where the
effects of eddy currents can be ignored. In order to see how the hysteresis loss changes in
the very thin sample toroidal cores, the core loss is measured over high-frequency range
(100 kHz ~ 1 MHz) and quasi-DC (1 kHz), which can represent the hysteresis loss at DC.

The high-frequency core loss can be measured by using the setup shown in Fig. 3.2.

After r, and L, are obtained, the loss can be calculated by,

2
p-Your (3.9)

Tp
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The loss calculation is included in the test program so that the loss data are available as a
part of output.

The high-frequency core loss system cannot give accurate results at low frequencies
due to the structure of the impedance probe [34] shown in Fig. 3.4. The two DC
capacitors, C1 and C2, in the impedance probe have relatively large voltage drops at low
frequencies so that the voltage monitored by the test channel is larger than the voltage
applied to the winding.

In order to sense the exciting voltage more accurately, the two-port approach [34]
can be used to measure the low-frequency or high-frequency core loss. The two-port core
loss measurement system is available in our laboratory which is controlled by a personal
computer. However, since a low-frequency power amplifier is used, this setup can only
handle low-frequency core loss measurements. The excitation voltage applied to the
primary side of the DUT is the output sinusoidal voltage of the HP 4194A impedance
analyzer fed through a low-frequency amplifier for which +15-V source voltages are
provided by two PS 503A dual power supplies. R, is 1.035€2. The secondary is a voltage
pick-up winding which should be tightly wound to a small portion of the core to eliminate
leakage flux and to ensure the accuracy of the sensed voltage. The flux density level can
be specified by controlling the secondary voltage. The number of turns of the secondary,
N, can be selected to guarantee the test channel voltage, V.., less than 1V over the entire

measurement range,

Vo = 444N, fB, A, <1V (3.10)
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Figure 3.6 provides the data of the hysteresis loss per cycle versus frequency for BE2
material at 50 mT, 100 mT, and 200 mT. At every constant flux density condition, the
hysteresis loss per cycle increases with the frequency. It means that the material data, n”,
is a function of frequency. Using the DC value of u” as any high-frequency value will
result in underestimation of the hysteresis loss. In other words, " must be measured at the
operating frequency instead of at DC.

It should be pointed out that although both the hysteresis loss and the eddy current
loss are frequency-dependent, these two portions of losses are of different natures. The
hysteresis loss only relies on the microstructure of the material and is independent of the
geometry. However, the eddy current loss is determined by the conductivity of the
material and the cross-sectional area of the core. Therefore, it is necessary to separate
these two loss mechanisms.

It is obvious that the required complex permeability, p'-ju"s, should be measured at
the frequency of interest. In order to guarantee the flux to be the same in any cross-
sectional area and to prevent the flux leakage, the exciting winding should be uniformly
and tightly wound on the sample cores. If the number of turns is not enough, several wires
should be wound in parallel. The software, which controls the measurements, has the

capability of testing, and then calculating W, and [ P" based on r,, L, and core

dimensions according to Egs. (3.5) and (3.6). Since the FEA solver needsp ' and p"

'

as the material data, rather than W ,' and n," , i,  and "
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Fig. 3.6 The hysteresis loss per cycle versus frequency measured from #2c MnZn ferrite toroid
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must be converted into (' and pg". No matter which model is used, the impedances

expressed in Egs. (3.2) and (3.4) are indentical. Therefore,

t_em 1 1
I'LS —JI“’S = '_ . "’ (3.11)
Wp JUp
ie.
' MP'
= , (3.12)
§ 1+ (Mp"l)z
and
m "
" P (3.13)

i\

The conversion of W' and pg" into W,' and W," can be done by means of an

EXCEL program according to Eqs. (3.12) and (3.13).

The thin toroids are machined from larger block. Considering that machining effects
might have happened to the surface of the cores, half of the samples (BE2#1a, BE2#1d,
BE2#2b, BE2#2d, BE2#3a, and BE2#3d) are heat-treated and then measured at room
temperature (23 ~ 25°C). Fig. 3.7 shows the measured hysteresis loss versus frequency at
50 mT, 100 mT, and 200 mT, respectively. The standard deviation of the loss density
relative to the average value is less than 20% for the 50-mT case, and less than 13% for

the 100-mT and 200-mT cases. The standard deviation of the real component relative to
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Fig. 3.7 The hysteresis loss density versus frequency measured from samples BE2#1a, BE2#1d, BE2#2b,

BE2#2d, BE2#3a, and BE2#3d at 50 mT, 100 mT, and 200 mT, respectively.
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the average value is less than 13% for the 50-mT case, and less than 10% for the 100-
mT and 200-mT cases. Therefore, it is reasonable to use the average value of the real
component of permeability and loss density (the imaginary permeability) as the material
data. It is observed that the average values are very close to the values of #3a core.
Therefore, it is assumed that the data collected from #3a core represent the material data.
When the material properties are required at 100 kHz, 200 kHz, 300 kHz, 400 kHz, and
500 kHz, only #3a core is tested instead of all the sample cores.

Eventually, the values of complex series permeability, us'—jus", can be obtained at the
different conditions, as shown in Figs. (3.8) ~ (3.10). The data will be used as input

magnetic material properties for the FEA of the ferrite core loss.
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Fig. 3.9 The imaginary component of the series permeability measured from BE2#3a toroidal core at B,
=50 mT, 100 mT and 200 mT, respectively.
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Fig. 3.8 The imaginary component of the series permeability measured from BE2#3a toroidal core at f =
100 kHz, 200 kHz, 300 kHz, 400 kHz, and 500 kHz, respectively.
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3.1.2 Core Loss Measurements

In the previous section, only BE2 toroidal cores have been measured to collect the
ferrite magnetic properties. This section will discuss the measurements of the core losses
of a BE2 EI core and a BE2 RM10 core, respectively. It aims to use the measured core
losses for comparison with the FEA results.

The setup used is the same as the one shown in Fig. 3.2. The non-uniform flux also
exists in the EI core and the RM10 core. The effective dimensions (A., L, and V.) are
inevitably used to approximate the real cores with ideal cores with uniformly flux
distributions. The approach of getting the effective dimensions is a little different from the
approach mentioned in the previous section. The additional assumption here is that the
permeability does not vary with the flux density in the same cross section under low field
conditions[16]. The above approximation combined with Peterson’s loss expression, yields
relations for A. and 1. for the cores which can be divided into k subsections, each

subsection having a uniform cross-sectional area, A;,

A _ E—IL, (3.14)
le k A
l, l;

=y (3.15

A’ 3 A )
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where ]; stands for the magnetic mean length in the i-th subsection of the core. From Egs.
(3.14) and (3.15), A and l. can be obtained eventually. It should be mentioned that the
assumption may be not theoretically sound, but it is practically useful [16].

For the one-port core loss measurement system, the accuracy of the sensed voltage is
always lower than the two-port approach. In addition, its accuracy is also affected by
using the effective dimension, A..

The geometry and core loss measured at 50 mT, 100 mT, and 200 mT of the EI core
under test are shown in Fig. 3.9, and Fig. 3.10, respectively. The measured core losses of
the RM10 (A, = 0.97 cm® and 1. = 4.61 cm) at 50 mT and 100 mT are shown in Fig. 3.11
with one-turn winding.

The core loss measurements of the EI core and the RM10 core are performed at

constant flux density. The fast testing ensures the temperature of 23 ~ 25°C.
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Fig. 3.9 Geometry of a BE2 EI core with A, = 1.0165 cm® and ], = 7.98 cm
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Fig. 3.10 The measured core loss of the BE2 EI core shown in Fig. 3.9 with one-turn winding at By, = 50
mT, 100 mT, and 200 mT, respectively.
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Fig. 3.11 The measured core loss of a BE2 RM10 core with one-turn winding at By, =50 mT and 100 mT,
respectively.
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3.2 Electrical Property Measurements

Ferrite materials are composed of highly conductive grains separated by low
conductivity boundaries. A single grain (crystalline) with a boundary can be represented by
a resistor and a loss-free capacitor in parallel, R;-C;, which represent the grain, in series
with the other parallel elements, R,-C;, which represent the boundary, as shown in Fig.
3.12 [16]. o, and o, are the conductivity values of R; and R,, respectively; €; and €, are
the dielectric constants of C; and C,, respectively. Practically, this equivalent circuit is also
used to describe the polycrystalline structure of ferrites. At a specified frequency, this
circuit can be simplified to a resistor, Ry, in parallel with a capacitor, C;, as shown in Fig.
3.13. This simplified R;-C, parallel circuit can be also used at any frequency where R, and
G; are functions of the frequency.

R, and C, have the following relations with the AC conductivity, Oac, and the relative

dielectric constant, €,, respectively:

Ot

R, =—AC" 3.16
p 4 (3.16)

Cp = 8,.80?, (317)

where t and A are the thickness and the cross-sectional area perpendicular to the current

flow direction, respectively. Therefore, Oac and &, are functions of the frequency.
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Fig. 3.13 The equivalent circuit of the bulk ferrite material
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Valuable efforts have been made to understand the frequency dependence of
conductivity and dielectric constant for ferrite materials [35,36,37,38]. This dependence
has been explained on the basis of the microscopic structure of the ferrites. The
measurement approaches have been developed. The present work requires the accurate
acquisition of oac and ¢, at different frequencies for MnZn ferrite materials because of the
importance of this information for simulations. The HP 4194A impedance analyzer or the
HP4192A LF impedance meter are used [35,37,39] to measure oac and €, on toroidal
samples. The toroid was sandwiched between two identical parallel electrodes to form an
capacitor, as shown in Fig. 3.14. The authors either used silver Epoxy to glue the sample
and parallel electrodes together, or used gold plated on the top and bottom surfaces of the
sample as two parallel electrodes. The contact between electrodes and the sample is
critical to the test accuracy. The use of gold-plated surfaces is more accurate and
expensive than the use of Silver Epoxy.

In this work, the HP4194A impedance analyzer with an HP16451B dielectric test
fixture is used to measure R;, and dissipation factor, D, directly on the disk-shaped BE2, as
shown in Fig. 3.15.

The HP16451B dielectric test fixture could be hooked up directly to the unknown
terminal of the HP4194A impedance analyzer to offer accurate measurements for R, and
D [39]. Such a fixture has four changeable guarded/guard electrodes, two of them
contacting the sample directly over the entire plane, and the other two point-touching thin

film electrodes which have been deposited on the sample. Our tests show that the former
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Fig. 3.14 Conductivity and dielectric constant measurement setup
using HP 4194A impedance analyzer
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Fig. 3.15 Geometry of the BE2 disk-shaped sample for the conductivity and dielectric constant
measurement
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two electrodes do not work very well due to the gap between the electrodes and the
sample. The electrode structure for the latter two types of electrodes is shown in Fig.
3.16. Using thin film electrodes is a good way to get rid of a big error source, the gap, and
increase the test accuracy. The thin film can be metal foil, conductive paint, fired on silver,
sprayed metal, evaporated metal, and metal spattering. Those techniques are not available
in our lab. Especially making guarded/guard thin film electrodes requires high accuracy to
ensure the isolation between them and make a perfect circle of guarded electrode.
Practically, only two unguarded gold-plated thin-film electrodes are made in this research
which have the same size as the cross section of the sample. Electrode C, whose inside
diameter of guard electrode is bigger than the sample’s, is selected as shown in Fig. 3.17.
In other words, the function of guarded/guard electrodes is taken over by unguarded
electrodes.

The edge capacitance which is shown in Fig. 3.18 cannot be eliminated. Since the
thickness is smaller than the diameter of the sample, the edge capacitance can be

neglected. After the measurements, dissipation factor, D, can be converted into C; by

1

D=————. (3.18)
2nfC R,

Then conductivity and relative dielectric constant can be finally obtained based on Eqgs.
(3.16) and (3.17). The results of the dielectric constant and conductivity measurements are

shown in Fig. 3.18 and Fig. 3.19 over 10 kHz ~ 1 MHz, respectively.
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Characterization of MnZn Ferrites

51



Thin film
electrodes

f:l

Guarded
electrode

% Guard
electrode
. Ferrite
\ sample
Unguarded
electrode

Fig. 3.17 The electrode structure of conductivity and
dielectric constant test used in this work

Characterization of MnZn Ferrites

52



Edge Edge
capacitance capacitance
‘ ya \l
N I
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Fig. 3.19 Measured dielectric constant data on the BE2 disk sample
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Fig. 3.20 Measured conductivity data on the BE2 disk sample
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4. Examples of Finite Element Simulations for Core

Loss

The material data (the complex permeability, the AC conductivity, and the dielectric
constant) required in the linear and sinusoidal excitation solver, Maxwell® have been
measured in Chapter 3. This chapter will provide several simulation examples to
demonstrate how to use the FEA solver to perform core loss analysis for ferrites and show

the flux and the loss distributions.

4.1 Example 1: Core Loss Analysis of the Sample Toroidal Core

As the first example, BE2#2a thin toroid is simulated, and its core loss values at

different operating conditions are calculated.
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In order to save CUP time, Maxwell® 2D eddy current solvers are preferred. There
are three types of 2D solvers: the eddy axial solver, the eddy axisymmetry solver, and the
eddy field solver. The first type of solver is used to solve parallel conductor problems. It
assumes that the object under study is infinitely long and the field is the same in any plane
parallel to the x-y plane studied. Also, all the currents go into or out of the x-y plane
normally, while the field has no normal components. For the toroid shown in Fig. 4.1, this
solver is hard to use because the eddy current in the core circulates, and does not flow
simply in Z direction. The second 2D solver is similar to the first one. The difference is
that the object is not infinitely long in the z-direction, but axisymmetrical like pot cores.
In other words, the first and the second solvers are simply used in different coordinates: xy
and rz. It obviously cannot be used for the toroid. The last 2D solver is designed to solve
eddy current problems of an infinitely long object. Flux is assumed to be perpendicular to
the xy plane studied. Source currents disappear and are defined through boundary
conditions of magnetic field intensity, Hyouna. It seems a perfect 2D solver to examine the
core loss in the toroid. For the toroid shown in Fig. 4.1, the core cross section in the yz
plan can be taken as the 2D object studied, as shown in Fig. 4.2. The H values at the
positions where the diameter equals ID and OD can be designated H; and Hj, respectively.
The values at top and bottom lines of the core are described as Hs and H,, respectively.
According to Ampere’s law,

§H -dl = Ni @.1)

The boundary conditions are given by the following formulas:
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H1=
wt-ID
Ni
H, = , 4.2
2= 0D (4.2)
H,=H, - Ni
2'm-x

where x is the distance from any point on the H3 or Hs boundary to the axial line of the
toroid. The excitation current, i, at certain frequency, f, and flux density, B, can be
calculated from the excitation voltage, V (Eq. 3.7), and the impedance of the circuit, Z

(Egs. 3.4 ~3.6)
i=— (4.3)

It is easy to see that the H values on the two boundaries, H; and H,, are constant, but
H values on the other two boundaries, H; and H,, are functional. Right now, this solver
cannot deal with functional boundary condition cases. If this function is available, the 2D
solver will be a good tool to study core loss issues in toroids. The OD/ID ratio of BE2#2a
thin toroid is 1.1. That means that the H values on the Boundaries, H; and H,, can be
approximately treated as constant. Under this assumption, this 2D eddy field solver can be
utilized to simulate the loss in such thin toroid.

When the 2D solver is selected, the dielectric constant effect on the core loss
calculations is primarily researched. In the 3D eddy current solver, the dielectric constant
of any material is assumed to be unity. Therefore, examining the loss difference between

using unity dielectric constant and using the dielectric constant measured at the frequency
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of interest is helpful to evaluate the assumption made in the 3D solver. Table 4.1 gives the

comparison results for the cases with both low and high values of flux density and

frequency. It shows that loss differences due to these different settings for the dielectric

constant are negligible. Even for the worst case here (case 4), the differences for both the

eddy current loss and the hysteresis loss are less than 1%. So the assumption of unity

dielectric constant in the 3D solver is adequate.

Table 4.1 The core loss comparison between taking dielectric constant as unity and its real value

e=1 ge=1
B(M f (kHz) Ereal Py (W) PPW) | (W) P (W)
case 1 .05 51 136865 6.05x10° | 1.13x10° | 6.05x10° 1.13x10®
case 2 .05 1000 17135 .608 4.06x10 610 4.07x10°
case 3 2 51 136865 .108 1.81x107° .108 1.81x107
case 4 2 702 47515 5.266 024 5.283 023

Simulations performed on BE2#3a toroid are done over 50 ~ 1000 kHz frequency

range and under 50 mT, 100 mT, and 200 mT, respectively. Fig. 4.3 shows that the

simulated core losses match the measurements well. The differences are within 5% range.

It verifies that the FEA work well on the core with uniform flux distribution.
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4.2 Example 2: Core Loss Analysis of an EI Core

This section concentrates on the simulations of the EI shown in Fig. 3.9. EI cores
have simple geometry, similar to toroidal cores, but their flux distribution are more
complex than toroids due to flux crowding at the corners.

Obviously, all the Maxwell® 2D solvers are not suitable for the loss analysis of the
El core. Therefore, 3D eddy current solver is used for the EI core simulation. The
simulation region is reduced by using the symmetry of the geometry. In particular, only
1/8 of the EI is simulated (see Fig. 4.4). The symmetrical plane on the xz plane satisfies
Dirichlet Condition; the other two symmetrical planes on the xy and yz planes,
respectively, satisfy Neumman conditions.

In the first case simulated, the 1/8 EI core is excited by a 400 kHz and 1.06A sine
wave of current that results in 100 mT flux density. From laboratory measurements, the

material data under this condition are @ =2528 - j1584, 0 =1.485(s/ m). The

simulated and measured core loss for this condition can be found in Table 4.2. Table 4.2

shows that simulation result of total core loss is greater than the measurement by 8%.

Table 4.2 The simulation and measurement results of the core loss in the EI core for B, = 100 mT and

= 400 kHz
P h__simulation Pc_simulation Ptolal_simulation P total__measured Difference
W) W) W) W)
13.56 59 14.15 13.02 8%
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Fig. 4.4 The whole EI core and 1/8 of the EI under simulation
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This solver uses a constant value of permeability for the entire EI core which means
that flux is uniformly distributed in the core. However, the nonuniform flux distribution on
a cut-plane, which is parallel to the yz plane and cuts through the 1/8 EI core, is plotted in
Fig. 4.5. It shows that the flux concentrates at the inside corners and becomes very low at
the outside corners. In order to quantify the flux density variation, the flux density
distribution is plotted in Fig. 4.6 along the line from the inside corner to the outside corner
on the previous cut-plane. Finally, the core is divided into several parts: the inner corners,
the outer corners and the main part. Then the piecewise EI core is simulated again by
using the average flux density and the respective permeability values in each part given in
Table 4.3. It is found that the maximum loss density value at the inner corners increases to
2660 mW/cm®, while the value obtained by using uniform ‘permeability is only 2100
mW/cm®. Table 4.4, however, shows the calculated core is only 0.5% higher than one
obtained by using constant permeability in the entire core. This phenomenon can be
explained. Although the flux density reaches up to .2 mT at the inner corner, the volumes
of the respective regions are so small that the localized high loss will not have evident
effects on the total loss in the core. Although the volume of the core at the outer corner
regions with 0 ~ 0.05 mT is not so small, the loss in those regions is relatively small due to
their low flux density. The loss error resulting from inaccurate permeability value will not
be critical, either. In addition, the underestimated loss at the inner corner will be
compensated by the overestimated loss at the outer corner to some degree. Therefore, the

piecewise approach is not necessary in the simulations if the total loss is considered.
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Fig. 4.5 The nonuniform flux distribution on a cut-plane of the EI core, which is parallel to the yz plane
and cut through the 1/8 EI core
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Fig. 4.6 The flux density line-plot of the EI core from the inside corner to the outside corner on the same
cut-plane as used in Fig. 4.5
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Table 4.3 The average flux density and the complex permeability in the inner corner, outer corner, and

main part of the EI core at 400 kHz and 100 mT

Inner corner Outer corner main part
Average flux density (T) .18 .1 .025
Complex permeability 2580-j2100 2528-j1584 2215-j475

Table 4.4 The core loss comparisons between computations assuming constant flux density in the entire
EI core ( Approach I ) and those using piecewise constant permeability approach (Approach II)
for f = 400 kHz and B,, = 100 mT case

Approach I Approach II Total Loss
P, (W) P. (W) Piowas (W) Py (W) P, (W) P (W) | Difference
14.74 .78 15.52 14.82 .78 15.60 0.5 %

Fig. 4.7 shows the eddy current loss, the hysteresis loss, and the total loss
distributions on the same cut-plane. It is easy to find that the hot spots are located at the
inside corners. Simulations of the EI core are also performed at several flux density and
frequency conditions. Figure 4.8 shows the calculated and measured core losses. The
simulation results are higher than the measurements by about 25%. Since the effective
dimensions, A. and I, are not defined on a strong theoretical basis as explained in Chapter

3, the measurements which use those dimensions may be off from the real loss values.
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Fig. 4.7 The eddy current loss, the hysteresis loss, and the total core loss distributions on the same cut-
plane of the EI core as used in Fig. 4.5 at 400 kHz and 100 mT flux density condition
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Fig. 4.8 The core loss comparison between simulations and measurements for the BE2 EI core shown in
Fig. 3.9, where dots are the simulation results and solid lines are the measurement results
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4.3 Example 3: Core Loss Analysis of an RM10 Core

RM cores have more complex geometry than EI cores. This section will show how to
simulate RM cores by selecting a BE2 RM10 core and using the 3D eddy current solver.
Fig. 4.9 shows the entire RM10 core and the 1/8 of the core under simulation. The
simulated losses are compared with the measurements under the constant permeability
assumption in Fig. 4.10. There are good agreements between the measured and simulated
results. The differences are about 15%. The effective dimensions still have some effects on
the measurements. Finally, the flux, the eddy current loss, the hysteresis loss, and the total
core loss distributions are shown qualitatively (Fig. 4.11 ~ Fig. 4.15) and quantitatively
(Fig. 4.16 ~ Fig. 4.19). The hot spots are identified easily from the visual field or the loss
distributions. They are located right at the intersections between the inside corners and the
yz plane.

The RM10 core simulations are very time-consuming and require rather powerful
computer resources due to the greatly uneven flux distribution. The accuracy of

simulations highly rely on the fineness of the mesh to some degree.
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Fig. 4.9 The entire RM10 core and 1/8 core under simulation
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Fig. 4.10 The core loss comparison between simulations and measurements for the BE2 RM10 core,
where dots are simulations and solid lines are measurements
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Fig. 4.11 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to and .1” above the xy plane
(a)  the flux distribution in the centerpost and the leg: relatively uniform
(b)  the eddy current loss distribution in the centerpost and the leg
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Fig.4.11 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to and .1" above the xy plane
(c)  the hysteresis loss distribution in the centerpost and the leg: relatively uniform
(d) the total loss distribution in the centerpost and the leg
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Fig. 4.12 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and .01" below the bottom of the top plate
(a) the flux distribution in the centerpost and the leg: flux concentrates at the corners
(b)  the eddy current loss distribution in the centerpost and the leg: evident skin effect
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Fig. 4.12 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and .01" below the bottom of the top plate
(c)  the hysteresis loss distribution in the centerpost and the leg: loss concentrates at the corners
(d) the total loss distribution in the centerpost and the leg
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Fig. 4.13 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and right at the bottom of the top plate
(a)  the flux distribution in the centerpost, the top plate, and the leg: flux concentrates at the corners
(b)  the eddy current loss distribution in the centerpost, the top plate, and the leg
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Fig. 4.13 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and right at the bottom of the top plate
(c)  the hysteresis loss distribution in the centerpost, the top plate, and the leg
(d) the total loss distribution in the centerpost, the top plate, and the leg
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Fig. 4.14 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and .01" above the bottom of the top plate
(a) the flux distribution in the centerpost, the top plate, and the leg
(b)  the eddy current loss distribution in the centerpost, the top plate, and the leg
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Fig. 4.14 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and .01” above the bottom of the top plate
(c)  the hysteresis loss distribution in the centerpost, the top plate, and the leg
(d) the total loss distribution in the centerpost, the top plate, and the leg
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Fig. 4.15 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and .05" above the bottom of the top plate
(a)  the flux distribution in the centerpost, the top plate, and the leg
(b)  the eddy current loss distribution in the centerpost, the top plate, and the leg
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Fig. 4.15 The flux, the eddy current loss, the hysteresis loss, and the total core loss distributions on the
plane which is parallel to the xy plane and .05" above the bottom of the top plate
(c)  the hysteresis loss distribution in the centerpost, the top plate, and the leg
(d) the total loss distribution in the centerpost, the top plate, and the leg
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Fig. 4.16 The flux distribution on a vertical plane which has 10° angle with the yz plane, and the flux,
the eddy current loss, the hysteresis loss, and the total core loss distributions on a set of horizontal lines
which are the intersections of this plane and the five horizontal planes used in Fig. 4.11 ~ 4.15.

(a)  the flux distribution on the vertical plane
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Fig. 4.17 The flux distribution on a vertical plane which has 20° angle with the yz plane, and the flux,
the eddy current loss, the hysteresis loss, and the total core loss distributions on a set of horizontal lines
which are the intersections of this plane and the five horizontal planes used in Fig. 4.11 ~ 4.15.

(a) the flux distribution on the vertical plane
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Fig. 4.18 The flux distribution on a vertical plane which has 30° angle with the yz plane, and the flux,
the eddy current loss, the hysteresis loss, and the total core loss distributions on a set of horizontal lines
which are the intersections of this plane and the five horizontal planes used in Fig. 4.11 ~ 4.15.

(a)  the flux distribution on the vertical plane
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Fig. 4.19 The flux distribution on a vertical plane which has 60° angle with the yz plane, and the flux,
the eddy current loss, the hysteresis loss, and the total core loss distributions on a set of horizontal lines
which are the intersections of this plane and the five horizontal planes used in Fig. 4.11 ~ 4.15.

(a) the flux distribution on the vertical plane
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5. Conclusions and Future Work

This thesis includes two parts of work: the ferrite material characterization and FEA
of the core loss in ferrite cores. Simulations require the characterized material data (the
complex permeability, the conductivity, and the dielectric constant) as input. Since
manufactures do not provide suitable material data required and there are no fundamental
experimental test procedures available, the measurements of those material properties are
first demonstrated in this work. The major contributions of this part of work are:

1. illustrating that the toroid with OD/ID = 1 should be used in the magnetic properties
(complex permeability) measurements to guarantee the flux uniformly distributed in the
core and the eddy current loss negligible;

2. proposing that the imaginary component of the complex permeability should be
measured at the frequency of interest instead of DC due to the frequency-dependent
hysteresis in the ferrites;

3. pointing out that the use of the effective dimensions, A. and 1., which are defined at low

magnitude of flux density, at the large-amplitude field conditions will influence the
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accuracy of the core loss in the cores with non-uniform flux distribution. A more reliable
core loss test method needs developing;

4. finding out why the AC conductivity, rather than the DC conductivity, should be
employed in the simulation, and setting up a testing system in the laboratory.

All the material data are collected at room temperature in this research. Multi-
temperature level measurements need to be done in the future work.

Based on the measured material data, FEA of the ferrite core loss are performed on
the sample toroidal core, an EI core, and an RM10 core. There is very good agreement
between simulated and measured core losses for the sample toroid. The simulations of the
EI core and the RM10 core show how to simulate a core with an non-uniformly
distributed flux. The comparison of the simulated core loss with the measurements has
differences to some degree due to the measurements. So, more extensive verifications
need to be done in the future. Also, more accurate solutions of core loss in greatly non-
uniform flux cores rely on more powerful computer resources and a non-linear FEA

solver.
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Appendix A. The Derivation of Core Loss in Ferrites

In this section, the core loss formulas under sine drive conditions will be derived
based on the electromagnetic field theory.

Maxwell’s equations under sinusoidal excitations can be expressed in the complex

form:
VxH=] + joD, (A1)
VxE =-joB, (A2)
V-B=0, (A3)
V:-D=p, (A4)

where B is the magnetic flux density,
E is the electric field intensity,
D is the electrical flux density,
J is the conduction and convection current density,
p is the volume density of free charges,
B, H, E, D, and J are phasors in the complex plane.
In the linear, homogenous, and isotropic media, there are several constitutive relations

between field quantities:
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B=uH, (A5)
D=¢E, (A.6)
J =coF, (A7)
where pu, €, o are the permeability, the dielectric constant, and the conductivity of the
media, respectively. All of these quantities are material data.
In order to study the sinusoidal time-varying electromagnetic field, any field quantity,
A(t), can be expressed by a phasor, A(wt), as shown in Fig. A.1.
In particular, 4(t) changes with time sinusoidally:
A(t) = A,cos(wt +0). (A.8)
In the complex plane, A(t) can be represented by a rotating phasor, A(wt), which has the
initial phase angle, 0, and rotates around the origin at angular speed. A(wt) can be
expressed as
Awt) = A, e/ (A9)
where the magnitude of A(wt) is the same as the magnitude of 4(t). According to Euler's

formula,
e/ @0 - cos(wt +0) + jsin(wt +0). (A.10)
The projection of A(wt) on the real axis is the quantity 4(t) which oscillates sinusoidally

with time as A(wt) rotates. That is,
A(t) = Re[A(wt)] = Re[A /@], (A.11)

where Re indicates the real component of a complex number.
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Fig. 2.1 A phasor in the complex plane
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Electromagnetic field is an energy carrier. The energy passing through 3, the unit area
which is normal to the direction of energy flow, can be represented by the Poynting

vector,
b(t) = £(t) x %(t). (A.12)
&(t) and ¥(t) can be represented by the corresponding phasors,

£(t) = Re(E(wt)) = Re(E e/ ), (A.13)

%(t) = Re(H (wt)) = Re(H, e/ ©+%?), (A.14)
where E;, and H,, are only spatial functions, not time functions.

Then the Poynting vector, 4(t), can be written in this form,:
3(t) = RJE(wt)] x RJH(w)]. (A.15)

If two general phasors A and B are considered, the following identity can be obtained.
Re(A) x Re(B) = —;-Sﬁe(A xB +AxB) . (A.16)
Eq. (A.15) can be written in another form according to above identity,
3(t) = —;—fﬁe(E(wt) x H™ (ot) + E(wt) x H(wt)). (A.17)

The time-average power density, S =< b(f) >, can be obtained by integrating 5(Z)

over the period, T,
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T T
S =< 5(£) >= 51; [(e)de = -]1: f—;éﬁe(E(u)t) x H" (0t) + E(wt) x H(ot))dt
0 0

T ) T .
= lf_l_me(EmHmej(Gl—BZ) )dt + lflme(EmHmeJ(zm”el*ez))dt.
T (2 T92

(A.18)
Since the first term on the right hand side of Eq.(A.18) is independent of time, its
integration over the period is equal to itself. The integration of the second term equals

zero, as shown in Eq. (A.19):

T T . . . .
f(E x H)dt = g%eﬂehBZ)deJMt _ Er;(l':m o/ (01+02) (eﬂmtlg‘) =0.
[/
(A.19)
Hence, we know,
S =< 3(t) >= %?ﬁe(E(wt) xH" (wt)). (A.20)

Next, the divergence of < A(£) > can be expressed as

V-<$(t)>=V- [%?Re(E((nt) x H" (wt))] = -;-s)fte[v -(E(wt) x H" (0t))]
= %?ﬁe[H* (0t) - (V x E(wt)) - E(wf) - (V x H* (0t))].

(A21)

Substitution of Egs. (A.1) and (A.2) into Eq. (A.21) yields

1 . ,
V-<3(t) >= --z—me[H (w?) - (JoB(wt)) + (A2
E(wt)-J" (ot) + E(ot) - (joD(wt))].

For two phasors, A and B, there is another identity,
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(A-B) =A"-B". (A23)
Also,
(joD)" = - joD". (A24)

Eq. (A.22) turns to Eq. (A.25) by substituting Egs. (A.23) and (A.24) into it:

V<8 »= -2 Re[H" (0f) - (joB(wt))
2 (A.25)

+E(0t) - J " (wt) - E(wt) - (oD (0t))].
The Poynting theorem tells us that the average power, P , coming into the volume is

P =—(<S>dds. (A.26)

And the divergence theorem tells us,

[<S>ds=[V-<S>dv. (A.27)
s \4
Therefore, Y, P can be given by
SP=—[V-<b>dv =%f9fte[H* (joB) +E-J" - E-(joD")ldy.
\4 \4

(A.28)
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