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Abstract

Resistance genes are an effective means for disease control in plants. They predominantly

function by inducing a hypersensitive reaction, which results in localized cell death restricting

pathogen spread. Some resistance genes elicit an atypical response, termed extreme resis-

tance, where resistance is not associated with a hypersensitive reaction and its standard

defense responses. Unlike hypersensitive reaction, the molecular regulatory mechanism(s)

underlying extreme resistance is largely unexplored. One of the few known, naturally occur-

ring, instances of extreme resistance is resistance derived from the soybean Rsv3 gene,

which confers resistance against the most virulent Soybean mosaic virus strains. To discern

the regulatory mechanism underlying Rsv3-mediated extreme resistance, we generated a

gene regulatory network using transcriptomic data from time course comparisons of Soybean

mosaic virus-G7-inoculated resistant (L29, Rsv3-genotype) and susceptible (Williams82,

rsv3-genotype) soybean cultivars. Our results show Rsv3 begins mounting a defense by 6

hpi via a complex phytohormone network, where abscisic acid, cytokinin, jasmonic acid, and

salicylic acid pathways are suppressed. We identified putative regulatory interactions

between transcription factors and genes in phytohormone regulatory pathways, which is con-

sistent with the demonstrated involvement of these pathways in Rsv3-mediated resistance.

One such transcription factor identified as a putative transcriptional regulator was MYC2

encoded by Glyma.07G051500. Known as a master regulator of abscisic acid and jasmonic

acid signaling, MYC2 specifically recognizes the G-box motif (“CACGTG”), which was signifi-

cantly enriched in our data among differentially expressed genes implicated in abscisic acid-

and jasmonic acid-related activities. This suggests an important role for Glyma.07G051500

in abscisic acid- and jasmonic acid-derived defense signaling in Rsv3. Resultantly, the find-

ings from our network offer insights into genes and biological pathways underlying the molec-

ular defense mechanism of Rsv3-mediated extreme resistance against Soybean mosaic

virus. The computational pipeline used to reconstruct the gene regulatory network in this

study is freely available at https://github.com/LiLabAtVT/rsv3-network.
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Introduction

Soybean is a crop of global importance, and the Soybean mosaic virus (SMV)-soybean patho-

system provides an opportunity to study the extreme resistance (ER) response, a type of resis-

tance unique from the typical hypersensitive reaction (HR) response in that it is triggered

earlier and cell death is not observed [1]. SMV, a single-stranded RNA virus of the genus Poty-
virus, considerably reduces seed quality and yield in soybean-growing regions throughout the

world. Several SMV isolates recovered from germplasm imported into the United States were

classified into seven strain groups, G1 to G7, based on reactions in a set of various soybean

genotypes [2]. The most successful management strategies have been the utilization of virus-

free seeds and resistant cultivars carrying resistance (R) genes. Four dominant R genes have

been identified—Rsv1, Rsv3, Rsv4, and Rsv5 [3–8]. Rsv1 and Rsv3 confer ER against SMV

strains G1 to G4 and G5 to G7, respectively [5, 9, 10]. Among these strains, G5 to G7 represent

the most virulent SMV strains, making Rsv3 a particularly interesting gene for functional

study. The Rsv3 locus has been mapped, and the gene responsible for conditioning Rsv3-medi-

ated resistance (Glyma.14g204700; Glyma.Wm82.a2.v1 gene model) has been identified [11–

13]. Comparative sequence analysis has revealed that Glyma.14g204700 is highly polymorphic

in the LRR domain of soybean lines carrying Rsv3. This suggests Rsv3-mediated resistance is

initiated by the LRR domain’s recognition of an effector, the SMV cylindrical inclusion protein

(CI) [12, 14]. However, the events directly following recognition remain undefined. It is

hypothesized in [15] that the abscisic acid (ABA) signaling pathway is triggered during later

stages of the Rsv3-mediated ER response. The consequent high ABA levels induce expression

of a family of type 2C protein phosphatases, resulting in callose deposition, which impedes

viral cell-to-cell movement [15]. Nonetheless, a large gap remains in our understanding of the

Rsv3-mediated ER response, as the initial molecular events occurring prior to activation of the

ABA signaling pathway are still unknown.

One approach to discerning the underlying mechanisms controlling a biological process,

such as in Rsv3-mediated resistance, is reconstructing and modeling its molecular network.

These networks examine complex interactions between genes, proteins, and metabolites. At

the gene level, expression is predominantly governed by transcription factors (TFs), which

bind to DNA sequence motifs in the regulatory region of their target genes. Improved under-

standing of gene expression regulation can have considerable scientific impact as many of the

biological control mechanisms responsible for certain traits are associated with mutations in

regulatory regions or dysfunctional transcriptional regulators [16]. For example, modern-day

crops such as maize, rice, and wheat were heavily shaped by alterations in transcriptional regu-

lation [17]; accordingly, elucidation of transcriptional regulation can aid significantly in

research. An approach to accomplish this is the utilization of gene regulatory networks

(GRNs), the study of which has led to the discovery of important genes and regulatory mecha-

nisms underlying specific processes in Escherichia coli, Saccharomyces cerevisiae, and Arabi-
dopsis thaliana [18–23]. GRNs describe the intricate web of TFs that bind regulatory regions of

target genes in order to influence their spatial and temporal expression [24]. Using computa-

tional network inference methods, the structure of the gene regulatory interactions that

makeup GRNs can be reverse-engineered. That is, causal relationships can be inferred between

genes (such as those encoding TFs) directly controlling the expression of other genes [25, 26].

By taking advantage of advancements in high-throughput sequencing technology, GRNs can

be reconstructed utilizing genome-wide expression data, such as from RNA sequencing

(RNA-seq) [27]. RNA-seq analyses can identify thousands of genes with altered expression in

response to virus inoculation and provide more molecular targets to study. Network inference

methods can then be applied to the expression data to uncover key genes and regulatory
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relationships [16]. Thus, the significance of modeling transcriptional regulation is that it pro-

vides a means for discerning gene function and important regulators in molecular pathways,

such as those involved in mediating the Rsv3-mediated ER response.

This study aims to elucidate the key regulatory components involved in the Rsv3 defense

mechanism by constructing a GRN. To do this, we performed a comparative transcriptomic

time course analysis of SMV-G7-inoculated cultivars “L29” (Rsv3-genotype) and “Williams82”

(rsv3-genotype) during the early hours post-inoculation. We found differentially expressed

genes (DEGs) between L29 and Williams82 at each time point, and among these were several

genes belonging to TF families associated with defense. We carried out GRN inference analy-

ses on DEGs utilizing the computational pipeline we developed previously [28]. This pipeline

makes use of the well-received module networks method in which GRNs are inferred between

TFs and gene co-expression modules. Network inference was performed with unique unsuper-

vised learning algorithms: ARACNE (Algorithm for the Reconstruction of Accurate Cellular

Networks), context likelihood of relatedness (CLR), least angle regression (LARS), partial cor-

relation, and Random Forest [29–33]. These algorithms represent the top performing infer-

ence methods according to the DREAM5 benchmark challenge [34]. Several of the predicted

interactions were validated using published interactions in the model plant species, A. thali-
ana, and by motif sequence analysis [35–37].

Materials and methods

Soybean mosaic virus inoculations, leaf sampling, and RNA extraction

For this study, we used SMV strain G7 (SMV-G7) inoculum originating from [2]. The inocu-

lum was stored in the form of desiccated infected leaves for long-term storage at 5˚C or frozen

at -80˚C. Response of differential cultivars for “trueness to type” was tested periodically as inoc-

ulum were activated from storage. In this study, the SMV-G7 strain was maintained on green-

house-grown soybean cultivar “York” (rsv3-genotype “susceptible”) prior to the experiment.

The SMV-G7 inoculum was prepared from symptomatic trifoliolate leaves of York by crushing

in a mortar and pestle with 0.01M sodium phosphate buffer–pH 7.0 (1:10 w/v). The inoculation

experiment was performed in greenhouse in the spring of 2014, where temperature, humidity,

and light conditions were not artificially controlled. Inoculations were performed by lightly

dusting 600-mesh carborundum powder over unifoliolate leaves, and the virus inoculum (see

above) was gently rubbed using a pestle onto the two unifoliolate leaves of each plant and fol-

lowed by a gentle rinsing with tap water. The inoculated unifoliolate leaves were collected at 0,

2, 4, 6, and 8 hours post inoculation (hpi) in biological triplicate, rinsed with DI water, frozen

immediately by immersing in liquid nitrogen, and stored at -80˚C until RNA extraction. For

each time point, a single biological replicate sample was comprised of six unifoliolate leaves

total (= 2 unifoliolate leaves per plant x 3 individual plants within a pot). Thus 15 plants (= 3

plants per time point x 5 time points) were sampled from both cultivars. Total RNA (RIN>7.0)

was extracted from frozen samples using RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany)

with on-column DNase digestion (QIAGEN, Hilden, Germany). A total of 20 mRNA libraries

(= 2 cultivars x 5 time points x 2 biological replicates) was prepared from duplicate RNA sam-

ples of each virus-inoculated cultivar at each time point and sequenced as 150 PE with Illumina

HiSeq4000 (Illumina, San Diego, CA) at Novogene, Sacramento, CA.

Sequence data processing and differential gene expression

Raw reads were filtered using Trimmomatic (version 0.30) to remove adapter sequences

(ILLUMINACLIP:<IlluminaAdapters.fa>:2:30:10), trim low quality bases (<Q30, LEAD-

ING:30 TRAILING:30), and remove those reads trimmed to less than 50 base pairs
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(MINLEN:50) [38]. Reads were mapped to the “Williams82” soybean reference genome

(Wm82.a2.v1, downloaded from Phytozome) using STAR (version 2.5.3a) with a maximum

intron length of 15000 (--alignIntronMax) [39, 40]. The number of reads mapped to each gene

was quantified using featureCounts (version 1.5.3) using paired end parameters “-B” and “-p”

with features defined as “exons” (-t) being grouped by “gene_id” (-g) [41]. Differential expres-

sion analysis was performed with DESeq2 (version 1.22.2) in R (version 3.5.1) with those genes

having less than one count being removed [42]. Reference levels were set as the susceptible

Williams82 line and 0 hpi, and the DESeq() function “test” parameter was set to “LRT”. The

resulting output was used to make comparisons between L29 and Williams82 to identify DEGs

at each time point by employing the results() function with the “test” parameter set as “Wald”.

DEGs were defined as those with a false discovery rate (FDR) adjusted p-value < 0.05, log2

fold change >|1.0|, and base mean>10. DEGs and their log2 fold changes can be found in S1

Table. The RNA-seq data from this study are available at the NCBI Gene Expression Omnibus

(GEO) repository under accession number GSE137263.

Inference of gene regulatory networks

Expression clustering and gene function annotation. Gene expression levels for all genes

were normalized by variance-stabilizing transformation in DESeq2 and averaged across replicates

[42]. Clustering analysis was carried out on DEGs using Gaussian-finite mixture modeling with

the R package, mclust (version 5.4.2) using default parameters [43]. The optimal clustering model

was determined using Bayesian Information Criteria (BIC) and integrated complete-data likeli-

hood (ICL) criterion [44, 45]. The top performing model identified five gene clusters. Gene ontol-

ogy (GO) enrichment analysis was performed on each gene cluster using soybean GO

annotations from [46]. Significantly enriched GO categories were selected using Fisher’s exact test

with FDR<0.05 (S2 Table) Significantly enriched gene families were also analyzed using GenFam

online tool, and the results with FDR<0.05 are included (S2 Table) [47]. DEGs encoding TFs

were identified using TF annotations downloaded from PlantTFDB [48].

Network inference methods. Network inference was carried out following the pipeline

we developed previously using machine learning methods [28]. Gaussian-finite mixture

modeling was used to cluster DEGs, with the best model finding five clusters (gene modules).

We identified 131 differentially expressed TFs, which were set as putative regulators of the five

modules. The mean expression profile for each module was computed and then constructed

into an expression matrix of these values and the expression levels of the 131 TFs. Putative reg-

ulatory interactions between each TF and gene module were inferred from the expression

matrix by implementing five unique network inference algorithms: ARACNE, CLR, LARS,

partial correlation, and Random Forest [29–33]. ARACNE and CLR inference methods were

implemented with the R package minet (version 3.40.0) with the “estimator” parameter set as

“spearman” and the “eps” parameter set as 0.1 for ARACNE and for CLR the “estimator” set as

“pearson” [30, 31, 49]. The LARS inference method was implemented with the R package

tigress (version 0.1.0) with “nstepsLARS” set at 4 [33]. The partial correlation inference

method was implemented with the R package GeneNet (1.2.13) using the “dynamic” shrinkage

method [29, 50]. Lastly, the Random Forest inference method was implemented with the R

package GENIE3 (version 1.4.3) with all default parameters [32]. Because community-based

approaches make for a more robust inference of GRNs, multiple inference methods, based on

a diverse set of algorithms, were applied to predict interactions. These methods were among

the top performing in the DREAM5 challenge [34].

Validation of inferred network interactions. We used two approaches to validate the dis-

covered putative regulatory interactions predicted by the inference methods. The first
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approach entailed the identification of homologous regulatory interactions in A. thaliana
using a comprehensive set of published A. thaliana interactions observed with DNA affinity

purification sequencing (DAP-seq) [35]. This DAP-seq dataset is composed of 2.8 million

interactions between 387 TFs and 32,605 genes. For comparison of our predicted regulatory

network with the A. thaliana DAP-seq data, we first expanded the TF-module interactions to

TF-gene interactions. That is, each TF was set as a putative regulator of all the genes in the

modules it was predicted to regulate. Homologous A. thaliana interactions for the TF-gene

interactions were generated by using BLAST to identify A. thaliana homologous genes with

soybean gene coding sequences. The best one-to-one BLAST hits were selected, using an E-

value of 1e-5 for cut off. The resulting homologous A. thaliana interactions were then com-

pared to the DAP-seq dataset and matching interactions identified.

For the second method of network validation, we performed motif sequence analysis using

Meme suite (version 5.0.4), which provides a set of tools for motif discovery, enrichment, scan-

ning, and comparison [36]. With this approach, we identified putative TF binding sites in pro-

moter regions (defined as the 1000 bps flanking a gene’s 5’ end) of the DEGs in each module.

These binding sites (motifs) were identified using the motif discovery tool, MEME [37]. The

TomTom tool was then used to compare the discovered motif sequences to 872 A. thaliana
motifs found with DAP-seq and to identify TFs that may bind to those discovered sequences

[35, 51].

Results and discussion

In this study, we analyzed the transcriptional regulation of the R gene Rsv3, which confers ER

against the most virulent SMV strains. This was accomplished by implementing machine

learning inference algorithms on a GRN constructed from time course RNA-seq data from

leaves of SMV-G7 inoculated resistant and susceptible soybean cultivars, L29 and Williams82,

respectively. Our results suggest that an intricate regulatory network is in place modulating the

Rsv3-mediated resistance response upon SMV-G7 inoculation.

Fate of SMV-induced susceptibility or resistance in soybean is determined

between 4 to 8 hours post-inoculation

To better understand the regulatory mechanism underlying Rsv3-mediated ER, we compared

transcriptomic profiles of SMV-G7 inoculated leaves from L29 and Williams82 cultivars at 0,

2, 4, 6 and 8 hpi. Overall, 1128 genes were differentially expressed between two cultivars, at

one or more time points between 2 and 8 hpi (S1 Table); DEGs identified at 0 hpi were

excluded, as they were considered effects from differences in genetic backgrounds between the

two cultivars. Distribution of the 1128 DEGs found between 2 and 8 hpi is shown in Fig 1. The

majority of transcriptomic changes occurred between 4 and 8 hpi, suggesting that the large

shifts in transcriptional activity during this time frame may be critical to whether a susceptible

or defense response is induced. There was a striking increase in the number of DEGs at 6 hpi

(859 DEGs), accounting for more than 75% of the total number of DEGs. This was followed by

a dramatic drop at 8 hpi to merely 17 DEGs. This likely implies the presence of a tightly

defined regulatory system that elicits the Rsv3-mediated ER response, suggesting the Rsv3
pathway is induced very early during the infection process and that a susceptible or resistant

response to SMV may be determined by 6 hpi.

At 6 hpi, GO enrichment analyses revealed that the 122 DEGs highly expressed in L29 were

involved in cytokinin metabolism and signaling. Also highly expressed was a unique subfamily

of MYB-related TFs, the RADIALIS-LIKE SANT/MYBs (RSMs). Up-regulation of six differen-

tially expressed members of this family, specifically at 6 hpi, suggests tight temporal regulation
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of RSM TFs, which could be important to a process essential in ER-mediated defense. Little is

known about the RSM subfamily, but one study showed involvement of RSM1 in auxin signal-

ing [52]. No other TF family was exclusively highly expressed or had multiple members up-

regulated at this time. Interestingly, more than 85% of the DEGs in this time period (4–8 hpi)

were expressed at lower levels in L29 as compared to Williams82. At 6 hpi, most of the down-

regulated genes were those responsive to water deprivation, light absence, sucrose starvation,

genes encoding stress-related proteins, such as multiple glutathione S-transferases, heat shock

and LEA (late embryogenesis abundant) chaperones, and proteins related to oxidative stress

and signaling, such as transporters, serine/threonine kinases, and receptor kinases. Addition-

ally, a number of genes in the ABA signaling and the salicylic acid (SA) pathways were down-

regulated in L29 as well. This finding is unique in that the activation of the SA pathway and

exogenous application of SA are both widely recognized as enhancing resistance to viruses

[53]. Nevertheless, a few exceptions to this phenomenon have been observed; in inoculated

and systemically infected leaves of soybean, SA treatment had no effect on Bean pod mottle
virus (BPMV) accumulation, and in susceptible pea cultivars, activation of the SA pathway

resulted in an increase of Clover yellow vein virus virulence [54, 55]. Nonetheless, it remains

Fig 1. Number of differentially expressed genes between soybean cultivars L29 and Williams82 at 2, 4, 6, and 8 hours post inoculation with Soybean mosaic virus
strain G7. DEGs were defined as those with FDR adjusted p-value< 0.05, log2 fold change>|1.0|, and base mean>10. High expression or low expression in L29 means

the expression of DEG was either higher or lower in L29 as compared to Williams82, respectively. A total of 1128 DEGs were identified between L29 and Williams82 at

2, 4, 6 and 8 hpi. DEGs at 0 hpi were minimal and excluded, being considered effects of differences in genetic backgrounds of the two cultivars and not infection

responses.

https://doi.org/10.1371/journal.pone.0231658.g001
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unclear how SA, in some cases, enhances virulence [53], suggesting that suppression of the SA

pathway may be a facet of Rsv3’s mechanism for diverting SMV-G7 infection.

Biological processes associated with Rsv3-mediated resistance in soybean

show differential hormone responses

In order to study the temporal regulation of the Rsv3-mediated ER mechanism, we performed

co-expression clustering of DEGs. The 1128 DEGs found between the two cultivars at one or

more time points between 2 and 8 hpi were clustered into different co-expressed modules

using a model-based clustering approach, where a module is defined as a group of genes shar-

ing similar expression profiles over time and are likely functioning in the same biological pro-

cesses. Based on BIC and ICL criteria, we identified five modules that optimally explain the

observed gene expression pattern; these modules consist of 85 (module-1), 198 (module-2),

383 (module-3), 170 (module-4), and 292 (module-5) DEGs. The expression profile for these

modules was determined by averaging the expression levels of DEGs within each module (Fig

2A). The expression profiles for module-1, module-4, and module-5 were similar between L29

and Williams82, whereas those for module-2 and module-3 were highly divergent between the

two cultivars. This divergence in their expression pattern was noticeable between 4 and 8 hpi,

with a peak at 6 hpi. For module-5, despite similar expression patterns, the magnitude of dif-

ference between L29 and Williams82 was greater in Williams82 than in L29.

GO enrichment analyses of five co-expression modules showed significant enrichment of

47 biological processes (shown with asterisk) and molecular functions (Fig 2B) (S2 Table). The

co-expression module-2 showed enrichment for several GO terms associated with ABA and

auxin biosynthesis and signaling pathways (Fig 2B). The expression profile of this module

showed a clear contrast between L29 and Williams82, with a maximum (4-fold) difference at 6

hpi, suggesting that ABA- and auxin-related processes were likely down-regulated in SMV-

resistant L29 soybean between 4 and 8 hpi (Fig 2A). [15] found that ABA-mediated callose

deposition in cell walls prevents intercellular virus movement in Rsv3-mediated ER in

SMV-G5H inoculated L29 after 8 hpi. Callose deposition was not observed in SMV-G7 inocu-

lated L29 (this study); however, Glyma.16152600 and Glyma.03G132700, both encoding beta-

1,3-glucanases, were down-regulated at 6 hpi in L29. This is interesting as one of ABA’s

defense strategies against viruses is inhibition of these proteins, which function to degrade cal-

lose [56]. The down-regulation in L29 of genes encoding callose degradation proteins provides

further evidence that Rsv3 begins mounting a defense as early as 6 hpi. Additionally, [15]

showed elevated expressions of ABA and ABA responsive genes in SMV-G5H inoculated L29

leaves after 8 hpi. In contrast, we observed down-regulation of ABA responsive genes in

SMV-G7 inoculated L29 leaves before 8 hpi, indicating changes in ABA signaling begin soon

after inoculation.

Co-expression module-4 showed enrichment of several GO terms associated with jasmonic

acid (JA) biosynthesis and signaling and ethylene (ET) biosynthesis (Fig 2B). Module-4 expres-

sion showed similar profiles between the two cultivars but average expressions were lower in

L29 than in Williams82 at 4, 6, and 8 hpi, suggesting JA suppression may be required for Rsv3-

mediated ER (Fig 2A). Suppression of JA pathway in Rsv3-mediated resistance was also

reported in SMV-G5H inoculated L29 cultivar [56]. Though JA’s role in viral defense is not

well understood, [43] observed that increased JA levels in soybean enhance susceptibility to

BPMV. Interestingly, co-expression module-5 was enriched with genes associated with biolog-

ical processes such as for syncytium formation (GO:0006949), cell wall modifications

(GO:0009828, GO:0009831), cytokinin (CK) degradation (GO:0009823, GO:0019139), and cell

growth (GO:0009826). Enrichment for these processes is indicative of virus interference with
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cell growth and metabolism. As for the expression profile of this module, it fluctuated drasti-

cally from 2 hpi to 8 hpi in Williams82 compared to the subtle shifts in L29. This may indicate

greater changes in the activity of these biological processes in Williams82, which are perhaps

associated with soybean susceptibility to SMV and stages of virus replication occurring as early

as 4 hpi (Fig 2A).

For the enrichment in CK degradation, multiple genes encoding cytokinin dehydrogenases

were up-regulated in L29 from 2 to 6 hpi, suggesting CK levels were reduced in L29 relative to

Williams82. CKs function to promote cell proliferation and elongation, numerous develop-

mental processes, and are known to have a role in viral resistance [53]. In Williams82, the

large expression changes in genes involved in membrane activity, syncytium formation, cell

wall loosening, and cell growth and modification are known to be associated with early and

initial stages of the potyvirus infection process in susceptible hosts [57, 58]. In particular, syn-

cytium formation is a biological process in which virus-infected cells fuse together to form

Fig 2. Co-expression gene modules and their biological functions. A module is defined as a group of genes sharing similar expression profiles over time and

likely involved in the same biological processes. The expression profile for these modules was determined by averaging the expression levels of DEGs within

each module. (A) Mean module expression profiles of L29 and Williams82 over time. Normalized expressions of DEGs were used for clustering with

Gaussian-finite mixture modeling. (B) Heatmap of GO functional enrichment analyses. Columns represent module groups. Rows represent hierarchical

clustering of enriched GO categories; those with an asterisk indicate a biological process, while all others are molecular functions. Color represents–log10

adjusted p-value.

https://doi.org/10.1371/journal.pone.0231658.g002
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enlarged multi-nucleated cells called syncytia [59]. The increase in gene products used to form

syncytia, which are not known to occur in cells of potyvirus-infected plants, may reflect the ini-

tiation of virus replication in the susceptible host, Williams82, as it did not occur in L29. After

all, potyviruses are known to form 6K2 membrane-bound vesicles that later form tubular

structures and interact with host endoplasmic reticulum [60]. This response could have been

facilitated by heightened CK levels in Williams82. Interestingly still, CKs can act synergistically

with the SA signaling pathway, triggering its activation [53]. In fact, [61] proposed that CK lev-

els might aid in determining the amplitude of SA-related immunity. Perhaps in the case of soy-

bean Rsv3-mediated resistance, where it seems suppression of the SA pathway is required, this

suppression is achieved through reduced CK levels.

Only single biological processes such as responses to sucrose starvation and absence of light

were enriched for the co-expression module-1 and module-3, respectively, but the analyses of

these modules will not be included in this study. We also analyzed gene family enrichment

using an online tool, GenFam [47]. We found that some results are in agreement with the GO

analysis. In particular, GenFam found that “Kunitz Trypsin Inhibitor (KTI) gene family” is

enriched in module-2, whereas GO analysis showed (GO:0004866) endopeptidase inhibitor

activity is also enriched in module-2. This result from GenFam is more specific than GO anno-

tation because KTI is a specific type of endopeptidase inhibitor. Similarly, we also found

“Expansin gene family” is enriched in module-5, whereas GO analysis showed (GO:0009828)

plant-type cell wall loosening is also enriched in module-5. Although many factors might regu-

late plant-type cell wall loosening, the results from GenFam enrichment provide a more spe-

cific result suggesting expansin genes are the main gene family contributing to cell wall

loosening in our experiment.

Suppression of MYC2 transcription factor expression is important for

Rsv3-mediated ER

Our network inference analysis identified candidate genes regulating gene expression in each

module. Between the five network inference methods, a total of 654 interactions were identified

between TF genes and the gene co-expression modules. No interaction was predicted by all five

methods, but 56 interactions were predicted by four out of five methods (S3 Table). These 56

TF-module interactions were regulated by 49 TFs, indicating some TFs regulated more than

one module, and all five modules were regulated by more than one TF. Because there could be

an unknown number of false negatives (true interactions that were not supported by expression

data) and false positives (interactions supported by expression data but not found in biological

systems) in the predicted interactions, we chose to use bioinformatics approaches to validate

our computational predictions. In the rest of this manuscript, we focused on the predicted inter-

actions that are supported by homologous interactions in the model species, A. thaliana, and

also analyzed the motif enrichment to compare with known motifs in A. thaliana.

When the 56 putative interactions were transformed to homologous A. thaliana interac-

tions, comparison to the A. thaliana DAP-seq dataset validated 1732 TF-gene interactions,

with 21 TFs and 819 genes (S4 Table). This translates to 25 TF-module interactions found

from the network inferred 56 TF-module interactions (S5 Table). Further validation by motif

sequence analysis discovered 20 enriched motifs in the five modules, with each module con-

taining enrichment of one or more motifs (S6 Table). The identified motifs represent putative

TF binding sites from which TFs can regulate the expression of target genes in each of the

modules; this allowed us to identify TF families that may recognize and bind to the enriched

motif sequences. From the 25 TF-module interactions validated with the A. thaliana DAP-seq

data, we found nine interactions further validated by motif sequence analyses (Table 1). Still,
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though the A. thaliana DAP-seq dataset is large, it does not represent every interaction; there-

fore, we included three additional interactions from the inferred 56 TF-module interactions

that were validated by motif enrichment only.

Motif sequence analyses showed that co-expressed genes in module-5 are regulated by

NAC (NAM, ATAF1/2, and CUC), ERF (ethylene responsive factor) and/or MYB (myeloblas-

tosis oncogene) TFs (Table 1). NAC TFs are major regulators of biotic and abiotic stress

responses in plants. Several studies have shown the induction of NAC TFs upon virus infection

and their essential role in basal defense and the innate plant immune system [62, 63]. This is

consistent with the enrichment for genes associated with syncytium formation in module-5.

The ERF TFs are well known to be involved in the regulation of disease resistance pathways

[64, 65]. Their expression can be altered by pathogen attack and phytohormones like JA, SA,

and ET [66]. Only one ERF TF gene (Glyma.17G145300) was found to regulate the JA respon-

sive genes in module-4 (Fig 3A) (Table 1). The A. thaliana homolog of this gene encodes

ERF5, which has been implicated as a regulator in the JA-mediated defense pathway [67]. The

disparate expression profiles and putative function makes Glyma.17G145300 gene an ideal

candidate for the differential regulation of JA-related processes found in module-4, which may

lead to Rsv3-mediated ER response in soybean. Some genes in module-4 were also predicted to

be regulated by a basic/helix-loop-helix (bHLH) TF (Glyma.17G090500) and a MYB TF (Gly-

ma.08G042100) (Table 1). The bHLH TF (Glyma.17G090500) showed contrasting expression

profiles between L29 and Williams82, with a two-hour lag in expression changes observed in

Williams82 (Fig 3A). Another MYB TF (Glyma.04G036700) was also found to regulate genes

in module-2, and its expression was significantly down-regulated in L29 at a 6 hpi (Fig 3B).

MYBs are known to be involved in plant defense and stress responses [65]. In particular,

MYB77, encoded by Glyma.04G036700 (the MYB regulating module-2), is associated with

Table 1. A. thaliana and motif validated interactions.

TF Name TF Family Target

Module

A. thaliana Homolog MEME Motif

Enrichment E-value

MEME

Motif

DAP-seq

Motif

DAP-seq Motif

Similarity p-value

Glyma.07G060400 bZIP 1 AT2G46270 2.00E-20 3.59E-04

Glyma.04G036700 MYB 2 AT3G50060 2.40E-19 8.16E-04

Glyma.07G051500� MYC2

(bHLH)

2 AT1G32640 9.30E-24 5.58E-05

Glyma.06G092000� bHLH 3 AT5G65640 6.20E-05 7.62E-05

Glyma.17G090500� bHLH 4 AT4G20970 2.30E-04 2.22E-04

Glyma.17G145300 ERF 4 AT5G47230 1.60E-02 1.78E-06

Glyma.08G042100 MYB 4 AT1G25340 1.00E-18 1.90E-05

Glyma.02G080200 Glyma.08G216600

Glyma.05G234600 Glyma.08G042100

ERF ERF

MYB MYB

5 AT2G33710 AT5G25190

AT1G25340 AT1G25340

2.10E-11 2.89E-04 4.24E-03

5.01E-06

Glyma.18G301500 NAC 5 AT5G13180 1.20E-33 5.01E-06

Shown are putative TF-module interactions with their validation results from motif sequence analyses. MEME results show enriched motifs found in each module using

promoter sequences of genes belonging to module. A. thaliana DAP-seq data was used to find motifs with high similarity to MEME motifs, which enabled identification

of TFs that putatively recognize and bind the enriched MEME motifs discovered in each module.

�TFs with asterisks were validated by motif sequence analyses only.

https://doi.org/10.1371/journal.pone.0231658.t001
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stress responses and is a modulator of auxin activity, of which module-2 was enriched with

[68, 69].

The module-2 was significantly enriched for the G-box motif (“CACGTG”), which is specif-

ically recognized by the bHLH TF superfamily, and our network happened to predict a bHLH

(Glyma.07G051500) regulating module-2 (Table 1) [70, 71]. This TF was differentially

expressed at 4 hpi with a log2 fold change of -2.30 in L29, showing it was triggered prior to the

major transcriptional shift observed at 6 hpi. Comparison of its expression pattern revealed

vastly different profiles, with a significant peak in expression in Williams82 (Fig 3B). This gene

was also identified as a putative resistance gene against a leaf-eating insect, the common cut-

worm, and similarly, its expression levels were also significantly lower at 4 hpi in the resistant

line [72]. This suggests Glyma.07G051500’s activity is important in pathogen defense. The A.

thaliana homolog (AT1G32640) of Glyma.07G051500 encodes a MYC-related transcriptional

activator (MYC2) with a bHLH leucine zipper DNA binding domain [73].

MYC2 is reported to condition resistance to insects and regulate ABA signaling, JA-respon-

sive pathogen defense, oxidative stress response genes, and other TFs’ expressions, as well as

negatively regulate its own expression [73–79]. Notably, MYC2 is described as a “master

switch” in modulating both positive and negative crosstalk between ABA and JA signaling

[80]. As mentioned earlier, we found enrichment for both ABA- and JA-related processes in

this study; thus MYC2, encoded by Glyma.07G051500, could be a key regulator in mediating

the modular phytohormone responses observed with Rsv3-mediated ER. Interestingly, exami-

nation of the data from the study using avirulent SMV-G5H and virulent SMV-G7H strains

on L29 [56] revealed that the MYC2 gene Glyma.07G051500 as well as other MYC2 genes were

also exclusively expressed at low levels in L29 during Rsv3-mediated resistance. Interesting

still, these are not the only instances where suppression of MYC2 has been shown to promote

resistance. In another RNA-seq experiment using near-isogenic soybean lines to study bacte-

rial leaf pustule resistance, three genes encoding MYC2 TFs were expressed at low levels in the

resistant line and predicted to be important for conditioning resistance [81]. In an even more

striking genome-wide association study (GWAS) on soybean, the same MYC2 gene (Gly-

ma.07G051500) that was found in this study was identified as a putative resistance gene against

the common cutworm where its expression was also significantly down-regulated in the resis-

tant line [72]. Even in tomato, MYC2 has been shown to regulate immunity via the JA pathway

by coordinating a transcriptional cascade [82]. Taken together, these findings indicate that

MYC2 activity may be important in pathogen defense. In particular, it appears that suppres-

sion of its activity may in some cases promote resistance, which may be a consequence of its

status as a master regulator, allowing it to efficiently suppress expression of targets exploited

by pathogens. Because, perhaps by altering a master regulator’s expression, the expression of

numerous downstream genes (some of which may be targets for pathogen exploitation) can be

altered in such a way as to condition resistance. Whatever the case, the function of MYC2 in

relation to Rsv3-mediated ER poses an interesting subject for more research, as it may be

responsible for many of the changes observed in ABA and JA signaling that are observed dur-

ing Rsv3 resistance [15, 56].

Modular regulation of abscisic acid signaling and suppression of jasmonic

acid signaling are features of Rsv3-mediated ER

We examined the gene targets of the MYC2 (Glyma.07G051500) and MYB (Gly-

ma.04G036700) TFs regulating module-2. In particular, we looked at genes involved in ABA,

auxin, and defense processes (Table 2). All gene targets were down-regulated at 6 hpi in L29.

Among the targets were genes encoding ABA and auxin responsive element-binding factors
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(ABFs, SAUR), ABI five-binding proteins (AFPs), type 2C protein phosphatases (PP2Cs), and

MYB-like TFs (RVE1s).

We also examined JA- and defense-related gene targets of the bHLH (Glyma.17G090500),

ERF (Glyma.17G145300), and MYB (Glyma.08G042100) TFs regulating the module-4

(Table 3). Most genes were expressed at low levels in L29, such as those involved in JA biosyn-

thesis and a number of TFs; however, at 2 hpi, a few genes were up-regulated. These were Gly-

ma.19G164600 encoding an MYB14 TF, and Glyma.12G114100 encoding an L-type lectin

receptor kinase, which induces hydrogen peroxide production, cell death, and is required for

resistance to oomycetes and fungal pathogens [83, 84]. Lastly, Glyma.11G139500 encoding

another PP2C was also up-regulated in L29. This protein family was shown to be an essential

signaling component of Rsv3-mediated ER against SMV, involved in inducing callose deposi-

tion via the ABA signaling pathway [15]. We found that differential regulation of PP2C genes

begins as early as 2 hpi, suggesting the Rsv3 resistance pathway is elicited almost immediately

after inoculation.

Between the differential regulation of several TFs and signaling molecules, such as the ABF,

AFP, PP2C, and JAZ encoding genes in modules 2 and 4, it appears a complex transcriptional

cascade is at work, finely regulating both ABA and JA signaling. Characteristically, ABA and

JA are mutually antagonistic in a defense response [74, 85]; however, according to our results,

this does not appear to be the case during the early hours of Rsv3-mediated resistance. Between

0 and 8 hpi, ABA- and JA-related genes were largely down-regulated in L29, indicating a sig-

naling scheme divergent from the typical antagonistic relationship between ABA and JA. The

purpose of this interaction is not clear, but certain components of their signaling pathways,

such as ABFs in the ABA pathway, may be targets for viral exploitation and would thus require

suppression in order to condition SMV resistance. For example, high ABF1 expression was

observed during Sonchus yellow net virus and Impatiens necrotic spot virus infection [86]; thus

ABF suppression may also be important for escaping SMV infection. However, it seems some

aspects of the ABA pathway must remain functional, as ABA accumulation was observed in

Rsv3-mediated ER at 8 hpi and later [15]. This suggests the ABA signaling pathway may be

modular in L29, with it first being silenced during the early hours post-inoculation (2–8 hpi)

and then later re-activated (8 hpi). Evading viral exploitation may be the case for the JA path-

way as well, as genes functioning in this pathway were mostly suppressed (4–8 hpi) in L29.

This suppression was also observed in another Rsv3 RNA-seq study at times even later than 8

hpi [56]. Even more, JA biosynthesis has been shown to increase susceptibility to some viruses

in soybean [55]. Consequently, and unlike the modular regulation pattern found with the ABA

pathway, it may be critical for the JA pathway to remain suppressed in order for Rsv3-medi-

ated resistance to be conferred; such a condition would be worthwhile to investigate. Regard-

less, it appears that a finely regulated phytohormone network conditions Rsv3-mediated

resistance via suppression of the JA pathway and modular regulation of the ABA signaling

pathway. This carefully orchestrated network may help explain how Rsv3-mediated ER is able

to swiftly coordinate a defense against SMV.

Conclusion

In conclusion, we compared the transcriptomic response of two soybean varieties exhibiting

susceptible and resistant phenotype to SMV-G7 strain and constructed gene regulatory net-

works to identify key genes and transcription factors that regulate the Rsv3-mediated ER

Fig 3. Comparison of normalized gene expression profiles of validated TFs in L29 and Williams82. (A) TFs

predicted to regulate module-4. (B) TFs predicted to regulate module-2.

https://doi.org/10.1371/journal.pone.0231658.g003
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mechanism in soybean. Our findings suggest that the Rsv3-mediated ER response is initiated

early after inoculation once the fate of susceptibility or resistance to SMV is determined. The

Rsv3-mediated ER response appears to largely involve differential regulation of various phyto-

hormone pathways, suggesting phytohormone signaling to be fundamental in Rsv3-mediated

resistance. In particular, early suppression of SA, CK, ABA, and JA pathways and the interplay

of ABA and JA pathways may be essential. Different TFs, MYC2 in particular, were found to

regulate these signaling events possibly via down-regulation of numerous genes to evade viral

exploitation in the SMV-resistant cultivar L29 (Rsv3-genotype). While experimentation is

Table 2. TF target genes in module-2 related to ABA and auxin processes and defense responses.

Target Gene A. thaliana
Homolog

Regulator TF L29 Log2 Fold Change at

6hpi

Gene Symbol Description

Glyma.07G074400 AT3G61220 MYB -2.34 SDR1 (+)-neomenthol dehydrogenase

Glyma.09G218600 AT4G19230 MYB -2.22 CYP707A1 Abscisic acid 8’-hydroxylase 1

Glyma.02G131700 AT1G49720 MYB, MYC2 -1.11 ABF1 Abscisic acid responsive element-binding factor 1

Glyma.06G040400 AT1G45249 MYB -1.43 ABF2, AREB1 Abscisic acid responsive elements-binding factor 2

Glyma.15G105100 AT5G19140 MYB -1.04 AILP1, ATAILP1 Aluminum induced protein with YGL and LRDR

motifs

Glyma.09G005700 AT1G62300 MYB, MYC2 -1.56 - At1g62300 protein (Fragment)

Glyma.09G219300 AT5G18050 MYB -2.23 SAUR22 Auxin-responsive protein

Glyma.04G061500 AT5G25110 MYB, MYC2 -1.39 CIPK25, PKS25,

SnRK3.25

CBL-interacting serine/threonine-protein kinase

25

Glyma.06G062100 AT5G25110 MYB -1.97 CIPK25, PKS25,

SnRK3.25

CBL-interacting serine/threonine-protein kinase

25

Glyma.20G241700 AT3G55120 MYB -1.50 CHI1, CFI, TT5 Chalcone—flavonone isomerase 1

Glyma.16G194600 AT3G05200 MYB -1.80 ATL6 E3 ubiquitin-protein ligase

Glyma.09G140700 AT3G05200 MYB -1.72 ATL6 E3 ubiquitin-protein ligase

Glyma.07G060400 AT2G46270 MYB, MYC2 -1.56 GBF3 G-box binding factor 3

Glyma.12G117700 AT2G20570 MYB, MYC2 -1.11 GPRI1, GLK1 GBF’s pro-rich region-interacting factor 1

Glyma.02G241000 AT5G17300 MYB, MYC2 -2.11 RVE1 Homeodomain-like superfamily protein

Glyma.13G152300 AT5G17300 MYB -1.69 RVE1 Homeodomain-like superfamily protein

Glyma.14G210600 AT5G17300 MYB, MYC2 -1.78 RVE1 Homeodomain-like superfamily protein

Glyma.06G319600 AT1G33590 MYB, MYC2 -2.59 - Leucine-rich repeat (LRR) family protein

Glyma.13G253300 AT1G09970 MYB -1.39 - Leucine-rich repeat receptor-like kinase

Glyma.20G054000 AT3G45140 MYB, MYC2 -1.11 LOX2 Lipoxygenase 2

Glyma.02G272700 AT5G20990 MYB -1.08 - Molybdopterin biosynthesis CNX1 protein

Glyma.01G060300 AT1G13740 MYB, MYC2 -2.12 AFP2 Ninja-family protein AFP2 (ABI five-binding

protein 2)

Glyma.02G118500 AT1G13740 MYB, MYC2 -1.91 AFP2 Ninja-family protein AFP2 (ABI five-binding

protein 2)

Glyma.18G267200 AT1G13740 MYB, MYC2 -1.60 AFP2 Ninja-family protein AFP2 (ABI five-binding

protein 2)

Glyma.04G014000 AT3G18830 MYB -1.62 PLT5 Polyol transporter 5

Glyma.13G076700 AT3G20770 MYB -1.34 EIN3 Protein ETHYLENE INSENSITIVE 3

Glyma.20G051500 AT3G20770 MYB -1.02 EIN3 Protein ETHYLENE INSENSITIVE 3

Glyma.19G069200 AT1G07430 MYB -1.55 AIP1 Protein phosphatase 2C 3

Glyma.08G033800 AT4G26080 MYB -1.09 ABI1 Protein phosphatase 2C 56

Glyma.02G086100 AT1G14790 MYB -1.87 RDR1, RDRP1 RNA-dependent RNA polymerase 1

Shown are target genes, the TFs putatively regulating them, log2 fold change of target genes, and target genes’ functions based on A. thaliana homologs.

https://doi.org/10.1371/journal.pone.0231658.t002
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needed for further confirmation, our analyses predict potential candidate genes for hypothe-

sis-driven experiments. Overall, this study offers new insights into the unique and intricate

regulation of the Rsv3-mediated ER response to Soybean mosaic virus.
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S1 Table. Log2 fold change for differentially expressed genes for time pair comparisons.

(XLSX)

S2 Table. Gene ontology enrichment analysis (GO terms with padj < .05 only).

(XLSX)

S3 Table. Interactions predicted by four out of five network inference methods.

(XLSX)

S4 Table. Putative TF-gene interactions supported by orthologous interactions found in A.

thaliana.

(XLSX)

Table 3. TF target genes in module-4 related to JA processes and defense responses.

Target Gene A. thaliana
Homolog

Regulator TF L29 Log2 Fold

Change

hpi Gene Symbol Description

Glyma.13G361900 AT1G15520 ERF -1.05 4 ABCG40, PDR12, PDR9 ABC transporter G family member 40

Glyma.01G153300 AT4G19230 bHLH, ERF,

MYB

-1.19 4 CYP707A1 Abscisic acid 8’-hydroxylase 1

Glyma.19G044900 AT3G25780 bHLH, ERF,

MYB

-1.11 4 AOC3 Allene oxide cyclase 3

Glyma.17G007600 AT4G17230 bHLH -1.72 4 - AT4G17230 protein (Fragment)

Glyma.05G082400 AT5G66900 MYB -2.43 6 MUD21.16 Disease resistance protein (CC-NBS-LRR class)

family

Glyma.02G132500 AT4G34410 bHLH, MYB -1.45 4 ERF109 Ethylene-responsive transcription factor 109

Glyma.15G078600 AT1G28480 bHLH, ERF -1.08 4 GRXC9, GRX480,

ROXY19

Glutaredoxin-C9

Glyma.11G038600 AT1G19180 MYB -2.61 4 JAZ1 Jasmonate-zim-domain protein 1

Glyma.15G179600 AT1G19180 MYB -1.69 4 JAZ1 Jasmonate-zim-domain protein 1

Glyma.12G114100 AT4G28350 bHLH, MYB 1.78 2 LECRK72, LECRKD L-type lectin-domain containing receptor kinase

Glyma.13G030300 AT3G45140 bHLH, MYB -1.68 6 LOX2 Lipoxygenase 2

Glyma.07G039900 AT1G17420 MYB -1.13 4 LOX3 Lipoxygenase 3

Glyma.04G226700 AT4G35580 bHLH -1.05 2 NTL9, CBNAC NAC transcription factor-like 9

Glyma.06G138100 AT4G35580 bHLH -1.01 2 NTL9, CBNAC NAC transcription factor-like 9

Glyma.11G228100 AT2G40000 MYB, ERF -1.19 6 HSPRO2 Nematode resistance protein-like

Glyma.11G139500 AT1G07630 bHLH, ERF,

MYB

1.13 2 PLL5 Protein phosphatase 2C 4

Glyma.01G204400 AT1G74950 bHLH, ERF,

MYB

-2.30 4 TIFY10B, JAZ2 Protein TIFY 10B

Glyma.09G145600 AT1G47890 MYB -2.46 4 RLP7 Receptor-like protein 7

Glyma.07G189300 AT4G21440 bHLH, MYB -1.62 4 MYB102 Transcription factor MYB102

Glyma.19G164600 AT2G31180 bHLH, MYB 2.57 2 MYB14 Transcription factor MYB14

Glyma.01G128100 AT2G38470 ERF -2.49 4 WRKY33 WRKY transcription factor 33

Shown are target genes, the TFs putatively regulating them, log2 fold change of target genes, and target genes’ functions based on A. thaliana homologs.

https://doi.org/10.1371/journal.pone.0231658.t003
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S5 Table. Putative TF-module interactions supported by orthologous interactions found

in A. thaliana.

(XLSX)

S6 Table. Motif enrichment analysis of co-expression modules and transcription factors

recognizing motif sequences.
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