

(12) United States Patent

Meng et al.

(54) PORCINE TOROUE TENO VIRUS VACCINES AND DIAGNOSIS

- (71) Applicant: Virginia Tech Intellectual Properties, Inc., Blacksburg, VA (US)
- (72) Inventors: Xiang-Jin Meng, Blacksburg, VA (US); Yaowei Huang, Blacksburg, VA (US)
- Assignee: Virginia Tech Intellectual Properties, (73)Inc., Blacksburg, VA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 77 days.
- (21) Appl. No.: 14/946,384
- Filed: Nov. 19, 2015 (22)

(65)**Prior Publication Data**

US 2016/0216263 A1 Jul. 28, 2016

Related U.S. Application Data

- (63) Continuation of application No. 12/861,378, filed on Aug. 23, 2010, now Pat. No. 9,228,242.
- (60) Provisional application No. 61/316,519, filed on Mar. 23, 2010, provisional application No. 61/235,833, filed on Aug. 21, 2009.
- (51) Int. Cl.

G01N 33/569	(2006.01)
C07K 16/08	(2006.01)
C12Q 1/70	(2006.01)
A61K 39/12	(2006.01)
C07K 14/005	(2006.01)
C12N 7/00	(2006.01)
A61K 39/00	(2006.01)

- (52) U.S. Cl. CPC G01N 33/56983 (2013.01); A61K 39/12 (2013.01); C07K 14/005 (2013.01); C07K 16/081 (2013.01); C12N 7/00 (2013.01); C12Q 1/701 (2013.01); A61K 2039/552 (2013.01); C12N 2750/00021 (2013.01); C12N 2750/00022 (2013.01); C12N 2750/00034 (2013.01); C12N 2750/14034 (2013.01); G01N 2333/01 (2013.01); G01N 2333/085 (2013.01); G01N 2469/20 (2013.01)
- (58) Field of Classification Search CPC C12N 7/00; C12N 2750/00; C12N 2750/00021; C12N 2750/14034; C07K 14/005

See application file for complete search history.

(56)**References** Cited

U.S. PATENT DOCUMENTS

2011/0045019 A1 2/2011 Meng et al.

US 9,897,605 B2 (10) Patent No.: (45) Date of Patent: Feb. 20, 2018

FOREIGN PATENT DOCUMENTS

WO	WO-2008127279 A2	10/2008
WO	WO-2008150275 A2	12/2008
WO	WO-2010044889 A2	4/2010

OTHER PUBLICATIONS

Huang YW, Meng XJ. ORF1 protein [Torque teno sus virus 1 b]. GenBank: ADD46854.1.*

Fenaux M, et al. "Cloned Genomic DNA of Type 2 Porcine Circovirus is Infectious When Injected Directly into the Liver and Lymph Nodes of Pigs: Characterization of Cinical Disease, Virus Distribution, and Pathologic Lesions" Journal of Virology 76 (2) (2002) 541-551.

Genbank AB076001 SD-TTV32.

Genbank AF298585 TTV Polish isolate.

Genbank AY823991 TTSuVk2 isolate 2p.

Huang, Y-W, et al. "Serological Profile of Torque Teno Sus Virus Species 1 (TTSuV1) in Pigs and Antigenic Relationships between Two TTSuV1 Genotypes (1a and 1b), between Two Species (TTSuV1 and -2), and between Porcine and Human Anellovirueses" Journal of Virology 86 (19) (2012) 10628-10639.

Huang, Y-W, et al. "Rescue of a Porcine Anellovirus (Torque Teno Sus Virus 2) from Cloned Genomic DNA in Pigs" Journal of Virology 86 (11) (2012) 6042-6054.

Taira, O, et al. "Prevalence of swine Torque teno virus genotypes 1 and 2 in Japanese swine with suspected post-weaning multisystemic wasting syndrome and porcine respiratory disease complex" Veterinary Microbiology 139 (2009) 347-350.

(Continued)

Primary Examiner - Rachel B Gill

(74) Attorney, Agent, or Firm — Blank Rome LLP; Michael C. Greenbaum

(57)ABSTRACT

The present invention provides four purified preparation containing a polynucleic acid molecule encoding porcine Torque teno virus (PTTV) genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA. The present invention also provides infectious DNA clones, biologically functional plasmid or viral vector containing the infectious nucleic acid genome molecule of the same. The present invention further provides live, attenuated, vectorexpressed and purified recombinant capsid subunit or killed viral vaccines for protection against PTTV infection. The present invention additionally provides subunit vaccines comprising PTTV specific gene products, especially ORF1 capsid gene product for protection against PTTV infection. Further, the present invention provides methods for diagnosing PTTV infection via polymerase chain reaction (PCR) using specific primer for PTTV1, PTTV2, and individual PTTV1 genotypes. Finally, the present invention provides methods for diagnosing PTTV infection via immunological methods, e.g., enzyme-linked immunoabsorbent assay (ELISA) and Western blot using PTTV specific antigens for detecting serum PTTV specific antibodies.

11 Claims, 31 Drawing Sheets

(56)**References** Cited

OTHER PUBLICATIONS

Okamoto, et al., "Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupalas". Journal of General Virology, 2002, (83), 1291-1297

Biagini, P., M. Bendinelli, S. Hino, L. Kakkola, A. Mankertz, C. Niel, H. Okamoto, S. Raidal, C. G. Teo, and D. Todd. 2011. Anelloviridae, p. 331-341.

Ninomiya, M. M., et al., "Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy." J Clin. Microbiol 46, pp. 507-514, 2008.

Huang, Y.W. et al., Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: Implication for genotyping of PTTV, Nov. 2009, p. 289-297, Virology, vol. 396.

Niel, et al., "Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup". Journal of General Virology, 2005, pp. 1343-1347, vol. 86, Pt. 5.

Huang, Y. W., et al., "Expression of the putative ORF1 capsid protein of Torque teno sus virus 2 (TTSuV2) and development of Western blot and ELISA serodiagnostic assays: correlation between TTSuV2 viral load and IgG antibody level in pigs," Virus Res 158, pp. 79-88, 2011.

Kakkola, L., et al., "Expression of all six human Torque teno virus (TTV) proteins in bacteria and in insect cells, and analysis of their IgG responses" Virology 382, pp. 182-189, 2008.

Ott, C., et al., Use of a TT virus ORF1 recombinant protein to detect anti-TT virus antibodies in human sera, J Gen Virol 81, pp. 2949-2958, 2000.

Ellis, et al., "Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs". American Journal of Veterinary Research, Dec. 2008, pp. 1608-1614, vol. 69, Issue 12, Schaumburg, IL.

Aramouni, M., et al., Torque teno sus virus 1 and 2 viral loads in postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS) affected pigs, Vet Microbiol 153, pp. 377-381, 2011.

Gauger, P. C., et al., "Postweaning multisystemic wasting syndrome produced in gnotobiotic pigs following exposure to various amounts of porcine circovirus type 2a or type 2b," Vet Microbiol 153, pp. 229-239, 2011.

Huang, Y. W., et al., "Serological profile of Torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and 2), and between porcine and human anelloviruses," J. Virol., Submitted Manuscript, 2012.

Lee, S. S., et al. "Quantitative detection of porcine Torque teno virus in Porcine circovirus-2-negative and Porcine circovirus-associated disease-affected pigs," J Vet Diagn Invest 22, pp. 261-264, 2010. Ninomiya, M., et al., "Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy." J Clin Microbiol 46, pp. 507-514, 2008.

De Villiers, E. M., et al., "The diversity of torque teno viruses: in vitro replication leads to the formation of additional replicationcompetent subviral molecules," J Virol 85, pp. 7284-7295, 2011.

Kakkola, L., et al., "Construction and biological activity of a full-length molecular clone of human Torque teno virus (TTN) genotype6," FEBS J 274, pp. 4719-4730, 2007.

Leppik, L., et al., "In vivo and in vitro intragenomic rearrangement of TT viruses," J Virol 81, pp. 9346-9356, 2007.

Ball, J.K., et al., "TT virus sequence heterogeneity in vivo: evidence for co-infection with multiple genetic types," J Gen Virol 80, Pt 7, pp. 1759-1768, 1999.

Forns, X., et al., "High prevalence of TT virus (TTV) infection in patients on maintenance hemodialysis: frequent mixed infections with different genotypes and lack of evidence of associated liver disease," J Med Virol 59, pp. 313-317, 1999

Pesch, W., et al., "Porcine Torque teno virus: determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and estab-lishment of viral full-length sequences," Vet Microbiol 143, pp. 202-212, 2010.

Finsterbusch, et al., "Gene expression of the human Torque Teno Virus isolate P/1C1," Virology 381, pp. 36-45, 2008. Teixeira, T. F., et al., "Torque teno sus virus (TTSuV) in cell cultures

and trypsin," PLoS One 6:el7501, 2011.

Beach, N. M., et al., "Productive infection of human hepatocellular carcinoma cells by porcine circovirus type 1," Vaccine 29, pp. 7303-7306, 2011.

Hattermann, K., et al., "Infection studies on human cell lines with porcine circovirus type 1 and porcine circovirus type 2," Xenotransplantation 11, pp. 284-294, 2004.

Ma, H., et al., "Investigations of porcine circovirus type 1 (PCV1) in vaccine-related and other cell lines," Vaccine 29, pp. 8429-8437, 2011.

Tischer, I., et al., "A very small porcine virus with circular singlestranded DNA," Nature 295, pp. 64-66, 1982.

Kekarainen, T., et al. "Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin," J Gen Virol 90, pp. 648-653, 2009.

Mueller, B., et al., "Gene expression of the human Torque Teno Virus isolate P/1C1," Virology 381, pp. 36-45, 2008.

Martinez-Guino, L., et al., "Expression profile and subcellular localization of Torque teno sus virus proteins," J Gen Virol 92, pp. 2446-2457, 2011

Miyata, H., et al. "Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus," J Virol 73, pp. 3582-3586, 1999. Okamoto, H., et al., "The entire nucleotide sequence of a TT virus isolate from the United States (TUS01): comparison with reported isolates and phylogenetic analysis," Virology 259, pp. 437-448, 1999.

Huang, Y. W., et al., "Development of SYBR green-based real-time PCR and duplex nested PCR assays for quantitation and differential detection of species- or type-specific porcine Torque teno viruses," J Virol Methods 170, pp. 140-146, 2010. Crowther, R. A., et al., "Comparison of the structures of three

circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus," J Virol 77, pp. 13036-13041, 2003. Handa, A., et al. "Prevalence of the newly described human circovirus, TTV, in United States blood donors," Transfusion 40, pp. 245-251, 2000.

Zoller et al., DNA 3, pp. 479-488, 1984.

Fenaux, M., et al., "A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs," J Virol 78, pp. 6297-6303, 2004.

Halbur, P. G., et al. "Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus," Vet Pathol 32, pp. 648-660, 1995.

Ritterbusch, G.A., et al. "Natural Co-Infection of Torque Teno Virus and Porcine Circovirus 2 in the Reproductive Apparatus of Swine," Res. Vet Sci., 2011.

Huang, Y.W., et al., "Rescue of a Porcine Anellovirus (Torque teno sus virus 2) from Cloned Genomic DNA in Pigs," J. Virol. Submitted Manuscript, 2012.

O'Reilly et al., "Baculovirus Expression Vectors: A Lab Manual," Freeman & Co., 1995.

Schierack, P., "Characterization of a Porcine Intestinal Epithelial Cell Line for In Vitro Studies of Microbial Pathogenesis in Swine," Histochem. Cell Biology 125, pp. 293-305, 2006.

Emerson, S.U., et al. "In Vitro Replication of Hepatitis E Virus (HEV) Genomes and of an HEV Replicon Expressing Green Fluorescent Protein," J. Virol. 78, pp. 4838-4846, 2004.

(56) **References Cited**

OTHER PUBLICATIONS

Buck, C.B. et al., "Efficient Intracellular Assembly of Papillomaviral Vectors," J. Virol. 78, pp. 751-757, 2004.

Anderson, et al., "Failure to genotype herpes simplex virus by real-time PCR assay and melting curve analysis due to sequence variation within probe binding sites". Journal of Clinical Microbiology, 2003, pp. 2135-2137 vol. 41, American Society for Microbiology.

Bao, et al., "Virus Classification by Pairwise Sequence Comparison (PASC)", 2008, pp. 342-348, vol. 5, Elsevier Ltd. Oxford, U.K.

(Biagini, et al., "Classification of TTV and related viruses (anelloviruses)". Current Topics in Microbiology Immunology, 2009, pp. 21-33, vol. No. 331, Springer-Verlag Berlin Heidelberg. Biagini, et al., "Distribution and genetic analysis of TTV and TTMV major phylogenetic groups in French blood donors". Journal of Medical Virology, 2006, pp. 298-304, vol. No. 78, Issue No. 2, Journal of Medical Virology, Marseille, France.

Biagini, et al., "Circular genomes related to anelloviruses identified in human and animal samples by using a combined rolling-circle amplification/sequence-independent single primer amplification approach". Journal of General Virology, 2007, pp. 2696-2701, vol. 88, Pt 10, Marseille, France.

Brassard, et al., "Development of a real-time TaqMan PCR assay for the detection of porcine and bovine Torque teno virus", Journal of Applied Microbiology, Agriculture and Agri-food Canada, Nov. 2009, pp. 2191-2198, Food Research and Development Centre, Saint-Hyacinthe, QC, Canada.

Davidson, et al., "Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus", Virus Research, 2008, pp. 1-15, vol. 137, Issue 1, Israel.

De Smit, et al., "Apoptosis-inducing proteins in chicken anemia virus and TT virus". Current Topics in Microbiology and Immunology, 2009, pp. 131-149, vol. 331.

Gallei, et al., "Porcine Torque teno virus: Determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences". Veterinary Microbiology, 2010, pp. 202-212, vol. 143, Veterinary Microbiology, Munster, Germany.

Gibellini, et al., "Simultaneous detection of HCV and HIV-1 by SYBR Green real time multiplex RT-PCR technique in plasma samples". Molecular and Cellular Probes, Mar. 2006, pp. 223-229, vol. 20.

Hino, et al., "Torque teno virus (TTV): current status". Reviews in Medical Virology, 2007, pp. 45-57, vol. 17, Wiley Interscience.

Hino, et al., "Relationship of Torque teno virus to chicken anemia virus". Current Topics in Microbiology and Immunology, 2009, pp. 117-130, vol. 331, Springer Verlag Berlin Heidelberg.

Ilyina, et al., "Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria". Nucleic Acids Research, pp. 3279-3285, vol. 20, No. 13, NIH, Bethesda, MD.

Inami, et al., "Full-length nucleotide sequence of a simian TT virus isolate obtained from a chimpanzee: evidence for a new TT virus-like species". Virology, 2000, pp. 330-335, vol. 277, No. 2, Academic Press.

Jelcic, et al., "Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region". Journal of Virology, 2004, pp. 7498-7507, vol. 78, No. 14, American Society for Microbiology.

Kakkola, et al., "Replication of and protein synthesis by TT viruses". Current Topics in Microbiology and Immunology, 2009, pp. 53-64, vol. 331, Springer Verlag Berlin Heidelberg.

Kekarainen, et al., "Detection of swine Torque teno virus genogroups 1 and 2 in boar sera and semen". Theriogenology, 2007, pp. 966-971, vol. 68, No. 7.

Kekarainen, et al., "Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected

and non-PMWS-affected pigs in Spain". Journal of General Virology, 2006, pp. 833-837, vol. 87, Part 4, UK.

Krakowka, et al., "Evaluation of the effects of porcine genogroup 1 torque teno virus in gnotobiotic swine". American Journal of Veterinary Research, 2008, pp. 1623-1629, vol. 69.

Krakowka, et al., "Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2". American Journal of Veterinary Research, 2008, pp. 1615-1622, vol. 69, Part 12.

Maggi, et al., "Immunobiology of the Torque teno viruses and other anelloviruses". Current Topics in Microbiology and Immunology, 2009, pp. 65-90, vol. 331.

Martinez, "Simultaneous detection and genotyping of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR and amplicon melting curve analysis using SYBR Green". Research in Veterinary Science, 2008, pp. 184-193 vol. 85, Issue 1. McKeown, et al., "Molecular characterization of porcine TT virus, an orphan virus, in pigs from six different countries". Veterinary Microbiology, 2004, pp. 113-117, vol. 104, Issues 1-2.

Mouillesseaux, et al., Improvement in the specificity and sensitivity of detection for the Taura syndrome virus and yellow head virus of penaeid shrimp by increasing the amplicon size in SYBR Green real-time RT-PCR. Journal of Virological Methods, 2003, pp. 121-127, vol. 111, Issue 2.

Mueller, et al., "Gene expression of the human Torque Tena Virus isolate P/1C1" Virology, 2008, pp. 36-45, vol. 381, Issue 1.

Ng, et al., "Novel anellovirus discovered from a mortality event of captive California sea lions". Journal of General Virology, 2009, pp. 1256-1261, vol. 90, Pt 5.

Niel, et al., "Coinfection with multiple TT virus strains belonging to different genotypes is a common event in healthy Brazilian adults". Journal of Clinical Microbiology, 2000, pp. 1926-1930, vol. 38, No. 5.

Ninomiya, et al., "Analysis of the entire genomes of torque teno midi virus variants in chimpanzees: infrequent cross-species infection between humans and chimpanzees". Journal of General Virology, 2009, pp. 347-358, vol. 90, Pt 2.

Nishizawa, et al., "A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology". Biochemical Biophysical Research Communications, 1997, pp. 92-97, vol. 241, No. 1.

Okamoto, et al., "History of discoveries and pathogenicity of TT viruses". Current Topics in Microbiology and Immunology, 2009, pp. 1-20, vol. 331.

Okamoto, et al., "TT viruses in animals". Current Topics in Microbiology and Immunology, 2009, pp. 35-52, vol. 331.

Okamoto, et al., "Genomic and evolutionary characterization of TT virus (TTV) in tupaias and comparison with species-specific TTVs in humans and non-human primates". Journal of General Virology, 2001, pp. 2041-2050, vol. 82, Pt 9.

Okamoto, et al., "Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness". Virology, 2000, pp. 368-378,vol. 277, No. 2.

Okamoto, et al., "TT virus mRNAs detected in the bone marrow cells from an infected individual". Biochemical and Biophysical Research Communications. 2000, pp. 700-707, vol. 279, No. 2.

Okamoto, et al., "Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias". Journal of General Virology, 2002, pp. pp. 700-707, vol. 83, Pt 6.

Opriessnig, et al., "Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies". Journal of Veterinary Diagnostic Investestigation, 2007, pp. 591-615, vol. 19.

Pal, et al., "Development and validation of a duplex real-time PCR assay for the simultaneous detection and quantification of porcine circovirus type 2 and an internal control on porcine semen samples". Journal of Virological Methods, 2008, pp. 217-225, vol. 149.

Peters, et al., "Attenuation of chicken anemia virus by site-directed mutagenesis of VP2". Journal of General Virology, 2007, pp. 2168-2175, vol. 88, Pt. 8.

(56) **References Cited**

OTHER PUBLICATIONS

Peters, et al., "Site-directed mutagenesis of the VP2 gene of Chicken anemia virus affects virus replication, cytopathology and host-cell MHC class I expression". Journal of General Virology, 2006, pp. 823-831, vol. 87, Pt. 4.

Peters, et al., "Chicken anemia virus VP2 is a novel dual specificity protein phosphatase". Journal of Biological Chemistry, 2002, pp. 39566-39573, vol. 277, No. 42.

Pozzuto, et al., "In utero transmission of porcine torque teno viruses". Veterinary Microbiology, 2009, pp. 375-379, vol. 137. Prasetyo, et al., "Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV)". Virology, 2009, pp. 85-92, vol. 385, No. 1.

Qiu, et al., "Human circovirus TT virus genotype 6 expresses six proteins following transfection of a full-length clone". Journal of Virology, 2005, pp. 6505-6510, vol. 79, No. 10.

Ririe, et al., "Product differentiation by analysis of DNA melting curves during the polymerase chain reaction". Analytical Biochemistry, 1997, pp. 154-160, vol. 245.

Sibila, et al., "Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms". Veterinary Microbiology, 2009, pp. 213-228, vol. 139.

Takayama, et al., "Prevalence and persistence of a novel DNA TT virus (TTV) infection in Japanese haemophiliacs". British Journal of Haematology, 1999, vol. 104, No. 3, pp. 626-629.

Wilhelm, et al., "Real-time PCR protocol for the detection of porcine parvovirus in field samples". Journal of Virological Methods, 2006, pp. 257-260, vol. 134.

Genbank; GU456383.1. Genbank; GU456384.1.

Genbank; GU456385.1.

Genbank; GU456386.1.

* cited by examiner

FIG. 3A

FIG. 3E

100	DLR 96	DLR 96	QWD 100	<u>OWD</u> 98	NG- 86	NG- 86	NG- 86	- 500 	QPS 196	QPS 196	QPS 196	QPS 194	HPL 163	QPL 163	HPL 163	
90	MIJAKXIMEMEGM	MEDGNEMIKYKEM	TKGQESLRYRPL	ILKGQEALRYRPL	HWFRTCLPFRRL	HWFRTCLPMRRL	HWFRICLPMRRL	190	'DEQQRRMLDEYT	DEQQRAVLDEYT	KELYAESIKEYS	<i>KELYAENIKEYS</i>	PCRPLPYONL	PCKPLPYQNL	PCKPLPYQNL	
00 1	TIGWWEY/IQC	TGWWFYIQC	RGWNFILLOC	RGWWRILDC	EGFWPLSYC	EGFWPLSYC	EGFWPLSYC	180 -)YLEWYDTEE	YLFWYDTEF	YWEWWDTDF	YWEWUDTDE	IQQUITIN	IQQUMIVIYS	IQÕQMLIIAS	
2-	AWNPKVLRNCRI	AWNPKVLRNCRI	AFNPKVMRRVVI	-FNPKVMRRVVI	QWFPPSRRTCLI	QWFPPSRRTCLI	QWFPPSRRTCLL	170	CRIRLYPTENQL	CRIRINPTENOC	CIVYLYPLQDQ	CVVYLYPLKDQD	GKFYFFRHPWRN	GKFYFFRHPWRS	GKFYFFRHPWRS	
09-	RARPYRIS	RÁRPYRIS	RARPYRIS	RARPYRL-	KKAPVI	RKAPVI	RKAPVI	160	MDLVRYFG	MDLVRYFG	NDL/RYFG	MDLIVRYFG	MEFARFLK	NEFARFLR	NEFARFLR	
- 20	RRWRRSVFRRRGR	<u>Ř</u> RWRRSVFRRRGR	RRRRSVYRRGGR	RERESVYRGGR	RRRRTK/VRRRR	RRREPK/VRRRR	RÈRÈTIK/RÈRR	150	RLWRNIWSKSNDG	RLWRNIWSKSNDG	LLWRNSWSKGNDG	LLWRNSWSKGNDG	LINWRNIWTASNVG	LINWRNIWTASNVG	LINWRNIWTASNVG	
- 4 -	PWRRWRY	PWRRWIRV	NRRRWIN	YRREWIL	YRRAP	YRRAP	YRRAP	140	EGLENEN	EGLENEN	EGLYQEH	EGLYQEH	ONLYNEK	QNLFHEK	QNLYHEK	
-30	RRR-FRIRRR	RRR-FRIRPRR	RRYYRYRPRD	RRYYRYRFRD	RRY-FRYR	RRY-FRYR	RRY-FRYR	130	GGGWSSGVISL	GÓGWSSGVISL	GGGWGSGEVTL	GGGWGSGDVTL	GGGCDWSQWST	GGCCDMTQMST	GGCCDMLQMST	
- 3	UNTRERGOM	REVERSEGO	REVERERYGW	URYRKRYGW	RRWRHRRW	RRWRHRRW	RRWRHRRW	120	TEQNGYLMQY	TEONGYLMOY	-DNYGYLVQY	-DOYGYLVQY	TTTTT		LUIT	
10 -			APTRRWRRFGRF	MAPTRANKRRFGRRF	-MPYRRYRRRRRPJ	-MPYRRYRRRRP1	-MPYRRYRRRP1	7TV1.HVR1 110	FEANWIFNKQDSKIE	FANRIFDKOGSKIE	TERQWRVKK-DYE	TEROWRVRS-DFE	19 194 194 194 194 194 194 194 194 194 1	* * * * * * * * * * * * * * * * * *		
3	- AV-BIVITC	3d-TTV31 ·	TTV1b-VA	ITV-1p]	TTV-2p -	- AV-d2-VTc	ITV-20-VA	1	TTV18-VA T	3d-TTV31 1	, AV-dIVTTe	TTV-1p	ITV-2p	- AV-d2-VTc	- AV-2C-VA	

FIG. 4A

		210	220	230	240	250	260	270	280	290	300	
PTTV1a-VA	VINLQARNS	JRLIVCKORN	PIRRRVK	-SIFIPPPAQL	TTOWKFOC	JELCQFPLENWACI	CIDNDTPFD	NGAWRNA	NULMERLONG	NME	(IERW 280	10
Sd-TTV31	VNILQAKNS	SRLIVCKORN	IPIRRNK	-SIFIPPPAQL	TTOWKFQC	JELCOFPLENWACI	CIDNDIPED	NGAWRNA	NNLINERLONG		(IERW 28(5
PTTV1b-VA	VNMMAKRI	TRLVIARDRA	PHRRVR	-KIFI PPPSRD	TTOWOFQI	IDFCKRPLFTWAAC	LIDNOKPFD	NIGAFRNA	NWLETRNDQG	WWII	(IELW 28(
TTV-1p	VNMMAKRI	TRIVIARERA	PHRRKVR	-KİFTPPPSRD	TTQWQFQI	IDFCKRKLFTWAAC	LI UNQK PFÚ	NGAFRNA	MWLEQRNDQG	BWR	/IELW 284	574
TTV-2p	IMILIKKQF	HK I VILSQONC	NPNRKQKP	/TLKFKPPFKL	TSQWRLSF	KELAKMPLIRLGVS	FIDLTEPWVE	IGWGNAFYSV	LGYEAVKDQG	HWSNWTQIK	NWIY 263	∞
PTV-2b-VA	LINILIKKQF	HKLVLSQKDC	NPNRKQKP	/TLKFRPPPKL	TSQWRLSF	RLSKIPLIRLG_S	ILDLSEPWLE	IGWGNAFYSV	LGYEASKHSG	RWSINTQMK	TEWIY 26	(m)
PTV:20-VA	IMLIKKQF	KLVLSQKDC	NPNIRROKPV	/TLKIRPPKL	TSQWRLSF	ELANDELVE	LIDLSEPWL	IGWGNAFYSV	LGYEASKHSG	RWSNWTQIK	<i>(EWLY 26)</i>	00
					······							
		310	320	330	340	PTTV1-HVR2	360	370 1	380	390 1	400	
PTTV1e-VA	GRIPMIGL	JTELPPADDF	KAGGVNKUN	TKPTGIQRI	YPIWAVCI	VEGNKRVVKWA "V	THINGPIDENTRY	ak ÕTGTLIKLIS	NLRG	LVLRVCSES	CIYYK 378	∞
Sd-TTV31	GRIPMIGL	JTELPPADDF	YAGGVNKNI	FKPTGIQRI	YPIWAVCI	.VEGNKRVVKWA"V	THNGPIDAWR	(KQTGTLKLS	ALRR	LVLRVCSESI	TYYK 37(m
PTTV1b-VA	GRVPPQGL	JTEL PKOSEF	KKGDNNPN	NITEGHEKNİ	YPJIIYVI	DYRDOKTRKKYCVC	YNKTLNRWR	(AQASTLAIG	DLQG	LVLRQLMVQ	MINY 38(~~~
TTV-1p	GRVPPQGL	SELPKKEE	'NGUDNPN'	NNVQDNEEKNI	YPILEVU	OKDOKPRKKVCVC	YNKTINRWR	GQASTLKIG	NLKG	LVLRQLMNQİ	MINI 378	00
TTV-2p	DIGVGNAV	NUTLLKKDV	TDNPGNMA.	TTFKASGGQ	HPDAIDHI	ELINQGMPYWLYF	YGKSEQDIK	(EAHSAEISR	EVTRDPKSKK	LKIGIVGWA	SSNYT 361	
PTTV2b-VA	DTGVGNAV	WILLIKKDV	'SDNPGDMA'	IQEVITGSGQ	HPDAIDHI	EIMVNEGWPYWLFF	YGQSEQDIK	(EAHDODIVR	EYARDPKSKK	LKIGVIGWA	SSNYT 361	
PTTV2c-VA	DIGVGNAV	NVILLKQEV	TDDNPGAMA'	IKEVTGPGQ	HPDAIDR1	EQINEGNPYWLFF	VGQSEQDIK	TLAHDOFIAR	EYANNPKSKK	LKIGVIGWA(SSNFT 361	

FIG. 4B

	101010000	~	
0			622 622 622 622 622 622 622 622 622 622
18-	CVR CVR CVR CVR CVR CVR CVR CVR CVR CVR	- 8-	
	REPI REPI REPI REPI LEPI		SAAL SAAL SADI LILEI ULLEI ULLEI
- 65 -	HKAL HKAL HKAL HKAL HKAL HKAL HKAL	-069	
Ī	NUDEC NUDEC NUDEC		TRAS
0	SSER SSER SSER SSER SSER SSER SSER SSER		
- 84			
	DFAR		COOMING COOMIN
42	VKDTI VKDTI VKDI VKDI VLR-	210	TAGC TAGC TAGC TAGC TAGC TAGC TAGC TAGC
	-COO NUTO-COO VIETCO VI		THERE THERE THERE THERE THERE THERE THERE THERE THERE THERE
0	TSIS SISS SISS NUCL		WGAN WGAN SSGSCS SSGSCS SSGI(SSGI(HGW) HGW COLI RUAN RUAN RUAN RUAN RUAN RUAN RUAN
18	KDYF KDYF JEVE JEVE OTNF		
	G-TL G-TL GTVL GTVL N-RD N-RD		YYPU YYPU YYPU YYPU FEER FEER FU FU FU FU FU FU FU FU FU FU FU FU FU
450	IPTS IPTS IPTS IPTS IPTS IPTS IPTS IPTS	200- 200-	ISNP ISNP ISNP ISNP ISNP ISNP ISNP ISNP
	WKAN WKAT WCON GDON	WIN	DDPC DDPC DDPC DDPC DDPC DDPC DDPC DDPC
0	EVWS EVWS SSWE QGWP MGWP	LL O	PIGIO PIGIO PIGIO PIGIO PIER DERE
14	NPTV NETV NLPQ NLPQ NLPQ		SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
	PEYE PEFE ADTE ADTE CSTG GSTT CSTT	* + + + + + + + + + + + + + + + + + + +	
430	TKMD TKME AR-K AR-K VTCA TPCA		SAESSAESSAESSAESSAESSAESSAESSAESSAESSAE
	PLCT PLCT AVLD AGSR AGSR		KYTF KYTF OYKF NYAF SSIT SSIT SSIT DSDE
l gi	-TEY -TEY -TRI -TRI -TRI -TRI		NITWN NITWN NITWN NITWN NITWN NUTWN
- -			PUPL PUPL PUPL PUPL PUPL PUPL PUPL PUPL
	NUCKINI COMM	****	HKK2R HKK2R HKK6R
410	CCAFC CCAFC CCAFC CCAFC CCAFC SSPEC SSPEC SSPEC SSPEC	210-	
A-HVR	SSEF SSEF	N2-RN	ALLE AND AND AND AND AND AND AND AND AND AND
IE'		1 .	
	V1a-VA TTV31 V1b-VA -2p -2p V2b-VA	3	V1a-Va V1b-Va V1b-Va V2b-Va V2c-Va V1b-Va V1b-Va V1b-Va V1b-Va V2c-Va V2c-Va
		n 	

US 9,897,605 B2

	73	200	72	68	689	68
02	DPGDAGG	RVTIGDDGW	RVTIGDDGW	IDALLAAAQR	IDALLAAAQR	IDALLAAAQR
60	ADGGEDFGFVDC	AMGGEDVTTATC	AMAGDDATTATC	3TGGGDATFDIC	3TGGGDATFDIG	GTGGGDASFDIC
- 20	AAADI IEREE. Aaadt tedef	AAVDATER-D	AAVDAIER-D	DAEEDRHGDG	DAEGDRHGDG	DAEGDRHGDG
40	LCALDDADLA	LLADGDAALA	LLADGDAALA	CLTDAIA	CLTDAIA	CLTDAIA
30	CGSWRDHLWT	CGNWODHLWL	CGNWODHLWL	CKDPKKHLEK	CKNPKKHLEK	CKDPKKHLEK
20	CTSIHDHHCN	TKGWHDLDCR	TKGWHDLDCR	AYCAHGLFCS	AYCAHGLFCD	AYCAHGLFCG
- 10	MKEKDYWEEAWLTS(MKFKDVWFFAMTTS(MPEHWEEAWLEA	MPEHWEEAWLEA'	MEERWLTV1	MEERWLTV.	MEERWLTV
	PTTV1a-VA Sv4_TTV24	PTTV1b-VA	TTV-1p	TTV-2p	PTTV1b-VA	PTTV10-VA

S
Ö
00000000
LL.

FIG. 7B

Sheet 13 of 31

FIG. 7C

FIG. 7D

FIG. 7E

349

322

DOMAIN I

ŚEQDIKKLAHDQXIAREYARDPKSKKLK

CONSENSUS

FIG. 98

Sheet 18 of 31

PURIFIED 1b-ORF1ctruc

М

KDa

188 98

62-49

38-28-

14-

6

3-

FIG. 19A

FIG. 19B

FIG. 20A

FIG. 20B

FIG. 21

FIG. 22A

FIG. 22B

FIG. 23B

PORCINE TORQUE TENO VIRUS VACCINES AND DIAGNOSIS

CROSS REFERENCE TO RELATED APPLICATION

This patent application is a continuation of U.S. application Ser. No. 12/861,378, filed Aug. 23, 2010, and issued as U.S. Pat. No. 9,228,242 on Jan. 5, 2016, which claims the benefit of U.S. Provisional Patent Application No. 61/235, ¹⁰ 833, filed on Aug. 21, 2009, and U.S. Provisional Patent Application 61/316,519, filed on Mar. 23, 2010, whose disclosures are herein incorporated by reference in their entirety into the present disclosure.

FIELD OF INVENTION

The present invention relates to vaccines for protecting against porcine Torque teno virus (TTV) infection, and infectious DNA clones of porcine TTV (PTTV) and their ²⁰ uses thereof. The present invention also relates to diagnosis of porcine Torque teno virus (PTTV) infection, particularly diagnosis of species- or type-specific PTTV infection, and simultaneous infection of multiple strains from different genotypes. ²⁵

BACKGROUND OF THE INVENTION

Torque teno virus (TTV) was first discovered in a Japanese patient with post-transfusion non-A-E hepatitis in 30 1997. (Nishizawa, T., et al. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 241(1) (1997) 92-7). Since then, a large number of human TTV strains and two groups of TTV-related viruses, 35 designated subsequently as Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV), have been identified with high prevalence in serum and other tissues from healthy humans. (Hino, S., and Miyata, H. Torque teno virus (TTV): current status. Rev Med Virol 17(1) (2007) 45-57; Okamoto, 40 H. History of discoveries and pathogenicity of TT viruses. Curr Top Microbiol Immunol 331 (2009a) 1-20). Human TTV, TTMV and TTMDV are non-enveloped spherical viruses with circular single-stranded DNA (ssDNA) genomes of 3.6-3.9, 2.8-2.9 and 3.2 kb in length, respec- 45 tively, and they are currently classified into a newly-established family Anelloviridae by the International Committee on Taxonomy of Viruses (ICTV) (Biagini, P. Classification of TTV and related viruses (anelloviruses). Curr Top Microbiol Immunol 331 (2009) 21-33). These three groups of 50 TTV-related viruses exhibit a high degree of genetic heterogeneity, each consisting of many genogroups and genotypes. (Biagini, P., et al. Distribution and genetic analysis of TTV and TTMV major phylogenetic groups in French blood donors. J Med Virol 78(2) (2006) 298-304; Jelcic, I., et al. 55 Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78(14) (2004) 7498-507). The prevalence of multiple infections of TTV with different genotypes as well as dual or 60 triple infections of TTV, TTMV and TTMDV have been documented in humans, and are considered to be a common event in healthy human adults. (Niel, C., et al. Coinfection with multiple TT virus strains belonging to different genotypes is a common event in healthy Brazilian adults. J Clin 65 Microbiol 38 (5) (2000) 1926-30; Ninomiya, M., et al. Analysis of the entire genomes of torque teno midi virus

variants in chimpanzees: infrequent cross-species infection between humans and chimpanzees. *J Gen Virol* 90(Pt 2) (2009) 347-58; Okamoto, H. History of discoveries and pathogenicity of TT viruses. *Curr Top Microbiol Immunol* 331 (2009a) 1-20; Takayama, S., et al. Prevalence and persistence of a novel DNA TT virus (TTV) infection in Japanese haemophiliacs. *Br J Haematol* 104 (3) (1999) 626-9).

TTV infects not only humans but also various other animal species as well including non-human primates, tupaias, pigs, cattle, cats, dogs and sea lions (Biagini, P., et al. (2007). Circular genomes related to anelloviruses identified in human and animal samples by using a combined rollingcircle amplification/sequence-independent single primer 15 amplification approach. J Gen Virol 88 (Pt 10), 2696-701; Inami, T., et al. (2000). Full-length nucleotide sequence of a simian TT virus isolate obtained from a chimpanzee: evidence for a new TT virus-like species. Virology 277(2), 330-5; Ng, T. F., et al. (2009). Novel anellovirus discovered from a mortality event of captive California sea lions. J Gen Virol 90(Pt 5), 1256-61; Okamoto, H. (2009b). TT viruses in animals. Curr Top Microbiol Immunol 331, 35-52; Okamoto, H., et al. (2001). Genomic and evolutionary characterization of TT virus (TTV) in tupaias and comparison with species-specific TTVs in humans and non-human primates. J Gen Virol 82(Pt 9), 2041-50; Okamoto, H., et al. (2000a). Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness. Virology 277(2), 368-78; Okamoto, H., et al. (2002). Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J Gen Virol 83(Pt 6), 1291-7). In addition, chimpanzees are also infected with TTMV and TTMDV (Ninomiya, M., et al. (2009). Analysis of the entire genomes of torque teno midi virus variants in chimpanzees: infrequent cross-species infection between humans and chimpanzees. J Gen Virol 90(Pt 2), 347-58; Okamoto et al., 2000a, supra). Although the genomic sizes of the identified animal TTV strains, especially non-primate animal TTV, are relatively smaller than that of human TTV, they share the same genomic structure with a minimum of two partially overlapping open reading frames (ORF1 and ORF2) translated from the negative ssDNA as well as a short stretch of untranslated region (UTR) with high GC content (~90%) (Okamoto, 2009b, supra). The arrangement of TTV ORFS is quite similar to that of chicken anemia virus (CAV) belonging to the genus Gyrovirus in the family Circoviridae but is different from porcine circovirus (PCV) types 1 (PCV1) and 2 (PCV2), which are also classified into the same family (Davidson, I., and Shulman, L. M. (2008). Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 137(1), 1-15; Hino, S., and Prasetyo, A. A. (2009). Relationship of Torque teno virus to chicken anemia virus. Curr Top Microbiol Immunol 331, 117-30). The genomes of PCV1 and PCV2 are ambisense, in which the ORF1 is coded for by the genomic strand and the ORF2 is coded for by the antigenomic strand (Hino and Miyata, 2007, supra). Recently, the transcription pattern and translated products of both human TTV genotypes 1 and 6 have been identified by transfection of the respective TTV infectious DNA clones into cultured cells (Mueller, B., et al. (2008). Gene expression of the human Torque Teno Virus isolate P/1C1. Virology 381(1), 36-45; Qiu, J., et al. (2005). Human circovirus TT virus genotype 6 expresses six proteins following transfection of a full-length clone. J Virol 79(10), 6505-10). Expression of at least six proteins, designated ORF1, ORF2,
ORF1/1, ORF2/2, ORF1/2 and ORF2/3, from three or more spliced mRNAs, have been reported (Kakkola, L., et al. (2009). Replication of and protein synthesis by TT viruses. *Curr Top Microbiol Immunol* 331, 53-64; Mueller et al., 2008, supra; Qiu et al., 2005, supra). Accordingly, it is likely 5 that, when more data regarding the animal TTV become available, the presumed genome structure of animal TTV will need to be modified.

Although TTV was first identified in a cryptogenic hepatitis patient, subsequent studies were not able to produce 10 evidence of a significant role of TTV in the pathogenesis of hepatitis or other diseases (Hino and Miyata, 2007, supra; Maggi, F., and Bendinelli, M. (2009). Immunobiology of the Torque teno viruses and other anelloviruses. Curr Top Microbiol Immunol 331, 65-90; Okamoto, 2009a, supra). 15 While human TTV is not considered to be directly associated with a disease, porcine TTV (PTTV) was recently shown to partially contribute to the experimental induction of porcine dermatitis and nephropathy syndrome (PDNS) combined with porcine reproductive and respiratory syn- 20 drome virus (PRRSV) infection (Krakowka, S., et al. (2008). Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2. Am J Vet Res 69(12), 1615-22), and also to the experimental induction of postweaning 25 multisystemic wasting syndrome (PMWS) combined with PCV2 infection in a gnotobiotic pig model (Ellis, J. A., et al. (2008). Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobi- 30 otic pigs. Am J Vet Res 69(12), 1608-14). The data suggested that porcine TTV is pathogenic in pigs. However, further in-depth studies with a biologically pure form of PTTV virus to definitively characterize the diseases and lesions associated with PTTV infection are needed.

Compared to human TTV, the genomic information of PTTV is very limited. Currently, only one full-length and two near full-length genomic sequences of PTTV are reported from pigs in Japan and Brazil, respectively (Niel, C., et al. (2005). Rolling-circle amplification of Torque teno 40 virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol 86 (Pt 5), 1343-7; Okamoto et al., 2002, supra). Among the three known PTTV strains, the Sd-TTV31 and TTV-1p stains were clustered together into the genogroup 1 45 (PTTV1), whereas TTV-2p was the sole strain classified into the genogroup 2 (PTTV2) (Niel et al., 2005, supra). However, genogroup classification is a vague concept in the taxonomy of virology, and further and more accurate classification of PTTV is needed but can only be performed 50 when more full-length genomic sequences of new PTTV strains representing multiple genotypes become available.

It was previously showed that PTTV infections were widespread in pigs from six different countries including the United States, Canada, Spain, China, Korea and Thailand 55 (McKeown, N. E., Fenaux, M., Halbur, P. G., and Meng, X. J. (2004). Molecular characterization of porcine TT virus, an orphan virus, in pigs from six different countries. *Vet Microbiol* 104(1-2), 113-7).

Whether porcine TTVs play a significant role in patho- 60 genesis of specific swine diseases is still debatable. In a gnotobiotic pig model, it was shown that PTTV1 infection alone did not develop any clinical diseases but induced mild histological lesions (Krakowka, S. and Ellis, J. A., 2008. Evaluation of the effects of porcine genogroup 1 torque teno 65 virus in gnotobiotic swine. *Am J Vet Res* 69, 1623-9). Gnotobiotic pigs that were experimentally inoculated with

both PTTV1 and porcine reproductive and respiratory syndrome virus (PRRSV) developed clinical porcine dermatitis and nephropathy syndrome (PDNS) (Krakowka, S., et al. 2008. Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2. Am J Vet Res 69, 1615-22), whereas pigs inoculated with both PTTV1 and porcine circovirus type 2 (PCV2) developed acute postweaning multisystemic wasting syndrome (PMWS) (Ellis et al., 2008, supra). Although PCV2 is considered as the primary causative agent for clinical PMWS or PCV-associated diseases (PCVAD), a higher prevalence of PTTV2 infection in PMWS-affected pigs with low or no PCV2 than that in non-PMWS-affected pigs was observed in Spain (Kekarainen et al., 2006, supra). The data collectively suggest that porcine TTVs may serve as co-factors involved in triggering or exacerbating diseases in pigs.

Porcine TTV has been detected in porcine serum, fecal, saliva, semen and tissue samples of infected pigs, indicating its diverse transmission routes including both horizontal and vertical transmissions (Kekarainen et al., 2007, supra; Pozzuto, T., et al. 2009. In utero transmission of porcine torque teno viruses. Vet Microbiol 137, 375-9; Sibila, M., et al. 2009. Swine torque teno virus (TTV) infection and excretion dynamics in conventional pig farms. Vet Microbiol 139, 213-8). However, current detection of porcine TTV infection was mainly based upon conventional PCR assays. Thus far, neither serological assay nor viral culture system has been established. In particular, nested PCR amplifications of the conserved regions in the UTR of PTTV1 and PTTV2, respectively, developed by a Spanish group, have become widely used (Kekarainen et al., 2006, supra). Since the amount of virus is likely associated with the severity of clinical diseases, as demonstrated for PCV2-induced PCVAD (Opriessnig, T., Meng, X. J. and Halbur, P. G., 2007. Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest 19, 591-615), it will be important to determine the viral load of porcine TTV by quantitative real-time PCR than the presence of TTV DNA by conventional PCR. In addition, real-time PCR is more reliable, rapid and less expensive than conventional PCR. Recently, two TaqMan probe-based realtime PCR assays were described for detection and quantification of two porcine TTV species (Brassard, J., et al. 2009. Development of a real-time TaqMan PCR assay for the detection of porcine and bovine Torque teno virus. JAppl Microbiol. Nov. 14, 2009, Epub ahead of print; Gallei, A., et al. 2009. Porcine Torque teno virus: Determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences. Vet Microbiol. Dec. 21, 2009, Epub ahead of print). A main drawback of probe-based assays is that the false-negative results may be obtained if the probe-binding sequences contain mutations (Anderson, T. P., et al. 2003. Failure to genotype herpes simplex virus by real-time PCR assay and melting curve analysis due to sequence variation within probe binding sites. J Clin Microbiol 41, 2135-7). Considering the high degree of heterogeneity among the sequences of known porcine TTV strains, variations in the probebinding sequences are expected for field strains of PTTVs. The SYBR green-based real-time PCR is an alternative method avoiding this potential problem, in spite of its relatively lower specificity, which provides a universal way to detect and quantify the potential porcine TTV variants. Moreover, melting curve analysis (MCA) following SYBR

green real-time PCR ensures reaction specificity and also allows multiplex detection of distinct types of virus (Ririe, K. M., et al. 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245, 154-60). MCA-based SYBR green 5 real-time PCR methods have been successfully applied to various human and veterinary viruses (Gibellini, D., et al. 2006. Simultaneous detection of HCV and HIV-1 by SYBR Green real time multiplex RT-PCR technique in plasma samples. Mol Cell Probes 20, 223-9; Martinez, E., et al. 10 2008. Simultaneous detection and genotyping of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR and amplicon melting curve analysis using SYBR Green. Res Vet Sci 85, 184-93; Mouillesseaux, K. P., et al. 2003. Improvement in the specificity and 15 sensitivity of detection for the Taura syndrome virus and yellow head virus of penaeid shrimp by increasing the amplicon size in SYBR Green real-time RT-PCR. J Virol Methods 111, 121-7; Wilhelm, S., et al. 2006. Real-time PCR protocol for the detection of porcine parvovirus in field 20 samples. J Virol Methods 134, 257-60).

Currently, little is known about PTTV-specific humoral response. Since PCR-based assays do not reflect the course of PTTV infection in pigs, an efficient enzyme-linked immunosorbent assay (ELISA) for detection of PTTV serum ²⁵ antibody is necessary to evaluate seroprevalence of PTTV and help characterize the role of PTTV in porcine diseases.

Thus far, no subunit, killed and live vaccines for porcine TTVs are available. It will be desirable and advantageous to express recombinant PTTV capsid proteins from different ³⁰ genotypes for development of PTTV subunit vaccines, and to construct infectious PTTV molecular DNA clones from different genotypes for propagating biological pure form of PTTVs in cell culture system that are used for killed and live vaccines development. ³⁵

SUMMARY OF THE INVENTION

The present invention provides an infectious nucleic acid molecule ("infectious DNA clone") of porcine Torque teno 40 virus (PTTV) comprising a nucleic acid molecule encoding an infectious PTTV which contains at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of genotypes of PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and 45 PTTV2c-VA.

According to one aspect of the present invention, the infectious DNA clones of PTTV of set forth in claim 1, wherein the genomic sequence is selected from sequences set forth in SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, 50 and SEQ ID NO:12.

The present invention provides a biologically functional plasmid or viral vector containing the infectious PTTV genomes.

The present invention provides a suitable host cell trans- 55 fected with the infectious clone DNA plasmid or viral vector.

The present invention provides an infectious PTTV produced by cells transfected with the PTTV infectious DNA clones.

The present invention also provides a viral vaccine comprising a nontoxic, physiologically acceptable carrier and an immunogenic amount of a member selected from the group consisting of (a) a nucleic acid molecule containing at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group con-55 sisting of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, or its comple6

mentary strand, (b) a biologically functional plasmid or viral vector containing a nucleic acid molecule containing at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, or its complementary strand, and (c) an avirulent, infectious nonpathogenic PTTV which contains at least one copy of genomic sequence having at least 80% homology to a genomic sequence selected from the group consisting of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, and PTTV2c-VA, and PTTV2c-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.

According to one aspect of the present invention, the vaccine contains live PTTV virus derived from the PTTV infectious clones. According to another aspect of the present invention, the vaccine contains killed PTTV virus derived from the PTTV infectious clones.

The present invention provides purified recombinant proteins expressed from the ORF1 capsid genes of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, and PTTV2c-VA in bacterial expression system, and the use of these recombinant capsid proteins as subunit vaccines against PTTV infections. In one embodiment of the present invention, the recombinant capsid proteins for the use as subunit vaccines are expressed in baculovirus expression system and other expression vector systems.

According to a further aspect of the present invention, further contains an adjuvant.

The present invention further provides a method of immunizing a pig against PTTV viral infection, comprising administering to a pig an immunologically effective amount of the viral vaccine.

According to one aspect of the present invention, the 35 method comprising administering the recombinant subunit capsid protein, the infectious nucleic acid molecule or live PTTV virus to the pig.

According to another aspect of the present invention, the method comprising administering the vaccine parenterally, intranasally, intradermally, or transdermally to the pig. According a further aspect of the present invention, the method comprising administering the vaccine intralymphoidly or intramuscularly to the pig.

The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV1a-VA set forth in SEQ ID NO:9.

The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV1b-VA set forth in SEQ ID No:10.

The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV2b-VA set forth in SEQ ID No:11.

The present invention also provides an isolated polynucleotide consisting of the sequence of the nucleotide sequence of PTTV2c-VA set forth in SEQ ID No:12.

The present invention further provides a subunit vaccine comprising an immunogenic fragment of a polypeptide sequence or a complete protein translated according to a polynucleotide sequence selected from the group consisting of ORF1, ORF2, ORF1/1, and ORF2/2 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, particularly the ORF1 encoding the capsid protein.

According to one aspect of the present invention, the polynucleotide sequence is selected from the group consisting of ORF1 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.

According to another aspect of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1a-VA. According to a further aspect of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1b-VA. According to yet another aspect of 5 the present invention, the polynucleotide sequence is ORF1 of PTTV subtype PTTV2c-VA.

According to one aspect of the present invention, the polypeptide sequence is selected from the group consisting of sequence set forth in SEQ ID No:13, SEQ ID No:14, SEQ 10 ID No:15, SEQ ID No:16, SEQ ID No:17, SEQ ID No:18, SEQ ID No:19, SEQ ID No:20, SEQ ID No:21, SEQ ID No:22, SEQ ID No:23, SEQ ID No:24, SEQ ID No:25, SEQ ID No:26, SEQ ID No:27, and SEQ ID No:28.

According to another aspect of the present invention, the 15 polypeptide sequence is set forth in SEQ ID No:13. According to another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID No:14. According to a further aspect of the present invention, the polypeptide sequence is set forth in SEQ ID No:16. In one specific 20 embodiment of the present invention, the polypeptide sequence is C-terminal region (aa 310-625) of SEQ ID No:16. According to yet another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID No:16. According to yet another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID No:16. According to yet another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID No:20.

According to an additional aspect of the present invention, the vaccine further contains an adjuvant.

The present invention further provides method of immunizing a pig against PTTV viral infection, comprising administering to a pig an immunologically effective amount 30 of the vaccine comprising an immunogenic fragment of a polypeptide sequence or a complete protein translated according to a polynucleotide sequence selected from the group consisting of ORF1, ORF2, ORF1/1, and ORF2/2 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, 35 PTTV2b-VA, and PTTV2c-VA.

According to one aspect of the present invention, the method comprises administering the immunogenic fragment or recombinant capsid protein to the pig.

According to another aspect of the present invention, the 40 method comprises administering the vaccine parenterally, intranasally, intradermally, or transdermally to the pig. According to a further aspect of the present invention, the method comprises administering the vaccine intralymphoidly or intramuscularly to the pig. 45

The present invention additionally provides a method for diagnosing PTTV1 infection and quantification of PTTV1 load, comprising extracting DNA from a sample suspected of PTTV1 infection, performing polymerase chain reaction (PCR) using primers comprising the sequences set forth in 50 SEQ ID NO:29 and SEQ ID NO:30, and detecting PTTV1 specific amplification. According to one aspect of the present invention, the polymerase chain reaction is a SYBR green real-time PCR.

The present invention further provides a method for 55 diagnosing PTTV2 infection and quantification of PTTV2 load, comprising extracting DNA from a sample suspected of PTTV2 infection, performing polymerase chain reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31 and SEQ 60 ID NO:32, and detecting PTTV2 specific amplification. According to one aspect of the present invention, the polymerase chain reaction is a SYBR green real-time PCR.

The present invention also provides a method for simultaneously detecting and diagnosing PTTV1 and PTTV2 65 infection, comprising extracting DNA from a sample suspected of PTTV infection, performing polymerase chain

reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:31 and SEQ ID NO:32, and detecting PTTV1 and PTTV2 specific amplification. According to one aspect of the present invention, the polymerase chain reaction is a SYBR green real-time PCR.

The present invention, in addition, provides a method for simultaneously detecting and diagnosing PTTV1a and PTTV1b infection, comprising extracting DNA from a sample suspected of PTTV1 infection, performing a first polymerase chain reaction (PCR) using primers comprising the sequences set forth in SEQ ID NO:33 and SEQ ID NO:34, performing a second PCR using primers comprising the sequences set forth in SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, and SEQ ID NO:38, and detecting PTTV1a and PTTV1b specific amplification.

The present invention provides a method for diagnosing PTTV infection, comprising immobilizing an immunogenic fragment of a polypeptide sequence translated according to a polynucleotide sequence selected from the group consisting of ORF1, ORF2, ORF1/1, and ORF2/2 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA; contacting a serum sample from a pig suspected of PTTV infection with the immobilized immunogenic fragment, and detecting captured antibody specific to the immunogenic fragment.

According to one aspect of the present invention, the polynucleotide sequence is selected from the group consisting of ORF1 of PTTV genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA.

According to one embodiment of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1a-VA. According to another embodiment of the present invention, the polynucleotide sequence is ORF1 of PTTV genotype PTTV1b-VA. According to a further embodiment of the present invention, the polynucleotide sequence is ORF1 of PTTV subtype PTTV2c-VA.

According to another aspect of the present invention, the polypeptide sequence is selected from the group consisting of sequence set forth in SEQ ID No:13, SEQ ID No:14, SEQ ID No:15, SEQ ID No:16, SEQ ID No:17, SEQ ID No:18, SEQ ID No:19, SEQ ID No:20, SEQ ID No:21, SEQ ID No:22, SEQ ID No:23, SEQ ID No:24, SEQ ID No:25, SEQ ID No:26, SEQ ID No:27, and SEQ ID No:28.

According to one embodiment of the present invention, the polypeptide sequence is set forth in SEQ ID No: 13. According to another aspect of the present invention, the polypeptide sequence is set forth in SEQ ID No: 14. According to another embodiment of the present invention. The polypeptide sequence is set forth in SEQ ID No: 16. According to a further embodiment of the present invention, the immunogenic fragment is C-terminal region (aa 310-625) of SEQ ID No: 16. According to yet another embodiment of the present invention, the polypeptide sequence is set forth in SEQ ID No: 20.

The present invention provides three standardized enzyme-linked immunosorbent assays (ELISA) to diagnose PTTV infections and detect antibodies in serum of pigs infected by PTTV genotypes PTTV1a-VA, PTTV1b-VA, and all known subtypes in PTTV species 2.

The ELISA diagnostic tests are based on the bacterialexpressed or baculovirus-expressed recombinant ORF1 capsid protein of PTTV genotypes PTTV1a-VA, PTTV1b-VA, and PTTV2c-VA.

According to another aspect of the present invention, the detecting captured antibody is via Western blot. According

to yet another aspect of the present invention, the detecting captured antibody is via enzyme-linked immunosorbent assay (ELISA).

BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which: 10

FIG. 1A represents a schematic diagram of genomic structures and strategies for genomic cloning of porcine TTV virus group 1 strains;

FIG. 1B represents a schematic diagram of genomic structures and strategies for genomic cloning of porcine 15 TTV virus group 2 strains;

FIG. 1C illustrates differentiation and assembly of fulllength genomic sequences of PTTV1 strains PTTV1a-VA and PTTV1b-VA with PCR fragments Band C that were subsequently cloned. (PTTV1a-VA=SEQ ID NO: 9, 20 antibody level by viral load in 138 pigs from different Sd-TTV31=SEQ ID NO: 53, PTTV1bVA=SEQ ID NO: 10, TTV-1p=SEQ ID NO: 56);

FIG. 1D genomic sequences of PTTV2 strains PTTV2b-VA and PTTV2c-VA with PCR fragments E and F that were subsequently cloned. (TTV-2p=SEQ ID NO: 59, PTTV2b- 25 capsid protein in 10 pigs growing from arrival to two months VA=SEQ ID NO: 11, and PTTV2c-VA=SEQ ID NO: 12);

FIG. 2 represents PASC (pairwise sequence comparisons) distribution of nucleotide sequence comparisons of 121 TTV strains available in GenBank database. The genus, species, types, subtypes and variants and their corresponding per- 30 centage of nucleotide sequence identities are displayed;

FIG. 3A illustrates a phylogenetic tree constructed by the neighbor-joining method based upon the full-length genomic nucleotide sequences;

FIG. 3B illustrates a phylogenetic trees constructed based 35 upon deduced amino acid sequences of ORF1 among seven porcine TTV strains;

FIG. 3C illustrates a phylogenetic trees constructed based upon deduced amino acid sequences of ORF1/1 among seven porcine TTV strains;

FIG. 3D illustrates a phylogenetic trees constructed based upon deduced amino acid sequences of ORF2 among seven porcine TTV strains;

FIG. 3E illustrates a phylogenetic trees constructed based upon deduced amino acid sequences of ORF2/2 among 45 seven porcine TTV strains;

FIG. 4 represents an alignment of the full-length amino acid sequences of ORF1 among seven PTTV strains (PTTV1a-VA=SEQ ID NO: 13, Sd-TTV31=SEQ ID NO: 54, PTTV1b-VA=SEQ ID NO: 14, TTV-1p=SEQ ID NO: 50 57, TTV-2p=SEQ ID NO: 60, PTTV2b-VA=SEQ ID NO: 15, and PPT2c-VA=SEQ ID NO: 16);

FIG. 5 represents an alignment of the full-length amino acid sequences of ORF2 among seven PTTV strains (PTTV1a-VA=SEQ ID NO: 17, Sd-TTV31=SEQ ID NO: 55 55, PTTV1b-VA=SEQ ID NO: 18, TTV-1p=SEQ ID NO: 58, TTV-2p=SEQ ID NO: 61, PTTV2b-VA=SEQ ID NO: 19, and PPT2c-VA=SEQ ID NO: 20);

FIG. 6A illustrates melting curves of PTTV1 real-time PCR products after 40 cycles of amplifications of respective 60 standard template (indicated in blue) and 20 porcine serum samples;

FIG. 6B illustrates melting curves of PTTV2 real-time PCR products after 40 cycles of amplifications of respective standard template and 20 porcine serum samples;

65

FIGS. 7A-7E illustrate melting curve analysis (MCA) of PTTV1/PTTV2 SYBR green-based duplex real-time PCR;

FIG. 8 represents an alignment of nucleotide sequences located at the N-terminal part of the putative ORF1 among seven PTTV strains (PTTV1a-VA=SEQ ID NO: 9, Sd-TTV31=SEQ ID NO: 53, PTTV1bVA=SEQ ID NO: 10, TTV-1p=SEQ ID NO: 56, TTV-2p=SEQ ID NO: 59, PTTV2b-VA=SEQ ID NO: 11, and PTTV2c-VA=SEQ ID NO: 12);

FIGS. 9A and 9B represent hydrophilicity profiles and conserved regions of the four known porcine TTV2 (TTV-

2p=SEQ ID NO: 60, TTV2#472142=SEQ ID NO: 62, PTTV2b-VA=SEQ ID NO: 15, and PPT2c-VA=SEQ ID NO: 16);

FIGS. 10A-10C illustrate the expression and purification of recombinant PTTV2c ORF1 capsid protein;

FIGS. 11A-11C show representative results of Western blot analyses of selected porcine serum samples;

FIG. 12 illustrates the consistency of PTTV2c-ORF1based Western blot and ELISA;

FIG. 13 shows Box-and-Whisker-plots of PTTV2 serum sources:

FIG. 14A illustrates a retrospective evaluation of the viral load of PTTV2;

FIG. 14B illustrates antibody level to PTTV2 ORF1 after arrival;

FIGS. 15A-15C illustrate the expression and purification of PTTV1a and PTTV1b recombinant ORF1 capsid protein; and

FIG. 16 shows examples of PTTV1a-ORF1-based Western blot analyses of selected porcine serum samples from a farm of Wisconsin.

FIGS. 17A-17F represent the schematic diagrams of construction of full-length genomic DNA clones of porcine TTVs. FIG. 17A: pSC-PTTV1a (from the US PTTV isolate PTTV1a-VA; GenBank accession no. GU456383). FIG. 17B: pSC-PTTV1b (from the US PTTV isolate PTTV1b-VA; GenBank accession no. GU456384). FIG. 17C: pSC-PTTV2c (from the US PTTV isolate PTTV2c-VA; GenBank 40 accession no. GU456386). FIG. 17D: pSC-2PTTV2c-RR (tandem-dimerized genomes). FIG. 17E: TTV2-#471942full (from the Germany PTTV isolate TTV2-#471942; a gift from Dr. Andreas Gallei, not generated by the applicants). FIG. 17F: pSC-2PTTV2b-RR (tandem-dimerized genomes; generated by the applicants based on the clone TTV2-#471942-full). The plasmid backbone used for the cloning of (A)-(D), and (F) was the pSC-B-amp/kan vector (indicated in black). Grey arrows indicated the PTTV genomic copies;

FIGS. 18A and 18B represent the identification of porcine TTV full-length DNA clones by restriction digestion patterns. FIG. 18A: BamH I single digestion of pSC-PTTV1a, pSC-PTTV1b and pSC-PTTV2c clones and the backbone vector pSC-B-amp/kan (pSC-B). The 4.3-Kb fragments indicated the size of the backbone vector whereas the 2.8-Kb fragments indicated the inserted PTTV genomes (black arrowheads). FIG. 18B: Comparisons of the Hind III single digestion between pSC-PTTV2b and pSC-2PTTV2b-RR (left; derived from the clone TTV2-#471942-full) and Afl II single digestion between pSC-PTTV2c and pSC-2PTTV2c-RR (right). M: DNA markers;

FIGS. 19A and 19B represent the immunofluorescence assay (IFA) results of transfection (19A) or transfected cell passaging (19B) of the concatemerized TTV2-#471942-full DNA in PK-15 cells using a PTTV2-specific anti-ORF1 polyclonal antibody (Ab). FIG. 19A: Results observed at 5 days post-transfection. FIG. 19B: Cells transfected with DNA clones were passaged and used for the IFA detection

at 2 days post-passaging. Magnification=200×. DAPI was used to stain the cell nucleus;

FIGS. 20A and 20B represent the IFA results of transfection (20A) or transfected cell passaging (20B) of the concatemerized PTTV2c DNA in PK-15 cells using a PTTV2- 5 specific anti-ORF1 Ab. FIG. 20A: Results observed at 5 days post-transfection. FIG. 20B: Cells transfected with the DNA clones were passaged and used for the IFA detection at 2 days post-passaging. Magnification=200x. DAPI was used to stain the cell nucleus;

FIG. 21 represents the IFA results of transfection of the concatemerized PTTV1a DNA in PK-15 cells at 3 days post-transfection using a PTTV1a-specific anti-ORF1 Ab. Magnification=200x. DAPI was used to stain the cell nucleus.

FIGS. 22A and 22B represent the IFA results of transfection of the pSC-2PTTV2b-RR plasmid (FIG. 22A) or pSC-2PTTV2c-RR plasmid (FIG. 22B) in PK-15 cells at 3 days post-transfection. Magnification=200×. DAPI was used to stain the cell nucleus.

FIGS. 23A and 23B represent the determination of the in vivo infectivity of the two porcine TTV2 DNA clones, pSC-2PTTV2b-RR and pSC-2PTTV2c-RR, in conventional pigs, respectively. FIG. 23A: Changes of viremia or virus titers (copies/ml) as determined by PTTV2-specific real- 25 time PCR. FIG. 23B: Seroconversion to IgG anti-porcine TTV2 ORF1 antibodies in pigs. Anti-PTTV2 antibody is plotted as the ELISA optical density (A405). The ELISA cutoff value, indicated by a dashed line in each panel, is 0.4.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, in one specific example, the aforementioned four novel porcine TTV sub- 35 types are isolated from a single boar in Virginia.

In FIGS. 1A and 1B respectively, both the PTTV1 and PTTV2 genomes are shown in bold and the sizes and directions of the four putative ORFs (ORF1, ORF2, ORF1/1 and ORF2/2) are indicated by arrows. The GC-rich regions 40 are also shown. Dashed-line arcs A and D represent the regions used for detection of PTTV1 and PTTV2 from serum and semen samples by nested PCR, respectively. Dashed-line arcs B and C represent the two overlapping PCR fragments for genomic cloning of PTTV1 whereas 45 dashed-line arcs E and F represent the two overlapping PCR fragments for genomic cloning of PTTV2. The locations of the primers used in the study (see Table 1) are also shown in the corresponding positions.

One boar serum sample (SR#5) that was shown to be 50 positive for both PTTV1 and PTTV2 in the first-round PCR, thus indicative of higher virus load, was used for subsequent full-length genomic cloning of PTTV. Surprisingly, initial attempts to utilize two primer sets (NG372/NG373 and NG384/NG385) of an inverse PCR (Okamoto et al., 2002, 55 supra) designed for cloning of the first PTTV strain Sd-TTV31 to amplify the virus genomic DNA were not successful. No PCR product was obtained after several trials. Based upon the initial sequence of the region A of PTTV1 and the region D of PTTV2, two new pairs of primers 60 (TTV1-If (SEQ ID NO:1)/TTV1-2340R (SEQ ID NO:2) and TTV1-2311F (SEQ ID NO:3)/TTV1-IR (SEQ ID NO:4)) were subsequently designed to amplify regions B and C spanning the assumed PTTV1 genome, and two additional pairs of primers (TTV2-IF (SEQ ID NO:5)/TTV2-2316R 65 (SEQ ID NO:6) and TTV2-GCF (SEQ ID NO:7)/TTV2-IR (SEQ ID NO:8)) to amplify regions E and F spanning the

assumed PTTV2 genome, respectively (FIGS. 1A-1D and Table 1). Primers TTV1-2340R (SEQ ID NO:2) and TTV1-2311F (SEQ ID NO:3) were deduced from a common sequence in PTTV1 stains Sd-TTV31 (Okamoto et al., 2002, supra) and TTV-1p (Niel et al., 2005) that is absent in PTTV2 strain TTV-2p (Niel et al., 2005, supra), whereas primers TTV2-2316R (SEQ ID NO:6) and TTV2-GCF (SEQ ID NO:7) were deduced from a sequence of strain TTV-2p that is absent in the two PTTV1 strains. The resulting four different PCR products with expected sizes were each inserted into a blunt-end cloning vector, and the resulting recombinant plasmids were transformed into Escherichia coli. Eight to fifteen positive (with white color) bacterial clones for each construct representing fragments B, ¹⁵ C, E and F were identified and subsequently sequenced.

TABLE 1

20	Oligonucleotide primers used for nested PCR and genomic PCR amplifications of porcine TT viruses						
	Primer ID	Sequence (5' to 3')	Used for:				
25	TTV1-mF (SEQ ID NO: 45)	TACACTTCCGGGTTCAGGA GGCT	Detection of porcine TTV1				
	TTV1-mR (SEQ ID NO: 46)	ACTCAGCCATTCGGAACCT CAC	Detection of porcine TTV1				
30	TTV1-nF (SEQ ID NO: 47)	CAATTTGGCTCGCTTCGCT CGC	Detection of porcine TTV1				
	TTV1-nR (SEQ ID NO: 48)	TACTTATATTCGCTTTCGT GGGAAC	Detection of porcine TTV1				
35	TTV2-mF (SEQ ID NO: 49)	AGTTACACATAACCACCAA ACC	Detection of porcine TTV2				
40	TTV2-mR (SEQ ID NO: 50)	ATTACCGCCTGCCCGATA GGC	Detection of porcine TTV2				
	TTV2-nF (SEQ ID NO: 51)	CCAAACCACAGGAAACTG TGC	Detection of porcine TTV2				
45	TTV2-nR (SEQ ID NO: 52)	CTTGACTCCGCTCTCAGG AG	Detection of porcine TTV2				
50	TTV1-IF (SEQ ID NO: 1)	CATAGGGTGTAACCAATC AGATTTAAGGCGTT	Genomic cloning (fragment B)				
	TTV1-2340R (SEQ ID NO: 2)	GGTCATCAGACGATCCAT CTCCCTCAG	Genomic cloning (fragment B)				
55	TTV1-2311F (SEQ ID NO: 3)	CTTCTGAGGGAGATGGAT CGTCTGATGA	Genomic cloning (fragment C)				
60	TTV1-IR (SEQ ID NO: 4)	TTGAGCTCCCGACCAATC AGAATTGACT	Genomic cloning (fragment C)				
	TTV2-IF (SEQ ID NO: 5)	TTGTGCCGGAGCTCCTGA GAGC	Genomic cloning (fragment E)				
65	TTV2-2316R (SEQ ID NO: 6)	AGGTGCTTGAGGAGTCGT CGCTTG	Genomic cloning (fragment E)				

10

Oligonucleotide primers used for nested PCR and genomic PCR amplifications of porcine TT viruses							
Primer ID	Sequence (5' to 3')	Used for:					
TTV2-GCF (SEQ ID NO: 7)	CTCAAGCACGAGCAGTGG ATCCTCTCA	Genomic cloning (fragment F)					
TTV2-IR (SEQ ID NO: 8)	TACCCAGGCGGTTAGACA CTCAGCTCT	Genomic cloning (fragment F)					

Unexpectedly, two groups of sequence data from each ¹⁵ construct were identified, indicating that there exist two types of PTTVs in genogroup 1 and genogroup 2 from the same pig. In order to differentiate and assemble the four PTTV strains, sequence comparisons were performed ²⁰ together with the three known PTTV strains, Sd-TTV31, TTV-1p and TTV-2p (FIGS. 1C and 1D).

FIG. 1C illustrates differentiation and assembly of fulllength genomic sequences of PTTV1 strains PTTV1a-VA ²⁵ and PTTV1b-VA with PCR fragments B and C that were subsequently cloned. The initiation codons of ORF1 and ORF2 in the fragment B as well as the termination codons of ORF1 in the fragment C are marked by "" or "*". The corresponding sequences of two known PTTV1 strains, Sd-TTV31 and TTV-1p, are also shown. Conserved sequences are shaded, and dashes indicate nucleotide deletions. 35

For PTTV1, the initiation codon ATG and the termination codon TGA of the putative ORF1 were located in fragments B and C, respectively (FIG. 1C). The positions of the codons differed in two PTTV1 groups, the first one identical to 40 Sd-TTV31 and the second one identical to TTV-1p (FIG. 1C). In addition, the ORF2 initiation codons in the two groups were also located at different positions consistent with that of ORF1. Moreover, phylogenetic analyses using 45 four different sequences of the region B (two from the sequencing data and two from strains Sd-TTV31 and TTV-1p) and four different sequences of the region C supported that the first sequence was clustered with Sd-TTV31 and the $_{50}$ second was clustered with TTV-1p (data not shown). Therefore, we were able to differentiate and assemble two groups of sequence data from both fragments B and C into two full-length PTTV1 genomes that were designated as strains 55 PTTV1a-VA (SEQ ID NO:9) and PTTV1b-VA (SEQ ID NO:10), respectively (FIG. 1C).

FIG. 1D illustrates differentiation and assembly of fulllength genomic sequences of PTTV2 strains PTTV2b-VA 60 and PTTV2c-VA with PCR fragments E and F that were subsequently cloned. The corresponding sequence of TTV-2p strain is included and the conserved sequences are shaded. Dashes indicate nucleotide deletions. The unique 65 nucleotides within the overlapping region (boxed with dashed-line) for each strain (a continuous "AG" nucleotides

for PTTV2b-VA (SEQ ID NO:11) and two single "A" and "G" nucleotides for PTTV2c-VA (SEQ ID NO:12)) are shown, respectively.

Differentiation of the two PTTV2 strains was easier. A unique continuous "AG" nucleotides located in the overlapping region of two PCR fragments was shared by two groups of sequence data from fragments E and F, respectively (FIG. 1D). The assembled full-length genomic sequence represented a PTTV2 strain and was designated as PTTV2b-VA (SEQ ID NO:11). Similarly, the complete genomic sequence of a second strain designated as PTTV2c-VA (SEQ ID NO:12) was assembled based upon two unique single "A" and "G" nucleotides shared in the overlapping region by another set of sequence data from fragments E and F, respectively (FIG. 1D). Phylogenetic analyses using four sequences from fragments E and F together with the two corresponding sequences from TTV-2p also supported this assignment (data not shown).

The present invention provides four isolated porcine TTV virus genotypes or subtypes that are associated with viral infections in pigs. This invention includes, but is not limited to, porcine TTV virus genotypes or subtypes PTTV1a-VA, PTTV1b-VA, PTTV2b-VA, and PTTV2c-VA, the virus genotypes or subtypes which have nucleotide sequences set forth in SEQ ID NO:9 (PTTV1a-VA), SEQ ID NO:10 (PTTV1b-VA), SEQ ID NO:11 (PTTV2b-VA), and SEQ ID NO:12 (PTTV2c-VA), their functional equivalent or complementary strand. It will be understood that the specific nucleotide sequence derived from any porcine TTV will have slight variations that exist naturally between individual viruses. These variations in sequences may be seen in deletions, substitutions, insertions and the like.

The proposed genomic structure for each of the four PTTV strains was analyzed in detail and summarized in Table 2, together with the three known PTTV strains, Sd-TTV31, TTV-1p and TTV-2p. All the four U.S. strains of PTTV have a similar genomic size of 2,878 bp (PTTV1a-VA SEO ID NO:9), 2.875 bp (PTTV1b-VA SEO ID NO:10), 2,750 bp (PTTV2b-VA SEQ ID NO:11), and 2,803 bp (PTTV2c-VA SEQ ID NO:12), respectively. Both PTTV1a-VA (SEQ ID NO:9) and Sd-TTV31 have the same genomic length. The published sequences of the strains TTV-1p and TTV-2p all have many undetermined nucleotides in the GC-rich region of the UTR. After artificial filling of these nucleotides with the consensus sequences corresponding to PTTV1 and PTTV2, it was shown that the TTV-1p is more closely-related to PTTV1b-VA (SEQ ID NO:10), and that TTV-2p is more closely-related to PTTV2b-VA (SEQ ID NO:11) in genomic length, respectively (data not shown).

The assembled genomic sequences of porcine TTV virus genotypes or subtypes PTTV1a-VA (SEQ ID NO:9). PTTV1b-VA (SEQ ID NO:10), PTTV2b-VA (SEQ ID NO:11), and PTTV2c-VA (SEQ ID NO:12) are submitted to Genbank® (*Nucleic Acids Research*, 2008 January; 36(Database issue):D25-30) with accession numbers GU456383, GU456384, GU456385, and GU456386, respectively.

Com

Virus Strain Country Full-length (nt) GenBank

accession # TATA box Putative mRNA 5'-end ORF1 Size (aa) Exon # Initiation Termination ORF2 Size (aa) Exon # Initiation Termination ORF1/1

Size (aa)

Initiation Splicing

Termination

Exon #

Initiation

Splicing

Termination

Polvadenvlation

signal (AATAAA)

ORF2/2 (ORF3) Size (aa)

Exon #

	Porcine TT	V species 1	Porcine TTV species 2			
Туре	e 1a	Type 1b		Subtype 2a	Subtype 2b	Subtype 2c
PTTV1a- VA USA 2878 CH456383	Sd-TTV31 Japan 2878 AB076001	PTTV1b- VA USA 2875 GU456384	TTV-1p Brazil Uncompleted	TTV-2p Brazil Uncompleted	PTTV2b- VA USA 2750 GU456385	PTTV2c- VA USA 2803
288-291	288-291	288-291	288-291	233-236	233-236	285-288
316	316	316	316	261	261	313
635	635	639	637	624	625	625
1	1	1	1	1	1	1
534	534	517	517	476	476	528
2441	2441	2436	2430	2350	2353	2405
73	73	72	72	68	68	68
1	1	1	1	1	1	1
430	430	428	428	393	393	445
651	651	646	646	599	599	651

182

517

642/643

2007/2008

2430

228

428

642/643

2007/2008

2479

2456-2461

2

2

178

476

595/596

1933/1934

2350

199

393

595/596

1933/1934

2330

2473-2478

2

2

178

476

595/596

1936/1937

2353

199

395

595/596

1936/1937

2333

2476-248

2

2

178

528

647/648

1988/1989

2405

199 2

445

647/648

1988/1989

2385

2528-2533

2

174

534

647/648

2030/2031

2441

224

430

647/648

2030/2031

2487

2458-2463

2

2

182

517

642/643

2013/2014

2436

228

428

642/643

2013/2014

2485

2462-2467

2

2

174

534

647/648

2030/2031

2441

224

430

647/648

2030/2031

2487

2458-2463

2

2

The numbers (except sizes of the full-length genome, ORFs and the exon numbers) indicate the nucleotide (nt) positions on the genome of respective PTTV strains.

Two recent studies have identified the transcribed viral mRNAs and the expression of at least six viral proteins during human TTV replication (Mueller et al., 2008, supra; 45 Qiu et al., 2005, supra), which is more than the predicted number of ORFs encoded by human TTV (Okamoto, H., et al. (2000b). TT virus mRNAs detected in the bone marrow cells from an infected individual. Biochem Biophys Res Commun 279(2), 700-7), therefore we included the new 50 human TTV genomic information for comparison with the PTTV sequences. The 5'-ends of the mRNA transcripts of human TTV strain P/1C1 were mapped to an "A" that is 25 nt downstream of the TATA-box (Mueller et al., 2008, supra). This starting point, its adjacent sequence (CGAATG- 55 GCTGAGTTTATGCCGC (SEQ ID NO:39); the starting point was underlined) and the distance to the upstream TATA-box (24 nt; Table 2) are very conserved in all seven PTTV strains, suggesting that PTTV and human TTV may utilize a common 5'-end of mRNA for translation. 60

Five additional completely-conserved regions were identified in the vicinity of the TATA-box among all seven PTTV strains. Two regions of 11 nt each (AGTCCTCATTT (SEQ ID NO:40) and AACCAATCAGA (SEQ ID NO:41)) are located in the upstream of the TATA-box, whereas the 65 remaining three regions (CTGGGCGGGTGCCGGAG of 17 nt (SEQ ID NO:42); CGGAGTCAAGGGGC of 14 nt (SEQ

ID NO:43); TATCGGGCAGG of 11 nt (SEQ ID NO:44)) are located between the proposed 5'-end of mRNA and the initiation codon of ORF2. These conserved PTTV-specific sequences may contain the common elements regulating the viral gene expression.

Previously, three ORFs (ORFs 1-3) were proposed in the genome of the three known PTTV strains, respectively (Niel et al., 2005, supra; Okamoto et al., 2002, supra). The four prototype U.S. strains of PTTV identified in this study possess this structure. The corresponding ORF3 in human TTV has been renamed as ORF2/2 since it initiates at the same ATG in ORF2 and remains in the same ORF (extending ORF2) after the splicing (FIG. 1A-1B) (Mueller et al., 2008, supra; Qiu et al., 2005, supra). We follow the nomenclature of human TTV for revising PTTV classification in this study. Human TTV ORF1/1 is a newly identified viral protein that is encoded by two exons in ORF1 (Qiu et al., 2005, supra). ORF1/1 share the identical N- and C-terminal part with ORF1. The PTTV ORF1/1 counterpart was readily identified in all seven PTTV strains (FIGS. 1A-1B and Table 2).

The ORF1 and ORF2 are encoded by a ~2.8 kb viral mRNA whereas the ORF1/1 and ORF2/2 are encoded by a spliced viral mRNA with ~1.2 kb in human TTV (Mueller et al., 2008, supra; Qiu et al., 2005, supra). Since these four ORFs were also deduced in PTTV genomes, and since the sequences and positions of the putative splice donor and acceptor sites in the seven PTTV strains are very conserved (Table 2), it is speculated that porcine TTV probably also encodes the two corresponding mRNAs.

Most of the human TTV strains share a genetic similarity with the CAV, encoding a TTV apoptosis-inducing protein (TAIP) in which its CAV counterpart was named apoptin (de Smit, M. H., and Noteborn, M. H. (2009). Apoptosisinducing proteins in chicken anemia virus and TT virus. 10 *Curr Top Microbiol Immunol* 331, 131-49). The ORF of TAIP is embedded within the ORF2. However, the corresponding TAIP does not exist in porcine TTV. A recent study showed that the expression of apoptin or TAIP was required for CAV replication in cultured cells (Prasetyo, A. A., et al. 15 (2009). Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV). *Virology* 385(1), 85-92).

Pairwise sequence comparisons (PASC) is a useful method that plots the frequency distribution of pairwise 20 nucleotide sequence identity percentages from all available genomic sequence of viruses in the same family (Bao, Y., Kapustin, Y., and Tatusova, T. (2008). Virus Classification by Pairwise Sequence Comparison (PASC). In "Encyclopedia of Virology, 5 vols." (B. W. J. Mahy, and M. H. V. Van 25 Regenmortel, Eds.), Vol. 5, pp. 342-8. Elsevier, Oxford). The different peaks generated by the PASC program usually represent groups of virus genera, species, types, subtypes and strains (FIG. 2). In this study, we performed PASC analyses of TTV using 121 full-length genomic sequences of 30 human and animal TTV-related strains available in GenBank database (FIG. 2). Assuming that TTV members are classified into a separate family, Anelloviridae, the two major peaks, at 36-55% and 55-67% nucleotide sequence identities, represent groups of genera and species, respectively 35 (FIG. 2). Accordingly, a TTV type is defined as a group of TTV having 67-85% nucleotide sequence identity whereas a TTV subtype may be defined as a group of TTV sequences

cation has been proposed using sequences of 103 TTV isolates by Jelcic et al (Jelcic, I., et al. (2004). Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region. *J Virol* 78(14), 7498-507).

This proposed criteria of TTV classification were applied to phylogenetic analyses of the genomic sequences of the 4 prototype U.S. strains of PTTV and the 3 other known PTTV strains. Pairwise comparison of full-length nucleotide sequences among these strains showed that the four PTTV1 strains have 54.0-56.4% nucleotide sequence identity compared to the three PTTV2 strains (Table 3). Therefore, the previously designated "genogroup" of PTTV in the literature will probably be more appropriate to designate as "species", and PTTV1 and PTTV2 probably should represent porcine TTV species 1 and species 2, respectively. PTTV species 1 consists of two types of viruses designated as type 1a (including Sd-TTV31 and PTTV1a-VA (SEQ ID NO:9)) and type 1b (including TTV-1p and PTTV1b-VA (SEQ ID NO:10)), respectively, since the nucleotide sequence identity between these two types of viruses is between 69.8-70.7% (Table 3). Sd-TTV31 and TTV1a-VA (SEQ ID NO:9) are recognized as variant strains of the same species due to their higher sequence identity (95.1%). However, the two type 1b strains, TTV-1p and PTTV1b-VA (SEQ ID NO:10), may belong to two different subtypes (nucleotide sequence identity=86.4%). For PTTV species 2, three strains are likely to be classified into separate subtypes (TTV-2p for subtype 2a, PTTV2b-VA (SEQ ID NO:11) for subtype 2b, and PTTV2c-VA (SEQ ID NO:12) for subtype 2c, respectively) based upon their 86.5-90.9% nucleotide sequence identity. This proposed new classification system for PTTV was clearly evident in the phylogenetic tree (FIG. 3A). Phylogenetic trees constructed based upon the deduced amino acid sequences of ORF1, ORF1/1, ORF2 and ORF2/2 of PTTV were also consistent with this proposed classification (FIGS. 3B to 3E).

TABLE 3

Pairwise :	Pairwise sequence comparison of the full-length genomic sequence of the seven porcine TTV strains							
		Porcine TTV	species 1	Porcine TTV species 2				
	Type 1a Type 1b			16	Subtype 2a	Subtype 2b	Subtype 2c	
	PTTV1a-VA	Sd-TTV31	PTTV1b-VA	TTV-1p	TTV-2p	PTTV2b-VA	PTTV2c-VA	
Type 1a	_							
PTTV1a-VA Sd-TTV31 Type 1b	_	95.1 —	70.5 70.7	69.8 70.1	55.7 55.9	55.1 56.0	56.2 56.4	
PTTV1b-VA TTV-1p Subtype 2a	_		—	86.4 —	54.0 55.2	54.7 54.7	55.2 55.4	
TTV-2p Subtype 2b	_				_	86.5	86.8	
PTTV2b-VA Subtype 2c	_					_	90.9	
PTTV2c-VA							_	

The data were generated by using the PASC program, and the values indicate % nucleotide sequence identities.

sharing 85-95% nucleotide sequence identity. TTV strains 65 sharing more than 95% nucleotide sequence identity may be further classified into variants (FIG. **2**). A similar classifi-

Unique mutations and deletions and/or insertions are scattered throughout the genomes between PTTV species, types and subtypes. For example, the location of ORF1 initiation and termination codons and the ORF2 initiation codons between PTTV type 1a and 1b, which was shown in FIG. 1C as mentioned above, are different. The two PTTV1b strains also have a 2-codon deletion after the ORF2 initiation compared to PTTV1a (FIG. 1C).

Remarkably, both TTV-2p and PTTV2b-VA have a large 52-nt deletion, which is 39 nt upstream of the first 11-nt conserved sequence (AGTCCTCATTT (SEQ ID NO:40)) in the UTR, compared to PTTV2c-VA. Due to this deletion, the 10genomic size of PTTV2b-VA (probably TTV-2p as well) was significantly smaller than that of PTTV2c-VA (Table 2). A number of "subviral" human TTV clones have been isolated from serum samples that are considered as fulllength TTV genomes since the ORFs in a majority of these 15 subviral molecules usually remain intact (de Villiers et al., 2009; Leppik et al., 2007). They have variable lengths in the UTR that are completely or partially deleted. The situation of TTV-2p and PTTV2b-VA appears to resemble that of the human TTV subviral molecules, implying that subtypes 20 PTTV2a and PTTV2b might be the subviral molecules derived from subtype PTTV2c. Of note, the 3'-terminal sequence of a nested-PCR primer TTV2-nF (Table 1) that is commonly used for detection of the PTTV2 from field samples by other groups (Ellis et al., 2008, supra; Kekara- 25 inen et al., 2007, supra; Kekarainen et al., 2006, supra; Krakowka et al., 2008, supra) is located at both sides of the deletion. Therefore, the current nested-PCR assay for PTTV2 detection is likely not sufficient to identify the genetically diverse strains of PTTV2c subtype.

The source of the isolated virus strain is serum, fecal, saliva, semen and tissue samples of pigs having the porcine TTV viral infection. However, it is contemplated that recombinant DNA technology can be used to duplicate and chemically synthesize the nucleotide sequence. Therefore, the 35 scope of the present invention encompasses the isolated polynucleotide which comprises, but is not limited to, a nucleotide sequence set forth in SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, or its complementary strand; a polynucleotide which hybridizes to and 40 which is at least 67% complementary to the nucleotide sequence set forth in SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, preferably 85% complementary, or more preferably 95% complementary; or an immunogenic fragment selected from the group consisting 45 of an amino acid sequence of ORF1 protein set forth in SEQ ID NO:13 (PTTV1a-VA), SEO ID NO:14 (PTTV1b-VA), SEQ ID NO:15 (PTTV2b-VA), SEQ ID NO:16 (PTTV2c-VA), an amino acid sequence of ORF2 protein set forth in SEQ ID NO:17 (PTTV1a-VA), SEQ ID NO:18 (PTTV1b- 50 VA), SEQ ID NO:19 (PTTV2b-VA), SEQ ID NO:20 (PTTV2c-VA), an amino acid sequence of ORF1/1 protein set forth in SEQ ID NO:21 (PTTV1a-VA), SEQ ID NO:22 (PTTV1b-VA), SEQ ID NO:23 (PTTV2b-VA), SEQ ID NO:24 (PTTV2c-VA), an amino acid sequence of ORF2/2 55 protein set forth in SEQ ID NO:25 (PTTV1a-VA), SEQ ID NO:26 (PTTV1b-VA), SEQ ID NO:27 (PTTV2b-VA), SEQ ID NO:28 (PTTV2c-VA). The immunogenic or antigenic coding regions or fragments can be determined by techniques known in the art and then used to make monoclonal 60 or polyclonal antibodies for immunoreactivity screening or other diagnostic purposes. The invention further encompasses the purified, immunogenic protein encoded by the isolated polynucleotides. Desirably, the protein may be an isolated or recombinant ORF1 protein or an ORF2 protein of 65 at least one of the above isolated porcine TTV subtypes, more desirably ORF1 protein.

20

The ORF1 of porcine TTV is believed to encode a structural and replication-associated protein (Maggi, F., and Bendinelli, M. (2009). Immunobiology of the Torque teno viruses and other anelloviruses. Curr Top Microbiol Immunol 331, 65-90). The ORF1-encoding products of seven PTTV strains have 624-635 aa in length and possess a high number of arginine residues at the N-terminus that are thought to have the DNA-binding activity (FIG. 4). In FIG. 4, conserved sequences are shaded. Dashes indicate amino acid deletions. The RCR motifs are boxed with solid lines. Three HVRs (PTTV1-HVRs 1, 2 and 3) of PTTV1 strains and two HVRs (PTTV2-HVRs 1 and 2) of PTTV2 strains are boxed with dashed lines. The connection boundaries of ORF1/1 are indicated by arrows. The predicted rolling-circle replication (RCR) motifs (Ilyina, T. V., and Koonin, E. V. (1992). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20(13), 3279-85) are presented at different positions in different PTTV types and subtypes that may be type- or subtype-specific. RCR motif-III (YxxK) is conserved in the PTTV type 1a (aa position 14-17 of PTTV1a-VA SEQ ID NO:13) and type 1b strains (aa position 379-382 of PTTV1b-VA SEQ ID NO:14), respectively, whereas the same conserved motif identified in all three PTTV2 strains is located at aa position 482-485 of PTTV2b-VA SEQ ID NO:15 (FIG. 4). Both PTTV2b-VA SEQ ID NO:15 and PTTV2c-VA SEQ ID NO:16 also have a conserved RCR motif-II (HxQ) at aa position 331-333 of PTTV2b-VA that is absence in TTV-2p (FIG. 4).

The ORF1 proteins of PTTV strains between species 1 and species 2 share very low aa sequence identity with only 22.4 to 25.8%, which makes it difficult to identify significantly conserved aa sequences between the two species (FIG. 4). In PTTV species 1, the aa identity of ORF1 between type 1a and 1b strains are 50.3-52.7%. Three major hypervariable regions (HVR), PTTV1-HVRs 1 to 3, with a relatively high number of aa substitutions, were identified among the four PTTV1 strains, whereas two HVRs (PTTV2-HVRs 1 and 2) were observed among the three PTTV2 strains (FIG. 4). The three PTTV2 strains have an approximately 20-aa deletion in the corresponding PTTV1-HVR1 region. Moreover, the two HVRs of PTTV2 are within the corresponding PTTV1-HVR3 region (FIG. 4). These HVRs are located only in the ORF1 but not in the truncated ORF1/1. They likely play a role in evading the host immune surveillance and helping PTTV to establish a persistent infection, as suggested by studies of human TTV.

The aa sequences of ORF2 differed considerably between the four PTTV1 (PTTV1a-VA SEQ ID NO:17; PTTV1b-VA SEQ ID NO:18) and three PTTV2 (PTTV2b-VA SEQ ID NO:19; PTTV2c-VA SEQ ID NO:20) strains (FIG. 5). However, they share a conserved protein-tyrosine phosphatase (PTPase)-like motif (Wx7Hx3CxCx5H) at the N-terminus (FIG. 4). This motif is also conserved among all human TTV, TTMV and TTMDV strains as well as CAV. The TTMV or CAV ORF2 protein also exhibited a serine/ threonine phosphatase (S/T PPase) activity (Peters, M. A., Jackson, D. C., Crabb, B. S., and Browning, G. F. (2002). Chicken anemia virus VP2 is a novel dual specificity protein phosphatase. J Biol Chem 277(42), 39566-73). The dual specificity of the ORF2 protein is thought to regulate host gene transcription, signal transduction and cytokine responses during viral replication. Recently, mutagenesis analyses of two conserved basic aa residues before the last histidine residue of the motif in CAV revealed that the two residues affect virus replication, cytopathology in vitro and

attenuation in vivo (Peters, M. A., Crabb, B. S., Washington, E. A., and Browning, G. F. (2006). Site-directed mutagenesis of the VP2 gene of Chicken anemia virus affects virus replication, cytopathology and host-cell MHC class I expression. J Gen Virol 87(Pt 4), 823-31; Peters, M. A., 5 Crabb, B. S., Tivendale, K. A., and Browning, G. F. (2007). Attenuation of chicken anemia virus by site-directed mutagenesis of VP2. J Gen Virol 88(Pt 8), 2168-75). The two basic aa residues ("KK") are conserved in the three PTTV2 strains. However, only the first basic residue ("R") is 10 retained in the two PTTV1a strains whereas both basic residues are substituted in the PTTV1b strains (FIG. 5). In FIG. 5, dashes indicate amino acid deletions. The five conserved amino acids within the common motif Wx7Hx3CxCx5H (underlined) identified in TTV, TTMV and 15 CAV are shaded. The positions of the two basic aa residues before the last histidine of the motif, which have been shown to affect virus replication, cytopathology or in vivo attenuation in CAV, are indicated by """.

In summary, the present invention has determined the 20 full-length genomic sequences of four porcine TTV strains representing different genotypes or subtypes in a serum sample of a single boar in Virginia. The finding from this study clearly indicates that, similar to human TTV, multiple PTTV infections with distinct genotypes or subtypes exist 25 and probably are common in pigs. We have also provided new information regarding the genomic organization, the degree of variability and the characteristics of conserved nucleotide and amino acid motifs of PTTV, which will improve the current PCR detection assay, aid in developing 30 reagents for serological diagnostics and help initiate the structural and functional study of PTTV. A new classification of PTTV is also proposed in this study based upon the phylogenetic and genetic analyses of the genomic sequences of seven known PTTV strains.

The present invention also provides methods for diagnostics of porcine TTV infection by detecting viral DNA in samples of porcine TTV infected pigs or other mammals. One preferred embodiment of the present invention involves methods for detecting porcine TTV nucleic acid sequences 40 in a porcine or other mammalian species using oligonucleotide primers for polymerase chain reaction (PCR) to further aid in the diagnosis of viral infection or disease. The diagnostic tests, which are useful in detecting the presence or absence of the porcine TTV viral nucleic acid sequence in 45 the porcine or other mammalian species, comprise isolating viral DNA from samples of porcine TTV infected pigs or pigs suspected of infection of TTV, and performing SYBR green real-time quantitative PCR using PTTV1-specific (SEQ ID NO:29/SEQ ID NO:30) or PTTV2-specific (SEQ 50 ID NO:31/SEQ ID NO:32) primers.

In another embodiment of the present invention, the diagnostic method may be adapted to simultaneously detect PTTV1 and PTTV2 by using PTTV1/PTTV2 duplex real-time PCR. More specifically, the method comprises isolating 55 viral DNA from samples of porcine TTV infected pigs or pigs suspected of infection of TTV, performing real-time PCR using both PTTV1-specific (SEQ ID NO:29/SEQ ID NO:30) or PVVT2-specific (SEQ ID NO:31/SEQ ID NO:32) primers in the same real-time PCR reaction. Since 60 the T_m value between PTTV1 and PTTV2 can be distinguished by MCA, the presence of PTTV1 and PTTV2 DNA can be simultaneously detected.

In a further embodiment of the present invention, the diagnostic method may employ duplex nested PCR. The 65 method comprises isolating viral DNA from samples of porcine TTV infected pigs or pigs suspected of infection of

TTV, performing a first round of PCR using one pair of primers Plab-mF (SEQ ID NO:33)/Plab-mR (SEQ ID NO:34), and performing a second round of PCR using a mixture of two pairs of primers, Pla-nF (SEQ ID NO:35)/Pla-nR (SEQ ID NO:36) for detection of PTTV1a, and Plb-nF (SEQ ID NO:37)/Plb-nR (SEQ ID NO:38) for detection of PTTV1b, and visualizing the PCR products.

The above diagnostics methods maybe optimized by one skilled in the art according to well known methods in the art. Accordingly, an embodiment of the present invention develops two novel singleplex SYBR green real-time PCR assays to quantify the viral loads of two porcine TTV species, respectively. PTTV1- and PTTV2-specific primers were designed to target the extremely conserved regions across six PTTV1 and four PTTV2 full-length genomes available to date, respectively. Another embodiment of the present invention combines the two singleplex assays into a duplex real-time PCR assay followed by MCA of the viral amplicons that can be identified by their distinct melting temperatures for simultaneous detection of the two porcine TTV species, PTTV1a and PTTV1b. In a third embodiment, a duplex nested PCR assay for simultaneous amplification of the viral DNAs from two types of PTTV1 in the first round PCR and differential detection of types 1a and 1b in the second round PCR was developed for the identification of two types of porcine TTV species, PTTV1a and PTTV1b, in a single sample. These assays represent simple and practical tools for diagnoses of species- or type-specific porcine TTVs.

Potential primers sequences were identified by multiple sequence alignments of 10 available porcine TTV fulllength genomes. PTTV1-specific primers TTV1F (SEQ ID NO:29) and TTV1R (SEQ ID NO:30) were designed based upon two conserved genomic regions immediately before the putative ORF2 across six PTTV1 genomes, whereas PTTV2-specific primers TTV2F4 (SEQ ID NO:31) and TTV2R4 (SEQ ID NO:32) were designed based upon two conserved genomic regions immediately after the putative ORF2/2 across four PTTV2 genomes (Table 4). Primers showed no potentials for self- and cross-dimerization. The expected amplicon sizes were a 118-bp fragment from the PTTV1 primers corresponding to the PTTV1b-VA genome and a 200-bp fragment from the PTTV2 primers corresponding to the PTTV2c-VA genome, respectively.

TABLE 4

	ligonucleotide primers used PCR and duplex nested PCR of porcine TTVs	for real-time detections
Prime	Sequence (51 to 21)	Purpose
10	sequence (s to s)	Fulpose
TTV1F SEQ I NO: 2	TCCGAATGGCTGAGTTTATGC	PTTV1-specific real-time PCR
TTV1F SEQ I NO: 3	TCCGCTCAGCTGCTCCT	PTTV1-specific real-time PCR
TTV2F SEQ I NO: 3	GGTGGTAAAGAGGATGAA) L	PTTV2-specific real-time PCR
TTV2F SEQ I NO: 3	AATAGATTGGACACAGGAG	PTTV2-specific real-time PCR

TABLE 4-continued

PCR and duplex nested PCR detections of porcine TTVs.							
Primer ID	Sequence (5' to 3')	Purpose					
Plab-mF SEQ ID NO: 33	TATCGGGCAGGAGCAGCT	Duplex nested PCR					
Plab-mR SEQ ID NO: 34	TAGGGGCGCGCTCTACGT	Duplex nested PCR					
Pla-nF SEQ ID NO: 35	CCTACATGAAGGAGAAAGACT	Duplex nested PCR					
Pla-nR SEQ ID NO: 36	CCAGCGTCTCCAGGGTC	Duplex nested PCR					
P1b-nF SEQ ID NO: 37	AAGCTACCAAGGGCTGG	Duplex nested PCR					
P1b-nR SEQ ID NO: 38	GCGGTC (T/G) GTAGCGGTAGT	Duplex nested PCR					

According to one specific embodiment of the present invention, SYBR green simplex real-time PCR using 30 PTTV1- and PTTV2-specific primers can be used specifically to detect porcine TTV1 and TTV2 DNA, respectively. For PTTV1, a standard curve was established over a range of target DNA concentrations per 25 µl. The linear range was shown to span 4.4×10^1 to 4.4×10^8 copies. The minimum detection limit (44 copies) corresponded to a threshold cycle (C,) of 37.57. For PTTV2, standard curve was also generated and used to detect DNA concentration ranging from $8.6 \times 10^{\circ}$ to 8.6×10⁸ copies per 25 µl reaction. The corresponding $C_{t=40}$ of minimum detection limit (8.6 copies) was 36.53.

According to another specific embodiment of the present invention, SYBR green duplex real-time PCR is utilized for the simultaneous detection of porcine TTV1 and TTV2 DNA. The 7-degree difference of T_m value between PTTV1 45 (87.0° C.) and PTTV2 (80.0° C.) made it feasible to distinguish them from one another by the MCA. Therefore, two singleplex assays can be coupled into a duplex real-time PCR assay for the simultaneous detection of PTTV1 and PTTV2. A positive sample was one that had a symmetrical 50 melt peak within the known T_m for that product. This new assay was first validated by using a 10-fold dilution of PTTV1 and PTTV2 standards mixture. The non-template negative control using sterile water as the template showed a non-specific amplification caused by cross-dimerization 55 between the PTTV1 and PTTV2 primers not seen in the singleplex assays (FIG. 7a). This produced a distinct melt peak between 72.0° C. and 76.0° C. FIG. 7A shows melt peaks of PTTV1 standard (red; T_m=87.0° C.), PTTV2 standard (green; T_m=80.0° C.) and non-template negative con- 60 trol (caused by primer cross-dimerization; black). FIGS. 7B-7E show melt peaks of representative serum samples with distinct viral loads of PTTV1 and PTTV2. FIG. 7B shows boar serum sample no. 5: relatively high viral loads of both PTTV1 and PTTV2, but PTTV2>PTTV1; FIG. 7C shows boar serum sample no. 12: relatively high viral loads of both PTTV1 and PTTV2, but PTTV1>PTTV2; FIG. 7D

shows boar serum sample no. 14: low viral loads of both PTTV1 and PTTV2; FIG. 7E shows boar serum sample no. 10: PTTV1 positive, but PTTV2 negative. The viral loads (unit: genomic copies/ml) of PTTV1 and PTTV2 in each sample that were determined by singleplex real-time PCR were indicated at the top of the corresponding melt peak.

In one example, when the duplex real-time assay was applied to the 20 serum samples of adult boars, samples with relatively high viral loads of both PTTV1 and PTTV2 10 displayed two distinct melt curves corresponding to PTTV1 and PTTV2 without a non-specific melt peak (FIGS. 7B & 7C), whereas samples with low viral load of either PTTV1 or PTTV2 showed virus-specific as well as non-specific melt curves (FIGS. 7D & 7E). Although the two melt peaks in 15 sample #14 were very small, they were considered positive since they displayed a visually distinct and symmetrical rise and fall at the appropriate T_m of PTTV1 and PTTV2 (FIG. 7D). In contrast, sample #10 was considered only PTTV1 positive because a symmetrical PTTV2 melt peak was not 20 evidently present (FIG. 7E). These results were consistent with that of the two singleplex assays (Table 5). Moreover, the size and shape of melt peaks qualitatively reflected the corresponding viral load in the detected sample.

According to another aspect of the present invention, 25 duplex nested PCR is used for differential detection of two porcine TTV types, PTTV1a and PTTV1b.

The inventor of the present invention demonstrated the existence of two distinct genotypes, tentatively named PTTV1a and PTTV1b, in porcine TTV species 1. To further determine whether the co-infection of PTTV1a and PTTV1b is common in pigs, a novel duplex nested PCR assay to quickly distinguish between the two was developed. Alignment of porcine TTV genomic DNA sequences identified a conserved genomic region located at the N-terminal part of the putative ORF1 encoding the viral capsid protein (FIG. 8). This region also contains the entire ORF2 and the partial UTR in the upstream. Primers Plab-mF (SEQ ID NO:33)/ P1ab-mR (SEQ ID NO:34) were designed to simultaneously amplify both PTTV1a and PTTV1b DNAs in the first-round PCR. A mixture of PTTV1a-specific primers P1a-nF (SEQ ID NO:35)/P1a-nR (SEQ ID NO:36) and PTTV1b-specific primers P1b-nF (SEQ ID NO:37)/P1b-nR (SEQ ID NO:38) was used to differentially amplify each genotype in the second-round PCR. The final PCR products of PTTV1a and PTTV1b were 162 bp and 96 bp in sizes, respectively, which could be easily distinguished by gel electrophoresis on a 1% agarose gel stained with ethidium bromide. This assay was not expected to detect PTTV2 DNA due to the specificity of primers (FIG. 8). In FIG. 8, conserved sequences were indicated by dots and shaded. Dashes indicated nucleotide deletions. The locations and directions of three pairs of primers used for duplex nested PCR were marked by arrows.

In one example, the 20 serum samples from adult boars that were subjected to the duplex nested PCR assay were all found to be positive for both PTTV1a and PTTV1b, as determined by visualizing two bands of the expected sizes and subsequent sequencing confirmation of PCR products (data not shown). No PCR products were amplified in the 19 semen samples, which was consistent with the results of PTTV1 conventional nested PCR and real-time PCR assays described above.

Infection of pigs with the two species of porcine TTV has been found back to 1985 in Spanish pig farms according to a retrospective investigation (Segales et al., 2009, supra). However, whether porcine TTVs are associated with any particular pig diseases remains elusive. Since both of porcine TTV species have a high prevalence in domestic pigs,

65

determination of TTV viral loads is presumably more important than assessing the presence of TTV DNA. The level of viral loads in serum and semen samples has been indicated as an important marker for PCVAD in PCV2 infection (Opriessnig et al., 2007, supra). Therefore, establishment of quantitative PTTV-specific real-time PCR assays would help identify potential disease conditions associated with porcine TTVs.

Two TaqMan probe-based real-time PCR assays have recently been described. The singleplex assay developed by a Canadian group was not species-specific and was only designed to quantify the total viral loads of two PTTV species (Brassard et al., 2009, supra). The duplex assay established by a Germany group allowed the specific and simultaneous detection of both species (Gallei et al., 2009, supra). The target sequences of primers used in those two assays were determined by alignment of the three porcine TTV genomic sequences (Sd-TTV31, TTV-1p and TTV-2p) and were located in the UTR. In the present study, with 7 20 additional complete PTTV genomic sequences available (4 PTTV1 and 3 PTTV2 sequences), we analyzed and redetermined the conserved regions across the 10 full-length PTTV genomes. Based upon the updated alignment result from this study, two species-specific singleplex SYBR 25 green-based real-time PCR assays were developed to quantify the viral loads of PTTV1 and PTTV2, respectively. The primers used in our assays were designed to bind to conserved genomic regions distinct from the previous studies, which may increase the accuracy of quantification. Our 30 assays showed a considerable species-specificity and sensitivity of detection with 44 genomic copies for PTTV1 and 8.8 genomic copies for PTTV2 per 25-µl reaction, whereas the detection limit of 10 genomic copies per reaction was reported in the TaqMan probe-based duplex real-time PCR 35 (Gallei et al., 2009, supra). In addition, the SYBR greenbased real-time PCR assay is a flexible and inexpensive approach that can be directly carried out without the need to use fluorescently labeled probes. Finally, considering porcine TTVs exhibit a high degree of genetic diversity, the 40 results from SYBR green-based assays are unlikely affected by the different genetic background of porcine TTV variants that likely contain mutations in the probe-binding sequences in the TaqMan probe-based assays.

In spite of the presence of TTV DNA, all serum samples 45 from healthy pigs tested in this study had low amounts of PTTV1 and PTTV2 that were less than 2×10^6 copies/ml. Moreover, only an extremely low titer of PTTV2 DNA was detected in three semen samples. Most of the tested serum samples were also positive for PCV2 DNA as determined by 50 conventional nested PCR (data not shown). Many PCV2positive pigs with low viral load do not develop clinical PCVAD. A proposed threshold for developing PCVAD is 10⁷ or greater PCV2 genomic copies/ml of serum (Opriessnig et al., 2007, supra). In addition, semen PCV2 DNA- 55 positively is also a notable marker of diseased status (Opriessnig et al., 2007, supra; Pal, N., Huang, Y. W., Madson, D. M., Kuster, C., Meng, X. J., Halbur, P. G. and Opriessnig, T., 2008. Development and validation of a duplex real-time PCR assay for the simultaneous detection 60 and quantification of porcine circovirus type 2 and an internal control on porcine semen samples. J Virol Methods 149, 217-25). The situation of species-specific PTTV may be analogous to that of PCV2 and a high PTTV titer greater than 10^7 copies/ml may be required for the induction of 65 porcine diseases. The species-specific real-time PCR assays developed in this study will offer simple and practical tools

for future investigations of PTTV association with diseases using a large number of clinical samples from various disease conditions.

Furthermore, by coupling the two species-specific singleplex assays, we developed and validated a quick, inexpensive and reliable screening for the simultaneous detection and differentiation of the two porcine TTV species, PTTV1 and PTTV2, in a MCA-based duplex real-time PCR assay. Although this assay is not intended for accurate quantification of both PTTV species, it is a more convenient approach that could replace the conventional nested PCR for detection purpose. In comparison with real-time PCR, the conventional nested PCR assay for porcine TTVs detection is time-consuming (requiring total 4 rounds of PCR), laborious and prone to sample contamination occurring during multiple rounds of PCR processing. Due to the difference of T_m value between PTTV1 and PTTV2 species, an MCA following duplex PCR amplification is able to ensure distinct reaction specificity. Another advantage of this duplex realtime assay is that inclusion of PTTV1 and PTTV2 standards is dispensable when performing the described protocol, which makes it easier for much wider use in any diagnostic labs equipped with an automated real-time PCR instrument.

Multiple infection of porcine TTVs with distinct genotypes or subtypes of the same species has been demonstrated (Gallei et al., 2009, supra). In particular, our previous study showed that porcine TTV species 1 consists of two distinct types, PTTV1a (including strains Sd-TTV31 and PTTV1a-VA) and PTTV1b (including strains TTV-1p and PTTV1b-VA). The two newly published PTTV1 isolates with fulllength genomes, swSTHY-TT27 (GQ120664) from Canada and TTV1 #471819 (GU188045) from Germany, were both classified into type 1b based upon the phylogenetic analysis (data not shown). The duplex nested PCR described in this study confirmed that dual infection of two PTTV1 genotypes frequently occurred in pigs. This novel assay is the first diagnostic PCR approach developed to distinguish between PTTV1a and 1b so far. Since it is currently not known whether one or both of PTTV1a and PTTV1b infection represents a relevant factor associated with diseases, our differential PCR assay should be of great value for future potential disease associations of these two PTTV types.

According to another aspect of the invention, porcine TTV ORF proteins were expressed and used in immunodetection assays to detect the presence of porcine TTV specific antibodies. In one embodiment of the present invention, three truncated and Histidine-tagged ORF1 proteins of PTTV1a, PTTV1b and PTTV2, were expressed and purified in *Escherichia coli* (*E. coli*), respectively. Furthermore, both serum Western blot and ELISA assays based on these recombinant antigens were developed and validated using porcine serum samples from different sources. In particular, serological testing using the PTTV1a-, PTTV1b- and PTTV2-specific ELISA provides an accurate and simple tool for revealing the association of porcine TTV infection with diseases.

According to a further aspect of the invention, porcine TTV ORF proteins were expressed and purified as recombinant ORF1 capsid protein in *E. coli* expression system (FIG. **10**, FIG. **15**). Three truncated and His-tagged ORF1 capsid proteins of PTTV1a, PTTV1b and PTTV2, were expressed and purified in *Escherichia coli* (*E. coli*), respectively, and served as recombinant capsid subunit vaccines against PTTV infection.

Four porcine TTV2 strains, TTV-2p, TTV2#472142, PTTV2b-VA and PTTV2c-VA, had available complete genomic sequences to date. Although they are phylogeneti-

cally classified into three putative subtypes, a comparative analysis of hydrophilicity profiles of the ORF1 encoding amino acids from four PTTV2 showed that they shared three hydrophilic regions, an arginine-rich region from aa 1-49 at the N-terminal and two particular domains (I and II) located 5 at the middle and C-terminal part, respectively (FIG. **9**A). The C-terminal region used for truncated PTTV2c-VA ORF1 expression and the corresponding regions shared in other three PTTV2 strains were indicated by a dashed box. Alignments of amino acid sequences demonstrated high 10 levels of sequence conservation of domains I (aa 322-349) and II (aa 536-625) across the four PTTV2 strains (FIG. **9**B).

Since hydrophilic domains are believed to be important for the antigenicity of many proteins, the C-terminal region (aa 310-625) of the PTTV2c-VA ORF1 SEQ ID NO:16 15 containing the two domains was chosen for protein expression, which would be used as antigen for PTTV2-specific antibody detection in porcine serum. According to one aspect of the invention, expression of the truncated PTTV2c ORF1 was sufficient for detection of all PTTV2 subtypes 20 (2a, 2b and 2c; also see FIG. **3**A).

According to one embodiment of the present invention, the C-terminal part of the PTTV2c ORF1 gene fused with 8×His-tags was constructed and expressed in E. coli. The recombinant protein was insoluble and expressed within the 25 bacterial inclusion bodies. FIG. 10A shows SDS-PAGE of unpurified 2c-ORF1 products. FIG. 10B shows SDS-PAGE of purified 2c-ORF1 products. FIG. 10C shows Western blot analysis of purified 2c-ORF1 products using an anti-Histagged mAb. White arrowheads indicated the ORF1 protein 30 with the expected size and its truncated product whereas black arrowheads show the putative dimers of the expected and truncated proteins. M: protein markers. In FIG. 10A, two significant polypeptides (white arrowheads) were produced in the 2c-ORF1 unpurified sample in comparison with 35 the control sample. The band of ~40 KDa was consistent with the expected size of 2c-ORF1 whereas the ~30 KDa polypeptide was probably an N-terminally truncated product from the former. After purification with a nickel-affinity column, four polypeptides including the two described sig- 40 nificant bands were showed in SDS-PAGE (FIG. 10B). They were also detected by western blot using an anti-His-tagged mAb (FIG. 10C). Two high-molecular-mass bands (black arrowheads) were the homodimers formed by the two polypeptides of ~40 KDa and ~30 KDa, respectively, based on 45 the predicted sizes (~80 KDa and ~60 KDa). The results demonstrated that the purified C-terminal PTTV2c-ORF1 was successfully produced and could be used for porcine TTV2 antibody detection in porcine sera.

According to another aspect of the present invention, 50 PTTV2. porcine TTV2 antibodies in various porcine serum samples can be detected by Western blot using purified C-terminal PTTV2c-ORF1. White arrowheads indicated the ORF1 protein with the expected size and its truncated product. It should be noted that only the bands in green color were 55 recognized as positive. A total of more than 200 serum samples of conventional pigs (healthy or diseased), CD/CD pigs and gnotobiotic pigs from different sources were collected. Samples were randomly selected for detection of anti-PTTV2c-ORF1 IgG antibodies using the purified C-ter- 60 minal PTTV2c-ORF1 as antigen. FIG. 11A shows results of Western blot analyses of selected porcine serum samples of conventional pigs, FIG. 11B shows CD/CD pigs, and FIG. 11C shows gnotobiotic pigs. Purified PTTV2c-ORF1 products were used as the antigens. The two marked ~40 KDa 65 and ~30 KDa bands were detected in most samples of the conventional pigs (FIG. 11A) and CD/CD pigs (FIG. 11B),

indicating widely PTTV2 infection in these pigs. However, all the gnotobiotic pigs from two different sources (Blacksburg, V A and Ames, Iowa) had no detectable PTTV2 antibody (FIG. **11**C). Additional low-molecular-mass bands were also observed (FIGS. **11**A and **11**B). They were likely from non-specific reactivity in the Western blot.

According to vet another aspect of the present invention. PTTV2-specific ELISA can be used as a porcine TTV2 serological test. Seronegative results were also shown in a few samples from conventional pigs of a Wisconsin farm (FIG. 12). These negative samples were pooled and used as a negative reference in development of a PTTV2-specific ELISA. The remaining samples from this source were positive (FIG. 12, the four lanes in the left). In addition, porcine sera from a commercial company used in cell culture (supposed to be OIE diseases-free) also displayed strong anti-PTTV2-ORF2 positivity (FIG. 12), which was used as a positive control for ELISA. The concentrations of purified 2c-ORF1 antigen, porcine sera and IgG conjugate were determined by checkboard titration to present low background signal and give the highest difference of OD₄₀₅ value between the positive and negative controls. The optimal antigen amount was 69 ng per well, and the optimal ELISA results were obtained by use of a 1:100 dilution of serum samples and a 1:4000 dilution of IgG conjugates. The ELISA cutoff values ranged from 0.25 to 0.5 in each trial. FIG. 4 shows a representative result reflecting the consistency of serum western blot and the developed ELISA.

138 conventional pig sera samples from 3 herds were chosen to analyze the correlation between PTTV2 viral load by real-time PCR and anti-PTTV2 IgG antibody level by ELISA. The results showed that pigs with undetectable or higher PTTV2 viral load (10^8 copies/ml) were more likely to have a lower serum PTTV2 antibody titer than pigs with middle values of PTTV2 viral load (FIG. **13**).

In particular, sera from 10 pigs in the same herd were also analyzed by comparing the PTTV2 viral loads and anti-PTTV2 antibody levels of their sera from their arrival in the new facility to two months after arrival. Nine of the 10 pigs had decreased viral loads (three had no detectable virus) after 2 months whilst the anti-PTTV2 antibody titers increased in nine of 10 pigs (FIGS. **14**A and **14**B). The results suggested that the 10 pigs acquired PTTV2 infection at early stage, which induced humoral response and produced anti-ORF1 capsid IgG antibody progressively. The PTTV2-ORF1 IgG antibody was able to neutralize or even clear the virus, indicating the ORF1 indeed encode a viral capsid protein and may contain neutralizing epitopes against PTTV2.

According to one embodiment of the present invention, the C-terminal PTTV1a- and PTTV1b-ORF1 proteins were expressed and purified in E. coli system, respectively. SDS-PAGE and western blot analysis using an anti His-tagged mAb showed that both 1a- and 1b-ORF products had two polypeptides, one with expected size (~40 KDa) and another as the putative homodimer (~80 KDa) (FIG. 15A-C). FIG. 15A shows SDS-PAGE of unpurified and purified 1a-ORF1 products. FIG. 15B shows SDS-PAGE of purified 1b-ORF1 and 1b-ORF1ctruc products. FIG. 15C shows Western blot analysis of purified 1a- and 1b-ORF1 products using an anti-His-tagged mAb. White arrowheads indicate the ORF1 protein with the expected size whereas black arrowheads show the putative dimer of the ORF1 proteins. Compared to 2c-ORF1 expression, no truncated polypeptide was observed. As a comparative control, expression of a C-terminal-truncated 1b-ORF1 region (1b-ORF1ctruc) resulted in a lower-molecular-mass polypeptide compared to its C-terminal-non-truncated counterpart 1b-ORF1 (FIG. 15B).

According one embodiment of the present invention, the purified C-terminal PTTV1a- and PTTV1b-ORF1 proteins were used to develop genotype-specific serum Western blots and ELISA as described for PTTV2 above. FIG. **16** shows negative (lanes 1-2) and positive (lanes 3-5) examples of serum Western blot using 1a-ORF1 as antigen. The same antigen amount (69 ng), dilution of sera (1:100) and dilution of IgG conjugate (1:4000) as PTTV2-ORF1 were used in PTTV1a- and PTTV1b-specific ELISA (data not shown).

Additionally, the present invention provides a useful diagnostic reagent for detecting the porcine TTV infection which comprise a monoclonal or polyclonal antibody purified from a natural host such as, for example, by inoculating a pig with the porcine TTV or the immunogenic composition of the invention in an effective immunogenic quantity to produce a viral infection and recovering the antibody from the serum of the infected pig. Alternatively, the antibodies 20 can be raised in experimental animals against the natural or synthetic polypeptides derived or expressed from the amino acid sequences or immunogenic fragments encoded by the nucleotide sequence of the isolated porcine TTV. For example, monoclonal antibodies can be produced from 25 hybridoma cells which are obtained from mice such as, for example, Balb/c, immunized with a polypeptide antigen derived from the nucleotide sequence of the isolated porcine TTV. Selection of the hybridoma cells is made by growth in hyproxanthine, thymidine and aminopterin in a standard cell 30 culture medium like Dulbecco's modified Eagle's medium (DMEM) or minimal essential medium. The hybridoma cells which produce antibodies can be cloned according to procedures known in the art. Then, the discrete colonies which are formed can be transferred into separate wells of 35 culture plates for cultivation in a suitable culture medium. Identification of antibody secreting cells is done by conventional screening methods with the appropriate antigen or immunogen. Cultivating the hybridoma cells in vitro or in vivo by obtaining ascites fluid in mice after injecting the 40 hybridoma produces the desired monoclonal antibody via well-known techniques.

For another alternative method, porcine TTV capsid protein can be expressed in a baculovirus expression system or *E. coli* expression system according to procedures known in 45 the art. The expressed recombinant porcine TTV capsid protein can be used as the antigen for diagnosis in an enzyme-linked immunoabsorbent Assay (ELISA). The ELISA assay based on the porcine recombinant capsid antigen, for example, can be used to detect antibodies to 50 porcine TTV in porcine and mammalian species. Although the ELISA assay is preferred, other known diagnostic tests can be employed such as immunofluorescence assay (IFA), immunoperoxidase assay (IPA), etc.

Desirably, a commercial ELISA diagnostic assay in accor-55 dance with the present invention can be used to diagnose porcine TTV infection in pigs. The examples illustrate using purified ORF1 and ORF2 proteins of porcine TTV to develop an ELISA assay to detect anti-TTV antibodies in pigs. Sera collected from pigs infected with porcine TTV, 60 and negative sera from control pigs are used to validate the assay. PTTV2 specific, PTTV1a specific, and PTTV1b specific antibodies were demonstrated to specifically recognize PTTV ORF proteins. Further standardization of the test by techniques known to those skilled in the art may optimize 65 the commercialization of a diagnostic assay for porcine TTV.

Another aspect of the present invention is the unique immunogenic composition comprising the isolated porcine TTV or an antigenic protein encoded by an isolated polynucleotide described hereinabove and its use for raising or producing antibodies. The composition contains a nontoxic, physiologically acceptable carrier and, optionally, one or more adjuvants. Suitable carriers, such as, for example, water, saline, ethanol, ethylene glycol, glycerol, etc., are easily selected from conventional excipients and co-formulants may be added. Routine tests can be performed to ensure physical compatibility and stability of the final composition.

In accordance with the present invention, there are further provided infectious molecular and nucleic acid molecules of porcine Torque teno (TTV), live viruses produced from the nucleic acid molecule and veterinary vaccines to protect pigs from porcine TTV viral infection or disease caused by porcine TTV co-infection with other viruses. The invention further provides immunogenic polypeptide expression products that may be used as vaccines.

The novel infectious DNA molecule of porcine TTV comprises a nucleic acid molecule encoding at least a portion of an infectious PTTV1a-VA (SEQ ID NO:9), PTTV1b-VA (SEQ ID NO:10), PTTV2c-VA (SEQ ID NO:11), or PTTV2c-VA (SEQ ID NO:12) genome. The infectious PTTV DNA clone preferably contains at least one of ORF1, ORF2, ORF1/1, and ORF2/2 gene of the PTTV1 or PTTV2. Multiple copies of the PTTV1a-VA (SEQ ID NO:9), PTTV1b-VA (SEQ ID NO:10), PTTV2c-VA (SEQ ID NO:9), PTTV1b-VA (SEQ ID NO:10), PTTV2c-VA (SEQ ID NO:11), or PTTV2c-VA (SEQ ID NO:12) genome may be inserted into a single DNA molecule to construct tandem infectious PTTV clones.

The cloned genomic DNA of PTTV, particularly PTTV1a-VA, PTTV1b-VA, PTTV2c-VA, and tandem PTTV2b-RR, PTTV2c-RR, described herein is shown to be in vitro or in vivo infectious when transfected into PK-15 cells and given to pigs. This new, readily reproducible pathogenic agent lends itself to the development of a suitable vaccination program to prevent PTTV infection in pigs.

According to a further embodiment of the present invention, three one-genome-copy PTTV DNA clones were derived from the prototype US isolates PTTV1a-VA, PTTV1b-VA and PTTV2c-VA by fusion PCR, respectively. Each of the full-length genomic DNA was inserted into a cloning vector pSC-B-amp/kan by blunt-end ligation. The restriction site BamH I is the unique site on the three PTTV genomes, which was engineered at both ends of the three genomes to facilitate the generation of concatemers and thus mimic the TTV circular genome. BamH I single digestions of the selected plasmid DNA of each clone clearly resulted in two different fragments of 4.3-Kb and 2.8-Kb in size (FIG. 18A). The 4.3-Kb fragments represented the backbone vector whereas the 2.8-Kb fragments represented the inserted PTTV genomic DNA. The empty vector pSC-Bamp/kan digested with the same enzyme only showed a 4.3-Kb band (FIG. 18A). The resulting PTTV clones were designated pSC-PTTV1a, pSC-PTTV1b and pSC-PTTV2c, respectively (FIG. 17A-C).

Furthermore, two copies of the full-length PTTV2c-VA genome derived from the clone pSC-PTTV2c were ligated in tandem into the pSC-B-amp/kan vector to generate the clone pSC-2PTTV2c-RR (FIG. **17**D). Comparison of the Afl II single digestion patterns between pSC-PTTV2c and pSC-2PTTV2c-RR showed that the latter plasmid had an additional 2.8-Kb fragment representing the second copy of PTTV2c genome (FIG. **18**B, right panel). Subsequently, we utilized the same cloning strategy to produce a tandem-

dimerized PTTV2b DNA clone derived from the Germany TTV clone TTV2-#471942-full. An additional 2.8-Kb fragment representing the second copy of PTTV2b genome was presented in this construct, designated pSC-2PTTV2b-RR (FIG. **17**F), which was digested with the Hind III alone when ⁵ compared to its one-genome-copy counterpart (FIG. **18**B, left panel), confirming the successful construction.

The replication competencies of the constructed PTTV infectious clones were tested by in vitro transfection of PK-15 cells. IFA using the commercially generated rabbit polyclonal antibodies against PTTV2c ORF1 confirmed that both the concatemers of clones TTV2-#471942-full and pSC-PTTV2c were replication competent, respectively (FIG. **19**A and FIG. **20**A). Passaging of the transfected cells did not eliminate or reduce the fluorescent signals (FIG. 19B and FIG. 20B), suggesting that the expression of ORF1 proteins was resulted from the PTTV2 concatemers that mimicked the natural PTTV2b or PTTV2c circular molecules. No fluorescent signals was observed in mock-trans- 20 fected cells or DNA-transfected cells using pre-immune rabbit serum as the antibody for IFA detection (data not shown). The concatemers of the clone pSC-PTTV1a also showed to be replication-competent using an anti-PTTV1a ORF1 antibody (FIG. 21). The positive fluorescent signals 25 were located in the nucleus of transfected or passaged cells, indicating that porcine TTVs likely replicate in the cell nucleus. It is not unexpected because porcine circovirus (PCV) has a similar expression pattern in vitro.

Direct transfection of the tandem-dimerized clone pSC- 30 2PTTV2b-RR or pSC-2PTTV2c-RR in PK-15 cells results in viral replication and produces the ORF1 capsid antigen. IFA using antibodies against PTTV2 ORF1 confirmed that both clones were also replication-competent and the positive ORF1 antigens were localized in the nuclei (FIGS. **22**A and 35 B).

According to one embodiment of the present invention, infectious clones of porcine TTV can be used to inoculate pigs, which will then ellicit an immune response of the host animal and stimulate production of neutralizing antibodies. 40 In one particular embodiment of the present invention, the two tandem-dimerized PTTV2 clones were infectious when injected into the lymph nodes and muscles of conventional pigs.

To test the in vivo infectivity of PTTV2 molecular clones, 45 conventional pigs were inoculated with the clone pSC-2TTV2b-RR or pSC-2TTV2c-RR. Serum samples were collected from animals at 0, 7, 14, 21 and 28 days postinoculation (DPI). PTTV2 DNA was detected in pSC-2TTV2c-RR-inoculated pigs beginning at 7 DPI (#92), 14 50 DPI (#188 and #191) and 21 DPI (#180), respectively (FIG. 23A, right panel). PTTV viremia appeared late for pigs inoculated with the clone pSC-2TTV2b-RR: two began at 14 DPI (#189 and #192), one at 21 DPI (#181) and one at 28 DPI (#193) (FIG. 23A, left panel). The viral loads increased 55 during the course in all inoculated pigs that had the highest viral loads at 28 DPI before necropsy, as determined by PTTV2-specific real-time PCR (FIG. 23A). The real-time PCR products amplified from selected pigs were sequenced and found to have identical sequences to the corresponding 60 regions of pSC-2TTV2b-RR or pSC-2TTV2c-RR (data not shown).

All inoculated pigs were negative for PTTV2 ORF1 antibodies at 0 and 7 DPI. At 14 DPI, all the four pSC-2TTV2b-RR-inoculated pigs seroconverted to anti-PTTV2 65 ORF1 IgG, whereas pigs in pSC-2TTV2c-RR-inoculated group seroconverted at 14 (#92 and #180), 21 (#191) and 28

(#188) DPI, respectively (FIG. **23**B). The results indicated that active porcine TTV2b or TTV2c infection had occurred.

Vaccines of the infectious viral and infectious molecular DNA clones, and methods of using them, are also included within the scope of the present invention. Inoculated pigs are protected from viral infection and associated diseases caused by TTV2 infection or co-infection. The novel method protects pigs in need of protection against viral infection by administering to the pig an immunologically effective amount of a vaccine according to the invention, such as, for example, a vaccine comprising an immunogenic amount of the infectious PTTV DNA, a plasmid or viral vector containing the infectious DNA clone of PTTV, the recombinant PTTV DNA, the polypeptide expression products, the bacteria-expressed or baculovirus-expressed purified recombinant ORF1 capsid protein, etc. Other antigens such as PRRSV, PPV, other infectious swine agents and immune stimulants may be given concurrently to the pig to provide a broad spectrum of protection against viral infections.

The vaccines comprise, for example, the infectious viral and molecular DNA clones, the cloned PTTV infectious DNA genome in suitable plasmids or vectors such as, for example, the pSC-B vector, an avirulent, live virus, an inactivated virus, expressed recombinant capsid subunit vaccine, etc. in combination with a nontoxic, physiologically acceptable carrier and, optionally, one or more adjuvants. The vaccine may also comprise the infectious TTV2 molecular DNA clone described herein. The infectious PTTV DNA, the plasmid DNA containing the infectious viral genome and the live virus are preferred with the live virus being most preferred. The avirulent, live viral vaccine of the present invention provides an advantage over traditional viral vaccines that use either attenuated, live viruses which run the risk of reverting back to the virulent state or killed cell culture propagated whole virus which may not induce sufficient antibody immune response for protection against the viral disease.

Vaccines and methods of using them are also included within the scope of the present invention. Inoculated mammalian species are protected from serious viral infection, may also provide protection for disease related to coinfection of PTTV, such as porcine dermatitis and nephropathy syndrome (PDNS), postweaning multisystemic wasting syndrome (PMWS), and other related illness. The vaccines comprise, for example, an inactivated or attenuated porcine TTV virus, a nontoxic, physiologically acceptable carrier and, optionally, one or more adjuvants.

The adjuvant, which may be administered in conjunction with the vaccine of the present invention, is a substance that increases the immunological response of the pig to the vaccine. The adjuvant may be administered at the same time and at the same site as the vaccine, or at a different time, for example, as a booster. Adjuvants also may advantageously be administered to the pig in a manner or at a site different from the manner or site in which the vaccine is administered. Suitable adjuvants include, but are not limited to, aluminum hydroxide (alum), immunostimulating complexes (ISCOMS), non-ionic block polymers or copolymers, cytokines (like IL-1, IL-2, IL-7, IFN-α, IFN-γ, etc.), saponins, monophosphoryl lipid A (MLA), muramyl dipeptides (MDP) and the like. Other suitable adjuvants include, for example, aluminum potassium sulfate, heat-labile or heatstable enterotoxin isolated from Escherichia coli, cholera toxin or the B subunit thereof, diphtheria toxin, tetanus toxin, pertussis toxin, Freund's incomplete or complete adjuvant, etc. Toxin-based adjuvants, such as diphtheria

toxin, tetanus toxin and pertussis toxin may be inactivated prior to use, for example, by treatment with formaldehyde.

The vaccines may further contain additional antigens to promote the immunological activity of the infectious PTTV DNA clones such as, for example, porcine reproductive and 5 respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), other infectious swine agents and immune stimulants.

The new vaccines of this invention are not restricted to any particular type or method of preparation. The cloned 10 viral vaccines include, but are not limited to, infectious DNA vaccines (i.e., using plasmids, vectors or other conventional carriers to directly inject DNA into pigs), live vaccines, modified live vaccines, inactivated vaccines, subunit vaccines, attenuated vaccines, genetically engineered 15 vaccines, etc. These vaccines are prepared by standard methods known in the art.

As a further benefit, the preferred live virus of the present invention provides a genetically stable vaccine that is easier to make, store and deliver than other types of attenuated 20 vaccines.

Another preferred vaccine of the present invention utilizes suitable plasmids for delivering the nonpathogenic DNA clone to pigs. In contrast to the traditional vaccine that uses live or killed cell culture propagated whole virus, this 25 invention provides for the direct inoculation of pigs with the plasmid DNA containing the infectious viral genome.

Additional genetically engineered vaccines, which are desirable in the present invention, are produced by techniques known in the art. Such techniques involve, but are not 30 limited to, further manipulation of recombinant DNA, modification of or substitutions to the amino acid sequences of the recombinant proteins and the like.

Genetically engineered vaccines based on recombinant DNA technology are made, for instance, by identifying 35 alternative portions of the viral gene encoding proteins responsible for inducing a stronger immune or protective response in pigs (e.g., proteins derived from ORF1, ORF1/1, ORF2, ORF2/2, etc.). Such identified genes or immunodominant fragments can be cloned into standard protein 40 expression vectors, such as the baculovirus vector, and used to infect appropriate host cells (see, for example, O'Reilly et al., "Baculovirus Expression Vectors: A Lab Manual," Freeman & Co., 1992). The host cells are cultured, thus expressing the desired vaccine proteins, which can be purified to the 45 desired extent and formulated into a suitable vaccine product. The recombinant subunit vaccines are based on bacteriaexpressed (FIG. 10, FIG. 15) or baculovirus-expressed ORF1 capsid proteins of PTTV1a, PTTV1b and PTTV2.

If the clones retain any undesirable natural abilities of 50 causing disease, it is also possible to pinpoint the nucleotide sequences in the viral genome responsible for any residual virulence, and genetically engineer the virus avirulent through, for example, site-directed mutagenesis. Site-directed mutagenesis is able to add, delete or change one or 55 more nucleotides (see, for instance, Zoller et al., DNA 3:479-488, 1984). An oligonucleotide is synthesized containing the desired mutation and annealed to a portion of single stranded viral DNA. The hybrid molecule, which results from that procedure, is employed to transform bac- 60 teria. Then double-stranded DNA, which is isolated containing the appropriate mutation, is used to produce fulllength DNA by ligation to a restriction fragment of the latter that is subsequently transfected into a suitable cell culture. Ligation of the genome into the suitable vector for transfer 65 may be accomplished through any standard technique known to those of ordinary skill in the art. Transfection of

the vector into host cells for the production of viral progeny may be done using any of the conventional methods such as calcium-phosphate or DEAE-dextran mediated transfection, electroporation, protoplast fusion and other well-known techniques (e.g., Sambrook et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory Press, 1989). The cloned virus then exhibits the desired mutation. Alternatively, two oligonucleotides can be synthesized which contain the appropriate mutation. These may be annealed to form double-stranded DNA that can be inserted in the viral DNA to produce full-length DNA.

An immunologically effective amount of the vaccines of the present invention is administered to a pig in need of protection against viral infection. The immunologically effective amount or the immunogenic amount that inoculates the pig can be easily determined or readily titrated by routine testing. An effective amount is one in which a sufficient immunological response to the vaccine is attained to protect the pig exposed to the PTTV virus. Preferably, the pig is protected to an extent in which one to all of the adverse physiological symptoms or effects of the viral disease are significantly reduced, ameliorated or totally prevented.

The vaccine can be administered in a single dose or in repeated doses. Dosages may range, for example, from about 1 microgram to about 1,000 micrograms of the plasmid DNA containing the infectious chimeric DNA genome (dependent upon the concentration of the immuno-active component of the vaccine), preferably 100 to 200 micrograms of the porcine TTV DNA clone, but should not contain an amount of virus-based antigen sufficient to result in an adverse reaction or physiological symptoms of viral infection. Methods are known in the art for determining or titrating suitable dosages of active antigenic agent to find minimal effective dosages based on the weight of the pig, concentration of the antigen and other typical factors. Preferably, the infectious viral DNA clone is used as a vaccine, or a live infectious virus can be generated in vitro and then the live virus is used as a vaccine. In that case, from about 50 to about 10,000 of the 50% tissue culture infective dose (TCID 50) of live virus, for example, can be given to a pig.

The new vaccines of this invention are not restricted to any particular type or method of preparation. The vaccines include, but are not limited to, modified live vaccines, inactivated vaccines, subunit vaccines, attenuated vaccines, genetically engineered vaccines, etc.

The advantages of live vaccines are that all possible immune responses are activated in the recipient of the vaccine, including systemic, local, humoral and cell-mediated immune responses. The disadvantages of live virus vaccines, which may outweigh the advantages, lie in the potential for contamination with live adventitious viral agents or the risk that the virus may revert to virulence in the field.

To prepare inactivated virus vaccines, for instance, the virus propagation and virus production can occur in cultured porcine cell lines such as, without limitation PK-15 cells. Serial virus inactivation is then optimized by protocols generally known to those of ordinary skill in the art or, preferably, by the methods described herein.

Inactivated virus vaccines may be prepared by treating the porcine TTV with inactivating agents such as formalin or hydrophobic solvents, acids, etc., by irradiation with ultraviolet light or X-rays, by heating, etc. Inactivation is conducted in a manner understood in the art. For example, in chemical inactivation, a suitable virus sample or serum sample containing the virus is treated for a sufficient length of time with a sufficient amount or concentration of inactivating agent at a sufficiently high (or low, depending on the inactivating agent) temperature or pH to inactivate the virus. Inactivation by heating is conducted at a temperature and for a length of time sufficient to inactivate the virus. Inactivation by irradiation is conducted using a wavelength of light or ⁵ other energy source for a length of time sufficient to inactivate the virus. The virus is considered inactivated if it is unable to infect a cell susceptible to infection.

The preparation of subunit vaccines typically differs from the preparation of a modified live vaccine or an inactivated vaccine. Prior to preparation of a subunit vaccine, the protective or antigenic components of the vaccine must be identified. In the present invention, antigenic components of PTTV were identified as the ORF1 capsid proteins of 15 PTTV1a, PTTV1b and PTTV2, which were expressed and purified in Escherichia coli (E. coli) in this invention, and other expression system, such as baculovirus expression system, for use as subunit recombinant capsid vaccines. Such protective or antigenic components include certain 20 amino acid segments or fragments of the viral capsid proteins which raise a particularly strong protective or immunological response in pigs; single or multiple viral capsid proteins themselves, oligomers thereof, and higher-order associations of the viral capsid proteins which form virus 25 substructures or identifiable parts or units of such substructures; oligoglycosides, glycolipids or glycoproteins present on or near the surface of the virus or in viral substructures such as the lipoproteins or lipid groups associated with the virus, etc. Preferably, the ORF1 protein is employed as the 30 antigenic component of the subunit vaccine. Other proteins may also be used such as those encoded by the nucleotide sequence in the ORF2, ORF1/1, and ORF2/2 gene. These immunogenic components are readily identified by methods known in the art. Once identified, the protective or antigenic 35 portions of the virus (i.e., the "subunit") are subsequently purified and/or cloned by procedures known in the art. The subunit vaccine provides an advantage over other vaccines based on the live virus since the subunit, such as highly purified subunits of the virus, is less toxic than the whole 40 virus.

If the subunit vaccine is produced through recombinant genetic techniques, expression of the cloned subunit such as the ORF1, ORF2. ORF1/1, and ORF2/2 genes, for example, may be expressed by the method provided above, and may 45 also be optimized by methods known to those in the art (see, for example, Maniatis et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, Mass. (1989)). On the other hand, if the subunit being employed represents an intact structural feature of the virus, such as an entire capsid protein, the procedure for its isolation from the virus must then be optimized. In either case, after optimization of the inactivation protocol, the subunit purification protocol may be optimized prior to manufacture. 55

To prepare attenuated vaccines, the live, pathogenic virus is first attenuated (rendered nonpathogenic or harmless) by methods known in the art or, preferably, as described herein. For instance, attenuated viruses may be prepared by the technique of the present invention which involves the novel 60 serial passage through embryonated pig eggs. Attenuated viruses can be found in nature and may have naturallyoccurring gene deletions or, alternatively, the pathogenic viruses can be attenuated by making gene deletions or producing gene mutations. The attenuated and inactivated 65 virus vaccines comprise the preferred vaccines of the present invention.

Genetically engineered vaccines, which are also desirable in the present invention, are produced by techniques known in the art. Such techniques involve, but are not limited to, the use of RNA, recombinant DNA, recombinant proteins, live viruses and the like.

For instance, after purification, the wild-type virus may be isolated from suitable clinical, biological samples such as serum, fecal, saliva, semen and tissue samples by methods known in the art, preferably by the method taught herein using infected pigs or infected suitable cell lines. The DNA is extracted from the biologically pure virus or infectious agent by methods known in the art, and purified by methods known in the art, preferably by ultracentrifugation in a CsC1 gradient. The cDNA of viral genome is cloned into a suitable host by methods known in the art (see Maniatis et al., id.), and the virus genome is then analyzed to determine essential regions of the genome for producing antigenic portions of the virus. Thereafter, the procedure is generally the same as that for the modified live vaccine, an inactivated vaccine or a subunit vaccine.

Genetically engineered vaccines based on recombinant DNA technology are made, for instance, by identifying the portion of the viral gene which encodes for proteins responsible for inducing a stronger immune or protective response in pigs (e.g., proteins derived from ORF1, ORF2, ORF1/1, and ORF2/2, etc.). Such identified genes or immuno-dominant fragments can be cloned into standard protein expression vectors, such as the baculovirus vector, and used to infect appropriate host cells (see, for example, O'Reilly et al., "Baculovirus Expression Vectors: A Lab Manual," Freeman & Co. (1992)). The host cells are cultured, thus expressing the desired vaccine proteins, which can be purified to the desired extent and formulated into a suitable vaccine product.

Genetically engineered proteins, useful in vaccines, for instance, may be expressed in insect cells, yeast cells or mammalian cells. The genetically engineered proteins, which may be purified or isolated by conventional methods, can be directly inoculated into a porcine or mammalian species to confer protection against porcine TTV.

An insect cell line (like sf9, sf21, or HIGH-FIVE) can be transformed with a transfer vector containing polynucleic acids obtained from the virus or copied from the viral genome which encodes one or more of the immuno-dominant proteins of the virus. The transfer vector includes, for example, linearized baculovirus DNA and a plasmid containing the desired polynucleotides. The host cell line may be co-transfected with the linearized baculovirus DNA and a plasmid in order to make a recombinant baculovirus.

Alternatively, DNA from the isolated porcine TTV which encode one or more capsid proteins can be inserted into live vectors, such as a poxvirus or an adenovirus and used as a vaccine.

An immunologically effective amount of the vaccine of the present invention is administered to a porcine or mammalian species in need of protection against said infection or syndrome. The "immunologically effective amount" can be easily determined or readily titrated by routine testing. An effective amount is one in which a sufficient immunological response to the vaccine is attained to protect the pig or other mammal exposed to the porcine TTV virus, or porcine TTV co-infection, which may cause porcine dermatitis and nephropathy syndrome (PDNS), postweaning multisystemic wasting syndrome (PMWS) or related illness. Preferably, the pig or other mammalian species is protected to an extent in which one to all of the adverse physiological symptoms or effects of the viral disease are found to be significantly reduced, ameliorated or totally prevented.

The vaccine can be administered in a single dose or in repeated doses. Dosages may contain, for example, from 1 to 1,000 micrograms of virus-based antigen (dependent upon the concentration of the immuno-active component of the vaccine), but should not contain an amount of virusbased antigen sufficient to result in an adverse reaction or physiological symptoms of viral infection. Methods are known in the art for determining or titrating suitable dosages of active antigenic agent based on the weight of the bird or mammal, concentration of the antigen and other typical factors.

The vaccine can be administered to pigs. Also, the vaccine 15 can be given to humans such as pig farmers who are at high risk of being infected by the viral agent. It is contemplated that a vaccine based on the porcine TTV can be designed to provide broad protection against both porcine and human TTV. In other words, the vaccine based on the porcine TTV 20 can be preferentially designed to protect against human TTV infection through the so-called "Jennerian approach" (i.e., cowpox virus vaccine can be used against human smallpox by Edward Jenner). Desirably, the vaccine is administered directly to a porcine or other mammalian species not yet 25 exposed to the TTV virus. The vaccine can conveniently be administered orally, intrabuccally, intranasally, transdermally, parenterally, etc. The parenteral route of administration includes, but is not limited to, intramuscular, intravenous, intraperitoneal and subcutaneous routes.

When administered as a liquid, the present vaccine may be prepared in the form of an aqueous solution, a syrup, an elixir, a tincture and the like. Such formulations are known in the art and are typically prepared by dissolution of the antigen and other typical additives in the appropriate carrier 35 or solvent systems. Suitable carriers or solvents include, but are not limited to, water, saline, ethanol, ethylene glycol, glycerol, etc. Typical additives are, for example, certified dyes, flavors, sweeteners and antimicrobial preservatives such as thimerosal (sodium ethylmercurithiosalicylate). 40 Such solutions may be stabilized, for example, by addition of partially hydrolyzed gelatin, sorbitol or cell culture medium, and may be buffered by conventional methods using reagents known in the art, such as sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium hydro- 45 gen phosphate, potassium dihydrogen phosphate, a mixture thereof, and the like.

Liquid formulations also may include suspensions and emulsions which contain suspending or emulsifying agents in combination with other standard co-formulants. These 50 types of liquid formulations may be prepared by conventional methods. Suspensions, for example, may be prepared using a colloid mill. Emulsions, for example, may be prepared using a homogenizer.

Parenteral formulations, designed for injection into body 55 fluid systems, require proper isotonicity and pH buffering to the corresponding levels of mammalian body fluids. Isotonicity can be appropriately adjusted with sodium chloride and other salts as needed. Suitable solvents, such as ethanol or propylene glycol, can be used to increase the solubility of 60 the ingredients in the formulation and the stability of the liquid preparation. Further additives which can be employed in the present vaccine include, but are not limited to, dextrose, conventional antioxidants and conventional chelating agents such as ethylenediamine tetraacetic acid 65 (EDTA). Parenteral dosage forms must also be sterilized prior to use.

The following examples demonstrate certain aspects of the present invention. However, it is to be understood that these examples are for illustration only and do not purport to be wholly definitive as to conditions and scope of this invention. It should be appreciated that when typical reaction conditions (e.g., temperature, reaction times, etc.) have been given, the conditions both above and below the specified ranges can also be used, though generally less conveniently. The examples are conducted at room temperature (about 23° C. to about 28° C.) and at atmospheric pressure. All parts and percents referred to herein are on a weight basis and all temperatures are expressed in degrees centigrade unless otherwise specified.

Example 1

Viral DNA Extraction, Nested PCR and Genomic PCR

Convenient serum and semen samples from 20 conventional adult boars from a Virginia pig farm were used in the study. Total DNA was isolated from 20 serum and 19 semen samples using QIAamp DNA mini kit (Qiagen). To screen for the positive PTTV-containing samples, nested PCR amplifications of the conserved regions in the UTR of PTTV1 and PTTV2 were initially performed by using AmpliTag Gold polymerase (Applied Biosystems). The two primer pairs used to amplify the fragment A of PTTV1 were TTV1-mF (SEQ ID NO:45)/TTV1-mR (SEQ ID NO:46)(for the first-round PCR) and TTV1-nF (SEQ ID NO:47)/TTV1nR (SEQ ID NO:48) (for the second-round PCR), whereas the two primer pairs used to amplify the fragment D of PTTV2 were TTV2-mF (SEQ ID NO:49)/TTV2-mR (SEQ ID NO:50) (for the first-round PCR) and TTV2-nF (SEQ ID NO:51)/TTV2-nR (SEQ ID NO:52) (for the second-round PCR; FIGS. 1A-1B and Table 1).

In order to amplify the full-length genomic sequences of both PTTV1 and PTTV2, we first performed an inverse genomic PCR using a pair of conserved gene-specific primers TTV1-IF (SEQ ID NO:1)/TTV1-IR (SEQ ID NO:4) located in region A for PTTV1 and another pair of genespecific primers TTV2-IF (SEQ ID NO:5)/TTV2-IR (SEQ ID NO:8) located in region D for PTTV2, respectively, with Herculase II Fusion DNA Polymerase (Stratagene) according to the manufacturer's instructions. No PCR products with expected sizes were detected. Subsequently we designed new sets of primers to amplify two regions covering the complete PTTV1 and PTTV2 genomes in the second-round PCR, respectively (FIG. 1A-1B). The primer pairs used to amplify fragments B and C of PTTV1 were TTV1-IF (SEQ ID NO:1)/TTV1-2340R (SEQ ID NO:2) and TTV1-2311F (SEQ ID NO:3)/TTV1-IR (SEQ ID NO:4), respectively, whereas the primer pairs used to amplify fragments E and F of PTTV2 were TTV2-IF (SEQ ID NO:5)/TTV2-2316R (SEQ ID NO:6) and TTV2-GCF (SEQ ID NO:7)/TTV2-IR (SEQ ID NO:8), respectively (FIGS. 1A-1B and Table 1). Fragments C and F contain the GC-rich regions of PTTV1 and PTTV2, respectively. The amplified PCR products were individually excised, purified, and subsequently cloned into a pSC-B-amp/kan vector (Stratagene) by StrataClone Blunt PCR cloning strategy according to the manufacturer's instructions (Stratagene) followed by DNA sequencing.

Example 2

Screening for Porcine TTV Positive Samples Collected from Boars in a Farm from Virginia

Porcine TTV DNA was previously detected from pigs in different geographic regions by nested-PCR based on the

UTR sequence of a Japanese PTTV1 strain Sd-TTV31 (McKeown et al., 2004, supra). With the recent identification of PTTV2, two different sets of nested-PCR primers have been used to amplify region A of PTTV1 and region D of PTTV2, respectively (FIG. 1A-1B) (Ellis et al., 2008, supra; 5 Kekarainen, T., Sibila, M., and Segales, J. (2006). Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected and non-PMWSaffected pigs in Spain. J Gen Virol 87(Pt 4), 833-7; Krakowka et al., 2008, supra). A similar detection approach was also utilized in the present study to identify PTTV strains from pigs in the United States. In order to screen for indigenous PTTV1- or PTTV2-positive samples for subsequent use to determine the full-length genomic sequences, 20 sera (SR#1-20) and 19 semen samples (SM#1-18, and SM#20) collected from 20 boars in a farm of Virginia were 15 subjected to nested-PCR analyses. Surprisingly, all the 20 serum samples were positive for PTTV1 and 19 were also positive for PTTV2 (except for SR#18). In contrast, only 1 semen sample (SM#6) was PTTV1-positive and 3 semen samples (SM#8, 9 and 20) were PTTV2-positive. The result 20 was consistent with a recent study in that boar semen samples were shown to be positive for PTTV DNA in Spain (Kekarainen, T., Lopez-Soria, S., and Segales, J. (2007). Detection of swine Torque teno virus genogroups 1 and 2 in boar sera and semen. Theriogenology 68(7), 966-71), and 25 thus suggesting a potential vertical transmission of PTTV. However, the prevalence rates of both PTTV1 and PTTV2 in semen were much lower than that in sera, suggesting that there is no direct association for the presence of PTTV DNAs in sera and semen of the same pig.

Example 3

Sequence and Phylogenetic Analyses

Generic analyses and alignment of DNA and amino acid sequences were performed using Lasergene package (DNASTAR Inc., Madison, Wis.). The genomic sequences of three known PTTV strains and their corresponding Gen-Bank accession numbers used for the alignment and com- ⁴⁰ curves, respectively. parison are Sd-TTV31 (AB076001), TTV-1p (AY823990) and TTV-2p (AY823991). Pairwise sequence comparisons (PASC) were performed using 121 full-length genomic sequences of human and animal TTV-related strains available in GenBank with an online program PASC (Pairwise 45 Sequence Comparison) developed for analysis of pairwise identity distribution within viral families and available from the National Center for Biotechnology Information (NCBI) (Bao Y., Kapustin Y. & Tatusova T. (2008). Virus Classification by Pairwise Sequence Comparison (PASC). Encyclo- 50 pedia of Virology, 5 vols. (B.W.J. Mahy and M.H.V. Van Regenmortel, Editors). Oxford: Elsevier. Vol. 5, 342-348)

Phylogenetic trees were constructed by the neighborjoining method in the PAUP 4.0 program (David Swofford, Smithsonian Institute, Washington, D.C., distributed by ⁵⁵ Sinauer Associate Inc.) based upon the full-length genomic sequences and the deduced amino acid sequences of 4 ORFs of seven PTTV strains. The data were obtained from 1000 re-sampling.

Example 4

60

65

Design of PCR Primers for Diagnosing Porcine PTTV Infection

Analyses and alignment of DNA sequences were performed using Lasergene package (DNASTAR Inc., Madison, Wis.). Full-length genomic sequences of ten porcine TTV strains and their corresponding GenBank accession numbers used for the alignment were as follows. Species PTTV1: Sd-TTV31 (AB076001), PTTV1a-VA (GU456383), TTV-1p (AY823990), PTTV1b-VA (GU456384), swSTHY-TT27 (GO120664) and TTV1 #471819 (GU188045). Species PTTV2: PTTV2b-VA (GU456385), PTTV2c-VA (GU456386), TTV-2p (AY823991) and TTV2 #472142 (GU188046). The conserved sequences among the 6 PTTV1 and 4 PTTV2 genomes were identified, respectively, and subsequently used to guide real-time PCR primer selections using the Beacon Designer program (PREMIER Biosoft International, Palo Alto, Calif.). Primers used for the duplex nested PCR of PTTV1 were designed by the Lasergene package.

Example 5

Standard Curves of PTTV1 and PTTV2 Real-Time PCR

A region of 2091 by corresponding to the PCR fragment B of PTTV1b-VA genome was re-amplified from the same PCR fragment using primers TTV1-IF (5'-CATAGGGTG-TAACCAATCAGATTTAAGGCGTT-3') and TTV1-2340R (5'-GGTCATCAGACGATCCATCTCCCTCAG-3') as described previously (Huang et al., 2010). The resulting amplicon was gel-purified by QIAquick Gel Extraction Kit (Qiagen) and quantified by a NanoDrop spectrophotometer that was used for the real-time PCR standard template of porcine TTV species 1. A full-length DNA clone of PTTV2c-VA strain, pSC-PTTV2c, was constructed by assembling PCR fragments E and F from PTTV2c-VA in the vector pSC-B-amp/kan (Huang et al., unpublished data). Plasmid pSC-PTTV2c (7082 bp) was used for the real-time PCR standard template of porcine TTV species 2 and the plasmid DNA concentration was measured by a NanoDrop spectrophotometer. A 10-fold dilution series of the two templates was used to generate the real-time PCR standard

Example 6

Extraction of Viral DNA for PCR Assays

Total DNA was isolated from 20 serum and 19 semen samples collected from 20 conventional adult boars (with no clinical syndromes) from a Virginia pig farm using QIAamp DNA mini kit (Qiagen) as described previously (Huang et al., 2010). A sample volume of 400 μ l for sera and semen was used to extract DNA with a final eluate of 50 μ l sterile water. All extracted DNA samples were stored at -20° C. until real-time PCR testing. Detection of porcine TTVs in these samples by conventional nested PCR had been described previously (Huang et al., 2010). Total DNA extracted from a goat serum sample with the same procedure was used as the negative control.

Example 7

SYBR Green Real-Time Quantitative PCR Assays

PTTV1- and PTTV2-specific real-time PCR were performed, respectively, using SensiMix SYBR & Fluorescein kit (Quantace Ltd) and the MyiQ iCYCLER Real Time PCR instrument (BIO-RAD Laboratories). Each 25-µl reaction contained 12.5 µl of SYBR green Master Mix, 4 µl of

extracted DNA, 0.5 µl of each primer (10 nM) and 7.5 µl of sterile water. The PCR condition for PTTV1 was 10 min at 95° C. followed by 40 cycles of amplification (15 sec at 95° C., 30 sec at 59.4° C., 10 sec at 72° C.). This was immediately followed by a melting point analysis obtained by 5 gradually increasing the temperature form 55° C. to 95° C. with the fluorescence signal being measured every 0.5° C. The PCR condition for PTTV2 was the same as PTTV1 except that the annealing temperature was 56° C. PTTV1 and PTTV2 standard templates were included as positive 10 controls in every run. Amplification and data analysis were carried out using MyiQ System software (BIO-RAD Laboratories). All samples were run in duplicate on the same plate.

Example 8

Specificity and Sensitivity of Two Singleplex Assays

The optimal annealing temperatures for amplification of PTTV1- and PTTV2-specific assays were 59.4° C. and 56°

42

or goat serum DNA as templates (FIGS. 6a & 7b; black lines).

Example 9

Quantification of Porcine TTV1 and TTV2 in Boar Serum and Semen Samples

Viral load was expressed as copy numbers of PTTV1 or PTTV2 genomes per ml of original boar serum samples. PTTV1 DNA were detected in all 20 serum samples ranging from 1.91×10³ to 3.25×10⁵ copies/ml whereas PTTV2 DNA 15 were detected in 19 serum samples (except #10) ranging from 3.59×10^2 to 1.39×10^6 copies/ml. The result was consistent to our previous study by using conventional nested PCR (Table 5). None of the semen samples were PTTV1positive whereas three semen samples were PTTV2-positive with very low viral loads (230, 244 and 357 copies/ml, respectively).

TABLE 5

Comparison of porcine TTVs detection by different assays in 20 serum and 19 semen samples from adult boars in a Virginia Farm.							
	No. of positive/total no. tested by different assay						
Samples	PTTV1 real-time PCR	PTTV1 nested PCR	PTTV2 real-time PCR	PTTV2 nested PCR	PTTV1/PTTV2 duplex real-time PCR		
Serum PTTV1	20/20	20/20	_	_	20/20		
Serum PTTV2	_		19/20	19/20	19/20		
Semen PTTV1	0/19	1/19					
Semen PTTV2	—	_	3/19	3/19	_		

C., respectively, as determined by a 10-fold dilution of amplifications using a gradient of annealing temperatures. Amplification of the 118-bp product using primers TTV1F/ 40 TTV1R was obtained only with PTTV1 template whereas amplification of the 200-bp product with PTTV2 template was only observed when primers TTVF4/TTVR4 were used. Neither assay yielded any cross-amplification from the 45 other, confirming the specificity of the primers and targets (data not shown).

A PTTV1 standard curve was established over a range of target DNA concentrations per 25 µl. The linear range was shown to span 4.4×10^1 to 4.4×10^8 copies. The minimum detection limit (44 copies) corresponded to a threshold cycle (C_t) of 37.57. Tested samples with $C_t > 37.57$ were considered as below the detection limit and were not quantifiable. Similarly, a PTTV2 standard curve was generated and used 55 to detect DNA concentration ranging from 8.6×10° to 8.6× 10^8 copies per 25 µl reaction. The corresponding C_t of minimum detection limit (8.6 copies) was 36.53. All samples that were considered as PTTV1- or PTTV2-positive had copy numbers lower than the respective maximum detection limit. Melting curves using a 10-fold dilution of PTTV1 or PTTV2 standard template (FIGS. 6a & 6b; blue curves), as well as 20 boar serum samples, displayed melting temperatures (T_m) of 87.0° C. for PTTV1 and 80.0° C. for 65 PTTV2, respectively (FIGS. 6a & 6b; red curves). No peaks were observed for the negative controls using sterile water

Example 10

PTTV1/PTTV2 Duplex Real-Time PCR Assay

PTTV1/PTTV2 duplex real-time PCR assay was performed in a 25-µl PCR system containing 12.5 µl of SYBR green Master Mix, 0.5 µl of each PTTV1 primers, 0.5 µl of each PTTV2 primers, 4 µl of DNA and 6.5 µl of sterile water. The duplex PCR condition and melting point analysis were the same as PTTV1 except that the annealing temperature was 58° C. The melting peaks were analyzed to distinguish the PTTV1- and PTTV2-specific amplicons.

Example 11

Duplex Nested PCR

The first-round PCR was performed with a Platinum PCR HiFi Supermix (Invitrogen) using 4 µl of extracted DNA in a total volume of 50 µl. The PCR condition was 30 cycles of 94° C. for 30 sec, 55° C. for 30 sec, 72° C. for 30 sec with an initial denaturation of the template DNA at 94° C. for 2 min. A 4-µl aliquot of the first-round PCR product was used for the second-round PCR with the same PCR reagents and condition. One pair of primers P1ab-mF/P1ab-mR was used in the first-round PCR whereas a mixture of two pairs of primers, P1a-nF/P1a-nR for detection of PTTV1a, and P1bnF/P1b-nR for detection of PTTV1b, were used in the second-round PCR (Table 1). The amplification products were visualized by gel electrophoresis on a 1% agarose gel

stained with ethidium bromide and two bands specific for each type were differentiated by UV light.

Example 12

Construction of PTTV1 and PTTV2 ORF **Expression** Plasmids

The C-terminal parts of ORF1 of PTTV1a, PTTV1b and PTTV2c were amplified from the respective full-length ¹⁰ DNA clones (pSC-PTTV1a, pSC-PTTV1b and pSC-PTTV2c; described elsewhere). The amplified fragments were expected to encode protein products with 319 aa for PTTV1a (ORF1 aa positions 317-635 (SEQ ID NO:13); GenBank accession no. GU456383), 318 aa for PTTV1b (ORF1 aa positions 322-639 (SEQ ID NO:14); GenBank accession no. GU456384), and 316 aa for PTTV2c (ORF1 aa positions 310-625 (SEQ ID NO:16); GenBank accession no. GU456386), respectively. A C-terminal truncated fragment of PTTV1b encoding 248 aa (ORF1 aa positions 20 322-569 (SEQ ID NO:14)) was also amplified and used as a comparison control for SDS-PAGE analysis. All the plasmids were constructed by cloning of the PCR products into an E. coli/baculovirus/mammalian cells triple expression vector pTriEx1.1-Neo (Novagen) between the NcoI and 25 XhoI restriction sites to generate C-terminally 8×His-tagged fusion proteins. The four recombinant plasmids were designated pTri-PTTV1a-ORF1, pTri-PTTV1b-ORF1, pTri-PTTV1b-ORF1ctruc and pTri-PTTV2c-ORF1. All cloned 30 sequences were confirmed by DNA sequencing.

Example 13

Expression of Recombinant PTTV1 and PTTV2 Proteins

The four expression plasmids were transformed into Rosetta 2 (DE3) pLacI competent cells (Novagen), respectively, and the bacteria were plated on LB agar plates containing 100 µg/ml ampicillin overnight at 37° C. A single 40 transformation colony for each construct was used to inoculate 3 ml of LB medium containing 100 μ g/ml of ampicillin (LB/amp), and grown 6-8 hours at 37° C. The turbid 3 ml culture for each construct was then used to make bacterial stocks by adding 25% filter sterilized glycerol, and freezing 45 binant proteins by using an anti-6×His-tagged monoclonal the culture down at -80° C. Prior to purification, 10 µl of the frozen bacterial stock for each construct was used to inoculate a 3 ml starter culture of LB/amp, and grown for 6-8 hours at 37° C. A 100-ml of Overnight Express TB Media (Novagen) was inoculated with the starter culture to induce 50 protein expression, and was grown 16-18 hours at 37° C. After incubation, the autoinduction culture underwent centrifugation at 3400 rpm for 15 minutes at 4° C. The resulting supernatant for each construct was discarded, and each of the bacterial pellets was reserved at -20° C. until use.

Example 14

Purification and Dialysis of Recombinant Proteins

60

The recombinant proteins were insoluble and expressed within the bacterial inclusion bodies. Each of the bacterial pellets was treated with BugBuster and rLysozyme according to the manufacture's protocol (Novagen), and Benzonase Nuclease (Novagen) was added for degradation of 65 DNA and RNA. Each of the inclusion body pellets was subsequently resuspended with 840 µl of lysis buffer (6M

Guanidine Hydrochloride, 0.1M sodium phosphate, 0.01M Tris-Chloride, 0.01M imidazole, pH 8.0), and frozen at -80° C. for at least 30 minutes. It was then thawed, diluted with an additional 2.5 ml of lysis buffer and gently rotated for 30 minutes at room temperature. The lysate supernatants were collected by centrifugation at 15,000×g for 30 minutes at room temperature. A 50%-Ni-NTA His-bind slurry (Novagen) was added to each of the decanted supernatants, and the mixtures were shaken for 60 minutes at room temperature to promote his-tag binding. The lysate/resin mixtures were loaded into an empty chromatography column. After the initial flow-through, a 7-ml of lysis buffer was added to the column and allowed to flow through. Each column was then washed 2 times with 7 mL of wash buffer (8M Urea, 0.1M Sodium Phosphate, 0.15M Sodium Chloride, 0.02M imidazole, pH 8.0). Elution of the target protein was achieved by adding 4 separate 1 ml aliquots of elution buffer (8M Urea, 0.05M Sodium Phosphate, 1M Sodium Chloride, 0.5M Imidazole, pH 8.0) to the column. The four elution fractions were analyzed by SDS Page and Coomasie Blue Staining.

The elutions containing significant concentrations of the target protein were injected into a 0.5 ml-3 ml dialysis cassette with a 20,000 molecular weight cut-off (Pierce). A series of 4 dialysis buffers were used for dialysis; dialysis buffer 1 (6M Urea, 0.05M Sodium Phosphate, 0.8M Sodium Chloride, 0.3M Imidazole, pH 8.0), dialysis buffer 2 (4M Urea, 0.033M Sodium Phosphate, 0.533M Sodium Chloride, 0.2M Imidazole, pH 8.0), dialysis buffer 3 (2.67M Urea, 0.022M Sodium Phosphate, 0.356M Sodium Chloride, 0.133M Imidazole, pH 8.0) and dialysis buffer 4 (1.5M Urea, 0.0148 Sodium Phosphate, 0.237M Sodium Chloride, 0.089M Imidazole, pH 8.0). The dialysis cassette was sequentially submerged and rotated in each dialysis buffer ³⁵ for over 6 hours at 4° C. When dialysis was complete, the recombinant His-tagged fusion proteins were each removed from the cassettes, quantified using a NanoDrop and frozen at -80° C.

Example 15

SDS-PAGE and Anti-His-Tagged Western Blot

A western blot was developed to detect purified recomantibody (Rockland). Equal volumes of each of the purified truncated ORF1 proteins and LDS/10% β-ME were mixed, and boiled at 95° C. for 10 minutes. A 10-µl of the boiled sample was added to each appropriate well of a 4-12% Bis-Tris Polyacrylamide Gel (Invitrogen), and was run at 200 volts for 43 minutes in 1×MES running buffer (Invitrogen). The proteins were transferred to a PVDF membrane (Bio-Rad) using a Trans blot semi dry transfer apparatus and 1× transfer buffer (Invitrogen). Once transfer was complete, 55 the PVDF membrane was incubated in Odyssey blocking buffer (Li-Cor) at room temperature for 1 hour. The anti-6× His-tagged MAb was diluted at 1:1000 in Odyssey blocking buffer/0.2% tween 20, and transferred to the membrane after the previous Odyssey blocking buffer was removed. The MAb was left on a rocker to incubate with the membrane for either 2 hours at room temperature or 4° C. overnight, and then the membrane was washed 3 times with tris buffered saline/0.05% tween 20 (TBS-T, Sigma). A Goat anti-rabbit IgG IRDye 800 (Li-Cor) antibody was diluted at 1:5000 in Odyssey blocking buffer/0.2% tween 20/0.1% SDS. It was transferred to the freshly washed PVDF membrane, and allowed to incubate for 1 hour at room temperature while

gently rocking. The membrane was washed 3 times with TBS-T, 1 time with TBS and imaged with the Li-Cor Odyssey.

Example 16

Serum Western Blot

A serum western blot was developed, and used to identify positive and negative serum controls for ELISA develop-10ment. After SDS-PAGE as described above, the proteins were transferred to a PVDF membrane that was subsequently incubated in Odyssey blocking buffer (Li-Cor) at room temperature for 1 hour. A selected serum sample was diluted at 1:100 in Odyssey blocking buffer/0.2% tween 20, and transferred to the membrane after the previous Odyssey blocking buffer was removed. The serum sample was left on a rocker to incubate with the membrane for 2 hours at room temperature, and then the membrane was washed 3 times with tris buffered saline/0.05% tween 20 (TBS-T, Sigma). A goat anti-swine IgG IRDye 800 antibody (Rockland) was 20 diluted at 1:2500 in Odyssey blocking buffer/0.2% tween 20/0.1% SDS. It was transferred to the freshly washed PVDF membrane, and allowed to incubate for 1 hour at room temperature while gently rocking. The membrane was washed 3 times with TBS-T, 1 time with TBS and imaged 25 with the Li-Cor Odyssey.

Example 17

Indirect PTTV1a-, PTTV1b- and PTTV2-Specific ELISA

The optimal concentrations of the antigens used to coat the plates and dilutions of antisera and conjugates were determined by checkboard titration. The ELISA was initiated by diluting each of the purified recombinant His-tagged 35 fusion proteins (PTTV1a, PTTV1b and PTTV2c, respectively) to 680 ng/ml in 1× Carbonate Coating Buffer (CCB) at a pH of 9.6, and coating medium binding ELISA plates (Greiner) with 100 µl/well. The plates were covered, and allowed to incubate at 37° C. for 2 hours. After coating, the 40 diluted proteins were removed, and each well was washed 3 times with 300 µl of 1×TBS-T. Protein Free Blocking Buffer (Pierce) was then added at a volume of 300 µl/well, and the plates were allowed to incubate at 37° C. for 1 hour. Meanwhile, in a 96-well dilution block, the serum samples 45 were diluted at 1:100 in 150 µl of protein free blocking buffer. The block was then removed, and 100 µl of each diluted serum sample was transferred to each corresponding well on the ELISA plates. The plates were allowed to incubate at 37° C. for 2 hours, after which each well was 50 washed 3 times with 300 µl of TBS-T. Next, the HRPconjugated anti-swine IgG antibody (Rockland) was diluted at 1:4000 in 12 ml of protein free block, and 100 µl was added to each well of the plates. This was incubated at 37° C. for 1 hour, and then each well was washed 3 times with 55 300 µl of TBS-T. In order to develop the ELISA, 100 µl of Sure Blue Reserve 1-Component (KPL) was added to each well of the plates. After 20 minutes, 100 µl of 1N HCL was added to each well to stop development. The plates were 60 then read at 450 nm.

Example 18

Data Analyses

Porcine sera used in cell culture research from a commercial company (manufactured in New Zealand and considered free from all OIE diseases) were used as a positive control for the three ELISA protocols because the sera were all PTTV1a-, PTTV1b- and PTTV2-positive as detected by serum western blot and displayed high OD values (>2.0). We initially used pooled gnotobiotic pig sera as a negative control as they were negative in western blot detection. Subsequently, in comparison of the negative gnotobiotic pig sera, we screened some porcine sera collected from a conventional pig farm in Wisconsin. They were also negative in western blot detection and their OD values corresponded to that of negative gnotobiotic pig sera. These conventional porcine sera were pooled and used as a negative control. The cutoff value for each ELISA was calculated as the mean OD value of the negative control group (n=4) plus 3 times of the standard deviation.

Example 19

Construction of Full-Length Genomic DNA Clones of Porcine TTV1a, 1b and 2c

PCR fragments B and C from the US isolate PTTV1a-VA (GenBank accession no. GU456383) were re-amplified from the constructs described previously, and were subsequently assembled into a full-length genomic DNA with a BamH I site at the both ends of the genome by overlapping PCR using the Herculase II Fusion DNA Polymerase (Stratagene) on the vector pSC-B-amp/kan (Stratagene). The resulting construct was designated pSC-PTTV1a (FIG. 17A). Using the same strategy, the clone pSC-PTTV1b (FIG. 17B) originated from the US isolate PTTV1b-VA (GenBank accession no. GU456384) and the clone pSC-PTTV2c (FIG. 17C) originated from the US isolate PTTV2c-VA (GenBank accession no. GU456386) were constructed with the same restriction sites (BamH I) on the same backbone vector. Plasmid TTV2-#471942-full (FIG. 17E) containing a fulllength genomic DNA originated from a Germany pathogenic porcine TTV2 isolate. TTV2-#471942 was a gift from Dr. Andreas Gallei (BIVI, Germany). TTV2-#471942 was classified into the porcine TTV subtype 2b together with the US isolate PTTV1b-VA based upon the phylogenetic analysis (data not shown).

Example 20

Construction of Tandem-Dimerized DNA Clones of Porcine TTV2b and 2c

The full-length PTTV2c genome was excised from the clone pSC-PTTV2c by BamH I digestion, purified and ligated to form concatemers. Ligated concatemers were cloned into the BamH I-pre-digested pSC-B-amp/kan vector to produce a tandem-dimerized DNA clone, pSC-2PTTV2c-RR (FIG. **17**D). Similarly, a tandem-dimerized DNA clone, pSC-2PTTV2b-RR, was generated from the clone TTV2-#471942-full using EcoR V restriction sites (FIG. **17**F).

Example 21

Generation of PTTV1a-, PTTV1b- and PTTV2-Specific Anti-ORF1 Polyclonal Antibodies

The ORF1-encoding product is the putative capsid protein of TTV. To generate PTTV1a-, PTTV1b- and PTTV2-65 specific anti-ORF1 polyclonal antibodies to detect the expression of PTTV ORF1 proteins and to determine the infectivity of PTTV DNA clones, the three ORF1 proteins from PTTV1a, PTTV1b and PTTV2c were expressed in *E. coli*, purified and were subsequently used to immunize New Zealand white rabbits, respectively, as a custom antibody production service at Rockland Immunochemicals (Gilberts-ville, Pa.). Each anti-ORF1 polyclonal antibody was pro- 5 duced from serum of immunized rabbits.

Example 22

In Vitro Transfection of PTTV Infectious Clones

PK-15 cells were seeded at 2×10^5 cells per well onto a 6-well plate and grown until 60%-70% confluency before transfection. The DNA clones pSC-2PTTV2b-RR and pSC-2PTTV2c-RR were directly transfected into PK-15 cells, respectively, using Lipofectamine LTX (Invitrogen) according to the manufacturer's protocol. For clones pSC-PTTV1a, pSC-PTTV2c and TTV2-#471942-full, their ligated concatemers, produced as described above, were used for transfection, respectively. Cells were cultured for 3 to 5 days, and were then applied to an immunofluorescence assay (IFA) to detect the expression of ORF1 of porcine TTVs. Alternatively, transfected cells were passaged into new 6-well plates and continued to culture for 3 days before the IFA detection. 25

Example 23

Immunofluorescence Assay (IFA)

Transfected or passaged cells were washed 2 times with PBS and fixed with acetone. Five hundred microliters of the antibodies, specific to PTTV1a or PTTV2 at 1:500 dilution in PBS, was added over the cells and incubated for 1 hour at room temperature. Cells were washed 3 times with PBS $_{35}$ and 500 μ l Texas red- or Alexa Fluor 488-labeled goat anti-rabbit IgG (Invitrogen) at 1:200 dilution was then added. After 1-hour incubation at room temperature and

48

washed with PBS, the cells were stained with 500 μ l DAPI (KPL, Inc.) at 1:1000 dilution and visualized under a fluorescence microscope.

Example 24

In Vivo Inoculation of Conventional Pigs with the Tandem-Dimerized Porcine TTV2 Clones

A pig inoculation study was performed to determine the infectivities of the two tandem-dimerized porcine TTV2 clones: pSC-2TTV2b-RR and pSC-2TTV2c-RR. Briefly, eight 4-week-old conventional pigs that were seronegative and viral DNA negative for porcine TTV2 were randomly assigned into two groups of four each. Each group of pigs was housed separately and maintained under conditions that met all requirements of the Institutional Committee on Animal Care and Use.

All pigs in each group were injected by a combination of both the intra-lymph node route and intramuscular route. The four pigs (nos. 181, 189, 192 and 193) were each injected with 200 μ g of the pSC-2TTV2b-RR plasmid DNA whereas another four pigs (nos. 92, 180, 188 and 191) were each inoculated with 200 μ g of the pSC-2TTV2c-RR clone. Pigs were monitored daily for clinical signs of disease for a total of 28 days. All pigs were necropsied at 28 days postinoculation.

While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general inventive concept.

22

27

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 62 <210> SEQ ID NO 1 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Torque teno virus <400> SEQUENCE: 1 catagggtgt aaccaatcag atttaaggcg tt <210> SEQ ID NO 2 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Torque teno virus <400> SEQUENCE: 2 ggtcatcaga cgatccatct ccctcag <210> SEO ID NO 3 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Torque teno virus <400> SEQUENCE: 3

-continued

50

<210> SEQ ID NO 4	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 4	
ttgagctccc gaccaatcag aattgact	28
<210> SEO ID NO 5	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 5	
ttgtgccgga gctcctgaga gc	22
<210> SEQ ID NO 6	
<211> LENGTH: Z4 <212> TYPE: DNA	
<213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 6	
aggtgettga ggagtegteg ettg	24
-210, CEO ID NO 7	
<2103 SEQ 1D NO 7 <211> LENGTH: 27	
<212> TYPE: DNA	
<2137 OKANISM. TOTALE CENO VITUS	
	22
Lacecaggeg gllagaeael eagelel	27
<210> SEQ ID NO 8	
<211> LENGTH: 27	
<112> TIPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 8	
ctcaagcacg agcagtggat cctctca	27
<210> SEQ ID NO 9	
<211> HENGIN: 2878 <212> TYPE: DNA	
<213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 9	
tacactteeg ggtteaggag geteaatttg getagetteg etegeaceae gtttgetgee	60
aggoggaoot gattgaagao tgaaaacogt taaattoaaa tttgaaaatg gogggoaaaa	120
tggcggaagg ggggcggagt ttatgcaaat taatttatgc aaagtaggag gagctcgatt	180
ttaatttatg caaagtagga ggagtcaatt ctgattggtc gggagctcaa gtcctcattt	240
gcatagggtg taaccaatca gatttaaggc gttcccccaa aagtgaatat aagtaagcgc	300
agtteegaat ggetgagttt atgeegeeag eggtagaeag aaetgtetag egaetgggeg	360
ggtgccggag gatccctgat ccggagtcaa ggggcctatc gggcaggagc agctgagcgg	420
agggcctaca tgaaggagaa agactactgg gaggaagcct ggctgaccag ctgtacatct	480
atacacgacc accactgcaa ctgcggtagc tggagagacc acctgtggac gctatgcgct	540
ttagacgacg cagatttggc cgccgccgca gatattatag aaagagaaga ggcggatgga	600

51

-continued

52

ggagaagatt	tcggattcgt	agacggagac	cctggagacg	ctggcgggta	aggagatggc	660
ggcgttccgt	cttccgtaga	gggggacgta	gagcgcgccc	ctaccgcatt	agcgcttgga	720
accctaaggt	tctcagaaac	tgccgcatca	cgggatggtg	gccagttata	cagtgtatgg	780
acgggatgga	gtggataaaa	tacaagccta	tggacttaag	agtcgaggca	aactggatat	840
tcaataaaca	ggacagtaaa	atagagacag	aacagatggg	atacctgatg	cagtatggag	900
gagggtggtc	aagcggagta	atcagcttag	agggactatt	caatgaaaac	agactgtgga	960
gaaatatatg	gtcaaaaagc	aatgacggga	tggacttggt	cagatacttt	ggctgtagaa	1020
ttagactata	tccaacagag	aatcaggact	acttgttctg	gtatgacaca	gaatttgacg	1080
aacagcaaag	gagaatgcta	gatgaataca	cacaacctag	tgtgatgctg	caggctaaaa	1140
actcgcgtct	aatagtgtgt	aaacagaaga	tgccaattag	acgcagagta	aaaagtattt	1200
ttataccgcc	gcctgcacag	ttaacaactc	agtggaaatt	tcaacaggaa	ctatgtcagt	1260
ttccactgtt	taactgggcc	tgtatctgca	tagacatgga	cacgccgttc	gactacaacg	1320
gcgcatggcg	aaatgcctgg	tggctaatga	gaaggctgca	aaacggaaac	atggagtaca	1380
tagaaagatg	gggcagaata	ccaatgacag	gagacacaga	actaccacca	gcagacgact	1440
tcaaggcagg	aggggtgaac	aaaaacttca	aaccgacagg	tattcaaaga	atatacccga	1500
tagtagcggt	atgccttgta	gaagggaaca	aaagagtagt	caaatgggcc	acagtacaca	1560
atggtcccat	agacagatgg	agaaaaaaac	agacaggaac	tttaaagctc	tctaacctga	1620
gaggcctagt	actgagagta	tgctcagaga	gtgaaacata	ctataagtgg	acaggatcag	1680
aatttacagg	ggcatttcaa	caagactggt	ggccagtagg	cggaacagaa	tacccgcttt	1740
gtaccattaa	aatggaccca	gaatatgaaa	accctacagt	agaggtatgg	tcctggaaag	1800
caaatatacc	gacatcaggg	actcttaaag	actacttcgg	actgagtaca	gggcaacagt	1860
ggaaagacac	tgactttgcg	aggctgcaac	tacctagaag	cagccacaat	gtggactttg	1920
gacataaagc	tagatttggg	ccattttgcg	ttaaaaagcc	tccagtagag	ttcagagata	1980
cagccccaaa	cccactaaat	atatgggtaa	aatacacgtt	ctattttcag	ttcggcggca	2040
tgtaccagcc	tcccaccgga	atccaagatc	cctgcacttc	taacccgacc	tatcctgtca	2100
gaatggtcgg	agcagttaca	caccccaaat	acgccgggca	aggcggaatc	acgacccaaa	2160
ttggagatca	aggtatcacc	gctgcctcta	tccgtgccat	cagtgcagct	ccaccagata	2220
cctacacgca	gtcggcgttc	ctcaaagccc	cggaaaccga	gaaagaagag	gaaagagaga	2280
gtgagaccag	tttcacgagt	gccgaaagct	cttctgaggg	agatggatcg	tctgatgacc	2340
aagcagagag	acgcgctgcc	agaaagcgag	tcatcaagtt	acttctcaag	cgactcgctg	2400
acagacccgt	ggacaacaag	cgacgacgat	tttcagagtg	accctgaccc	cctcaccaat	2460
aaacgcaaaa	aacgcttgca	attctaactc	tgtctctgtg	acttcattgg	gggggtccgg	2520
ggggggcttgc	ccccccgtta	gttgggttct	cgcactcccg	cctgccaagt	gaaactcggg	2580
gaggagtgag	tgcgggacat	cccgtgtaat	ggctacataa	ctacccggct	ttgcttcgac	2640
agtggccgtg	gctcgaccct	cacacaacac	tgcagatagg	gggcgcaatt	gggatcgtta	2700
gaaaactatg	gccgagcatg	ggggggggtc	cgccccccc	aacccccccg	gtgggggggc	2760
caaggccccc	cctacacccc	cccatggggg	gctgccgccc	cccaaacccc	ccgcgtcgga	2820
tggggggggc	tgcgcccccc	ccaaaccccc	cttgcccggg	gctgtgcccc	ggaccccc	2878

<210> SEQ ID NO 10 <211> LENGTH: 2875

<212> TYPE: DNA <213> ORGANISM: Torque teno virus <400> SEOUENCE: 10 tacactteeg ggtteaggag geteaatttg getegetteg etegeaceae gtttgetgee 60 aagcggacct gattgaagac tgacaaccgt tacattcaaa tttgaaaatg gcgcccaaac 120 atggcggcgg ggggcggagt ttatgcaaat taatttatgc aaagtaggag gagctccatt 180 ttaatttatg caaagtagga ggagtcaatt ctgattggtc gggagctcaa gtcctcattt 240 gcatagggtg taaccaatca gatttaaggc gttcccatta aagcgaatat aagtaagtga 300 ggttccgaat ggctgagttt atgccgccag cggtagacag aactgtctag cgactgggcg 360 ggtgccggag gatccctgat ccggagtcaa ggggcctatc gggcaggagc agctgagcgg 420 480 aqqqcctatq ccqqaacact qqqaqqaaqc ctqqttqqaa qctaccaaqq qctqqcacqa 540 totogactgo cgotgoggta actggcagga coacotatgg ctootactog cogatggaga coccocttto occoccocco tagacoctat agaaagagac octatoogto gagaagacot 600 660 tactaccgct acagaccgcg ttactatagg agacgatggc tggtaaggag aaggcggcgt tccqtctacc qtaqaqqtqq acqtaqaqcq cqcccctacc qaataaqtqc ttttaaccca 720 aaaqtaatqc qqaqqqtqqt qattaqaqqt tqqtqqccaa tattacaqtq tctaaaaqqa 780 caggaatcac taagatatag accactgcag tgggacactg aaaaacagtg gagagtaaag 840 900 aaaqactatq aqqacaacta cqqctacttq qtqcaqtacq qaqqaqqttq qqqqaqtqqt gaagtgacat tggagggatt atatcaggaa cacttactct ggagaaactc ttggtcaaag 960 ggaaatgatg gcatggacct agtgagatac tttggctgca tagtatacct gtacccactg 1020 caggaccaag actactggtt ttggtgggat acagacttta aagaactata cgcagagagc 1080 atcaaagaat actcccagcc aagtgttatg atgatggcca aacgcactag actagtaata 1140 gctagagaca gagcaccaca cagaagaaga gtaagaaaaa ttttcatacc cccgccaagc 1200 agagacacca cacaatggca atttcagaca gacttctgca aaaggccact attcacatgg 1260 gcggcaggat taatagacat gcagaaacca tttgatgcaa acggagcgtt tagaaacgcc 1320 1380 gtgccaccac agggtgacac agaactgcca aaacagagtg agtttaagaa gggagataat 1440 aaccctaact ataacataac ggaaggacat gaaaaaaata tttacccaat aatcatatac 1500 gttgaccaga aagaccagaa aacaagaaaa aaatactgtg tatgctacaa caaaacttta 1560 aatagatgga gaaaagccca ggcgagtaca ttagcaatag gagatcttca aggactagta 1620 ctgcgtcagc ttatgaatca ggagatgaca tactactgga aatcgggaga gttttcctca 1680 1740 ccattcctqc aaaqatqqaa aqqaactaqq ctaataacca taqacqcaaq aaaqqcaqac acagaaaacc caaaagtaag ttcgtgggaa tggggggcaaa actggaacac aagcggaaca 1800 gtgctacagg aggtattcaa catttcactg aacaacactc aaataagaca ggatgacttt 1860 gcaaaattga cactgccaaa gtcaccacat gacatagact ttggacatca cagcagattt 1920 ggaccattet gtgttaaaaa egaaccaeta gaatteeaae taetgeetee aacaecaaet 1980 aacctatggt ttcagtacaa atttctcttt cagtttggcg gtgaatacca gccaccaaca 2040 ggtatccgcg atccctgcat tgatacacca gcctatcctg tgccgcagtc aggaagtgtt 2100 acacacccca aattcgccgg aaagggcgga atgctcacgg aaacagaccg ttggggtatc 2160

actgctgcct cttccagaac cctcagtgca gatacaccca ccgaagcagc gcaaagtgca

2220

55

-continued

ctteteagag gggacgegga aaagaaagga gaggaaaeeg aggaaaeege gteategtee	2280
agtatcacga gtgccgaaag ctctactgag qqaqatqqat cqtctqatqa tqaaqaqaca	2340
atcagacgca gaaggaggac ctggaagcga ctcagacgga tggtcagaca qcaqcttqac	2400
cgacgaatgg accacaagcg acagcgactt cattgatacc cccataagag aaagatgcct	2460
caataaaaaa caaaaaaaac gctaaacagt gtccgcctat tagtgggggg gtccgggggg	2520
gettgeeeee eegtaagegg ggttaeegea etaaeteeet geeaagtgaa aeteggggae	2580
gagtgagtgc gggacatccc gtgtaatggc tacataacta cccggctttg cttcgacagt	2640
ggccgtggct cgaccctcgc acaacactgc aggtagggggg cgcaattggg atcgttagaa	2700
aactatggcc gagcatgggg ggggctccgc ccccccaac ccccccggtg ggggggccaa	2760
ggccctccct acaccccccc atgggggggt gccgcccccc aaaccccccg cgtcggatgg	2820
gggggggtgc gccccccca aacccccctt gcccggggct gtgccccgga ccccc	2875
<210> SEQ ID NO 11 <211> LENGTH: 2750 <212> TYPE: DNA <213> ORGANISM: Torque teno virus <400> SEQUENCE: 11	
taatgacagg gttcaccgga aaggctgcaa aattacagct aaaaccacaa tcataacaca	60
ataaaccaca aactattaca ggaaactgca ataaattaag aaataaatta cacataacca	120
cctaaccaca ggaaactttg caaaaaaggg gaaataaatc tcattggctg ggccagaagt	180
cctcattaga ataagaaaag aaccaatcag aaacacttcc tcttttagag tatataagta	240
agtgcgcaga cgaatggctg agtttatgcc gctggtggta gacacgaaca gagctgagtg	300
tctaaccgcc tgggcgggtg ccggagctcc tgagagcgga gtcaaggggc ctatcgggca	360
ggcggtaatc cagcggaact gggcccccct ccatggaaga aagatggctg acggtagcgt	420
actgogogca oggattatto tgogactgta aaaaccogaa aaaacatott gaaaaatgoo	480
ttacagacgc tatcgccgac gccgaaggag accgacacgg agatggaggc accggaggtg	540
gagacgctac tttcgatatc ggtatcgacg cgctcctcgc cgccgccgcc caaaggtaag	600
gagacggagg aggaaagete eggteattea atggtteeet eetageegga gaacetgeet	660
catagagggc ttctggccgt tgagctacgg acactggttc cgtacctgtc tccctatgag	720
aaggetaaac ggactgattt teaegggtgg aggatgtgae tggaeteaat ggagtttaea	780
aaatttattc catgaaaaat taaactggag aaatatatgg acagcttcta atgtaggcat	840
ggagtttgct agatttttaa gaggaaaatt ttacttcttc agacacccct ggagaagcta	900
tatagtaaca tgggaccaag acataccctg taaaccgctc ccatatcaaa acttacaacc	960
tctattaatg ctcctcaaaa aacagcataa attagtcctc tctcaaaaag attgcaaccc	1020
gaacagaaaa caaaaaccag ttacattaaa attcaggcct ccaccaaaat taacatcaca	1080
gtggagacta agcagagaac tctcaaaaat acccttaata agactaggaa taagtctcat	1140
agacetgtea gaaceatggt tagaaggetg gggaaatget ttttaeagtg taetaggata	1200
tgaagctagt aaacacagtg gcagatggtc caactggaca caaatgaaat atttttggat	1260
ctatgacaca ggcgtgggaa acgcagtcta cgttatttta ctgaaaaaaag acgtgagtga	1320
caatccagga gacatggcta cacagtttgt aacaggctca ggacaacacc cagacgcaat	1380
agatcatata gaaatggtaa acgaaggatg gccttactgg ctatttttt atggacaatc	1440

agaacaagat ataaaaaaac tagcacatga ccaagatata gtcagagaat atgccagaga 1500

56

57

-continued

ccctaaatca aaaaaattaa aaataggagt cataggatgg gccagcagta actacacaac 1560 agcagggagc aaccaaaaca gtgtacttca aacgccagaa gcaatacaag gtggatatgt 1620 agettatgea ggatecagaa taccaggege aggatetate acaaatttat tteaaatggg 1680 atggccagga gatcaaaact ggccacccac aaaccaagac caaaccaatt ttaactgggg 1740 actcagagga ctttgtgtat taagagataa catgaaacta ggagcacaag agctagacga 1800 tgaatgcaca atgctctcct tatttggacc atttgttgaa aaagcaaaca cagcttttgc 1860 tacaaacgac ccaaaatatt ttaggcctga actaaaggac tacaacgtag taatgaaata 1920 tgcttttaaa tttcagtggg gaggacatgg caccgaaaga tttaaaacaa ccatcggaga 1980 teccageace ataceatgte cetttgaace eggggaaegg taceaceaeg gggtaeaaga 2040 2100 ccccqccaaq qtacaaaaca caqtcctcaa cccttqqqac tatqactqtq acqqqattqt tagaacagat actctcaaaa gacttctcga actccccaca gagacggagg agacggagaa 2160 2220 ggcgtaccca ctccttggac aaaaaacaga gaaagagcca ttatcagact ccgacgaaga gagcgttatc tcaagcacga gcagtggatc ctctcaagaa gaagagacgc agagacgaaa 2280 gcaccacaaq ccaaqcaaqc qacqacteet caaqcacete caqcqqqtqq taaaqaqqat 2340 gaaaacactg tgatagataa atacagaaac ctagcagacc cctcactcaa tgtcacagga 2400 cacatggaaa aattcatgca actacacata caaaacatac aagaaataag agctaaaaat 2460 qctaaaaaat ccctcaataa actttacttt tctqattaat aqcqqcctcc tqtqtccaat 2520 ctatttttcc tacacccctt caaaatggcg ggaggaacac aaaatggcgg agggactaag 2580 ggggggggcaa geeceeeece gggggttgag ggggggttte eceeeteee eeeggtgcag 2640 ggggcggagc ccccgcaccc cccatgcggg ggctccgccc cctgcacccc cgggaggggg 2700 2750 ggaaaccccc cctcaacccc ccgcgggggg caagcccccc tgcaccccc <210> SEQ ID NO 12 <211> LENGTH: 2803 <212> TYPE: DNA <213> ORGANISM: Torque teno virus <400> SEOUENCE: 12 tcatgacagg gttcaccgga agggctgcaa aattacagct aaaaccacaa gtctaacaca 60 ataaaccaca aagtattaca ggaaactgca ataaatttag aaatagatta cacataacca 120 ccaaaccaca ggaaacctac acataaccac caaaccacag gaaacataac caccaaacca 180 caggaaactg tgcaaaaaag gggaaataaa ttctattggc tgggcctgaa gtcctcatta 240 gaataataaa agaaccaatc agaagaactt cctcttttag agtatataag taagtgcgca 300 360 qacqaatqqc tqaqtttatq ccqctqqtqq taqacacqaa caqaqctqaq tqtctaaccq cctgggcggg tgccggagct cctgagagcg gagtcaaggg gcttatcggg caggcggtaa 420 tccagcggaa ccgggccccc ctcgatggaa gaaagatggc tgacggtagc gtactgcgcc 480 cacggattat tctgcggatg taaagacccg aaaaaacacc ttgaaaaatg ccttacagac 540 gctatcgcag acgccgaagg agaccgacac ggagatggag gcaccggagg tggagacgct 600 tetttegata teggtatega egegeteete geegeegeeg cacaaaggta aggagaegga 660 ggagaaaagc tccggtcata caatggttcc ctcctagccg gaggacctgc ctcatagagg 720 gettetggee gttgagetae ggacaetggt teegtaeetg teteeetatg agaaggetga 780 840 acggactcat tttcacgggt ggcggttgtg actggacaca gtggagttta caaaacttat

60

59

-continued

	concinaca	
accatgaaaa acttaactgg agaaatatat ggacagcttc	taatgttggc atggaatttg	900
ctagattttt aagaggaaaa ttttacttct tcagacaccc	ctggagaagc tatattatta	960
cttgggacca agacatteet tgeaaacett taccatacca	aaacttacat ccactactta	1020
tgctattaaa aaaacaacat aaacttgtac tatctcaaaa	agactgtaat ccaaacagaa	1080
gacaaaaacc agtaacttta aaaataagac ctccaccaaa	attaacatca cagtggagat	1140
taagcagaga actagcaaaa atgccacttg tcagactagg	agtcagtcta atagacctct	1200
cagaaccatg gttagaaggc tggggaaatg ctttttacag	cgtactggga tatgaagcta	1260
gtaaacactc agggagatgg tcaaactgga cacaaataaa	atacttctgg atatatgaca	1320
caggagtagg aaatgcagtt tatgtcattt tattaaaaca	agaggtggat gataatccag	1380
gggcaatggc aacaaaattt gtaactggac caggacaaca	cccagatgcc atagacagga	1440
tcgaacaaat aaatgaagga tggccttact ggcttttctt	ttacggacag tcagaacaag	1500
acataaaaaa attagcacac gatcaagaaa tagcaaggga	atatgcaaac aatccaaaat	1560
ctaaaaaatt aaaaatagga gtgataggat gggctagcag	taactttaca acagcaggca	1620
gctcacaaaa tcaaacacca caaacaccag aagccataca	aggaggatac gtagcatatg	1680
caggctcaaa aatacaagga gcaggagcaa ttacaaactt	atacacagat gcatggccgg	1740
gagaccaaaa ttggccacct ctaaatagag aacaaacaaa	ctttaactgg ggcttaagag	1800
gactctgtat aatgagagat aatatgaaac tgggagctca	agaactagat gatgaatgta	1860
caatgctcac actttttgga ccttttgtgg aaaaagcaaa	cacagctttt gctacaaatg	1920
accctaaata cttcagacca gaactcaaag actataacat	agtaatgaaa tatgccttta	1980
aatttcagtg gggaggccac ggaaccgaaa gattcaaaac	aaccatcgga gatcccagca	2040
ccataccatg tccctttgaa cccggggaac ggtaccacca	cggggtacaa gaccccgcca	2100
aggtacaaaa cacagtcctc aacccttggg actatgactg	tgacgggatt gttagaacag	2160
atacteteaa aagaettete gaaeteeeaa cagagaegga	ggagacggag aaggcgtacc	2220
cactccttgg acaaaaaaca gagaaagagc cattatcaga	ctccgacgaa gagagcgtta	2280
teteaageae gageagtgga teeteteaag aagaagagae	gcagagaaga agacagcaca	2340
agccaagcaa gcgacgactc ctcaagcacc tccagcgggt	ggtaaagaga atgaagacac	2400
tgtgatagat aaatatagaa acctagcaga cccctcactc	aatgtcacag gacacatgga	2460
aaaattcatg caactgcaca tacaaaacgt acaagaaata	agagctaaaa atgctaaaaa	2520
atccctcaat aaactttact tttctgatta ataccggcct	cctgtgtcca atctatttt	2580
cctacacccc ttcaaaatgg cgggcgggac acaaaatggc	ggaggaaact aaggggggggg	2640
caagcccccc cccgggggtt gagggggggt ttccccccct	ccccccggtg caggggggggg	2700
ageeeeegca ceceeetge gggggeteeg eeeetgeae	ccccgggagg gggggaaacc	2760
ccccctcaac cccccgcggg gggcaageee ccctgcaeee	ccc	2803
<210> SEQ ID NO 13 <211> LENGTH: 635 <212> TYPE: PRT <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 13		
Met Arg Phe Arg Arg Arg Arg Phe Gly Arg Arg 1 5 10	Arg Arg Tyr Tyr Arg 15	
Lys Arg Arg Gly Gly Trp Arg Arg Arg Phe Arg 20 25	Ile Arg Arg Arg Arg 30	

-continued

Pro	Trp	Arg 35	Arg	Trp	Arg	Val	Arg 40	Arg	Trp	Arg	Arg	Ser 45	Val	Phe	Arg
Arg	Gly 50	Gly	Arg	Arg	Ala	Arg 55	Pro	Tyr	Arg	Ile	Ser 60	Ala	Trp	Asn	Pro
Lys 65	Val	Leu	Arg	Asn	Cys 70	Arg	Ile	Thr	Gly	Trp 75	Trp	Pro	Val	Ile	Gln 80
Суз	Met	Asp	Gly	Met 85	Glu	Trp	Ile	Lys	Tyr 90	Lys	Pro	Met	Asp	Leu 95	Arg
Val	Glu	Ala	Asn 100	Trp	Ile	Phe	Asn	Lys 105	Gln	Asp	Ser	Lys	Ile 110	Glu	Thr
Glu	Gln	Met 115	Gly	Tyr	Leu	Met	Gln 120	Tyr	Gly	Gly	Gly	Trp 125	Ser	Ser	Gly
Val	Ile 130	Ser	Leu	Glu	Gly	Leu 135	Phe	Asn	Glu	Asn	Arg 140	Leu	Trp	Arg	Asn
Ile 145	Trp	Ser	Lys	Ser	Asn 150	Aap	Gly	Met	Asp	Leu 155	Val	Arg	Tyr	Phe	Gly 160
СЛа	Arg	Ile	Arg	Leu 165	Tyr	Pro	Thr	Glu	Asn 170	Gln	Aap	Tyr	Leu	Phe 175	Trp
Tyr	Aap	Thr	Glu 180	Phe	Aap	Glu	Gln	Gln 185	Arg	Arg	Met	Leu	Asp 190	Glu	Tyr
Thr	Gln	Pro 195	Ser	Val	Met	Leu	Gln 200	Ala	ГЛа	Asn	Ser	Arg 205	Leu	Ile	Val
Суз	Lys 210	Gln	Lys	Met	Pro	Ile 215	Arg	Arg	Arg	Val	Lys 220	Ser	Ile	Phe	Ile
Pro 225	Pro	Pro	Ala	Gln	Leu 230	Thr	Thr	Gln	Trp	Lys 235	Phe	Gln	Gln	Glu	Leu 240
Суз	Gln	Phe	Pro	Leu 245	Phe	Asn	Trp	Ala	Cys 250	Ile	Суз	Ile	Asp	Met 255	Asp
Thr	Pro	Phe	Asp 260	Tyr	Asn	Gly	Ala	Trp 265	Arg	Asn	Ala	Trp	Trp 270	Leu	Met
Arg	Arg	Leu 275	Gln	Asn	Gly	Asn	Met 280	Glu	Tyr	Ile	Glu	Arg 285	Trp	Gly	Arg
Ile	Pro 290	Met	Thr	Gly	Asp	Thr 295	Glu	Leu	Pro	Pro	Ala 300	Asp	Asp	Phe	Lys
Ala 305	Gly	Gly	Val	Asn	Lys 310	Asn	Phe	Lys	Pro	Thr 315	Gly	Ile	Gln	Arg	Ile 320
Tyr	Pro	Ile	Val	Ala 325	Val	Cys	Leu	Val	Glu 330	Gly	Asn	Lys	Arg	Val 335	Val
Lys	Trp	Ala	Thr 340	Val	His	Asn	Gly	Pro 345	Ile	Asp	Arg	Trp	Arg 350	Lys	Lys
Gln	Thr	Gly 355	Thr	Leu	Lys	Leu	Ser 360	Asn	Leu	Arg	Gly	Leu 365	Val	Leu	Arg
Val	Cys 370	Ser	Glu	Ser	Glu	Thr 375	Tyr	Tyr	Lys	Trp	Thr 380	Gly	Ser	Glu	Phe
Thr 385	Gly	Ala	Phe	Gln	Gln 390	Aap	Trp	Trp	Pro	Val 395	Gly	Gly	Thr	Glu	Tyr 400
Pro	Leu	Суз	Thr	Ile 405	Lys	Met	Asp	Pro	Glu 410	Tyr	Glu	Asn	Pro	Thr 415	Val
Glu	Val	Trp	Ser 420	Trp	Lys	Ala	Asn	Ile 425	Pro	Thr	Ser	Gly	Thr 430	Leu	Lys
Asp	Tyr	Phe 435	Gly	Leu	Ser	Thr	Gly 440	Gln	Gln	Trp	Lys	Asp 445	Thr	Asp	Phe

⁴⁴⁵

-continued

64

-continued

Ser	Gln	Pro 195	Ser	Val	Met	Met	Met 200	Ala	Lys	Arg	Thr	Arg 205	Leu	Val	Ile
Ala	Arg 210	Asp	Arg	Ala	Pro	His 215	Arg	Arg	Arg	Val	Arg 220	Lys	Ile	Phe	Ile
Pro 225	Pro	Pro	Ser	Arg	Asp 230	Thr	Thr	Gln	Trp	Gln 235	Phe	Gln	Thr	Asp	Phe 240
Cys	Lys	Arg	Pro	Leu 245	Phe	Thr	Trp	Ala	Ala 250	Gly	Leu	Ile	Aab	Met 255	Gln
Lys	Pro	Phe	Asp 260	Ala	Asn	Gly	Ala	Phe 265	Arg	Asn	Ala	Trp	Trp 270	Leu	Glu
Thr	Arg	Asn 275	Asp	Gln	Gly	Glu	Met 280	Lys	Tyr	Ile	Glu	Leu 285	Trp	Gly	Arg
Val	Pro 290	Pro	Gln	Gly	Asp	Thr 295	Glu	Leu	Pro	Lys	Gln 300	Ser	Glu	Phe	Lys
Lys 305	Gly	Asp	Asn	Asn	Pro 310	Asn	Tyr	Asn	Ile	Thr 315	Glu	Gly	His	Glu	Lys 320
Asn	Ile	Tyr	Pro	Ile 325	Ile	Ile	Tyr	Val	Asp 330	Gln	Lys	Asp	Gln	Lys 335	Thr
Arg	Lys	Lys	Tyr 340	Cys	Val	Суз	Tyr	Asn 345	Lys	Thr	Leu	Asn	Arg 350	Trp	Arg
Lys	Ala	Gln 355	Ala	Ser	Thr	Leu	Ala 360	Ile	Gly	Asp	Leu	Gln 365	Gly	Leu	Val
Leu	Arg 370	Gln	Leu	Met	Asn	Gln 375	Glu	Met	Thr	Tyr	Tyr 380	Trp	Lys	Ser	Gly
Glu 385	Phe	Ser	Ser	Pro	Phe 390	Leu	Gln	Arg	Trp	Lys 395	Gly	Thr	Arg	Leu	Ile 400
Thr	Ile	Asp	Ala	Arg 405	Lys	Ala	Asp	Thr	Glu 410	Asn	Pro	Lys	Val	Ser 415	Ser
Trp	Glu	Trp	Gly 420	Gln	Asn	Trp	Asn	Thr 425	Ser	Gly	Thr	Val	Leu 430	Gln	Glu
Val	Phe	Asn 435	Ile	Ser	Leu	Asn	Asn 440	Thr	Gln	Ile	Arg	Gln 445	Asp	Asp	Phe
Ala	Lys 450	Leu	Thr	Leu	Pro	Lys 455	Ser	Pro	His	Asp	Ile 460	Aab	Phe	Gly	His
His 465	Ser	Arg	Phe	Gly	Pro 470	Phe	Cys	Val	Lys	Asn 475	Glu	Pro	Leu	Glu	Phe 480
Gln	Leu	Leu	Pro	Pro 485	Thr	Pro	Thr	Asn	Leu 490	Trp	Phe	Gln	Tyr	Lys 495	Phe
Leu	Phe	Gln	Phe 500	Gly	Gly	Glu	Tyr	Gln 505	Pro	Pro	Thr	Gly	Ile 510	Arg	Asp
Pro	Cys	Ile 515	Asp	Thr	Pro	Ala	Tyr 520	Pro	Val	Pro	Gln	Ser 525	Gly	Ser	Val
Thr	His 530	Pro	Lys	Phe	Ala	Gly 535	Lys	Gly	Gly	Met	Leu 540	Thr	Glu	Thr	Asp
Arg 545	Trp	Gly	Ile	Thr	Ala 550	Ala	Ser	Ser	Arg	Thr 555	Leu	Ser	Ala	Asp	Thr 560
Pro	Thr	Glu	Ala	Ala 565	Gln	Ser	Ala	Leu	Leu 570	Arg	Gly	Asp	Ala	Glu 575	Lys
Lys	Gly	Glu	Glu 580	Thr	Glu	Glu	Thr	Ala 585	Ser	Ser	Ser	Ser	Ile 590	Thr	Ser
Ala	Glu	Ser 595	Ser	Thr	Glu	Gly	Asp 600	Gly	Ser	Ser	Asp	Asp 605	Glu	Glu	Thr

-continued

68

-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ile	Arg 610	Arg	Arg	Arg	Arg	Thr 615	Trp	Lys	Arg	Leu	Arg 620	Arg	Met	Val	Arg
Gln 625	Gln	Leu	Asp	Arg	Arg 630	Met	Asp	His	ГЛа	Arg 635	Gln	Arg	Leu	His	
<210 <211 <212 <213)> SH L> LH 2> TY 3> OF	EQ II ENGTH (PE : RGANI	D NO H: 62 PRT ISM:	15 25 Tore	que 1	teno	vir	ıs							
<400)> SH	EQUEI	NCE :	15											
Met 1	Pro	Tyr	Arg	Arg 5	Tyr	Arg	Arg	Arg	Arg 10	Arg	Arg	Pro	Thr	Arg 15	Arg
Trp	Arg	His	Arg 20	Arg	Trp	Arg	Arg	Tyr 25	Phe	Arg	Tyr	Arg	Tyr 30	Arg	Arg
Ala	Pro	Arg 35	Arg	Arg	Arg	Pro	Lys 40	Val	Arg	Arg	Arg	Arg 45	Arg	Lys	Ala
Pro	Val 50	Ile	Gln	Trp	Phe	Pro 55	Pro	Ser	Arg	Arg	Thr 60	Суз	Leu	Ile	Glu
Gly 65	Phe	Trp	Pro	Leu	Ser 70	Tyr	Gly	His	Trp	Phe 75	Arg	Thr	Сүз	Leu	Pro 80
Met	Arg	Arg	Leu	Asn 85	Gly	Leu	Ile	Phe	Thr 90	Gly	Gly	Gly	Сүз	Asp 95	Trp
Thr	Gln	Trp	Ser 100	Leu	Gln	Asn	Leu	Phe 105	His	Glu	Lys	Leu	Asn 110	Trp	Arg
Asn	Ile	Trp 115	Thr	Ala	Ser	Asn	Val 120	Gly	Met	Glu	Phe	Ala 125	Arg	Phe	Leu
Arg	Gly 130	Lys	Phe	Tyr	Phe	Phe 135	Arg	His	Pro	Trp	Arg 140	Ser	Tyr	Ile	Val
Thr 145	Trp	Asp	Gln	Asp	Ile 150	Pro	Суз	Lys	Pro	Leu 155	Pro	Tyr	Gln	Asn	Leu 160
Gln	Pro	Leu	Leu	Met 165	Leu	Leu	Lys	Lys	Gln 170	His	Lys	Leu	Val	Leu 175	Ser
Gln	Lys	Asp	Cys 180	Asn	Pro	Asn	Arg	Lys 185	Gln	Lys	Pro	Val	Thr 190	Leu	Lys
Phe	Arg	Pro 195	Pro	Pro	ГЛа	Leu	Thr 200	Ser	Gln	Trp	Arg	Leu 205	Ser	Arg	Glu
Leu	Ser 210	Lys	Ile	Pro	Leu	Ile 215	Arg	Leu	Gly	Ile	Ser 220	Leu	Ile	Asp	Leu
Ser 225	Glu	Pro	Trp	Leu	Glu 230	Gly	Trp	Gly	Asn	Ala 235	Phe	Tyr	Ser	Val	Leu 240
Gly	Tyr	Glu	Ala	Ser 245	Lys	His	Ser	Gly	Arg 250	Trp	Ser	Asn	Trp	Thr 255	Gln
Met	Lys	Tyr	Phe 260	Trp	Ile	Tyr	Asp	Thr 265	Gly	Val	Gly	Asn	Ala 270	Val	Tyr
Val	Ile	Leu 275	Leu	ГЛа	Lys	Asb	Val 280	Ser	Asp	Asn	Pro	Gly 285	Asp	Met	Ala
Thr	Gln 290	Phe	Val	Thr	Gly	Ser 295	Gly	Gln	His	Pro	Aap 300	Ala	Ile	Asp	His
Ile 305	Glu	Met	Val	Asn	Glu 310	Gly	Trp	Pro	Tyr	Trp 315	Leu	Phe	Phe	Tyr	Gly 320
Gln	Ser	Glu	Gln	Asp 325	Ile	Lys	Lys	Leu	Ala 330	His	Asp	Gln	Asp	Ile 335	Val
Arg	Glu	Tyr	Ala 340	Arg	Asp	Pro	Lys	Ser 345	Гла	Lys	Leu	Lys	Ile 350	Gly	Val

-continued

Ile	Gly	Trp 355	Ala	Ser	Ser	Asn	Tyr 360	Thr	Thr	Ala	Gly	Ser 365	Asn	Gln	Asn	
Ser	Val 370	Leu	Gln	Thr	Pro	Glu 375	Ala	Ile	Gln	Gly	Gly 380	Tyr	Val	Ala	Tyr	
Ala 385	Gly	Ser	Arg	Ile	Pro 390	Gly	Ala	Gly	Ser	Ile 395	Thr	Asn	Leu	Phe	Gln 400	
Met	Gly	Trp	Pro	Gly 405	Asp	Gln	Asn	Trp	Pro 410	Pro	Thr	Asn	Gln	Asp 415	Gln	
Thr	Asn	Phe	Asn 420	Trp	Gly	Leu	Arg	Gly 425	Leu	Суз	Val	Leu	Arg 430	Asp	Asn	
Met	Lys	Leu 435	Gly	Ala	Gln	Glu	Leu 440	Asp	Asp	Glu	Суа	Thr 445	Met	Leu	Ser	
Leu	Phe 450	Gly	Pro	Phe	Val	Glu 455	Lys	Ala	Asn	Thr	Ala 460	Phe	Ala	Thr	Asn	
Asp 465	Pro	Lys	Tyr	Phe	Arg 470	Pro	Glu	Leu	Lys	Asp 475	Tyr	Asn	Val	Val	Met 480	
ГЛа	Tyr	Ala	Phe	Lys 485	Phe	Gln	Trp	Gly	Gly 490	His	Gly	Thr	Glu	Arg 495	Phe	
ГЛа	Thr	Thr	Ile 500	Gly	Asp	Pro	Ser	Thr 505	Ile	Pro	Суз	Pro	Phe 510	Glu	Pro	
Gly	Glu	Arg 515	Tyr	His	His	Gly	Val 520	Gln	Asp	Pro	Ala	Lys 525	Val	Gln	Asn	
Thr	Val 530	Leu	Asn	Pro	Trp	Asp 535	Tyr	Aab	Сүз	Asp	Gly 540	Ile	Val	Arg	Thr	
Asp 545	Thr	Leu	Lys	Arg	Leu 550	Leu	Glu	Leu	Pro	Thr 555	Glu	Thr	Glu	Glu	Thr 560	
Glu	Lys	Ala	Tyr	Pro 565	Leu	Leu	Gly	Gln	Lys 570	Thr	Glu	LÀa	Glu	Pro 575	Leu	
Ser	Asp	Ser	Asp 580	Glu	Glu	Ser	Val	Ile 585	Ser	Ser	Thr	Ser	Ser 590	Gly	Ser	
Ser	Gln	Glu 595	Glu	Glu	Thr	Gln	Arg 600	Arg	Lys	His	His	Lys 605	Pro	Ser	Lys	
Arg	Arg 610	Leu	Leu	Lys	His	Leu 615	Gln	Arg	Val	Val	Lys 620	Arg	Met	ГÀа	Thr	
Leu 625																
<210	0> SH 1> LH	EQ II ENGTH) NO 1: 62	16 25												
<212	2> T) 3> OF	(PE: RGANI	PRT [SM:	Tore	que t	eno	viru	ıs								
<400)> SH	EQUEI	ICE :	16												
Met 1	Pro	Tyr	Arg	Arg 5	Tyr	Arg	Arg	Arg	Arg 10	Arg	Arg	Pro	Thr	Arg 15	Arg	
Trp	Arg	His	Arg 20	Arg	Trp	Arg	Arg	Phe 25	Phe	Arg	Tyr	Arg	Tyr 30	Arg	Arg	
Ala	Pro	Arg 35	Arg	Arg	Arg	Thr	Lys 40	Val	Arg	Arg	Arg	Arg 45	Arg	Lys	Ala	
Pro	Val 50	Ile	Gln	Trp	Phe	Pro 55	Pro	Ser	Arg	Arg	Thr 60	Сув	Leu	Ile	Glu	
Gly 65	Phe	Trp	Pro	Leu	Ser 70	Tyr	Gly	His	Trp	Phe 75	Arg	Thr	Cys	Leu	Pro 80	
Met	Arg	Arg	Leu	Asn	Gly	Leu	Ile	Phe	Thr	Gly	Gly	Gly	Cys	Asp	Trp	

-continued

Thr	Gln	Trp	Ser 100	Leu	Gln	Asn	Leu	Tyr 105	His	Glu	Lys	Leu	Asn 110	Trp	Arg
Asn	Ile	Trp 115	Thr	Ala	Ser	Asn	Val 120	Gly	Met	Glu	Phe	Ala 125	Arg	Phe	Leu
Arg	Gly 130	Lys	Phe	Tyr	Phe	Phe 135	Arg	His	Pro	Trp	Arg 140	Ser	Tyr	Ile	Ile
Thr 145	Trp	Asp	Gln	Asp	Ile 150	Pro	Суз	Lys	Pro	Leu 155	Pro	Tyr	Gln	Asn	Leu 160
His	Pro	Leu	Leu	Met 165	Leu	Leu	Lys	Lys	Gln 170	His	Lys	Leu	Val	Leu 175	Ser
Gln	Lys	Asp	Cys 180	Asn	Pro	Asn	Arg	Arg 185	Gln	Lys	Pro	Val	Thr 190	Leu	Lys
Ile	Arg	Pro 195	Pro	Pro	Lys	Leu	Thr 200	Ser	Gln	Trp	Arg	Leu 205	Ser	Arg	Glu
Leu	Ala 210	Lys	Met	Pro	Leu	Val 215	Arg	Leu	Gly	Val	Ser 220	Leu	Ile	Asp	Leu
Ser 225	Glu	Pro	Trp	Leu	Glu 230	Gly	Trp	Gly	Asn	Ala 235	Phe	Tyr	Ser	Val	Leu 240
Gly	Tyr	Glu	Ala	Ser 245	Lys	His	Ser	Gly	Arg 250	Trp	Ser	Asn	Trp	Thr 255	Gln
Ile	Lys	Tyr	Phe 260	Trp	Ile	Tyr	Asp	Thr 265	Gly	Val	Gly	Asn	Ala 270	Val	Tyr
Val	Ile	Leu 275	Leu	Lys	Gln	Glu	Val 280	Asp	Asp	Asn	Pro	Gly 285	Ala	Met	Ala
Thr	Lys 290	Phe	Val	Thr	Gly	Pro 295	Gly	Gln	His	Pro	Asp 300	Ala	Ile	Asp	Arg
Ile 305	Glu	Gln	Ile	Asn	Glu 310	Gly	Trp	Pro	Tyr	Trp 315	Leu	Phe	Phe	Tyr	Gly 320
Gln	Ser	Glu	Gln	Asp 325	Ile	Гла	Lys	Leu	Ala 330	His	Asp	Gln	Glu	Ile 335	Ala
Arg	Glu	Tyr	Ala 340	Asn	Asn	Pro	Lys	Ser 345	Lys	Lys	Leu	Lys	Ile 350	Gly	Val
Ile	Gly	Trp 355	Ala	Ser	Ser	Asn	Phe 360	Thr	Thr	Ala	Gly	Ser 365	Ser	Gln	Asn
Gln	Thr 370	Pro	Gln	Thr	Pro	Glu 375	Ala	Ile	Gln	Gly	Gly 380	Tyr	Val	Ala	Tyr
Ala 385	Gly	Ser	Lys	Ile	Gln 390	Gly	Ala	Gly	Ala	Ile 395	Thr	Asn	Leu	Tyr	Thr 400
Asp	Ala	Trp	Pro	Gly 405	Asp	Gln	Asn	Trp	Pro 410	Pro	Leu	Asn	Arg	Glu 415	Gln
Thr	Asn	Phe	Asn 420	Trp	Gly	Leu	Arg	Gly 425	Leu	Суз	Ile	Met	Arg 430	Asp	Asn
Met	Lys	Leu 435	Gly	Ala	Gln	Glu	Leu 440	Asp	Asp	Glu	Сув	Thr 445	Met	Leu	Thr
Leu	Phe	Gly	Pro	Phe	Val	Glu	Lys	Ala	Asn	Thr	Ala	Phe	Ala	Thr	Asn
Asp	450 Pro	Lys	Tyr	Phe	Arg	455 Pro	Glu	Leu	Lys	Asp	460 Tyr	Asn	Ile	Val	Met
465 Lys	Tyr	Ala	Phe	Lys	470 Phe	Gln	Trp	Gly	Gly	475 His	Gly	Thr	Glu	Arg	480 Phe
Lvs	Thr	Thr	Ile	485 Glv	Asp	Pro	Ser	Thr	490 Ile	Pro	Cvs	Pro	Phe	495 Glu	Pro
1			500	-1	- T .			505			4	'	510		

-continued

Gly Glu Arg Tyr His His Gly Val Gln Asp Pro Ala Lys Val Gln Asn 515 520 525 Thr Val Leu Asn Pro Trp Asp Tyr Asp Cys Asp Gly Ile Val Arg Thr 535 540 530 Asp Thr Leu Lys Arg Leu Leu Glu Leu Pro Thr Glu Thr Glu Glu Thr 545 550 555 560 Glu Lys Ala Tyr Pro Leu Leu Gly Gln Lys Thr Glu Lys Glu Pro Leu 570 565 575 Ser Asp Ser Asp Glu Glu Ser Val Ile Ser Ser Thr Ser Ser Gly Ser 585 580 590 Ser Gln Glu Glu Glu Thr Gln Arg Arg Arg Gln His Lys Pro Ser Lys 595 600 605 Arg Arg Leu Leu Lys His Leu Gln Arg Val Val Lys Arg Met Lys Thr 610 615 620 Leu 625 <210> SEO ID NO 17 <211> LENGTH: 73 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEOUENCE: 17 Met Lys Glu Lys Asp Tyr Trp Glu Glu Ala Trp Leu Thr Ser Cys Thr 1 5 10 15 Ser Ile His Asp His His Cys Asn Cys Gly Ser Trp Arg Asp His Leu 20 25 30 Trp Thr Leu Cys Ala Leu Asp Asp Ala Asp Leu Ala Ala Ala Asp 35 40 45 Ile Ile Glu Arg Glu Glu Ala Asp Gly Gly Glu Asp Phe Gly Phe Val 55 50 60 Asp Gly Asp Pro Gly Asp Ala Gly Gly 65 70 <210> SEQ ID NO 18 <211> LENGTH: 72 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEQUENCE: 18 Met Pro Glu His Trp Glu Glu Ala Trp Leu Glu Ala Thr Lys Gly Trp 1 5 10 His Asp Leu Asp Cys Arg Cys Gly Asn Trp Gln Asp His Leu Trp Leu 25 20 30 Leu Leu Ala Asp Gly Asp Ala Ala Leu Ala Ala Ala Val Asp Ala Ile 40 45 35 Glu Arg Asp Ala Met Gly Gly Glu Asp Val Thr Thr Ala Thr Asp Arg 50 55 60 Val Thr Ile Gly Asp Asp Gly Trp 65 70 <210> SEQ ID NO 19 <211> LENGTH: 68 <212> TYPE: PRT <213> ORGANISM: Torque teno virus

<400> SEQUENCE: 19
-75

-continued

Met Glu Glu Arg Trp Leu Thr Val Ala Tyr Cys Ala His Gly Leu Phe Cys Asp Cys Lys Asn Pro Lys Lys His Leu Glu Lys Cys Leu Thr Asp Ala Ile Ala Asp Ala Glu Gly Asp Arg His Gly Asp Gly Gly Thr Gly Gly Gly Asp Ala Thr Phe Asp Ile Gly Ile Asp Ala Leu Leu Ala Ala Ala Ala Gln Arg <210> SEQ ID NO 20 <211> LENGTH: 68 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEQUENCE: 20 Met Glu Glu Arg Trp Leu Thr Val Ala Tyr Cys Ala His Gly Leu Phe Cys Gly Cys Lys Asp Pro Lys Lys His Leu Glu Lys Cys Leu Thr Asp Ala Ile Ala Asp Ala Glu Gly Asp Arg His Gly Asp Gly Gly Thr Gly Gly Gly Asp Ala Ser Phe Asp Ile Gly Ile Asp Ala Leu Leu Ala Ala 50 55 60 Ala Ala Gln Arg <210> SEQ ID NO 21 <211> LENGTH: 174 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEQUENCE: 21 Met Arg Phe Arg Arg Arg Arg Phe Gly Arg Arg Arg Arg Tyr Tyr Arg Lys Arg Arg Gly Gly Trp Arg Arg Arg Phe Arg Ile Arg Arg Arg Arg Arg 20 25 30 Pro Trp Arg Arg Trp Arg Phe Gly Gly Met Tyr Gln Pro Pro Thr Gly Ile Gln Asp Pro Cys Thr Ser Asn Pro Thr Tyr Pro Val Arg Met Val Gly Ala Val Thr His Pro Lys Tyr Ala Gly Gln Gly Gly Ile Thr Thr Gln Ile Gly Asp Gln Gly Ile Thr Ala Ala Ser Ile Arg Ala Ile Ser Ala Ala Pro Pro Asp Thr Tyr Thr Gln Ser Ala Phe Leu Lys Ala Pro Glu Thr Glu Lys Glu Glu Glu Arg Glu Ser Glu Thr Ser Phe Thr Ser Ala Glu Ser Ser Ser Glu Gly Asp Gly Ser Ser Asp Asp Gln Ala Glu Arg Arg Ala Ala Arg Lys Arg Val Ile Lys Leu Leu Lys Arg Leu Ala Asp Arg Pro Val Asp Asn Lys Arg Arg Arg Phe Ser Glu

<210> SEQ ID NO 22 <211> LENGTH: 182 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEQUENCE: 22 Met Ala Pro Thr Arg Arg Trp Arg Arg Arg Arg Phe Gly Arg Arg Arg Arg Arg Tyr Arg Lys Arg Arg Tyr Gly Trp Arg Arg Arg Tyr Tyr Arg Tyr 20 25 30 Arg Pro Arg Tyr Tyr Arg Arg Arg Trp Leu Phe Gly Gly Glu Tyr Gln Pro Pro Thr Gly Ile Arg Asp Pro Cys Ile Asp Thr Pro Ala Tyr Pro Val Pro Gln Ser Gly Ser Val Thr His Pro Lys Phe Ala Gly Lys Gly 65 70 75 80 Gly Met Leu Thr Glu Thr Asp Arg Trp Gly Ile Thr Ala Ala Ser Ser Arg Thr Leu Ser Ala Asp Thr Pro Thr Glu Ala Ala Gln Ser Ala Leu Leu Arg Gly Asp Ala Glu Lys Lys Gly Glu Glu Thr Glu Glu Thr Ala Ser Ser Ser Ser Ile Thr Ser Ala Glu Ser Ser Thr Glu Gly Asp Gly Ser Ser Asp Asp Glu Glu Thr Ile Arg Arg Arg Arg Arg Thr Trp Lys Arg Leu Arg Arg Met Val Arg Gln Gln Leu Asp Arg Arg Met Asp His Lys Arg Gln Arg Leu His <210> SEQ ID NO 23 <211> LENGTH: 178 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEQUENCE: 23 Met Pro Tyr Arg Arg Tyr Arg Arg Arg Arg Arg Arg Pro Thr Arg Arg Trp Arg His Arg Arg Trp Arg Arg Tyr Phe Arg Tyr Arg Tyr Arg Arg 20 25 30 Ala Pro Arg Arg Arg Arg Pro Lys Trp Gly Gly His Gly Thr Glu Arg 35 40 45 Phe Lys Thr Thr Ile Gly Asp Pro Ser Thr Ile Pro Cys Pro Phe Glu 50 55 60 Pro Gly Glu Arg Tyr His His Gly Val Gln Asp Pro Ala Lys Val Gln Asn Thr Val Leu Asn Pro Trp Asp Tyr Asp Cys Asp Gly Ile Val Arg Thr Asp Thr Leu Lys Arg Leu Leu Glu Leu Pro Thr Glu Thr Glu Glu Thr Glu Lys Ala Tyr Pro Leu Leu Gly Gln Lys Thr Glu Lys Glu Pro Leu Ser Asp Ser Asp Glu Glu Ser Val Ile Ser Ser Thr Ser Ser Gly

-continued

S 1	Ser Se: .45	r Gln	Glu	Glu	Glu 150	Thr	Gln	Arg	Arg	Lys 155	His	His	Lys	Pro	Ser 160		
Ι	ya Ar	g Arg	Leu	Leu 165	Lys	His	Leu	Gln	Arg 170	Val	Val	Lys	Arg	Met 175	Lys		
7	hr Le	ı															
~	210> ;	SEQ I	d No	24													
~	:211> : :212> ' :213> (LENGT FYPE : DRGAN	H: 1 PRT ISM:	78 Tore	que	teno	viru	15									
<	:400> ;	SEQUE	NCE:	24	-												
N 1	let Pro	o Tyr	Arg	Arg 5	Tyr	Arg	Arg	Arg	Arg 10	Arg	Arg	Pro	Thr	Arg 15	Arg		
1	rp Ar	g His	Arg 20	Arg	Trp	Arg	Arg	Phe 25	Phe	Arg	Tyr	Arg	Tyr 30	Arg	Arg		
Į	ala Pro	> Arg	Arg	Arg	Arg	Thr	Lys 40	Trp	Gly	Gly	His	Gly 45	Thr	Glu	Arg		
F	he Ly:	s Thr	Thr	Ile	Gly	Asp	Pro	Ser	Thr	Ile	Pro	СЛа	Pro	Phe	Glu		
F	50 Pro Glu	y Glu	Arg	Tyr	His	55 His	Gly	Val	Gln	Asp	60 Pro	Ala	Lys	Val	Gln		
6	55	r V1	Lor	7.00	70 Brc	T~~	- 7 cm	₩1 17~	Acr	75	Acr	G1	TIC	Vol	80 Arc		
F	1011 III.	L val	ыец	85	F T O	тър	νaħ	түт	90	сүв	чар	сту	116	95	лıу		
3	'hr Asj	o Thr	Leu 100	Lys	Arg	Leu	Leu	Glu 105	Leu	Pro	Thr	Glu	Thr 110	Glu	Glu		
1	hr Gl	ı Lys 115	Ala	Tyr	Pro	Leu	Leu 120	Gly	Gln	Гла	Thr	Glu 125	Lys	Glu	Pro		
Ι	eu Se: 13	r Asp D	Ser	Asp	Glu	Glu 135	Ser	Val	Ile	Ser	Ser 140	Thr	Ser	Ser	Gly		
5	Ser Se: .45	r Gln	Glu	Glu	Glu 150	Thr	Gln	Arg	Arg	Arg 155	Gln	His	Lys	Pro	Ser 160		
Ι	ya Ar	g Arg	Leu	Leu 165	Lys	His	Leu	Gln	Arg	Val	Val	Lys	Arg	Met	Lys		
1	hr Le	ı		102					170					1/5			
~	210>	SEO T	D NO	25													
~	211> 1 212> 1	LENGT	H: 2 PRT	24													
<	213> (JRGAN	ISM:	Tore	que	ceno	viru	15									
N	let Ly:	s Glu	ГЛА:	Asp	Tyr	Trp	Glu	Glu	Ala	Trp	Leu	Thr	Ser	Cya	Thr		
1	Ser Il:	e His	Asp	5 His	His	Cys	Asn	Cys	10 Gly	Ser	Trp	Arq	Asp	15 His	Leu		
			20			-	_	25	-1		-1		30		-		
3	rp Th:	r Leu 35	Суз	Ala	Leu	Asp	Asp 40	Ala	Asp	Leu	Ala	Ala 45	Ala	Ala	Asp		
]	le Il. 50	∋ Glu	Arg	Glu	Glu	Ala 55	Asp	Gly	Gly	Glu	Asp 60	Phe	Gly	Phe	Val		
I	ap Gl	y Asp	Pro	Gly	Asp 70	Ala	Gly	Gly	Ser	Ala 75	Ala	Суа	Thr	Ser	Leu 80		
I	ro Pro	o Glu	Ser	Lys	Ile	Pro	Ala	Leu	Leu	Thr	Arg	Pro	Ile	Leu	Ser		
c	ilu Tri	o Ser	Glu	85 Gln	Len	His	Thr	Pro	90 Asn	Thr	Pro	Glv	Lvs	95 Ala	G] u		
		- Det	100	GTH	лец	1112	T11T	105	лан	1111	FIO	сту	цув 110	лıd	JIU		

-continued

Ser	Arg	Pro 115	Lys	Leu	Glu	Ile	Lys 120	Val	Ser	Pro	Leu	Pro 125	Leu	Ser	Val
Pro	Ser 130	Val	Gln	Leu	His	Gln 135	Ile	Pro	Thr	Arg	Ser 140	Arg	Arg	Ser	Ser
Lys 145	Pro	Arg	Lys	Pro	Arg 150	Lys	Lys	Arg	Lys	Glu 155	Arg	Val	Arg	Pro	Val 160
Ser	Arg	Val	Pro	Lys 165	Ala	Leu	Leu	Arg	Glu 170	Met	Asp	Arg	Leu	Met 175	Thr
Lys	Gln	Arg	Asp 180	Ala	Leu	Pro	Glu	Ser 185	Glu	Ser	Ser	Ser	Tyr 190	Phe	Ser
Ser	Asp	Ser 195	Leu	Thr	Asp	Pro	Trp 200	Thr	Thr	Ser	Asp	Asp 205	Asp	Phe	Gln
Ser	Asp 210	Pro	Asp	Pro	Leu	Thr 215	Asn	ГЛа	Arg	Lys	Lys 220	Arg	Leu	Gln	Phe
<210 <211 <211 <211	0> SH L> LH 2> TY 3> OH	EQ II ENGTH 7PE : RGANI	D NO H: 22 PRT [SM:	26 28 Toro	que t	ceno	viru	15							
<400)> SH	EQUEI	ICE :	26											
Met 1	Pro	Glu	His	Trp 5	Glu	Glu	Ala	Trp	Leu 10	Glu	Ala	Thr	Lys	Gly 15	Trp
His	Asp	Leu	Asp 20	Сүз	Arg	Сүз	Gly	Asn 25	Trp	Gln	Asp	His	Leu 30	Trp	Leu
Leu	Leu	Ala 35	Asp	Gly	Asp	Ala	Ala 40	Leu	Ala	Ala	Ala	Val 45	Asp	Ala	Ile
Glu	Arg 50	Asp	Ala	Met	Gly	Gly 55	Glu	Asp	Val	Thr	Thr 60	Ala	Thr	Asp	Arg
Val 65	Thr	Ile	Gly	Asp	Asp 70	Gly	Сув	Leu	Ala	Val 75	Asn	Thr	Ser	His	Gln 80
Gln	Val	Ser	Ala	Ile 85	Pro	Ala	Leu	Ile	His 90	Gln	Pro	Ile	Leu	Сув 95	Arg
Ser	Gln	Glu	Val 100	Leu	His	Thr	Pro	Asn 105	Ser	Pro	Glu	Arg	Ala 110	Glu	Суз
Ser	Arg	Lys 115	Gln	Thr	Val	Gly	Val 120	Ser	Leu	Leu	Pro	Leu 125	Pro	Glu	Pro
Ser	Val 130	Gln	Ile	His	Pro	Pro 135	Lys	Gln	Arg	Гуз	Val 140	His	Phe	Ser	Glu
Gly 145	Thr	Arg	Гуз	Arg	Lys 150	Glu	Arg	Гла	Pro	Arg 155	ГЛЗ	Pro	Arg	His	Arg 160
Pro	Val	Ser	Arg	Val 165	Pro	ГЛа	Ala	Leu	Leu 170	Arg	Glu	Met	Asp	Arg 175	Leu
Met	Met	Lys	Arg 180	Gln	Ser	Asp	Ala	Glu 185	Gly	Gly	Pro	Gly	Ser 190	Asp	Ser
Asp	Gly	Trp 195	Ser	Asp	Ser	Ser	Leu 200	Thr	Asp	Glu	Trp	Thr 205	Thr	Ser	Asp
Ser	Asp 210	Phe	Ile	Asp	Thr	Pro 215	Ile	Arg	Glu	Arg	Суз 220	Leu	Asn	Lys	ГЛа
Gln 225	Lys	Lys	Arg												
<210)> SH	EQ II	o no	27											

<211> LENGTH: 199 <212> TYPE: PRT

<213	> OF	GAN:	ISM:	Tore	que t	teno	no virus										
<400	> SE	QUEI	ICE :	27													
Met (1	Glu	Glu	Arg	Trp 5	Leu	Thr	Val	Ala	Tyr 10	Суз	Ala	His	Gly	Leu 15	Phe		
Сув И	Asp	Суз	Lys 20	Asn	Pro	Lys	Lys	His 25	Leu	Glu	Lys	Сүз	Leu 30	Thr	Asp		
Ala :	Ile	Ala 35	Asp	Ala	Glu	Gly	Asp 40	Arg	His	Gly	Asp	Gly 45	Gly	Thr	Gly		
Gly (Gly 50	Asp	Ala	Thr	Phe	Asp 55	Ile	Gly	Ile	Asp	Ala 60	Leu	Leu	Ala	Ala		
Ala 2 65	Ala	Gln	Ser	Gly	Glu 70	Asp	Met	Ala	Pro	Lys 75	Asp	Leu	Lys	Gln	Pro 80		
Ser (Glu	Ile	Pro	Ala 85	Pro	Tyr	His	Val	Pro 90	Leu	Asn	Pro	Gly	Asn 95	Gly		
Thr 7	Thr	Thr	Gly 100	Tyr	Lys	Thr	Pro	Pro 105	Arg	Tyr	Lys	Thr	Gln 110	Ser	Ser		
Thr I	Leu	Gly 115	Thr	Met	Thr	Val	Thr 120	Gly	Leu	Leu	Glu	Gln 125	Ile	Leu	Ser		
Lys) :	Asp 130	Phe	Ser	Asn	Ser	Pro 135	Gln	Arg	Arg	Arg	Arg 140	Arg	Arg	Arg	Arg		
Thr H 145	His	Ser	Leu	Asp	Lys 150	ГЛа	Gln	Arg	Lys	Ser 155	His	Tyr	Gln	Thr	Pro 160		
Thr I	Lys	Arg	Ala	Leu 165	Ser	Gln	Ala	Arg	Ala 170	Val	Asp	Pro	Leu	Lys 175	Lys		
Lys A	Arg	Arg	Arg 180	Asp	Glu	Ser	Thr	Thr 185	Ser	Gln	Ala	Ser	Asp 190	Asp	Ser		
Ser S	Ser	Thr 195	Ser	Ser	Gly	Trp											
<210: <211: <212:	> SE > LE > TY	EQ II ENGTH TPE :) NO 1: 19 PRT	28 99													
<213:	> OF	GAN:	ISM:	Tord	que t	teno	viru	15									
<400: Met (> SE Glu	Glu	Arg	28 Trp	Leu	Thr	Val	Ala	Tyr	Cys	Ala	His	Gly	Leu	Phe		
l Cys (Gly	Cys	Lys	5 Asp	Pro	Lys	Lys	His	10 Leu	Glu	Lys	Суз	Leu	15 Thr	Asp		
Ala :	Ile	Ala	20 Asp	Ala	Glu	Gly	Asp	25 Arg	His	Gly	Asp	Gly	30 Gly	Thr	Gly		
Gly (Gly	35 Asp	Ala	Ser	Phe	Asp	40 Ile	Gly	Ile	Asp	Ala	45 Leu	Leu	Ala	Ala		
Ala A	50 Ala	Gln	Ser	Gly	Glu	55 Ala	Thr	Glu	Pro	Lys	60 Asp	Ser	Lys	Gln	Pro		
ser (Glu	Ile	Pro	Ala	70 Pro	Tyr	His	Val	Pro	75 Leu	Asn	Pro	Gly	Asn	80 Gly		
Thr 5	Thr	Thr	Gly	85 Tyr	Lys	Thr	Pro	Pro	90 Arg	Tyr	Lys	Thr	Gln	95 Ser	Ser		
Thr 1	Len	Glv	100 Thr	- Met	- Thr	Val	Thr	105 Glv	Leu	- Len	- G1:1	Gln	110 Tle	Len	Ser		
	Ju	115		HEL		* 41	120	σrγ	Leu	Leu	GIU	125	110	Leu	~~~		
Lys /	Asp 130	Phe	Ser	Asn	Ser	Pro 135	Gln	Arg	Arg	Arg	Arg 140	Arg	Arg	Arg	Arg		
Thr H	His	Ser	Leu	Asp	Lys	Lys	Gln	Arg	Lys	Ser	His	Tyr	Gln	Thr	Pro		

-continued

							0011		ucu			
145	150				155					160		
Thr Lys Arg Ala Leu 165	Ser G	ln Ala	a Arg	Ala 170	Val	Asp	Pro	Leu	Lys 175	Lys		
Lys Arg Arg Arg Glu 180	Glu A	ap Sei	Thr 185	Ser	Gln	Ala	Ser	Asp 190	Asp	Ser		
Ser Ser Thr Ser Ser 195	Gly T	rp										
<210> SEQ ID NO 29 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Tor	que te	no vii	rus									
<400> SEQUENCE: 29												
tccgaatggc tgagttta	tg c										21	
<210> SEQ ID NO 30 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Tor	que te	no vii	rus									
<400> SEQUENCE: 30												
teegeteage tgeteet											17	
<pre><210> SEQ ID NO 31 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Tor <400> SEQUENCE: 31</pre>	que te	no vii	rus									
aqtaqtaaaq aqqatqaa											18	
ggeggeaaag aggaegaa											10	
<pre><210> SEQ ID NO 32 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Tor</pre>	que te	no vii	rus									
<400> SEQUENCE: 32												
aatagattgg acacagga	g										19	
<pre><210> SEQ ID NO 33 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Tor </pre>	que te	no vij	rus									
<400> SEQUENCE: 33												
tatcgggcag gagcagct											18	
<210> SEQ ID NO 34 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Tor	que te	no vii	rus									
<400> SEQUENCE: 34												
taggggcgcg ctctacgt											18	
<210> SEQ ID NO 35 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Tor	que te:	no vii	rus									
<400> SEQUENCE: 35												

87

-continued

cctacatgaa ggagaaagac t	21	
<210> SEQ ID NO 36 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 36		
ccagcgtctc cagggtc	17	
<210> SEQ ID NO 37 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 37		
aagctaccaa gggctgg	17	
<210> SEQ ID NO 38 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 38		
geggtetggt ageggtagt	19	
<210> SEQ ID NO 39 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 39		
cgaatggctg agtttatgcc gc	22	
<210> SEQ ID NO 40 <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
aqtecteatt t	11	
<210> SEQ ID NO 41 <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 41		
aaccaatcag a	11	
<210> SEQ ID NO 42 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 42		
ctgggcgggt gccggag	17	
<210> SEQ ID NO 43 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: Torque teno virus		
<400> SEQUENCE: 43		

-continued

90

cggagtcaag gggc	14
<210> SEQ ID NO 44 <211> LENGTH: 11 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 44	
tatcgggcag g	11
<210> SEQ ID NO 45 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 45	
Thr Ala Cys Ala Cys Thr Thr Cys Cys Gly Gly Gly Thr Thr Cy 1 5 10 19	ys Ala
Gly Gly Ala Gly Gly Cys Thr 20	
<210> SEQ ID NO 46 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 46	
actcagccat toggaacoto ac	22
<210> SEQ ID NO 47 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 47	
caatttggct cgcttcgctc gc	22
<210> SEQ ID NO 48 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 48	
tacttatatt cgctttcgtg ggaac	25
<210> SEQ ID NO 49 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 49	
agttacacat aaccaccaaa cc	22
<210> SEQ ID NO 50 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 50	
attaccgcct gcccgatagg c	21

<210> SEQ ID NO 51

·

-continued	
<pre><211> LENGTH: 21 <212> TYPE: DNA</pre>	
<212> TIFE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 51	
ccaaaccaca ggaaactgtg c	21
<210> SEQ ID NO 52 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 52	
cttgactccg ctctcaggag	20
<210> SEQ ID NO 53 <211> LENGTH: 2878 <212> TYPE: DNA <213> ORGANISM: Torque teno virus	
<400> SEQUENCE: 53	
tacacttccg ggttcaggag gctcaatttg gctcgcttcg ctcgcaccac gtttgctgcc	60
aggeggaeet gattgaagae tgaaaaeegt taaatteaaa tttgaaaatg gegggeaaaa	120
tggcggacag ggggcggggga ttatgcaaat taatttatgc aaagtaggag gagctcgatt	180
ttaatttatg caaagtagga ggagtcattt ctgattggtc gggagctcaa gtcctcattt	240
gcatagggtg taaccaatca gatttaaggc gttcccacta aagtgaatat aagtgagtgc	300
agtteegaat ggetgagttt atgeegeeag eggtagaeag aaetgtetag egaetgggeg	360
ggtgccggag gatcccagat ccggagtcaa ggggcctatc gggcaggagc agctgagcgg	420
agggcctaca tgaaggagaa agactactgg gaagaagcct ggctgaccag ctgtacatcc	480
atacacgacc accactgcga ctgcggtagc tggagagacc acctgtggac gctatgcgct	540
ttagacgacg cagatttggc cgccgccgca gatattatag aaagagaaga ggcggatgga	600
ggagaagatt teggattegt agaeggegae eetggagaeg etggegggta aggagatgge	660
ggcgttccgt cttccgtaga aggggacgta gagcgcgccc ctaccgcatt agcgcgtgga	720
accctaaggt tctaagaaac tgccgcatca caggatggtg gccagtaata cagtgtatgg	780
acgggatgga gtggataaaa tacaagccga tggacttaag agtcgaggca aaccggatat	840
tcgataaaca gggcagtaag atagagacag aacagatggg atacttaatg cagtacggag	900
gaggatggtc aagcggagta atcagcttag agggactttt caatgaaaac agactgtgga	960
gaaacatatg gtctaaaagc aatgacggga tggacttggt cagatacttc gggtgcagaa	1020
ttagactata tccaacagag aatcagggct acttgttctg gtatgacaca gaatttgacg	1080
aacagcagag aagaatgtta gacgaatata cacaacctag tgtaatgctg caggctaaaa	1140
actcccgttt aatagtatgt aaacaaaaga tgccaattag acggagagta aagagcattt	1200
tcataccgcc accggcacag ttaacaacac agtggaagtt tcagcaggaa ctgtgtcaat	1260
- ttccattatt taactgggcc tgtatctgta tagacatgqa cacqccqttc qactacaacq	1320
qcqcatqqcq aaatqcctqq tqqctaatqa qaaqqcttca aaacqqaaac atqqadtaca	1380
tadaaadata dadcadaata codataacad dadacacada actoccacca doadcacact	1440
tasannann annatasan sassanttas assanttas assantas	1500
llaayylayy ayyyylyaac aaaaacttca aaccgacagg tattcagaga atatacccta	1500
tagtagcagt atgcctagtg gagggaaaca agagagtagt gaaatgggcc acagtacaca	1560
atgggccaat agacagatgg agaaaaaaac agacaggaac gttaaaacta tctgcactga	1620

93

-continued

gaagactagt gcttagagta tgctcagaaa gtgagacata ctataagtgg acagcatcag 1680 aatttacagg agcatttcag caggactggt ggccagttag cggaacagaa tacccgttat gtacaattaa aatggagcca gaattcgaaa acccgacagt agaggtgtgg tcatggaaag caactatacc gacagcagga acactgaaag actatttcgg gctcagttca gggcaacagt ggaaggacac tgactttggc aggctgcaat tacccagaag cagccacaat gttgactttg gacataaagc tagatttggc ccattttgtg tgaaaaagcc tccagtagaa ttcagagact cageceecaa eccaetaaat atetgggtga aataeacatt etatttteag tteggeggea tgtaccagcc tcccaccgga atccaagatc cctgcacttc taacccgacc tatcctgtca gaatggtogg agcagttaca caccocaaat acgoogggca aggoggaato gogacocaaa 2220 ttqqaqatca aqqtatcacc qctqcctctc tccqtqccat caqtqcaqct ccaccaaata cctacacgca gtcggcgttc ctcaaagccc cggaaaccga gaaagaagag gaaagagaga gtgagaccag tttcacgagt gccgaaaget cttctgaggg agatggateg tetgatgace 2340 aagcagagag acgcgctgcc agaaagcgag tcatcaagct acttctcaag cgactcgctg 2400 acagaccogt ggacaacaag cgacgacgat tttcagagtg accotgacco cotcaccaat 2460 aaacqcaaaa aqcqcttqca attctaattc qctqtccqtq tattcattqq qqqqqtccqq 2520 ggggggettge ceceeegtta gttgggttet egeacteeeg eetgeeaagt gaaagteggg 2580 gacgagtgag tgcgggacat cccgtgtaat ggctacataa ctacccggct ttgcttcgac 2640 agtggccgtg gctcgaccct cacacaacaa tgcagatagg gggcgcaatt gggatcgtta gaaaactatg geegageatg gggggggete egeeceeee aacceeeeg gtggggggge caaggeeece ectacaceee eccatggggg getgetgeee eccaaaeeee ecgegtegga tggggggggg tgcgccccc ccaaaccccc cttgcccggg gctgtgcccc ggaccccc <210> SEQ ID NO 54 <211> LENGTH: 635 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEOUENCE: 54 Met Arg Phe Arg Arg Arg Arg Phe Gly Arg Arg Arg Arg Tyr Tyr Arg 10 1 15 Lys Arg Arg Gly Gly Trp Arg Arg Arg Phe Arg Ile Arg Arg Arg Arg Pro Trp Arg Arg Trp Arg Val Arg Arg Trp Arg Arg Ser Val Phe Arg Arg Arg Gly Arg Arg Ala Arg Pro Tyr Arg Ile Ser Ala Trp Asn Pro 50 Lys Val Leu Arg Asn Cys Arg Ile Thr Gly Trp Trp Pro Val Ile Gln 65 80 Cys Met Asp Gly Met Glu Trp Ile Lys Tyr Lys Pro Met Asp Leu Arg 85 90 95 Val Glu Ala Asn Arg Ile Phe Asp Lys Gln Gly Ser Lys Ile Glu Thr 105 100 110 Glu Gln Met Gly Tyr Leu Met Gln Tyr Gly Gly Gly Trp Ser Ser Gly 115 120 125 Val Ile Ser Leu Glu Gly Leu Phe Asn Glu Asn Arg Leu Trp Arg Asn 130 135 140

Ile Trp Ser Lys Ser Asn Asp Gly Met Asp Leu Val Arg Tyr Phe Gly

94

1740

1800 1860

1920 1980

2040

2100

2160

2280

2700

2760

2820

-continued

145					150					155					160
Суз	Arg	Ile	Arg	Leu 165	Tyr	Pro	Thr	Glu	Asn 170	Gln	Gly	Tyr	Leu	Phe 175	Trp
Tyr	Asp	Thr	Glu 180	Phe	Asp	Glu	Gln	Gln 185	Arg	Arg	Met	Leu	Asp 190	Glu	Tyr
Thr	Gln	Pro 195	Ser	Val	Met	Leu	Gln 200	Ala	Lys	Asn	Ser	Arg 205	Leu	Ile	Val
Cys	Lys 210	Gln	Lys	Met	Pro	Ile 215	Arg	Arg	Arg	Val	Lys 220	Ser	Ile	Phe	Ile
Pro 225	Pro	Pro	Ala	Gln	Leu 230	Thr	Thr	Gln	Trp	Lys 235	Phe	Gln	Gln	Glu	Leu 240
Cys	Gln	Phe	Pro	Leu 245	Phe	Asn	Trp	Ala	Суз 250	Ile	Сүз	Ile	Aab	Met 255	Asp
Thr	Pro	Phe	Asp 260	Tyr	Asn	Gly	Ala	Trp 265	Arg	Asn	Ala	Trp	Trp 270	Leu	Met
Arg	Arg	Leu 275	Gln	Asn	Gly	Asn	Met 280	Glu	Tyr	Ile	Glu	Arg 285	Trp	Gly	Arg
Ile	Pro 290	Met	Thr	Gly	Asp	Thr 295	Glu	Leu	Pro	Pro	Ala 300	Asp	Aab	Phe	Lys
Ala	Gly	Gly	Val	Asn	Lys	Asn	Phe	Lys	Pro	Thr	Gly	Ile	Gln	Arg	Ile
305 Tyr	Pro	Ile	Val	Ala	310 Val	Суз	Leu	Val	Glu	Gly	Asn	Lys	Arg	Val	320 Val
Lys	Trp	Ala	Thr	325 Val	His	Asn	Gly	Pro	330 Ile	Asp	Arg	Trp	Arg	335 Lys	Lys
Gln	Thr	Gly	340 Thr	Leu	Lys	Leu	Ser	345 Ala	Leu	Arg	Arg	Leu	350 Val	Leu	Arg
Val	Cys	355 Ser	Glu	Ser	Glu	Thr	360 Tyr	Tyr	Lys	Trp	Thr	365 Ala	Ser	Glu	Phe
Thr	370 Glv	Ala	Phe	Gln	Gln	375 Asp	Trp	Trp	Pro	Val	380 Ser	Glv	Thr	Glu	Tvr
385	ULY	a	m1		390	b	P			395	DCT	C T Y	 D	оти m1	400
Pro	Leu	сув	Thr	⊥⊥e 405	гда	Met	GLU	Pro	GIU 410	Рhe	GIU	Asn	Pro	115 415	val
Glu	Val	Trp	Ser 420	Trp	Lys	Ala	Thr	Ile 425	Pro	Thr	Ala	Gly	Thr 430	Leu	Lys
Asp	Tyr	Phe 435	Gly	Leu	Ser	Ser	Gly 440	Gln	Gln	Trp	Гла	Asp 445	Thr	Asb	Phe
Gly	Arg 450	Leu	Gln	Leu	Pro	Arg 455	Ser	Ser	His	Asn	Val 460	Asp	Phe	Gly	His
Lys 465	Ala	Arg	Phe	Gly	Pro 470	Phe	Cys	Val	Lys	Lys 475	Pro	Pro	Val	Glu	Phe 480
Arg	Aap	Ser	Ala	Pro 485	Asn	Pro	Leu	Asn	Ile 490	Trp	Val	ГЛа	Tyr	Thr 495	Phe
Tyr	Phe	Gln	Phe 500	Gly	Gly	Met	Tyr	Gln 505	Pro	Pro	Thr	Gly	Ile 510	Gln	Asp
Pro	Cys	Thr 515	Ser	Asn	Pro	Thr	Tyr 520	Pro	Val	Arg	Met	Val 525	Gly	Ala	Val
Thr	His	Pro	Lys	Tyr	Ala	Gly	Gln	Gly	Gly	Ile	Ala	Thr	Gln	Ile	Gly
Asp	530 Gln	Gly	Ile	Thr	Ala	535 Ala	Ser	Leu	Arg	Ala	540 Ile	Ser	Ala	Ala	Pro
545 Pro	Asn	Thr	Tvr	Thr	550 Gln	Ser	Ala	Phe	Leu	555 Lvs	Ala	Pro	Glu	Thr	560 Glu
F 10	-11 G	1111	түт	565	GTH	Det	лıа	File	570	цүв	лıа	110	Gru	575	Gru

-continued

Lys Glu Glu Glu Arg Glu Ser Glu Thr Ser Phe Thr Ser Ala Glu Ser 580 585 590 Ser Ser Glu Gly Asp Gly Ser Ser Asp Asp Gln Ala Glu Arg Arg Ala 595 600 605 Ala Arg Lys Arg Val Ile Lys Leu Leu Leu Lys Arg Leu Ala Asp Arg 610 615 620 Pro Val Asp Asn Lys Arg Arg Arg Phe Ser Glu 625 630 635 <210> SEQ ID NO 55 <211> LENGTH: 73 <212> TYPE: PRT <213> ORGANISM: Torque teno virus <400> SEQUENCE: 55 Met Lys Glu Lys Asp Tyr Trp Glu Glu Ala Trp Leu Thr Ser Cys Thr 1 5 10 15 Ser Ile His Asp His His Cys Asp Cys Gly Ser Trp Arg Asp His Leu 20 25 30 Trp Thr Leu Cys Ala Leu Asp Asp Ala Asp Leu Ala Ala Ala Asp 35 40 45 Ile Ile Glu Arg Glu Glu Ala Asp Gly Gly Glu Asp Phe Gly Phe Val 50 55 60 Asp Gly Asp Pro Gly Asp Ala Gly Gly 65 70 <210> SEO ID NO 56 <211> LENGTH: 2872 <212> TYPE: DNA <213> ORGANISM: Torque teno virus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (2719)..(2732) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 56 tacactttgg ggttcaggag gctcaatttg gctcgcttcg ctcgcaccac gtttgctgcc 120 aggcggacct gattgaagac tgaaaaccgt taaattcaaa attgaaaagg gcgggcaaaa tggcggacag ggggcggagt ttatgcaaat taatttatgc aaagtaggag gagctcgatt 180 ttaatttatg caaagtagga ggagtcaaat ctgattggtc gggagctcaa gtcctcattt 240 gcatagggtg taaccaatca gaattaaggc gttcccacga aagcgaatat aagtaggtga 300 ggttccgaat ggctgagttt atgccgccag cggtagacag aactgtctag cgactgggcg 360 ggtgccggag gatccctgat ccggagtcaa ggggcctatc gggcaggagc agctaggcgg 420 agggcctatg ccggaacact gggaggaagc ctggttggaa gctaccaagg gctggcacga 480 540 tetegactge egetgeggta actggeagga ceacetatgg etectacteg cegatggaga cgccgctttg gccgccgccg tagacgctat agaaagagac gctatggctg gagacgacgc 600 tactaccgct acaggccgcg tgactatcgg cgacgatggc tggtaaggag aaggcggcgt 660 tccqtctacc gtagaggtgg acgtagagcg cgcccctacc gactgtttaa tccaaaagta 720 atgcggagag tagtaattag ggggtggtgg cctattttac aatgcttaaa aggacaggag 780 gcactaagat atagacctct acagtgggac acagagagac agtggagagt gagatcagac 840 ttcgaagacc agtacggata cctcgtacaa tacggggggag gttgggggaag tggtgatgtg 900 acacttgaag gtctctacca agagcactta ttgtggagaa actcttggtc taaaggaaac 960

98

99

continued

100

				-001011	Iueu	
gatggaatgg	acctagtaag	atactttgga	tgtgtagtat	acctatatcc	actaaaggac	1020
caggactatt	ggttctggtg	ggacacggac	ttcaaagaat	tatatgcaga	aaacataaag	1080
gaatacagcc	aaccatcagt	aatgatgatg	gcaaaaagaa	caagaatagt	aatagccaga	1140
gaaagggcac	cacatagaag	aaaagtaaga	aaaatattta	ttccgccacc	ttcgagagac	1200
acaacacagt	ggcagtttca	gacagatttc	tgcaatagaa	agttatttac	gtgggcagct	1260
ggtctaatag	acatgcaaaa	accgttcgat	gctaatggag	cctttagaaa	tgcttggtgg	1320
ctggaacaga	gaaatgatca	gggagaaatg	aaatacatag	aactgtgggg	aagagtaccc	1380
ccacaaggag	attcagagct	gcccaaaaaa	aaagaattct	ccacaggaac	agataaccca	1440
aactacaatg	ttcaggacaa	tgaggagaaa	aacatatacc	ccattataat	atacgtagac	1500
caaaaagatc	aaaaaccaag	aaaaaagtac	tgcgtatgtt	ataataagac	cctcaacaga	1560
tggagactag	gacaggcaag	tactctaaag	ataggaaacc	tgaaaggact	agtactaaga	1620
cagctgatga	atcaagaaat	gacgtatata	tggaaagaag	gagaatacag	tgcccccttt	1680
gtacaaaggt	ggaaaggcag	cagattcgct	gtgatagacg	caagaaaggc	agaccaagaa	1740
aacccgaaag	tatcaacatg	gccaattgag	ggaacgtgga	acacacagga	cacagtactg	1800
aaggatgtat	tcggtattaa	cttgcaaaat	caacaattta	gggcggcgga	ctttggtaaa	1860
ctcacactac	caaaatcacc	gcatgactta	gacttcggtc	accacagcag	atttgggcca	1920
ttttgtgtga	aaaatgaacc	actggagttt	caggtatacc	ctccagaacc	aactaacttg	1980
tggtttcagt	acagattttt	ctttcagttt	ggaggtgaat	accaaccccc	cacaggaatc	2040
cgggatccat	gcgttgatac	accagcctat	cctgtgccgc	agtcaggaag	tattacacac	2100
cccaaattcg	ccggaaaagg	aggaatgctc	acggaaacag	accgttgggg	tatcactgct	2160
gcctcttcca	gagccctcag	tgcagataca	cccacagagg	cagcgcaaag	tgcacttctc	2220
cgaggggact	cggaagcgaa	aggagaggaa	accgaggaaa	ccgcgtcatc	gtccagtatc	2280
acgagtgccg	aaagctctac	tgagggagat	ggatcgtctg	atgatgaaga	gacaatcaga	2340
cgcagaagga	ggacctggaa	gcgactcaga	cgaatggtca	gagagcagct	tgaccgacga	2400
atggaccaca	agcgacagcg	acttcattga	cacccccata	agagaaagat	gcctcaataa	2460
aaaacaaaag	aaacgctaaa	cagtgtccga	ttactaatgg	ggggggggtcc	ggggggggct	2520
tgcccccccg	caagctgggt	taccgcacta	actccctgcc	aagtgaaact	cggggacgag	2580
tgagtgcggg	acatcccgtg	taatggctac	ataactaccc	ggctttgctt	cgacagtggc	2640
cgtggctcga	ccctcacaca	acactgcagg	taggggggcgc	aattgggatc	gttagaaaac	2700
tatggccgag	catgggggnn	nnnnnnnnn	nnccaacccc	cccggtgggg	gggccaaggc	2760
cccccctaca	ccccccatg	ggggggctgcc	gccccccaaa	ccccccgcgt	cggatggggg	2820
gggctgcgcc	ccccccaaac	cccccttgcc	cggggctgtg	ccccggaccc	cc	2872
<210> SEQ : <211> LENG <212> TYPE <213> ORGAI <400> SEQUI	ID NO 57 IH: 637 : PRT NISM: Torque ENCE: 57	e teno virus	3			
Met Ala Pro	o Thr Arg A	rg Trp Arg A	Arg Arg Phe	Gly Arg Arg	g Arg Arg	
1	5		TO		T.D	

Arg Tyr Arg Lys Arg Arg Tyr GlyTrp Arg Arg Arg Tyr Tyr Arg Tyr202530

Arg	Pro	Arg 35	Asp	Tyr	Arg	Arg	Arg 40	Trp	Leu	Val	Arg	Arg 45	Arg	Arg	Arg		
Ser	Val 50	Tyr	Arg	Arg	Gly	Gly 55	Arg	Arg	Ala	Arg	Pro 60	Tyr	Arg	Leu	Phe		
Asn 65	Pro	Lys	Val	Met	Arg 70	Arg	Val	Val	Ile	Arg 75	Gly	Trp	Trp	Pro	Ile 80		
Leu	Gln	Сүз	Leu	Lys 85	Gly	Gln	Glu	Ala	Leu 90	Arg	Tyr	Arg	Pro	Leu 95	Gln		
Trp	Asp	Thr	Glu 100	Arg	Gln	Trp	Arg	Val 105	Arg	Ser	Asp	Phe	Glu 110	Asp	Gln		
Tyr	Gly	Tyr 115	Leu	Val	Gln	Tyr	Gly 120	Gly	Gly	Trp	Gly	Ser 125	Gly	Asp	Val		
Thr	Leu 130	Glu	Gly	Leu	Tyr	Gln 135	Glu	His	Leu	Leu	Trp 140	Arg	Asn	Ser	Trp		
Ser 145	Lys	Gly	Asn	Asp	Gly 150	Met	Asp	Leu	Val	Arg 155	Tyr	Phe	Gly	Суа	Val 160		
Val	Tyr	Leu	Tyr	Pro 165	Leu	Lys	Asp	Gln	Asp 170	Tyr	Trp	Phe	Trp	Trp 175	Asp		

Tyr Gly Tyr Leu Val Gln Tyr Gly Gly Gly Trp Thr Leu Glu Gly Leu Tyr Gln Glu His Leu Leu Ser Lys Gly Asn Asp Gly Met Asp Leu Val Arg 145 150 159 Val Tyr Leu Tyr Pro Leu Lys Asp Gln Asp Tyr 165 170 Thr Asp Phe Lys Glu Leu Tyr Ala Glu Asn Ile Lys Glu Tyr Ser Gln Pro Ser Val Met Met Met Ala Lys Arg Thr Arg Ile Val Ile Ala Arg Glu Arg Ala Pro His Arg Arg Lys Val Arg Lys Ile Phe Ile Pro Pro Pro Ser Arg Asp Thr Thr Gln Trp Gln Phe Gln Thr Asp Phe Cys Asn Arg Lys Leu Phe Thr Trp Ala Ala Gly Leu Ile Asp Met Gln Lys Pro Phe Asp Ala Asn Gly Ala Phe Arg Asn Ala Trp Trp Leu Glu Gln Arg Asn Asp Gln Gly Glu Met Lys Tyr Ile Glu Leu Trp Gly Arg Val Pro Pro Gln Gly Asp Ser Glu Leu Pro Lys Lys Glu Phe Ser Thr Gly Thr Asp Asn Pro Asn Tyr Asn Val Gln Asp Asn Glu Glu Lys Asn Ile Tyr Pro Ile Ile Ile Tyr Val Asp Gln Lys Asp Gln Lys Pro Arg Lys Lys Tyr Cys Val Cys Tyr Asn Lys Thr Leu Asn Arg Trp Arg Leu Gly 340 345 350 Gln Ala Ser Thr Leu Lys Ile Gly Asn Leu Lys Gly Leu Val Leu Arg Gln Leu Met Asn Gln Glu Met Thr Tyr Ile Trp Lys Glu Gly Glu Tyr Ser Ala Pro Phe Val Gln Arg Trp Lys Gly Ser Arg Phe Ala Val Ile Asp Ala Arg Lys Ala Asp Gln Glu Asn Pro Lys Val Ser Thr Trp Pro Ile Glu Gly Thr Trp Asn Thr Gln Asp Thr Val Leu Lys Asp Val Phe Gly Ile Asn Leu Gln Asn Gln Gln Phe Arg Ala Ala Asp Phe Gly Lys

Leu Thr Leu Pro Lys Ser Pro His Asp Leu Asp Phe Gly His His Ser

	450					455					460					
Arg 465	Phe	Gly	Pro	Phe	Cys 470	Val	Lys	Asn	Glu	Pro 475	Leu	Glu	Phe	Gln	Val 480	
Tyr	Pro	Pro	Glu	Pro 485	Thr	Asn	Leu	Trp	Phe 490	Gln	Tyr	Arg	Phe	Phe 495	Phe	
Gln	Phe	Gly	Gly 500	Glu	Tyr	Gln	Pro	Pro 505	Thr	Gly	Ile	Arg	Asp 510	Pro	Сүз	
Val	Asp	Thr 515	Pro	Ala	Tyr	Pro	Val 520	Pro	Gln	Ser	Gly	Ser 525	Ile	Thr	His	
Pro	Lys 530	Phe	Ala	Gly	Lys	Gly 535	Gly	Met	Leu	Thr	Glu 540	Thr	Asp	Arg	Trp	
Gly 545	Ile	Thr	Ala	Ala	Ser 550	Ser	Arg	Ala	Leu	Ser 555	Ala	Asp	Thr	Pro	Thr 560	
Glu	Ala	Ala	Gln	Ser 565	Ala	Leu	Leu	Arg	Gly 570	Asp	Ser	Glu	Ala	Lys 575	Gly	
Glu	Glu	Thr	Glu 580	Glu	Thr	Ala	Ser	Ser 585	Ser	Ser	Ile	Thr	Ser 590	Ala	Glu	
Ser	Ser	Thr 595	Glu	Gly	Asp	Gly	Ser 600	Ser	Asp	Asp	Glu	Glu 605	Thr	Ile	Arg	
Arg	Arg 610	Arg	Arg	Thr	Trp	Lys 615	Arg	Leu	Arg	Arg	Met 620	Val	Arg	Glu	Gln	
Leu 625	Asp	Arg	Arg	Met	Asp 630	His	Lys	Arg	Gln	Arg 635	Leu	His				
<210 <211 <212 <213)> SH _> LH 2> TY 3> OH	EQ II ENGTH ZPE : RGANI) NO H: 72 PRT [SM:	58 2 Toro	que t	:eno	viru	ıs								
<400)> SB	EQUEI	ICE :	58												
Met 1	Pro	Glu	His	Trp 5	Glu	Glu	Ala	Trp	Leu 10	Glu	Ala	Thr	Lys	Gly 15	Trp	
His	Asp	Leu	Asp 20	Суз	Arg	Суз	Gly	Asn 25	Trp	Gln	Asp	His	Leu 30	Trp	Leu	
Leu	Leu	Ala 35	Aab	Gly	Asp	Ala	Ala 40	Leu	Ala	Ala	Ala	Val 45	Asp	Ala	Ile	
Glu	Arg 50	Asp	Ala	Met	Ala	Gly 55	Asp	Asp	Ala	Thr	Thr 60	Ala	Thr	Gly	Arg	
Val 65	Thr	Ile	Gly	Asp	Asp 70	Gly	Trp									
<210 <211 <212 <213 <220 <221 <222 <223)> SI -> LI 2> TY 3> OF 0> FF -> NF 2> LO 3> OT	EQ II ENGTH (PE : RGANI EATUH AME/H DCATI	D NO H: 27 DNA ISM: RE: RE: CEY: ION: INFC	59 735 Toro miso (259 DRMAT	que t c_fea Ə6) FION:	:eno iture .(262 : n :	viru 22) is a,	ıs c,	g, c	or t						
<400)> SH	EQUEI	ICE :	59												
tcat	gaca	agg g	gttca	accgó	ga ag	ggget	gcaa	a aat	taca	agct	aaaa	acca	caa q	gtcta	acaca	60
ataa	acca	aca a	aagta	attad	ca go	gaaad	ctgca	a ata	aaatt	tag	aaat	taagi	ta d	cacat	aacca	120
ccaa	acca	aca ç	ggaaa	actgt	ig ca	aaaa	aagaq	g gaa	aataa	aatt	tcat	ttgg	ctg o	ggaat	gaagt	180
ccto	atta	aga a	ataat	caaaa	ag aa	accaa	atcaç	g aag	gaact	tcc	tctt	tttaq	gag t	tatat	aagta	240
agto	jegea	aga d	cgaat	ggat	g ag	gttta	atgco	c gct	ggto	ggta	gaca	acgaa	aca ç	gaget	gagtg	300

105

-continued

tctaaccgcc	tgggcgggtg	ccggagctcc	tgagagcgga	gtcaagggggc	ctatcgggca	360
ggcggtaatc	cagcggaacc	gggcccccct	cgatggaaga	aagatggctg	acggtagcgt	420
actgcgcaca	cggattattc	tgcagctgta	aagacccgaa	aaaacatctt	gaaaaatgcc	480
ttacagacgc	tatcgcagac	gccgaagaag	accgacacgg	agatggaggc	accggaggtg	540
gagacgctac	tttcgatatc	ggtatcgacg	cgctcctcgc	cgccgccgca	caaaggtaag	600
gagacggagg	aaaaaagctc	cggtcataca	atggttccct	cctagccgga	gaacctgcct	660
catagaggga	ttttggccgt	tgagctacgg	acactggttc	cgtacctgtc	tcccctttag	720
gcggttaaat	ggactagtat	tcccgggtgg	aggttgtgac	tggagccagt	ggagtttaca	780
aaacctttac	aatgaaaaac	ttaactggag	aaatatatgg	acagctagta	atgttggaat	840
ggaattcgct	agatttttaa	aaggaaagtt	ttactttttc	agacatccat	ggagaaatta	900
tataataact	tgggatcaag	atataccatg	caggccacta	ccttatcaaa	acctgcatcc	960
actcctaatg	ctactaaaaa	aacagcacaa	aattgtactt	tcacagcaaa	actgtaaccc	1020
aaacagaaaa	caaaaacctg	tcacattaaa	attcaaacct	ccgccaaaac	taacatcaca	1080
atggagacta	agtagagaat	tagcaaagat	gccactaata	agacttggag	taagctttat	1140
agacctaaca	gaaccatggg	tagaagggtg	gggaaatgca	ttttattccg	tgctaggata	1200
tgaagcagta	aaagaccaag	gacactggtc	aaactggaca	caaataaaat	actattggat	1260
ctatgacacg	ggagtaggaa	atgcagtata	tgttatacta	ttaaaaaaag	acgttactga	1320
taatccagga	aacatggcaa	caacctttaa	agcatcagga	ggacagcatc	cagatgcaat	1380
agatcacatt	gaattgataa	accaaggatg	gccttactgg	ttatactttt	atggtaaaag	1440
tgaacaagac	attaaaaaag	aggcacacag	cgcagaaata	tcaagagaat	atactagaga	1500
cccaaaatct	aaaaaactaa	aaataggaat	agtaggatgg	gcatcttcaa	actacacaac	1560
aacaggcagt	gatcaaaaca	gtggtggatc	aacatcagct	atacaaggtg	gatatgtagc	1620
atatgcaggg	tccggggtca	taggagcagg	gtcaatagga	aatttatatc	aacaaggatg	1680
gccatctaat	caaaactggc	ctaatacaaa	cagagacaaa	acaaactttg	actggggaat	1740
acgaggacta	tgtatactca	gagataacat	gcacttagga	agccaagaat	tagatgatga	1800
atgcacaatg	ctcacattgt	tcggaccctt	tgtagaaaaa	gcaaatccaa	tatttgcaac	1860
aacagaccct	aaattetta	aacctgaact	caaagactat	aatataatca	tgaaatatgc	1920
ctttaaattt	cagtggggag	gacatggcac	agaaagattt	aaaaccaaca	tcggagaccc	1980
cagcaccata	ccctgcccct	tcgaacccgg	ggaccgcttc	cacagcggga	tacaagaccc	2040
ctccaaggta	caaaacaccg	tcctcaaccc	ctgggactat	gactgtgatg	ggattgttag	2100
aaaagatact	ctcaaaagac	ttctcgaact	ccccacagag	acagaggagg	aggagaaggc	2160
gtacccactc	cttggacaaa	aaacagagaa	agagccatta	tcagactccg	acgaagagag	2220
cgttatctca	agcacgagca	gtggatcctc	tcaagaagaa	gaaacgcaga	gacgaagaca	2280
ccacaagcca	agcaagcgac	gactcctcaa	gcacctccag	cgggtggtaa	agaggatgaa	2340
aacactgtga	tagataaata	tagaaaccta	gcagacccct	cactcaatgt	cacaggacac	2400
atggaaaaat	tcatgcagtt	acatattcaa	aacgtacaag	aaataagagc	taaaaatgct	2460
aaaaaatccc	tcaataaact	ttacttttct	gattaatagc	ggcctcctgt	gtccaaccta	2520
tttttcctaa	accccttcaa	aatqqcqqqc	qqqacacaaa	atggcggagg	gactaaqqqq	2580
qqqqcaaqcc	cccctnnnn	nnnnnnnnn	nnnnnnnn	nnqqqaaaca	acccccccc	2640
				2222222		

-continued

acceccect gegggggete egeceetge acceeggga gggggggaaa eeeceetea	2700											
accccccgcg ggggggcaage eccectgeae eccee	2735											
<210> SEQ ID NO 60 <211> LENGTH: 624 <212> TYPE: PRT <213> ORGANISM: Torque teno virus												
<400> SEQUENCE: 60												
Met Pro Tyr Arg Arg Tyr Arg Arg Arg Arg Arg Arg Pro Thr Arg Arg 1 5 10 15												
Trp Arg His Arg Arg Trp Arg Arg Tyr Phe Arg Tyr Arg Tyr Arg Arg 20 25 30												
Ala Pro Arg Arg Arg Arg Thr Lys Val Arg Arg Arg Arg Lys Lys Ala 35 40 45												
Pro Val Ile Gln Trp Phe Pro Pro Ser Arg Arg Thr Cys Leu Ile Glu 50 55 60												
Gly Phe Trp Pro Leu Ser Tyr Gly His Trp Phe Arg Thr Cys Leu Pro65707580												
Phe Arg Arg Leu Asn Gly Leu Val Phe Pro Gly Gly Gly Cys Asp Trp 85 90 95												
Ser Gln Trp Ser Leu Gln Asn Leu Tyr Asn Glu Lys Leu Asn Trp Arg 100 105 110												
Asn Ile Trp Thr Ala Ser Asn Val Gly Met Glu Phe Ala Arg Phe Leu 115 120 125												
Lys Gly Lys Phe Tyr Phe Phe Arg His Pro Trp Arg Asn Tyr Ile Ile 130 135 140												
Thr Trp Asp Gln Asp Ile Pro Cys Arg Pro Leu Pro Tyr Gln Asn Leu 145 150 155 160												
His Pro Leu Leu Met Leu Leu Lys Lys Gln His Lys Ile Val Leu Ser 165 170 175												
Gln Gln Asn Cys Asn Pro Asn Arg Lys Gln Lys Pro Val Thr Leu Lys 180 185 190												
Phe Lys Pro Pro Pro Lys Leu Thr Ser Gln Trp Arg Leu Ser Arg Glu 195 200 205												
Leu Ala Lys Met Pro Leu Ile Arg Leu Gly Val Ser Phe Ile Asp Leu 210 215 220												
Thr Glu Pro Trp Val Glu Gly Trp Gly Asn Ala Phe Tyr Ser Val Leu225230235240												
Gly Tyr Glu Ala Val Lys Asp Gln Gly His Trp Ser Asn Trp Thr Gln 245 250 255												
Ile Lys Tyr Tyr Trp Ile Tyr Asp Thr Gly Val Gly Asn Ala Val Tyr 260 265 270												
Val Ile Leu Leu Lys Lys Asp Val Thr Asp Asn Pro Gly Asn Met Ala 275 280 285												
Thr Thr Phe Lys Ala Ser Gly Gly Gln His Pro Asp Ala Ile Asp His 290 295 300												
Ile Glu Leu Ile Asn Gln Gly Trp Pro Tyr Trp Leu Tyr Phe Tyr Gly 305 310 315 320												
Lys Ser Glu Gln Asp Ile Lys Lys Glu Ala His Ser Ala Glu Ile Ser 325 330 335												
Arg Glu Tyr Thr Arg Asp Pro Lys Ser Lys Lys Leu Lys Ile Gly Ile 340 345 350												
Val Gly Trp Ala Ser Ser Asn Tyr Thr Thr Thr Gly Ser Asp Gln Asn												

109

<213> ORGANISM: Torque teno virus

-continued

		355					360					365			
Ser	Gly 370	Gly	Ser	Thr	Ser	Ala 375	Ile	Gln	Gly	Gly	Tyr 380	Val	Ala	Tyr	Ala
Gly 385	Ser	Gly	Val	Ile	Gly 390	Ala	Gly	Ser	Ile	Gly 395	Asn	Leu	Tyr	Gln	Gln 400
Gly	Trp	Pro	Ser	Asn 405	Gln	Asn	Trp	Pro	Asn 410	Thr	Asn	Arg	Aab	Lys 415	Thr
Asn	Phe	Asp	Trp 420	Gly	Ile	Arg	Gly	Leu 425	Суз	Ile	Leu	Arg	Asp 430	Asn	Met
His	Leu	Gly 435	Ser	Gln	Glu	Leu	Asp 440	Asp	Glu	Суз	Thr	Met 445	Leu	Thr	Leu
Phe	Gly 450	Pro	Phe	Val	Glu	Lys 455	Ala	Asn	Pro	Ile	Phe 460	Ala	Thr	Thr	Asp
Pro 465	Lys	Phe	Phe	Lys	Pro 470	Glu	Leu	Lys	Asp	Tyr 475	Asn	Ile	Ile	Met	Lys 480
Tyr	Ala	Phe	Lys	Phe 485	Gln	Trp	Gly	Gly	His 490	Gly	Thr	Glu	Arg	Phe 495	Lys
Thr	Asn	Ile	Gly 500	Asp	Pro	Ser	Thr	Ile 505	Pro	Cys	Pro	Phe	Glu 510	Pro	Gly
Asp	Arg	Phe	His	Ser	Gly	Ile	Gln	Asp	Pro	Ser	Гла	Val	Gln	Asn	Thr
Val	Leu	Asn	Pro	Trp	Asp	Tyr	Asp	Сув	Asp	Gly	Ile	Val	Arg	Lys	Asp
Thr	Leu	Lys	Arg	Leu	Leu	Glu	Leu	Pro	Thr	Glu	Thr	Glu	Glu	Glu	Glu
Lys	Ala	Tyr	Pro	Leu	Leu	Gly	Gln	Lys	Thr	Glu	Lys	Glu	Pro	Leu	Ser
Asp	Ser	Asp	Glu	565 Glu	Ser	Val	Ile	Ser	570 Ser	Thr	Ser	Ser	Gly	575 Ser	Ser
Gln	Glu	Glu	580 Glu	Thr	Gln	Arg	Arg	585 Arg	His	His	Lys	Pro	590 Ser	Lys	Arg
Arg	Leu	595 Leu	Lys	His	Leu	Gln	600 Arg	Val	Val	Lys	Arg	605 Met	Lys	Thr	Leu
	610					615					620				
<210)> SI	EQ II	D NO	61											
<212	1> LH 2> TY	ENGTI ZPE :	H: 6 PRT	8											
<213	3 > OI	RGAN	ISM:	Tor	que	teno	viru	ıs							
<400)> SH	EQUEI	NCE :	61											
Met 1	Glu	Glu	Arg	Trp 5	Leu	Thr	Val	Ala	Tyr 10	Сүз	Ala	His	Gly	Leu 15	Phe
Суа	Ser	Суз	Lys 20	Asp	Pro	ГЛа	ГЛа	His 25	Leu	Glu	ГЛЗ	Суз	Leu 30	Thr	Asp
Ala	Ile	Ala 35	Asp	Ala	Glu	Glu	Asp 40	Arg	His	Gly	Asp	Gly 45	Gly	Thr	Gly
Gly	Gly 50	Asp	Ala	Thr	Phe	Asp 55	Ile	Gly	Ile	Asp	Ala 60	Leu	Leu	Ala	Ala
Ala 65	Ala	Gln	Arg												
<210 <211 <212	0> SH 1> LH 2> TY	EQ II ENGTI ZPE :	D NO H: 61 PRT	62 25											

110

<400)> SI	EQUEI	NCE :	62											
Met 1	Pro	Tyr	Arg	Arg 5	Tyr	Arg	Arg	Arg	Arg 10	Arg	Arg	Pro	Thr	Arg 15	Arg
Trp	Arg	His	Arg 20	Arg	Trp	Arg	Arg	Tyr 25	Phe	Arg	Tyr	Arg	Tyr 30	Arg	Arg
Ala	Pro	Arg 35	Arg	Arg	Arg	Ala	Lys 40	Val	Arg	Arg	Arg	Arg 45	Arg	Lys	Ala
Pro	Val 50	Ile	Gln	Trp	Asn	Pro 55	Pro	Ser	Arg	Arg	Thr 60	Суз	Leu	Ile	Glu
Gly 65	Phe	Trp	Pro	Leu	Ser 70	Tyr	Gly	His	Trp	Phe 75	Arg	Thr	Суз	Leu	Pro 80
Met	Arg	Arg	Leu	Asn 85	Gly	Leu	Ile	Phe	Thr 90	Gly	Gly	Gly	Cys	Asp 95	Trp
Thr	Gln	Trp	Ser 100	Leu	Gln	Asn	Leu	Phe 105	His	Glu	Lys	Leu	Asn 110	Trp	Arg
Asn	Ile	Trp 115	Thr	Ala	Ser	Asn	Val 120	Gly	Met	Glu	Phe	Ala 125	Arg	Phe	Leu
Arg	Gly 130	Lys	Phe	Tyr	Phe	Phe 135	Arg	His	Pro	Trp	Arg 140	Ser	Tyr	Ile	Val
Thr 145	Trp	Asp	Gln	Asp	Ile 150	Pro	Cys	Lys	Pro	Leu 155	Pro	Tyr	Gln	Asn	Leu 160
Gln	Pro	Leu	Leu	Met 165	Leu	Leu	Lys	Lys	Gln 170	His	Lys	Leu	Val	Leu 175	Ser
Gln	Lys	Asp	Cys 180	Asn	Pro	Ser	Arg	Lys 185	Gln	Lys	Pro	Val	Thr 190	Leu	Lys
Phe	Arg	Pro 195	Pro	Pro	Lys	Leu	Thr 200	Ser	Gln	Trp	Arg	Leu 205	Ser	Arg	Glu
Leu	Ser 210	Lys	Ile	Pro	Leu	Ile 215	Arg	Leu	Gly	Ile	Ser 220	Leu	Ile	Asp	Leu
Ser 225	Glu	Pro	Trp	Leu	Glu 230	Gly	Trp	Gly	Asn	Ala 235	Phe	Tyr	Ser	Val	Leu 240
Gly	Tyr	Glu	Ala	Ser 245	Lys	His	Ser	Gly	Arg 250	Trp	Ser	Asn	Trp	Thr 255	Gln
Met	Lys	Tyr	Phe 260	Trp	Ile	Tyr	Asp	Thr 265	Gly	Val	Gly	Asn	Ala 270	Val	Tyr
Val	Ile	Leu 275	Leu	Lys	Lys	Asp	Val 280	Asp	Asp	Asn	Pro	Gly 285	Asp	Met	Ala
Thr	Lys 290	Phe	Val	Thr	Gly	Gln 295	Gly	Gln	His	Pro	Asp 300	Ala	Ile	Aab	His
Ile 305	Glu	Met	Val	Asn	Glu 310	Gly	Trp	Pro	Tyr	Trp 315	Leu	Phe	Phe	Tyr	Gly 320
Gln	Ser	Glu	Gln	Asp 325	Ile	Lys	Lys	Leu	Ala 330	His	Asp	Gln	Aab	Ile 335	Ala
Arg	Glu	Tyr	Ala 340	Arg	Asp	Pro	Lys	Ser 345	Lys	Lys	Leu	Lys	Ile 350	Gly	Val
Ile	Gly	Trp 355	Ala	Ser	Ser	Asn	Tyr 360	Thr	Thr	Ala	Gly	Ser 365	Asn	Gln	Asn
Thr	Thr 370	Ala	Gln	Thr	Pro	Glu 375	Ala	Ile	Gln	Gly	Gly 380	Tyr	Val	Ala	Tyr
Ala 385	Gly	Ser	Arg	Ile	Pro 390	Gly	Ala	Gly	Ser	Ile 395	Thr	Asn	Leu	Phe	Gln 400
Met	Gly	Trp	Pro	Gly 405	Asp	Gln	Asn	Trp	Pro 410	Pro	Thr	Asn	Gln	Glu 415	Gln

					-
-	con	t	1	nu	ed

Thr	Asn	Phe	Asn 420	Trp	Gly	Leu	Arg	Gly 425	Leu	Суз	Val	Leu	Arg 430	Asp	Asn
Met	Lys	Leu 435	Gly	Ala	Gln	Glu	Leu 440	Asp	Asp	Glu	Сув	Thr 445	Met	Leu	Ser
Leu	Phe 450	Gly	Pro	Phe	Val	Glu 455	Lys	Ala	Asn	Thr	Ala 460	Phe	Ala	Thr	Asn
Asp 465	Pro	Lys	Tyr	Phe	Arg 470	Pro	Glu	Leu	Lys	Asp 475	Tyr	Asn	Val	Val	Met 480
Lys	Tyr	Ala	Phe	Lys 485	Phe	Gln	Trp	Gly	Gly 490	His	Gly	Thr	Glu	Arg 495	Phe
ГЛЗ	Thr	Thr	Ile 500	Gly	Asp	Pro	Ser	Thr 505	Ile	Pro	Cys	Pro	Phe 510	Glu	Pro
Gly	Glu	Arg 515	Tyr	His	His	Gly	Val 520	Gln	Asp	Pro	Ala	Lys 525	Val	Gln	Asn
Thr	Val 530	Leu	Asn	Pro	Trp	Asp 535	Tyr	Asp	Сүз	Asp	Gly 540	Ile	Val	Arg	Thr
Asp 545	Thr	Leu	Lys	Arg	Leu 550	Leu	Glu	Leu	Pro	Thr 555	Glu	Thr	Glu	Glu	Thr 560
Glu	Lys	Ala	Tyr	Pro 565	Leu	Leu	Gly	Gln	Lys 570	Thr	Glu	Lys	Glu	Pro 575	Leu
Ser	Asp	Ser	Asp 580	Glu	Glu	Ser	Val	Ile 585	Ser	Ser	Thr	Ser	Ser 590	Gly	Ser
Ser	Gln	Glu 595	Glu	Glu	Thr	Gln	Arg 600	Arg	Arg	Gln	His	Lys 605	Pro	Ser	Lys
Arg	Arg 610	Leu	Leu	Lys	His	Leu 615	Gln	Arg	Val	Val	Lys 620	Arg	Met	Lys	Thr
Leu 625															

What is claimed is:

immunologically effective amount and a Porcine Torque Teno Virus open reading frame 1 (ORF1) protein according to SEQ ID NO: 16, or an immunogenic fragment of the ORF1 protein according to SEQ ID NO: 16 that comprises subtype specific hypervariable regions (HVR) represented ⁴⁵ by amino acids 363 to 375 and 388 to 423 of SEQ ID NO: 16.

2. The vaccine according to claim 1, wherein ORF1 protein or immunogenic fragment of the ORF1 protein is a $_{50}$ purified plasmid or baculovirus vector expressed recombinant protein.

3. The vaccine according to claim 1, further comprising at least one physiologically acceptable carrier.

4. The vaccine according to claim 1, wherein the adjuvant $_{55}$ is selected from one or more of aluminum hydroxide (alum), aluminum potassium sulfate, immunostimulating complexes (ISCOMS), non-ionic block polymers or copolymers, cytokines, saponins, monophosphoryl lipid A (MLA), muramyl dipeptides (MDP), enterotoxins isolated from Escherichia 60 coli, cholera toxins, diphtheria toxin, tetanus toxin, pertussis toxin, and subunits of cholera, diphtheria, tetanus, and pertussis toxins.

5. A vaccine for protecting against a Porcine Torque Teno Virus (PTTV) infection, wherein the vaccine comprises at 65 least one adjuvant and a recombinant protein comprising amino acids 310 to 625 of SEQ ID NO: 16.

6. The vaccine according to claim 1, which is adapted to 1. A vaccine comprising at least one adjuvant in an 40 be administered parenterally, intranasally, intradermally, or transdermally to a pig.

7. The vaccine according to claim 1, which is adapted to be administered intralymphoidly or intramuscularly to a pig.

8. An immunogenic composition comprising at least one adjuvant and a recombinant subunit capsid protein or immunogenic fragment thereof expressed from a bacterial or baculovirus expression system wherein the capsid protein or immunogenic fragment thereof comprises a Porcine Torque Teno Virus polypeptide represented by amino acids 363 to 375 of SEQ ID NO: 16 and a Porcine Torque Teno Virus polypeptide represented by amino acids 388 to 423 of SEQ ID NO: 16.

9. The immunogenic composition according to claim 8, which is adapted to be administered parenterally, intranasally, intradermally, transdermally, intralymphoidly or intramuscularly to a pig.

10. A plasmid or baculovirus vector encoding a recombinant capsid protein or immunogenic fragment thereof wherein the recombinant capsid protein or immunogenic fragment comprises a Porcine Torque Teno Virus polypeptide represented by amino acids 363 to 375 of SEQ ID NO: 16 and a Porcine Torque Teno Virus polypeptide represented by amino acids 388 to 423 of SEQ ID NO: 16.

11. The plasmid or baculovirus vector of claim 10, wherein the recombinant capsid protein or immunogenic fragment thereof comprises amino acids 310 to 625 of SEQ ID NO: 16.

*