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Android Application Install-time Permission Validation and Run-time
Malicious Pattern Detection

Zhongmin Ma

(ABSTRACT)

The open source structure of Android applications introduces security vulnerabilities that can
be readily exploited by third-party applications. We address certain vulnerabilities at both
installation and runtime using machine learning. Effective classification techniques with
neural networks can be used to verify the application categories on installation. We devise a
novel application category verification methodology that involves machine learning the
application permissions and estimating the likelihoods of different categories. To detect
malicious patterns in runtime, we present a Hidden Markov Model (HMM) method to analyze
the activity usage by tracking Intent log information. After applying our technique to nearly
1,700 popular third-party Android applications and malware, we report that a major portion
of the category declarations were judged correctly. This demonstrates the effectiveness of
neural network decision engines in validating Android application categories. The approach,
using HMM to analyze the Intent log for the detection of malicious runtime behavior, is new.
The test results show promise with a limited input dataset (69.7% accuracy). To improve the
performance, further work will be carried out to: increase the dataset size by adding game
applications, to optimize Baum-Welch algorithm parameters, and to balance the size of the
Intent sequence. To better emulate the participant’s usage, some popular applications can be
selected in advance, and the remainder can be randomly chosen.
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Chapter 1

Introduction

In 2012, the worldwide sales of mobile devices to end-users totaled 1.75 billion units. How-
ever, the traditional PC market share continues to decline and a long-term decline among
worldwide computing devices is expected. A smartphone is a mobile device with a modern
operation system (OS) which provides more advanced capabilities than a ‘feature’ phone.
Lower price, application (app) popularity and cloud storage facility has made more and more
users embrace the smartphone instead of the feature phone. Compared to a feature phone, a
smartphone has more processing power and a larger display screen. Smartphone OS include
Google’s Android, Apple’s iOS, Nokia’s Symbian, RIM’s BlackBerry and Microsoft’s Win-
dows Phone. Android is a Linux-based open source smartphone OS. Android OS has many
features: it supports connectivity including Bluetooth, WIFI, WiMAX, CDMA, EVDO and
LTE; it uses short message service/multimedia messaging service (SMS/MMS) for message
and text; it also integrates web browser, camera, GPS, storage among other capabilities.

Currently, the smartphone OS market is dominated by the Android. In 2012, the number
of smartphones based on Android OS was 497 million. Android smartphones continue to
significantly increase their market share with an overall 122.5 million sales to end users in
the third quarter of 2012. This accounted for 72.4% of worldwide smartphone sales [1].

The Android is an open source platform which allows the device manufacturers, wireless
carrier, and developers to freely develop and distribute all kinds of apps. As an open source
platform, the Android requires a robust architecture and enhanced security features to pro-
tect user data and system resources from malware attacks, and to provide app’s isolation to
reduce the probability of potential malware attacks.
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Figure 1.1: Android System Architecture

1.1 Android Architecture

The Android software stack as shown in Figure 1.1 consists of four layers: the Linux Kernel
layer, Runtime layer, Framework layer and Application layer. The Linux Kernel layer is the
first layer of the Android components. It is primarily responsible for interacting with the
hardware which includes memory management, networking and security, driver management,
and power management. The Runtime layer consists of two parts: libraries and virtual
machine. Android runtime is the engine that powers the applications and the libraries.
It forms the basis for the application framework [2]. All of the runtime programs including
Media, SQLite, Webkit, and SSL are developed in C/C++. The Application framework layer
and Application layer are normally developed in Java. To enable rich media functionality,
Libraries are designed to unite all runtime programs and let Java developers use them through
a Java API. Dalvik Virtual Machine (VM) is designed to allow apps to run on portable
devices using low-level memory management. Dalvik is not a traditional Java VM. It is
designed to ensure that multiple instances run efficiently on the Linux kernel [3]. The
Application Framework provides lots of service functionalities including Activity Manager,
Notification Manager, Window Manager, etc. With these services, developers have a rich
API set to develop apps. The Applications layer is the top layer and is directly operated
by the device user. Normal Android app would include the following components: Home,
Phone, Contacts, SMS, Browser and Camera etc. In addition, most of the apps are written
in Java and compiled to .dex file type which can executed by Dalvik VM.
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1.2 Overview of Android Security

Since smartphone users are likely to store valuable and sensitive personal data such as mes-
sages, SMS, contacts, photos and videos on their smartphones, it is very important to ensure
system security on the Android platform. To satisfy these security requirements, Android
provides several key features. These key features include: Linux Kernel level security, ap-
plication sandbox, application signing, application-defined, and user-granted permissions.
Below we briefly discuss these important security features.

The Android platform uses the Linux kernel as its operating system core. As a proven stable
and reliable kernel, Linux provides the data isolation mechanism to solve multi-user’s data
usage and the user-based permission model. Unlike the traditional Linux system, Android
assigns a unique user ID and group IDs to each android app and thus lets different apps use
their specific defined permissions.

Being a Linux-based OS, the Android creates an isolation boundary around each process
[4]. This data isolation technique is called Sandboxing. It ensures that each app runs in
its own Linux process instead of others. All components above the Linux Kernel, such as
Applications, Application Framework, Libraries and Android runtime, are restricted within
the Application Sandbox. Because Application Sandbox is based on Linux kernel, it makes
this Sandbox very robust and difficult to be hacked or compromised. It enhances the security
at the kernel-level. If a malicious app wants to interact with other apps without gaining the
user’s privileges, the Sandbox mechanism forbids this app’s interactions on the process level.
In addition, if data sharing is incurred between apps, it has to be explicitly declared. For
example, one app cannot read or write directly from the device’s contact list or messages
without getting the requested communication approval. If two apps share the same user ID,
they must be signed by the same author and declared explicitly [4, p.370-372].

The Android provides a securable Inter-Process Communication(IPC) mechanism to share
data, reuse components, and pass relative data properties among the applications. These IPC
mechanisms mainly include Intent and Binder. Intent mechanisms are used to communicate
different activities in the same app or different apps. Intents specify activities by using
startActivity calls or inform changes or events by using broadcast calls. Activities are used
to communicate with users; Intents are used to start services, such as write email, play
music, and online shopping. After the services are started, the related messages between
applications or services can be sent through the broadcast mechanism to Intent. Then Intent
receives those messages and calls the correspondent activity. Normally, Intent is restricted
by manifest permissions. Binder is a top level abstraction of Intent. It is a remote procedure
call mechanism designed for performing in-process and cross-process calls [3]. Binder is used
to bridge Java and native language code running in different processes.
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Before we analyze Android app security, we need to know how Android apps are constructed
and how they are bound by using the Android manifest. Once we understand these app
compositions and inner mechanisms, we can analyze the permissions and categories in our
project at install time.

A standard app normally comprised six components: Activity, Service, Content Provider,
Intent, broadcast receiver, and Notification. These components are configured by Android-
Manifest.xml which is located in the root of an app’s directory. The manifest file lets users
define the app structure, metadata, and components. It uses Intent filter and permission
to determine how the components interact with each other and how to communicate with
other apps. We will describe the details of Intent filter in Chapter 4.

Permission is designed to minimize the impact of malicious apps. Apps need to get a grant
or permission from users before they perform operations like using the camera, sending mes-
sages, accessing private data, dialing calls. If there are no permissions available, an app
can not do anything. Starting Activities, sending/receiving broadcast Intents and invoking
Binder all require manifest permissions. Permissions are managed in the AndroidMani-
fest.xml file and the user agrees or denies the related configuration settings at install time.
If some permission label is not granted in this xml file, any related execution or access will
result in a permission failure.

Permission tags are mainly used to restrict the access level. Depending on the protection
level, Android may perform a different action whether to grant the permission or not. There
are four permission protection levels: normal, dangerous, signature and signatureOrSystem.
The default value is ‘normal’. It is a low-risk permission and the system automatically
grants the permission at installation without being detrimental to the system. Dangerous
is a high-risk permission that the system would grant the requesting app to access private
user data or control over the device. Signature is that system which grants the permission
only if the requesting app has been signed with the same certification as the app declaring
the permission [5]. In Figure 1.2, the “com.ebay.mobile” app sets the customized permission
protection level as ‘signature’. If the certification matches, the system automatically grants
the permission without getting the user’s explicit approval. The signatureOrSystem level
tells the system to grant the permission to apps with the same signature. It is only used in
special cases where multiple vendors have apps built on a system image and need to share
explicit features.

App components require the permission label by adding the android.permission.* attribute
to explicitly spell it out. For example, if one app will need Internet to operate, the app’s devel-
oper must add android.permission.INTERNET permission into the AndroidManifest.XML.
The Uses-permission tags are the main part of the security model. They declare required
permissions which are presented to the user at install time. Currently, the user cannot choose
specific permissions; the user has to make a choice to either grant or deny all permissions.
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Figure 1.2: Permission labels of com.ebay.mobile app

Furthermore, an app’s permissions cannot be changed once installed. How to minimize the
potential insecure app flaws and detect the potential malicious apps at install time is very
important.

1.3 Android Security Problems

Mobile malware evolves very quickly. An analysis by Gostev[6] concluded that mobile viruses
evolve in only two years to cover the same ground as computer viruses over twenty years
of evolution. According to the statistics of the Kaspersky Lab—one of the most famous
anti-virus software providers—the number of Android Trojan attacks in the 2nd quarter of
2012 nearly tripled from the 1st quarter of 2012. Because the payload of today’s smartphone
malware is very similar to the computer malware, the malicious code is easy to write. As an
open source platform, the Android is very vulnerable to the mobile malicious attack.

The other statistics show the test results of Android anti-virus app performance. Among
a total of 42 anti-virus apps, only 7 anti-virus apps are able to catch over 90% of Android
malware loaded on test devices [7].

When Android users install an app for the first time, users must grant or deny specific per-
missions as required by the app. But in real life, most users may have insufficient knowledge
to distinguish whether the permissions of currently installing apps are benign, rather than in-
tentionally malicious. Although some users can discern the potential malicious permissions,
their devices may still be infected by some seemingly good apps. Furthermore, inexperienced
developers may add redundant permissions, which make Android security problems worse.
These developers may introduce vulnerabilities or side effects into their customer’s Android
system. In the April of 2011, one developer found a critical vulnerability in the Android
version of the Skype. Skype stored the chat logs and other private information on the Mi-
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croSD card with improper permissions. This allowed anyone or any app to read those files,
because they were accessible and completely unencrypted.

All of the above statistics and examples tell us that Android security has become a very
severe problem. Because Android application programming interface(API) is open to the
public, it is not very hard to break out of the Dalvik VM. The Android needs to maintain its
security even if the VM is compromised. How to make manifest permissions to satisfy this
requirement is a big challenge to the developers. They should specify manifest permissions
more accurately and restrict the abuse of unnecessary permissions labels. For example, a
game app should not include the android.permission.READ CONTACTS permission label.
Because this permission is used to read the user’s address book, a good strategy is to forbid
this label even if the game wants to let users send a high-score to remote servers. This can
be done by using android.permission.INTERNET.

1.4 Category/permission based security

In any Android app store, apps are always divided into different categories, such as Business,
Books&Reference, Travel, Game, and others. Each category has its specific functionalities,
and different apps in the same category usually share several similar permissions, because per-
missions defined by the Android are responsible for specific functionalities. For instance, the
Books&Reference category normally consists of all kinds of free or paid electronic(E)-book
apps, online book shopping apps, book management apps, or bookrelated apps. If an app in
the Books&Reference category requests READ CONTACTS or WRITE CONTACTS per-
mission to read or write user contact information, this is very abnormal, since most of the
good apps in this category do not need this kind of permission. Read or write permission
usually let users send an E-mail, message, or call to some specific person. However, the
category permission requests READ CONTACTS or WRITE CONTACTS from Commu-
nication apps should be fine.

Apps in different categories may request different permissions, while apps in the same cate-
gory have very high possibilities of using more or less similar permissions. Large permission
discrepancies between two apps suggest that these two apps should belong to different cate-
gories; otherwise, the apps should be carefully checked.
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1.5 Contribution

Up to now, the Android permission policy has been very strict, and the Android does not
have any runtime limitation or behavior censorship. Once installed, an app can run any
activity including the malicious activity.

This thesis presents two-pronged approaches for the Android system security. During an
app installation, we use neural network to cluster the category permissions and to validate
the potential malicious permissions. Currently, many Android researchers study permission
enforcements and malicious app detection by parsing code or API; yet, none of the published
papers analyzed the malicious behaviors based on the category. We present a novel viewpoint
in Android app installation security.

The other approach presented here is runtime suspicious behavior detection by using HMMs
to track Intent log information. Currently, no related reference or published paper takes a
similar approach to identity malicious activities by analyzing Intent activities information.
We provide an original idea.

The remainder of this thesis is organized as follows: chapter 2 presents related work on
the Android security both at install time and runtime, and chapter 3 explains the proposed
methodology to validate the app categories by using a neural network approach. Some of the
experiments and results come from previous research [8]. In Chapter 4 the thesis discusses
runtime Intent activities detection based on HMMs. Finally some concluding remarks are
given.
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Chapter 2

Review of Literature

Our project is divided into two parts: permission anomaly detection at install time and
malicious intent detection at runtime, which are also called the static detection and the
dynamic detection, respectively. In this literature review, we first focus on the permission
regulation at installation; then, we analyze a malicious pattern from intent activities between
an app and its opponent at runtime.

2.1 Static Analysis

Enck et al.[9] developed the Kirin tool to check an app’s permission requirements at install
time. Kirin compares declared permissions with a set of security rules to detect potential
malicious apps. Kirin ensures that an app satisfies Android security requirement at install
time; if not, the app installation will terminate. The user does not make decisions to grant
or deny the installation. Kirin creates several security rules and automatically validates an
app’s security state via the policy engine. As a well-known static framework, Kirin only
provides an install time policy check instead of a dynamic security check. Moreover, it can
not detect specific malicious apps that are capable of sending spam or creating premium
SMS messages without accessing private information.

Barrera et al.[10] use self organizing maps (SOM), a neural network algorithm. As an
unsupervised learning algorithm, SOM provides a 2-dimensional visualization of the high
data dimension, thus reducing data size and displaying the similarities among data. At
the start, they initialize neuron weights and present input sample vectors corresponding to
an app. Based on SOM characteristics, they compute the minimum Euclidean distance of
each sample vector with all the related neurons. The weight of a specific neuron with the
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shortest distance is the best matching unit. Next, the neighborhood of this matching unit is
computed. As the value adjusts close to the input vector, the weights of the winning unit are
adjusted as well as its neighbors. At the same time, the numbers of neighbors decrease over
time. In this situation, the closer a neuron is to the best matching unit; the more its weights
are adjusted. The farther away from the best matching unit, the less adjustment it learns.
Finally the process is repeated for a large number of iterations. In their paper, they find
that only a small number of permissions are frequently used by developers. This finding is
in accordance with our research that the INTERNET permission is the most popular label.
They hypothesize that this label is overused by the developers which permit ads send from
remote servers. This methodology also proves that apps are clustered based on the requested
permissions. Categories of Android Play Market are based on the semantic activity instead
of the technical feature, because different neighbor categories can request similar sets of
permissions. They also make observations about location-based permissions and specific
category features. Location-based permission always require a pair of permissions: Fine
and Coarse access location labels. The limitation of this paper is that the performance of
SOM is largely depended on the validity parameters. However, these parameters are merely
subjectively determined and not mathematically well-defined. The paper performs statistical
analysis, but it does not address the detection or validation issues.

Some researchers focus on improving the Android security and access control models. Vidas
et al.[11] present a tool that can extract permission specification by parsing the Android
documentation. This aid tool can check unnecessary permissions by analyzing the source
code to automatically compare the minimal set of permissions and required permissions.
Since the Android documentation undergoes updates periodically, this specification must be
modified upon the future changes. Similar tools have been designed by Felt et al.[12] to
address permission re-delegation and present IPC inspection.

Currently, the introduction of the permissions label on the Android official website is too
abstract and short of sufficient explanations and definitions. Felt et al.[13], via Internet
survey and research studies, found that current permission warnings do not guide users in
making correct decisions to grant or deny apps.

Stowaway [14] is composed of a static analysis tool to determine what kind of API is called for
by an app request. It presents a permission map to identify the required permissions. Stow-
away analyzed 940 apps and found that one-third of these were over-privileged. Among the
over-privileged apps, approximately 56% apps had more than an extra permission; though, a
low degree of per-application over-privilege suggested that the developers are not intention-
ally adding unneeded permissions. Developer errors are responsible for these unnecessary
permissions. For example, some developers cannot distinguish the differences between AC-
CESS WIFI STATE and ACCESS NETWORK STATE, so both are requested, although
one is undesired. Other reasons for over-privilege may include: inaccurate source code and
information is copied and pasted into apps by developers; deprecated permissions are still
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used; testing labels like ACCESS MOCK LOCATION is used during the simulation stage
but remains in the released apps. In addition, developers sometimes intentionally request
extra permissions to send ads; this also conforms to Barrera’s hypothesis.

Felt et al. [15] performed case studies on app permissions of the Google Chrome extension
system and the Android OS. They surveyed 100 paid apps and 856 free apps from Google Play
Market. They estimated that about 93% of free and 82% of paid apps requested a dangerous
permission at least. It requires that users grant the dangerous permissions without paying
enough attention to the possible consequences. However, the above works [11, 12, 13, 15, 14]
did not try to detect or categorize malicious apps.

Sarma et al. [16] investigated the feasibility of using both the requested permissions in an
app and what permissions are requested by other apps in the same category to evaluate the
risks and benefits of an app.

Enck et al. [17] decompiled and analyzed the source of apps to detect further leaks and
usage of data. They described Android apps that often unnecessarily access user’s personal
data by studying 1,100 popular Android free apps with the help of tools and observations.

Au et al. [18] surveyed permission systems of several popular smartphone OS and categorized
them by the amount of control they give to users, the amount of information they convey
to users and the level of interactivity they require from users. In addition, they discuss the
problems linked with extracting permission-based information from Android apps.

2.2 Dynamic Analysis

Ongtang presents Saint [19], a modified infrastructure that manages install time and runtime
permission assignments, as dictated by app provider policy. Saint provides the necessary util-
ity for apps to assert and control the security on an Android system. As a policy enforcement
framework, Saint can check the static policy at install time and dynamic policy at runtime.
Saint creates an AppPolicy Provider to store install time and runtime policies. Upon install
time, Saint Installer retrieves the requested permissions and compares them with the rules of
AppPolicy Provider. If the rules match the requested permissions, the installation proceeds;
otherwise, the installation cancels. Saint’s runtime policy regulates the interactions between
a caller app and a callee app. For the runtime enforcement policy, a caller app sends an
IPC and a callee app receives this IPC. The IPC is allowed to proceed only if the conditions
of both the caller and the callee are satisfied. Saint Mediator is responsible for retrieving
policy information from apps; later it sends these messages to Saint AppPolicy Provider.
AppPolicy Provider compares these permissions and conditions and, if the result matches,
the IPC can continue; otherwise, the IPC is blocked. However, the actual context cannot
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grant access control because defining context policy in Saint is not possible. Furthermore,
Saint only provides policy enforcement; no feasible evaluation and experiments support this
framework.

Since the Android does not permit users to manually grant requested permissions, users must
either accept all permissions or deny all of them. Apex [20] is a policy enforcement framework
which lets users grant permissions individually or impose constraints on the resources during
install time. Apex also allows users to specify runtime constraints on the use of sensitive
data by apps. However, users may unwarily grant dangerous permissions, which may violate
a larger security goal. In addition, there have been no evaluations of, nor or experiments on
Apex for app analysis, and Apex is a framework.

SCanDroid [21], a modular automated reasoning analyzer, allows the incremental checking
of apps at runtime. This analyzer extracts requested permissions from an app and checks
consistency between permissions, as well as data flows through this app. SCanDroid is the
first program analysis tool; however, it is not tested on Android apps. The other limitation is
that the Android app security certification requires the availability of either the Java source
code or the compiled JVM byte code of apps.

TaintDroid [22] is a framework that performs a dynamic analysis. It tracks sensitive data-
API return values via apps. Results from a TaintDroid monitoring analysis of 30 apps
showed that 20 of these apps may incorrectly use sensitive information. Half of the sample
apps may report the user’s location, while seven apps gain information for the developers,
such as the SIM serial, device identification, and phone numbers. These findings remind us
that protecting personal data during Android app installation and usage is very beneficial.
However, TaintDroid only tracks data flows like explicit flows; it cannot track control flows.
In addition, the dataset is very limited.

At present, analyzing the Android security with machine learning methods focuses on the
context of spam detection, which is out of Android’s scope and anomaly detection in network
traffic flows. We detect Android malicious patterns based on Intent log at runtime and
detection of permissions anomalies at install time.
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Chapter 3

Permission Anomaly Detection using
Neural Network

Android has become the most popular mobile platform, and its third-party app store is a
big target for cybercriminals. Google Play Market [23] is the biggest online Android app
store; alternative Android app stores include Samsung Apps, Amazon Appstore, Verizon
Wireless, Appia, Exent, and AppBackr. In our project, we selected Google Play Market as
our data resource. Attackers can exploit the vulnerabilities of inexperienced app developers
or pose the malicious apps on online stores. Although online stores frequently reject the
attacks and remove malicious apps, many android devices have already installed malware
and are infected. These infected devices may send SMS/MMS messages, make a phone call
to high-rate numbers, steal private data from storage, or incur unwanted service charges
on users’ accounts. To defend against malware attacks, anti-virus actions must be taken at
install time to check whether apps have malicious granted permissions. Runtime malicious
activities detection and prevention is the second line of defense.

Online app stores classify apps into different categories based on their functionalities. A
system-defined permission represents its unique functionality. Therefore, apps in the same
category may have, more or less, the same permissions. Large permission discrepancies
among different apps suggest that these should (with very high possibility) belong to different
categories, because apps in the same category always have similar usages and functionalities.
Good apps in the same category may request the same permissions to implement their
similar functionalities. Malicious apps have different characteristics from normal apps in the
same category, e.g., they may use very low frequency safe permissions or request dangerous
permissions which other good apps in the same category do not request. Well-designed
apps must have some subtle relationships with their associated category; on the contrary,
malicious apps may have different relationships with their associated category. This is a very
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complicated problem which cannot be expressed as a series of well-defined steps. Because
of these subtle conundrums, it is impossible to know the exact result in advance. We need
technology to extract the hidden relationships between an app and its category, then to
identify which app is malicious and which is not. Neural network (NN), a machine learning
method, is very suitable for our project since it can cluster malicious patterns and good
patterns by analysis of these discrepancies. NN can be trained by a large size of apps and
can be self-adjusted from inner app-category differences.

Machine learning is used for the construction and study of systems that can be trained and
learned from the data. In this thesis, the dataset is created by parsing app permission labels,
and the experiment results confirm that NN is a robust tool to properly identify apps whose
permissions are inconsistent with their category, and are perhaps malicious.

3.1 Overview of Neural Network

There is no commonly accepted definition of a NN. When we talk about a NN, we are re-
ferring to an “artificial neural network”. Although the studies of NN were performed on the
biological human brain, much of the inspiration for NN catered to the needs of producing
artificial systems, i.e., for making intelligent computations, as does the human brain. Gener-
ally, the actual NN refers to the mathematical models instead of the more complex biological
neural network. Like Nigrin states: “A neural network is a circuit composed of a very large
number of simple processing elements that are neutrally based. Each element operates only
on local information. Furthermore, each element operates asynchronously; thus, there is no
overall system clock.”

NN is a network of many simple units; each unit connects with the others. A unit usually
carries numeric data and is capable of carrying a function. NN has different usages: clas-
sification, pattern recognition, and prediction. Classification is designed to analyze input
training samples and classifies them into groups. Pattern recognition is the most used pro-
cess for a NN. According to a training input, NN tries to find a recognized pattern which can
differentiate and match some pattern for which the sample data has been trained. Pattern
recognition is mainly used in feature extraction, image matching, and speech recognition.
Prediction is an extrapolation based on historical data. It usually makes claims about the
future—for example, energy consumption, earthquake prediction, stock market price and
currency-based on the current and past state.

How does a NN work? The strategy of a NN is based on the input/output data or input data
only. A NN sets suitable values for connection weight and threshold, allowing the activation
function to perform well and allowing optimal results output. The output of a neuron is a
function of the weighted sum of the inputs, plus a bias [26].
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To better illustrate a NN, a single neuron example is provided. We denote m input values as
[x1, x2, x3, . . . , xm] , each of the input values has its own synapse (connection) to a neuron,
and each has a weigh: [w1, w2, w3, . . . , wm]. In a NN, the predicted input of this neuron is v =
x1w1+x2w2+x3w3+ . . .+xmwm. A bias value should be added to shift the activation function
to the left or the right. If there is no bias, users have to train a threshold for each output
besides train the weights value. Since a standard NN includes many outputs, it is impractical
to setup a NN learning algorithm like Back Propagation algorithm without a bias. Therefore,
the sum of input value for the neuron is: v = x1w1 + x2w2 + x3w3 + . . . + xmwm + bias.

The output of the neuron is some function of the input values: y = f(v). In a NN, this
function is normally called an activation function. An activation function is normally hidden
in a NN. A linear activation function and a sigmoid activation function is the most commonly
used functions. For a linear activation function, a neuron will become a linear model with
bias parameter α. As in a binary output result, if v > α, f(v) = 1; otherwise, f(v) = 0.

The standard NN is made up of neurons and their interconnections. Each connection is
assigned with a connection weight. The weights and the bias are called adjustable parameters
and play a key role in determining the output of NNs. The main goal of a NN is to allow
the network to exhibit the desired performance by adjusting these parameters.

3.2 Neural Network Classification

Generally, the common structure of NNs normally includes three layers: an input layer,
an output layer, and one or more hidden layers. NN includes three main categories based
on the learning algorithm—supervised, unsupervised, and reinforcement—and based on the
network topology, a NN is divided into two classifications: feedforward and recurrent.

The core part in a NN is the learning process. Learning implies to get knowledge of by
studying, experiencing, or teaching. Learning lets allows NNs to adjust the parameters of
neurons so that the networks can finish a specific task. Supervised learning is the most
popular learning algorithm. Supervised learning provides a NN with a training pair (the
inputs and desired outputs). The main idea of a supervised training is that a NN has
knownis aware of the requested outputs and automatically modifies the coefficients, using
certain criteria [27, 28], to let obtain a the computed result that is as close as possible to the
desired output by using some criteria.

Figure 3.1 shows that the input and target output have been provided by the system. Super-
vised learning algorithms will learn and modify the threshold and weights by the feedback
of the error vector.
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Figure 3.1: A typical supervised learning model

Unsupervised learning is also called self-organization due to the lack of feedback. In this
learning algorithm, all similar input patterns are grouped as clusters. Compared to the
supervised learning paradigm, no previous induced information can be referenced. The
system must discover patterns and regularities from the input data and develop its own
representation of the output. If a new input pattern is not found, then a new cluster is
created.

The reinforcement learning algorithm uses both the supervised and unsupervised training
data, and can therefore be considered an intermediate form of the supervised and unsuper-
vised learning. Reinforcement learning takes action on, and receives a response from, the
environment. The learning system grades its action as a reward or penalty based on the
environmental response and accordingly adjusts its parameters. Generally, the feedback in
this algorithm is only evaluative, not instructive.

The above three learning algorithms represent different approaches. The outputs of all de-
pend on the space of interconnected neurons. Supervised learning adjusts the weight with
the help of an error response signal, whereas unsupervised learning exploits the information
associated with the distribution of input patterns and neuronal updating. Reinforcement
learning functions through sample and epoch iteration with its environment, if less informa-
tion is available about the critic information [29].

Feedforward NN is a network featuring the flow of connections is only in one direction,
forward. Traditional feed-forward networks consist of three parts: an input layer, a hidden
layer, and an output layer. In this simple and stable network, information flows from the
input layer to the hidden layer, then to the output layer, with no cycle connection. On the
contrary, recurrent NN, also called a feedback NN, is a network allowing connections to form
a cycle. Recurrent NN is dynamic, since the internal states change constantly before reaching
equilibrium. Although recurrent NN is very powerful, the feedback training is very difficult
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and performance may be problematic, since dynamic features bring non-stable output results
and unexpected oscillation and chaos. In practice, most NNs use the feedforward, rather
than the recurrent, structure.

Feedforward neural network falls into two categories: a single-layer perceptron (neuron) and
a multi-layer perceptron. Feedforward NN includes three features: first, perceptrons with
the same layer cannot contact each other; second, each connection has only one direction,
excluding backward, i.e., each perceptron is connected to its next layer; third, hidden layers
cannot be seen by the outside. A single layer feedforward NN has a single layer of weights,
i.e., the training process only uses a single weights adjustment. This NN is mainly used in
linear separable problems.

Multilayer Feedforward (MLF) network is the most common NN. In this model, the outputs
of one layer act as the inputs to its next layer [30], and back propagation (BP) learning
is the preferred training algorithm. The BP algorithm is the best known example of a NN
training algorithm. In practice, about 80%–90% NNs use BP as their algorithm. It calculates
derivative flow backwards through the network. First, it is an easy algorithm to understand.
In BP, the calculated gradient vector of the error surface moves with very short steps along
with the line of steepest descent from the current point. A series of such moves can reveal a
minimum of some sort [31]. The performance largely depends on the step size, or learning
rate, of the moves. Learning rate is application dependent; it can be selected by experiments
at various times. A large learning rate reduces the execution time, but it inevitably results
in bad convergence or moves in the wrong direction. A small learning rate in the opposite
direction can result in the maximum decrease of the local error function. However, a very
small learning rate means a very large number of iterations, which drastically slow execution
time, to attain convergence.

NN is used for learning in feedforward networks belonging to the domain of supervised
learning. The number of neurons in the hidden layers is important for the overall NN
performance. Increasing the number of neurons leads to an increase in weights; therefore,
the NN execution time can increase greatly. In practice, adding new hidden layers to improve
the accuracy, which also helps in the number of weights and computational time reduction,
is better. However, a NN with more than three hidden layers is uncommon.

There are two disadvantages to BP learning. BP learning often takes a long time to con-
verge; some sigmoid functions need thousands of epochs. Generalization is not guaranteed
in Bayesian regulation, due to overfitting problems.

The number of hidden layers, and neurons in each hidden layer, should be carefully set. Too
few neurons will result in underfitting; however, too many neurons may result in overfitting
and a longer training time. Underfitting normally happens with too few neurons, leading to
large bias and a large expected generalization error. Overfitting occurs when the learning
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performs well on the used data during the training, though badly on the new data. The
model captures not only the regularities, but also the peculiarities, in the training dataset.
Overfitting the network may allow memorization of the training data, making the network
less able to generalize the unseen data [33]. Overfitting problems create noise data and thus
result in a large expected generalization error. Since a NN with more weight models a more
complicated function, the result is more prone to overfitting.

In our project, we start with a small number of neurons and adjust the number according to
a NN performance measure. To avoid underfitting and overfitting, during the training time,
the system parameter was adjusted and the training error naturally dropped, in order to
minimize a true error function. Therefore the selection error was reduced as well, and if this
parameter arises during training, it implies the NN overfit the training data. If this were to
happen, we would reduce the number of hidden layers and neurons.

3.3 Dataset

Google Play Market is the most popular online app store, allowing users to discover, install,
and buy apps for Android smartphone. Our dataset was extracted from Google Play Market
in March 2012. The dataset includes top 50 free apps of 34 different categories. It is divided
by two parts: application (26 categories) and game (8 categories). The downloaded apps
were saved in the Android Application Package (APK) file type. We were not able to gain
direct access to the AndroidManifest.xml, due to the digital signing protection.

To read manifest.xml, a very popular decompile tool called apktool was used. It is a tool
for reverse engineering and decoding third party apps to their original deployment form [34].
Figure 3.2 is the screenshot of how to use apktool to decompile app.

Generally, AndroidManifest.xml is located in the root directory of each app. This xml
file contains configuration settings of the Android apps. It includes the specific application
package name; components of the application, like activities, services, and content providers;
and it declares the required permissions provided by developers.

Figure 3.3 is a screenshot example of an application’s permission label access control. During
install time, apps will request permissions to the device user. In this example, there are five
requested permissions at install time: INTERNET, CAMERA, VIBRATE, FLASHLIGHT,
and READ PHONE STATE.

Until March of 2012, the Android consisted of 124 permission labels. For reference purposes,
Appendix A lists all of the permission labels and their descriptions. In fact, apps can define
their own permissions if they intend for other apps to have programmatic access to them
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Figure 3.2: Screen shot of apktool

Figure 3.3: Android permissions example
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Figure 3.4: Permission request distribution of the dataset

[35]. But these self–defined permissions are not frequently used and have no general rules.
In our project, we focus on more generalized permissions which are defined and provided by
Google.

The dataset is depicted with binary vectors of their permission labels. In the vectors, ‘1’
shows that current permission is requested, and ‘0’ indicates that permission is not requested.
To better evaluate the dataset, statistical analysis of the request permission labels is provided
in Table 3.1 . In this table, we recorded all of the categories (34), as well as the number of
unique and most frequently appeared permissions in each category.

In the dataset, there are 11,365 permission labels requested and an average of 6.69 permis-
sions requested for each app. The Game Widgets category requested the least (17) distinct
permissions, while the App Widgets category requested the most (75) distinct permissions.
Furthermore, the NQ Mobile Security and Antivirus app, which belongs to the App Produc-
tivity category, requested the most (40) requested permissions overall.

Figure 3.4 and Figure 3.5 show the most used permissions, permission request distribution,
and relative permission requests. According to the current data set, nearly 93.88% apps re-
quested INTERNET permission, while 1,421 of the 1,700 apps requested ACCESS NETWO
RK STATE permission. Most requested permissions are listed in the descending order: IN-
TERNET , ACCESS NETWORK STATE, WRITE EXTERNAL STORAGE , READ PH
ONE STATE, WAKE LOCK, VIBRATE, ACCESS COARSE LOCATION, ACCESS FIN
E LOCATION and ACCESS WIFI STATE. These nine permission labels comprised 68%
of the total permission labels; the other 115 permissions comprised the remaining 32% of
total permission request.
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Table 3.1: Unique Requested Permissions and Most Appeared Apps in Each Category

Type Category Unique Permissions Most Permissions Per app

Apps

Books&Reference 34 13
Business 57 29
Comics 19 8
Communication 65 36
Education 34 11
Entertainment 25 12
Finance 36 15
Health & Fitness 36 18
Libraries & Demo 46 34
Lifestyle 47 25
Live Wallpaper 38 21
Media & Video 39 14
Medical 28 16
Music & Audio 50 19
News & Magazines 35 14
Personalization 33 18
Photography 37 15
Productivity 71 40
Shopping 33 18
Social 57 19
Sports 37 16
Tools 61 32
Transportation 34 16
Travel& Local 37 21
Weather 38 18
Widgets 75 39

Apps

Arcade & Action 24 15
Brain & Puzzle 22 9
Cards & Casino 24 15
Casual 41 15
Live Wallpaper 25 13
Racing 29 13
Sports Games 30 17
Widgets & Fitness 17 12
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Figure 3.5: Relative permission requests of the dataset

3.4 Experiment Results

Since we have set up a dataset, we can create, configure, train, and validate the network.
In our project, a MLF network is selected for simplicity, a relatively short training time, and
efficiency in distinguishing an app’s category.

The real dataset is divided into three subsets: training (70%), validation (10%), and testing
(20%). The training subset is a set ofconsists of examples for learning where the output value
is known; the test subset is used to assess the performance of a classifier and to estimate the
error rate; and the validation subset is a setconsists of examples to tune the architecture of
a classifier and to calculate the error. Since the test subset is not used in the training stage,
the error on the test subset can provide an unbiased estimate of the generalization error.

As for the structure, the hidden layer includes 10 neurons and a sigmoid transfer function,
which is depicted in Figure 3.6. The number of neurons is determined by the recommendation
of the pattern recognition applications [37] and the concrete practical performance.

In this training process, NN inputs are vectors containing permission labels of apps (124
permission labels) plus one for the correct category. The value of category in the dataset is
from 1 to 34. Because because we have 1,700 apps, the dataset size is 1700×125. The output
is the 34 dimensional binary vectors: ‘1’ means the permission is included in the training set,
and ‘0’ indicates otherwise. Before training a feedforward network, the NN initializes the
weights and biases. Once these adjustable parameters are initialized, the network is ready
for training. The process of training a NN involves tuning the values of these parameters to
optimize network performance. Currently, the optimization methods of MLF use either the
gradient of the network performance or the Jacobian of the network errors [27], two methods
that are calculated by BP algorithm.

The NN toolbox provides a variety of training algorithms, and these algorithms either use
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Figure 3.6: Neural Network Toolbox Training Process Diagram
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Table 3.2: Accuracy of Distinct Training Algorithm

Function Training Algorithm Accuracy
trainbfg BFGS Quasi-Newton Back-propagation 0.471
trainbr Bayesian Regularization 0.606
traincgb Powell-Beale 0.550
traincgp Polak-Ribiere 0.341
traingda Adaptive Learning 0.509
traingdm Momentum Back-propagation 0.477
traingdx Adaptive Learning 0.527
trainscg Scaled Gradient Descent 0.585
trainlm Levenberg-Marquardt 0.479

gradient-based or Jacobian-based optimization methods. We selected all suitable algorithms
for training based on our needs. Different algorithms have different advantages. Table 3.2
shows the accuracy for all selected algorithms: conjugate gradient methods, Levenberg-
Margquardt, gradient descent methods, etc. In order to better tune our classifiers among
the series type of popular training algorithms, we run different algorithms twice, using our
dataset with neuron number 10. In addition, to help us choose the appropriate algorithm,
each one in the NN toolbox supports network performance plots and status information.

The Bayesian regularization algorithm results in the highest accuracy (60.6%) and was se-
lected as the experiment’s algorithm. Accuracy is the ratio of the number of correct classi-
fications to the total number of test data. It plays a key role in evaluating the performance
measure. The efficiency of the Bayesian regularization algorithm is relatively better in con-
structing and using this model.

The Bayesian regulation algorithm uses the Jacobian for the calculation and has better
generalization capabilities than other algorithms. Moreover, it produces accurate results
due to good generalization power. In addition, during our test stage, it performed well
with noise and missing data. Furthermore, due to its simplicity, it does not require a deep
understanding of the NN.

During the training, the output layer produced 34 dimensional binary output vectors (neu-
rons). Each of the output vectors revealed the likelihood that the app belonged to each of
the 34 categories. We map the output vector into a binary vector such that the highest
likelihood in the output vector is set as ‘1’, while other likelihoods are mapped to ‘0’. The
unity valued element of the binary output vector is the NN’s prediction about the concrete
category of an app.
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Figure 3.7: Distribution of good and malicious apps

Once a NN is trained, it performs a permission–category clustering when given a testing set.
The test dataset contains some good apps and some malware apps. In order to generate
malware apps, we randomly permutated the permissions of 50% of the test dataset without
changing their current category fields. Therefore, permissions of a genuine app are changed,
while its claimed category is unaltered. The test dataset is formed by merging the untouched
and manipulated test data. The vector elements attribute categories to apps by estimation,
based on the app’s permissions revealed during the training phase. Since we know the
real categories in the untouched portion of the malware-included dataset, and assuming a
manipulated app may not precisely represent its claimed category, we compare the response
components with a threshold. If a NN’s prediction for an app’s category is greater than
the threshold, the app is classified as belonging to that category; otherwise, the result is
negative.

The trained NN plot displays the empirical distribution of the normal and abnormal apps.
Blue curves represent the malicious apps and the red curves represent the benign apps. As
shown in Figure 3.7, our approach classifies benign apps and malicious apps relatively well.
The best performance can be achieved if an optimal point is used as a threshold for the NN
optimal likelihood.

In data mining and pattern recognition, precision, recall, F-score, and accuracy are four
important measurements to check the performance. Precision is the fraction of retrieved
instances that are relevant, while recall is the faction of relevant instances that are retrieved
[38]. Precision is the number of correctly classified positive examples divided by the total
number of examples that are classified as positive. In addition, recall is the number of
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correctly classified positive examples divided by the total number of actual positive examples
in the test dataset.

TP (true positive) is the number of correct classification of the positive examples; FP (false
positive) is the number of incorrect classification of the negative examples; FN (false negative)
is the number of incorrect classification of positive examples; and TN (true negative) is the
number of correct classification of negative examples. So, in most cases,

Precision = TP/(TP + FP ); Recall = TP/(TP + FN). (3.1)

A high recall implies that most of the correctly classified results were indeed received. A high
precision returns more correct results, as opposed to incorrect ones. F-score is a weighted
average (harmonic mean) of the precision and recall, and accuracy is the proportion of true
results in a dataset. Accuracy represents the fraction of desirable results.

In our project, TP and FP are predicted outcomes for the benign apps, whereas TN and
FP are predicted for malicious apps. The threshold is the minimum value of FPs and FNs;
as shown in Figure 3.8, as the threshold increases, the rate of FP decreases and the rate of
FN increases. As the threshold decreases, the likelihood that an app is malicious increases;
however, if the threshold increases, the accuracy of benign prediction improves. Therefore,
we selected the intersection of FP rate (FPR) and FN rate (FNR), which is 0.32 as our
threshold to discriminate normal and abnormal apps. The performance will be ensured due
to least biased errors.

After we manually choose the threshold, the simulations must be repeated ten times for
performance evaluation. In each experiment, we obtain TP, FP, FN, TN, which are then
used to calculate the accuracy. Finally, we calculate the average accuracy.

Table 3.3 shows that the final accuracy is approximately 65.1%. The evaluation would be
better if we could compare our performance with other experimented results. However, there
is no published paper using an approach similar to ours, so we cannot judge the accuracy.
Currently, the majority of papers provide specific frameworks to enhance permission policy
or filter malicious policy rules. In addition, few published studies include detailed experiment
results.

We evaluated these results and sought to improve better performance. We found three
possible reasons accounting for the relatively low accuracy observed.

The dataset properties may be responsible for the observed low accuracy. Our dataset is
made up of the free downloaded apps from Google Play Market. Among free apps of Google
Play Market, some higher-quality apps do not include unnecessary permission labels; how-
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Figure 3.8: FPR / FNR and threshold

Table 3.3: Performance Measurement

No. TP FP FN TN Recall Precision F Accuracy
1 116 54 55 115 0.682 0.678 0.680 0.679
2 115 55 55 115 0.676 0.676 0.676 0.676
3 106 64 64 106 0.624 0.624 0.624 0.624
4 109 61 61 109 0.641 0.641 0.641 0.641
5 116 54 54 116 0.682 0.682 0.681 0.682
6 105 65 66 104 0.618 0.614 0.616 0.615
7 114 56 57 113 0.671 0.667 0.667 0.668
8 102 68 69 101 0.600 0.596 0.598 0.597
9 105 65 65 105 0.618 0.618 0.618 0.618
10 121 49 49 121 0.712 0.712 0.712 0.712
AVG 0.652 0.651 0.652 0.651
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ever, some apps include some unnecessary permissions added by inexperienced developers.
Furthermore, though some very popular and freely downloadable enterprise apps do not
access the internet, developers routinely add INTERNET, ACCESS NETWORK STATE,
and other permission labels, so that their ads will appear on the screen during usage. As
we discussed above, the average number of permissions per app was only 6.69, and nearly
one-third of the apps [14] tested included one or more unneeded permissions. In this sit-
uation, some permission-overusing apps were combined with genuinely non-overusing apps,
thus skewing our performance and reducing the accuracy of the results.

The second reason is that if we randomly change the permissions as malicious app, then
we identify the results, in most cases it categories very well. But sometimes it seems too
arbitrary. We analyze two possible explanations: firstly, the modification of permissions
from malicious to benign, and vice versa, is easily identifiable. Secondly, these exchanged
permissions may be non-malicious frequently used permissions, although the likelihood of
this scenario is relatively low. The errors produced by second scenario are less than the first;
thus, our malicious dataset may be underfitting, leading to lower experimental accuracy.

Also, accuracy is largely dependent on the machine learning algorithm. If the size of the
training set increases, the task performance improves consequently.

Considering these data, we concluded that increasing the NN number and layer may improve
the performance.
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Chapter 4

Runtime Malicious Intent Detection
using HMM

The Android has a permission security check, which allows or denies the requested Activity
Intent action. If the same permissions have been listed in the AndroidManifest.xml, then
these activities can be allowed; otherwise, the system will deny the action. Most Intents
always combine with permission labels, the keys to ensure security. At install time, we
can use category detection to differentiate anomaly apps from good apps. Intent is the
“intention” to perform an action, like glue connecting all kinds of activities. At runtime,
we can detect malicious patterns based on Intent activities. Since most of the system and
Intent action messages are stored in the log file, we can analyze the Intent log files during
runtime to recognize malicious patterns.

4.1 Application Tag Components

A quick overview of an app’s components is a very beneficial way to understand the relation-
ships between Intent and other functions. In Chapter 1, we described two tags of manifest:
use-permission and permission in detail. In this chapter we explore the inside of an app and
introduce application tags. Application tags include Activity, Service, Broadcast Receiver,
and Content Provider tags.

Activity is the presentation layer for an app, which uses Views to form a graphical user
interface (GUI) to display front-end information [39]. A smartphone has limited screen
size, and only one or two apps are visibly operated by the user. However, as we know, the
Android system can run smoothly on multiple threads. How does one pass functionalities and
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Figure 4.1: Activity and Service tags

operations without GUI? Service is the answer. Service works in the background without a
GUI; it responds to events, updates Intent and Content Provider, and triggers notifications,
among other functions. For instance, Service can free the low-priority unused Activity tags
and provide threads to apps, which can handle events even if they are inactive. Figure 4.1
shows typical tags of Activity and Service. Activity tags are required for every Activity
and are used to specify the class name. Service supports intent-filter subtags to allow late
runtime binding.

Receiver tags are abbreviations of a Broadcast Receiver. As a global event listener, if a
Receiver obtains one action name with com.ebay.mobile.RESTART, the following Intent will
execute. From this example, the eBay app will restart.

Provider tags, abbreviations of Content Provider, are used to manage databases and share
data within or between apps.

We have discussed Activity, Service, Content Provider and Broadcast Receiver above. Intent
is used to combine these to implement various functionalities and actions. It is a message-
passing component used to start, stop, and transit activities. Intent carries an asynchronous
message, which is used by Android components to perform concrete works. It is a signal
to notify the Android system that some event has occurred. In short, Intent is a message
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passed between activities.

To simplify this, we consider an example of a real app (the Domino Pizza app) to describe
the relationship between activity and Intent. A user of the Domino Pizza online via Android
app [40] browses the menu screen to choose and purchase pizza. In fact, each pizza icon
(activity) is registered by an event listener. When the user clicks the “Customize” button
and chooses, say, Mexican Green Wave Pizza on the screen, this click action triggers some
method to produce Intent (message) to the system. Then the other screen (activity) will
appear. Then the user can choose the size of the pizza, crust and quantity, and other options.
After the user clicks the “Next” button, a new Intent is sent to the system, and another
popup screen (new activity) is displayed on the screen. Of course, these Intent messages will
be stored in the Intent log files.

The Intent contains information that can be passed to the Receive component. If a user
sends Intent to the Android, he/she should point out which type of component should be
sent. If a user starts an activity or service, he/she uses the startActivity or startService
(Intent) method. After the above activity finishes, the onActivityResult method is called.
The user or developer can use this method to perform concrete functions.

Intents are divided into two categories: Activity Intent and Broadcast Intent. Activity
Intent is used to call Activities outside of an app, since only Activity can solve the Intent.
For instance, Action Call performs a call to someone specified by the data. If a user wants
to call someone, Action Call must initiate for a phone call to be made. Broadcast Intent
is responsible for solving multiple activity requests. For example, if low memory conditions
occur due to excess use of resources, Action Device Storage Low will begin to manage the
memory. At the same time, the Android broadcasts this notification to all other activities. As
a result, the affected activities can react accordingly and idle resources can be freed. When
the memory condition is restored to a normal level, Action Device Storage OK propagates
this message to all of the activities.

As Figure 3.3 shows that the com.ebay.mobile grants the CAMERA permission and the
current action is to press the camera button. This calls Action Camera Button, this action
broadcasts at camera initiation message to the Android system. Next, the Android will
check the corresponding permission which is the CAMERA label. After that Android will
assign the permission to Action Camera Button activity; of course, the Android will permit
Intent to launch this activity.

Notification allows the apps to alert users without using an Activity. An Activity uses Intent
to let other services or activities communicate with one another. Since Intent broadcasts
messages to the system, the other matched app or service can intercept the messages by
creating or registering a Broadcast Receiver. A Broadcast Receiver allows those notified apps
or services to fire Intent or to trigger events. It can warn users of, or require user attention to,
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Figure 4.2: Sample output of app Intent Log information

events by creating a new status bar icon, vibrating, sounding alerts, or displaying information
on the screen.

4.2 Intent Log components

The Android has a logging facility (log driver) to allow system record logging information
of apps and system components. Intent log is used to record all of the Intents. Intent
contains information of interest to the requested component and to the Android system [41].
Appendix B lists and describes Intent action names and descriptions. In most cases, Intent
fulfills the described functionality. As shown in Figure 4.2, Intent log information consists
of user’s IDs (UIDs), components, action names, data, categories, flags and extras.

First, Component name is recorded in the Intent log. This name is optional. If the Android
can find a target component in an app package, the Intent is delivered to some corresponding
instance; otherwise, the Android uses other methods to locate this component. Therefore,
it can be set as NULL, or any other specific name.

Second, available information is Action name. At present, Google has defined 140 actions.
The system allows a developer to create customized actions. Those actions can be mapped
into the AndroidManifest.xml. For our example, com.ebay.mobile app defines its own action
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strings.

Third, Data can be concluded from a uniform resource identifier (URI), a string of characters
used to identify a web resource. A URI can tell a system and content provider about the
data location in a device. Obtaining the information about a data type is beneficial because
components capable of displaying pictures should not be called upon to play an audio file
[41].

Fourth, Figure 4.1 contains Category information. The Intent category is used to describe a
target in an Intent-filter. Intent falls into two categories: Explicit Intent and Implicit Intent.
Explicit Intent defines a component which is explicitly defined by the Android. Explicit
intent has specified a component, whereas implicit Intent has not specified a component.
If the system can not ascertain to which category a specific service belongs, the Implicit
Intent category is assigned. In the Android, android.intent.category.LAUNCHER decides
which app or functionality can be listed. Category is more like a constraint, managing which
activities should be used or not.

Fifth, Intent uses a set of Flags to control the behavior of how new activities are invoked
[4]. Flags are mainly used to control Android launch models.

The last attribute is Extras, a bundle of any additional information. It is used to provide
extra information about a specific component. For instance, if a user sends an email, the
email should include extra data such as subject and body, carbon copy receiver, among other
data.

4.3 Hidden Markov Model

Hidden Markov Model (HMM) is a statistical model for classifying a sequence of data. In
a Markov model, the states are directly visible to the observer, and the parameter is the
state transition probability. For example, the colors of a traffic light are red, green, and
yellow. The signals are made up of sequence of traffic lights; each state (yellow color, red
color, green color) is only dependent on the previous state. However, in an HMM, the state
is not visible (hidden) and each state has a probability distribution over the possible output
tokens [42]. This hidden state characteristic is the difference between a HMM and a simple
Markov model.

HMM is mainly used in Pattern Recognition like speech, gesture recognition and Bioinfor-
matics. An HMM can be represented as a triple series (π,A,B), where π is the vector of
initial state probabilities, A is the state transition matrix, and B is the confusion matrix.
Each probability in the state transition matrix and confusion matrix is time-independent.
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Multiple series of (π,A,B) represents HMMs with a collection of different hidden states and a
sequence of observations. Rabiner [43] presented an HMM description and three basic prob-
lems, rendering HMM useful in real-world applications. These three common applications
are evaluation, decoding, and learning. For evaluation, given a sequence of observations and
a model, the problem is solved by using a forward-backward algorithm, which evaluates the
probability of efficient computation. For decoding problems, the Viterbi algorithm, which
estimates corresponding optimal state sequences, is used. The learning problem is the most
important, and the expectation-maximization (EM) algorithm is most often used. In order
to better describe the observations, it optimizes the parameters.

The EM algorithm, introduced by Dempster et al.[44] in 1977, is a very general method,
and is primarily used to solve two problems: missing data values due to limitations of the
observation process, and maximum likelihood estimation (MLE) problems. Given a set of
observed feature vectors in a HMM, using EM algorithm to find the parameters of the MLE
is called Baum-Welch algorithm. Baum-Welch (BW) algorithm is the most often used EM
algorithm. This algorithm exploits the forward-backward algorithm and computes MLE and
posterior mode estimation for the probability parameters in an HMM with known training
data [28].

The BW mechanism includes two steps: the E-step and the M-step. The former uses a
forward-backward algorithm to estimate the probability of the state sequence when given
the observation sequence, while the latter uses the maximum likelihood algorithm to fit new
parameters based on the completed data.

Below is the concrete explanation of the BW algorithm. First set λ = (π,A,B). At the
random initial condition, BW algorithm updates λ by repeating iterations until convergence.
Each of iterations executes E-step and M-step [45] separately. The detail is: given each
s and t, it computes P (St = s | o1, o2, . . . , oT ); then given each s , s′ and t, it computes
P (St = s, S(t+ 1) = s′ | o1, o2, . . . , oT );

At forward procedure, we initial

α1(i) = πibi(O1), 1 6 i 6 N (4.1)

Then we calculate recursively as

αi+1(j) = bj(OT+1)[
N∑
i=1

αt(i)aij ], 1 6 t 6 T − 1, 1 6 j 6 N. (4.2)

Finally the iterations terminate when

P (O | λ) =
N∑
i=1

αT (i) (4.3)
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At backward procedure, the feature is similar to the forward procedure, but recursive back-
ward instead of forward.

First, we initialize
βT (i) = 1, 1 6 i 6 N (4.4)

βi(t) =
N∑
j=1

bj(Ot+1)αijβi+1(j) (4.5)

Backward processes stop when

P (O | λ) =
N∑
i=1

βT (i) (4.6)

Using α and β, we compute the following variables, we denote ξt(ij) represents state = Si at
time t and the probability of state = Sj at time = t+ 1; we denotes γi(t) as the probability
of state = Si at time t.

ξt(i, j) = P (Qt = i, Qi+ 1 = j | O, λ) =
αt(i)βi(t)αijbj(Ot+1)∑N

i=1

∑N
j=1 αt(i)βi+1(j)αijbj(Ot+1)

(4.7)

γi(t) =
N∑
j=1

ξt(i, j) (4.8)

After we get ξ and γ, using the auxiliary quantity, an estimated version can be set as below.

π∗ = γi(t) (4.9)

α∗ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(4.10)

when (Ot = vk) then

b∗jk =

∑T
t=1

∑
l γjl(t)∑T

t=1

∑
l γjl(t)

(4.11)

The computations iterate very quickly and will stop when the converge is less than threshold
ε.

| logP (O | λ)− logP (O | λ0)| < ε (4.12)

For better understanding a BW algorithm, we list a pseudo code in Figure 4.3. α∗(t) and
b∗(t) are the estimated version of the transition and confusion probabilities at time t.
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Figure 4.3: Pseudo code of BW algorithm

HMM can be used to model a system for which a set of observations is provided, and for
which the underlying system state is unknown. For Android system calls, we have measured
Intent messages from training databases for an HMM, which models Android app behaviors.
The reason for choosing BW in our project is that BW is suitable for addressing our problem:
how to perform maximum likelihood learning with unknown state information. In addition,
the Matlab toolbox recommends the use of the BW algorithm to adjust maximum likelihood
parameter estimation.

4.4 Dataset and Experiments

As we discussed above, each Intent log activity includes seven contents: Unique ID, Compo-
nent name, Action name, Categories, Data, flags, and extras. The total usages (activities)
of each app can be extracted by parsing the Intent log file. To generate the real usage of
Android apps, we may use either Android automated testing tools such as Robotium [46], or
manually run apps in the Android emulation environment. In our project, we emulate 529
app usages which are nearly equally distributed in 24 categories.

At the beginning, we generated Intent logs via Robotium. Unfortunately, there were several
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factors that discouraged us to continue to use Robotium. Generally, different apps categories
perform different functionalities. Testing codes are quite different even for apps in the same
category, so the testing code reuse is very limited. Another reason is that large number of
apps makes it prohibitively time consuming to thoroughly test an app. It is very reasonable
to neglect some testing parts if we use automated testing tools without emulating an app
completely in advance. Furthermore, half of the apps possess more than ten functionalities,
thus writing test code is very slow as compared to manual emulation.

Therefore, we installed all the apps into an Android emulator and ran the apps. Then we
intercepted the Intent messages through the Android development tools (ADT) of Eclipse
[47]. Eclipse has integrated full-fledged Android environments, including a logging system,
whereas smartphone does not provide the mechanism; therefore we used Eclipse as an emu-
lator, as opposed to the Android phone itself.

In our dataset, we use 529 apps: 479 benign apps, and 50 actual malicious apps. The apps
were classified into 24 app subcategories (Table 3.1). We omitted two categories (Tools
and Wallpaper) because they are not well categorized. To reduce the generalized bias,
we excluded the duplicate apps by the same developers which were classified into multiple
categories, and chose roughly an equal number of apps from each category.

According to our statistics, for each app, there were, on average, 150 activities which were
emulated and saved. Each activity’s data contains information from 7 components, plus one
unique ID. The current dataset is limited; precision of Machine Learning results increases
with dataset size.

Moreover, in the real environment, Android users generally use different apps simultaneously.
For instance, a user may run an audio app while playing a card game app. Concurrently,
several other apps may be running in the background, e.g., synchronizing data, download-
ing data, logging events, or surfing the web. A user may use 15-25 apps under normal
circumstances.

Based on the above analysis, we used an alternative strategy. We randomly chose 20 apps and
mixed their Intent activities (average 150 per app) into one sequence, and sorted activities
by the order of their timestamp. i.e.: for each app, activity with newer timestamps was
sorted behind activity of older timestamps. Different apps appeared randomly in the Intent
log. No other order rules were used among different apps. We generated a long sequence
which consisted of an average of 3000 (20 apps×150 activities per app) Intent activities. This
sequence is similar to an Android user’s normal activity. Using this method, we randomly
generated 500 sequences which represented 500 normal Android user sessions.

For the malicious apps dataset, we combined benign and malware apps together. The most
popular Android malware—Trojan—always hides inside apps, which run as normal. Trojan
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usually hibernates and can be triggered only if the Android user performs specific functions.
Based on this fact, we randomly choose 15 apps from the benign set and 5 malware as a base
dataset; the mixed dataset will emulate the infected app usages as practically as possible.

Besides system-defined actions, nearly 770 developer-defined actions are contained in our
dataset. The frequency of these actions varies greatly. From our observations, more than
90% of the actions appear no more than 6 times; almost all other actions appear more than
60 times, and the frequencies from 7 to 50 are very rare. As we know, the number of system-
defined actions is 140, and these occupy no more than 8% of the total actions. Therefore,
we added 10 additional action slots to these self-defined actions to reduce training errors or
other bias. Eight action slots were occupied by high frequency actions; each slot was put into
five high-frequency actions. Other relative low frequency actions were assigned two slots.
Finally, our actions allocated 150 slots. Since action slots represent observations of HMM,
we set 150 as the observation number.

Training and test data were typically 80% and 20% of the dataset, respectively. A training
dataset is categorized by two subsets: 400 benign sequences for the benign subset, and 400
for the mixed- malicious subset. Of course, the test dataset included 100 benign sequences
for the benign test subset and 100 for the mixed-malicious test subset. The training process
can produce two HMMs: one benign pattern, and one malicious pattern. The output of
HMMs is a product of each action’s probability, and each action’s probability is based on
its previous states. For example, if the size of the sequence is 1,500, then this sequence can
be denoted as [O1, O2, O3, . . . , O1500] and each observation of O can results in any action
label (the total is 150). We put each test data into these two HMMs. The result depends
on the probabilities of benign HMM and the probability of malicious HMM. We utilized
the winner-take-all mechanism: if the probability of benign is greater than the probability
of malicious, the action is categorized as benign; otherwise, as the action is categorized as
malicious. The processing diagram is shown in Figure 4.4.

For the learning algorithm, we used the BW algorithm provided by Matlab toolbox. To
evaluate the performance of this methodology, we chose precision, recall, F-measure, and
accuracy as performance measures.

Before we simulated the experiment, our learning BW algorithm required observation set O
and underlying state set Q. Since each action fulfills specific functionalities, we set the action
name in our data to represent observation O and Q to represent hidden states of HMM; the
output is the probability pattern.

In our simulation, we measured the performance 10 times and results are depicted in Table
4.1 . The average accuracy was 69.7%.

If we increase the number of state parameter Q, the accuracy will also increase. However,
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Figure 4.4: training and testing process diagram by using BW algorithm

Table 4.1: Performance Measurement using HMM

No. TP FP FN TN Recall Precision F Accuracy
1 78 43 22 57 0.780 0.645 0.706 0.675
2 80 42 20 58 0.800 0.656 0.721 0.690
3 86 41 14 59 0.860 0.677 0.758 0.725
4 78 49 22 51 0.780 0.614 0.687 0.645
5 84 38 16 62 0.840 0.689 0.757 0.730
6 82 40 18 60 0.820 0.672 0.739 0.710
7 82 33 18 67 0.820 0.713 0.763 0.745
8 88 51 12 49 0.880 0.633 0.736 0.685
9 78 43 22 57 0.780 0.645 0.706 0.675
10 88 51 12 49 0.880 0.633 0.736 0.685
AVG 0.880 0.633 0.736 0.685
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this incurs an extremely slow execution. Another improved method is to balance the se-
quence size. Because the current sequence is roughly equal to information from 3,000 Intent
activities, the size of the sequence sometimes varies greatly. For this reason, accuracy is
reduced. Another possible way to improve the accuracy is to increase the input dataset size.

39



Chapter 5

Conclusion

In our project, we detect malicious patterns at install time and runtime. At install time, a
total of 1,700 apps from 34 categories reveal an increasing trend in app permission request
traits. We have introduced a NN approach to validate Android app categories using their
permission requests by estimating the app category likelihoods. Our experiments show that
Bayesian regularization training, with a category-containing dataset alongside permissions,
renders greater accuracy. Furthermore, we leverage a threshold-sweeping approach to jointly
minimize FP and FN by intersecting curves for FP and FN rates.

The methodology performance measurement creates the possibility for leveraging NNs for
detection of category misrepresentation. The current study assumes permission manipula-
tion, without altering a category, may misrepresent a category; this is not always true. The
average number of permissions per app is only 6.69, and about 1/3 of the apps includes one
or more unneeded permissions. In this situation, some permission-overusing apps were com-
bined with genuinely non-overusing apps, thus skewing our performance and reducing the
accuracy of the results. Another reason is that if we randomly change the permission labels
as malicious app, then we identify the results, but sometimes it may be arbitrary. In the first
case, if permissions are modified from dangerous to non-dangerous and vice versa, we can
identify this very well. In the second case, sometimes these exchanged permissions are all be-
nign, oft-used permissions. The errors produced by the second case are comparably smaller
than those in the first case. Thus, our malicious dataset may be underfitting, reducing the
experimental accuracy. Furthermore, the accuracy largely depends on the machine learn-
ing algorithm. If the size of the training set increases, the task performance subsequently
improves. In addition, increasing the NN number and layer may improve the performance.

At runtime, we generated an activities dataset by tracking the output of the Intent log.
Each dataset consisted of roughly 150 Intent activities. Our dataset has 529 emulated app
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usages. To emulate the real usage and generate sufficient data without bias, we randomly
chose 20 apps, combined these usages, ordered them by time stamp. Thus, we generated
a 3000-activity sequence as a single dataset. For a malicious dataset, we randomly chose
15 benign apps and 5 malicious apps to generate a 3000-activity sequence dataset. Each
dataset represents a one-time real usage. We iterated and generated 1,000 one-time usage
data sequences.

Based on the data’s features and our requirements, we used HMM to train the data and test
it. There were two important adjustable parameters: hidden states number and observation
number. The observation number is fixed, since it is the size of the Action name labels. The
number of Action labels is 150, which consists of system-defined Action labels (140) and 10
developer-defined Action labels.

The average accuracy is approximately 69.7% when we set the hidden states at Q = 50. If
we increase this parameter, the performance of accuracy can increase lightly. However, this
incurs an extremely slow execution.

In our project, we present two novel methods to detect malicious apps. Currently, there is
no previous research on this topic. Some studies focus on permission policy enforcement or
permission validation, while no published studies have examined the relationship between
apps and their assigned category. Other studies analyze Intent activities with the help of
the Kernel level mechanism. We analyze Intent activities above the Kernel layer and use
HMM, a novel mechanism. To some extent, our biggest contribution is providing two original
solutions to analyze Android security problems.

Our future work will focus on three aspects. First, we must emulate Game apps to gen-
erate game activities. Our current dataset does not include this type of data. Second, we
will focus on how to better emulate the user’s functions. Most Android users run apps in
Communication, Media & Video, Game, shopping, and Photography ; they do not often use
apps of Medical, Libraries & Demo, Comics. Therefore, we may not randomly choose 20
apps from all categories; rather, we may assign some Intent activities in advance and then
randomly choose. For example, we may pick 3 apps from Communication, 4 apps from
Game, 2 apps from Social and 1 app from Music & Video, while the remaining apps will
be randomly chosen from the rest of categories. Third, we need to balance the size of each
dataset. Since the size of data varies greatly, the results are not very stable. The lowest
accuracy is 64.5% and highest accuracy is 74.5%. We can create a threshold, such that if a
data is too long or too short, we will discard it and generate a new one. In this manner, the
output of performance may stabilize and accuracy may improve.
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Appendix A.

Android Permission Constants

For reference purposes, this appendix provides a complete list of Android permission con-
stants.

Permission Name Description
ACCESS CHECKIN PROPERTIES Allows read/write access to the “properties” table

in the checkin database, to change values that get
uploaded.

ACCESS COARSE LOCATION Allows an app to access approximate location de-
rived from network location sources such as cell
towers and Wi-Fi.

ACCESS FINE LOCATION Allows an app to access precise location from lo-
cation sources such as GPS, cell towers, and Wi-
Fi.

ACCESS LOCATION EXTRA COMMANDS Allows an application to access extra location
provider commands.

ACCESS MOCK LOCATION Allows an application to create mock location
providers for testing.

ACCESS NETWORK STATE Allows applications to access information about
networks.

ACCESS SURFACE FLINGER Allows an application to use SurfaceFlinger’s low
level features.

ACCESS WIFI STATE Allows applications to access information about
Wi-Fi networks.

ACCOUNT MANAGER Allows applications to call into AccountAuthen-
ticators.
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ADD VOICEMAIL Allows an application to add voicemails into the
system.

AUTHENTICATE ACCOUNTS Allows an application to act as an AccountAu-
thenticator for the AccountManager.

BATTERY STATS Allows an application to collect battery statistics.
BIND APPWIDGET Allows an application to tell the AppWidget ser-

vice which application can access AppWidget’s
data.

BIND DEVICE ADMIN Must be required by device administration re-
ceiver, to ensure that only the system can interact
with it.

BIND INPUT METHOD Must be required by an InputMethodService, to
ensure that only the system can bind to it.

BIND REMOTEVIEWS Must be required by a RemoteViewsService, to
ensure that only the system can bind to it.

BIND TEXT SERVICE Must be required by a TextService (e.g.)
BIND VPN SERVICE Must be required by an VpnService, to ensure

that only the system can bind to it.
BIND WALLPAPER Must be required by a WallpaperService, to en-

sure that only the system can bind to it.
BLUETOOTH Allows applications to connect to paired blue-

tooth devices.
BLUETOOTH ADMIN Allows applications to discover and pair blue-

tooth devices.
BRICK Required to be able to disable the device (very

dangerous!).
BROADCAST PACKAGE REMOVED Allows an application to broadcast a notification

that an application package has been removed.
BROADCAST SMS Allows an application to broadcast an SMS re-

ceipt notification.
BROADCAST STICKY Allows an application to broadcast sticky intents.
BROADCAST WAP PUSH Allows an application to broadcast a WAP PUSH

receipt notification.
CALL PHONE Allows an application to initiate a phone call

without going through the Dialer user interface
for the user to confirm the call being placed.

CALL PRIVILEGED Allows an application to call any phone num-
ber, including emergency numbers, without going
through the Dialer user interface for the user to
confirm the call being placed.
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CAMERA Required to be able to access the camera device.
CHANGE COMPONENT ENABLED STATE Allows an application to change whether an appli-

cation component (other than its own) is enabled
or not.

CHANGE CONFIGURATION Allows an application to modify the current con-
figuration, such as locale.

CHANGE NETWORK STATE Allows applications to change network connectiv-
ity state.

CHANGE WIFI MULTICAST STATE Allows applications to enter Wi-Fi Multicast
mode.

CHANGE WIFI STATE Allows applications to change Wi-Fi connectivity
state.

CLEAR APP CACHE Allows an application to clear the caches of all
installed applications on the device.

CLEAR APP USER DATA Allows an application to clear user data.
CONTROL LOCATION UPDATES Allows an application to create mock location

providers for testing.
DELETE CACHE FILES Allows an application to delete cache files.
DELETE PACKAGES Allows an application to delete packages.
DEVICE POWER Allows low-level access to power management.
DIAGNOSTIC Allows applications to RW to diagnostic re-

sources.
DISABLE KEYGUARD Allows applications to disable the keyguard.
DUMP Allows an application to retrieve state dump in-

formation from system services.
EXPAND STATUS BAR Allows an application to expand or collapse the

status bar.
FACTORY TEST Run as a manufacturer test application, running

as the root user.
FLASHLIGHT Allows access to the flashlight.
FORCE BACK Allows an application to force a BACK operation

on whatever is the top activity.
GET ACCOUNTS Allows access to the list of accounts in the Ac-

counts Service.
GET PACKAGE SIZE Allows an application to find out the space used

by any package.
GET TASKS Allows an application to get information about

the currently or recently running tasks.
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GLOBAL SEARCH This permission can be used on content providers
to allow the global search system to access their
data.

HARDWARE TEST Allows access to hardware peripherals.
INJECT EVENTS Allows an application to inject user events (keys,

touch, trackball) into the event stream and de-
liver them to ANY window.

INSTALL LOCATION PROVIDER Allows an application to install a location
provider into the Location Manager.

INSTALL PACKAGES Allows an application to install packages.
INTERNAL SYSTEM WINDOW Allows an application to open windows that are

for use by parts of the system user interface.
INTERNET Allows applications to open network sockets.
KILL BACKGROUND PROCESSES Allows an application to callkillBackgroundPro-

cesses(String)
MANAGE ACCOUNTS Allows an application to manage the list of ac-

counts in the AccountManager.
MANAGE APP TOKENS Allows an application to manage (create, destroy,

Z-order) application tokens in the window man-
ager.

MASTER CLEAR Not for use by third-party applications.
MODIFY AUDIO SETTINGS Allows an application to modify global audio set-

tings.
MODIFY PHONE STATE Allows modification of the telephony state -

power on, mmi, etc.
MOUNT FORMAT FILESYSTEMS Allows formatting file systems for removable stor-

age.
MOUNT UNMOUNT FILESYSTEMS Allows mounting and unmounting file systems for

removable storage.
NFC Allows applications to perform I/O operations

over NFC.
PERSISTENT ACTIVITY This constant was deprecated in API level 9. This

functionality will be removed in the future; please
do not use. Allow an application to make its ac-
tivities persistent.

PROCESS OUTGOING CALLS Allows an application to monitor, modify, or
abort outgoing calls.

READ CALENDAR Allows an application to read the user’s calendar
data.
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READ CONTACTS Allows an application to read the user’s contacts
data.

READ FRAME BUFFER Allows an application to take screen shots and
more generally get access to the frame buffer
data.

READ HISTORY BOOKMARKS Allows an application to read (but not write) the
user’s browsing history and bookmarks.

READ INPUT STATE This constant was deprecated in API level 16.
The API that used this permission has been re-
moved.

READ LOGS Allows an application to read the low-level system
log files.

READ PHONE STATE Allows read only access to phone state.
READ PROFILE Allows an application to read the user’s personal

profile data.
READ SMS Allows an application to read SMS messages.
READ SOCIAL STREAM Allows an application to read from the user’s so-

cial stream.
READ SYNC SETTINGS Allows applications to read the sync settings.
READ SYNC STATS Allows applications to read the sync stats.
REBOOT Required to be able to reboot the device.
RECEIVE BOOT COMPLETED Allows an application to receive theAC-

TION BOOT COMPLETED that is broadcast
after the system finishes booting.

RECEIVE MMS Allows an application to monitor incoming MMS
messages, to record or perform processing on
them.

RECEIVE SMS Allows an application to monitor incoming SMS
messages, to record or perform processing on
them.

RECEIVE WAP PUSH Allows an application to monitor incoming WAP
push messages.

RECORD AUDIO Allows an application to record audio.
REORDER TASKS Allows an application to change the Z-order of

tasks.
RESTART PACKAGES This constant was deprecated in API level 8.

TherestartPackage(String) API is no longer sup-
ported.

SEND SMS Allows an application to send SMS messages.
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SET ACTIVITY WATCHER Allows an application to watch and control how
activities are started globally in the system.

SET ALARM Allows an application to broadcast an Intent to
set an alarm for the user.

SET ALWAYS FINISH Allows an application to control whether activ-
ities are immediately finished when put in the
background.

SET ANIMATION SCALE Modify the global animation scaling factor.
SET DEBUG APP Configure an application for debugging.
SET ORIENTATION Allows low-level access to setting the orientation

(actually rotation) of the screen.
SET POINTER SPEED Allows low-level access to setting the pointer

speed.
SET PREFERRED APPLICATIONS This constant was deprecated in API level 7. No

longer useful, see addPackageToPreferred(String)
for details.

SET PROCESS LIMIT Allows an application to set the maximum num-
ber of (not needed) application processes that can
be running.

SET TIME Allows applications to set the system time.
SET TIME ZONE Allows applications to set the system time zone.
SET WALLPAPER Allows applications to set the wallpaper.
SET WALLPAPER HINTS Allows applications to set the wallpaper hints.
SIGNAL PERSISTENT PROCESSES Allow an application to request that a signal be

sent to all persistent processes.
STATUS BAR Allows an application to open, close, or disable

the status bar and its icons.
SUBSCRIBED FEEDS READ Allows an application to allow access the sub-

scribed feeds ContentProvider.
SUBSCRIBED FEEDS WRITE Allows an application to allow write the sub-

scribed feeds ContentProvider.
SYSTEM ALERT WINDOW Allows an application to open windows using the

type TYPE SYSTEM ALERT, shown on top of
all other applications.

UPDATE DEVICE STATS Allows an application to update device statistics.
USE CREDENTIALS Allows an application to request authtokens from

the AccountManager.
USE SIP Allows an application to use SIP service.
VIBRATE Allows access to the vibrator.
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WAKE LOCK Allows using PowerManager WakeLocks to keep
processor from sleeping or screen from dimming.

WRITE APN SETTINGS Allows applications to write the apn settings
WRITE CALENDAR Allows an application to write (but not read) the

user’s calendar data.
WRITE CONTACTS Allows an application to write (but not read) the

user’s contacts data.
WRITE EXTERNAL STORAGE Allows an application to write to external storage.
WRITE GSERVICES Allows an application to modify the Google ser-

vice map.
WRITE HISTORY BOOKMARKS Allows an application to write (but not read) the

user’s browsing history and bookmarks.
WRITE PROFILE Allows an application to write (but not read) the

user’s personal profile data.
WRITE SECURE SETTINGS Allows an application to read or write the secure

system settings.
WRITE SETTINGS Allows an application to read or write the system

settings.
WRITE SMS Allows an application to write SMS messages.
WRITE SOCIAL STREAM Allows an application to write (but not read) the

user’s social stream data.
WRITE SYNC SETTINGS Allows applications to write the sync settings.
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Appendix B.

Android Action Constants 

For reference purposes, this appendix provides a complete list of Android Action constants.

Action Name Description
ACTION AIRPLANE MODE CHANGED Broadcast Action: The user has switched the

phone into or out of Airplane Mode.
ACTION ALL APPS Activity Action: List all available applications.

Input: Nothing.
ACTION ANSWER Activity Action: Handle an incoming phone call.
ACTION APP ERROR Activity Action: The user pressed the “Report”

button in the crash/ANR dialog.
ACTION ASSIST Activity Action: Perform assist action.
ACTION ATTACH DATA Used to indicate that some piece of data should

be attached to some other place.
ACTION BATTERY CHANGED Broadcast Action: This is a sticky broadcast con-

taining the charging state, level, and other infor-
mation about the battery.

ACTION BATTERY LOW Broadcast Action: Indicates low battery condi-
tion on the device.

ACTION BATTERY OKAY Broadcast Action: Indicates the battery is now
okay after being low.

ACTION BOOT COMPLETED Broadcast Action: This is broadcast once, after
the system has finished booting.

ACTION BUG REPORT Activity Action: Show activity for reporting a
bug.

ACTION CALL Activity Action: Perform a call to someone spec-
ified by the data.
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ACTION CALL BUTTON Activity Action: The user pressed the “call” but-
ton to go to the dialer or other appropriate UI for
placing a call.

ACTION CAMERA BUTTON Broadcast Action: The “Camera Button” was
pressed.

ACTION CHOOSER Activity Action: Display an activity chooser, al-
lowing the user to pick what they want to before
proceeding.

ACTION CLOSE SYSTEM DIALOGS Broadcast Action: This is broadcast when a user
action should request a temporary system dialog
to dismiss.

ACTION CONFIGURATION CHANGED Broadcast Action: The current device Configura-
tion (orientation, locale, etc) has changed.

ACTION CREATE SHORTCUT Activity Action: Creates a shortcut.
ACTION DATE CHANGED Broadcast Action: The date has changed.

ACTION DEFAULT A synonym for ACTION VIEW, the “standard”
action that is performed on a piece of data.

ACTION DELETE Activity Action: Delete the given data from its
container.

ACTION DEVICE STORAGE LOW Broadcast Action: A sticky broadcast that indi-
cates low memory condition on the device This is
a protected intent that can only be sent by the
system.

ACTION DEVICE STORAGE OK Broadcast Action: Indicates low memory condi-
tion on the device no longer exists This is a pro-
tected intent that can only be sent by the system.

ACTION DIAL Activity Action: Dial a number as specified by
the data.

ACTION DOCK EVENT Broadcast Action: A sticky broadcast for changes
in the physical docking state of the device.

ACTION DREAMING STARTED Broadcast Action: Sent after the system starts
dreaming.

ACTION DREAMING STOPPED Broadcast Action: Sent after the system stops
dreaming.

ACTION EDIT Activity Action: Provide explicit editable access
to the given data.

ACTION EXTERNAL APPLICATIONS AVAILABLE Broadcast Action: Resources for a set of packages
(which were previously unavailable) are currently
available since the media on which they exist is
available.
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ACTION EXTERNAL APPLICATIONS UNAVAILABLE Broadcast Action: Resources for a set of pack-
ages are currently unavailable since the media on
which they exist is unavailable.

ACTION FACTORY TEST Activity Action: Main entry point for factory
tests.

ACTION GET CONTENT Activity Action: Allow the user to select a par-
ticular kind of data and return it.

ACTION GTALK SERVICE CONNECTED Broadcast Action: A GTalk connection has been
established.

ACTION GTALK SERVICE DISCONNECTED Broadcast Action: A GTalk connection has been
disconnected.

ACTION HEADSET PLUG Broadcast Action: Wired Headset plugged in or
unplugged.

ACTION INPUT METHOD CHANGED Broadcast Action: An input method has been
changed.

ACTION INSERT Activity Action: Insert an empty item into the
given container.

ACTION INSERT OR EDIT Activity Action: Pick an existing item, or insert
a new item, and then edit it.

ACTION INSTALL PACKAGE Activity Action: Launch application installer.
ACTION LOCALE CHANGED Broadcast Action: The current device’s locale has

changed.
ACTION MAIN Activity Action: Start as a main entry point, does

not expect to receive data.
ACTION MANAGE NETWORK USAGE Activity Action: Show settings for managing net-

work data usage of a specific application.
ACTION MANAGE PACKAGE STORAGE Broadcast Action: Indicates low memory condi-

tion notification acknowledged by user and pack-
age management should be started.

ACTION MEDIA BAD REMOVAL Broadcast Action: External media was removed
from SD card slot, but mount point was not un-
mounted.

ACTION MEDIA BUTTON Broadcast Action: The “Media Button” was
pressed.

ACTION MEDIA CHECKING Broadcast Action: External media is present, and
being disk-checked The path to the mount point
for the checking media is contained in the In-
tent.mData field.

ACTION MEDIA EJECT Broadcast Action: User has expressed the desire
to remove the external storage media.
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ACTION MEDIA MOUNTED Broadcast Action: External media is present and
mounted at its mount point.

ACTION MEDIA NOFS Broadcast Action: External media is present, but
is using an incompatible fs (or is blank) The path
to the mount point for the checking media is con-
tained in the Intent.mData field.

ACTION MEDIA REMOVED Broadcast Action: External media has been re-
moved.

ACTION MEDIA SCANNER FINISHED Broadcast Action: The media scanner has fin-
ished scanning a directory.

ACTION MEDIA SCANNER SCAN FILE Broadcast Action: Request the media scanner to 
scan a file and add it to the media database.

ACTION MEDIA SCANNER STARTED Broadcast Action: The media scanner has started
scanning a directory.

ACTION MEDIA SHARED Broadcast Action: External media is unmounted
because it is being shared via USB mass storage.

ACTION MEDIA UNMOUNTABLE Broadcast Action: External media is present but
cannot be mounted.

ACTION MEDIA UNMOUNTED Broadcast Action: External media is present, but
not mounted at its mount point.

ACTION MY PACKAGE REPLACED Broadcast Action: A new version of your appli-
cation has been installed over an existing one.

ACTION NEW OUTGOING CALL Broadcast Action: An outgoing call is about to
be placed.

ACTION PACKAGE ADDED Broadcast Action: A new application package has 
been installed on the device.

ACTION PACKAGE CHANGED Broadcast Action: An existing application pack-
age has been changed.

ACTION PACKAGE DATA CLEARED Broadcast Action: The user has cleared the data
of a package.

ACTION PACKAGE FIRST LAUNCH Broadcast Action: Sent to the installer package
of an application when that application is first
launched (that is the first time it is moved out of
the stopped state).

ACTION PACKAGE FULLY REMOVED Broadcast Action: An existing application pack-
age has been completely removed from the device.

ACTION PACKAGE INSTALL This constant was deprecated in API level 14.
This constant has never been used.

ACTION PACKAGE NEEDS VERIFICATION Broadcast Action: Sent to the system package
verifier when a package needs to be verified.
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ACTION PACKAGE REMOVED Broadcast Action: An existing application pack-
age has been removed from the device.

ACTION PACKAGE REPLACED Broadcast Action: A new version of an applica-
tion package has been installed, replacing an ex-
isting version that was previously installed.

ACTION PACKAGE RESTARTED Broadcast Action: The user has restarted a pack-
age, and all of its processes have been killed.

ACTION PACKAGE VERIFIED Broadcast Action: Sent to the system package
verifier when a package is verified.

ACTION PASTE Activity Action: Create a new item in the given
container, initializing it from the current contents
of the clipboard.

ACTION PICK Activity Action: Pick an item from the data, re-
turning what was selected.

ACTION PICK ACTIVITY Activity Action: Pick an activity given an intent,
returning the class selected.

ACTION POWER CONNECTED Broadcast Action: External power has been con-
nected to the device.

ACTION POWER DISCONNECTED Broadcast Action: External power has been re-
moved from the device.

ACTION POWER USAGE SUMMARY Activity Action: Show power usage information
to the user.

ACTION PROVIDER CHANGED Broadcast Action: Some content providers have
parts of their namespace where they publish new
events or items that the user may be especially
interested in.

ACTION QUICK CLOCK Sent when the user taps on the clock widget in
the system’s “quick settings” area.

ACTION REBOOT Broadcast Action: Have the device reboot.
ACTION RUN Activity Action: Run the data, whatever that

means.
ACTION SCREEN OFF Broadcast Action: Sent after the screen turns off.
ACTION SCREEN ON Broadcast Action: Sent after the screen turns on.
ACTION SEARCH Activity Action: Perform a search.
ACTION SEARCH LONG PRESS Activity Action: Start action associated with

long pressing on the search key.

ACTION SEND Activity Action: Deliver some data to someone
else.

ACTION SENDTO Activity Action: Send a message to someone
specified by the data.
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ACTION SEND MULTIPLE Activity Action: Deliver multiple data to some-
one else.

ACTION SET WALLPAPER Activity Action: Show settings for choosing wall-
paper Input: Nothing.

ACTION SHUTDOWN Broadcast Action: Device is shutting down.
ACTION SYNC Activity Action: Perform a data synchronization.
ACTION SYSTEM TUTORIAL Activity Action: Start the platform-defined

tutorial Input: getStringExtra (SearchMan-
ager.QUERY) is the text to search for.

ACTION TIMEZONE CHANGED Broadcast Action: The timezone has changed.

ACTION TIME CHANGED Broadcast Action: The time was set.
ACTION TIME TICK Broadcast Action: The current time has changed.

ACTION UID REMOVED Broadcast Action: A user ID has been removed
from the system.

ACTION UMS CONNECTED This constant was deprecated in
API level 14. replaced by an-
droid.os.storage.StorageEventListener

ACTION UMS DISCONNECTED This constant was deprecated in
API level 14. replaced by an-
droid.os.storage.StorageEventListener

ACTION UNINSTALL PACKAGE Activity Action: Launch application uninstaller.
ACTION USER BACKGROUND Sent when a user switch is happening, causing the

process’s user to be sent to the background.
ACTION USER FOREGROUND Sent when a user switch is happening, causing the

process’s user to be brought to the foreground.
ACTION USER INITIALIZE Sent the first time a user is starting, to allow

system apps to perform one time initialization.
ACTION USER PRESENT Broadcast Action: Sent when the user is present

after device wakes up (e.g when the keyguard is
gone).

ACTION VIEW Activity Action: Display the data to the user.
ACTION VOICE COMMAND Activity Action: Start Voice Command.

ACTION WALLPAPER CHANGED This constant was deprecated in API level 16.
Modern applications should use WindowManager.
LayoutParams.FLAG SHOW WALLPAPER to
have the wallpaper shown behind their UI, rather
than watching for this broadcast and rendering the
wallpaper on their own.

ACTION WEB SEARCH Activity Action: Perform a web search.
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Appendix C.

Matlab code for BW algorithm

For reference purposes, this appendix provides Matlab code for BW algorithm; we reference
the original code from Kevin Murphy’s toolbox [48].
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