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Abstract—The exponential growth in dataset sizes has shifted
the bottleneck of high-performance data analytics from the
compute subsystem to the memory and storage subsystems.
This bottleneck has led to the proliferation of non-volatile
memory (NVM). To bridge the performance gap between the
Linux I/O subsystem and NVM, userspace memory-mapped
I/O enables application-specific I/O optimizations. Specifically,
UMap, an open-source userspace memory-mapping tool, exposes
tunable paging parameters to application users, such as page
size and degree of paging concurrency. Tuning these parameters
is computationally intractable due to the vast search space
and the cost of evaluating each parameter combination. To
address this challenge, we present AUTOPAGER, a tool for auto-
tuning userspace paging parameters. Our evaluation, using five
data-intensive applications with UMap, shows that AUTOPAGER
automatically achieves comparable performance to exhaustive
tuning with 10x less tuning overhead. and 16.3x and 1.52x
speedup over UMap with default parameters and UMap with
page-size only tuning, respectively.

Index Terms—autotuning, virtual memory, big data, paging,
memory-mapped I/0O, memory, storage

I. INTRODUCTION

The massive growth in dataset sizes across multiple domains
necessitates the use of high-performance computing (HPC) to
compute on such datasets at scale [1]. However, this growth
has shifted the bottleneck from the compute subsystem toward
the memory and storage subsystems, thus motivating the need
for fast storage technologies, such as non-volatile memory
(NVM) devices, in supercomputing design.

Fast storage technology can significantly improve the I/O
performance of data-intensive applications, but at the expense
of programming complexity to handle a complex HPC storage
hierarchy [2], [3]. To address this challenge, data processing
tools leverage memory-mapped I/O [4]. Memory-mapped 1/O,
i.e., mmap(), provides a unified interface to different storage
types and enables applications to handle paging transparently
for out-of-core data processing. However, memory-mapped
I/O incurs significant performance limitations due to multiple
bottlenecks in the Linux I/O subsystem [2], [4], [S]. Moreover,
it lacks the flexibility to apply application-specific optimiza-
tions because paging parameters are system-wide [2].

To address these limitations, past research has studied
handling paging management in userspace [2], [3], [5], [6].
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For instance, UMap, a userspace memory-mapping library,
provides an interface similar to mmap() while exposing tunable
paging parameters [2]. These parameters, such as page size,
degree of concurrency in paging management, and high/low
eviction watermarks, are usually tuned for generality and then
hard-coded into the OS kernel. UMap enables application-
specific tuning of these parameters, which can lead to sig-
nificant performance improvement [2]. Moreover, multiple
applications can run on the same system with different per-
application configurations.

However, identifying the optimal UMap paging parameters
requires systems expertise and a deep understanding of an
application’s characteristics. Such requirements hinder the us-
ability of UMap, particularly by domain scientists with limited
systems’ expertise. Unfortunately, an exhaustive search of this
multidimensional UMap parameter space is computationally
intractable due to the sheer size of the search space, along with
the necessary time to evaluate each parameter combination.

Thus, we present AUTOPAGER, a tool for auto-tuning
UMap paging parameters. In this paper, we leverage Bayesian
optimization [7] for auto-tuning. Bayesian optimization is a
widely-used algorithm for tuning complex, non-linear systems,
where the cost of evaluating the objective function is sig-
nificant [8]. We selected Bayesian optimization due to the
complexity of the UMap parameter space and the cost of
evaluating each parameter combination for applications with
out-of-core processing. AUTOPAGER completed in less than
1% of the time that an exhaustive grid search took on a small
dataset. In turn, the parameter-optimized UMap achieves up
to a 16.3x speedup over UMap with its default parameters;
in addition, it achieves up to a 1.52x speedup over page-size-
only tuning.

We summarize our contributions below:

o AUTOPAGER, a framework for auto-tuning userspace

virtual memory parameters.

o Applying AUTOPAGER to UMap, an open-source
userspace paging tool, and leveraging Bayesian Optimiza-
tion for parameters tuning.

« Balancing the trade-off between I/O performance and
programming productivity (and portability) for designing
scalable data processing systems.

The rest of this paper is organized as follows. First, §II

provides background about userspace paging and parameter



auto-tuning, followed by the design AUTOPAGER. Next, §IV
evaluates AUTOPAGER using microbenchmarks and real-world
applications. Finally, §V, and §VI discuss related work, and
future directions, respectively, and §VII concludes.

II. BACKGROUND

In this section, we provide background on userspace
memory-mapped 1/O, including UMap and its parameter
space. We then discuss different parameters auto-tuning ap-
proaches, highlighting Bayesian optimization as an approach
that fits the UMap auto-tuning problem.

A. Userspace Memory-Mapped I/O

Memory-mapped I/O allocates virtual memory space and
applies demand paging to transfer data between physical
memory and persistent storage. Memory-mapped I/O provides
a unified interface to different storage types [9]. Additionally,
it has multiple performance benefits compared to read/write
system calls for fast storage devices [4]. However, memory-
mapped 1/0O, i.e., mmap(), suffers from lack of scalability
for multithreaded applications [4], and lacks the flexibility
for application-specific optimizations [2]. These limitations
motivated the design of userspace memory-mapped I/O li-
braries [3], [6], [9]. Userspace memory-mapped I/O transfers
page fault signals to the userspace, enabling application-
specific optimizations while avoiding kernel-space bottlenecks.
Specifically, UMap [9] exposes a wide set of paging parame-
ters for application users to be tuned at runtime. Table I de-
scribes the UMap parameters and their values. This approach
enables application-specific performance tuning. However, it
challenges domain scientists who have minimal systems back-
ground to select the optimal parameters. To address this
issue, we present and evaluate AUTOPAGER, a tool for auto-
tuning UMap paging parameters. We designed AUTOPAGER
to support different optimization algorithms. The complexity
of the search space and the non-linearity of the objective func-
tions motivate leveraging Bayesian optimization to identify
near-optimal parameters.

B. Optimization Strategies

Optimization is the process of identifying the minimum
or maximum of a given objective function F'(x). Traditional
optimization techniques exploit the features of the objective
functions, such as convexity and gradient, to quickly find
the optimum. However, some complex objective functions
exist that are non-trivial or computationally expensive to find
the gradient and that no information other than the output
exists. These types of functions are often labeled black-box
functions, and the techniques that optimize them are called
black-box derivative-free optimization techniques [10]. We
discuss common optimization algorithms below:

1) Exhaustive Grid Search: Grid search is an optimization
technique that performs exhaustive search over all the possible
parameter combinations the objective function can take. In
practice, if the objective function is expensive, certain parame-
ter combinations may be pruned based on domain knowledge.

2) Coordinate Descent: Coordinate descent is an iterative
method that selects a parameter to optimize for, fixes every
other parameter, and then finds the minimum execution time
for that parameter. It continues this until all the parameters are
minimized. This method performs well when the parameters
are independent, but may fail to find the optimal point if the
parameters affect each other. Additionally, the order in which
parameters are chosen is very important and can significantly
affect the result. [11]

3) Bayesian Optimization: Bayesian optimization is one
such technique that relies on the optimization of a surrogate
model 7(x) that mimics the objective function F'(x). The
surrogate model is continuously trained by sampling points
using an acquisition function [12].

Algorithm 1: Bayesian Optimization

Initialize surrogate model ()

=1

while : < N do
x; = argopty I(x|(r1:-1,Y1:i-1))
yi = F(;)

end

The most commonly used surrogate model for Bayesian
optimization is the Gaussian process [13]. The acquisition
function is a heuristic function that determines the sampling
points for the surrogate model by identifying the optimum
point of the surrogate model. It balances exploitation, i.e.,
sampling points with a high probability of reward, and ex-
ploration, i.e., sampling points in regions of high uncertainty.
Some commonly used acquisition functions are probability
of improvement, expected improvement, and lower confidence
bound. Finally, a Bayesian optimizer could be warm-started.
Warm-starting is the process of transferring the learned pa-
rameters from one model to another model with similar
computational patterns for faster convergence [14]. Bayesian
optimization suits the complexity, non-linearity, and objective
function cost of the UMap parameter space.

III. DESIGN OF AUTOPAGER

The AUTOPAGER tool consists of an objective function def-
inition and an optimization workflow. The objective function
we seek to optimize consists of an application’s performance
metric (e.g., execution time) as a function of the UMap pag-
ing parameters. The optimization workflow of AUTOPAGER
consists of iteratively selecting and evaluating different UMap
parameter combinations, then evaluating an optimization func-
tion (e.g., surrogate model). The objective function evalua-
tion consists of running the target application as an external
process and collecting the performance metric of interest.
We define our parameter space as a Cartesian product of all
possible UMap parameter combinations. We implement the
Bayesian Optimization using the Ax library [15] by Facebook,
using its default parameters. We discuss the details of the
objective functions, workflow implementation, and validation
methodology in the rest of this section.



TABLE I: UMap userspace paging parameters that are tunable at application runtime

Parameter

| Possible Values

| Description |

Page Size

Multiples of system’s page size (4 KB)

Unit of transfer between DRAM and persistent storage

Page Fillers

1 to number of physical cores

Number of threads fetching pages from storage to DRAM

Page Evictors

1 to number of physical cores

Number of threads evicting and writing back dirty pages

Buffer Size

1 to (90% of available DRAM) (in pages)

Maximum memory buffer size in pages

Eviction High-Water Threshold (HWT)

1% to 100% of pages in buffer

Percentage of dirty pages at which eviction is triggered

Eviction Low-Water Threshold (LWT)

1% to HWT - 1 (where HWT > LWT)

Percentage of dirty pages at which eviction is stopped

A. Objective Functions

Applications are designed with different use cases and
constraints, so identifying performance metrics can become
difficult. Metrics such as execution time, throughput, and peak
memory utilization all play an important role in determining
the effectiveness of a target application. We focused on exe-
cution time and throughout as the core objective functions in
this work. We model the metric of interest as a function of
the UMap parameters. For instance, let the objective function
denote the application’s execution time, and let U denote
the UMap parameter space described in table I. The objective
function could be represented as Ty, = f(x) where z € U. In
this case, we consider all other factors affecting the execution
time, such as input size and algorithmic complexity, to be
invariant for each optimization iteration.

B. Optimization Workflow

Figure 1 generally describes the AUTOPAGER iterative
workflow to optimize the UMap parameters using a given
optimization strategy. We use a Cartesian product of the
parameter space for grid search. We uniformly sample each
parameter dimension to perform the grid search in a tractable
time. For Bayesian optimization, we sample 10 random points
to initialize the model and then iteratively train the model for
20 more iterations.

The objective function depends on the application. In
this work, we optimized either wall clock execution time
or throughput. The Bayesian optimization software runs as
a Python process that sets the selected UMap parameters
as environment variables, then invokes the UMap-enabled
application as an external process. To ensure we measure
our metrics accurately, we disable page cache and swap on
machines with super-user access. We run a script to overwrite
the page cache on machines without root privileges. For small
dataset experiments, we limit the Buffer Size parameter to
push the UMap experiments out-of-core while not using swap.

C. Validation

Because an exhaustive grid search on large datasets is
unfeasible, we take a smaller segment of the problem by
reducing the dataset size and running an exhaustive search
and the Bayesian optimizer on it. We compare the optimal
point found by the exhaustive search to that found by the
Bayesian optimizer. This technique allows us to compare the
points found by the various optimization strategies. We also
compare the optimal point found by the optimizers for the
smaller dataset segment with that found for the large dataset.
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Fig. 1: Architecture of AUTOPAGER. Computing the objective
function refers to running the application with UMap and
collecting the performance metric of interest (e.g., total time).

This approach allows us to understand the scaling of the
performance and predict if the optimization on a smaller
segment carries forward to its larger variant, which could save
significant optimization time. Per-application validation details
are explained in §IV.

IV. EVALUATION

We evaluated AUTOPAGER using five data-intensive appli-
cations: two micro-benchmarks, and three real-world applica-
tions. These applications represent diverse memory and stor-
age access patterns. We evaluated each application using either
their inbuilt benchmarking suite or a standard benchmark tool
for that application type.

To compare AUTOPAGER’s Bayesian optimization with an
exhaustive search, we evaluated each of the five applications
using a small dataset. We sampled each parameter space
dimension to create a restricted search space to run exhaustive
tuning in a tractable time. For instance, we chose page sizes
between 4 KB and 16 MB with increment powers of two,
fillers and evictors between 1 and maximum number of cores
in increment powers of two, and eviction thresholds in 10%
increment. It is worth noting that for different applications,
and based on our initial investigation, we further eliminated
parts of the sampled search space that we found to degrade
performance significantly. For instance, running the LMAT
genome analysis tool with a page size larger than 64 KB



caused significant performance degradation. We describe the
per-application search space constraints under each applica-
tion’s description later in this section.

A. Applications

1) BFS: Breadth-first search (BFS) represents a core com-
ponent in graph analytics. We used an existing memory-
mapped BFS implementation shipped with UMap’s open-
source release. We created a synthetic bidirectional graph
using an R-MAT [16] graph generator and measured the time
it takes to perform BFS on the entire graph starting from the
vertex with ID 0.

2) QuickSort: Sorting is an essential building block in
database systems and many data analytics workloads. In
this work, we used umapsort, a sorting benchmark shipped
with UMap’s open-source release, to evaluate AUTOPAGER.
The umapsort benchmark creates a large array of long inte-
gers in reverse order and sorts it in ascending order using
__gnu_parallel::sort. The objective function is the
time taken to finish the sort.

3) LMDB: The Lightning Memory-Mapped Database
(LMDB) [17] is a widely used key-value data store by
many data analytics and machine learning frameworks, such
as PyTorch. We used dbbench, a benchmarking tool pro-
vided by LevelDB [18], to evaluate and tune LMDB+UMap.
The dbbench tool consists of reading and writing benchmarks
with three different access patterns; (a) random, (b) sequential,
and (c) reverse. Preliminary results indicated that UMap sig-
nificantly improved LMDB throughput for the read workloads
compared to baseline mmap(). On the other hand, mmap()
yielded a higher throughput for write workloads. Hence, in
this work, we focused on auto-tuning the read workloads for
LMDB+UMap.

4) BLAST: The Basic Local Alignment Search Tool
(BLAST) [19], [20] is the most widely used biological se-
quence comparison tool to date. BLAST implements a highly
optimized memory management layer based on memory-
mapped I/O to read the sequence database. However, recent
studies, including [21], have shown that paging significantly
degrades BLAST’s performance when the database does not
fit in memory. While distributing the sequence database across
multiple nodes [21], [22] circumvents paging, it introduces
high network overhead for processing significantly large out-
put. Alternatively, we explore leveraging UMap with opti-
mized parameters to mitigate paging overhead. We evaluate
AUTOPAGER using SparkBLAST [23], a distributed BLAST
implementation using Spark that partitions the query sequence
and replicates the database to each compute node.

5) LMAT: The Livermore Metagenomic Analysis Toolkit
(LMAT) [24] is an open-source tool for scalable metagenomic
taxonomy classification. LMAT uses memory-mapped files
to load large genome databases and enable out-of-core pro-
cessing. We used an open-source version of LMAT that uses
UMap. We used a real-world query consisting of nearly six
million sequences in FASTA format. The query is searched
against a 480 GB k-mer database. We used a random sample

TABLE II: Hardware and systems specifications

CPU (cores) Memory | Storage Kernel
Intel Xeon Platinum 9242 (96) | 384 GB 3.2 TB NVMe | 3.10
AMD EPYC 7702 (128) 256 GB 480 GB SSD 3.10
AMD EPYC 7401 (48) 256 GB 1.6 TB SSD 5.10.28

of the query file for the small dataset experiment that consisted
of ten thousand sequences. For the large dataset experiment,
we used the entire query file.

B. Computing Platforms

We conducted our experiments on three different computing
platforms. We used compute nodes of a production cluster
with Linux kernel 3.10 for read-only benchmarks, and specific
clusters with Linux kernel 5.10.28 for read/write benchmarks.
Table II describes the computing platforms used in running
our experiments.

C. Experiment Setup

« Default UMap Parameters: We note the performance of
each application using the default UMap parameters.

« Exhaustive: We run the applications on a sample of the
complete parameter space and note the best point found.

» Page Size Only: We measure the performance of the ap-
plications on a line-search along the page size parameter
and note the best point found.

o AUTOPAGER: We optimize the parameter configuration
of the applications with AUTOPAGER. We note the best
performing parameter configuration as our result.

We evaluated all the aforementioned setups for the small
datasets. For the large datasets, we did not evaluate exhaustive
tuning since it was computationally intractable. We compared
the net performance gain from the parameter configuration, as
well as the time taken to identify that configuration, for both
the small data and large data. The best parameters found by
AUTOPAGER for all applications are shown in table III.

D. Results

1) BFS: We generated R-MAT graphs of scales 26 (34 GB)
and 31 (519 GB) with a connectivity of 16. We measured the
time taken to find element O and recorded that as the objective
function. We ran the scale 26 small dataset with a limited
UMap Buffer Size of 16 GB to force out-of-core execution.
For the small dataset, we get an 8.26x speedup using exhaus-
tive grid search compared to UMap with default parameters.
Using AUTOPAGER, we get a 7.69x speedup compared to
default parameters. For the scale 31 large dataset, the best
parameters found by AUTOPAGER achieved 6.84x speedup
compared to default UMap parameters, while page size tuning
achieved 6.29 x speedup. Hence, AUTOPAGER achieved 1.08 x
speedup compared to coordinate descent tuning on the page
size parameter.

2) Quicksort: Using the umapsort benchmark, we opti-
mized the UMap parameters for sorting a small array of 16 GB
and a large array of 512 GB. For the small array, we limited
the UMap buffer size to 8 GB to force out-of-core execution.



For exhaustive tuning, we started the page size range from
128 KB, since previous UMap performance studies showed
that smaller page sizes significantly degraded performance.
The best parameters found by AUTOPAGER achieved compa-
rable performance to those found by exhaustive tuning (3.9%
slower). On the other hand, these parameters achieved 19.29 x
speedup compared to the default UMap parameters, and 1.23 x
speedup compared to page-size only tuning. For the large
dataset, the best-found parameters by AUTOPAGER achieved
16.34x speedup compared to the default UMap parameters,
and 1.06x speedup compared to page-size only tuning.

3) LMDB: The optimization goal for LMDB is to max-
imize the throughput. We created a 49 GB database to
run exhaustive tuning and limited the UMap buffer size to
32GBs. For the large experiment, we created a 384 GB
database. As shown in Figure 2a, for the small dataset, the
best parameters identified by AUTOPAGER achieved 6.49x,
6.60x, and 3.90x higher throughput compared to the default
UMap parameters for readseq, readrandom, and readreverse
respectively. These parameters also yielded 1.1x, 1.34x, and
1.33x better throughput compared to exhaustive tuning for
readseq, readrandom, and readreverse. For the large datasets,
the best parameters identified by AUTOPAGER achieved 6.25 x
and 6.37x better throughput compared to the default UMap
parameters for readseq and readreverse respectively, as shown
in Figure 2b. For the readrandom benchmark, it was shown
that the best parameters found by the Bayesian optimizer
achieved a slowdown of 1.42x compared to the default UMap
parameters. It also yielded a similar slowdown compared to
page-size-only tuning, since the default page size achieved the
best performance. Conversely, for readseq and readreverse,
the speedups of Bayesian optimization compared to page size
tuning were 1.20x and 1.24 x, respectively.

4) BLAST: To compare with exhaustive tuning, we used
a small dataset that consists of a randomly sampled subset of
the query file Geobacter Metallireducens against the large
environmental sequencing projects database (env_nr) on a
single node. For the large dataset, we searched the entire query
file against the non-redundant protein database (nr) using
sparkBLAST to partition the query and run it on 16 nodes of
an HPC cluster. We measured the total query execution time as
our objective function. For the small dataset, exhaustive tuning,
page size tuning, and AUTOPAGER achieved an 7.59x, 8.15x%,
8.2x speedup respectively against the default parameters. For
the large dataset, page-size tuning and AUTOPAGER achieved
a 1.95x and 2.36x speedup, respectively, over the default
parameters.

5) LMAT: To compare with exhaustive tuning, we used
a subset of 10K sequences sampled from the query file. We
optimized the UMap parameters for searching the query subset
against the full database using exhaustive tuning, page size
tuning, default UMap parameters, and AUTOPAGER. Figure 2a
shows the performance comparison of exhaustive tuning, page
size tuning, and AUTOPAGER to the default UMap parameters.
For the small dataset, AUTOPAGER yielded 1.35x, 1.06x, and
1.35x speedups compared to default parameters, exhaustive

tuning, and page size tuning. While the random I/O access
pattern of LMAT favors smaller page-sizes, tuning only the
page size yielded suboptimal performance. For the large
dataset results, we searched the entire query file against the
full database. Figure 2b shows the performance comparison of
different tuning techniques to the default parameters. For the
large dataset, AUTOPAGER yielded a 2.32 x speedup compared
to default UMap parameters, and 1.29 x speedup compared to
page-size tuning.

E. Tuning Overhead

The best parameters found by AUTOPAGER achieved com-
parable performance to those found by exhaustive tuning.
However, AUTOPAGER found these parameters significantly
faster. Specifically, AUTOPAGER identified the best parameters
in a time that is between 10x and 156x less than the
time exhaustive tuning took. It is also worth noting that the
AUTOPAGER tuning overhead is amortized since the best-
found parameters could be re-used. For instance, different
queries with the same BLAST database could re-use the best-
found AUTOPAGER parameters.

V. RELATED WORK

We discuss related work in the directions of userspace
memory-mapped I/O, tuning memory management parame-
ters, and, more generally, tuning different aspects of high-
performance computing systems parameters.

Userspace paging was proposed to overcome the perfor-
mance limitations incurred by system-level mmap() [2], [4].
The most recent userspace memory-mapped I/O tools include
Userland CO-PAGER [5], uMMAP-IO [3], and UMap [2]. The
advantages of UMap include higher flexibility for application-
specific tuning by exposing a larger number of paging param-
eters. This flexibility motivated the design of AUTOPAGER.
Moreover, UMap uses userfaultfd [25] to capture page faults,
which incurs less overhead than the sigaction-based fault
handling [26] that was used by the other solutions.

Tuning paging parameters have been recently explored by
Park et al., who devised a performance model that estimates
different workload performance as a function of the page size
[27]. Their work yielded a 38% performance improvement
when using their model to select the optimal page size for
a virtual machine on a virtualized system. As shown in our
evaluation, the page size is not the only parameter that af-
fects application performance. Simultaneously modeling other
paging parameters using a white-box model is not feasible.
This motivated the use of Bayesian optimization in our case.
Moreover, tuning paging parameters in userspace enables
multiple applications running on the same system to be tuned
differently without affecting the global system environment.

Auto-tuning memory management parameters was shown
to be successful when applied to memory configurations of
distributed data processing frameworks. In [28], a hybrid
model was devised that consisted of a Bayesian optimizer
guided by an analytical model. The parameter space consisted
of memory configurations of the Java Virtual Machine (JVM)
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Fig. 2: Speedups relative to the default UMap parameters for (a) small datasets and (b) large datasets.

TABLE III: Best parameters found by the Bayesian optimizer for each application. Buffer size was fixed for small data.

Page Size (KB) Page Fillers Page Evictors | Evict HW Threshold | Evict LW Threshold | Buffer Size %

Small | Large | Small | Large | Small | Large | Small | Large Small | Large Small | Large
BFS 128 64 66 62 63 57 100 100 99 40 47 90
BLAST 32 128 1 53 85 128 100 77 59 34 75 90
QuickSort 16384 | 16384 | 10 36 1 1 98 78 51 64 50 87
LMAT 8 4 16 48 64 3 77 74 11 15 50 80
LMDB ReadSeq 16384 | 16384 | 76 1 76 79 91 51 22 41 65 86
LMDB ReadRandom | 16384 | 128 27 47 28 3 87 73 66 15 65 84
LMDB ReadReverse 16384 | 16384 | 1 1 47 34 67 27 60 1 65 84

parameters. In our work, we optimize memory-mapped I/O
parameters for more generic workloads.

Auto-tuning systems parameters is of significant importance
due to the increased complexity of modern systems. For
instance, HPC systems expose multiple tunable parameters
at the hardware, compilers, system software, and application
layers. The work in [29] studies auto-tuning of different HPC
application parameters using Bayesian optimization. At the
hardware level, accelerators are examples of systems with
complex parameters, where application developers need to
perform prohibitive tuning to leverage their performance.
There have been multiple research achievements to auto-tune
GPU parameters, including [30], [31]. To the best of our
knowledge, auto-tuning virtual memory paging parameters is
under-explored in this field, which motivated the design of
AUTOPAGER for tuning the UMap userspace paging parame-
ters.

VI. FUTURE DIRECTIONS

Our findings regarding auto-tuning the UMap paging pa-
rameters open multiple future directions, including other di-
mensions for the optimization space, guided auto-tuning, and
optimizing paging for multi-tiered storage systems. UMap sup-
ports a fine-tuned eviction policy that allows selecting pages
to be fetched or evicted. Combining predictive pre-fetching
with adaptive parameters auto-tuning could be explored. Also,
AUTOPAGER can be guided with domain knowledge and
heuristics that can yield efficient convergence. One approach is

by pruning parameter combinations that the expert knows will
not perform well. Also, a workload characterization could be
performed, where per-workload-category heuristics could be
applied to guide AUTOPAGER. Moreover, a white-box model
could be devised for each application category that guides
AUTOPAGER parameter selection, e.g., guided Bayesian op-
timization [28]. Finally, large-scale data analytics require effi-
cient utilization of deep memory and storage hierarchies [32].
Tuning UMap parameters for multi-tiered storage systems is
a promising future direction.

VII. CONCLUSION

We present AUTOPAGER, a tuning methodology for opti-
mizing paging parameters in the userspace. We apply AuU-
TOPAGER to UMap, a userspace memory mapping tool. We
show that tuning the paging parameters of UMap using AU-
TOPAGER leads up to a 16.34x performance improvement
over the default UMap parameters. AUTOPAGER optimizes the
trade-off between the programming productivity of mmap()
and the performance gained by complex application-specific
memory management designs. We also show that the pa-
rameter space for optimization is enormous, and it is often
intractable to perform a grid search on it. We highlight the
pertinence of Bayesian optimization in automatically tuning
the parameters. We show that Bayesian optimization with AU-
TOPAGER can find parameters that achieve 1.52x performance
improvement compared to page-size only tuning, which was
shown to be the most effective paging parameter.
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