

Qatar Content Classification
Classifying Arabic texts using machine learning

Mohamed Handosa
Handosa@vt.edu

Abstract
This is a course project for the CS6604 – Digital libraries course (Spring 2014). The
project has been conducted under the supervision of Prof. Ed Fox and Mr. Tarek
Kanan. The goal is to develop an Arabic newspapers classifier. We have built a
collection of 700 Arabic newspaper articles and 1700 Arabic full-newspaper PDF files.
A stemmer, named “P-Stemmer”, is proposed. Evaluation have shown that P-
Stemmer outperform the widely used Larkey’s light stemmer. Several classification
techniques were tested on Arabic data including SVM, Naïve Bayes and Random
Forest. We built and tested 21 multiclass classifiers, 15 binary Classifiers, and 5
compound classifiers using the voting technique. Finally, we uploaded the classified
instances to Apache Solr for searching and indexing purposes.

MOHAMED HANDOSA 1

Table of Contents
Figures ... 2

Tables ... 3

1 Introduction ... 4

2 Arabic Newspaper Taxonomy .. 4

3 Collecting the Training Set ... 5

3.1 The Al-Raya Crawler .. 6

3.2 The QNA HTML2TXT Tool .. 6

4 Collecting the Testing Set .. 6

4.1 The PDF2TXT Tool .. 7

5 Preprocessing the Dataset Instances .. 8

5.1 Extraction of Arabic Words .. 8

5.2 Normalization of Arabic Words ... 9

5.3 Stemming Arabic Words .. 9

5.4 P-Stemmer – A Proposed Stemmer ... 10

6 Text classification .. 11

6.1 Creating Feature Vectors ... 11

6.2 Multiclass Classifiers .. 15

6.3 Binary Classifiers .. 19

6.4 Compound Binary Classifiers ... 21

7 Classifying the Testing Set ... 24

8 Indexing and Searching Collections using Apache Solr ... 28

8.1 Installation Solr with Tomcat as a Web Container .. 28

8.1.1 Installing Apache Tomcat .. 28

8.1.2 Installing Apache Solr .. 28

8.2 Starting/Stopping the Apache Tomcat Service .. 28

8.3 Creating a Solr Core ... 29

8.4 Editing the Schema file .. 31

8.5 Working with Documents through the Dashboard ... 31

8.5.1 Adding Documents .. 32

8.6 Indexing Classified Collections... 33

9 Conclusion and Future Work ... 34

10 References ... 35

MOHAMED HANDOSA 2

Figures
Figure 2.1: Arabic newspaper taxonomy. .. 5

Figure 3.1: A screenshot of the Raya Crawler tool. ... 6

Figure 3.2: A screenshot of the QNA HTML2TXT tool. .. 6

Figure 4.1: A screenshot of the PDF2TXT tool. .. 8

Figure 5.1: Dataset preprocessing steps. .. 8

Figure 5.2: A screenshot of the “Arabic Words Extractor” tool. ... 8

Figure 5.3: A screenshot of the “Arabic Light Stemmer” tool. .. 10

Figure 6.1: Creating ARFF files for the seven versions of the training set... 12

Figure 6.2: Opening an ARFF file. .. 13

Figure 6.3: Weka' filters. .. 13

Figure 6.4: Opening the parameters of the selected filter. ... 14

Figure 6.5: The parameters of the “StringToWordVector” filter. ... 14

Figure 6.6: The parameters dialog of the “AttributeSelection” filter.. 15

Figure 6.7: Weka’s classifiers tree. .. 16

Figure 6.8: Opening the parameters of the selected classifier. .. 16

Figure 6.9: The parameters of the “MultiClassClassifier” classifier. ... 16

Figure 6.10: F-measure values for the three classification techniques. .. 19

Figure 6.11: Creating ARFF files for the five training sets. .. 19

Figure 6.12: The F-measure values for the three classification techniques. ... 21

Figure 6.13: Weka’s classifiers tree. .. 22

Figure 6.14: Opening the parameters of Weka’s voting compound classifier. ... 22

Figure 6.15: Parameters dialog of the “voting” compound classifier. .. 22

Figure 6.16: Voting members .. 23

Figure 6.17: The F-measure values for the three classifiers compared to the compound classifier. 24

Figure 7.1: The “TXT2CSV” tool. .. 24

Figure 7.2: Classification’s test options. .. 25

Figure 7.3: Saving a model... 25

Figure 7.4: Specifying a testing set CSV file. .. 26

Figure 7.5: Loading a saved model in Weka. ... 26

Figure 7.6: Re-evaluating a model based on current test set. .. 27

Figure 7.7: Results of classifying the testing set instances using the Art compound classifier. 27

Figure 8.1: Starting the Apache Tomcat service. ... 29

Figure 8.2: Stopping the Apache Tomcat service. ... 29

Figure 8.3: Navigating to “~/Desktop/Solr”... 29

Figure 8.4: The “conf” folder copied from “~/Desktop/Solr/collection1/”. .. 29

Figure 8.5: Apache Solr Dashboard. .. 30

Figure 8.6: Apache Solr, Core Admin screen. .. 30

Figure 8.7: The location of the schema file for the “ar-collection” core. .. 31

Figure 8.8: The “ar-collection” Documents screen. .. 32

Figure 8.9: Document Builder screen. ... 32

Figure 8.10: The “exampledocs” directory. ... 33

Figure 8.11: Statistics of the ‘test’ core. .. 33

MOHAMED HANDOSA 3

Tables
Table 2.1: The first and second levels of the IPTC media topic taxonomy. ... 4

Table 3.1: Articles collected from newspapers’ categories corresponding to taxonomy subclasses. 5

Table 5.1: Normalization rules for Arabic words. .. 9

Table 5.2: The versions of the Arabic light stemmer [7]. .. 10

Table 6.1: The Seven versions of the training set. ... 11

Table 6.2: Number of features for each training set version. ... 15

Table 6.3: The results of a 10-fold cross-validation using the 𝑊𝑜𝑟𝑑𝑠 version of the training set. 17

Table 6.4: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠1 version of the training set. 17

Table 6.5: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠2 version of the training set. 17

Table 6.6: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠3 version of the training set. 17

Table 6.7: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠8 version of the training set. 18

Table 6.8: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠10 version of the training set. 18

Table 6.9: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠𝑃 version of the training set. 18

Table 6.10: The F-measure values for the three classification techniques. .. 18

Table 6.11: Number of features for each training set version. ... 20

Table 6.12: The results of a 10-fold cross-validation of three the “Art” classifiers... 20

Table 6.13: The results of a 10-fold cross-validation of the three “Economy” classifiers. 20

Table 6.14: The results of a 10-fold cross-validation of the three “Politics” classifiers. 20

Table 6.15: The results of a 10-fold cross-validation of the three “Society” classifiers. 20

Table 6.16: The results of a 10-fold cross-validation of the three “Sport” classifiers. 21

Table 6.17: The F-measure values for the three classification techniques. .. 21

Table 6.18: The results of a 10-fold cross-validation of the five compound classifiers. 23

Table 6.19: The F-measure values for the three classifiers compared to the compound classifier.................. 23

Table 8.1: Solr command formats ... 31

MOHAMED HANDOSA 4

1 Introduction
The goal of this project is to develop an Arabic newspapers classifier. We have built a collection of 700 Arabic

newspaper articles and 1700 Arabic full-newspaper PDF files. A stemmer, named “P-Stemmer”, is proposed.

Evaluation have shown that P-Stemmer outperform the widely used Larkey’s light stemmer. Several

classification techniques were tested on Arabic data including SVM, Naïve Bayes and Random Forest. We built

and tested 21 multiclass classifiers, 15 binary Classifiers, and 5 compound classifiers using the voting

technique. Finally, we uploaded the classified instances to Apache Solr for searching and indexing purposes.

This report is organized in 8 main sections. Section 2 presents the taxonomy used in classification. Section 3

and section 4 illustrates the data sources and developed tools used to collect for the training set and the

testing set, respectively. Section 5 provides a detained description of the preprocessing steps applied to the

datasets. In section 6, we provide the results of applying different classifiers using different machine learning

techniques. Section 7, shows how to classify the testing set using the trained classifiers. Finally, section 8 shows

how to install and use Apache Solr for indexing and searching Arabic collections.

2 Arabic Newspaper Taxonomy
The IPTC Media Topic taxonomy [1], developed by the International Press Telecommunication Council (IPTC),

is a five levels taxonomy of 1100 terms. Table 2.1 shows the first two levels of IPTC’s taxonomy.

Table 2.1: The first and second levels of the IPTC media topic taxonomy.

1st level 2nd level

Art, culture and entertainment Arts and entertainment – Culture – Mass media

Crime, law and justice

Crime – Judiciary – Justice and rights – Law – Law enforcement

Disaster and accident Accident – Disaster – Emergency incident – Emergency planning –
Emergency response

Economy, business and finance Business information – Economic sector – Economy – Market and
exchange

Education Parent organization – Religious education – School – Social learning –
Teaching and learning

Environment Climate change – Conservation – Environmental politics – Environmental
pollution
Natural resource – Nature

Health Diseases and conditions – Health facility – Health organizations – Health
treatment – Healthcare policy – Medical profession – Non-human diseases

Human interest Accomplishment – Animal – Ceremony – People – Plant

Labor Employment – Employment legislation – Labor market – Labor relations –
Retirement – Unemployment – Unions

Lifestyle and leisure Leisure – Lifestyle

Politics Election – Fundamental rights – Government – Government policy –
International relations – Non-governmental – Political crisis – Political
dissent – Political process

Religion and belief Belief – Interreligious dialog – Religious conflict – Religious event –
Religious facilities – Religious institutions and state relations – Religious
leader – Religious text

Science and technology Biomedical science – Mathematics – Mechanical engineering – Natural
science – Research – Scientific institutions – Social sciences – Standards –
Technology and engineering

MOHAMED HANDOSA 5

1st level 2nd level

Society Communities – Demographics – Discrimination – Family – Mankind – Social
condition – Social problem – Values – Welfare

Sport Competition discipline – Disciplinary action in sport – Drug use in sport –
Sport event – Sport industry – Sport organization – Sport venue – Transfer

Conflicts, war and peace Act of terror – Armed conflict – Civil unrest – Coup – Massacre – Peace
process – Post-war reconstruction – Prisoners and detainees

Weather Weather forecast – Weather phenomena – Weather statistics – Weather
warning

Inspired by the IPTC’s taxonomy, the developed Arabic newspaper taxonomy reflects the categorization

hierarchy, which is common in Arabic newspapers as shown in Figure 2.1.

Figure 2.1: Arabic newspaper taxonomy.

3 Collecting the Training Set
The goal of this project is to build a text classifier that can classify Arabic articles of Qatar newspapers according

to the proposed Arabic taxonomy shown in Figure 2.1. Training the classifier using supervised machine learning

requires a training set of pre-classified articles. We have collected a set of articles from two Qatar newspapers,

Al-Raya1 and Qatar News Agency (QNA)2, as shown in Table 2.1.

Table 3.1: Articles collected from newspapers’ categories corresponding to taxonomy subclasses.

Class Subclass Newspaper
Newspaper’s

category
Retrieved articles

Art and culture

Art Al-Raya 44 أفاق وفنون –منوعات

Culture Al-Raya 52 ثقافة وأدب –منوعات

Mass media Al-Raya 54 إذاعة وتليفزيون –منوعات

Economy
Local economy QNA 75 اقتصاد –أخبار محلية

International economy QNA 75 اقتصاد –أخبار دولية

Politics
Local politics QNA 75 سياسة –أخبار محلية

International politics QNA 75 سياسة –أخبار دولية

Society
Death notices Al-Raya 89 وفيات –مجتمع

Wedding announcements Al-Raya 61 أفراح –مجتمع

Sport
Local sports QNA 75 رياضة –أخبار محلية

International sports QNA 75 رياضة –أخبار دولية

1 The website of Al-Raya newspaper is available at http://www.raya.com/
2 The website of Qatar News Agency newspaper is available at http://www.qna.org.qa/

Arabic
newspaper
taxonomy

Art and culture Economy Politics Society Sport

http://www.raya.com/
http://www.qna.org.qa/

MOHAMED HANDOSA 6

3.1 The Al-Raya Crawler
The website for the Al-Raya’s newspaper provides a categorized set of articles. In order to retrieve the articles

from Al-Raya’s website, we developed a Java tool named “Al-Raya Crawler”. The tool takes the URL of an Al-

Raya’s category page and a path to a destination directory on local machine as shown in Figure 2.1.

Figure 3.1: A screenshot of the Raya Crawler tool.

The tool retrieves the HTML page at the specified URL, extracts the links to all articles listed in that page, and

filters out any links to non-article content (e.g. ads). Afterwards, for each extracted link, the tool retrieves the

corresponding article’s HTML page and extract both the article’s header and the article’s text content. Finally,

for each article, the tool saves the extracted content to a text file at the specified destination directory and

uses the article header as a file name. We used the tool to retrieve instances from five categories of Al-Raya’s

articles corresponding to five subclasses in the taxonomy as shown in Table 2.1.

3.2 The QNA HTML2TXT Tool
To obtain instances for the remaining six subclasses, we have retrieved 75 article in HTML format for each

remaining subclass from the QNA website. In order to extract the header and the content of each article from

the HTML files, we developed a Java tool named “QNA HTML2TXT”. The tool takes the path of the directory

containing the HTML files and a destination directory as input as shown in Figure 3.2Figure 2.1. For each HTML

file, the tool extracts the header and the content of the article and saves the extracted content to a text file at

the specified destination directory using the article header as a file name.

Figure 3.2: A screenshot of the QNA HTML2TXT tool.

4 Collecting the Testing Set
The Al-Raya’s website has an archive of published newspapers in PDF format. Using the Heritrix crawler1, we

have collected 1700 PDF files. Each PDF file has a set of pages and each page contains one article or more.

Some pages may contain no articles (e.g. a full-page image).

1 Heritrix is a free license web crawling software written in Java by the Internet Archive.

MOHAMED HANDOSA 7

4.1 The PDF2TXT Tool
Since the preparation of a testing set by manually extracting text articles from 1700 PDF files is not feasible,

we have developed a Java tool named PDF2TXT to extract the text from PDF files automatically. A PDF

document stores its content as a set of objects (root object, page objects, font objects, etc.) Each object stores

a specific type of information. Text is stored in chunks of one or more characters and each chunk is located at

a given 𝑋, 𝑌 coordinate. The text chunks can be stored in any order in the file, which makes the processing of

text in PDF documents more challenging. Fortunately, there are several of-the-shelf tools and libraries for

handling PDF documents including PDFTextStream1, iTextSharp2 and Apache PDFBox3. These tools provides

many capabilities including text extraction.

Although there are several libraries that support text extraction from PDF documents, there is little support

for extracting text written in right-to-left languages like Arabic. The problem with extracting Arabic text is due

to the difference between logical and presentation order [2]. Logical order refers the order in which text

characters are stored (i.e. first character stored is first character read or written) while presentation order is

based on screen layout. Logical and presentation order are the same for left-to-right languages, but opposite

for right-to-left languages.

Recalling that PDF documents stores text as chunks, each with 𝑥 and 𝑦 coordinates. The text extraction process

tries to reconstruct the text by concatenating these chunks given there coordinates. That is, a text extraction

algorithm uses presentation order to extract text. This works fine for left-to-right languages since presentation

and logical order are the same. However, for right-to-left languages, where the logical and presentation order

are opposite, the algorithm will concatenate the chunks in presentation order (i.e. left-to-right) which is the

opposite of logical order (i.e. right-to-left). Consequently, the characters of the extracted text are in reverse

order.

Generally, a multilingual text can have both left-to-right and right-to-left characters and each should go in the

correct direction. The Unicode Bi-directional Text (BiDi) algorithm defines how to order characters in a

paragraph (i.e. converts from logical to presentation order). Since the available text extraction tools use

presentation order to extract text, then a reasonable solution is to apply a reverse BiDi algorithm to convert

the extracted text from presentation order to logical order.

The first version of the PDF2TXT tool, developed in C#, used the PDFTextStream library to extract text from

Arabic PDF documents. Since the PDFTextStream library does not support Arabic, it extracts the text in

presentation order. Thus, the tool processes the extracted text line by line and reverses the order of characters

to obtain the logical order. There are two problems with the first version of the PDF2TXT tool. First, the

PDFTextStream library seems to have an encoding problem with processing Arabic text that is for a

considerable subset of the PDF files the extracted text was miscoded and useless. Second, even for Arabic text

extracted with a correct encoding the PDFTextStream library fails sometimes to extract the Arabic characters

in the same order as their order of presentation. Therefore, when the tool reverses the extracted text is to

obtain the logical orders, the letters of some Arabic words are disordered.

The second version of the PDF2TXT tool, developed in Java, uses the PDFBox library to extract text from

multilingual PDF documents. PDFBox uses the ICU4J library from the International Components for Unicode

(ICU) project to support bidirectional text. Since PDFBox provides full support for right-to-left languages like

Arabic, the second PDF2TXT version avoids the problems of the first version. The PDF2TXT tool takes the path

of the directory containing the PDF files and a destination path as shown in Figure 4.1. For each PDF file, the

1 The PDFTextStream library is available at http://www.snowtide.com/
2 The iTextSharp library is available at http://sourceforge.net/projects/itextsharp/
3 The PDFBox library is available at http://pdfbox.apache.org/

http://www.snowtide.com/
http://sourceforge.net/projects/itextsharp/
http://pdfbox.apache.org/

MOHAMED HANDOSA 8

tool extracts the text as saves it to a text file at the destination directory. The tool allows a user to optionally

split the pages of each PDF file and extract the text from each PDF page to a distinct text file.

Figure 4.1: A screenshot of the PDF2TXT tool.

Given the 1700 newspaper PDF files, we used the PDF2TXT tool to extract the text content from each PDF page

to a distinct text file. From the 1700 PDF files, we obtained 58,938 text files. Each text file represents an

instance of the testing set. Ideally, the testing set instances should be articles rather than pages. However, we

argue that a newspaper page usually contains articles belonging to the same category and hence we assumed

that the text content of a PDF page is typically a concatenation of a set of articles that belongs to the same

class.

5 Preprocessing the Dataset Instances
Most text classifiers use the bag-of-words model to represent documents. The bag-of-words model is a

straightforward representation approach and the produced representation is essentially independent of the

sequence of words in the document [3]. The goal of the preprocessing phase is to extract a set of Arabic words

from each instance in the collected dataset (i.e. training and testing sets) in order to represent that instance

using the bag-of-words model. The preprocessing phase has three steps as shown in Figure 5.1.

Figure 5.1: Dataset preprocessing steps.

5.1 Extraction of Arabic Words
The raw text files of the collected dataset might contain non-Arabic words and punctuation marks. In order to

perform text cleaning, we have developed a Java tool named “Arabic Words Extractor”. As shown in Figure 5.2,

the tool takes the path to the directory containing the raw text files and a destination directory as input.

Figure 5.2: A screenshot of the “Arabic Words Extractor” tool.

Extracting Arabic
words

Normalizing Arabic
words (optional)

Stemming Arabic
words (optional)

MOHAMED HANDOSA 9

For each raw text file, the tool extracts the Arabic words from the file content, filters out any non-Arabic

letters, and saves the extracted Arabic words as space-delimited list to a text file at the destination directory.

Arabic is a very rich and complex language that has 28 characters and written from right to left. An Arabic

word may contain primarily weak vowels, called “diacritics”, that determines the pronunciation of words. For

example, the word “مدرسة” with the diacritic “ ُ ” on the letter “م” becomes “م درسة” (i.e. “a female teacher”). If

the same word “مدرسة” has the diacritic “ ُ ” on the letter “م”, it becomes “ درسةم ” (i.e. “a school”). Arabic has

eight different diacritics, which are ُ , ُ , ُ , ُ , ُ , ُ , ُ , and ُ . Although the didactics can significantly change

the meaning of an Arabic word, they are rarely used and the pronunciation of the word, which determines its

meaning, is deduced from the word context. Moreover, for text formatting purposes, it is common to stretch

an Arabic word using the “ـ” character, which does not change the meaning of the word. For example, it is

possible to write the word “مدرسة” as “مـــدرسة“ ,”مدرســـة” or “مـــدرســـة”.

The developed “Arabic Words Extractor” tool removes the “ـ” character as well as the diacritics from extracted

Arabic words. The tool can remove Arabic stop-words as well by comparing the extracted words against a list

of 1,630 Arabic stop-words developed by Abu El-Khair [4].

5.2 Normalization of Arabic Words
Usually, Arabic information retrieval systems normalize Arabic words to increase retrieval effectiveness.

Normalization of an Arabic word means replacing specific letters within the word with other letters according

to a predefined set of rules as shown in Table 5.1.

Table 5.1: Normalization rules for Arabic words.

Rule Example

Letter Replacement Word Normalized word
 حمدا حمدأ ا أ
 نشاءا نشاءإ ا إ
 لاتا لاتآ ا آ
 همدرس ةمدرس ه ة

 يعل ىعل ي ى

Although these replacements can result in misspelled words, these misspellings are common in Arabic text

and the normalization of Arabic words helps avoiding the side effects of such misspellings on the performance

of information retrieval. For example, the normalization of the word “مدرسة” and its misspelled version “مدرسه”

results in the same normalized word “مدرسه”. Hence, the system recognizes the two words as being the same.

It is worth mentioning that such misspellings occur rarely in official documents and newspapers. Consequently,

the normalization of Arabic words might be unnecessary when working with newspapers or official documents

(e.g. thesis and dissertations). The “Arabic Words Extraction” tool allows optional word normalization.

Although we are working with newspapers, we chose to normalize words to capture even rare misspellings.

5.3 Stemming Arabic Words
The main goal of a stemmer is to map different forms of the same word to a common representation called

“stem”. Stemming can significantly improve the performance of text classification systems by reducing the

dimensionality of word vectors. Generally, there are two main categories of Arabic stemmers, root extraction

stemmers and light stemmers [5]. The two most widely used stemmers are the root extraction stemmer

developed by Khoja et al [6] and the light stemmer developed by Larkey et al [7].

In Arabic, each Arabic word has a root, which is its basic form. We can obtain several words including nouns,

verbs and adjectives by adding certain letters at the beginning, end or within the root letters. For example,

from the root “قصد”, we can derive the words “ قصدي ”, “ صداقم ”, “ يةداصتقا ”, “ يداصتقالا ”, etc. The goal of a root-

MOHAMED HANDOSA 10

based stemmer it to extract the basic form for any given word. The problem with extracting the root is that

the root is far more abstract than a stem. Different words with completely different meaning can originate

from the same root. For example, the words “ صداقم ” (i.e. “purposes”) and the word “ يداصتقالا ” (i.e. “The

economic”) both originate from the root “قصد”. Consequently, using root stemmers can result in a very poor

classification effectiveness.

The goal of a light stemmer is to find the representative form of an Arabic word by removing prefixes and

suffixes. Thus, the meaning of the word remains intact, which results in improving the classification

effectiveness. For example, the stem for the words “ ياقتصاد ” (i.e. “economic”) and “ قتصادالاو ” (i.e. “and the

economy”) is “ قتصادا ” (i.e. “economy”) rather than the root “قصد” (i.e. “intended”).

We have developed a Java tool, named “Arabic Light Stemmer”, to stem Arabic words. As shown in Figure 5.3,

the tool takes the path to the directory containing the raw text files and a destination directory as input.

Figure 5.3: A screenshot of the “Arabic Light Stemmer” tool.

The “Arabic Light Stemmer” tool implements the five versions of the light stemming algorithm introduced by

Larkey [7]. Each version of the algorithm strips off certain prefixes and suffixes as shown in Table 5.2. Although

the Light10 version is the most widely used version of the light stemmer, we have implemented the other

versions for evaluation and comparison purposes.

Table 5.2: The versions of the Arabic light stemmer [7].

Version Prefixes to remove Suffixes to remove

Light 1 “فال“ ,”كال“ ,”بال“ ,”وال“ ,”ال”
None

Light 2

 ”ة“ ,”ه“ Light 3 ”فال“ ,”كال“ ,”بال“ ,”وال“ ,”ال“ ,”و“

Light 8
 ”ي“ ,”ة“ ,”ه“ ,”ية“ ,”يه“ ,”ين“ ,”ون“ ,”ات“ ,”ان“ ,”ها“

Light 10 “لل“ ,”فال“ ,”كال“ ,”بال“ ,”وال“ ,”ال“ ,”و”

5.4 P-Stemmer – A Proposed Stemmer
Light stemmers define a set of rules to remove word prefixes and suffixes, while preserving the meaning of

the words. For example, the 𝐿𝑖𝑔ℎ𝑡10 stemmer stems the word “المدرسون” (i.e. “the teachers”) to the stem

 (which indicates a male plural) ”ون“ prefix and the (”i.e. “the) ”ال“ by removing the (”i.e. “teacher) ”مدرس“

suffix. However, we argue that removing word prefixes only can give better results than stemming and hence

improves the effectiveness of text classifiers. For example, the 𝐿𝑖𝑔ℎ𝑡10 stemmer stems the word “المباحثات”

(i.e. “the talks”) to the stem “مباحث” (i.e. “Investigation”) by removing the “ال” (i.e. “the”) prefix and the “ات”

(which indicates a female plural) suffix. It is clear that the two words have completely different meaning and

hence we argue that light stemmers that remove word suffixes can still suffers from the same abstraction

problem found in root stemmers. To prove our argument we have developed P-Stemmer, a customized version

of the 𝐿𝑖𝑔ℎ𝑡10 stemmer that removes word prefixes only. The “Arabic Light Stemmer” tool implements the

P-Stemmer as well as the five versions of Larkey’s light stemmer.

MOHAMED HANDOSA 11

6 Text classification
The problem of text-based classification has been widely studied in the data mining, machine learning,

database, and information retrieval communities. The goal of a text classifier is to classify documents into a

fixed number of predefined classes. A text classifier can be either a binary classifier or a multiclass classifier.

In binary classification, a document can be in exactly one of the two classes. In multiclass classification, a

document can be in multiple, exactly one, or no class at all. Using supervised machine learning, classifiers can

learn from examples and perform the class assignments automatically. Several text classification algorithms

have been proposed. We have chosen to use three of the most widely used text classification approaches,

which are Support Vector Machines (SVM), Naïve Bayes, and Random Forest.

Cortes et al [8] have proposed Support Vector Machines (SVM) as a learning method for numerical data. The

main principle of SVMs is to determine linear or non-linear separators in the data space, which can best

separate the different classes. Joachims [9] has shown that text classification can benefit from SVM by

transforming each document, which typically is a string of characters, into a quantitative feature vector, where

each distinct word corresponds to a feature whose value is the number of times the word occurs in the

document. In order to avoid unnecessary large feature vectors, word stems are used and stop-words are

removed. This representation scheme can still lead to very high-dimensional feature spaces. However, one

advantage of SVM, which makes it ideal for text classification, is its robustness to high dimensionality.

A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong (naive)

independence assumptions. It assumes that the value of a particular feature is unrelated to the presence or

absence of any other feature, given the class variable. Although this theory violates the fact that features are

dependent on each other, its performance is feasible [3]. The naive Bayes classifier models the distribution of

the documents in each class using a probabilistic model. It requires only a small set of training data to estimate

the model parameters. The Naïve Bayes classifiers can handle text classification as well as other classification

problems. In text classification, the model uses the bag-of-words approach to represent a document.

The goal is to develop a text classifier that can classify a given document under one of the five classes at the

first level of the Arabic newspapers taxonomy shown in Figure 2.1. In order to train and text different classifiers

using different machine learning techniques, we used Weka (Waikato Environment for Knowledge Analysis),

which is a popular suite of machine learning software written in Java, developed at the University of Waikato,

New Zealand.

6.1 Creating Feature Vectors
As mentioned previously in section 3, we have prepared a training set of 750 instances in the form of text files,

150 per class. We used the “Arabic Words Extractor” tool to clean the text and remove stop-words.

Afterwards, we used the “Arabic Light Stemmer tool” to produce six different versions of the text files

corresponding to the five versions of the light stemmer and the proposed P-Stemmer. Thus, we obtained seven

versions of the training set as shown in Table 6.1.

Table 6.1: The Seven versions of the training set.

Training set Description

𝐖𝐨𝐫𝐝𝐬 Obtained from the raw text files by cleaning text and removing stop-words.

𝐒𝐭𝐞𝐦𝐬𝟏 Obtained from the 𝑊𝑜𝑟𝑑𝑠 set by applying version 1 of the light stemmer.

𝐒𝐭𝐞𝐦𝐬𝟐 Obtained from the 𝑊𝑜𝑟𝑑𝑠 set by applying version 2 of the light stemmer.

𝐒𝐭𝐞𝐦𝐬𝟑 Obtained from the 𝑊𝑜𝑟𝑑𝑠 set by applying version 3 of the light stemmer.

𝐒𝐭𝐞𝐦𝐬𝟖 Obtained from the 𝑊𝑜𝑟𝑑𝑠 set by applying version 8 of the light stemmer.

𝐒𝐭𝐞𝐦𝐬𝟏𝟎 Obtained from the 𝑊𝑜𝑟𝑑𝑠 set by applying version 10 of the light stemmer.

𝐒𝐭𝐞𝐦𝐬𝐏 Obtained from the 𝑊𝑜𝑟𝑑𝑠 set by applying the proposed P-Stemmer.

MOHAMED HANDOSA 12

In order to use Weka, the training set must be converted into a single ARFF file. An ARFF1 (Attribute-Relation

File Format) file is a text file that describes a list of instances sharing a set of attributes. Weka provides a Java

tool, named TextDirectoryLoader, which can convert a set of text files into an ARFF file. TextDirectoryLoader

takes two parameters, a directory and the output file name. It assumes that there are subdirectories within

the supplied directory, each corresponding to a given class and contains the text files representing the

instances of that class. TextDirectoryLoader produces a single ARFF file that contains all instances with two

attributes per instance, text and class. For a given instance, the value of the text attribute is the contents of

the text file corresponding to that instance and the value of the class attribute is the name of the subdirectory

that contains this instance.

In order to convert the 750 training set instances into an ARFF file, we created five directories corresponding

to the five classes (i.e. Art, economy, politics, society, and sport) with 150 text files per directory corresponding

to the class instances. To create the file, we used the following command

java -cp [weka.jar] weka.core.converters.TextDirectoryLoader -dir [main directory] > output.arff

where [main directory] refers to the directory containing the five directories corresponding to the classes and

[weka.jar] refers to the bath at which the “weka.jar” file exists. We have created seven ARFF files

corresponding to the seven versions of the training set (i.e. 𝑊𝑜𝑟𝑑𝑠, 𝑆𝑡𝑒𝑚𝑠1, 𝑆𝑡𝑒𝑚𝑠2, 𝑆𝑡𝑒𝑚𝑠3, 𝑆𝑡𝑒𝑚𝑠8, and

𝑆𝑡𝑒𝑚𝑠10) using the command above as shown in Figure 6.1.

Figure 6.1: Creating ARFF files for the seven versions of the training set.

In order to open an ARFF file in Weka, simply click on the “Open file …” button and select the ARFF file. Weka

will load the file as shown in Figure 6.2. The ARFF file contains 750 instances, 150 per class, and 2 attributes

per instance, “text” and “@@class@@”.

1 A description of the ARFF format available at http://weka.wikispaces.com/ARFF+%28book+version%29

http://weka.wikispaces.com/ARFF+%28book+version%29

MOHAMED HANDOSA 13

Figure 6.2: Opening an ARFF file.

Text classifiers cannot handle the “text” attribute as a single attribute. Therefore, we must first convert the

“text” attribute to a word vector. To perform this, simply click on the “Choose” button under the “Filter” group

box. Weka will display a tree of available filters as shown in Figure 6.3. To convert the “text” attribute into a

word vector, select the “StringToWordVector”, which is found under “filters unsupervised attribute”.

Figure 6.3: Weka' filters.

The “StringToWordVector” filter explores the value of the “text” attribute for each instance and creates a

word vector. Afterwards, it uses the word vector to replace the “text” attribute with a set of numerical

attributes, each corresponding to a word from the word vector. By default, the value of a numerical attribute

MOHAMED HANDOSA 14

is a binary value. If a word appears in the text for a given instance then the value of its corresponding attribute

is 1; otherwise the value is 0.

The “StringToWordVector” provides several options to specify how to compute the values of the numerical

attributes. To display the parameters of the “StringToWordVector” filter click on the text box under the “Filter”

group box as shown in Figure 6.4. This will display the parameters dialog shown in Figure 6.5.

Figure 6.4: Opening the parameters of the selected filter.

Figure 6.5: The parameters of the “StringToWordVector” filter.

MOHAMED HANDOSA 15

Rather than using binary values for the attributes that indicates the appearance or absence of a word in a

given instance, we chose to use the Term Frequency-Inverse Documents Frequency (TF-IDF), which is a

numerical statistic often used as a weighting factor to reflect how important a word is to a document in a

collection. The TF-IDF is the product of two statistics, term frequency and inverse document frequency. The

term frequency, in its simplest form, is the number of times the term appears in a document while the inverse

document frequency is a measure of whether the term is common or rare across all documents. To use TF-IDF

in Weka, set the “IDFTransform”, “TFTransform”, and “outputWordCounts” parameters shown in Figure 6.5

to true. If you want to use all words appearing in all documents, you may set the “wordsToKeep” parameters

to some large value.

After applying the “StringToWordVector”, the obtained feature vectors tends to have very large

dimensionality, which can affect the robustness of the text classifier. In order to avoid unnecessary large

feature vectors, feature selection can be used. Weka provide a filter named “AttributeSelection”, which can

select the most relevant attributes based on a given criteria. The “AttributeSelection” filter is available from

the filters tree at the path “filters””supervised””attribute”. We used the “AttributeSelection” filter with

“InfoGainAttributeEval” as evaluator and a “Ranker” with a threshold of value 0 as shown in Figure 6.6.

Figure 6.6: The parameters dialog of the “AttributeSelection” filter.

Table 6.2 shows the number of features for each of the seven training set versions. In the table, “Distinct

words” refers to the number of features after applying the “StringToWordVector” filter and “Selected

features” refers to the number of features after applying the “StringToWordVector” filter followed by the

“AttributeSelection” filter.

Table 6.2: Number of features for each training set version.

 𝐖𝐨𝐫𝐝𝐬 𝐒𝐭𝐞𝐦𝐬𝟏 𝐒𝐭𝐞𝐦𝐬𝟐 𝐒𝐭𝐞𝐦𝐬𝟑 𝐒𝐭𝐞𝐦𝐬𝟖 𝐒𝐭𝐞𝐦𝐬𝟏𝟎 𝐒𝐭𝐞𝐦𝐬𝐏
Distinct words 28,704 23,703 21,283 19,282 15,899 15,124 20,457

Selected features 1,933 1,755 1,738 1,644 1,465 1,427 1,700

Now, we have the selected the feature vectors and are ready to start the training of the classifiers.

6.2 Multiclass Classifiers
As mentioned previously we chose to train and test three of the most widely used classification approaches,

which are Support Vector Machines (SVM), Naïve Bayes, and Random Forest. Weka provides a variety of text

classifiers, available from the classifiers tree. In order to show the classifiers tree, go to the “Classify” tab and

click the “Choose” button under the “Classifier” group box. This shows the classifiers tree as shown in

Figure 6.7.

MOHAMED HANDOSA 16

Figure 6.7: Weka’s classifiers tree.

In order to build a multiclass classifier, choose the “MultiClassClassifier” classifier from the classifiers tree at

“wekaclassifiersmeta”. To determine the classification technique to use, click on the text box under the

“Classifier” group box as shown in Figure 6.8Figure 6.4. This will display the parameters dialog shown in

Figure 6.9Figure 6.5. To select the classification approach click on “Choose” and select the desired classification

technique from the displayed tree.

Figure 6.8: Opening the parameters of the selected classifier.

Figure 6.9: The parameters of the “MultiClassClassifier” classifier.

MOHAMED HANDOSA 17

We have built three text classifiers corresponding to the three classification techniques for each of the seven

training set versions. We used 10-fold cross-validation to evaluate each of the 21 classifiers. The results for

the training sets 𝑊𝑜𝑟𝑑𝑠, 𝑆𝑡𝑒𝑚𝑠1, 𝑆𝑡𝑒𝑚𝑠2, 𝑆𝑡𝑒𝑚𝑠3, 𝑆𝑡𝑒𝑚𝑠8, 𝑆𝑡𝑒𝑚𝑠10, and 𝑆𝑡𝑒𝑚𝑠𝑃 are shown in Table 6.3,

Table 6.4, Table 6.5, Table 6.6, Table 6.7, Table 6.8, and Table 6.9, respectively.

Table 6.3: The results of a 10-fold cross-validation using the 𝑊𝑜𝑟𝑑𝑠 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.794 1 0.885 0.886 0.987 0.934 0.94 0.947 0.944

Economy 0.938 0.813 0.871 0.83 0.973 0.896 0.862 0.873 0.868

Politics 0.896 0.86 0.878 0.93 0.707 0.803 0.833 0.833 0.833

Society 1 0.987 0.993 1 0.973 0.986 0.98 1 0.99

Sport 0.986 0.913 0.948 0.973 0.953 0.963 0.979 0.94 0.959

Average 0.923 0.915 0.915 0.924 0.919 0.916 0.919 0.919 0.919

Table 6.4: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠1 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.852 1 0.92 0.893 1 0.943 0.941 0.953 0.947

Economy 0.964 0.887 0.924 0.827 0.953 0.885 0.89 0.867 0.878

Politics 0.925 0.907 0.916 0.949 0.74 0.831 0.846 0.84 0.843

Society 1 0.987 0.993 1 0.98 0.99 0.98 1 0.99

Sport 0.993 0.933 0.962 0.986 0.953 0.969 0.967 0.967 0.967

Average 0.947 0.943 0.943 0.931 0.925 0.924 0.925 0.925 0.925

Table 6.5: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠2 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.847 1 0.917 0.893 1 0.943 0.959 0.927 0.942

Economy 0.957 0.9 0.928 0.833 0.967 0.895 0.878 0.86 0.869

Politics 0.018 0.893 0.908 0.966 0.753 0.846 0.834 0.873 0.853

Society 0.924 0.987 0.993 1 0.973 0.986 0.968 1 0.984

Sport 1 0.92 0.955 0.986 0.953 0.969 0.979 0.953 0.966

Average 0.944 0.94 0.94 0.936 0.929 0.928 0.924 0.923 0.923

Table 6.6: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠3 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.838 1 0.912 0.886 0.98 0.93 0.946 0.94 0.943

Economy 0.936 0.873 0.903 0.847 0.96 0.9 0.851 0.8 0.825

Politics 0.882 0.847 0.864 0.921 0.773 0.841 0.795 0.853 0.823

Society 1 0.987 0.993 1 0.973 0.986 0.98 1 0.99

Sport 0.993 0.92 0.955 0.986 0.933 0.959 0.979 0.953 0.966

Average 0.93 0.925 0.926 0.928 0.924 0.923 0.91 0.909 0.909

MOHAMED HANDOSA 18

Table 6.7: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠8 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.856 0.993 0.92 0.855 0.987 0.916 0.935 0.96 0.947

Economy 0.949 0.873 0.91 0.88 0.973 0.924 0.842 0.82 0.831

Politics 0.898 0.88 0.889 0.935 0.767 0.842 0.814 0.847 0.83

Society 1 0.987 0.993 1 0.973 0.986 1 1 1

Sport 0.986 0.94 0.962 0.979 0.927 0.952 0.979 0.94 0.959

Average 0.938 0.935 0.935 0.93 0.925 0.924 0.914 0.913 0.914

Table 6.8: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠10 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.856 0.993 0.92 0.86 0.987 0.919 0.928 0.947 0.937

Economy 0.935 0.867 0.9 0.878 0.96 0.917 0.849 0.86 0.854

Politics 0.905 0.887 0.896 0.921 0.773 0.841 0.842 0.82 0.831

Society 1 0.987 0.993 1 0.973 0.986 0.987 1 0.993

Sport 0.986 0.933 0.959 0.979 0.927 0.952 0.973 0.953 0.963

Average 0.936 0.933 0.933 0.928 0.924 0.923 0.916 0.916 0.916

Table 6.9: The results of a 10-fold cross-validation using the 𝑆𝑡𝑒𝑚𝑠𝑃 version of the training set.

 SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Art 0.838 1 0.912 0.92 0.993 0.955 0.973 0.953 0.963

Economy 0.965 0.907 0.935 0.829 0.967 0.892 0.891 0.873 0.882

Politics 0.937 0.893 0.915 0.95 0.767 0.849 0.855 0.867 0.861

Society 1 0.987 0.993 1 0.98 0.99 0.987 1 0.993

Sport 0.993 0.92 0.955 0.979 0.947 0.963 0.961 0.973 0.967

Average 0.946 0.941 0.942 0.936 0.931 0.93 0.933 0.933 0.933

As shown in Table 6.10 and Figure 6.10, the 𝑆𝑡𝑒𝑚𝑠𝑃 training set gives the highest average F-measure across

the three text classifiers. Recalling that 𝑆𝑡𝑒𝑚𝑠𝑃 was obtained by the proposed P-Stemmer, this supports our

argument mentioned in section 5.4, which states that the removal of word prefixes only can improve the

effectiveness of text classifiers compared to a light stemmer which removes both word prefixes and suffixes.

In addition, the results shows that SVM outperforms both Naïve Bayes and Random Forest. One reason for

that is the robustness of SVM against high-dimensional feature spaces.

Table 6.10: The F-measure values for the three classification techniques.

 SVM (SMO) Naïve Bayes Random Forest Average

𝐖𝐨𝐫𝐝𝐬 0.915 0.916 0.919 0.917

𝐒𝐭𝐞𝐦𝐬𝟏 0.943 0.924 0.925 0.931

𝐒𝐭𝐞𝐦𝐬𝟐 0.94 0.928 0.923 0.93

𝐒𝐭𝐞𝐦𝐬𝟑 0.926 0.923 0.909 0.919

𝐒𝐭𝐞𝐦𝐬𝟖 0.935 0.924 0.914 0.924

𝐒𝐭𝐞𝐦𝐬𝟏𝟎 0.933 0.923 0.916 0.924

𝐒𝐭𝐞𝐦𝐬𝐏 0.942 0.93 0.933 0.935

MOHAMED HANDOSA 19

Figure 6.10: F-measure values for the three classification techniques.

6.3 Binary Classifiers
Using the instances stemmed by the proposed P-Stemmer, we have created five training sets corresponding

to the five classes (i.e. Art, Economy, Politics, Society, and Sport). Each training set has 150 positive instances

and 600 negative instances (i.e. 150 from every other class). We used the Weka’s “TextDirectoryLoader”

tool to create the ARFF files for the five training sets as shown in Figure 6.11.

Figure 6.11: Creating ARFF files for the five training sets.

Again, we used the “StringToWordVector” filter followed by the “AtrributeSelection” filter with

“InfoGainAttributeEval” as evaluator and a “Ranker” with a threshold of value 0. Table 6.11 shows the number

of features for each of the five training sets. In the table, “Distinct words” refers to the number of features

after applying the “StringToWordVector” filter and “Selected features” refers to the number of features after

applying the “StringToWordVector” filter followed by the “AttributeSelection” filter.

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Words Stems1 Stems2 Stems3 Stems8 Stems10 StemsP

SVM (SMO) Naïve Bayes Random Forest Average

MOHAMED HANDOSA 20

Table 6.11: Number of features for each training set version.

 𝐀𝐫𝐭 𝐄𝐜𝐨𝐧𝐨𝐦𝐲 𝐏𝐨𝐥𝐢𝐭𝐢𝐜𝐬 𝐒𝐨𝐜𝐢𝐞𝐭𝐲 𝐒𝐩𝐨𝐫𝐭
Distinct words 2,0457 2,0457 2,0457 2,0457 2,0457

Selected features 2,058 1,214 883 1,065 1,529

Afterwards, we used Weka to build three text classifiers using the three classification techniques for each of

the five training sets. The results of a 10-fold cross-validation of the three classifiers for the training sets 𝐴𝑟𝑡,

𝐸𝑐𝑜𝑛𝑜𝑚𝑦, 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑠, 𝑆𝑜𝑐𝑖𝑒𝑡𝑦, and 𝑆𝑝𝑜𝑟𝑡 are shown in Table 6.12, Table 6.13, Table 6.14, Table 6.15, and

Table 6.16, respectively.

Table 6.12: The results of a 10-fold cross-validation of three the “Art” classifiers.

SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Positive 0.982 0.998 0.99 0.998 0.958 0.978 0.92 0.998 0.958

Negative 0.993 0.927 0.959 0.856 0.993 0.92 0.99 0.653 0.787

Weighted
Average

0.984 0.984 0.984 0.97 0.965 0.966 0.934 0.929 0.924

Table 6.13: The results of a 10-fold cross-validation of the three “Economy” classifiers.

SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Positive 0.955 0.983 0.969 0.995 0.915 0.953 0.925 0.983 0.953

Negative 0.924 0.813 0.865 0.742 0.98 0.845 0.911 0.68 0.779

Weighted
Average

0.949 0.949 0.948 0.944 0.928 0.931 0.922 0.923 0.918

Table 6.14: The results of a 10-fold cross-validation of the three “Politics” classifiers.

SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Positive 0.953 0.982 0.967 0.982 0.91 0.945 0.899 0.983 0.939

Negative 0.917 0.807 0.858 0.722 0.933 0.814 0.894 0.56 0.689

Weighted
Average

0.946 0.947 0.945 0.93 0.915 0.919 0.898 0.899 0.889

Table 6.15: The results of a 10-fold cross-validation of the three “Society” classifiers.

SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Positive 0.997 1 0.998 0.997 1 0.998 0.998 0.998 0.998

Negative 1 0.987 0.993 1 0.987 0.993 0.993 0.993 0.993

Weighted
Average

0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997

MOHAMED HANDOSA 21

Table 6.16: The results of a 10-fold cross-validation of the three “Sport” classifiers.

SVM (SMO) Naïve Bayes Random Forest

Precision Recall F Precision Recall F Precision Recall F

Positive 0.985 0.998 0.992 0.997 0.995 0.996 0.958 0.998 0.978

Negative 0.993 0.94 0.966 0.98 0.987 0.983 0.992 0.827 0.902

Weighted
Average

0.987 0.987 0.987 0.993 0.993 0.993 0.965 0.964 0.963

As shown in Table 6.17 and Figure 6.12, the society classifiers have the highest F-measure values. Again, SVM

outperforms both Naïve Bayes and Random Forest.

Table 6.17: The F-measure values for the three classification techniques.

 SVM (SMO) Naïve Bayes Random Forest Average

Art 0.984 0.966 0.924 0.958

Economy 0.948 0.931 0.918 0.932

Politics 0.945 0.919 0.889 0.918

Society 0.997 0.997 0.997 0.997

Sport 0.987 0.993 0.963 0.981

Figure 6.12: The F-measure values for the three classification techniques.

6.4 Compound Binary Classifiers
The results of multiclass classifiers (see section 6.2) and binary classifiers (see section 6.3) shows that the

effectiveness of multiple binary classifiers is far much better that the effectiveness of multiclass classifiers.

Moreover, we have used the binary classifiers to build compound classifiers using the voting approach.

In Weka, to combine multiple classifiers, click on the “Choose” button under the “Classifiers” group box. This

will display a tree of classifiers as shown in Figure 6.13 from which you can select “vote” which is under “meta”

in the classifiers tree.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Art Economy Politics Society Sport

SVM (SMO) Naïve Bayes Random Forest Average

MOHAMED HANDOSA 22

Figure 6.13: Weka’s classifiers tree.

To display the parameters of “voting”, click on the textbox under the “Classifier” group box as shown in

Figure 6.14. This will display the parameters dialog shown in Figure 6.15.

Figure 6.14: Opening the parameters of Weka’s voting compound classifier.

Figure 6.15: Parameters dialog of the “voting” compound classifier.

Within the voting parameters dialog, click of the “classifiers” textbox to display the dialog shown in Figure 6.16,

from which you can choose the classifiers to be combined.

MOHAMED HANDOSA 23

Figure 6.16: Voting members

Using the voting approach, we have combined the three binary classifiers (i.e. SVM, Naïve Bayes, and Random

Forest) of each of the five classes to form five compound classifiers. The results of a 10-fold cross-validation

of the five compound classifier with the corresponding five training sets (i.e. 𝐴𝑟𝑡, 𝐸𝑐𝑜𝑛𝑜𝑚𝑦, 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑠,

𝑆𝑜𝑐𝑖𝑒𝑡𝑦, and 𝑆𝑝𝑜𝑟𝑡) are shown in Table 6.18.

Table 6.18: The results of a 10-fold cross-validation of the five compound classifiers.

 Positive Negative
Weighted
Average

Art

Precision 0.982 0.993 0.984

Recall 0.998 0.927 0.984

F-Measure 0.99 0.959 0.984

Economy

Precision 0.964 0.908 0.953

Recall 0.978 0.853 0.953

F-Measure 0.971 0.88 0.953

Politics

Precision 0.965 0.884 0.949

Recall 0.972 0.86 0.949

F-Measure 0.968 0.872 0.949

Society

Precision 0.998 1 0.999

Recall 1 0.993 0.999

F-Measure 0.999 0.997 0.999

Sport

Precision 0.987 0.993 0.988

Recall 0.998 0.947 0.988

F-Measure 0.993 0.969 0.988

As shown in Table 6.19 and Figure 6.17, the compound classifier have the highest F-measure values compared

to each of the three binary classifiers with minor exceptions.

Table 6.19: The F-measure values for the three classifiers compared to the compound classifier.

 SVM (SMO) Naïve Bayes Random Forest Voting

Art 0.984 0.966 0.924 0.984

Economy 0.948 0.931 0.918 0.953

Politics 0.945 0.919 0.889 0.949

Society 0.997 0.997 0.997 0.999

Sport 0.987 0.993 0.963 0.988

MOHAMED HANDOSA 24

Figure 6.17: The F-measure values for the three classifiers compared to the compound classifier.

7 Classifying the Testing Set
Given the results of evaluating different classifiers using 10-fold cross-validation over the training set, we

chose to use five compound classifiers as illustrated in section 6.4 to classify the test set. For each compound

classifier, the classifier is trained using one of the five training sets (i.e. 𝐴𝑟𝑡, 𝐸𝑐𝑜𝑛𝑜𝑚𝑦, 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑠, 𝑆𝑜𝑐𝑖𝑒𝑡𝑦, and

𝑆𝑝𝑜𝑟𝑡). Afterwards, the trained classifier takes the unlabeled testing set and labels each instance as either

positive or negative. The training and the testing sets must be compatible, that is they must have the same

attributes stored in the same order. Therefore, we started by extracting the list of attributes from the ARFF

files used by each of the compound classifiers in section 6.4. Having a list of attributes (i.e. word vector) for

each of the five classes, we developed a tool, named “TXT2CSV”. The tool takes the path to a directory

containing the text files representing instances, the filename of the file containing the attributes of interest,

and the class label to be assigned to the instances. The tool creates a CSV file as an output file containing the

attributes of interest together with their values for each instance as shown in Figure 7.1.

Figure 7.1: The “TXT2CSV” tool.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Art Economy Politics Society Sport

SVM (SMO) Naïve Bayes Random Forest Voting

MOHAMED HANDOSA 25

Having five classes, we used the “TXT2CSV” tool to produce two CSV files per class, one for positive instances

and the other for negative instances. Afterwards, for each class the two CSV files representing positive and

negative instances were merged into a single CSV file, which represents the training set. For the testing set,

we used the “TXT2CSV” tool to generate a CSV file using the same attributes file and “Negative” as a “Class

Label” (The value “Negative” is just a place holder). Now, for each of the five classes we have two CSV files

representing compatible training and testing sets.

In order to train a classifier using the training set, open the training CSV file in Weka. Then go to the “Classify”

tab and select the “Use training set” radio button under the “Test options” group box as shown in Figure 7.2.

Figure 7.2: Classification’s test options.

After training the five compound classifiers, we have saved the models for future use by right clicking on a

model and selecting “Save model” as shown on Figure 7.3.

Figure 7.3: Saving a model.

MOHAMED HANDOSA 26

As mentioned in section 4, the testing set in its raw form is a set of 1700 newspaper PDF files. First, we used

the developed PDF2TXT tool to extract the text from the PDF files, such that the text from each page is

extracted to a distinct text file. Thus, we obtained a set 58,938 text files, each file corresponding to a page.

Second, we used the “Arabic Words Extractor” tool for cleaning and normalizing the text as well as removing

stop-words. Third, we used the “Arabic Light Stemmer” tool to stem the words in each of the text files using

the proposed P-Stemmer. Since some of the PDF Pages of the collected newspapers were only full-page

images, some of the text files were empty. Moreover, some pages contained too little text. We have removed

the text files with a size less than 2 kilobytes. Thus, out of the 58,938 text files we still have 38,017 text files.

To reduce computation overhead and memory requirements, we decided to split the testing set into chunks

of 2000 instance each. For each chunk, we have created 5 CSV files, one for each class using the attributes

selected for that class.

In use the testing set, open the training CSV file using Weka, then go to the classify tab, select “Supplied test

set” under the “Test options” group box, and click on the “Set…” button to specify the testing set CSV file as

shown in Figure 7.4. You may click on “More options…” to display the options dialog from which you can select

“Output predictions” to list the testing set instances together with their corresponding assigned class.

Figure 7.4: Specifying a testing set CSV file.

Then, right click on the “Results list” and select “Load model” to load the model you saved before as shown in

Figure 7.5. Finally, right click on the loaded model and select “Re-evaluate model on current test set” as shown

in Figure 7.6.

Figure 7.5: Loading a saved model in Weka.

MOHAMED HANDOSA 27

Figure 7.6: Re-evaluating a model based on current test set.

For instance, the results of classifying the testing set using the Art compound classifier are shown in Figure 7.7.

for each instance we chose to print its filename as well as the assigned label. All instances, considered to be

positive by the Art classifier will be uploaded to the Art core on Solr. The same applies to the remaining 4

classifiers and their corresponding 4 Solr cores. Creating Solr cores and uploading documents to then is

illustrated in section 8.

Figure 7.7: Results of classifying the testing set instances using the Art compound classifier.

MOHAMED HANDOSA 28

8 Indexing and Searching Collections using Apache Solr
Solr is an open source enterprise search platform. Its major features include full-text search, hit highlighting,

faceted search, dynamic clustering, database integration, and rich document (e.g., Word, PDF) handling. Solr

supports the Arabic language and uses the Larkey’s light stemmer to stems the Arabic words before indexing

[10]. Solr is written in Java and runs as a standalone full-text search server within a servlet container such as

Apache Tomcat. Apache Tomcat is an open source web server and servlet container developed by the Apache

Software Foundation (ASF).

8.1 Installation Solr with Tomcat as a Web Container
This section describes briefly how to install Apache Solr on Ubuntu with Apache Tomcat as a web container.

8.1.1 Installing Apache Tomcat
1. Download Apache Tomcat from Apache Software Foundation. You can download it from the location

http://tomcat.apache.org/download-80.cgi. I downloaded Tomcat 8.0.3 tar.gz.

2. Extract the apache-tomcat-8.0.3.tar.gz file to ~/Desktop/Tomcat8/

3. Edit the ~/.bashrc file and add the line export CATALINA_HOME=~/Desktop/Tomcat8 to its end.

4. Open a terminal and execute the command . ~/.bashrc to apply the changes you made to the file.

5. Created a file named setenv.sh in ~/Desktop/Tomcat8/bin/

6. Edit the setenv.sh file and write JAVA_HOME=/usr/lib/jvm/default-java

7. Open a terminal and execute the command $CATALINA_HOME/bin/startup.sh to start Tomcat.

8. Tested the installation by browsing to http://localhost:8080. You should see the Tomcat home page.

8.1.2 Installing Apache Solr
1. Download Apache Solr from Apache Software Foundation. You can download it from the location

https://lucene.apache.org/solr/. I downloaded solr-4.6.1.tgz.

2. Extract the solr-4.6.1.tgz file to ~/Desktop/solr-4.6.1

3. Copy all the contents in ~/Desktop/solr-4.6.1/example/solr/ to ~/Desktop/Solr/

4. Copy all the jar-files in ~/Desktop/solr-4.6.1/example/lib/ext to ~/Desktop/Tomcat8/lib/

5. Copy solr.war from ~/Desktop/solr-4.6.1/example/webapps to ~/Desktop/Tomcat8/webapps/

6. Edited the ~/Desktop/Tomcat8/webapps/solr/WEB-INF/web.xml file, uncommented the env-entry

section and replaced /put/your/solr/home/here with /home/[user-name]/Desktop/Solr

7. Add the line JAVA_OPTS="-Dsolr.solr.home=/home/[user-name]/Desktop/Solr to the setenv.sh file.

8. Tested the installation by browsing to http://localhost:8080/solr/. You should see the Solr home page.

8.2 Starting/Stopping the Apache Tomcat Service
To start the Apache Tomcat service, open a terminal and run the command

$CATALINA_HOME/bin/startup.sh

http://tomcat.apache.org/download-80.cgi
http://mirrors.ibiblio.org/apache/tomcat/tomcat-8/v8.0.3/bin/apache-tomcat-8.0.3.tar.gz
http://localhost:8080/
https://lucene.apache.org/solr/
http://www.carfab.com/apachesoftware/lucene/solr/4.6.1/solr-4.6.1.tgz
http://localhost:8080/solr/

MOHAMED HANDOSA 29

You should see something like what is shown in Figure 8.1.

Figure 8.1: Starting the Apache Tomcat service.

To stop the Apache Tomcat service, open a terminal and run the command

$CATALINA_HOME/bin/shutdown.sh

You should see something like what is shown in Figure 8.2.

Figure 8.2: Stopping the Apache Tomcat service.

8.3 Creating a Solr Core
Navigate to ~/Desktop/Solr as shown in Figure 8.3 and create a folder named ar-collection.

Figure 8.3: Navigating to “~/Desktop/Solr”.

Copy the directory ~/Desktop/Solr/collection1/conf to ~/Desktop/Solr/ar-collection as shown in Figure 8.4.

Figure 8.4: The “conf” folder copied from “~/Desktop/Solr/collection1/”.

MOHAMED HANDOSA 30

Start the Apache Tomcat web service then open a browser and navigate to http://localhost:8080/solr/. You

should see the Apache Solr home page as shown in Figure 8.5.

Figure 8.5: Apache Solr Dashboard.

From the left panel, select Core Admin then click on the Add Core button at the top as shown in Figure 8.6.

Enter ar-collection in both the name and the instanceDir fields and click the Add Core button below.

Figure 8.6: Apache Solr, Core Admin screen.

http://localhost:8080/solr/

MOHAMED HANDOSA 31

8.4 Editing the Schema file
The schema for the ar-collection core is located at ~/Desktop/Solr/ar-collection/conf/ (see Figure 8.7).

Figure 8.7: The location of the schema file for the “ar-collection” core.

The schema.xml file contains all of the details about which fields your documents can contain, and how those

fields should be dealt with when adding documents to the index, or when querying those fields. Edit the

scheme.xml file and replace its contents with the following

<?xml version="1.0" encoding="utf-8" ?>
 <schema name="ar-schema" version="1.5">
 <fields>
 <field name="_version_" type="long" indexed="true" stored="true"/> <!--Reserved-->
 <field name="_root_" type="string" indexed="true" stored="false"/> <!--Reserved-->
 <field name="id" type="string" indexed="true" stored="true" required="true" multiValued="false"/>
 <field name="content" type="text_ar" indexed="true" stored="true" multiValued="true"/>
 </fields>
 <uniqueKey>id</uniqueKey>

 <types>
 <fieldType name="string" class="solr.StrField" sortMissingLast="true" />
 <fieldType name="long" class="solr.TrieLongField" precisionStep="0" positionIncrementGap="0"/>

 <fieldType name="text_ar" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/> <!-- for any non-arabic -->
 <filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ar.txt" />
 <filter class="solr.ArabicNormalizationFilterFactory"/> <!-- normalizes ى to ي, etc -->
 <filter class="solr.ArabicStemFilterFactory"/>
 </analyzer>
 </fieldType>
 </types>
</schema>

You might need to restart the Tomcat service for changes to take effect and reflect in Solr UI.

8.5 Working with Documents through the Dashboard
A Solr index can be modified by POSTing commands to Solr to add (or update) documents, delete documents,

and commit pending addition and deletion operations. These commands can be in a variety of formats

including XML, JSON, CSV and JAVABIN as shown in Table 8.1.

Table 8.1: Solr command formats

JSON {"id":"###","content":"$$$"}

XML <doc><field name="id">###</field><field name="content">$$$</field></doc>

CSV id,title
###,$$$

MOHAMED HANDOSA 32

8.5.1 Adding Documents
From the left panel, click on Core Selector and choose ar-collection then from the bottom panel select

Documents. This will display the screen shown in Figure 8.8.

Figure 8.8: The “ar-collection” Documents screen.

From the Document Type dropdown list, select Document Builder. This will display the document builder

screen as shown in Figure 8.9. From the Field dropdown list select a field and enter the corresponding text in

the Field Data textbox then click on Add Field. After finishing document building, click on Submit Document.

Figure 8.9: Document Builder screen.

MOHAMED HANDOSA 33

8.6 Indexing Classified Collections
It is possible to modify the Solr index by POSTing XML documents containing instructions to add (or update)

documents, delete documents, commit pending additions and deletions, and optimize the index [11]. The

exampledocs directory, within the Solr distribution, contains samples of the types of instructions Solr expects,

as well as a java utility for posting them from the command line as shown in Figure 8.10.

Figure 8.10: The “exampledocs” directory.

For example, to add the monitor.xml file to a Solr core named test, open a terminal window, enter the

exampledocs directory, and run the following command

java -Durl=http://localhost:8080/solr/test/update -jar post.jar monitor.xml

From the Solr web interface, the statistics of the test core shows that the number of indexed documents is 1

as shown in Figure 8.11.

Figure 8.11: Statistics of the ‘test’ core.

Similarly, to index all XML documents within the exampledocs directory run the command

java -Durl=http://localhost:8080/solr/test/update -jar post.jar *.xml

The command above can be used to upload the testing set instances, each to its corresponding core, after

transforming each test file into an XML file and add the necessary instructions to add the document to the

index.

MOHAMED HANDOSA 34

9 Conclusion and Future Work
We have shown that our proposed stemmer, P-Stemmer, outperforms the widely used Larkey’s stemmer. We

have built different classifiers using different machine learning techniques and shown that a compound binary

classifier that uses the voting approach to combine SVM, Naïve Bayes and Random Forest outperforms both

multiclass classifiers and binary classifiers based on a single learning technique (i.e. SVM, Naïve Bayes, or

Random Forest). We also illustrated how to use Solr for indexing and searching Arabic collections.

Regarding the future work, we are planning to use Solr to assist in the evaluation of text classifiers on larger

datasets, for which it is infeasible to classify manually. There are two proposed strategies. The first strategy is

to use Solr to prepare the testing set by uploading all instances to a core and execute a query related to a

given class. Afterwards, the output results are automatically labeled as belonging to that given class. The

second strategy is to classify the instances using the classifier being evaluated and then upload the labeled

instances to Solr. Afterwards, we execute carefully chosen queries and explore the search results with respect

to their assigned labels. Hence, we can calculate the precision and recall values for the classifier under

evaluation.

MOHAMED HANDOSA 35

10 References

[1] "NewsCodes," International Press Telecommunication Council (IPTC), December 2010. [Online].

Available: http://www.iptc.org/site/NewsCodes/View_NewsCodes. [Accessed 30 April 2014].

[2] B. Carrier, "Extracting searchable text from Arabic PDFs," Basis Technology, 2009.

[3] C. C. Aggarwal and C. Zhai, "A survey of text classification algorithms," in Mining text data, Springer US,

2012, pp. 163-222.

[4] I. Abu El-Khair, "Effects of stop words elimination for Arabic information retrieval: a comparative study,"

International Journal of Computing & Information Sciences, vol. 4, no. 3, pp. 119-133, 2006.

[5] M. Ababneh, R. Al-Shalabi, G. Kanaan and A. Al-Nobani, "Building an Effective Rule-Based Light Stemmer

for Arabic Language to Improve Search Effectiveness," International Arab Journal of Information

Technology (IAJIT), vol. 9, no. 4, pp. 368-372, 2012.

[6] S. Khoja and R. Garside, "Stemming arabic text," Computing Department, Lancaster University,

Lancaster, UK, 1999.

[7] L. S. Larkey, L. Ballesteros and M. E. Connell, "Light stemming for Arabic information retrieval," Arabic

computational morphology, vol. 38, pp. 221-243, 2007.

[8] C. Cortes and V. Vapnik, "Support vector machine," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.

[9] T. Joachims, "Text categorization with support vector machines: Learning with many relevant features,"

in 10th European Conference on Machine Learning, Chemnitz, 1998.

[10] "Language Analysis," The Apache Sotware Foundation, 27 March 2014. [Online]. Available:

https://wiki.apache.org/solr/LanguageAnalysis. [Accessed 7 May 2014].

[11] "Solr Tutorial," The Apache Software Foundation, 2012. [Online]. Available:

http://lucene.apache.org/solr/3_6_2/doc-files/tutorial.html. [Accessed 20 March 2014].

