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Several hypothetical silica structures have been generated using a simulated-annealing strategy
with an ab initio based covalent-bonding potential. First-principles total-energy pseudopotential
methods have been used to examine several promising hypothetical structures and to compare their
structural parameters, cohesive energies, and bulk moduli with those of low quartz, low cristobalite,
silica sodalite, and stishovite. The cohesive energies of these hypothetical structure types are found
to be equivalent to those of low quartz, low cristobalite, and silica sodalite, and significantly lower

than that of stishovite.

I. INTRODUCTION

One of the most challenging computational problems
in materials science is the first-principles derivation of
the stable and metastable structure types that can crys-
tallize in a given chemical system and the prediction of
their properties.!»? In particular, a derivation of the sta-
ble and metastable structure types for the silica system
and a prediction of their properties is of interest, because
of the use of silica in technology and its abundance in na-
ture. Not only is silica widespread in nature, being found
principally as the stable structure type quartz and, to a
much lesser extent as cristobalite, tridymite, coesite, and
stishovite, but it also adopts a large variety of metastable
structure types, some of which occur in nature and others
which have been synthesized in the laboratory. Besides
its industrial uses such as filters, insulators, and micro-
strain control devices, silica has also been put to good use
in computational physics as a relatively simple but chal-
lenging system for testing computer models and modeling
strategies. However, despite the many studies that have
been completed, much remains to be learned about sil-
ica, its chemistry, and the cohesive forces that govern the
structure types that it can adopt and their properties.

During the past decade, progress has been made in
the mathematical modeling of silica with the calcula-
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tion of the structural and the elastic properties of sev-
eral of its stable structure types. In these studies, the
modeling of silica has been approached in two different
but complimentary ways. On the one hand, relatively
inexpensive calculations have been completed with em-
pirical, semiempirical, and ab initio based potential en-
ergy functions designed to mimic the force field of sil-
ica. For the most part, these calculations have been
relatively successful despite their low computer costs in
reproducing the structural and physical properties of sev-
eral structure types of silica.® On the other hand, peri-
odic electronic structure calculations based on modified
electron gas strategies, Hartree-Fock theory, and density-
functional theory have also been completed. These cal-
culations, albeit computationally much more expensive,
have been successful in a number of cases in generat-
ing accurate static and dynamic properties for the silica
structure types.* However, one of the major drawbacks
of both types of calculations is that they have been com-
pleted with a knowledge of the topologies of the struc-
tures to be modeled. No electronic structure calcula-
tions have been completed without a knowledge of the
atomic coordinates of the structure. However, as ob-
served above, the goal of computational modeling is not
only to predict the properties of a given structure type,
but also to derive the coordinates of the structure start-
ing with a random arrangement of atoms.
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The atoms in a material tend to arrange themselves in
order to minimize the energy of the resulting structure.
In order to generate additional structure types, it seems
a rather straightforward task to first generate a suitable
energy functional and then to determine an efficient pro-
cess to move the atoms about in such a way as to locate
the minima on the Born-Oppenheimer potential energy
surface that correspond to a low-energy structure. Boisen
and co-workers used a combined simulated annealing and
a quasi-Newton strategy to derive framework structure
types for silica using a potential energy function based on
the theoretical force field of the molecule HgSi»O7.6 Each
calculation was initiated with four SiO, formula units,
randomly distributed in a unit cell. Using an algorithm
that searches for global and local minimum-energy struc-
tures of a potential energy model for silica, more than
100 framework structure types were derived of which 23
were distinct.” Despite the assumption of P1 symmetry
in the calculations, only 7 of the 23 local minimum-energy
structures possess triclinic symmetry with those remain-
ing exhibiting symmetries between Pc and I42d to within
0.0001 A. In these calculations, a structure type denoted
BGB1, was derived with I4 space-group symmetry and a
coordination sequence that is different from that of cristo-
balite and all of the other known silica structure types. It
has a structure that consists of four- and eight-membered
rings of silicate tetrahedra that are linked into an ele-
gant framework by six-membered rings. As Boisen and
co-workers found that the calculated energy for BGB1,
using the potential energy function matches that cal-
culated for low-cristobalite, total-energy pseudopotential
calculations were completed for the structure. In addi-
tion, calculations were completed for two other structure
types (BGB2 and BGB3), whose energies and coordi-
nation sequences match those calculated for low cristo-
balite. The BGB2 structure has the true high cristo-
balite structure with space group I42d and the BGB3
structure is a stuffed derivative structure of cristobalite
with space group Pna2;. This paper describes the results
of the calculations and makes a comparison of the results
with those obtained for low quartz, low cristobalite, silica
sodalite, and stishovite.

II. THE THEORETICAL METHODS OF
MODELING

The quantum mechanical modeling of silica is a compu-
tationally demanding task. The problems of deep pseu-
dopotentials required to accurately model the oxide ion
combined with the low symmetry and large unit cells of
many of the structure types of silica made realistic and
accurate quantum mechanical modeling of the structures
intractable until recently. Also, because of the flat na-
ture of the SiO bond length—SiOSi bond angle potential
energy surface, the calculation of an accurate SiOSi bond
angle for a silica structure type is very difficult.®

A significant advance that allowed the pseudopoten-
tial technique to be applied to much larger and com-
plex systems than previously possible was made by Car
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and Parinello.® They developed a quantum molecular
dynamics technique that used an iterative approach to
matrix diagonalization and showed how to derive an
eigenvector that scales almost linearly instead of cubi-
cally with the number of plane waves used in a cal-
culation. However, this technique still scales cubically
with the number of atoms. This technique did not work
for oxides, because of its use of local pseudopotentials.
To circumvent this problem, Allan and Teter showed
how oxides could be successfully modeled with a CP-
type technique, using nonlocal pseudopotentials.!® Later,
a preconditioned conjugate-gradient technique was de-
veloped for efficiently extracting eigenvectors that not
only speeded up the calculation, but also allowed larger
systems to be studied.!! A review of iterative diago-
nalization methods and the pseudopotential plane-wave
method can be found in a recent review by Payne et al.1?
Recent significant advances in the application of the pseu-
dopotential technique to silica and other oxides are the
development of the extended-norm hardness-conserving
(ENHC) (Ref. 15) and the Vanderbilt ultrasoft pseu-
dopotential formalisms. The ENHC pseudopotential for-
malism has been shown to be considerably more accu-
rate than norm conserving (NC) pseudopotentials when
compared to the all-electron results. The Vanderbilt ul-
trasoft pseudopotentials offer the advantage of requiring
significantly fewer plane waves than the ENHC and NC
pseudopotentials, while still providing an impressive de-
gree of accuracy as evident in a recent study of silica
using this technique.2®

This work was carried out using the BIOSYM
PLANE_WAVE code. This code uses a preconditioned
conjugate-gradient method to minimize the electronic de-
grees of freedom. The program solves for the electronic
charge density using a density-functional framework!?
within the local density approximation to electron ex-
change and correlation. The exchange-correlation term
of the total energy is a rational polynomial fit to the
Perdew-Wang fit, which itself reproduces the Ceperley-
Alder data.l* This form of the exchange-correlation func-
tion allows for continuous higher order derivatives, which
makes it a more appropriate form for first-principles
linear-response calculations. The electronic wave func-
tions are expanded in a plane-wave basis set with periodic
boundary conditions. Extended norm- and hardness-
conserving (ENHC) pseudopotentials constructed within
the scheme developed by Teter!® are used. This scheme
ensures that the total energies of the atom and pseu-
doatom match to second order with respect to arbi-
trary changes in valence state occupancy. These poten-
tials implement nonlocality with a separable form using
double-reference states using Blochl’s generalization!® of
the Kleinman and Bylander scheme!” and include scalar
relativistic corrections using the technique proposed by
Hamann.'® The oxygen potential was generated using
neutral 2522p* as the reference state with a radial cutoff
of 1 bohr for both the s and p components of the poten-
tial. The s angular momentum channel was treated as
a nonlocal component with two radial projection func-
tions. The p angular momentum channel was treated as
the local component of the potential. The radius of the
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nonlinear core correction was 0.90 bohr. The silicon po-
tential was generated using 3523p23d° as a reference state
with a radial cutoff of 1.9 bohr for the s, p, and d compo-
nents of the potential. The s and p angular momentum
channels were treated as nonlocal components of the po-
tential with two radial projection functions each. The d
channel was treated as the local component of the po-
tential. The radius of the nonlinear core correction was
taken to be 1.70 bohr.

We have calculated the cohesive energy for each struc-
ture as a function of volume/SiO; formula unit. At a
given volume, the positions of the cations and the anions
were determined by minimizing the Hellmann-Feynman
forces® on the ions. The unit cell edges were determined
by making adjustments, until the Pulay-corrected stress
tensor was zero. The total energies were corrected using
the finite-basis set correction method developed by Fran-
cis and Payne.2° The structural parameters were consid-
ered to be fully relaxed when the forces on the ions were
less that 0.005 eV/A and all stress tensor components
were less than 0.001 eV/A3. Calculations of this type
were completed for a variety of volumes for each struc-
ture type. The resulting energies were fit to an expression
of the form

E=a+bV Y3 4 cv=2/3 qv1, (1)

which was used to estimate the pressure, the bulk modu-
lus (By), and the pressure derivative of the bulk modulus
(By). This expression was found to fit the data better
than the Birch-Murnaghan or Birch?! equation of state.

In order to estimate with some degree of confidence
the very small-energy differences obtained between the
structure types, a convergence level of 0.1 mHartrees per
SiO, unit was required in the calculations. The number
of special k points??272% for the Brillouin zone integra-
tion was increased until the total energies had converged
to 0.1 mHartrees per SiO; unit. Calculations were also
completed at various kinetic energy cutoffs. It was de-
termined that a cutoff of 60 Hartrees was required for
a satisfactory convergence of the structural parameters.
Further calculations on the the relaxed structures at a ki-
netic energy cutoff of 75 and 100 Hartrees show that the
energy differences between the structures has converged
to less than 0.0001 Hartrees at a kinetic energy cutoff of
75 Hartrees.

It was also found that the energies of the various struc-
tures converge at slightly different rates with respect to
increasing kinetic energy cutoff. It is, therefore, neces-
sary to carefully monitor these convergence rates in order
to determine that the energy differences among various
structures has stabilized.

III. RESULTS AND DISCUSSIONS

A. Structural parameters
1. Stishovite

Stishovite adopts the rutile structure and can be de-
scribed as a distorted hexagonal close-packed array of
oxide ions, in which one-half of the available octahedral
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sites are filled by Si cations. The SiOg octahedra share
opposite edges and form chains that run along c that
are cross linked to equivalent chains by three-coordinate
oxide ions as shown in Fig. 1. Stishovite is one of the
most incompressible silicates known to man. It has two
SiO; formula units per unit cell and possesses P4, /mnm
space-group symmetry. Stishovite is of geophysical in-
terest as a possible constituent phase in the mantle and
of general interest as being the simplest structure having
octahedrally coordinated oxygen.

In our calculations for stishovite, we chose a [444]
Monkhorst-Pack grid that translates into six special k
points in the irreducible Brillouin zone (IBZ). In the gen-
eration of the optimized structural parameters, a kinetic
energy cutoff of 60 Hartrees was used, which corresponds
to about 7000 plane waves in the basis set. The resulting
structural parameters given in Table I are in close agree-
ment with the room temperature and pressure results of
the high-pressure single-crystal x-ray diffraction study of
Ross et al.,?® as well as previous theoretical studies us-
ing the Vanderbilt ultrasoft pseudopotentials?® and the
linear augmented plane-wave method.2”

In addition, structural parameters were calculated for
simulated pressures up to 10 GPa. The resulting mo-
lar volume as a function of pressure is presented in Fig.
2, with the results of some previous experimental and
theoretical studies.25728:30 The calculated structural pa-
rameters and bulk modulus for stishovite agree extremely
well with the experimental data and with the results of
previous calculations. High-pressure structural determi-
nations reveal that the structure is anisotropic in its com-
pression, with the structure compressing perpendicular
to chains along ¢ by about twice that along the chains.
This structural response to pressure translates into an

FIG. 1. Representation of the stishovite structure. Small
and large spheres represent O and Si atoms, respectively.
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TABLE I. Structural parameters of stishovite.
This Previous Previous
Parameter  Experiment work calculation calculation
a (R) 4.1801*  4.1804 4.1612° 4.1626°
c (A) 2.6678%  2.6651  2.6671° 2.6641°
O (x) 0.3067>  0.3064  0.3055° 0.3060°
Si-0(1) (A) 1.7564*  1.7565 1.7573° 1.7546°
Si-0(2) (A) 1.8130°  1.8116  1.7979° 1.8014°
Si-O-Si (deg.)  130.58*  130.66  130.64° 130.61°
B, (GPa) 2984 276 282° 324°
B 4.0° 6.8 5.6° 4.0°

®Reference 25.
bReference 26.
“Reference 27.
dReference 29.

increasing c/a ratio with increasing pressure. Our theo-
retical calculations reproduce this result within the sta-
tistical error and agree with the experimental observation
that the primary structural response to pressure is a de-
crease in the Si-O bond lengths.

2. Low quartz

Low quartz is the stable phase of SiO, at ambient con-
ditions. Its structure as shown in Fig. 3, consists of trig-
onal helical chains of SiO,4 tetrahedra that run parallel
to ¢ and are linked laterally into a tetrahedral framework
structure. It has three SiO, formula units per unit cell,
and possesses P3,21 space-group symmetry.

In our calculations, six special k& points were chosen at
(%70,%)7 (07%a%)9 (%a%a%)a (%707§)a (0’%7% ’ (%7%7%) with
respective weights of 0.125, 0.125, 0.250, 0.125, 0.125,
and 0.250. A kinetic energy cutoff of 60 Hartrees corre-
sponds to about 17 000 plane waves in the basis set. The
resulting structural parameters given in Table II agree
well with the room temperature and pressure results of
the high-pressure single-crystal x-ray diffraction study
of Levien et al.,3' the previous theoretical studies us-
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FIG. 2. Molar volume of the stishovite structure, as a func-

tion of pressure.
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FIG. 3. Representation of the low-quartz structure. Small
and large spheres represent O and Si atoms, respectively.

ing the Vanderbilt ultrasoft pseudopotentials,?® and the
Troullier-Martins soft pseudopotentials.3°

In addition, structural parameters were calculated for
simulated pressures up to 15 GPa. The resulting molar
volume as a function of pressure is plotted in Fig. 4,
together with the results of some previous experimental
and theoretical studies.?8:3%:32735 The calculated struc-

TABLE II. Structural parameters of low quartz.

This Previous Previous
Parameter Experiment work calculation -calculation

a (A) 4.9160>°  4.9541  4.8756° 4.8900°

c (A) 5.4054>  5.4414  5.4052° 5.4900°

Si (u) 0.4697°  0.4750  0.4654° 0.4690°

0 (x) 0.4135>  0.4151  0.4125° 0.4180°

o (y) 0.2669*  0.2584  0.2745° 0.2740°

O (z) 0.1466*  0.1264  0.1143° 0.1440°

Si-0(1) (A) 1.6046*>  1.6061 1.6077° 1.6159°

Si-O(2) (&) 1.6137>  1.6092 1.6153° 1.6087°
Si-O-Si (deg.) 143.7° 146.3  141.782° 143.8°
By (GPa) 37.1® 37.0 37.0° 38.1°
B} 6.2° 3.2 4.3 3.9°

2Reference 31.
bReference 26.
°“Reference 30.
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FIG. 4. Molar volume of the low-quartz structure, as a
function of pressure.

tural parameters and bulk modulus agree well with ex-
perimental data and with the results of previous calcula-
tions. Our calculations reproduce the increasing c/a ra-
tio that is observed experimentally, they also agree with
experimental observation that the primary structural re-
sponse to pressure is a narrowing of the Si-O-Si bond an-
gle and that the tetrahedra become more irregular with
increasing pressure.

3. Low cristobalite

Low cristobalite is a relatively open tetrahedrally co-
ordinated framework structure with P4,2;2 space-group
symmetry and four SiO, formula units in the unit cell.
A representation of the structure is shown in Fig. 5.

FIG. 5. Representation of the low-cristobalite structure.
Small and large spheres represent O and Si atoms, respec-
tively.
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FIG. 6. Molar volume of the low-cristobalite structure, as
a function of pressure.

In our calculations, a [444] Monkhorst-Pack grid was
chosen, which translates into six special k£ points in the
IBZ. In the generation of the optimized structural pa-
rameters, a kinetic energy cutoff of 60 Hartrees was used,
which corresponds to approximately 27000 plane waves
in the basis set.

The structural parameters calculated for low cristo-
balite, given in Table III, compare moderately well with
those measured at room temperature and pressure3® and
those obtained in a theoretical study using the Vander-
bilt ultrasoft pseudopotentials,2® but not as well as ex-
pected. The calculated bond lengths are realistic, but
the calculated Si-O-Si bond angle is ~6° wider than the
experimental value of 146.5°,3¢ which translates into a
larger unit cell than observed experimentally.

In addition, structural parameters were calculated for
simulated pressures up to 2 GPa. The resulting molar
volume, as a function of pressure, is presented in Fig. 6
with the results of some previous experimental and the-
oretical studies.?6:30:36738 The calculated bulk modulus
of 11.9 GPa agrees well with the experimental results.36

TABLE III. Structural parameters of low cristobalite.

This Previous
Parameter Experiment work calculation
a (A) 4.9717° 5.0630 4.9586°
c (A) 6.9222° 7.0823 6.9074°
Si () 0.3003* 0.2895 0.3028°
O (z) 0.2392° 0.2431 0.2383°
O (y) 0.1044* 0.0833 0.1093°
O (2) 0.1787° 0.1687 0.1816°
Si-0O(1) (&) 1.6034> 1.6037 1.6113°
Si-0O(2) (A) 1.6026° 1.6037 1.6046°
Si-O-Si (deg.) 146.5° 152.2 144.9°
B, (GPa) 11.5* 11.9 14.8°
B} 9° 3.0 2.4°

2Reference 36.
PReference 26.
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Our calculations reproduce the decreasing c/a ratio that
is observed experimentally and also agree with experi-
ment in that the primary structural response to pressure
is a narrowing of the Si-O-Si angle.

4. Silica sodalite

The sodalite structure type of silica is a very open
tetrahedrally coordinated framework structure, which is
composed of four- and six-member rings linked into cages
that are packed together in a cubic close-packed array,
and possesses Im3m space-group symmetry with 12 SiO,
formula units in the unit cell. It is an elegant structure
consisting a framework of rigid cubo-octahedra, as shown
in Fig. 7.

In our calculations for silica sodalite, a [222]
Monkhorst-Pack grid was chosen that translates into one
special k point in the IBZ at (%, i %) In the generation
of the optimized structural parameters, a kinetic energy
cutoff of 60 Hartrees was used, which corresponds to ap-
proximately 108000 plane waves in the basis set. We
were unable to calculate the cohesive energies at higher
kinetic energy cutoffs, due to machine limitations.

Our calculated structural parameters for silica sodalite,
presented in Table IV, compare reasonably well with the
the room temperature and pressure results of the single-
crystal x-ray diffraction study of Richardson et al.3° In
addition, structural parameters were calculated for sim-
ulated pressures up to 15 GPa. In order to calculate the
total energies at various volumes, we chose to use a ki-
netic energy cutoff of 35 Hartrees. While this is not a
suitable kinetic energy cutoff to use when comparing the
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TABLE IV. Structural parameters of silica sodalite.
This
Parameter Experiment work
a () 8.8273% 8.9431
o (y) 0.6475% 0.6477
Si-0(1) (A) 1.5855* 1.6068
Si-O-Si (deg.) 159.6° 159.5
By (GPa) a 122
By a 4.0

®Reference 39.

energy differences between structures, it is adequate for
calculating the bulk modulus. We determined the bulk
modulus of silica sodalite to be 122 GPa. This result con-
forms with the expected rigidity of the cubo-octahedral
groups, the basic building block of the structure. The
response of the silica-sodalite structure to pressure is a
slight narrowing of the Si-O-Si bond angle accompanied
by a relatively large decrease in the Si-O bond length and
an increase in the tetrahedral angle variance.

5. Structure BGB1

Structure BGB1 is an elegant structure that consists
of four- and eight-member rings that are linked into a
framework by six-membered rings, as shown in Fig. 8.
This structure has a more open structure than low cristo-
balite and a different coordination sequence than any
of the known silica polymorphs. Structure BGB1 has
a body-centered tetragonal unit cell with I4 symmetry
and 8 SiO, formula units in the unit cell. The topology

FIG. 7. Representation of the silica sodalite structure.
Small and large spheres represent O and Si atoms, respec-
tively.

FIG. 8. Representation of the BGB1 structure. Small and
large spheres represent O and Si atoms, respectively.
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TABLE V. Structural parameters of BGB1.
This
Parameter work
a (A) 8.8153
c () 5.0921
Si (z,v, 2) 0.1756, 0.1770, 0.0147
01 (z,y,2) 0.2632, 0.2182, 0.2808
02 (z,y, 2) 0.7062, 0.5022, 0.4430
Si-O(1) (A) 1.6001
Si-O(2) (A) 1.5999
Si-O(1)-Si (deg.) 157.3
Si-O(2)-Si (deg.) 151.8
B, (GPa) 21.5
Bg 4.9

of the BGB1 net is quite a common one.*® The BGB1
structure has the same ring statistics and coordination
sequence as the B net of CrBy4,*! the AlSi net of mon-
oclinic CaAl;Si;05,%? and the net of all the atoms in
(3-Be0.43

In our calculations for BGB1, we used the body-
centered unit cell and one special k£ point at (%, %,% .
A convergence check using two special k points shows
that the structure is converged to the 0.1 mHartree level
with the one special k point at (%, %, %5. For the op-
timized structure presented, a kinetic energy cutoff of
60 Hartrees corresponds to approximately 60000 plane
waves in the basis set.

The calculated structural parameters for BGB1 are
presented in Table V. In addition, structural parameters
were calculated for simulated pressures up to 2 GPa. The
BGB1 structure is relatively soft, with the primary struc-
tural response to pressure being a significant decrease in
the Si-O-Si bond angles from 157° and 152° to 139°, with
the average Si-O bond length remaining constant. The
structure compresses anisotropically with the ¢/a ratio
decreasing with pressure.

6. Structures BGB2 and BGB3

The structure of BGB2, shown in Fig. 9, is based
on a body-centered tetragonal cell with 142d symmetry
and four SiO; formula units in the unit cell. The struc-
ture of BGB3, shown in Fig. 10, has an orthogonal unit
cell with Pna2; symmetry and four SiO, formula units
in the unit cell. Structures BGB2 and BGB3 possess
the cristobalite framework topology.? Further support-
ing evidence that the structures have the cristobalite
topology is provided by O’Keeffe and Hyde,*® who ex-
amined the space-group types that result by rotating the
SiO4 tetrahedra about the 4 axes of the C9 structure
(Fd3m space-group symmetry) originally proposed for
high cristobalite.** They described three structures with
space-group types (I) I42d (the true high-cristobalite
structure), (II) P4;2:2 or P432;2 (the low-cristobalite
structure), and (III) Pna2, (a stuffed derivative struc-
ture referred to as the Pna2; cristobalite type). Be-
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FIG. 9. Representation of the BGB2 structure. Small and
large spheres represent O and Si atoms, respectively.

cause the BG B2 structure has a coordination sequence,
a space-group type and a calculated powder diffraction
pattern that match those of the true high-cristobalite
structure,*® we consider these structures to be the same.
Liu et al.*® presented the results of total-energy calcula-
tions on the I42d (and others) structure of cristobalite

FIG. 10. Representation of the BGB3 structure. Small
and large spheres represent O and Si atoms, respectively.
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TABLE VI. Structural parameters of BGB2.

This
Parameter work
a (&) 5.0280
c(4) 7.3033
Si (z,y,2) 0.5000, 0.5000, 0.5000
O (z,y,2) 0.2500, 0.5798, 0.3750
Si-0 (A) 1.6045
Si-O-Si (deg.) 151.0
Bo (GPa) 22.6
By 3.0

and determined the I42d structure to be energetically
feasible. As the BG B3 structure has the same coordina-
tion sequence as cristobalite and the space group (Pna2,)
of the stuffed derivative structure, we consider these two
structures to be the same. As silica with the cell dimen-
sions, space group, and structure of Pna2; cristobalite
has yet to be reported, we could not compare our param-
eters with experimental results. However, the topology
of tetrahedra and space-group symmetry is adopted by a
number of stuffed derivative structures, such as BeSiN,
and MgGeN,.43

For the BGB2 and BGB3 structures, we chose a [444]
Monkhorst-Pack grid that translates into six special k
points in the IBZ for BGB2 and eight special k points in
the IBZ for BGB3. For the structurally relaxed BGB2
and BG B3 structures, this corresponds to approximately
27000 plane waves in the basis set.

The relaxed structural parameters for the BGB2 and
BGB3 structures are presented in Tables VI and VIIL
Both of these structures have reasonable SiOSi bond an-
gles and SiO bond lengths. The structural parameters
for the BGB2 structure were determined for simulated
pressures of up to 5 GPa. The BGB?2 structure has a cal-
culated bulk modulus of 22.6 GPa, which is between that
of low quartz and low cristobalite. The primary response
of the BGB2 structure to pressure is a narrowing of the
Si-O-Si bond angle with the Si-O bond length remaining

TABLE VII. Structural parameters of BGB3.

This
Parameter work
a (A) 5.1138
b () 7.0562
c(A) 5.0852
Si (z,, 2) 0.0373, 0.6254, 0.9997
01 (z,y,2) 0.0105, 0.5418, 0.2918
02 (z,y,2) 0.1733, 0.2083, 0.4585
Si1-01 (&) 1.6042
Si2-01 (&) 1.6030
Si3-02 (&) 1.6051
Si2-02 (4) 1.6064
Si1-01-Si2 (deg.) 153.4
Si2-01-Si3 (deg.) 150.1
Bo (GPa)
By
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constant. We were unable to determine the bulk modu-
lus of the BGB3 structure or its structural response to
pressure, as the required calculations were intractable,
due to the low symmetry of the structure.

B. Energetics of structures

In Fig. 11, we show the cohesive energies of stishovite,
low quartz, low cristobalite, silica sodalite, and the the-
oretical structures BGB1, BGB2, and BGB3 plotted
as a function of volume at a kinetic energy cutoff of 60
Hartrees. The cohesive energies of the relaxed structures
with increasing kinetic energy cutoff are shown in Ta-
ble VIII. It can be seen that the differences in cohesive
energy between structures have converged to below 0.1
mHartree at a kinetic energy cutoff of 75 Hartrees.

The relative differences in energies show that the
BGB?2 phase is the most stable phase predicted solely
by the cohesive energy at 0 K. It is quite interesting
to note that the internal energies for all of the relaxed
tetrahedral structures examined are equivalent. The
only structure examined that is significantly energeti-
cally different than the others is stishovite. The result
that the stishovite structure has the highest cohesive en-
ergy agrees well with experimental enthalpy values de-
termined by calorimetry.4” The result that low-quartz is
not the lowest-energy tetrahedrally coordinated frame-
work structure is unexpected as is the result that all the
tetrahedral structures studied are energetically degener-
ate.

The small magnitude of the differences in these re-
sults forces one to consider the effect of the vibrational
entropy contribution to the free energy when making
comparisons to experimental data. Recent work using
pair ‘potentials?® and ab initio linear-response theory*®
to calculate the thermodynamic properties of silica poly-
morphs is important when trying to correlate the en-
ergetics of structures at 0 K with experimental results.

stishovite ——
-21.90 low-quartz ---——— 1
low-cristobalite
= .
= 3+ ]
‘31 ~22.00 | silica-sodalite ------
Q
@
>
2 2210 R
>
o
@
[ =4
w ':
2 2220 | 1
w0 3
2 L
E-4
Q
o
-22.30 1
-22.40 L s L L L L L

20 25 30 3 55 60 65

5 40 . 45 50
Volume (A°/SiO, unit)

FIG. 11. Cohesive energies, as a function of volume for the
structures studied. The curves were generated from fits to
calculated data points using Eq. (1).
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TABLE VIII. Cohesive energies (¢V/SiO2 unit) at various
kinetic energy cutoffs.

Cohesive energy

Structure 60 Hartrees 75 Hartrees 100 Hartrees
Stishovite -22.056 -22.098 -22.110
Low quartz -22.352 -22.396 -22.409
Silica sodalite -22.363

Low cristobalite -22.366 -22.412 -22.426
BGB1 -22.370 -22.416 -22.429
BGB2 -22.374 -22.420 -22.433
BGB3 -22.370 -22.415 -22.428

The recent work of Lee and Gonze using ab initio linear-
response theory found that the contribution of zero-point
energies to the difference in cohesive energy between
stishovite and low quartz was 0.015 eV per SiO; unit.
The effect of including temperature-dependent phonon
contributions to the energetics of the tetrahedral struc-
tures is likely to be significant.

IV. CONCLUSIONS

We have compared the structural properties and en-
ergetics of several hypothetical silica structures with
stishovite, low quartz, low cristobalite, and silica so-
dalite, using state of the art first-principles total-energy
calculations with highly accurate pseudopotentials and

TETER, GIBBS, BOISEN, ALLAN, AND TETER 52

rigorous convergence criteria. We have shown that we
are able to reproduce the structural properties of several
well-characterized silica polymorphs and are, therefore,
able to extend our calculations to determine the proper-
ties of several hypothetical silica structures with a rea-
sonable degree of confidence.

Our calculations have shown that the cohesive ener-
gies for the hypothetical silica structures examined are
equivalent to the cohesive energies of low quartz, low
cristobalite, and silica sodalite. These results raise the
possibility that there are a very large number of possible
low-energy silica structures. The fact that only a rela-
tively small number of these silica structures have been
experimentally identified and characterized suggests that
their existence is determined more from the direction of
kinetics during formation than from the energetics of the
final crystal structure. It is also quite possible that there
remain a large number of silica structures yet to be dis-
covered.
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