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A Response Surface Exit Crown Model Built from the Finite Element
Analysis of a Hot-Rolling Mill

William E. Stewart

(ABSTRACT)

Nine independent and four dependent variables are used to build a response surface to
calculate strip crown using the difference in the industry standard strip height measurements.
The single element response surface in use provides the advantages of continuous derivatives
and decouples rolling load from the determination of exit height. The data points to build the
response surface are the product of a calibrated finite element model. The rolling dynamics
in the finite element model creates a transient that requires nonlinear regression to find the
system steady-state values.

Weighted-least squares is used to build a response surface using isoparametric interpolation
with the non-rectangular domain of the mill stands represented as a single element. The
regression statistics, the 1-D projections, comparisons against other response surface models
and the comparisons against an existing strip crown model are part the validation of the
response surface generated.

A four-high mill stand is modeled as a quarter-symmetry 3-D finite element model with an
elastic-plastic material model. A comparison of the pressure distribution under the arc of
contact with existing research supports the pressure distribution found with experiments
conducted by Siebel and Lueg [16] and it also suggests the need for one improvement in the
initial velocity for the strip in the finite element model.

The strip exit heights show more sensitivity to change than strip exit crown in seven out
of the nine independent variables, so a response surface built with the strip exit height is
statistically superior to using the derived dependent variable strip exit crown. Sensitivity
of strip exit crown and the strip exit heights to changes in work-roll crown are about equal.
Backup-roll diameter sensitivity is small enough that oversampling for the mean trend has
to be considered or ignore backup-roll altogether. Strip entry velocity is a new independent
variable, unless the response surface is built from the derived variable, strip exit crown.

A problem found is that the sensitivity of strip entry crown and work-roll crown requires
a larger than typical incremental change to get a reliable measure of the change strip exit
crown. A narrow choice of high and low strip entry crowns limits the usefulness of the final
response surface. A recommendation is to consider the use of the strip cross-section as an
exit crown predictor.
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Chapter 1

Introduction

1.1 Research Objective

Based on a quick survey of the literature, the most commonly used crown model is a beam
model. All of the beam models have to make assumptions about how to model contact and
about how to model the strip or to use compatibility equations to model the expected strip
deformation. Therefore, a model that eliminates some of these simplifications is at the very
least an incremental improvement.

A solution to produce hot-rolled strip for five to seven stand mill is not necessarily optimal.
One option is to run simulations as the search progresses, in which case minimizing simulation
run time is important. The other option is saving the results of each simulation to reuse
in a future search, which makes simulation run times less critical. Populating the search
space in a planned manner makes a response surface practical and a response surface with
continuous gradients provides the kind of functional continuity to make searches for optimal
mill setup straightforward. Additional simulations are only needed to extend the search
space. Estimating the physics with a response surface can also decouple dependent variables,
namely, the mutual dependence between exit height and rolling load.

Domanti and McElwain [6] list three world conferences concerned with the problem of pro-
ducing better strip shape and metallurgical properties. They also review some of the advances
in rolling models made using the Finite Element Method, which eliminates the need to make
many of the simplifying assumptions used in other solutions, especially how to model the
strip. The problem becomes a choice of a material model (constitutive relationship) for the
roll stack and the strip; whether to solve for the deformed strip using a Lagrangian or Eule-
rian frame; the use of two- or three-dimensional elements; and whether or not to model the
work roll or backup roll with finite elements or as a rigid-body.
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1.2 Solution Hypothesis

This research is designed around a building a response surface model of a four-high hot-rolling
mill stand to use in mill stand setup. Instead collecting actual mill data, which is a costly
and an impractical proposition, a response surface is built taking a design-of-experiments
approach and using the data collected from a dynamic-explicit solution of a finite-element
mill-stand model. The mill-stand model uses a discretized (meshed) roll stack and strip; and
includes the dynamics of rolling the strip. The finite-element mill-stand model used is the
product of prior research [21]. The response surface approach developed makes mill setup
applicable to either new or existing strip products.

1.3 Implementation

The biggest challenge to implementing a finite element model is balancing run times against
meshing all of the stand components with the finest mesh possible and the use of the most
detailed material model possible. A larger mesh size or replacing meshed components with
a mathematical construct must take place to balance accuracy against the costs. The finite
element model in use solves for the strip rolling dynamics using Abaqus explicit. The major
components of the four-high mill-stand model are the strip, the work rolls and backup rolls.
The mill stand is replaced with a linear spring and damper. The work rolls are driven at a
specified angular velocity and there is work roll to strip contact and work roll to backup roll
contact. Strip yielding is modeled as elastic-plastic and strip crown is represented with a
parabolic curve. There is complete control of nine model variables and this can be extended
to include any of the work roll, backup roll or strip parameters. The simulation limitations
or drawbacks are:

• The stand frame is replaced with a linear spring and damper combination.

• The model needs to be calibrated against a real mill stand.

• The run times are significant (run times in hours and minutes versus minutes and
seconds).

• Convergence is a function of mesh size, so run times must be balanced against simula-
tion convergence.

The independent variables chosen to build the response surface from are

• strip width,

• strip yield strength,

• strip entry diametrical crown,

• strip entry height at the feather,

• jacking load,
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• work-roll diameter,

• work-roll diametrical crown,

• backup-roll diameter,

• work-roll gap (gap).

The remaining parameters are configured for a specific mill. Table 1.1 illustrates the poor
scaling that exists between many of the variables and the relatively large change in range
for a single variable. Another drawback to building a response surface for a hot-rolling mill,
besides the scaling issues, is that the variable domain is not rectangular, for instance,

• as gap and strip height change, the useful minimum and maximum changes for many
of the other independent variables,

• some variable value combinations are meaningless, like a gap value greater than the
entry height,

• some variable value combinations are not used in practice, like a gap close to zero with
an entry height greater than 30 [mm].

Table 1.1: Estimates of Variable Relative Scales.
Variable Upper limit Lower limit Ratio
Strip width, [mm] 1700 900 1.9
Strip crown, [mm] 0.4 0.04 10.0
Strip height, [mm] 45 1 45.0
Strip yield strength, [tonne/mm2] 0.00344 0.0008 4.3
Work-roll diameter, [mm] 800 600 1.3
Work-roll gap, [mm] (surface-to-surface) 30 0.01 3,000.0
Work-roll crown, [mm] 0.14 0.001 140.0
Backup-roll diameter, [mm] 1700 1400 1.2
Jacking load, [tonne] 300 0.01 30,000.0
Rolling load, [tonne] 2500 500 5.0
Worst case numeric scaling 2500 0.0008 3,125,000.0

The response surface will be implemented using a nine-dimensional isoparametric formulation
to reduce the effects of the scaling issues and the non-rectangular domain. A response surface
is built for the four-dependent variables: strip exit crown, centerline strip height, strip exit
height at the feather, and rolling load.

1.4 The Study Scope

The primary focus is
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• identifying the run and meshing parameters needed to run the dynamic-explicit solution
for the different stands,

• creating a sampling plan that for the finite element model simulations,

• determining the exit height and rolling values from extracted simulation data,

• implementing a response surface to calculate the strip exit crown based on the centerline
strip exit height and the strip exit height at the feather,

• validating the choice of polynomial order for the response surface.

Short comings of the proposed crown model or any needed improvements to the finite-element
simulation are also explored.

Out of scope for this project is the development of a mill setup optimization procedure
using a gradient-based method for all seven mill stands. Development of alternative crown
definitions or a separate response surface model just for rolling load is also out of scope of
this research. Crown control using backup-roll crown is not dealt with.

1.5 Discussion Organization

This thesis starts with a brief description of a four-high mill stand along with the stand
components that vary with rolling or that are under user control. This includes identification
of the important points of measurement on the strip. Next, the quarter-symmetry finite
element (FE) model is introduced and its boundary conditions and constraints enumerated.

Simulating the model dynamics requires a compromise between how a real stand feeds the
strip and the problems that occur solving for a discretized model. The method of loading
the strip and setting the gap is described along with the rationale for not employing the
same method as a real mill stand. A two degree of freedom lumped-mass model is developed
as a basis to identify the steady-state exit heights and rolling loads. Possible improvements
in the choice of new simulation setup time and damping parameters for 1.6 [mm] strip are
discussed too.

The discussion moves on to provide additional details about how well the FE simulation
compares to behavior found in prior research. A needed change to initial conditions of the
strip is pointed out. Also, a means of identifying the initial conditions issue is presented
using a visual of what happens under the work roll.

Additional evidence for the choice of a two-degree of freedom lumped-mass model is presented
using the Fast-Fourier Transform of collected data. The derivation of the equations of motion
follows and finishes up with a simplified-generic equation. Next, the selection of data points
from the simulation and their reformulation into the time domain and the two methods of
finding the coefficients for the above equation is covered. The solution provides the steady-
state values necessary to build the response surface.
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The response surface discussion begins with the choice of the nine-independent and four-
dependent variables and introduces an alternative method for calculating strip exit crown
that works well at the finishing stands. The method of generating simulation samples follows,
including the initial miss steps and the final sampling plan.

The mathematics behind the interpolation function based response surface is presented,
starting with the interpolation functions for un-scaled and untransformed variables using
a two-dimensional example. Continuing with the example, variable scaling and isopara-
metric formulations for the interpolation functions are developed. Another option, variable
pre-scaling is covered, which also leads into how to get the partial derivatives in terms of
the original independent variable. Finally, a quick derivation of the method of weighted-
least squares and how it is used to compute the unknown response surface coefficients or
coordinates is presented.

The next section discusses how one- and two-dimensional projections are used to take the
guess work out of determining the polynomial order for an independent variable. The high-
lights of this section are that four variables are quadratic and support is found for the choice
of a strip exit crown model. The functional form of the backup-roll diameter with its mixed
results is discussed last.

The nine-dimensional response surface is evaluated with the statistics and found to have
one unnecessary variable, the backup-roll diameter. The process to validate three candidate
eight-dimensional response surfaces follow, as well as listing the three criteria necessary to
make the correct response surface choice. An additional response surface tool is introduced
that provides a means to find response surface nodes without enough samples.

Both the original nine-dimensional response surface and the improved eight-dimensional
response surface are compared to a production model. Strip exit crown from both models is
plotted for perturbations of eight independent variables for three representative mill stands.
A sampling problem with strip entry crown and the solution is identified.

The summary, conclusions and recommendations complete the write up.
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Chapter 2

Literature Review

2.1 Rolling Load and Neutral Point

Orowan [16] develops a graphical method to calculate the pressure distribution along the arc
of contact. Once the pressure distribution is known calculating the rolling load and rolling
torque is possible. He also identifies some simplifications to make the equations easier to
work with:

1. Dividing the strip up into many thin vertical strips between the two work rolls, the
stresses are modeled as a normal and shear force exerted at a slight incline top and
bottom, and as a normal force on each side without any shear (homogeneous compres-
sion).

2. Dynamic friction, slipping, is assumed between the strip and work roll and the strip
shear force is equal to the work-roll normal force times the coefficient of sliding friction.
The assumption is a problem in hot rolling where the calculated forces can easily exceed
the maximum shear stress of the material being rolled, in which case viscous friction
is a better model.

3. The yield stress is constant though the roll gap, which in hot rolling ignores the effect of
strain rate on the yield stress, while in cold-rolling strain-hardening is a more important
factor than the strain-rate effects.

4. The arc of contact can be modeled as a circular arc, which ignores localized roll flat-
tening or even multiple regions with different flat or curvilinear sections [6].

5. Mathematical approximations like the small angle approximation, sinθ ≈ θ, etc.... are
used to make the equations tractable.

Orowan calculates the force distribution with the same conditions and material as experi-
ments conducted by Siebel and Lueg [16], and does the calculations using the homogeneous
compression, the slipping assumption and Hitchcock’s formula that calculates the flattening
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on the work roll due to the contact between the strip and work roll. The slipping simplifica-
tion is usable for cold-rolling with a low coefficient of friction, in other cases this assumption
results in too much calculated stress. In general, a coefficient of friction, µ, of 0.4 sticks for
hot rolling and a µ of less than 0.2 to 0.25 slips. The homogeneous compression simplification
is usable. Hitchcock’s formula is accurate enough for rolling load, but not very usable for
calculating rolling torque.

Orowan does experiments to discover the profile of the work roll deformation and the final
strip contours support larger work roll deformation at the neutral point, which is incon-
sistent with an elliptical roll flattening predicted with Hitchcock’s formula. To accurately
calculate the rolling torque, the precise location of the neutral point and the force distribution
under work roll is required. A graphical comparison seen in Figure 2.1 of the force distribu-
tion for experimental measurements and Hitchcock’s formula are quite different. The force
distribution for Hitchcock’s formula rounds off the peak forces found in the experimental
measurements at the neutral point and overstates the forces at the strip entry and exit. This
difference in force distribution explains the large discrepancy found when using Hitchcock’s
formula to calculate rolling torque, which is very sensitive to incorrect force calculations,
especially at the entry and exit work roll contact points.

Figure 2.1: A likeness of the plot in Orowan [16] that compares the force distribution under
work roll using the Hitchcock formula and experimental results.

Alexander [1] develops a numerical solution for the Kármán equation. Alexander does not
include the correction for strain rate developed by Orowan, but uses the simplification of
homogeneous compression for the strip. He discusses the effects of simplifications introduced
by Orowan and used in the calculation of rolling load and rolling torque made by Bland and
Ford (1948, 1952), Sims (1954), Alexander and Ford (1963), which produce small errors in
rolling load, but large errors in rolling torque.

Freshwater [8, 9] improves on Alexander’s solution by replacing the gradient of stress-strain
relation with a yield-stress function, which is much easier to determine empirically. Freshwa-
ter uses the Swift yield-stress equation, Ys = Y0(1 +Bsε̄)

ns where Bs is a material constant,
Y0 is a yield strength constant and ns is a strain hardening exponent found from an ex-
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perimental fit and ε̄ is the true strain. Using this improvement Freshwater compares the
inhomogeneous Orowan and a modified Kármán, which all agree very well with each other
on the calculated rolling load. Good values for rolling torque and the neutral point are also
calculated.

The use of the neutral point calculation is recommended to solve a simulation setup issue
where knowledge of two different strip velocities are necessary to more closely simulate mill
stand conditions.

2.2 Mill Stand Beam Models

Shohet and Townsend [20] use seven-factor sampling in a four-high mill to determine the strip
exit crown sensitivities to mill width, strip width, reduction, work roll (2 types: JWW and
JWB) and backup roll bending (JBB), and work roll camber. The three kinds of work-roll
bending (JWW, JWB and JBB) are discussed in detail in section 3.2. They also introduce
a beam model that is the starting point for many subsequent researchers.

The need to use many of the simplifications for the strip is no longer necessary with the use
of finite elements. The work rolls and backup rolls no longer need to be modeled as beams.

2.3 Finite Element Analysis Models

Domanti and McElwain [6] tabulate research on a total of 33 two-dimensional (2-D) and
three-dimensional (3-D) finite element (FE) models. Fifteen of these models are 2-D where
plain strain is assumed in the third dimension. Nine are 3-D models with a rigid-body roll-
stack and the velocities are decoupled in one dimension in the element. Four are 3-D models
with a rigid-body roll-stack model, and in one 3-D model the general details are unknown.
The 3-D models can improve accuracy and eliminate the plane strain assumption. Both the
2-D and 3-D models are quasi-static solutions and use a rigid-body roll-stack that cannot
model the deformation of contact between the two roll or between the strip and work roll.

Finite element models of the strip allow yield models like rigid-plastic and elastic-plastic,
which are a big improvement over the use of discrete springs and elastic foundations com-
monly used in beam-model implementations. Strip models based viscoplastic and elastovis-
coplastic properties are possible choices when the strain-rate effects are important.

Slaughter [21] develops a 3-D dynamic-rolling simulation using an explicit-dynamic solver
with an elastic-plastic material model running under the commercial package Abaqus ( c©Dassault
Systèmes). This 3-D finite element simulation uses a finite-element roll-stack, instead of a
rigid-body. Dynamic contact like the work roll and the strip friction is modeled. The strip is
meshed, so assumptions like homogeneous compression do not need to be made and modeling

8



Finite Element Analysis Models Literature Review

strain-rate effects become an option.
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Chapter 3

Four-High Rolling Mill Finite
Element Model

3.1 Strip Description

An ideal strip cross section, modeled with a parabolic profile and positive diametrical crown,
is shown in Figure 3.1. Strip measurements width, wid, feather length, Lf , strip entry height
at the feather, hef and strip entry centerline height, he are the industry standards. Another
parameter, not shown, is feather width, widfea = wid − 2Lf , which is the location where
the entry height at the feather, hef , is measured. One common Lf value is 40 [mm]. The
strip entry height at the edge, hee, is portrayed with the assumption that excessive rolling
deformation has occurred between the width, wid, and the width at the feather, widfea.

The strip diametrical entry crown, Ce, is the difference between the strip entry centerline
height, he, and the strip entry height at the feather, hef . A parabolic profile is often assumed
to exist between the centerline and widfea points on the rolled strip. The finite element strip
model is built with the measurements: wid, Lf , hef , and Ce.

The notation used for the above dimensions are for the entry side of the stand. On the exit
side of the work roll, the strip exit crown is identified as Cx, the strip exit centerline height
as hx and strip exit height at the feather as hxf .

An important number in planning strip reduction is the ratio of Ce to he, or unit-strip crown.
The same ratio is calculated for the exit side of the work roll using Cx and hx. Figure 3.2 is
a conceptual plot of the change in unit-strip crown between the entry and exit of each stand
versus the stand number taken from Wang [22]. Generally, at the entry stands, 1 through 3,
there is latitude to change the unit-strip crown without altering flatness, but once the strip
enters the finishing stands, any changes in strip exit crown has to be confined to a narrow
band of unit-strip crown changes.
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Figure 3.1: A strip cross-sectional view.

Figure 3.2: A conceptual plot of flatness as calculated from the difference of entry and exit
unit-strip crown versus the stand number [22].
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3.2 Four-high Mill Overview

A typical hot-rolling finishing mill has five to seven stands. The diagram in Figure 3.3 is a
side view of a seven-stand mill with the stand frames omitted. Each stand reduces the strip
a planned percentage of the entry height, commonly referred to as reduction. The entry
stands (stands 1 through 3 in the diagram) typically take a large reduction in strip height
(50 to 60 percent) and sets the unit-strip crown to a planned value. The intermediate stands
also take large reductions, but they have less latitude to change unit-strip crown. The final
finishing stands (stand 6 and 7) take between 10 to 25 percent reduction, but they must
preserve unit-strip crown.

Figure 3.3: Diagram of a seven-stand mill with the assigned stand number showing the
backup and work rolls and strip.

The mill modeled with the response surface is a seven-stand mill using simulations for four
out of the seven stands – stands 1, 3, 5 and 7. The similarity in function between stands
2 and 3; 4 and 5; and 6 and 7 make simulations at stands 2, 4, and 6 redundant, so where
appropriate, the term stand group 1 is used to refer to stand 1, stand group 3 is used in
place of stand 2 and 3, etc.

Figure 3.4 shows a simplified four-high hot-rolling mill stand. The two backup rolls provide
extra stiffness to the work rolls, which in turn do the work of reducing the height of the
strip. The combination of the work and backup rolls is called the roll stack. For a given mill
the dimensions of new rolls are fixed. Diametrical work-roll crown, Cwr, is the difference in
diameters measured at the work-roll center and the work-roll edge (labeled Cwr/2 in Figure
3.4). A work roll with crown viewed from front is often represented as a parabolic profile
and it is chosen to influence the final strip exit crown value. While a backup roll may be

12



Four-high Mill Overview Four-High Rolling Mill Finite Element Model

designed with diametrical crown or develop crown through wear, this behavior of the rolling
process is not modeled in the finite element simulations run. The work-roll and backup-roll
diameters change because of scheduled turning to remove defects and wear, so both diameters
are variables.

Figure 3.4: Unloaded mill stand cut away and side view the top roll stack (work and backup
rolls) and strip.

The work-roll gap is set with actuators located at B in Figure 3.4. The work rolls are driven
by electric motors (not shown), which pulls the strip through the gap. Because of the forces
generated through deforming the strip, the roll stack has larger vertical displacements in the
center than at the strip edge. This strip height difference is strip diametrical exit crown,

Cx = hx − hxf (3.1)

where hx is the strip centerline exit height and hxf is strip exit height measured at the strip
feather width (see Figure 3.1). The strip edge is not used because of rounding at the strip
edge that is not consistent with the parabolic or higher polynomial profile assumed to exist
between the centerline and feather widths (the rounded corners in Figure 3.1 between widfea
and wid).

One way to control the final exit crown is to use actuators at A in Figure 3.4, which apply
an opposing force to the two work rolls. These opposing forces or jacking loads, J , develop a
bending moment on the work roll (JWW ) that reduces strip crown. Another form of work
roll bending applies a tension force between the work roll and backup roll (actuators not
shown) to develop work-roll bending (JWB). The least effective method is to apply bending
indirectly to the work roll by bending the backup roll, (JBB) [20, 19].
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3.3 Finite-Element Model

3.3.1 Quarter-Symmetry Model

The calibration and development of the Abaqus finite element model used to generate samples
for the different mill stand configurations is documented in detail by Slaughter [21] in Strip
Crown Prediction: Developing a Refined Dynamic Roll-Stack Model for the Hot Rolling
Process. Some of the important points are repeated here, since they bear upon the choices
made to determine steady-state values for the strip exit heights and the rolling load.

A quarter-size model of the mill stand is possible if the forces, the geometry, and the material
properties are symmetric about the vertical and horizontal axes. The requirements met for
a mill stand are:

• The forces seen at the ends of each backup roll at actuators B in Figure 3.4 are the
same and the location of the actuators is symmetric about two axes.

• The jacking load applied to both the top-and-bottom actuators at A in Figure 3.4 is
the same and symmetric left and right.

• The top-and-bottom halves of the roll-stacks are identical and have the same geometric
and material properties left and right.

• The strip also has left and right and top and bottom geometric and material property
symmetries.

A quarter-size stand is shown in Figure 3.5.

The displacement boundary conditions for the quarter model along the vertical plane of
symmetry are

• the roll stack and strip are allowed to move vertically, U2 (displacement along the
y-axis),

• the same co-planar nodes are allowed to move in the direction of strip motion, U3

(displacement along the z-axis),

• all surface points on the centerline U2 and U3 plane are prevented from moving normal,
U1 (displacement along the x-axis), to this plane.

The displacement boundary conditions for the quarter model along the horizontal plane of
symmetry only affect the strip. The strip nodes on the U1 and U3 horizontal centerline plane
can move parallel to the plane of symmetry, but not off the plane of symmetry.

The backup-roll and work-roll displacement attachment boundary conditions (see Figure 3.5)
are

• the backup-roll and work-roll ends (x = Lbr/2+Lbrn and x = Lwr/2+Lwrn respectively)
are connected to a rigid plate with centers of rotation at U2,br for the backup roll and
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Figure 3.5: Quarter model with a front and a side view.

U2,wr for the work roll (like a cantilever beam with the freedom to rotate),

• those same two points are only allowed to move vertically and deflections in the re-
maining two directions are prevented.

Backup-roll and work-roll lengths Lbr and Lwr are measured between the start of the necks.
Backup-roll and work-roll neck lengths are Lbrn and Lwrn respectively.

Since the forces on the stand at either connection to the backup roll (B in Figure 3.4) develop
the same forces (ignoring gravity), a fixed point P and the parallel spring, Kstd and damper,
Cstd, combination connected to the backup roll at U2,br take the place of the stand frame. The
mill-stand spring is modeled as a linear spring and calibrated for a specific stand and since
the seven stands are identical, this spring constant is used for all four stand-groups modeled.
Because the actual stand connection to the work roll is naturally damped, a second damper,
CRS, between the work roll and backup roll models this. The two dampers are modeled
with proportional damping values that are calculated from estimate of the lowest natural
frequency using a lumped-mass model like that in Figure 3.9. Slaughter [21] provides more
details.
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3.3.2 Initial Conditions

The strip velocity parameter is used to calculate the initial angular velocities for the backup
roll and the work roll. The tangential work-roll velocity is the same velocity assigned to the
strip as its initial velocity effective at the start of the simulation, the excitation phase. The
calculated velocity for the work roll is a prescribed velocity, which simulates a pair of motors
driving each work roll and is in effect for the duration of the simulation.

The dynamic simulation requires careful loading of the strip to prevent loss of contact be-
tween the backup and the work roll; and between the work roll and the strip, which at time
zero can be only a single point of contact. The bottom surface of the strip starts below
the horizontal-centerline plane and it is moved up flush to the horizontal centerline plane
using prescribed vertical displacements as shown in Figure 3.6. The strip is also given an
initial velocity in the horizontal direction. The time interval to move the strip into position
is proportional to the total run time. The strip setup portion of the simulation is called the
excitation phase.

Figure 3.6: Quarter-stand model side view of strip loading to reduce roll-stack excitation.

Both the work-roll and strip meshes use the same element length in the direction of strip
motion (U3) and across the width of the strip (U1). The closer the work roll and strip nodes
remain during the simulation, the easier it is to solve for contact.

There are no vertical strip movements in a mill, except for inter-stand tensioning during
rolling, so the strip encounters the work roll as shown in Figure 3.7. Modeling the initial
strip contact this way has two problems: first, contact of the work roll with the strip is a
sharp edge, so there is the probability of a singularity (the forces approaching infinity) at
these nodes. Second, the work roll could have a tendency to walk up the strip before settling
down, which extends the time to reach steady-state.

This figure also illustrates another model parameter – FE gap. The industry standard gap,
gapstd, measurement is the centerline distance between work rolls, while in the FE model, the
work-roll gap or FE gap, gap, is the distance between the inner surfaces of the two work rolls.
The FE gap is independent of work roll dimensions, which makes the partial derivatives of
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gap easier to work with, since gapstd would include the partials for the work-roll diameter in
addition to gap.

Figure 3.7: Model for standard strip rolling.

3.4 Simulation Excitation phase

3.4.1 Strip Setup Draft Curve

The roll stack has a net vertical acceleration of zero after setting the gap. The vertical
motion of the strip during the excitation phase of the simulation uses a double-harmonic
cam curve [21],

s =
s0

2

((
1− cos

(
tiπ

texc

))
− 1

4

(
1− cos

(
ti2π

texc

)))
(3.2)

where s0 = (he − gap)/2, texc is the duration of the cam action (excitation time), and ti is
the time for the current data point. The dashed lines in Figure 3.6 show the draft curve
as a function of time from the initial state at t = 0 and at the end of the excitation step
at t = texc. Using the cam motion in Equation 3.2 the net vertical strip acceleration is
zero when the strip is released to seek dynamic equilibrium. The work roll is close to its
steady-state vertical position when the strip is allowed to roll freely on the x-z plane as in
the t > 0 case in Figure 3.7.

3.4.2 Zero Net Vertical Acceleration

Figure 3.8 is a plot of the excitation phase displacement and velocity curves from an FE
simulation or observation. The strip properties used are hef = 6.4337 [mm], Ce = 0.05 [mm],
and gap = 3.48 [mm]. At the end of the excitation phase the strip velocity is zero.
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Figure 3.8: Excitation phase displacement and velocity curves for the example.

Integrating the second derivative of the draft curve over the excitation time from 0 [s] to texc
[s], ∫ ∆t

0

1

2
s0

(
π2 cos

(
πt
∆t

)
∆t2

−
π2 cos

(
2πt
∆t

)
∆t2

)
dt = 0 (3.3)

which demonstrates that the net vertical velocity is zero. To find the point of maximum
positive acceleration involves taking one more derivative and then finding the stationary
points,

1

2
s0

(
2π3 sin

(
2πt
∆t

)
∆t3

−
π3 sin

(
πt
∆t

)
∆t3

)
= 0 (3.4)

which for this sample is 0.00264 [s] with a maximum acceleration of 21,100 [mm/s2]. Based
on the rolling load data for this sample, the maximum rolling load occurs at 0.00358 [s] after
63 percent of the full vertical displacement necessary to put the bottom of the half-strip
flush with the horizontal plane of symmetry. The lag time between maximum acceleration
and maximum force is due to the damping used in the model.

3.4.3 Simulation Run and Excitation Times

The two model parameters that control the duration of the simulation and the vertical strip
movement to set the gap (excitation phase) are the run-time multiplier, RuMu and the
excitation multiplier, ExMu, which are found after some experimenting. The basic time
step, T , is based on the calculated period of the lowest natural frequency of a lumped-mass
model like that in Figure 3.9 where M2 is the backup-roll mass and M1 is work-roll mass.
The details of how T is calculated is covered in detail in Slaughter[21]. The run time is
calculated as trun = (RuMu)(T ) and the excitation time as texc = (ExMu)(T ).
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Figure 3.9: Two-degree of freedom (2DOF) lumped-mass model of a mill stand.

The effect of varying the excitation multiplier and holding the run-time multiplier and the
other stand variables constant is seen in Figure 3.10 for a 6.4 [mm] high strip. The smallest
excitation multiplier of 0.50 penetrates an extra 0.18 [mm] into the strip before the excitation
phase ends and using too large a multiplier, like 1.5, reduces the number of post excitation
phase data points that can be used to determine the final steady-state exit heights, hx and
hxf . For the chosen run-time multiplier and excitation multiplier, all five curves essentially
converge on the same steady state curve. The inset shows a blow up of a 0.004 [mm] by
30 [mm] section of the post excitation-phase run. This is evidence that with long enough
run times, the simulations for the 6.4 [mm] strip heights are not very sensitive to changes in
excitation multiplier.

Unlike the 6.4 [mm] strip, the choice of excitation multipliers for 1.6 [mm] strip is complicated
by the significant increase in strip stiffness. Figure 3.11 is a comparison of strip centerline exit
heights, hx, for two excitation multipliers with one of the excitation multipliers having three
different damping values. The smoothest curve (least amount of vibration) has additional
damping with a γ of 1.25 and an excitation multiplier of 1.5. The value of γ is a scalar used
by the model generation routines to compute proportional damping values for CRS and Cstd.

Figure 3.12 varies the same parameters as Figure 3.11 and it is from the same simulation,
but the strip exit heights at the feather, hxf , are used. The smoothest curve has the higher
excitation time multiplier, 2.0, so a better solution is likely to be compromise with an exci-
tation multiplier close to 2.0 in combination with damping multiplier between 1.0 and 1.25.
The run-time multiplier is chosen to be just long enough for at least 35 post excitation data
points to be produced out of the Abaqus simulations.
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Figure 3.10: Excitation-multiplier effect on steady-state for a 6.4 [mm] high strip.

Figure 3.11: Excitation-multiplier effect on steady-state centerline exit height for a 1.6 [mm]
high strip.
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Figure 3.12: Excitation multiplier effect on steady-state exit height at the feather for a 1.6
[mm] high strip.

3.5 Post-Excitation Phase

3.5.1 Post-Excitation Phase Run Conditions

Figure 3.13 illustrates three important features found in the simulations. The first is the
neutral point where the shear forces between the strip and work roll go to zero and change
orientation; the normal force on the work roll is at its maximum; and the velocity of the
strip relative to the work roll is zero [16]. The second-and-third features found are two minor
stress peaks at m1 and m2. Figure 3.14 is a plot of the work-roll stress using estimated values
from the legend and includes m1 and m2, plus the stresses from the first three rows of strip
elements. Moving in just one node towards the center from m1, the stress on the strip is
reduced enough that the strip stress is less than the yield stress, which suggests the work
roll is being pushed up and back at m1 far enough to ease stresses on the strip.

The neutral-point stress peak in the center of Figure 3.14 should be a sharp-but-rounded
peak [16]. A more refined mesh would improve the transition from the shoulders to the stress
peak and provide a more detailed outline.

Equations that are a function of strip entry height and exit height at the neutral point are
needed to calculate separate strip initial velocity and work-roll tangential velocity. The strip
width to height aspect ratio is large enough to assume plane strain and there is very little
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Figure 3.13: Von Mises stress for stand group 5 centerline work roll and strip contact.

Figure 3.14: Plot of work-roll stress, σwr, and the stress from first three strip rows, σ1, σ2

and σ3.
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change in strip width going through the rolls. The equation for a mass balance between the
entry and exit is,

ρ wid he ∆ze = ρ wid hx ∆zx (3.5)

where ρ is the strip density, wid is the strip width, he and hx are the strip entry and exit
heights respectively ignoring crown, and ∆ze and ∆zx are small longitudinal changes at the
work-roll entry and exit points. Eliminating common terms and computing the related rates,

he
dze
dt

= hx
dzx
dt

(3.6)

where strip heights are not considered functions of time. Then making the substitution
hx = (1−Rx)he and dividing both sides by he gives,

vele = (1−Rx)velx (3.7)

where vele = dze/dt, velx = dzx/dt, Rx is the reduction in strip centerline entry height
and 0 < Rx < 1. The limits on Rx ensures entry velocity, vele, is always less than the
exit velocity, velx, and because the strip velocity at the neutral point equals the work roll
velocity, the follow relation holds:

vele < velNP = velwr < velx (3.8)

where velNP is the strip velocity at the neutral point, velwr is the tangential work roll velocity.

An example of the difference in the three different velocities given the following information:

• velwr = 2650 [mm/s] a nominal stand 3 velocity.

• Rx = .50.

• A simple assumption that neutral point is located midway between the strip entry
height and the strip exit height or Rx = .25, which is conservative if there is no
tension on the strip and strip reduction is 50% or better.

The unknown entry velocity, vele, using Equation 3.7 is 1767 [mm/s] and the strip exit
velocity, velx, is 3533 [mm/s]. The 883 [mm/s] difference in the strip-entry and work-roll
velocity gives the mass on strip entry side additional momentum, or an extra push through
the rolls. This extra push is the cause of the two stress peaks at m1 and m2. It is unknown
whether or not with a longer run time this is transient condition or not.

The strip exit velocity is the strip entry velocity of the next stand. Since both velNP and
velx depend on the reduction taken, neither is a good candidate as a independent variable.
Estimations of velNP and velwr requires that the strip reduction is determined on just the
independent variables. Otherwise the response surface is a function of at least one dependent
variable.
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3.5.2 Work-roll Velocity Estimation

Currently, an estimate of draft is made using a fixed number of iterations with the Ford-
and-Alexander force Equation 6.1 and a static estimate of strip exit height with Equation
3.10. First, a simple percentage of the entry height is used as the starting exit height, hx,
then the force is calculated,

P = FA(k, dwr, he, hx, E, ν, wid) (3.9)

where k = Sy/
√

3, Sy is the yield strength, dwr is the diameter of the work roll, he = hef +Ce
is the centerline entry height, hx = hxf + Cx is the centerline exit height, E is the work-roll
modulus of elasticity, ν is Poisson’s ratio for the work-roll and wid is the strip width. This
force is used to estimate the exit height with

hx = gap+ P/Kstd (3.10)

where gap is the FE gap and Kstd is the stand stiffness constant. The average of the new
and the old hx values are used to estimate the next exit height to recalculate force, P . The
final exit-height estimate is used to compute an estimate of the strip-exit modulus for the
lumped-mass model. An new use would be to estimate the neutral-point exit height and to
calculate the neutral-point velocity with Equation 3.7 to set the work-roll velocity, velwr.

The numerical methods discussed in Freshwater’s [8, 9] research do locate the neutral point,
while the above estimate does not. The use of the Freshwater equations and Equation 3.10
should improve the final work-roll velocity value.

Separate strip and work-roll initial velocities makes the solution for contact much more
difficult. An improved excitation phase would include the following:

• Start both the work roll and the strip at the strip entry velocity at time zero,

• Use a smooth function to generate interim prescribed work-roll angular displacements,

• End the excitation phase with the work-roll rotating at the calculated neutral-point
tangential velocity.

The next simulation step after the excitation phase ends maintains the prescribed work-roll
velocity and lets the strip seek dynamic equilibrium.

3.5.3 The Stand Groups Affected by Additional Work-roll Defor-
mation

Figure 3.15 is the superposition of the deformed strip coordinates and the undeformed work
roll radius with its center at the deformed work roll center at simulation termination. The
difference between the two curves (labeled “Difference”) is a combination of the work roll and
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the strip-elastic deformation. Because the strip is in a plastic state though out most of the
work roll and strip contact area (see Figure 3.14), the elastic strip recovery is nearly constant
over the area of contact, so this leaves any prominent feature a work-roll deformation. The
work-roll deformation under labels d1 and d2 in Figure 3.15 are also the locations of higher
work-roll stress (m1 and m2). The deformation at d1 and d2 could flatten out to give the
work roll a shape more consistent with Hitchcock’s formula [13] without the extra momentum
currently present.

Figure 3.15: Stand group 5 deformed strip and undeformed work roll profile with relative
difference.

Figure 3.16 compares the work roll deformation profile for all four stand groups 1, 3, 5, and
7. All four have the prominent feature d1 shown in Figure 3.15. There is the same buckling
of the strip that produces extra strip center height in combination with feature d1.
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Figure 3.16: A comparison of work-roll contact deformation at the four-stand groups.
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Chapter 4

Steady-State Dynamics Model

4.1 2DOF Lumped Mass Model

4.1.1 Exponential Decay of Strip Exit Height

Figure 4.1 is the Fast-Fourier Transform, FFT, for the same five samples from the 6.4 [mm]
excitation analysis plus the FFT of an exponential function that represents a simple case of
critical damping,

(hx0 − hx)/hx0 ≈ e−a ∆z (4.1)

where a is a handpicked value that minimized the differences between one of the five samples.
The FFT for four of the samples and the FFT for the analytical curve are in good agreement.
The FFT for fastest excitation multiple of 0.5 is the exception. The good agreement of the
critically damped system and the steady-state exit height data support the use of the 2DOF
system seen in Figure 3.9.

4.1.2 Equations of Motion

Once the excitation phase ends and the strip and roll stack are free to seek steady state, the
simulation runs without any external vertical forces. The 2DOF model shown in Figure 3.9
has initial vertical position and a zero vertical velocity after the excitation phase ends. The
two equations of motion are

Ü2,br =
−CRS
M2

(U̇2,br − U̇2,wr)−
Cstd
M2

U̇2,br −
KRS

M2

(U2,br − U2,wr)−
Kstd

M2

U2,br (4.2)

Ü2,wr =
CRS
M1

(U̇2,br − U̇2,wr)−
Cstp
M1

U̇2,wr +
KRS

M1

(U2,br − U2,wr)−
Kstp

M1

U2,wr (4.3)
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Figure 4.1: A FFT of the five samples used in excitation analysis compared to the damping
term in a single degree of freedom system.

where the variables are illustrated in Figure 3.9. The equations of motion in state space
after a change of variables are

ẏ1 = y2 (4.4)

ẏ2 = Ü2,br =
−CRS
M2

(y2 − y4)− Cstd
M2

y2 −
KRS

M2

(y1 − y3)− Kstd

M2

y1 (4.5)

ẏ3 = y4 (4.6)

ẏ4 = Ü2,wr =
CRS
M1

(y2 − y4)− Cstp
M1

y4 +
KRS

M1

(y1 − y3)− Kstp

M1

y3 (4.7)

or in more compact matrix form:

ẏ = [A]{y}+ [B]{u} (4.8)

z = [C]{y}+ [D]{u} (4.9)

where matrices are enclosed in square brackets and vectors in curly braces. The matrix [A]
is
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[A] =


0 1 0 0

−KRS

M2
− Kstd

M2
−CRS

M2
− Cstd

M2

KRS

M2

CRS

M2

0 0 0 1
KRS

M1

CRS

M1
−KRS

M1
− Kstp

M1
−CRS

M1
− Cstp

M1

 (4.10)

The deformation of the strip, hx, at the contact boundary with the work roll is the desired
information, U2,wr, so y3 = U2,wr = hx. Since data from one of the outputs is available, the
[C] matrix is

C =
(

0 0 1 0
)

(4.11)

4.1.3 The Single Output Solution

Given that det([A]) is not zero, to solve this system: first use the fact that a rotational
transform, [P], exists and it is not a function of time, such that,

[A][P] = [P][Λ] (4.12)

where [Λ] is a diagonal matrix of eigenvalues and [P] is a matrix of the eigenvectors. Letting

{y} = [P]{ŷ} (4.13)

and substituting into Equations 4.8 and 4.9 yields

[P]{ ˙̂y} = [A][P]{ŷ}+ [B]{u} (4.14)

{z} = [C][P]{ŷ}+ [D]{u} (4.15)

After solving for ˙̂y
{ ˙̂y} = [P]−1[A][P]{ŷ}+ [P]−1[B]{u} (4.16)

Then taking into account the lack of a forcing function, {u}, the final matrix equation for
the state equation is

{ ˙̂y} = [Λ]{ŷ} (4.17)

and the final output equation is
{z} = [C][P]{ŷ} (4.18)

.

Since the general solution to Equation 4.17 with four eigenvalues is

ŷ = c1e
λ1t + c2e

λ2t + c3e
λ3t + c4e

λ4t (4.19)

the final equation for the single output z with an initial displacement is

z = c0 + c1e
λ1t + c2e

λ2t + c3e
λ3t + c4e

λ4t (4.20)

.
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Chapter 5

Steady-State Determination

5.1 Steady-State Overview

5.1.1 Steady-State Data Points

The data extracted from each simulation is

1. the time history for the rolling load,

2. the strip centerline exit heights in the x-z plane,

3. the strip exit heights at the feather in the x-z plane,

4. the strip surface heights in all three coordinates.

The extracted data from items 1, 2, and 3 are used in the determination of the t =∞ steady-
state values for the rolling load, P , the strip centerline height, hx, and the strip height at the
feather, hef , respectively. The process used for this determination is covered in this section
after a brief overview of how the extracted data from 4 is used.

The extracted data from item 4 uses selected strip cross-sections in the x-y plane for poly-
nomial regression to define function, xySurf(wid). Strip exit crown, Cx,2, is calculated
with

Cx,2 = xySurf(wid = 0)− xySurf(wid = widfea) (5.1)

This estimate of strip exit crown, Cx,2 is used as an independent measure of strip exit crown,
but only at stand 7 where there is no deformation beyond the strip feather width. The
further development of Equation 5.1 is out-of-scope for this research.
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5.1.2 Observation Level Dependent Variables

The strip exit crown calculation for each observation is

Cx,1(t =∞) = hx(t =∞)− hxf (t =∞) (5.2)

where functions hx(t) and hxf (t) are variations of Equation 4.20 after the coefficients and
exponents are derived from a nonlinear search. Cx,1(t =∞), hx(t =∞), and hxf (t =∞) are
the dependent variable steady-state values from one observation used to build the response
surface.

5.1.3 Response Surface Crown Models

Strip exit crown can be calculated from the two response surface exits heights, hx and hxf
with

Cx({ζ}) = hx,RS({ζ})− hxf,RS({ζ}) (5.3)

where hx,RS({ζ}) and hxf,RS({ζ}) are now functions of the isoparametric coordinate vector,
{ζ}. The other option explored is to build a response surface directly the strip exit crown,
Cx,1, value from each observation, which is equivalent to

Cx({ζ}) = Cx,RS({ζ}) (5.4)

Equation 5.3 is the preferred method found for calculating strip exit crown. The next chapter
goes into the details on building the response surface and the isoparametric formulation.

5.1.4 Observation Level Extracted Data

Because the force history for a single exit height point on the strip is not available, all of
the un-forced exit height data points are used to find the steady-state exit heights. Figure
5.1 is a plot of the data points extracted from one Abaqus simulation of both the centerline,
hx and the feather, hxf , longitudinal exit heights. The strip is pressed into the work-roll
starting on the right (the boxed-in area labeled “Excitation phase ...” in Figure 5.1) to set
the gap and then the strip moves to the right as the strip and work roll are allowed to come
to steady state. The boxed-in area labeled “In contact ...” in Figure 5.1 encloses the set of
data points in contact with the work-roll after the simulation terminates and this set of data
points is excluded from the steady-state search. The remaining set of deformed coordinates
for all of the data points after the excitation phase and not in contact with the work-roll are
used to determine the steady-state exit heights. The simplifying assumption is that the first
data point hx,0 (see Figure 5.1) is the time zero exit height and the remaining n data points
are moving at the strip velocity, so each strip exit height point to the left is a positive time
relative to time zero. The equation to compute the simulation time is,

ti = (z0 − zi)/velwr (5.5)
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where zi is the z coordinate for strip exit height at hx,i, velwr is the work roll tangential
velocity parameter, velwr is strip initial velocity and z0 ≥ zi. The introduction of a realistic
time value also allows using what is known about the time domain 2DOF system to provide
a more reliable estimate of initial conditions. The set of n data points is the exit height
post-excitation steady-state window.

Figure 5.1: Simulation strip exit heights taken from the deformed strip.

5.2 SDOF Steady-State Model, Unconstrained Fit

The first attempt to find steady-state uses a single degree of freedom model (SDOF) as seen
in Equation 5.6. This is done because the algorithm for the nonlinear root finding does not
support constraints on the variables, so at least one positive exponent is very likely when
using the complete set of 2DOF equations. The form of the equation used in the search is

0 =
n−1∑
i=0

(
(c0 + ea ti(b cos(c ti) + d sin(c ti)))− hx,i

)
(5.6)

where c0 is the steady-state exit height (centerline or feather), hx,i are the exit heights in the
steady-state set, {SDOF start : hn} and a, b, c, and d are dummy variables in the nonlinear
fit. Equation 5.6 is also used for the set of exit heights at the feather, hxf,i. An added safe
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guard against positive exponents is to use a small portion of the excitation curve (labeled
SDOF start in Figure 5.1) in the nonlinear search. Prior to making this change, occasionally
positive exponents appear in the result, along with an unrealistic steady-state exit height.

One difficulty with this method is that the result is sensitive to a large initial value of the
exponent and can degenerate into an average of the final strip exit height data when the
exponential term takes the other terms to zero. The variance of residuals is part of the data
collected for both of the strip exit heights. Checking for observations with large variances
make it possible to identity and make corrections. Even with the added simplifications, the
SDOF model does well with most differences with 2DOF result under 2%.

Figure 5.2 are two side-by-side plots from the SDOF fit code. The left plot is from the rolling
load steady-state search, which uses a modified form of Equation 5.6, and the plot on the
right is the result for both of the strip exit heights. The unconnected dots plotted are from
the extracted data and the continuous curves are from Equations 5.6 once the missing values
are known. Also, plotted is a dotted line as a zero reference with the residues plotted relative
to this reference line.

Figure 5.2: SDOF fit for both rolling load, P , and the two exit heights, hx and hxf .

5.3 2DOF Steady-State Model, Constrained Fit

5.3.1 2DOF Eigenvalues

Using the complete 2DOF solution is practical with the discovery of a L-BFGS minimization
routine [17]. Equation 4.19 is used with constraints on the scalar and exponential variables.
An added benefit of the constrained search is that only the post excitation phase points
are used to determine the steady-state exit heights. It is assumed that the set of strip exit
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heights in the post-excitation steady-state window are at the strip velocity specified in the
model setup parameters. The starting exit height index, z0, for the 2DOF solution is under
hx,0 in Figure 5.1, and Equation 5.5 is used to assign time values to each data point up to
zi.

A real system based on Equation 4.19 is limited to one of the following eigenvalue combina-
tions:

• 4 real negative eigenvalues,

• a special case with duplicate negative eigenvalues (critically damped), plus 2 negative
real eigenvalues or 2 complex eigenvalues in the left-half complex plane (LHP),

• 2 real negative eigenvalues and 2 complex conjugates in the LHP,

• 4 complex conjugates in the LHP,

• rigid body motion (λ = 0), plus some combination of real and complex eigenvalues in
the LHP.

Rigid body modes are not possible in this simulation, so only the first four items are con-
sidered. The function to minimize can be written in the form of four exponential functions
if complex numbers are allowed, but this would require complex number support in the L-
BFGS routine, which has unknown support for complex types in the Python routine used.
Instead, Equation 4.20 is solved as the superposition of individual special cases using real
numbers.

The above four cases can be broken up into eight different combinations of three equations:
sub-solution 1 for a pair of eigenvalues, sub-solution 2 for the other pair of eigenvalues and
the steady-state exit height, c0. Two of the three basic solutions are

1. 2 real negative eigenvalues,

2. a special case with duplicate negative eigenvalues (critically damped),

3. 2 complex conjugates in the LHP.

The t = ∞ strip exit height, c0, is always one of the equations included in the final sum of
three equations.

5.3.2 Two Negative Real Eigenvalues

For case 1 with two exponential functions, exponents A and B are related by a common
pseudo-frequency, ω, and damping constant γ. Enforcing this relationship helps prevent
degenerate final values, namely, A = B, so A and B are calculated using γ and ω with

A,B = ω ± ω
√
γ2 − 1 (5.7)
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where γ is greater than one. The sub-equation is

real1 = a eAt + b eBt (5.8)

where a, b are scalars. The constraints on the variables are

• a and b are between ±2.5(stdDev({yn}, 0, n)) where {yn} is the array of strip exit
heights in the post-excitation rolling window, and stdDev is a function to calculate the
standard deviation,

• γ is greater than or equal to 1.0 and less than some maximum damping, which is
estimated at 3.0,

• ω is less the sampling frequency, 2π/(t1 − t0), and greater than or equal to the low
frequency, π/(tn − t0).

5.3.3 Duplicate Eigenvalues

If the damping factor, γ, is greater than or equal to 1.0 and abs(γ − 1.0) < 10−8 then the
critically damped case is used,

crit1 = (a+ bt)eωt (5.9)

where a and b are scalars. The constraints on the variables are

• a and b have the same constraints as case 1,

• γ is equal to 1.0,

• ω has the same constraints as case 1.

5.3.4 Two Complex Eigenvalues

For case three, when there two complex conjugate eigenvalues in the LHP, the under-damped
frequency is calculated as

ωd = ωn
√

1− γ2 (5.10)

where γ is less than one and ωn = ω. The sub-equation used is

compx = e−γωnt(a cos(ωdt) + b sin(ωdt)) (5.11)

where ωn is the natural frequency, ωd is the damped frequency and γ is the damping factor.
The under damped constraints are

• a and b have the same constraints as case 1,

• γ is between 0.8 and 1.0

• ω has the same constraints as case 1.
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5.3.5 L-BFGS Routine

A wrapper function, twodof , does the conditional testing and evaluations necessary to return
the proper summation of: c0 and Equations 5.8, 5.9, or 5.11. The function to minimize with
the L-BFGS routine is

Fmin(c0, a, b, c, d, γ1, ω1, γ2, ω2, ti, hx,i) = (twodof(c0, a, b, c, d, γ1, ω1, γ2, ω2, ti)−hx,i)2 (5.12)

where i ∈ {0, 1, 2, ..., n − 1}; a, b, γ1 and ω1 are used for one partial solution; and c, d, γ2

and ω2 are used for the other partial solution. The L-BFGS routine is passed the function
to minimize, the bounds on the variables, and the gradient of the function to minimize. The
gradient is calculated with the wrapper function twodofgrad, which uses the same input
variables to determine the form of the gradient. The exit height at the feather, hxf,i, is
handled in the same manner.

Three different combinations of either over-damped (with critically damped a special case)
or under-damped systems are all potential solutions. All three permutations are evaluated
and the best fit returned. The mean of the residuals and the sum of the residuals squared is
used in a weighted sum to pick the best of the three models.

The same kind of plots are produced as the SDOF routines, Figure 5.3 are the two plots
generated from the 2DOF fit code. Red and green dots are the original data points and the
solid lines are from the best solution found. The dotted line is a zero reference that the
residues are plotted relative to.

A new feature with 2DOF plots is extending the analytical curves out to one-and-half times
the steady-state run time to provide a visual indication of any problems with the solution.
This final value, hprj, is also kept for use later as a post processing check, namely, if abs(hlast−
hprj) > 0.01 [mm] this observation needs investigation. The observations that have exceeded
this value are cases where the sinusoidal magnitude is still comparatively large after the
simulation ends. This is possibly either a resonate condition, like chatter, [6], strip edge
wave, strip center buckle, or an indication that the simulation time is too short.

5.3.6 Steady-State Rolling Load

The rolling-load data is already a function of time, so all of the rolling-load data points
from time zero up to the end of the excitation time are excluded and the remaining data
points are used in the steady-state window. A pseudo-exit height is produced by scaling the
rolling-load data with stand stiffness, Kstd, with

{hrl} = {P}/Kstd (5.13)

where {P} is the vector of the post-excitation phase rolling loads. The same function to
minimize, Equation 5.12, employed for the exit heights is used. The results are put back in
terms of force by multiplying Kstd.
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Figure 5.3: 2DOF fit for both rolling load, P , and the two exit heights, hx and hxf .

37



Chapter 6

Response Surface Models

6.1 Choice of Independent Variables

6.1.1 Ford and Alexander Force Equation Variables

Two of the dependent variables and four of the independent variable chosen for the response
surface are used in the Ford and Alexander force equation [21],

P = kbLp

(
π

2
+

1

2

Lp
(he + hx)/2

)
(6.1)

where b is the strip width, k = Sy/
√

3, Sy is the yield strength, Lp is the arc of contact, he is
the centerline entry height including entry crown, hx is the centerline exit height. The value
for Lp is achieved by iteration, because the rolling load is unknown,

Lp ≈
√
R′(he − hx) (6.2)

where R′ for the first iteration is the original work radius, dwr/2. As part of the next iteration
a new estimate of the flattened radius is computed from the force estimate, P , with

R′ = R′
(

1 +
16(1− ν)2

πE(he − hx)
P

b

)
(6.3)

where E is the work-roll modulus of elasticity and ν is Poisson’s ratio. Repeated iterations
are needed to get a converged force and exit-height value starting from Equation 6.1. The
current procedure does not use a tolerance to end the search, but a fixed number of iterations.

6.1.2 Nine Selected Independent Variables

The minimum set of independent variables based on the Equations 6.1 through 6.3 and
assuming the existence of strip crown are
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• Strip width, wid [mm];

• Strip height at the feather, hef [mm] (he − Ce);
• Strip entry crown, Ce [mm];

• Strip yield strength, Sy [tonne/mm2];

• Work roll diameter, dwr [mm].

Two other variables are chosen because they are known to influence the final exit crown
value [20, 19, 12]. The independent variables are user inputs designed to control the final
exit crown:

• Work-roll crown, Cwr [mm];

• Jacking load for work roll bending, J [tonne].

The remaining variables are chosen because they are needed in building the model or believed
to have a measurable influence on exit crown, but they are not user inputs:

• FE model gap, gap [mm], (necessary to build the model),

• Backup roll diameter, dbr [mm], (known to influence crown [10, 22]).

One variable not chosen because it is believed to have a minimal influence on exit crown
based on experience is strip velocity [14]. As the strip height is reduced the strip velocity
increases, in a seven stand mill the strip velocity at the final stand is 5 to 6 times greater
than the first stand. Realistic nominal strip velocities are assigned to each stand and used
to set up the finite element model, but treated as fixed parameters necessary for calculating
the dynamics of rolling.

6.1.3 The Four Selected Dependent Variables

Strip centerline exit height, hx, and rolling load, P , are the two dependent variables in the
Ford and Alexander equations. The strip centerline exit height, hx, is the sum of the strip
exit crown, Cx and strip exit height at the feather hxf , therefore Cx and hxf are also good
dependent variables. The list of dependent variables is

• strip centerline exit height, hx,

• strip exit height at the feather hxf ,

• strip exit crown, Cx,

• rolling load, P .

Response surfaces built from Cx, hx and hxf provide the means of calculating strip exit
crown using Equations 5.4 and 5.3. Rolling load, P , is not directly used to calculate strip
exit crown, but is used to help validate the response surface.

39



Choice of Independent Variables Response Surface Models

6.1.4 The Choice of Strip Exit Height at the Feather

Figure 6.1, which is the transverse cross-sectional view of the strip, illustrates why the exit
height at the feather, hxf , is a better measurement to estimate strip exit crown than exit
height at the edge, hxe. Passing a curve through the 32 exit height data points between the
center and feather width produces very little residual error. The last point at strip edge,
hxe, is approximately 0.04 [mm] away from hxf . This is about twice the exit crown of 0.02
[mm].

Figure 6.1: Three X-Y axis cross sections from the strip profile are used with both hxf and
hxe identified.

Figure 6.1 is made from a stand 7 observation. The earlier stands (1 though 3) exert enough
force on the strip that edge rounding extends pass the feather width (see Figure 6.30), so
using a cross sectional fit fails to predict the strip exit height at the feather even if a quartic
is used in place of a quadratic fit. Because of the excessive deformation at stand 1 though 3,
the steady-state exit height calculations are based on the longitudinal exit height data, hx
and hxf .
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6.2 Response Surface Formulation

6.2.1 Design of Experiments Approach

A design of experiments approach with nine factors (variables) and two levels for each variable
requires 512 experiments for a fully-factored response surface. The use of only two levels per
variable assumes that a variable can be represented with a straight line (linear representation)
[15, 2]. Fully factored requires that every possible combination of the two levels for each of
the nine variables has an experiment, which is 29 or 512 permutations. If all factors have
quadratic relationships then at least 39 or 19683 samples are needed. The number of samples
or observations needed is calculated with

nobs = max(i)max(j)...max(s) (6.4)

where i, j, ..., s ∈ {1, 2, ...}. For example, if the variable indexed with i has a linear represen-
tation and j is quadratic then i ∈ {1, 2} and j ∈ {1, 2, 3}. The numbers of nodes is related to
the number of degrees of freedom in the polynomial, using Lagrange interpolation functions:

• a linear polynomial - 2 nodes,

• a quadratic polynomial - 3 nodes,

• a cubic polynomial - 4 nodes....

Each experiment or observation for a response surface are derived from the steady-state re-
sults collected from one dynamic strip rolling simulation. The steady-state analysis (Section
5) is performed on the extracted data to produce the dependent variables: strip exit crown,
Cx,1, centerline strip exit height, hx, strip exit height at the feather, hxf , and rolling load, P .
Each dependent variable is now a function of the nine factors or nine-independent variables.
Centerline exit height, hx, for example, is

hx = hx,RS(wid, dwr, dbr, gap, hef , Sy, Ce, Cwr, J) (6.5)

where wid, dwr, dbr, gap, hef , Sy, Ce, Cwr and J are the nine-independent variables used to
build the FE model. For a scaled response surface, centerline exit height is

hx = hx,RS(η1, η2, ..., η9) (6.6)

where the ηi variables are the scaled independent variables. For an isoparametric response
surface, centerline exit height is

hx = hx,RS(ζ1, ζ2, ..., ζ9) (6.7)

where the ζi variables are the transformed independent variables. The functional relationship
for strip width becomes a function of more than one variable,

wid = wid(ζ1, ζ2, ..., ζ9), (6.8)

while the scaled width relationship is still one-to-one, as in η1 = η1(wid).
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6.2.2 The Evolution of the Sampling Methodology

Initial speculation is that the strip width wid, work-roll diameter, dwr and backup-roll di-
ameter, dbr have a cubic relationship with the remaining six variables having a linear form.
A cubic function needs four observations per variable to define the curve and the linear form
needs two observations. The minimum number of observations using Equation 6.4 is 4096
observations.

The collection of observations begins with the final finishing stand 7, which is also where
most of the original finite element (FE) development is concentrated, so there are fewer
unknowns to deal with. Stand 7 has one gap value in use; four perturbations of the so-call
cubic variables, wid, dwr and dbr; and a high and a low value for the six remaining variables.

A preliminary response surface built with a single value for the variables hef , Sy, Cwr, J
show that cubic functions for dwr, and dbr provides too many degrees of freedom, since a
family of curves for strip exit crown does not show any consistent trends. Cubic interpolation
functions are dropped in favor of quadratic or linear functions.

A revised sampling plan uses values from an existing mill setup schedule and targets collecting
simulations from four out the seven stands. For each of the four stands there is one gap value;
three perturbations of the potentially quadratic variables, wid, dwr and dbr; and a high and
a low value for the five remaining variables for a total of 864 observations per stand, or 3456
observations in total. This is twice as many samples as needed, but the experimental error
seen in the first response surfaces is significant enough that weighted least squares becomes
part of the next response surfaces.

The weights are the reciprocal of the sample variance, 1/S2, calculated in the steady-state fit
for each of the dependent variables, hx, hxf , and P . Cx uses the sum of the sample variance
for hx and hxf .

The observation samples are broken up into two groups to assign different collection priorities
(see Table 6.1): sample set 1 which is composed of a set with one gap and one entry height
per stand group and it is based on the mill schedule. The other set, sample set 2, is composed
of the same gap value, but with sample set 1 entry heights reduced by roughly ten percent.
Table 6.2 contains the perturbations for the remaining “linear” variables.

Table 6.1: Sample Sets 1 and 2 FE Gap and Edge Entry Height Values
Sample Set 1 Sample Set 2

Stand Gap [mm] Entry height [mm] Gap [mm] Entry height [mm]
1 23.78 40.21 23.78 32.17
3 10.04 19.05 10.04 17.20
5 5.43 10.26 5.43 8.28
7 4.38 6.43 4.38 5.90

The use of an existing schedule, instead of sampling based on the minimum and maximum
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Table 6.2: Standard Sample Set Independent Variable Perturbations
Ce [mm] Cwr [mm] Sy [mm] J [tonne]

Stand low high low high low high low high
1 0.201 0.300 -0.14 0.0000 0.01100 0.01364 0.00 75.76
3 0.158 0.205 -0.14 0.0000 0.01300 0.01657 0.00 123.00
5 0.090 0.100 -0.14 0.0000 0.01200 0.01922 96.88 126.01
7 0.000 0.050 0.00 0.0135 0.02038 0.02330 0.00 96.88

values for the full sample space, turns out to be a serious problem in building a usable
response surface. The next subsection (6.2.3) goes into more detail about what problems
are discovered building a response surface for a hot-rolling mill and how they are solved,
but those solutions do not fully address the problem of using narrow ranges in values for the
independent variables.

Early testing shows that the variable dwr is best represented with a linear form and dbr is
found to be linear or contributing very little to the model. Also, trend analysis for 12 yield
strengths, Sy, using a typical stand 7 setup indicates that for a large range in Sy, Sy is
quadratic or logarithmic, but for the narrow range of values used, a linear function works
just as well. Therefore, expanding the range of the Sy is deferred, until a complete set of
observations for stand groups 1, 3, and 5 are complete.

6.2.3 Hot-Rolling Mill Response Surface Issues

There are four obstacles discovered to building a response surface for a hot-rolling mill:

1. A large, 2 × 106 to 1, difference in independent variable magnitudes, I.E. Sy ≈ 10−3

[mm] and wid ≈ 103 [mm].

2. A large, 105 to 1, difference in dependent variable magnitudes, I.E. Cx ≈ 10−2 [mm]
and wid ≈ 103 [mm].

3. The domain of the response surface is not rectangular. For instance, a large sample
space with combinations of variable values that are either meaningless, I.E. gap = 10.0
[mm] and hef = 5.0 [mm] or unused, I.E. gap = .1 [mm] and hef = 44 [mm].

4. A narrow choice of the high-and-low values for independent variable sampling relative
to the range of possible values used in a mill. Figure 6.2 is an example of this for gap
and hef .

The solution to obstacle 1 is to scale all of the independent variables to between ±1. The
scaled wid has the same magnitude as the scaled Sy. Obstacle 2 exists for the exit crown
dependent variable, Cx, but using a response surface based on exit heights hx and hxf to
derive Cx changes the relative scales from 105 to 1 to 103 to 1. The third obstacle requires
discretization where the solution space is meshed.
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Three meshing solutions are possible: The first solution is to build an element about each
stand or about pairs of adjacent stands. However, this breaks up a continuous space into sep-
arate elements and while this guarantees piecewise function continuity, derivative continuity
requires additional constraint equations for the slopes, which is to expensive. For instance,
linear interpolation requires 2 equations to find the two unknowns (the nodal values), but
derivative continuity requires two more equations for the slope at each node and different
interpolation functions (Hermite). The additional constraint also increases the polynomial
degree from linear to cubic and it doubles the number of observations required, so this
option is ruled out. The second option is rotating the axes in addition to scaling, which
potentially allows a single element to be used for the entire solution space. The third option,
an isoparametric representation, includes the scaling and rotation, but also allows the size
of the element to change as a function of the other variables. The ability to form a non-
rectangular domain with the lengths of each of the sides different makes the third option the
method of choice.

Strip entry crown, Ce, and FE gap, gap, are examples of how the hot-rolling mill space
varies as a function of the entry height at the feather, hef . The ranges for Ce and gap are
0.1 ≤ Ce ≤ 0.40 [mm] and 20 ≤ gap ≤ 39 [mm] when hef = 40 [mm] and the bounds are
0.0 ≤ Ce ≤ 0.10 [mm] and 0 ≤ gap ≤ 4.0 [mm] when hef = 6.0 [mm]. The isoparametric
meshing accommodates this as a single element without enlarging the space at either hef
endpoint.

Obstacle 4 is partially addressed with the choice of an isoparametric element for the response
surface, but for some independent variable combinations, like gap and hef , there is still a
relatively large area without observations (see Figures 6.2, 6.4, or 6.5). The best solution is to
start with a isoparametric element as large as needed to cover the range in values for all seven
stands and then generate coordinates for all of the observations based on either the nodal
values or at the Gauss integration points. The use of nodal values is not practical in this
case because many nodal combinations are close to an unused or a meaningless combination
of variable values (see Figure 6.2). Because of this the Gauss points are a better choice.

The first full response surface uses all observations labeled sample set #1 that are available
(observations for hef = 40 [mm] have not run at this time). The least squares fit statistics
for this response surface indicates a good fit, but for the worst case independent variable,
the partial derivatives fluctuate between large positive and negative values, ±O(105). The
same situation as a two-dimensional (2-D) example can be imagined using Figure 6.2 where
a small amount of system error in the observations labeled sample set #1 at a hef of 6.4
[mm], 10.26 [mm] and 19.1 [mm] will create large incline changes in the gap and hef plane.

A new response surface that includes sample set #2 and 6 % of the hef = 40 [mm] observa-
tions is a big improvement in both the least squares fit and in the trend and magnitude of
the partial derivatives. The largest partial derivatives are on the order of 10 and they have
a consistent sign, except for “problem” regions, which are discussed in more detail later.
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Figure 6.2: A contour plot of exit height, Cx, as a function of hef and gap.

6.2.4 Interpolation Introduction

The response surface is built from an orthogonal combination of linear and quadratic interpo-
lation functions. Each independent variable defines one dimension in a n-space hyper-surface.
Orthogonality requires that the set of independent variables are linearly independent and
they are combined with the other variables using the tensor product.

For example, linear interpolation functions have two degrees of freedom just like the polyno-
mial form of a line, y(x) = mx + b. An interpolated line using Lagrangian shape functions
is

yh(x) =

max(i)∑
i=0

yh,iNh,i(x) (6.9)

where h is the element number, i is the node number, the nodal constant yh,i is the value
of yh(xh,i), and Nh,i(x) is the shape function. The requirements for the Lagrangian shape
functions are [5]

1. The polynomial order of the original function, y(x), and the shape functions, Nh,i(x),
are the same.

2. Nh,i(x = xh,i) = 1 where xh,i is a nodal coordinate and Nh,i(x = xh,j) = 0 when i 6= j.

3. The sum of all shape functions Nh,i(x) are equal to 1 if the shape functions are C0

continuous.

Figure 6.3 illustrates the C0 property of the Lagrangian interpolation functions used. In
Figure 6.3 two linear shape functions with two nodes each, Nh,1 and Nh,2 where h ∈ {1, 2},
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are used to create a two element mesh for a quadratic function, y(x) with

y1(x) = y1,1N1,1(x) + y1,2N1,2(x) {1 ≥ x ≥ 3} (6.10)

y2(x) = y2,1N2,1(x) + y2,2N2,2(x) {3 ≥ x ≥ 5} (6.11)

where y1(x) is element 1 and y2(x) is element 2 and y(x) = y1(x) + y2(x). At the common
node at x = 3 both shape functions are piecewise continuous, C0, but the two slopes for y1

and y2 are different, or not C1 continuous. The polynomial form of the element makes it
possible to get any number of derivatives within the element. A single quadratic interpolation
function with three nodal values could have represented y(x) exactly.

Figure 6.3: An example of a two element linear interpolation approximation of a quadratic
function y(x).

6.2.5 Un-scaled 2-D Example

Figure 6.2 uses independent variables gap and hef to illustrate a simple two-dimensional
response surface example without scaling. The element boundaries are defined with the
choice of the minimum and maximum values for independent variables gap and hef . The
contours represent the value of dependent variable exit crown, Cx(hef , gap). The value
of both independent variables without any translation, scaling, or rotation are in terms
of their natural values or natural coordinates. The shaded region labeled “No reduction
possible” refers to stand gap that is larger than the strip entry height at the feather, so
observations are not generated for this combination of variable values. The other shaded
region labeled “Reduction too large” is a case where a practical limit is established and
again no observations are planned.

The linear Lagrangian shape functions for gap in terms of two nodal values gap1 and gap2
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are

N2,i(gap) =
gapj − gap

(gapj − gapi)
(6.12)

where i and j varies from 1 to 2; and i 6= j. Letting N1,j(hef ) represent the linear shape
function for entry height at the feather, the surface shown in Figure 6.2 is

Cx(gap, hef ) =

max(i)∑
i=0

y2,iN2,i(gap)

max(j)∑
j=0

y1,jN1,j(hef ) (6.13)

where i, j ∈ {1, 2} (both linear), the products y2,i y1,j are the unknown nodal coefficients for
Cx. Equation 6.13 defines the Exit crown function, Cx(gap, hef ), as a 2-D element. Equation
6.13 in matrix form is

Cx(gap, hef ) = [φk(gap, hef )](1×4){Cx,k}(4×1) (6.14)

where

• brackets ([ ]) identify matrices,

• curly braces ({ }) identify column vectors,

• Cx,k is the product of the constants y2,i y1,j,

• φk(gap, hef ) is the product of single variable the shape functions N2(gap)N1(hef ),

• k = (j − 1) +max(j)(i− 1) + 1 (Equation 6.20).

Independent variable values for this example are in Table 6.1 and the exit crown values
for the 2-D example are chosen arbitrarily by hand to reflect general trends for gap and
strip entry height at the feather. Linear regression is used to define Cx(gap, hef ), just for
the 2-D example, as an analytic linear polynomial with one cross-term, or the equivalent of
Cx(gap, hef ) = (gap gap1 + gap2)(hef hef,1 + hef,2).

6.2.6 Scaled 2-D Example

The result of scaling both of the independent variables to range from ±1 is seen in Figure
6.4. The independent variable gap as the scaled independent variable η2 is

η2(gap) = 2
gap− gapavg

gaprng
(6.15)

where

gapavg = (gap1 + gap2)/2

gaprng = (gap2 − gap1)
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Figure 6.4: A contour plot with scaled coordinates η1 and η2 for scaled natural coordinates
hef and gap respectively.

η1(hef ) is the equivalent scaling for hef . Scaling does not affect the relative size of the unused
portions of the plane shaded in red in Figures 6.2 and 6.4.

The shape functions in terms of the scaled variable η are still Lagrangian. Solving Equation
6.12 in terms of η2 with gap1 = η2,1 = −1 and gap2 = η2,2 = +1 simplifies to,

N2,1(η2) =
1

2
(1− η2) (6.16)

N2,2(η2) =
1

2
(1 + η2)

6.2.7 Isoparametric 2-D Example

Figure 6.5 shows the hef and gap plane after the transformation to new coordinates ζ1 and
ζ2, including the location of the four Gauss integration points. The scaled hef axis, η1, in this
example is mapped one-to-one to the isoparametric ζ1 axis, but this is an arbitrary choice
to make the example a little easier to work.

Figure 6.6 is an overlay of the scaled and isoparametric 2-D planes, which both use coordinate
ranges of ±1. The diamonds show the two sample sets with an isoparametric representation
and the circles are scaled representation. The transformation for the gap axis includes a
rotation and a scaling as a function of hef , which makes gap a function of both ζ1 and ζ2 as
seen in Figure 6.6. For the gap mapping, the effect of changing ζ2 and holding ζ1 constant
only changes the value of gap, while changing ζ1 and holding ζ2 constant changes hef and
gap.
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Figure 6.5: Exit crown contour plot on isoparametric coordinate plane ζ1 and ζ2 for trans-
formed hef and gap respectively.

Figure 6.6: An overlay of scaled and isoparametric coordinate planes for η1 and ζ1 and η2

and ζ2.

49



Response Surface Formulation Response Surface Models

There is some increase in separation between observations because of the isoparametric map-
ping, but as seen in Figure 6.5, sampling at the four Gauss points is a much better approach.
Using the Gauss points to generate the natural coordinates for the four observations needed
in this 2-D example is a three step process,

1. For a single linear dimension compute the two Gauss points (±1/
√

3) or three Gauss
points for quadratic dimension (±

√
3/5 and 0).

2. Build a coordinate vector, {ζ} based on all possible combinations of the index range
for each dimension. For a single linear dimension,

ζi = (−1)i
1√
3

(6.17)

where i ∈ {1, 2}. For a quadratic dimension

ζi = (i− 2)

√
3

5
(6.18)

where i ∈ {1, 2, 3}.
3. Convert the isoparametric coordinate to natural coordinates using Equation 6.22.

Table 6.3 contains the natural coordinates for the Gauss points seen in Figure 6.5. Because
there is one unusable observation, either the boundaries chosen for the isoparametric sur-
face must change or the one observation must be forced into a usable combination and the
isoparametric coordinates recomputed.

Table 6.3: The Gauss Point Mapping of Isoparametric Coordinates to Natural Coordinates.
Node ζ1 ζ2 hef [mm] gap [mm] Description
1 -0.58 -0.58 10.01 3.78
2 0.58 -0.58 34.89 8.34
3 -0.58 0.58 10.01 13.59 meaningless combination
4 0.58 0.58 34.89 29.19

6.2.8 Linear Isoparametric Interpolation Functions

The shape functions for a single linear isoparametric dimension have the same minimum
and maximum as those scaled between ±1, so they are identical to the shape functions of
Equation 6.16, except for the use of ζ in place of η. Expanding φk in Equation 6.14 in terms
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of the shape functions in Equation 6.12 produces the four nodal equations,

φ1(ζ1, ζ2) =
1

2
(1− ζ1)

1

2
(1− ζ2) (6.19)

φ2(ζ1, ζ2) =
1

2
(1 + ζ1)

1

2
(1− ζ2)

φ3(ζ1, ζ2) =
1

2
(1− ζ1)

1

2
(1 + ζ2)

φ4(ζ1, ζ2) =
1

2
(1 + ζ1)

1

2
(1 + ζ2)

where ζ1 and ζ2 are the transformed hef and gap axes respectively. Node numbering and
locations are mapped as shown in Table 6.4. In generic terms, the node number, k, is

k = (i− 1) + imax(j − 1) + imaxjmax(l − 1) + ...(imaxjmax..rmax)(s− 1) + 1 (6.20)

where i, j, ..., r and s vary from 1 to 2 for linear dimensions or vary from 1 to 3 for quadratic
dimensions and imax = max(i), jmax = max(j), ..., rmax = max(r). To calculate the total
number of nodes use the maximum values for i, j, etc., in Equation 6.20.

Table 6.4: 3-D Node Numbering Example
ζ1 node ζ2 node Node

ζ1 ζ2 number, i number, j number, k
-1 -1 1 1 (1− 1) + 2(1− 1) + 1 = 1
1 -1 2 1 (2− 1) + 2(1− 1) + 1 = 2
-1 1 1 2 (1− 1) + 2(2− 1) + 1 = 3
1 1 2 2 (2− 1) + 2(2− 1) + 1 = 4

Expanding Equation 6.14 in terms of the isoparametric form,

Cx(ζ1, ζ2) =
[
φ1(ζ1, ζ2) φ2(ζ1, ζ2) φ3(ζ1, ζ2) φ4(ζ1, ζ2)

]
Cx,1
Cx,2
Cx,3
Cx,4

 (6.21)

where φk are the nodal equations from the tensor product (Equation 6.19) and Cx,k are
the nodal values. The derivation of the nodal values for Cx,k is covered in the next section
(6.3). To recover the original natural coordinate values, the matrix product between the
interpolation function tensor product ([φk] in Equation 6.21) that produces a 1 × k row
vector and the k × n matrix of natural nodal values is,[

hef gap
]

= [φk(ζ1, ζ2)](1×k) [{hef,k}, {gapk}](k×2) (6.22)

where {hef,k} and {gapk} are vectors of the natural nodal coordinates that correspond to
the isoparametric coordinates, [ζ1,k, ζ2,k]

T where ζ1,k = ±1 and ζ2,k = ±1 for the two linear
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dimensions. The shorter notation {ζ} for q dimensions is used in place of [ζ1,k, ζ2,k, ..., ζq,k]
T

from now on. The natural nodal values are determined from the usable area in Figure 6.2.
The {ζ} vector for the sample sets are found using a gradient-based search covered in more
detail later.

6.2.9 Extending the 2-D Example to 3-D

Adding independent variable wid to the 2-D surface to produce a 3-D volume, requires the
following steps,

1. extend the tensor product with φk = Nh,i(ζ1)Nh,j(ζ2)Nh,l(ζ3) where h ∈ {1, 2, 3}, Equa-
tion 6.4 calculates the value of node number k; and i, j and l are varied depending on
the number of nodes or degrees of freedom in the interpolation functions,

2. add a new column of nodal values in terms of natural coordinates to the isoparametric
mapping matrix.

The use of the same interpolation functions and tensor product in Equations 6.21 and 6.22 to
calculate the response surface value and the natural coordinates respectively makes this an
isoparametric mapping. Using a different order of interpolation function between these two
equations creates either superparametric or subparametric mapping, which is not covered.

6.2.10 Quadratic Shape Functions

Quadratic shape functions are based on a quadratic polynomial, so there are three nodes
and three degrees of freedom. The new term in the isoparametric shape functions is the ζ2

term [5] as in,

Nl,1(ζ) =
1

2
(ζ2 − ζ) (6.23)

Nl,2(ζ) = (1− ζ2)

Nl,3(ζ) =
1

2
(ζ2 + ζ)

Assuming that hef is now a quadratic dimension then there are now two new nodes in Figure
6.5 at (0,−1) and (0,+1). Using Equation 6.20 with imax = 3 generates the node numbers
in Table 6.5.
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Table 6.5: 2-D Node Numbering Example
ζ1 node ζ2 node Node

ζ1 ζ2 number, i number, j number, k
-1 -1 1 1 (1− 1) + 3(1− 1) + 1 = 1
0 -1 2 1 (2− 1) + 3(1− 1) + 1 = 2
1 -1 3 1 (3− 1) + 3(1− 1) + 1 = 3
-1 1 1 2 (1− 1) + 3(2− 1) + 1 = 4
0 1 2 2 (2− 1) + 3(2− 1) + 1 = 5
1 1 3 2 (3− 1) + 3(2− 1) + 1 = 6

6.2.11 Independent Variable Pre-scaling

Some of the possible functional relationships between the independent and dependent vari-
ables that can be handled with variable scaling are,

y = ln(x) + c

y = 1/x+ c

y =
√
x+ c

where x is the independent variable and c is a constant. All three functional relationships
have to be approximated without scaling; either with a single element mesh with a high
enough order polynomial to minimize the error or a multiple element mesh with enough
elements to minimize the error. Using the square root as an example, let x̂ =

√
x then

y = x̂+c is now a linear polynomial that can be exactly represented with linear interpolation,
instead of approximated.

The natural value of the independent variable is pre-scaled. This requires that the natural
value in the isoparametric mapping to be pre-scaled. The steps to go from natural coordinate
to the ζ coordinate using the 2-D gap and hef example with hef using square root scaling
are

1. apply pre-scaling: ĝap = gap and ĥef =
√
hef (this step assumes that all of the values

in {hef,k} are now {
√
hef,k}),

2. do the gradient search to find the ζ coordinates.

The steps to go from the ζ coordinate to the natural coordinate is

1. compute the tensor product, [φk({ζ})],

2. compute [ĝap, ĥef ] = [φk][{gapk}, {hef,k}]

3. undo the pre-scaling with: gap = ĝap and hef = ĥef
2
.

The value of the dependent variable is not affected by the pre-scaling, but the partial deriva-
tives are affected by both the coordinate transformation and any pre-scaling. The partial
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derivatives of Cx with respect to hef and gap require two chain rule expansions. First, expand
the partials derivatives in terms of the pre-scaled variable as in

∂Cx
∂gap

=
∂Cx
∂ĝap

∂ĝap

∂gap
(6.24)

∂Cx
∂hef

=
∂Cx

∂ĥef

∂ĥef
∂hef

and then expand the partials of Cx with respect to the ζ variables using the chain rule as in

∂Cx
∂ζ1

=
∂Cx
∂ĝap

∂ĝap

∂ζ1

+
∂Cx

∂ĥef

∂ĥef
∂ζ1

(6.25)

∂Cx
∂ζ2

=
∂Cx
∂ĝap

∂ĝap

∂ζ2

+
∂Cx

∂ĥef

∂ĥef
∂ζ2

Putting the set of Equations 6.25 into matrix form and solving for the partials with respect
to the “hatted” variables, [

∂Cx

∂ĝap
∂Cx

∂ĥef

]
=

 ∂ĝap
∂ζ1

∂ĥef
∂ζ1

∂ĝap
∂ζ2

∂ĥef
∂ζ2

−1 [ ∂Cx

∂ζ1
∂Cx

∂ζ2

]
(6.26)

Formulating Equation 6.24 into matrix form and then substituting the result of Equation
6.26 produces, [

∂Cx

∂gap
∂Cx

∂hef

]
=

[
∂ĝap
∂gap

0

0
∂ĥef
∂hef

] ∂ĝap
∂ζ1

∂ĥef
∂ζ1

∂ĝap
∂ζ2

∂ĥef
∂ζ2

−1 [ ∂Cx

∂ζ1
∂Cx

∂ζ2

] (6.27)

In the final response surface square root scaling of Sy is used. Ideally quadratic interpolation
should be used, but there are not enough observations with a change in Sy to do this.

6.2.12 Finding the Isoparametric Coordinates with the Gradient-
Based Function Minimization Search

Prior to building the isoparametric response surface, all of the observations are made using
the natural coordinates, instead of calculating the natural coordinates from the isoparamet-
ric {ζ} coordinate vector. Thus, a search to find isoparametric coordinates is necessary.
Other reasons to search for the isoparametric coordinates are: changing the isoparametric
mapping between the {ζ} and the natural coordinates, which invalidates any existing {ζ}
coordinates, or the use of functions requiring a dependent variable value in terms of the
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natural coordinates, for instance, Cx(dwr, dbr, ..., J). The same gradient-based search in all
three cases is used to find the {ζ} coordinates.

Given a coordinate vector of the natural values, {xtarg}, a conjugate gradient search is used
to minimize the function,

Fmin({xtarg}, {ζ}) = (retNatCoor({ζ} − {xtarg})T (retNatCoor({ζ} − {xtarg}) (6.28)

where {ζ} is an initial estimate and function retNatCoor returns a vector of natural values
after calculating,

{x} = [φk({ζ})](1×k)[{x1,k}, {x2,k}...{xq,k}](k×q) (6.29)

where q is the number of variables in the response surface, [φk] is the column vector inter-
polation function tensor products and {xi,k} are the q row vectors of natural coordinates
mapped to the isoparametric coordinates.

6.3 Weighted-Least Squares Solution of the Response

Surface

6.3.1 Response Surface Form with the Nodal Values Known

The dependent variables as a function of the {ζ} coordinates are used to build the response
surface. The tensor product for each observation, [φk({ζ})], is evaluated to produce k inter-
polation products in the form of a 1×k column vector. The concatenation of all the column
vectors from n observations produces the matrix [Φ]. The [Φ] matrix is the equivalent to the
set of normal equations in least squares.

Strip centerline exit height, hx, is used in the equations, but the same applies to the remaining
three dependent variables: rolling load, P , strip exit height at the feather, hxf and strip exit
crown, Cx. If the coefficients are known then the vector of dependent variable values, {hx,RS},
is calculated from

{hx,RS}(n×1) = [Φ](n×k){hx,k}(k×1) (6.30)

where {hx,k} is the vector of the strip centerline exit height nodal coefficients (nodal coordi-
nates).

6.3.2 Weighted-Least Squares

If nodal coefficient matrix, {hx,k}, is unknown then a weighted least squares approach is used
to calculate {hx,k}. Each of the dependent variables has a sample standard deviation, S,
from the steady-state fit. The smaller the residuals then the smaller the standard deviation,
so the inverse of the standard deviation, 1/S, makes a good weight for this observation.

55



Function Estimation with Simple Projections Response Surface Models

Because the observations do not depend on any other observation (they are uncorrelated),
the weights matrix, [W], is a diagonal matrix. If the observations are correlated then [W]
is no longer a diagonal matrix. The weights matrix is

[W] = ([S]−1)T [S]−1 (6.31)

where [S] is the matrix of standard deviations. For instance, if [X′] = [S]−1[X] then
[X′]T [X′] = ([S]−1[X])T [S]−1[X] or after expanding the transpose operation [X]T ([S]−1)T [S]−1[X].

A vector, {hx,obs}, of observations is used in place of {hx,RS} in Equation 6.30. The weighted
least squares solution is found first by pre-multiplying both sides by [Φ]T [W],

[Φ]T(k×n)[W](n×n){hx,obs}(n×1) = [Φ]T(k×n)[W](n×n)[Φ](n×k){hx,k}(k×1) (6.32)

where {hx,obs} is n × 1 vector, [W], is a n × n matrix, and [Φ] is an n × k matrix. Solving
Equation 6.32 for the unknown nodal coefficients, {hx,k},

{hx,k} = ([Φ]T [W][Φ])−1[Φ]T [W]{hx,obs} (6.33)

The nine-dimensional response surface used to validate the response surface has n = 3112
observations and because there are not any quadratic interpolations, there are k = 512 terms
(Equation 6.4) in the tensor product. Therefore, [Φ] is a 3112 × 512 matrix, the coefficient
vector, {hx,k} is 512× 1, the vector for one dependent variable, {hx,obs} is 3112× 1 and the
weights matrix, W , is 3112× 3112.

6.4 Function Estimation with Simple Projections

6.4.1 Variable Functional Form Estimation

The use of one-dimensional (1-D) projections or two-dimensional (2-D) projections offers a
method of estimating the correct order for a given variable. The 1-D or 2-D projection offers
only an estimate because of the limited size of the sets used to make predictions about a given
variable. A variable that is quadratic in one area of the response surface should indicate
that this is the minimum polynomial order, while finding one linear relationship at a stand
group is not sufficient to end the search. None of the plots reviewed show any polynomial
order greater than quadratic. An advantage to a 1-D study is a sensitivity analysis provides
a good estimate of the range in values to use in sampling.

Only one independent variable changes to create the 1-D projections, while the other vari-
ables are set to nominal values for one of the stands (in 2-D projections two variables change).
Ideally there is an overlap between adjacent stand groups for the changes in value of the
variable under study. A stand group is the pair of adjacent stands that are represented on
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the response surface using nominal variable values from just the one stand. Stand 7 and
stand 6 are referred to as stand group 7, but only observations for stand seven are on the
response surface. Stand 1 is its own group. Stands 2 and 3 make up stand group 3. The
combination of stand 4 and 5 is stand group 5.

An example of overlap between stand groups is the strip entry height at the feather, hef ,
study for stand group 7 where typical ranges are 1 ≤ hef ≤ 7 [mm] and 0 ≤ gap ≤ 4 [mm].
A stand 5 hef might be 10 [mm], so eight samples between 5.9 [mm] and 9.2 [mm] is enough
oversampling to provide a good indication of the polynomial order and study the region
between stand group 5 and 7. The number of samples used here is an exception. This is
done because the hef variable does not show its quadratic behavior, until a large enough
change in value and the initial steps are too small. Four samples are the minimum number
collected to investigate the possibility of a quadratic fit. The results are summarized starting
in subsection 6.4.4.

6.4.2 Signal-to-Noise Ratios

Because the strip exit crown, Cx, is 2 orders of magnitude smaller than the two strip entry
heights and Cx includes the error from both strip exit heights, building the response surface
from the two strip exit heights, hx and hxf , is more accurate. The signal-to-noise ratios
calculated for the linear 1-D studies (see Table 6.6) supports this. Later on, statistics from
the response surface confirm the choice of the two exit heights to compute strip exit crown.

The signal-to-noise ratio is defined as the power of the signal over the power of the noise
where power is defined as the mean square value of the function (typically a function of
time). The signal-to-noise ratio, SNR, [4] is

SNR =

√
S2
s

S2
n

(6.34)

where S2
s is the mean square value of the signal and S2

n is the mean square value of the
noise. The signals are the values of the dependent variables, Cx, hx, and hxf , used in the
1-D studies and the power of the noise is derived from the residual error.

Table 6.6 is a summary of the signal-to-noise ratios found from the data used in the 1-D
projections and assuming a linear representation for all cases. Since a larger SNR is better,
the linear fit for seven out of nine independent variables are represented better using the two
strip exit heights. The seven independent variables are:

• strip width, wid,

• work-roll diameter, dwr,

• entry height at the feather, hef ,

• FE gap, gap,
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• yield strength, Sy,

• entry crown, Ce,

• jacking load, J .

The 1-D fit for work-roll crown is better using strip entry crown at low strip velocities, but
at the strip velocity of stand 7, the average strip exit height SNR and the strip exit crown
SNR are about equal. The remaining variable, backup-roll diameter has a inconsistent SNR
for strip exit crown, Cx, with only one ratio out of four greater than 10 and the SNR for the
two strip exit heights is worse with the signal about equal to the noise (SNR ≈ 1).

Table 6.6: Summary of the Signal-to-Noise Ratios for the 1-D Projections using a Linear
Model

Range Aux. Signal-to-Noise Ratio
wid [mm] dwr [mm] Cx SNR hx SNR hxf SNR

1000 1700 625 1.59 8.56 23.79
1000 1700 775 1.83 15.43 32.35
dwr [mm] dbr [mm] Cx SNR hx SNR hxf SNR
625 850 1450 1.29 23.78 18.08
625 850 1500 1.93 21.95 15.88
625 850 1550 6.66 40.62 65.11
dbr [mm] dwr [mm] Cx SNR hx SNR hxf SNR

1450 1550 625 1.00 1.36 0.94
1450 1550 700 157.84 1.00 0.89
1450 1550 775 9.80 1.02 1.08
1450 1550 850 3.11 4.92 0.96
hef [mm] Cx SNR hx SNR hxf SNR

6.43 7.20 5.96 159.25 85.56
gap [mm] Cx SNR hx SNR hxf SNR
2.44 3.48 5.3 71.15 180.63
Sy [mm] Cx SNR hx SNR hxf SNR

0.0080 0.0140 3.71 15.01 16.76
Ce [mm] Cx SNR hx SNR hxf SNR

0.01 0.04 3.26 13.54 4.73
Cwr [mm] Velstp [mm/s] Cx SNR hx SNR hxf SNR

-0.120 0.100 1284.23 8.33 1.22 4.15
-0.130 0.110 4018.44 26.04 1.66 5.08
-0.130 0.110 6752.64 48.53 2.37 79.32

J [tonne] Cx SNR hx SNR hxf SNR
20.00 80.00 9.29 19.17 94.53
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6.4.3 Stand Groups 3, 5 and 7 1-D Collection Status

All of the figures that follow for this section are created from stand 7 values: hef = 6.4337
[mm], gap = 3.48 [mm], and Ce ≤ .05 [mm]. The remaining seven variables besides hef and
gap are not stand specific (Appendix A contains a table values for the plots). Additional R2

and SNR information is collected from 1-D studies for stand groups 3 and 5, and the results
are summarized in the text.

The effort to replicate the 1-D projections for stand groups 3 and 5 is not completed due to
time and license constraints on running the Abaqus simulations. Only two of the stand group
5 projections are collected: a full range of he observations and a partial set of observations
for dwr. Six of the variables are complete for stand group three. Missing for both stand
group 3 and 5 is confirmation of gap linearity.

6.4.4 The Dependent Variable Functional Form for Work-Roll Di-
ameter

Table 6.7 summarizes the 1-D work-roll diameter projection statistics for both the linear
and quadratic polynomial relationships for three different backup-roll diameters studied at
stand 7. The quadratic polynomial is the best model in all cases. Figure 6.7 shows a
quadratic model for a backup roll of 1450 [mm] with a very good coefficient of determination
(R2) greater than 0.998. This set of observations is the worst of the quadratic relationships
between work-roll diameter, dwr, and the feather, hxf and centerline exit heights, hx.

Table 6.7: Summary of the Signal-to-Noise Ratios and R2 statistics for the work-roll 1-D
Projections

Poly.
dbr [mm] order hx R2 hx SNR hxf R2 hxf SNR

1450 Linear 0.9982 23.78 0.9969 18.08
1450 Quadratic 0.9996 49.99 0.9985 25.69
1500 Linear 0.9979 21.95 0.9960 15.88
1500 Quadratic 0.9986 26.45 0.9999 103.59
1550 Linear 0.9994 40.62 0.9998 65.11
1550 Quadratic 0.9999 130.20 0.9999 115.78

A linear study with nominal stand group 5 values with only three observations has R2 values
between 0.996 to 0.98; and the SNR for hx of 7.00 and hxf of 15.62. Collecting more samples
with a larger range in values at the stand 5 and 3 should provide confirmation that work-roll
is quadratic. At this time there are not enough variations in dwr at all stand groups to
produce a quadratic response surface, so a linear model is being used.
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Figure 6.7: Exit heights, hx and hxf , as a quadratic function of work-roll diameter, dwr.

6.4.5 The Dependent Variable Functional Form for Strip Width

Figure 6.8 shows that the two strip exit heights hx and hxf have a quadratic relationship
with strip width, wid. Ginzburg[10] supports a nonlinear relationship for exit crown as a
function of width. In Ginzburg, the strip exit crown increases as strip width increases, until
a point about 70 to 80 percent of the maximum strip width. At this point, the strip exit
crown reaches its peak value and begins to decrease as strip width increases. This effect is
clearly seen in Figure 6.9 for the Cx plots using the two work-roll diameters, dwr,1 = 625
[mm] and dwr,2 = 775 [mm]. In each case, the peak is at about a strip width of 1200 [mm].
This same peak at 1200 [mm] and same quadratic polynomial order are also confirmed with
an additional study at stand group three.

6.4.6 The Dependent Variable Functional Form for Entry Height
at the Feather

Figure 6.10 shows that the two strip exit heights have a quadratic relationship with entry
height at the feather, hef . Response surfaces created with a quadratic form for hef have
good statistics. However, this improvement in statistics is in most part due to the additional
degrees of freedom that come with using a higher-degree polynomial. These response surfaces
fail realistic rolling mill constraints, namely, a good model has a increase in rolling load for
decrease in gap, which is consistently violated with the use of a quadratic model for hef .
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Figure 6.8: Exit heights, hx and hxf , as a function of strip width, wid.

Figure 6.9: Exit crown, Cx, for two work rolls (dwr,1 = 625 [mm] and dwr,2 = 775 [mm]) as a
function of strip width, wid.
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Thus, the quadratic form requires the collection of three perturbations of entry height at the
feather for each gap value on the response surface. Currently there are six different feather
heights for three gaps, which are enough observations, but not the correct ratio.

Figure 6.10: Exit heights, hx and hxf , as a function of entry height at the feather, hef .

The ratio of entry height at the feather to gap observations is not the only issue, an early 1-D
projection for hef uses 4 observations: 5.9 [mm], 6.4337 [mm], 6.8 [mm], and 7.2 [mm]. The
choice of any three of these four hef values does not provide enough curvature information
to represent the quadratic correctly, but with hef sampled at 5.2 [mm], 7.2 [mm] and 9.2
[mm] curvature should be well represented. The same overlap in sampling is necessary at
the other stand groups.

Additional studies of hef for stand group three and five confirm that hef has a quadratic
form for the two exit height hx and hxf , but is also nearly linear in within a narrow range.

Until three perturbations of hef per gap with good separation in value are available, the
response surface must be linear in hef . Square-root scaling, and logarithmic scaling options
are also evaluated.

6.4.7 The Dependent Variable Functional Form for Strip Yield
Strength

Figure 6.11 shows that both strip exit heights hx and hxf have a quadratic relationships with
a moderately good R2 (≥ 0.998) for strip yield strength, Sy. The two signal-to-noise ratios
are 27.72 for strip centerline height, hx, and 26.20 for strip exit height at the feather, hxf .
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Figure 6.11: Exit heights, hx and hxf , as a function of strip yield strength, Sy.

This set of 16 observations are made after the first response surface comparison with the
production model where it is determined that any valid model must have a positive change
in strip exit crown for any increase in yield strength under the same conditions. This is not
the case when observations with too short a run time multiplier of 3.0 are included in the
response surface. Response surfaces run times for 6.4 [mm] strip have to be greater than 3.0.

The eventual determination is that in the narrow range of yield strengths, Sy, collected
for each stand group a linear model for Sy works. A linear model on just the first four
observations has a good R2 of 0.9956 for hx and 0.9964 for hxf along with signal-to-noise
ratios between 15 and 17. These numbers improve when the natural coordinate, Sy, is scaled

by the square root first, I.E. Ŝy =
√
Sy. A linear model with square root scaling on the

first four observations has a excellent R2 of 0.9994 for hx and 0.9997 for hxf along with
signal-to-noise ratios of 39.67 and 54.50 respectively.

The expansion of the response surface beyond stand group seven takes precedence over
collecting 3 changes in Sy (Section 6.2), so a linear model or a linear model with square-root
scaling are the two candidate representations for Sy.

6.4.8 Independent Variables with a Linear Functional Relation-
ship

Three of the independent variables, gap, J , and Ce have linear relationships with the both
of the strip exit heights, hx and hxf . Figure 6.12 shows the linearity for gap; Figure 6.13 for
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jacking load, J ; and Figure 6.14 for entry crown, Ce. Gap has excellent R2 values at 0.9996
for hx and 0.9999 for hxf . Jacking load has a mixed result of good for hx with R2 =0.9973
and excellent for hxf with R2 = 0.9999. While strip entry crown, Ce, has a good R2 value
for hx at 0.9945 and poor for hxf at 0.9552, which is consistent with both of the SNR values
being under 20.00. Studies of additional samples from stand group 3 support the choice of
a linear form for variables J and Ce. Additional samples for gap are not collected.

Figure 6.12: Exit heights, hx and hxf , as a function of stand gap, gap.

Strip centerline exit height, hx, changes about 0.05 [mm] for the changes in gap and hx
changes about 0.01 [mm] over the range Ce changes. Strip entry crown, Ce, would need to
change 0.17 [mm], instead of its current 0.05 [mm] range, to get hx to change 0.05 [mm].
This should also increase the SNR for Ce and potentially correct problems on the response
surface with Ce for the stand groups one, three and five, which have in many instances
smaller changes in Ce. The minimum change in Ce should be different for stand group one,
three and five due to different stand group sensitivities. Section 6.7 covers this in more
detail.

6.4.9 The Dependent Variable Functional Form for Work Roll
Crown

The inclusion of strip velocity in the one-dimensional projections for the work-roll crown, Cwr,
is accidental, but additional observations are generated with the correct velocity in addition
to the observations made with stand one and stand five strip velocities. Perturbations of
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Figure 6.13: Exit heights, hx and hxf , as a function of jacking load, J .

Figure 6.14: Exit heights, hx and hxf , as a function of entry crown, Ce.
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the work-roll crown indicate that as strip velocity increases there is an decrease in strip
height. According to Shahani et al.[18] increasing the work roll speed increases force and
strain hardening because of the increase in strain rate, but strain-rate effects are not part of
the elastic-plastic material model currently in use, so the only result is the decrease in exit
height with the increase in rolling load.

Figure 6.15: Exit heights, hx and hxf , as a function of work-roll crown, Cwr.

Figure 6.15 shows that both exit heights have a linear relationship. Exit height at the feather,
hxf , has a excellent R2 value of 0.9998, while the R2 value for exit height at the centerline,
hx is quite poor at 0.8214. The poor R2 value for hx has support with the SNR of 2.37, since
a SNR ratio greater than 10.00 is required to see a R2 greater than 0.9 based on Table 6.6.
Figure 6.15 shows that hx has very nearly a zero slope, which is equivalent to having nearly
no signal.

The results for a second study at stand 7 has a R2 value of 0.0139 for hx again has nearly a
zero slope, but a R2 value of 1.000 for hxf . However, studies at stand five and stand three
clearly indicate a quadratic model for Cwr. The linear R2 value of 0.9956 for hxf at stand
5 changes to 0.9993 for a quadratic model, but there is no improvement of the R2 value for
hx for either the linear or quadratic model. The stand three quadratic model R2 values are
0.9995 for hx and 0.9999 for hxf compared to the R2 values of the linear model of 0.9771 for
hx and 0.9981 for hxf . Although, a linear models works relatively well, the best model will
be quadratic for both the strip exit widths, hx and hxf .

Unlike the strip exit heights hx and hxf , a linear model for strip exit crown seen in Figure
6.16 shows an excellent R2 statistic of 0.9995 for Cx,1 (Cx) and 0.9994 for Cx,2. Cx,2 is found
using polynomial regression of the strip cross-section in the x − y plane and it is used an
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independent measure of strip exit crown. Cx,1 or Cx is computed using Equation 5.2. Cx,2 is
only a comparable to Cx,1 at the finishing stands because the high forces found at the early
stands create strip deformations beyond the widfea measurement.

Figure 6.16: ,
v2 = 4018 [mm/s], and v3 = 6753 [mm/s].]Strip exit crown, Cx,1 and Cx,2 (parabolic fit), as
a function of work-roll crown, Cwr, for strip velocities v1 = 1284 [mm/s], v2 = 4018 [mm/s],

and v3 = 6753 [mm/s].

The Cwr study at stand group three for the Cx variable can be either represented as a linear
(R2 = 0.9998) or quadratic (R2 = 1.0000) model. This trend does not hold up for stand 5
where the linear model has R2 = 0.9676 and the quadratic model has R2 = 0.9815. The
quadratic model has the better fit overall.

One note on the strip velocities v1 and v2, because the meshing does not change, the reduction
in velocity at v1 and v2 results in fewer data points for the strip exit height steady-state
determination. A change in model mesh parameters is required to maintain the same number
of data points and without this change more variation in strip exit height is expected.
Therefore, there are not any fit statistics for the v1 and v2 plots. These values are presented
to demonstrate the effect for strip velocity only.

Quadratic is the preferred model for the Cwr variable, but a linear model is used on the
response surface due to limitations on the perturbations of Cwr.
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6.5 2-D Study for Backup-roll Diameter

6.5.1 The Dependent Variable Functional Form for Backup-Roll
Diameter

A combination of the small effect of backup-roll diameter, dbr and many contradictions in
the expected trend make the backup roll a difficult study for 1-D projections. The R2 for
a linear model is less than 0.9 and the SNR is only occasionally greater than 10 (see Table
6.8). Visually a quadratic form works with strip exit crown, Cx, where Cx increases as dbr
increases from 1400 [mm] to 1550 [mm], but in about 50 percent of the cases viewed, Cx
begins to decrease below the maximum Cx as dbr continues to increase. The large variance
in the final exit height from the steady-state determination compared to the small effect of
backup-roll diameter is potentially a factor responsible for this.

Table 6.8: Backup-Roll Diameter SNR and R2 Study for Stand Group 5 for a 1-D Linear
Model

dwr [mm] wid [mm] Cx SNR Cx R2 hx SNR hx R2 hxf SNR hxf R2

625.00 1200.00 1.00 0.0043 4.43 0.9491 4.04 0.9388
775.00 1200.00 1.11 0.1850 19.85 0.9975 2.25 0.8023
850.00 1200.00 10.51 0.9909 8.58 0.9864 9.14 0.9880
625.00 1400.00 1.01 0.0245 7.87 0.9839 5.20 0.9630
775.00 1400.00 3.06 0.8930 38.57 0.9993 7.37 0.9816
850.00 1400.00 7.40 0.9818 5.54 0.9674 6.28 0.9747
625.00 1700.00 2.07 0.7674 2.28 0.8073 1.75 0.6726
775.00 1700.00 1.43 0.5094 10.06 0.9901 11.52 0.9925
850.00 1700.00 6.27 0.9746 8.44 0.9860 8.21 0.9852

Three effects are present for a fixed work-roll diameter, dwr and a changing backup-roll
diameter. There are effects due to the backup-roll diameter being varied, effects due to
work roll and strip contact deformation and effects due to backup roll and work roll contact
deformation. A 2-D study of dbr and dwr should provide evidence to correlate a relationship
of dbr and dwr with Cx. The best correlation consistent with the prior studies is a quadratic
relationship for work-roll diameter and linear one for backup-roll diameter.

Table 6.9 shows the individual results for the 2-D study of backup-roll diameter, dbr, and
work-roll diameter, dwr. Both strip exit heights hx and hxf in all seven studies have a R2

greater than 0.997 and SNR greater than 20. Part of the reason of the excellent fit has to
be attributed to the limited number of data points used – the number of degrees of freedom,
k = 6, and the number of observations, n = 9. The degrees of freedom, (n − k = 3), of
the residual error are less than the number of degrees of freedom used in the fit (k = 6).
Four or more observations are needed to correct this, but this is good evidence that backup-
roll diameter needs to part of the response surface if work-roll diameter is modeled with a
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quadratic polynomial.

Table 6.9: Backup-Roll Diameter SNR and R2 Study for Stand Group 5 for the 2-D Model:
(c1d

2
wr + c2dwr + c3)(c4dbr + c5)

Stand wid [mm] Cx SNR Cx R2 hx SNR hx R2 hxf SNR hxf R2

7 1000 11.68 0.9707 37.83 0.9972 36.63 0.9970
7 1400 6.70 0.9629 22.62 0.9967 26.20 0.9976
7 1550 4.51 0.8526 34.77 0.9975 29.37 0.9965
7 1700 3.64 0.7736 31.80 0.9970 49.73 0.9988
5 1200 3.23 0.7118 53.25 0.9989 37.99 0.9979
5 1400 3.88 0.8008 207.73 0.9999 130.41 0.9998
5 1700 19.34 0.9920 59.47 0.9992 47.84 0.9987

Figures 6.17 and 6.18 are contour plots of the strip exit crown, Cx as a function of backup-roll
diameter, dbr and work-roll diameter, dwr. The two stand 7 plots with hef = 6.4 [mm] and
gap = 3.48 [mm] on the left in Figures 6.17 and 6.18 have similar contours. The two stand
plots with hef = 10.26 [mm] and gap = 5.43 [mm] on the right in Figures 6.17 and 6.18 have
similar contours. Although, both the stand 7 and stand 5 plots have denser contours for the
strip width of 1700 [mm] seen in Figure 6.18.

Figure 6.17: Side-by-side plots of strip exits crown, Cx as a function of backup-roll diameter,
dbr and work-roll diameter, dwr.

A linear polynomial order in dbr is the best case for the response surface model currently
available, but this is not possible in combination with a quadratic model in dwr. The response
surface (identifier 9-D in Table 6.10) is built with a linear backup-roll diameter and linear
work-roll diameter.
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Figure 6.18: Side-by-side plots of strip exits crown, Cx as a function of backup-roll diameter,
dbr and work-roll diameter, dwr.

6.6 Validating the Response Surface Model

6.6.1 Response Surfaces Under Consideration

This section goes into the analysis of variance procedure, the F-test performed on each
response surface and the method used to select the final response surface. Table 6.10 lists
the independent variable form of all of response surfaces considered in this section. The letter
codes are: “L” for linear (2 nodes), “Q” for quadratic (three nodes) and “N/A” to indicate
that this independent variable is not used in the model. Also, the functional form of any
pre-scaling in use is included. All response surfaces use the same pool of 3112 observations.

Table 6.10: Response Surface Independent Variable Form and Identifier.
Independent Response Surface Identifier
Variable 9-D 8-D V1 8-D V2 8-D V3

hef form L L L,
√
hef L, ln(hef )

gap form L L L L
wid form L Q Q Q
Sy form L,

√
Sy L,

√
Sy L,

√
Sy L,

√
Sy

dwr form L L L L
Ce form L L L L
Cwr form L L L L
J form L L L L
dbr form L N/A N/A N/A
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6.6.2 Response Surface Dependent Variable Input

The response surfaces built from the vectors {hx,obs}, {hxf,obs} and {Pobs} are based on n
observations and k degrees of freedom. The response surface built from the vector {Cx,obs}
is based on n + n observations with 2k degrees of freedom. This is because Cx is a derived
value,

{Cx,obs} = {hx,obs} − {hxf,obs} (6.35)

and because of this, Cx includes the error from both strip exit heights, so the weights are
based on the inverse of the strip exit crown variance, S2

cx = S2
x + S2

xf .

6.6.3 Statistics Supporting the Functional Form Chosen

The response surface nodal values for exit height at the centerline, {hx,k}, strip exit height at
the centerline, {hxf,k}, rolling load, {Pk}, and strip exit crown, {Cx,k}, are used to calculate
the residuals for each dependent variable with (using hx as an example),

{r} =
(
[Φ](n×k){hx,k}(k×1) − {hx,obs}(n×1)

)
(6.36)

where [Φ] is the concatenation of n tensor products, and {hx,obs} is the vector of hx values
for n observations.

Allowing for the k degrees of freedom in the model (2k for {Cx}), the sample variance [15]
is defined as,

S2 =
{r}T{r}
n− k

(6.37)

.

The following statistics are calculated from the residuals, {r}, and for comparisons to other
models:

• The error mean provides an indication of how much bias is in the solution due to a
lack of fit.

• The minimum and maximum of the error provides an indication of how large the
potential outliers are.

• The standard deviation of the error, S, which if small compared to the mean value of
the dependent variable, is an indication of a good fit.

• The ANOVA ratio, calculated as,

Fα,k−1,n−k =
SSR/(k − 1))

SSE/(n− k)
(6.38)

where SSR is the mean square regression, and SSE is the mean square residual. If
Fα,k−1,n−k > F1%,511,2344 = 1.0 then reject the Null hypothesis, hx,k = hx,constant [15]
(the nodal values are equal to a constant).
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• The signal-to-noise ratio, SNR, is defined in Equation 6.34. The signal power is derived
from the vector of dependent variable values and the noise is derived from the residuals.
The SNR provides a indication of how much influence the noise has on the response
surface.

• The signal to noise ratio in decibels, [dB], provides the same information as SNR only
in a new unit,

SNRdb = 20log10(SNR) (6.39)

• The condition number of the regressor matrix, [Φ]T [W][Φ], which provides an indica-
tion of whether or not selected parts of the response surface are poorly represented. The
condition number is the ratio of the largest and smallest eigenvalues of the regressor
matrix,

C =
λk−1

λ0

(6.40)

where the vector of eigenvalues {λ} is sorted in ascending order.

6.6.4 Response Surface Model Validation Criteria

Three criteria are used to pick the best response surface model:

1. The model with the best standard deviation of the error, S.

2. The model with the best standard deviation from cross-validating a set of observations
not used in the weighted-least squares. Equation 6.36 is used to compute the residuals
and most of the same statistics from the response surface creation. Using centerline exit
height, hx, as an example, the vector {hx,cross} is used in place of {hx,obs} in Equation
6.36 and n = 1559.

3. The final model must meet a sign constraint for the partial derivative of rolling load,
P , with respect to gap, namely, that this partial derivative is negative.

The above criteria only selects the best model created. The next subsection goes into how
to identify which variables do not contribute to the model.

6.6.5 Response Surface ANOVA Results

The ANOVA results for the four response surfaces are compared in Table 6.11. Both of the
strip exit heights hx,RS and hxf,RS have the better ANOVA results compared to Cx,RS, so
strip exit crown, Cx, calculated from Equation 5.3 is the better model than using Cx,RS.
Also, the 8-D models created without the backup-roll diameter, dbr, overall have a better
ANOVA statistics than the 9-D model. The 8-D V2 model is the best model based on the
ANOVA statistics; but both 8-D V2 and 8-D V3 models violate the sign criteria for the
partial derivatives of rolling load with respect to gap.
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Table 6.11: Response Surface ANOVA Summary, Fα,k−1,n−k.
R.S. Id Cx,RS PRS hx,RS hxf ,RS

9-D 1,084.52 10,193.19 87,648.83 90,699.32
8-D V1 2,243.42 17,666.78 198,014.64 204,825.39
8-D V2 2,243.06 31,715.01 495,644.49 561,269.58
8-D V3 1,741.19 6,221.42 106,003.81 116,227.20

6.6.6 Independent Variable Significance Testing with the ANOVA
Statistic

The analysis of variance performed here involves creating a “reduced” model with one of the
independent variables omitted from the 9-D response surface. Table 6.12 shows the evolution
for the “reduced” response surfaces for the first five variables in Table 6.10. The response
surface is built with the same 3112 observations and the same statistics are generated as the
9-D model.

Table 6.12: 9-D Response Surface Progression for the First Five Variables for “Reduced”
8-D Model Used in ANOVA Testing.
Independent Original “Reduced” 8-D -Variable
Variable 9-D 8-D −hef 8-D −gap 8-D −wid 8-D −Sy 8-D −dwr
hef form L N/A L L L L
gap form L L N/A L L L
wid form L L L N/A L L
Sy form L

√
Sy L

√
Sy L

√
Sy L

√
Sy N/A L

√
Sy

dwr form L L L L L N/A
Ce form L L L L L L
Cwr form L L L L L L
J form L L L L L L
dbr form L L L L L L

The 8-D ANOVA summary for these nine reduced models are summarized in Table 6.13.
The 8-D “Reduced” ANOVA result will be less than the 9-D ANOVA values in Table 6.11
row 9-D, if that variable is significant. There are four independent variables, Ce, dbr, Cwr,
and J , that show a improved fit for the dependent variables P , hx, and hxf when dropped
from the model. The 8-D V1, 8-D V2 and 8-D V3 response surfaces are created without
backup-roll diameter, dbr, based on the poor dbr ANOVA results, the F-test result for dbr
and the poor SNR for dbr in the 1-D projections.
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Table 6.13: ANOVA, Fα,k−1,n−k, Summary for 8-D “Reduced” Response Surfaces.
Variable removed Cx,RS PRS hx,RS hxf ,RS

−gap 664.37 1,437.21 5,178.07 4,879.71
−wid 265.44 1,584.43 34,147.48 29,027.55
−dwr 1,060.93 4,350.46 65,296.41 61,223.16
−Ce 1,393.80 14,068.77 136,900.00 146,369.90
−dbr 2,038.49 21,909.80 194,778.44 201,579.51
−Cwr 86.53 17,902.44 171,619.65 156,425.77
−J 260.90 12,267.15 136,578.85 108,999.86
−Sy 584.50 916.36 11,360.80 12,088.16
−hef 158.37 399.23 371.18 374.66

6.6.7 Response Surface F-test Results

The original 9-D and “reduced” 8-D models are also used in a F-test. The Null hypothesis is
that S2 from the 9-D model is equal to S2 from the “reduced” 8-D regression. The F-statistic
is calculated with

Fα,a,b =
S2
a

S2
b

(6.41)

where α is the significance level (0.05), a is the number of degrees of freedom for the 9-D
model (a ≥ 120 or ∞), b is the number of degrees of freedom for the 8-D model (b ≥ 120 or
∞) and S2

a and S2
b are sample variances for the 8-D “reduced” and 9-D model respectively

[3, 15].

The F-test results are summarized in Table 6.14 and again they show that dbr does not
contribute significantly to the strip crown model over this range of independent variables.
The ANOVA test suggests that the significance of Ce, Cwr and J are questionable; however,
the F-test identifies that just dbr is a superfluous variable.

Table 6.14: F-test Ratios between 9-D and 8-D “Reduced” Response Surfaces.
Variable removed Cx,RS PRS hx,RS hxf ,RS

−gap 3.13 14.04 34.89 38.35
−wid 7.98 12.78 5.13 6.24
−dwr 2.03 4.67 2.68 2.96
−Ce 1.56 1.45 1.28 1.24
−dbr 1.07 0.93 0.90 0.90
−Cwr 24.02 1.14 1.02 1.16
−J 8.26 1.66 1.28 1.66
−Sy 3.56 21.42 15.24 14.83
−hef 11.10 49.83 395.43 405.70
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6.6.8 Final Response Surface Model

The F-test and ANOVA results clearly indicate that the linear functional form for backup-
roll diameter, dbr, does not significantly contribute to the crown model, at least with a linear
work-roll diameter, dwr. The final response surface is at least quadratic in width based on
the 1-D studies and confirmed in the response surface statistics.

The square-root pre-scaling of yield strength, Sy, improved the original 9-D all linear model,
so it is kept in a second round of response surface tests with the other candidate 8-D models:
8-D V1, 8-D V2 and 8-D V3. The first candidate is 8-D V1 with strip entry height at the
feather, hef , with a linear relationship to the dependent variables. The remaining candidates
are based on the preferred model for hef , being a quadratic form, so the square root (the 8-D
V2 response surface) and the natural log (the 8-D V3 response surface) are also candidate
response surfaces.

The final response surface model meeting all three selection criteria is quadratic in width
with square root scaling of Sy. Two other models that include the square-root or the natural-
log pre-scaling of hef did much better on the least squares statistics, and about the same
for the cross-validation, but failed the negative sign constraint for the partial of rolling load
with respect to gap by a large margin (91% positive for square root scaling of he and 70%
positive for natural log scaling for he). Table 6.15 summaries the three criteria used to pick
the final response surface model.

Table 6.15: Four Responses Surfaces Comparisons using Standard Deviations from Cross
Validation and Weighted Least Squares and the Rolling Load Partial.

PRS Hx,RS Hxf ,RS

Cross Least Cross Least Cross Least Derv.
Val. Squares Val. Squares Val. Squares Sign

S [tonne] S [tonne] S [mm] S [mm] S [mm] S [mm] Req.
9-D 128.09 25.57 0.1715 0.0507 0.1726 0.0493

8-D V1 118.24 24.49 0.1418 0.0468 0.1461 0.0456
8-D V2 120.18 18.27 0.1648 0.0296 0.1428 0.0275 fails
8-D V3 108.38 18.2 0.1765 0.0299 0.1542 0.0277 fails

6.6.9 Interpolation Coefficient Variance Calculation

An additional method to help validate the response surface, especially as new observations
are added, is to calculate the variance for each of the response surface coefficients. The larger
variances could be an indication that observations are needed there. The coefficient variance
is calculated with

S2
i = Ri,i S

2 (6.42)
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where Ri,i is the diagonal of the regressor matrix and S2 is the sample variance [2]. Setting
an arbitrary maximum variance threshold, 1.0×10−7 in Figure 6.19, is used to identify nodes
numbers, i, with a potential problem. This allows focus to be placed on those nodes without
enough observations.

Iteration for each ζ variable using Equation 6.4 as a guide to the number of nodes and
sequence per dimension allows the isoparametric coordinate, {ζ}, to be built as the index, i, is
incremented. The natural coordinates can be calculated with Equation 6.22 to identify what
regions are underrepresented when the maximum variance tolerance threshold is exceeded.

Figure 6.19 is a plot of the variance for each strip exit crown coefficient against the 9-D
response surface node number, i. Stand group 1 observations (hef > 35.0 [mm]) show up as
a potential problem and stand group 1 is under represented with observations, since only 6
percent of the observations planned for stand group 1 are included in the any of the response
surfaces. Another group missing is made up of strip reduction values greater than 60%,
which are undesirable to run. This occurs because, the range of gap values for stand group
1 requires widening in order to accommodate the range of gaps for stand group 5 and 7.

Figure 6.19: Plot of exit crown variance calculated from the regressor matrix against the
response surface row number.
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6.7 Response Surface and Production Model Compar-

isons

6.7.1 Exit Crown Prediction Models

Response-surface validation includes comparisons to a production crown model using plots of
predicted strip exit crown as a function of a single independent variable with the remaining
variables set to values consistent with one of the three stand groups. A comparison for the
backup-roll diameter is excluded because it is not in the final model. There are three sources
of strip exit crown values: the current production software (Prod. model in the figures),
the original all linear 9-D response surface (Lin 9D RS in the figures), and the final 8-D
response surface that is quadratic in width with square root scaling of Sy (Quad 8D RS in
the figures). The same trends are expected to exist between the 8-D response surface and
production models.

One complication in making the comparisons is that gap is needed for the response surface,
but gap is not used as an input variable in the production software. The dependent variable
reduction, Rx, is an input variable in the production software and in mill set up, so Rx
replaces gap as an input variable. Reduction is calculated with

Rx = (he − hx,targ)/he (6.43)

where he = hef + Ce and hx,targ is the target centerline exit height.

A procedure is needed to search the response surface to find the natural gap value given a
value for Rx. The other independent variables do not change while gap is changed to match
the target Rx value. In general this procedure is:

1. Calculate the exit height required with hx,targ = (hef + Ce)(1.0−Rx).

2. Estimate an initial natural gap value using a static force calculation and the known
value for mill stretch, Kstd.

gap = hx −
force(k, he, hx, wid, dwr, E, ν)

Kstd

(6.44)

where k is Sy/
√

3, E is the work roll modulus of elasticity, ν is its Poisson’s ratio and
he is the centerline entry height.

3. Estimate the {ζ} vector using a simplified scaling of the natural variables with

ζi = 2(xi − avgi)/rngi (6.45)

where xi is the natural value, avgi is this variable’s largest average value, and rngi is
the largest range.
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4. Do a conjugate gradient search using the estimated natural gap and the other eight
variables as the vector {x} in Equation 6.28, which returns the coordinate vector {ζ}.

5. Interpolate the exit height, hx, using the response surface and vector {ζ}.
6. Calculate the partial derivative of the exit height, hx, with respect to gap.

7. Use the simple linear approximation

gap = α
∂hx
∂gap

∆gap+ gap0 (6.46)

to estimate a new gap where gap0 is the current estimate. The α parameter is used to
control the size of the step in gap and picked manually to reduce the number of search
iterations.

8. Test for a sufficient reduction in the error tolerance, abs(hx−hx,targ) ≤ tolerance, and
end the search if true, otherwise begin a new iteration at step 3.

9. Vector {ζ} now has the isoparametric response surface coordinates for the reduction
requested.

A complication of the gap search is that the response surface result will often include a
change in gap in addition to a change in the independent variable of interest. The effect is
more pronounced for entry height at the feather. The approximate effect of changes in gap
can be backed out using a linearized version of the exit crown equation:

Cx = Cx0 +
∂Cx
∂xi

∆xi +
∂Cx
∂gap

∆gap (6.47)

where ∆xi is the change in the independent variable of interest relative to xi,0, ∆gap is
the change in gap relative to gap0, and Cx0 is the only unknown. Solving for Cx0 and
re-calculating Cx with ∆gap = 0

Cx = Cx0 +
∂Cx
∂xi

∆xi (6.48)

provides an estimate of Cx without the change in gap.

Each independent variable comparison uses three plots from the three main stand groups
simulated. Stand group 1 is omitted because there are not enough observations (see Figure
6.19) to make this region of the response surface reliable. Each stand group uses entry
heights, entry crowns and yield strengths close to the nominal values used in the observations
generated. This is done to avoid drawing conclusions based on extrapolation. Moving from
stand 3 to stand 7 entry heights and strip crown decreases, while yield strengths increase.
The range of independent variable values for each stand group are summarized in Table 6.16.
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Table 6.16: Nominal Stand Group Variable Value Ranges.
3 5 7

Variable Low High Low High Low High
wid [mm] 1450 1700 1450 1700 1450 1700
hef [mm] 13.6 20.4 6.8 10.2 4.4 6.6
Ce [mm] 0.1398 0.2098 0.0720 0.1080 0.0389 0.0583
Sy [tonne/mm2] ×102 1.3260 1.9890 1.5378 2.3067 1.6949 2.5423
dwr [mm] 625 850 625 850 625 850
Cwr [mm] -0.10 0.05 -0.10 0.05 -0.10 0.05
dbr [mm] 1585.26 1585.26 1584.47 1584.47 1589.51 1589.51
Rx [mm/mm] 0.20 0.40 0.15 0.35 0.10 0.25
hx [mm] 10.88 12.24 5.78 6.63 3.96 4.95
gap [mm] 10.210 10.210 5.430 5.430 3.983 3.983
J [tonne] 100.00 250.00 50.00 200.00 0.00 150.00

6.7.2 The Strip Exit Crown Model Comparison for Strip Width

Figure 6.20 shows that for strip width the quadratic response surface model (Quad 8-D RS)
parallels the production model the best and the linear response surface does well, until a
strip width of 1550 [mm]. The production model appears nearly linear, before and after the
change in slope at 1550 [mm]. This change in slope occurs 35 to 40 [mm] before the backup
roll edge. Neither response surface has any strip width information less than 1300 [mm], so
the expected peak in strip exit crown, Cx, at around 1200 [mm] cannot be seen.

6.7.3 The Strip Exit Crown Model Comparison for Work Roll
Diameter

Figure 6.21 compares the strip exit crown predictions as work-roll diameter changes. The
production strip exit crown is clearly not linear, and shows that strip exit crown is directly
proportional to work-roll diameter. Ginzburg [10] computes a linear ratio of change in exit
crown to change in work-roll diameter,

Kdw =
∆Cx
∆dwr

(6.49)

and then plots Kdw against strip width and all of these finite differences are negative. The
Kdw becomes more negative after the 1200 [mm] strip width crossing point. Corrected for
changes in gap (R.S. gap const.), the final 8-D response surface predicts a negative slope
for all three stand groups, while the linear model (9-D) only has a negative slope for stand
group seven.
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Figure 6.20: Strip exit crown comparison of the 8-D quadratic in width (Quad 8D R.S.) and
9-D all linear (lin 9D R.S.) response surfaces and production crown model for changes in
strip width, wid, at all three stand groups. The dotted lines (R.S. gap const.) represent a
estimate of crown if gap remains constant

Figure 6.21: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8D R.S.), the 9-D linear response surface (lin 9D R.S.) and the production crown
model for changes in work-roll diameter, dwr, at all three stand groups. The dotted lines
(R.S. gap const.) represent a estimate of strip exit crown if gap remains constant
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6.7.4 The Strip Exit Crown Model Comparison for Entry Height
at the Feather

Figure 6.22 shows that in both response surface models strip exit crown, Cx, have positive
curvature, before eliminating the change in Cx due to changes in gap, compared to the
production model with negative curvature. Since entry height at the feather, hef , is modeled
as a linear dimension, the adjustment for change in gap produces much more linear curve.
The response surfaces are restricted to linear form for strip entry height at the feather, hef .
The quadratic trend in the production model for strip exit crown is more support a quadratic
relationship between hef and the exit heights hx and hxf .

Figure 6.22: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8D R.S.), the 9-D response surface (lin 9D R.S.) and the production crown model for
changes in entry height at the feather, hef , at all three stand groups. The dotted lines (R.S.
gap const.) represent a estimate of crown if gap remains constant

6.7.5 The Strip Exit Crown Model Comparison for Strip Yield
Strength

Figure 6.23 shows that all three models predict increasing crown for increases in yield
strength. The production model has a very linear relationship with exit crown, while both
response surface models have visible curvature for stand group 3. This is due to the square
root pre-scaling used for yield strength. Figure 6.24 shows the elastic-plastic yield curve
used in all of the Abaqus simulations. The elliptical yield curve is similar in shape to the
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Ramberg-Osgood curve provided for comparison. The equation for the elliptical yield curve
is [21]

σ = bell

√
1−

(
ε− Sy

E
− εmax

)2

/ε2max + Sy (6.50)

where εmax is the maximum strain, Sy,mult is a scaling factor, and bell = εmaxSy,mult − Sy.
The equation for the Ramberg-Osgood [7] is

ε =
σy
E

+
( σ
H

)1/n

(6.51)

where E is modules of elasticity, H and n are a values found from fitting the empirical stress-
strain data, which in this case are the data points from the elliptical stress-strain curve. A
choice of a elastic linear-hardening stress-strain or elastic-perfectly plastic material model
for the Abaqus simulations may produce a similar linear relationship for yield stress as seen
in the production model.

Figure 6.23: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8D R.S.), the 9-D response surface (lin 9D R.S.) and production crown model for
changes in strip yield strength, Sy, at all three stand groups. The dotted lines (R.S. gap
const.) represent a estimate of crown if gap remains constant
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Figure 6.24: Simulation elastic-plastic elliptical yield curve and Ramberg-Osgood equivalent
stress-strain curve.

6.7.6 The Strip Exit Crown Model Comparison for Stand Gap
(Reduction)

Figure 6.25 shows that as gap decreases (reduction increases), both models see increases
in strip exit crown and the trend for all three models is linear. The all linear (9-D) and
quadratic (8-D) response surface models diverge a small amount at stand group 3 and 5, but
remain parallel at stand group 7. The production model is more sensitive to reduction than
the response surfaces are at stand 7.

6.7.7 Exit Crown Model Comparison for Jacking Load

Figure 6.26 for jacking load shows that all models agree as to the overall trend of the exit
crown line, but not in the steepness of the slope. The two response surface models have less
slope than the production model. This especially true of the quadratic in width model for
stand groups 3 and 5. Additional evidence for the linear behavior for jacking load is found
in Roll Bending Methods of Control in Four-High Plate Mills [20, 19].
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Figure 6.25: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8D R.S.), the 9-D response surface (lin 9D R.S.) and the production crown model for
changes in reduction, Rx, (gap) at all three stand groups.

Figure 6.26: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8D R.S.), the 9-D response surface (lin 9D R.S.) and the production crown model
for changes in jacking load, J , at all three stand groups. The dotted lines (R.S. gap const.)
represent a estimate of crown if gap remains constant
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6.7.8 Exit Crown Model Comparison for Work Roll Crown

Figure 6.27 for work-roll crown shows an overall slope agreement, but the two response
surfaces are slightly steeper in slope. Both response surface models over predict the strip
exit crown, which is a consistent trend for all of independent variables with the possible
exception of jacking load.

Figure 6.27: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8D R.S.), the 9-D response surface (lin 9D R.S.) and production crown model for
changes in work-roll crown, Cwr, at all three stand groups. The dotted lines (R.S. gap
const.) represent a estimate of crown if gap remains constant

6.7.9 Exit Crown Model Comparison for Strip Entry Crown

Figure 6.28 for stand group 3 shows that both response surfaces predict less strip exit crown,
Cx, as strip entry crown, Ce, increases in contradiction to the production model. The stand
group 5 plot shows that the quadratic model agrees well with the production model, while
the linear model expects strip exit crown losses when strip entry crown increases. All models
agree for stand group 7 that strip exit crown is directly proportional to strip entry crown,
but the linear 9-D model predicts less slope than the other two models.

Figure 6.29 starts at stand group 7 and varies hef with the ratio of hef to Ce held constant.
A negative slope is expected when the response surface begins to break down. For strip
reductions of 15 and 25 percent (ratios 0.15 and 0.25) and a Sy of 0.0212 [tonne/mm2] the
Cx trends are both good and the curves are both relatively flat, but for the same strip
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Figure 6.28: Strip exit crown comparison of the 8-D response surface quadratic in width
(Quad 8-D R.S.), the 9-D response surface (lin 9-D R.S.) and the production crown model
for changes in entry crown, Ce, at all three stand groups. The dotted lines (R.S. gap const.)
represent a estimate of crown if the gap remains constant

reductions and a relatively soft, Sy of 0.0110 [tonne/mm2], both Cx trends start off negative.
Then the curve for a reduction of 25 percent takes an upturn into a positive slope before
flattening out and approaching a slope of zero. The 15 percent reduction line takes the same
upturn, but never goes very far with a positive slope before rolling off into negative values.

The use of a constant reduction as hef grows allows the gap variable to grow along with
hef , which means the stand changes as hef changes. The two curves for the Sy = 0.0212
[tonne/mm2] may become less steep as each one moves further away from the stand 7
“region”, but neither one trends downward with a negative slope. The soft strip curve,
Sy = 0.0110 [tonne/mm2], starts as a problem at stand 7 and gets progressively worse,
improves and then gets worse. The poor starting trend is likely due to the lack of Sy obser-
vations below 0.0212 [tonne/mm2] in the stand 7 observations.

Noting that there is no reason to believe that a positive change in Ce will result in a negative
change in Cx, all of the finite differences should be positive. The number of negative finite
differences as a percentage is 1.7% for stand 7, 40.8% for stand 5 and 41.8% for stand 3. The
small percentage of negative finite difference for the stand 7 data explains why starting with
stand 7 nominal values and varying just one variable at a time (except gap), the plots have
consistent trends and comparisons with the production model agree as to general trends.

Looking at stand groups 5 and 3 specifically (hef > 7 [mm] and gap > 4 [mm]), the response
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Figure 6.29: Exit crown versus hef using the final response surface with two reductions and
two yield strengths and Ce maintained at constant proportion to hef .

surface for values of the strip exit crown near points where observations are made return
reasonable values, but the further away from these observations the larger the error. The
problem as expressed in terms of a Taylor series approximation in one variable, Ce, is

Cx(Ce) = Cx0 +
∂Cx
∂Ce

(Ce − Ce0)... (6.52)

where Ce0 is the value strip entry crown for the observation, and Cx0 is the strip exit crown
for this observation at Cx(Ce = Ce0). So only values of Ce close to Ce0 will produce a
reasonable Cx value.

Table 6.17 is calculated using the average strip entry crown, Ce, sensitivity, ∆Cx/∆Ce
[mm/mm], from the production model for each stand group. The Cx increment in Table
6.17 is the value found for jacking load in the 1-D study, 0.05 [mm] plus 0.01 [mm] for a
more conservative estimate. The hypothesis is that the 0.06 [mm] change in Cx represents
the amplitude of the signal, so the same change in Cx for the Ce will improve the SNR and
solve the problem on the response surface with many of the partials of Cx with respect to
Ce being negative.
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Table 6.17: Estimate of The Strip Entry Crown, Ce, Range Based on Production Exit
Crown Sensitivity for Ce.

Prod.
Stand Current Model Target ∆Ce [mm] Target
Group Ce,0 [mm] Ce,1 [mm] ∆Cx/∆Ce [] ∆Cx [mm] Needed Ce,1 [mm]

7 0.0000 0.0500 0.20 0.06 0.30 0.3000
5 0.0900 0.1000 0.10 0.06 0.60 0.6900
3 0.1580 0.1748 0.05 0.06 1.20 1.3580

6.7.10 The Response Surface and Over Prediction of the Strip
Exit Crown

The strip exit crown returned from the response surface is greater than that predicted by
the production model in almost all of the comparisons. Figure 6.30 uses a stand group three
observation to show two locations that can be used to calculate exit height. The response
surface, which uses the steady-state model for the two strip exit heights, locates the exit
height at the feather at hxf,1, while a crown prediction model based on work-roll-to-strip
contact, like the polynomial fit shown in Figure 6.30 for calculating crown, will see a value
closer to hxf,2. If the assumption is that the production model selects a value close to hxf,2
then the location of hxf,1 is almost always less than hxf,2, especially in the early stand groups
1 and 3. Therefore, the over prediction in strip crown model in the response surface and
production comparisons are for the most part due to the differences in calculating the strip
exit height at the feather. This is mathematically the equivalent to

Cx,prod = hx − hxf,2 (6.53)

Cx,obs = hx − hxf,1
where Cx,prod is the production-like strip exit crown and Cx,obs is the proposed model for
strip exit crown calculated for each observation. The majority of the cases seen at stand
groups 1, 3 and 5 are hxf,2 > hxf,1, so solving Equations 6.53 for hxf,2 and hxf,1 respectively
and substituting back into the inequality and simplifying: Cx,obs is greater than Cx,prod.

This also raises the question of which strip exit crown calculation is better to use in a mill
setup. The accepted practice is to shape the crown at the early stands to achieve a desirable
ratio between the strip exit crown and the strip exit height. This ratio cannot change in the
final finishing stands without affecting flatness [23], which is defined as [11]

U =
L− L′

L
× 105 (6.54)

where L′ is the deformed strip surface length, which follows the strip buckle or wave contour,
and L is the length of strip measurement assuming perfect flatness. The use of the wrong
profile to calculate Cx distorts the crown to height ratio and the projected downstream
flatness. Thus, Cx can be based on
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Figure 6.30: The effect of two exit heights at the feather, hxf,1 and hxf,2 on calculated strip
exit crown.

1. hxf,2(widfea,3) if ignoring any feather deformation is important,

2. hxf,2(widfea) if an average of the feather deformation is important,

3. hxf,1 if the deformation is found important to preserve.

It is out of scope for this research to pick a verify unit-strip crown or develop cases 1 or 2,
but this is a reasonable explanation for some of the response surface and production model
differences found in the model comparisons.
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Chapter 7

Summary, Conclusions, and
Recommendations

7.1 Summary

7.1.1 Dynamic Simulation Loading

A model of the actual method employed to feed the strip through the roll stack and the
method employed in the FE model is compared. The prescribed displacements used for the
FE model reduces simulation time to reach steady state and it maximizes strip node and
work-roll node alignment at the onset. The disadvantage is that the strip initial velocity is
higher than the same strip rolled in a real mill.

Some suggestions are made for the excitation times (the time duration for prescribed dis-
placements to set gap) and the simulation damping multiplier to use in future setups for the
1.5 [mm] strip simulations, which unlike the 6.4 [mm] strip needs additional damping and
longer excitation times. The two parameter values found are a starting point for additional
sampling to determine a workable combination of multipliers.

7.1.2 Force Distribution under the Work Roll

The stress distribution under the work roll identifies the location of the neutral point and
supports the empirical curves seen in Orowan’s work. Although, the granularity of the mesh
gives too much emphasis to the maximum stress point under the roll and Orowan[16] uses
annealed aluminum, which is much softer than the simulations of steel rolling here.
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7.1.3 Steady-state Model

FFT analysis of the exit heights out of the simulation provides evidence of the exponential
decay of the longitudinal exit heights. The equations of motion are developed using a 2DOF
lumped-mass model for the roll-stack and strip. The state-space solution for the equations
of motion is solved assuming a single output. This is done because the time history for
the backup roll is not available. The exit heights and rolling load are determined after
minimizing a function based on the 2DOF equations using the simulation data points that
start after the excitation phase ends and the un-forced steady-state run time begins.

The first effort to determine the steady-state values is based on the equation for a 1DOF
system and an unconstrained nonlinear curve fit, which does a reasonable job. However, the
variance is higher because a portion of the excitation phase is used. The final method to find
steady-state values uses the 2DOF equations in combination with a constrained gradient-
based minimization routine, L-BFGS. The variance is greatly improved and only the post
excitation phase data points are used. The equations are formulated in terms of real numbers,
instead of allowing complex exponents.

7.1.4 Sampling Methodology

The evolution of the sampling method is explained. The lessons learned are to determine
the maximum ranges expected and to pick sample values close to those maximum values
or potentially use even a larger range for insensitive variables. Next intermediate samples
are collected either to complete a quadratic relationship or to check for a linear or higher
functional form. The final lesson learned is to avoid concentrating too many observations in
any one area.

7.1.5 Response Surface Results

Comparing the 9-D model to the 8-D “reduced” response surface model with the ANOVA test
provides an indication when an independent variable does not make a significant contribution,
but not necessarily the cause of the problem. Dropping entry crown with its large number
of contradictory observations improves the ANOVA results, but this is a sampling issue not
a poor variable choice.

The smallest ANOVA in the 8D results is for the variable that contributes the most to the
fit, so the major contributor is hef and then in order gap, Sy, wid and dwr. The F-test
identifies variables that do not add to the model and it provides the same indication of
which variable contributes the most. The F-test, unlike the ANOVA test, selects only the
backup-roll diameter as a non-contributing variable.
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7.1.6 1-D Projection Results

Most of the results from the 1-D projections are completed too late to guide the sampling
methodology in more productive directions, but the use of backup-roll diameter is marginal at
best when used in combination with a linear work-roll diameter. However, the 2-D projection
for backup-roll diameter with a linear model and work-roll diameter with a quadratic model
does provide evidence that backup-roll diameter can make a significant contribution.

A study of the effect of varying Ce, J and Cwr could have identified the signal-to-noise
problem early enough to correct the sampling plan. Work-roll crown, Cwr, needs additional
study for a possible quadratic polynomial order.

Support for Ginzburg’s finding that crown peaks at 70 to 80 percent of a stands maximum
width is found in the 1-D projections for strip width. Strip velocity is found to have a
significant effect on exit height; however, the elastic-plastic model does not include work-
hardening or strain-rate effects.

7.1.7 Model Comparison Results

The main result from the production and response surface comparisons is that both the all-
linear 9-D and quadratic-in-width 8-D response surfaces over-predict the strip exit crown.
The production model uses a strip crown value closer to that calculated from a parabola fit to
the strip surface, while the response surface uses the strip crown value based on longitudinal
strip exit height data points. Because the steady-state longitudinal exit height value at the
feather for most stands is less than the same exit height for the parabolic fit, the response
surface over predicts strip exit crown. The overestimation is the most pronounced at the
entry stands (stand groups 1 and 3) where the larger force creates deformations beyond the
strip feather, so the longitudinal exit height is even less than the parabolic fit.

7.2 Conclusions and Recommendations

Calculating the strip exit crown from the two response surface exit heights is the best exit
crown model, but needs the strip entry velocity or equivalent as a independent variable. Not
including strip entry velocity and deriving strip exit crown directly from a strip exit crown
response surface can be done, but with a sacrifice in accuracy. Additional testing is needed
to determine if strip entry velocity is a linear or quadratic variable.

It is recommended that the material model used include both the work-hardening and strain-
rate effects. A better choice in place of the elliptical yield curve is a Ramberg-Osgood
material model with strain rate and strain hardening and this model would not increase run
time significantly. Adding temperature and carbon content are also options.
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The following four variables are quadratic:

• Entry feather height, hef ,

• Strip width, wid,

• Yield strength, Sy,

• Work-roll diameter, dwr.

Large variations in hef and Sy are needed to capture the quadratic shape. For wid, sampling
near the minimum and maximum strip width of a stand and picking the third wid at the
break point where Cx peaks is recommended.

The linear variables found:

• Entry crown, Ce,

• Finite element gap, gap,

• Jacking load, J ,

• Backup-roll diameter, dbr.

Ce needs a large perturbation relative to values typically seen in industry to get the Cx R2

value near 0.999. J needs to utilize the full range at the finishing stands and potentially larger
values than that with the stiffer yield strengths. The less sensitive the variable, the larger
the perturbation needs to be. Another option for the less sensitive independent variables is
to make them a model parameter and excluding them from the response surface.

The independent variable that is most likely quadratic:

• Work-roll crown, Cwr.

Although, Cwr is potentially quadratic, a linear representation works well for the finishing
stands, so trading accuracy for fewer required observations is an option. The minimum
number of observations, assuming a linear polynomial form for strip entry velocity and
work-roll crown is 3426 or 5184 observations.

Simulation improvements include adding steady-state controls to the Abaqus model. The
current simulation runs for a fixed calculated time, which for most simulations is enough time;
however, some of the runs require more time. Padding the run time and introduction steady-
state controls accommodates both of the above situations. Abaqus steady-state control would
terminate the run when the change in exit height meets the yet to be determined tolerance.

Another important improvement is incorporating time history into the strip exit height data.
This would eliminate the need to make assumptions about the strip velocity at a particular
data point. One possible source of time information is the simulation work-roll centerline
position and the simulation time, which has the added advantage of identifying the strip
location at the end of the excitation phase.

The parabolic or polynomial strip exit crown profile is potentially a better value to use
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in calculating the ratio of strip crown to strip height and the existing data files provide a
means to test this. The unknowns are whether or not to include the strip deformation up
to the feather or to exclude it from the polynomial fit. Ignoring the deformation can be
accomplished with an increase the feather offset based on empirical data or to develop an
algorithm to detect the start of the feather deformation.

Based on numerical methods developed to calculate rolling force like those of Freshwater
[8, 9], the neutral angle can be estimated. Once the neutral angle is found good estimates for
the work-roll tangential velocity and strip exit velocity can be found. Prescribed horizontal
velocities are then used to start the work roll and strip at the same velocity as a new addition
to the excitation phase.

The 2-D work roll and backup roll study demonstrates the ability of the finite element
model to capture the marginal effects of changing the backup-roll diameter. Other effects
that are worth investigation are strip edge wave and strip center buckle, since simulation of
the rolling dynamics are part of the finite element model. This could potentially result into
the development of a unit-strip curve similar to that found by Wang [22].

The response surface model and production model disagree as to the expected trends for the
strip entry crown and the work-roll diameter. Response surface sampling is the cause behind
the lack of agreement for strip entry crown and it can be corrected. The response surface
agrees with Ginzburg on the expected trend for work-roll.

A major advantage of the response surface is that rolling load is decoupled from the deter-
mination of strip exit height, so an seven stand optimal search only requires using dependent
variables strip centerline exit height and strip exit height at the feather in the constraint
equations and equation to minimize.
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Appendix A

1-D Projection Data

Table A.1: 1-D Projection Data for Change in Strip Width, wid, and Exit Heights, hx and
hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1000 6.4300 0.05 0.020400 625 0.0135 1600 0.00 3.48 5.0670 4.9860
1400 6.4300 0.05 0.020400 625 0.0135 1600 0.00 3.48 5.3155 5.2321
1550 6.4300 0.05 0.020400 625 0.0135 1600 0.00 3.48 5.3779 5.3121
1700 6.4300 0.05 0.020400 625 0.0135 1600 0.00 3.48 5.4334 5.3900
1000 6.4300 0.05 0.020400 775 0.0135 1600 0.00 3.48 5.1911 5.1265
1400 6.4300 0.05 0.020400 775 0.0135 1600 0.00 3.48 5.4285 5.3676
1550 6.4300 0.05 0.020400 775 0.0135 1600 0.00 3.48 5.5033 5.4469
1700 6.4300 0.05 0.020400 775 0.0135 1600 0.00 3.48 5.5691 5.5285

Table A.2: 1-D Projection Data for Change in Strip Entry Height at the Feather, hef and
Exit Heights, hx and hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1400 6.4337 0.00 0.014000 625 0.0000 1500 0.00 3.48 4.9455 4.8782
1400 5.9000 0.00 0.014000 625 0.0000 1500 0.00 3.48 4.7678 4.7059
1400 6.8000 0.00 0.014000 625 0.0000 1500 0.00 3.48 5.0704 4.9962
1400 7.2000 0.00 0.014000 625 0.0000 1500 0.00 3.48 5.2015 5.1191
1400 7.5000 0.00 0.014000 625 0.0000 1500 0.00 3.48 5.2935 5.2020
1400 8.0000 0.00 0.014000 625 0.0000 1500 0.00 3.48 5.4383 5.3433
1400 8.5000 0.00 0.014000 625 0.0000 1500 0.00 3.48 5.5677 5.4616
1400 9.0000 0.00 0.014000 625 0.0000 1500 0.00 3.48 5.6928 5.5740
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1-D Projection Data

Table A.3: 1-D Projection Data for Change in Work-roll Diameter, dwr, and Exit Heights,
hx and hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1700 6.4300 0.00 0.021200 625 0.0135 1450 0.00 3.48 5.4610 5.4195
1700 6.4300 0.00 0.021200 700 0.0135 1450 0.00 3.48 5.5288 5.4910
1700 6.4300 0.00 0.021200 775 0.0135 1450 0.00 3.48 5.5855 5.5451
1700 6.4300 0.00 0.021200 850 0.0135 1450 0.00 3.48 5.6432 5.6058
1700 6.4300 0.00 0.021200 625 0.0135 1500 0.00 3.48 5.4714 5.4196
1700 6.4300 0.00 0.021200 700 0.0135 1500 0.00 3.48 5.5273 5.4887
1700 6.4300 0.00 0.021200 775 0.0135 1500 0.00 3.48 5.5907 5.5522
1700 6.4300 0.00 0.021200 850 0.0135 1500 0.00 3.48 5.6401 5.6041
1700 6.4300 0.00 0.021200 625 0.0135 1550 0.00 3.48 5.4683 5.4262
1700 6.4300 0.00 0.021200 700 0.0135 1550 0.00 3.48 5.5287 5.4894
1700 6.4300 0.00 0.021200 775 0.0135 1550 0.00 3.48 5.5841 5.5482
1700 6.4300 0.00 0.021200 850 0.0135 1550 0.00 3.48 5.6386 5.6079

Table A.4: 1-D Projection Data for Change in FE Gap, gap and Exit Heights, hx and hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1400 6.4300 0.00 0.014000 625 0.0000 1500 0.00 3.48 4.9444 4.8751
1400 6.4300 0.00 0.014000 625 0.0000 1500 0.00 3.13 4.7520 4.6688
1400 6.4300 0.00 0.014000 625 0.0000 1500 0.00 2.78 4.5488 4.4566
1400 6.4300 0.00 0.014000 625 0.0000 1500 0.00 2.44 4.3447 4.2467

Table A.5: 1-D Projection Data for Change in Strip Entry Crown, Ce, and Exit Heights,
hx and hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1700 6.4300 0.04 0.014000 625 0.0000 1500 0.00 3.48 5.0877 5.0440
1700 6.4300 0.03 0.014000 625 0.0000 1500 0.00 3.48 5.0840 5.0431
1700 6.4300 0.02 0.014000 625 0.0000 1500 0.00 3.48 5.0815 5.0406
1700 6.4300 0.01 0.014000 625 0.0000 1500 0.00 3.48 5.0778 5.0399

99



1-D Projection Data

Table A.6: 1-D Projection Data for Change in Jacking Load, J and Exit Heights, hx and
hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1400 6.4300 0.00 0.014000 625 0.0000 1500 80.00 3.48 5.0018 4.9619
1400 6.4300 0.00 0.014000 625 0.0000 1500 60.00 3.48 4.9897 4.9403
1400 6.4300 0.00 0.014000 625 0.0000 1500 40.00 3.48 4.9746 4.9199
1400 6.4300 0.00 0.014000 625 0.0000 1500 20.00 3.48 4.9631 4.8989

Table A.7: 1-D Projection Data for Change in Yield Strength, Sy and Exit Heights, hx and
hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1400 6.4300 0.00 0.008000 625 0.0000 1500 0.00 3.48 4.4902 4.4365
1400 6.4300 0.00 0.010000 625 0.0000 1500 0.00 3.48 4.6662 4.6038
1400 6.4300 0.00 0.012000 625 0.0000 1500 0.00 3.48 4.8165 4.7503
1400 6.4300 0.00 0.014000 625 0.0000 1500 0.00 3.48 4.9472 4.8782
1400 6.4300 0.00 0.016000 625 0.0000 1500 0.00 3.48 5.0721 4.9975
1400 6.4300 0.00 0.018000 625 0.0000 1500 0.00 3.48 5.1814 5.1027
1400 6.4300 0.00 0.020000 625 0.0000 1500 0.00 3.48 5.2919 5.2032
1400 6.4300 0.00 0.022000 625 0.0000 1500 0.00 3.48 5.3673 5.2840
1400 6.4300 0.00 0.024000 625 0.0000 1500 0.00 3.48 5.4592 5.3653
1400 6.4300 0.00 0.026000 625 0.0000 1500 0.00 3.48 5.5410 5.4412
1400 6.4300 0.00 0.028000 625 0.0000 1500 0.00 3.48 5.6121 5.5099
1400 6.4300 0.00 0.030000 625 0.0000 1500 0.00 3.48 5.6760 5.5742
1400 6.4300 0.00 0.032000 625 0.0000 1500 0.00 3.48 5.7364 5.6345
1400 6.4300 0.00 0.034000 625 0.0000 1500 0.00 3.48 5.7973 5.6927
1400 6.4300 0.00 0.036000 625 0.0000 1500 0.00 3.48 5.8536 5.7519
1400 6.4300 0.00 0.038000 625 0.0000 1500 0.00 3.48 5.9160 5.8069
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1-D Projection Data

Table A.8: 1-D Projection Data for Change in Work-Roll Crown, Cwr and Exit Heights, hx
and hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
Strip velocity 1284.23 [mm/s]
1400 6.4300 0.00 0.014000 625 -0.1200 1500 0.00 3.48 5.0800 4.9900
1400 6.4300 0.00 0.014000 625 -0.0600 1500 0.00 3.48 5.1100 5.0400
1400 6.4300 0.00 0.014000 625 0.0750 1500 0.00 3.48 5.1100 5.0700
1400 6.4300 0.00 0.014000 625 0.1000 1500 0.00 3.48 5.1100 5.0900
Strip velocity 4018.44 [mm/s]
1400 6.4300 0.00 0.014000 625 -0.1300 1500 0.00 3.48 4.9600 4.8200
1400 6.4300 0.00 0.014000 625 -0.0600 1500 0.00 3.48 4.9700 4.8600
1400 6.4300 0.00 0.014000 625 0.0200 1500 0.00 3.48 4.9600 4.9000
1400 6.4300 0.00 0.014000 625 0.1100 1500 0.00 3.48 5.0200 4.9900
Strip velocity 6752.64 [mm/s]
1400 6.4300 0.00 0.014000 625 -0.1300 1500 0.00 3.48 4.9400 4.8100
1400 6.4300 0.00 0.014000 625 -0.0600 1500 0.00 3.48 4.9400 4.8500
1400 6.4300 0.00 0.014000 625 0.0200 1500 0.00 3.48 4.9500 4.8900
1400 6.4300 0.00 0.014000 625 0.1100 1500 0.00 3.48 4.9500 4.9300

Table A.9: 2-D and 1-D Projection Data for Change in Backup-roll Diameter, dbr and Exit
Heights, hx and hxf .
wid hef Ce Sy dwr Cwr dbr J gap hx hxf

[mm] [mm] [mm] [tonne/mm2] [mm] [mm] [mm] [tonne] [mm] [mm] [mm]
1700 6.4300 0.00 0.021186 625 0.0135 1450 0.00 3.48 5.4610 5.4195
1700 6.4300 0.00 0.021200 625 0.0135 1500 0.00 3.48 5.4714 5.4196
1700 6.4300 0.00 0.021200 625 0.0135 1550 0.00 3.48 5.4683 5.4262
1700 6.4300 0.00 0.021200 700 0.0135 1450 0.00 3.48 5.5288 5.4910
1700 6.4300 0.00 0.021200 700 0.0135 1500 0.00 3.48 5.5273 5.4887
1700 6.4300 0.00 0.021200 700 0.0135 1550 0.00 3.48 5.5287 5.4894
1700 6.4300 0.00 0.021200 775 0.0135 1450 0.00 3.48 5.5855 5.5451
1700 6.4300 0.00 0.021200 775 0.0135 1500 0.00 3.48 5.5907 5.5522
1700 6.4300 0.00 0.021200 775 0.0135 1550 0.00 3.48 5.5841 5.5482
1700 6.4300 0.00 0.021200 850 0.0135 1450 0.00 3.48 5.6432 5.6058
1700 6.4300 0.00 0.021200 850 0.0135 1500 0.00 3.48 5.6401 5.6041
1700 6.4300 0.00 0.021200 850 0.0135 1550 0.00 3.48 5.6386 5.6079
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