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CHANNEL PREDICTION FOR ADAPTIVE 
MODULATION IN WIRELESS COMMUNICATIONS 

Raymond Chan 

(ABSTRACT) 

This thesis examines the benefits of using adaptive modulation 

and coding in terms of spectral efficiency and probability of 

bit error.  Specifically, we examine the performance enhancement 

made possible by using linear prediction along with channel 

estimation in conjunction with adaptive modulation.  We begin 

this manuscript with basic fundamentals of our study, followed 

by a detailed view of simulations, their results, and our 

conclusions from them.  The study includes simulations in slow 

and moderately fast flat fading Rayleigh channels.   

We present our findings regarding the advantages of using 

predictive measures to foresee the state of the channel and make 

adjustments to transmissions accordingly.   

In addition to finding the general advantages of channel 

prediction in adaptive modulation, we explore various ways to 

adjust the prediction algorithm when we are faced with high 

Doppler rates and fast fading.   

By the end of this work, we should have a better understanding 

of when channel prediction is most valuable to adaptive 

modulation and when it is weakest, and how we can alleviate the 

problems that prediction will have in harsh environments.   
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C h a p t e r  1  

INTRODUCTION 

1.1 Overview of the Problem 

In wireless communications, spectrum is a most precious 

commodity.  It, along with SNR, is what determines the rate at 

which we can transmit information.  For many years, researchers 

have been looking for ways to either conserve or exploit spectrum 

for its most efficient use.  In the early 90’s, TDMA gave us 

improved spectral efficiency over FDMA.  Later that decade, CDMA 

provided even better spectral efficiencies (from a system point 

of view). 

One of the barriers to wireless systems is Rayleigh fading; a 

phenomenon that reduces error performance in mobile fading 

environments.  Whether in  

In this thesis, we investigate ways to take advantage of Rayleigh 

fading by means of adaptive modulation and coding [1],[2].  By 
this method, we mean to change the modulation and/or coding used 

by the transmitter in response to the changing channel 

conditions.  In essence, it is a way to optimize the transmission 

scheme according to the state of the channel for a required 

fidelity.  For example, when the channel is in a poor state 

(i.e., low SNR) we can reduce the signal constellation size in 

order to improve fidelity.  Conversely, when the channel is in a 
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good state (high SNR) we can increase the signal constellation 

size in order to increase the data rate achievable. 

The same argument can be made for forward error correction 
coding.  In periods of deep fade, we can lower the code rate and 

make the transmission more resilient to errors.  In addition to 

this, through the use of punctured codes, we may provide 

flexibility with the lower complexity afforded by a common 

decoder structure. 

1.2 Background 

Adaptive modulation for wireless communications has received 

significant interest in the past five years [1], [3], [4].  It 

has long been recognized that adaptive modulation provides more 

efficient use of the channel than fixed modulation schemes.  

Landline modems have long adapted the modulation scheme to the 
SNR of the underlying channel.  Adaptive modulation has also 

recently gained momentum in wireless systems.  In fact, forms of 

adaptive modulation are currently implemented in a packet data 

CDMA standard [3] and in wireless LAN standards such as IEEE 

802.11.  However, the challenge associated with adaptive 

modulation is that the mobile channel change with time.  Thus, 

the feedback of channel information becomes the limiting factor 

in adaptive modulation.  To meet this challenge, in this study we 

examine the use of channel prediction to allow the use of past 

information to predict the future channel state and adjust the 

modulation scheme accordingly.   

Signal prediction is also not a new topic.  In the past, linear 

prediction was used extensively in speech processing and data 
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analysis.  Algorithms such as ESPIRIT (Estimation of Signal 

Parameters via Rotational Invariance Techniques) have been 

explored by Andersen and Roy [5], [6] for wireless fading 

channels and general signal parameter estimation (direction of 

arrival, system identification and time series analysis).  Hwang 

and Winters [7] worked on subspace methods to predict the channel 

in periods of fast fading for high frequency carrier waves.  More 
relevant to our topic is the work done by Duel-Hallen [8] on 

linear channel prediction.  In Duel-Hallen’s work, she proposed 

upgrading adaptive modulation by means of implementing linear 

prediction to predict the future power levels of the fading 

channel.  Her work has focused on the use of simulation data and 

the mean square error of the prediction methods.  She has worked 

to study how well prediction works by altering various prediction 

parameters in her systems.  Recently Hu has applied linear 

prediction to the adaptive modulation problem, although the work 

is still in its early stages [9].  In this work we will more 

fully explore one of the uses of linear prediction in adaptive 

modulation building on the work done in adaptive modulation by 

Jain in [4]. 

1.3 Contributions 

In this study, we will demonstrate the advantages of using 

channel prediction in conjunction with adaptive modulation 

techniques.  Specifically, we will show the change in throughput 

and bit error rate performance when using linear prediction to 

estimate the future state of the channel. This thesis makes 

several distinct contributions to the literature: 
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1.  We examine the impact of using FFT-based channel estimation 

on the performance of linear prediction. 

2.  We illustrate the impact that linear prediction has on the 
BER performance of adaptive modulation in different Doppler 

environments and with reverse link propagation delays. 

3.  We illustrate the impact that error correction coding has on 

the performance of adaptive modulation, specifically when using 

linear prediction. 

4.  We illustrate the limitations of linear prediction in high 

Doppler environments and demonstrate the impact that these 

limitations have on the performance of adaptive modulation.   

Further, we investigate several methods to improve prediction 

accuracy and their impact on adaptive modulation. 

5.  We demonstrate the usefulness of channel prediction and 

adaptive modulation using actual measured channels.  

The organization of this thesis is as follows: 

In Chapter 2 we lay the foundation of the system model.  We will 

briefly review modulation and Rayleigh fading.  We also introduce 

our methods of channel compensation and SNR estimation. 

In Chapter 3 we introduce adaptive modulation.  We observe the 

effects that imperfect channel estimation has on the performance 

of adaptive modulation and we present linear prediction as a 

means of counteracting some of these problems. 
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Chapter 4 presents the specific issue of high Doppler fading and 

the ways in which we can compensate for the weaknesses of channel 

prediction in high speed channels.   

Chapter 5 briefly concludes this work. 
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C h a p t e r  2  

THE SYSTEM MODEL 

2.1 Introduction 

In this chapter, we will outline in detail the system model used 

in this study.   We will begin with a discussion of additive 

white Gaussian noise, followed by a look at Rayleigh fading.  We 

will then discuss the channel estimation and compensation methods 

used, as well as the SNR estimation technique employed. 

2.2 Noise 

In no examination of a communication system is a model produced 

without the inclusion of noise, or some unwanted signal in 
addition to the desired information signal.  In most, if not all 

studies (ours included), the term noise will denote additive 

white Gaussian noise (AWGN).  The term ‘additive’ means the 

interfering signal is combined with the information signal by 

addition; the term ‘white’ refers to the noise having constant 

power spectral density; and Gaussian means that the probability 

density function of samples of the random process is Gaussian. 

It is interesting to discuss where AWGN originates.  The answer 
lies in two places, but for the same reason, namely, Brownian 

motion.  One source of noise is from the agitation of charge 

carriers in a conductor moving through a potential barrier [10].  

This type of noise is called shot noise and usually occurs in 
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electrical devices such as diodes and transistors and generally 

does not come into play in link level communication models.  The 

other source of noise is thermal noise.  This refers to the 

random motion of electrons due to thermal energy.  This random 

motion at the receiver produces a signal that is independent of 

the desired signal and is detected in addition to the information 

signal.  Since this noise is produced by a large number of 
independent sources, it is well modeled by a Gaussian random 

process.  Note that decreasing the temperature of the receiver 

can reduce the power of the thermal noise but not shot noise.   

From this point on, all references to noise will be thermal noise 

or AWGN.   

2.2.1 Noise Power 

To see the effect that noise has on the received signal, we are 
interested in the power of the noise signal relative to the power 

of the desired signal.  The ratio of the two is known as the 

signal-to-noise-ratio (SNR).  The units that we will be using are 

logarithmic, noted by decibels, or dB.  To find the power of the 

noise, one must know the temperature in Kelvin at the receiver, 

and the receiver noise bandwidth [10]:   

pN kTB=                          (2.1) 
 

where k is Boltzmann’s Constant (1.38*10-23 W/Hz*K), T is the 

thermal temperature in Kelvin, and B is the effective noise 

bandwidth of the receiver in Hz.   

The power of the noise in our simulation is such that the 

received SNR is in the range of 0 to 40 dB.  In a later section, 
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we will see the significance of noise power in conjunction with 

channel fading.   

2.3 Rayleigh Fading 

In this section, we will examine the impact that the movement on 

the mobile receiver (or transmitter) causes on the received 

signal.  The resulting effect (typically called fading) has a 
significant impact on the received signal strength which can be 

severely degraded as we will show in the following sections.   

 

2.3.1 Doppler Effect 

Fading is caused by a phenomenon known as the Doppler Effect.  

When dealing with any sort of waves, a receiver’s movement in 

relation to the source of the wave will distort the perceived 

frequency of that wave.   

Consider the following figure from [11]: 
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Figure 2.1 - Illustration of Doppler Effect  

where a user is at point X, moving toward point Y at velocity v.  

We make the approximation that the angle of arrival of the 

received signal is the same at all points during transmission 
(i.e., the source is very far away).  The difference in distance 

that the transmission must travel between the receiver at points 

X and Y is: cosl v t θ∆ = ∆ .  The resulting phase change between the 

two points is: 

2 2
cos

l v tπ π
φ θ

λ λ
∆ ∆

∆ = = ⋅                                         (2.2) 

where λ  is the wavelength in meters.  The Doppler frequency can 
then be found as: 

1
cos

2
d

v
f

t
φ

θ
π λ

∆
= ⋅ = ⋅

∆
                                            (2.3) 
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One can see that if the receiver is heading toward the source (θ  
< 90o), the Doppler shift will be positive and the perceived 

frequency of the signal will be increased.  If the receiver is 

moving away from the source (θ  > 90o), the Doppler shift will be 
negative and the perceived frequency will be decreased.  If the 

user is moving perpendicular to the source (θ  = 90o), there will 

be no shift in frequency.   

The maximum Doppler shift is 
v
λ
and this is in units of Hz. 

2.3.2 Multipath Channels 

In addition to Doppler, our channel model will include multipath 

distortion.  What we mean by this is that there will be several 

copies of the same signal being picked up by the receiver coming 

from different angles.  This is common in environments such as 
metropolitan areas, where electromagnetic waves can bounce off 

buildings or in indoor environments where signals reflect off 

walls, etc.  Each of these components will have their own Doppler 

shift and phase offset due to different angles-of-arrival and 

time delays.  The combination of these paths will be constructive 

and destructive due to the different phases causing the signal 

strength to change with mobile movement.  It is this multipath 

factor that produces the gains and fades in power that we will 

see in the figures ahead. 
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2.3.3 Rayleigh Model 

With the Doppler shift and multipath, we can now build a model of 

our Rayleigh channel.  From [11], we model the received signal as 

a sum of non-resolvable multipath components each with 

independent amplitude, phase and frequency components.  The 

channel is thus modeled in complex baseband as 

(2 )

1

1
( ) ii

i

N
j f c t

i

c t A e
N

π φ+

=

= ⋅∑                 (2.4) 

Where Ai is the amplitude of the ith complex sinusoid which is a 

constant of 1 in our case, iφ  is the random phase uniformly 

distributed from zero to 2π , and icf  is the Doppler frequency 

found as max cosi if f θ=  where fmax is the maximum Doppler shift and  

θ  is the angle of arrival assumed to be uniformly distributed 

from 0 to 2π .  The channel is made up of the sum of N complex 
sinusoids.  We set the number of multipaths N to be 32 in all 

experiments.  Note that the resulting channel is a complex 

Gaussian random process due to the sum of independent sinusoids.  

The envelope is thus a Rayleigh random variable and thus we call 

this Rayleigh fading. 

In the next few figures, we will look at some of the 

characteristics of Rayleigh channel. 
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Figure 2.2 - Typical Rayleigh Fading Channel 

In Figure 2.2, we plot the envelope (in dB) of a Rayleigh channel 

taken over a period of 8000 samples at a maximum Doppler 

frequency of 30 Hz and a sampling rate of 10 kHz.  Note the many 

short periods of fading throughout channel.  In this channel, we 

can lose between 5 and 50 dB of power from our signal.   

On the other hand, the Rayleigh channel is somewhat deterministic 

and samples that are close to one another have similar power 

levels.  This temporal correlation can be exploited as we will 

later show.  But before we discuss why fading is so bad for 
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transmission, or how we exploit it, we further examine our 

assumed system model. 

2.3.4 Modulation 

In this section, we will examine the transmitter and receiver 

architectures assumed in this work.  Specifically, we describe 

how we take a binary information signal and prepare it for 
transmission through free space.  We will do this by taking a 

look at a signal transformation known as modulation.   

We will begin with a binary signal of zeros and ones.  What we 

would like to do is encode it in a format that will travel 

through a medium.  We do that by encoding electromagnetic 

sinusoids, since radio waves travel readily through the media of 

interest.   

In simple modulation schemes, it is possible that a binary ‘1’ 

would be represented by a cosine wave with some phase and 

frequency while a binary ‘0’ would be represented by that very 

same wave, but with a 180 degree change in phase.  This is called 

binary phase shift keying, or BPSK.  We could use any finite 

number of phases although we typically restrict ourselves to 

powers of two (e.g., BPSK, 4-PSK, 8-PSK).  Our system will 

include modulation schemes QPSK and QAM, or Quadrature Amplitude 

Modulation. 

In QAM, we map sets of bits to a complex sinusoid with a 

particular phase and amplitude.  Below is a diagram [Fig 2.3] for 

16 QAM, a modulation scheme that uses four information bits to 

produce one of 16 transmission symbols.  Other QAM schemes use a 

different number of information bits to produce one information 
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symbol, hence, different modulation schemes can produce different 

spectral efficiencies as well as different BER curves.  We will 

go into more of this later. 

 

Figure 2.3 - Constellation Diagram for 16 QAM 

Figure 2.3 shows all of the possible modulation symbols in what 

is termed a constellation diagram.  The angle of the point in two 

dimensions represents the phase of the symbol while the magnitude 

represents the symbol’s amplitude.  This diagram illustrates the 

received signal points in the absence of noise.  We will call the 

points in which the bits are mapped to ‘constellation points’.  

The received signal is decoded by mapping the received signal 



 

 15 
 

projected onto this two dimensional plane to the nearest 

constellation point.  In other words, the decoded symbol is the 

constellation point that is closest to the received symbol.   

2.3.5 Effects of Fading and Noise 

At the receiver, we can model the signal as: 

( ) ( ) ( ) ( )r t c t s t n t= ⋅ +                 (2.5) 

where r(t) is the received signal, c(t) is the Rayleigh channel 

signal defined in Equation 2.4 and n(t) is Gaussian noise.  

Further, as is conventional, we model the signals using complex 

baseband notation.  The information signal is multiplied by the 

channel, and white Gaussian noise is added to the signal at the 

receiver.   

Let us see what happens to a signal when it is put through a 

Rayleigh channel. 
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Figure 2.4 - Rotated 16 QAM signal 

In Figure 2.4, we have taken the same QAM signal constellation 

from Figure 2.3 and passed it through a Rayleigh channel with a 
specific SNR.  As can be seen, the received signal constellation 

is rotated and scaled and slightly perturbed.  In order to 

demodulate this signal properly, one must compensate for the 

channel by de-rotating the constellation and removing the 

amplitude modulation (since we are working with QAM which has 

information in the amplitude).  However, this is not the only 

problem that Rayleigh fading produces.   
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Figure 2.5 - Information Symbols are Rotated and 
Scaled 

In Figure 2.5, we have rotation similar to what we saw in Figure 

2.4. However, note that the constellation is scaled down much 
further than it was in Figure 2.4.  This produces an additional 

problem when noise is introduced to the signal.  The smaller the 

signal constellation, the less noise power is necessary to move 

the received symbol from the correct decision region to another.  

This is significant because it will cause symbol errors in a 

maximum likelihood detector.   
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Even without noise, amplitude and phase rotations can result in 

symbols errors if channel distortion is not countered.  When a 

transmission encounters a deep fade and symbols are moved around 

by noise, symbols errors become more and more likely.  However, 

the channel itself can be estimated and its effects mitigated 

through a method called Pilot Symbol Assisted Modulation (PSAM).  

This is a necessary step in the demodulation process when 
Rayleigh fading is involved.  

2.4 Channel Estimation and Compensation 

The job at the receiving end of a transmission is to decode the 

received signal and produce a bit stream that matches the 

original transmission bit stream at the beginning of the 

transmission process.  Unfortunately, due to the distortion 

caused by the channel, we cannot do this directly.  Instead, we 

must find a way to adjust the received signal before demodulation 

occurs.  We will do this by means of Pilot Symbol Assisted 

Modulation (PSAM) [12]. 

The idea behind PSAM is to insert known symbols in our 

transmission at set intervals.  These symbols are called pilot 

symbols. 
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Figure 2.6 - Pilot Symbol Insertions 

The purpose of the pilot symbol is to have a way at the receiver 

to know what the channel value is at the pilot.  Using this 

system, we will have fairly accurate channel samples at a 

frequency equal to the pilot symbol rate.  Using the pilots, we 

can interpolate the channel values in-between using a proper 

interpolation method.  In this work, we use an FFT-based approach 

as we shall discuss.   

Let us look at this process in more detail.  First, there is a 

Nyquist condition that must be met [12].  Based on this 

criterion, we can show that the following relationship must be 

satisfied: 

1
2D s Nf T ≤                     (2.6) 

where fD is the maximum Doppler frequency of the channel; Ts is 

the symbol period, and N is the number of symbols in a frame and 
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a frame is defined as a set of symbols associated with a single 

pilot symbol. 

Now, let us describe the FFT interpolation procedure.  We must 
first take the pilot symbols out of the received transmission 

stream.  Then we divide each pilot by the expected information 

symbol, typically the symbol with greatest energy (this is 

determined beforehand).  Next, we take the FFT of that vector 

[12].   

2 1

1 1

0

( ) ( ) exp( ) ( 0,1, , 2 1)
pN

p
pl

j nl
G n g l n N

N
π−

=

= ⋅ − = −∑ …       (2.7) 

Where 2Np is the number of pilot symbols used to create the 

channel estimate and 1( )g l  is the vector of channel samples 

obtained from dividing the received pilot symbols by the expected 

pilots.  This gives us a vector of channel samples in the 

frequency domain.  Once in the frequency domain, zero padding is 

used to accomplish interpolation. 
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    (2.8) 

Equation 2.8 [12] shows us the way to implement the interpolation 

process in the frequency domain where N is the interpolation 

factor. 

The IFFT is then performed with the following equation: 
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The result of Equation 2.9 is then the channel samples that we 

desire. 

To employ these samples in channel compensation, recall Equation 

2.5: ( ) ( ) ( ) ( )r t c t s t n t= ⋅ + .  What we want to do is to remove the 

effect of c(t) on the received signal using the estimated c’(t) 

obtained from the FFT algorithm.  It is the following: 

( ) ( ) ( ) ( ) ( ) ( )
( )

'( ) '( ) '( )
c t s t n t c t s t n t

z t
c t c t c t

⋅ + ⋅
= = +              (2.10) 

Ideally, 
( )
'( )

c t
c t

is very close to 1, leaving us with 
( )

( )
'( )

n t
s t

c t
+  where 

the noise term is hopefully very small compared to the signal 
term.  Note that this process does not improve SNR since we are 

multiplying the data and the noise by the same value. 

2.4.1 Edge Effects of FFT Estimation 

There is one drawback to the FFT estimation method that we just 

discussed.  As shown in Figure 2.7, at the ends of the 

interpolated channel, there are ripples in the channel estimate 

due to the finite block size used.  This will cause inaccuracies 

when the estimate is used for compensation.  The problem is that 

there are leakage components in the frequency domain when the 

symbols are transformed.  What is needed in order to counter this 
is for the time interval of g1(l) to be an integer multiple of 
1/fD.  Also, applying Equation 2.7 is like truncating in the 
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frequency domain.  This amounts to a loss of information, which 

is translated into an edge ripple when the IFFT is applied to the 

signal [13]. 

 

Figure 2.7 – Illustration of FFT Channel 
Estimation Accuracy 

Figure 2.7 illustrates an example of the accuracy of the FFT 
interpolation algorithm.  Note that the channel in the middle of 

the set is traced fairly accurately, but the channel at the ends 

is not.   
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Figure 2.8 - Close-up of the edge effect 

In Figure 2.8, we see a close up of the edge effect from the FFT 

algorithm.  

To counteract this effect we place additional symbols at each end 

of the frame, so that the part of the frame that is corrupted by 

the edge effect is of no consequence, and the center of each 

frame is free from any negative effects of the edges.  This will 

introduce some delay in our system. 
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2.5 SNR Estimation 

The last function that we will discuss in terms of the system 

model is the estimation of signal to noise power ratio.  The 

purpose of measuring SNR is to get a more accurate view of the 

channel state.  The signal that we wish to receive and demodulate 

will be corrupted by both the Rayleigh channel (an effect which 

changes fairly rapidly) and receiver noise (whose statistics do 

not change over short intervals).  Because of this, we will 

require the short term signal power (to estimate the effect of 

Rayleigh fading) and the long term noise power.   

There are many papers and articles that discuss SNR estimation.  

The estimator that will be discussed in this work is based on 

work done by Gagliardi [14] and Jain [4].  The basic idea is the 

following:  If we have a signal that is being corrupted by noise, 

we can estimate the signal to noise ratio through ‘mean and 

variance’ calculations.  First, the average received power after 

Rayleigh fading is found by taking the square of the mean of the 

magnitude of the received signal (after removing the modulation).  

This will serve as the estimated signal power.  The noise power 
will be found using a variance calculation on the received signal 

(again after removing the effect of modulation).  This variance 

calculation can then be averaged over a long time period. 

For PSK modulation, the following equations are used to find mean 

and variance of the current received block of data: 

1

1 N

i
i

Z r
N =

= ∑                      (2.11a) 
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∑                (2.11b) 

In the above equations, Z represents the mean of the received 

signal, T2 represents the variance of the signal (ignoring the 

effects of modulation and the channel), and N is the number of 

symbols over which the statistics are estimated.  Note that the 
variance calculation depends on the channel estimate ci that 

comes from the FFT Estimator.  Further the effect of modulation 

is eliminated by taking the magnitude of the received signal.  In 
some estimators, the mean of the signal is used instead of the 
channel sample ci.  However, this leads to biased estimation in 

high SNR regions with even moderate Doppler rates[4].   

For modulation schemes that have multiple power levels like QAM, 

we have a different set of equations to calculate the mean and 

variance of the signal:   
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It is worth noting that in the multi-power level schemes, the 

data symbol itself is needed to remove the effect that multiple 

power levels would have on the estimator.  This is obtained using 

symbol estimates, id
∧
. 
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In order to make these equations useful, we have to have a way to 

determine SNR from them.  The SNR can be calculated as [4]: 

2

2

3 1
1

ZN
N T N

− Γ = − − 
                    (2.13) 

Equation 2.13 is simply the signal power divided by the noise 

power.  The units of Γ  are linear, so we must take the logarithm 

in order to get the units into decibels.  We should note that Γ  
is a short term estimate based on one value of T2 and Z.  Since 

the noise power is constant over long periods of time, we can 

improve our SNR estimate by creating a long term noise estimate.  

To take long term average, Jain used the following equation to 

determine long term variance: 

2 2 2( ) 0.99 ( 1) 0.01 ( )long longT n T n T n= − +              (2.14) 

However, this method will take time to converge to a reliable 

estimate.  Furthermore, it weighs the first set of variances a 

great deal.  So in light of this, we decided to modify the 

equation to suit our needs.  We thus have the following to 

estimate the noise power: 

2 2 21
( ) ( 1) ( )

1 1long long

n
T n T n T n

n n
= − +

+ +
             (2.15) 

In Equation 2.15, the first few samples are still weighted more, 

but not as much as 2.14.  In this case, the convergence of the 

SNR estimate will be faster.  
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2.5.1 SNR Estimator Results 

In this section, we will present some results for the SNR 

estimator.  In these simulation runs, we simply wanted to examine 

the accuracy of the estimator, so we did not include any other 

receiver functions.  For the following charts, our communication 

system consisted only of a modulator, demodulator, and the SNR 

estimator in a Rayleigh and AWGN channel. 

 

Figure 2.9 – SNR Estimation for PSK at 5Hz 
Doppler 
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Figure 2.9 plots the performance (i.e., estimated SNR versus true 

SNR) of the SNR estimator with perfect channel knowledge at a 

Rayleigh fading rate of 5Hz.  It can be seen that at very low 

SNR, the estimate is over-estimated, but it gives accurate 

estimates for SNR at 5dB and higher.  The x’s on the graph 

represent the individual estimates of each packet, with its x-

coordinate representing the actual SNR of the frame, and the y-
coordinate representing the estimated SNR.  The closer any x is 

to the line y=x, the more correct the estimate is to the actual 

SNR. 

 

Figure 2.10 – SNR Estimation for PSK at 50Hz 
Doppler 
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In Figure 2.10, it can be seen that at higher Doppler, the 

estimator is still reliable, albeit slightly biased low, due to 

the faster fading rate.  We can see that even though the 

individual estimates may have a large range at times, the average 

comes out to be very close to the expected SNR.  We see that the 

SNR estimator works well with PSK modulation.  Figures 2.11 and 

2.12 show the estimator’s performance in QAM schemes. 

 

Figure 2.11 – SNR Estimation for QAM at 5Hz 
Doppler 
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Figure 2.12 – SNR Estimation for QAM at 50Hz 
Doppler 

As shown in Figures 2.11 and 2.12, the SNR estimator is not quite 

as good for QAM as it is for PSK.  For high SNR, the estimates 

for SNR in QAM are underestimated in the high Doppler case as it 

is with PSK.  For low SNR, the estimate is high.  This is because 

at low SNR, there are a greater number of symbol errors that 

occur.  Those symbols are the input to the estimator.  The more 

reliable the symbol information is, the better the SNR estimate 

is for QAM schemes.  This is why the estimates are better at high 

SNR.  However, this will not prove to be a problem for adaptive 
systems as we will discuss in the next chapter. 



 

 31 
 

2.6 System Block Diagram 

In this section, we will present the block diagram of our 

adaptive modulation system.   

 

Figure 2.13 – System Block Diagram 

Source – Here is where the information bits are produced. 

Encoder – The information bits from the Source are taken and 

encoded through an FEC. (Chapter 4) 

Modulator Switch – This is the logic that decides which 

modulation scheme to apply the bits from the Encoder or Source.  

It requires information from the Channel Measures block in order 

to function. 

Modulator – Converts the binary data from the Source or coded 

symbols from the Encoder into complex sinusoids for transmission.   

Pilot Insert – This is the stage where the pilot symbols are 

inserted into the information stream in order to use PSAM (In a 

Source 

Sink 

Modulator Switch 

Channel Measures 

Modulator 

Demodulator Pilot Remove 

Pilot Insert 

Channel 

Encoder 

Decoder 
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real system, these symbols would be added as bits before the 
information reached the Modulator.  This was done in our 

simulation for convenience.) 

Channel – Rayleigh fading and AWGN are applied to the transmitted 

signal. 

Pilot Remove – At this point, the pilot symbols are removed and 

stored for later use in the Channel Measures block.  Also, the 

channel is also removed from the signal. 

Demodulator – Converts the newly compensated signal back into 

information bits/coded symbols. 

Channel Measures – Takes information from the stored pilot 

symbols and determines the quality of the channel.  In predictive 

adaptation, this is where channel prediction takes place.  
Information is then sent back to the Channel Switch for 

adaptation decisions. 

Decoder – FEC is removed from the symbols.  Information bits are 

the output and are sent to the Sink. (Chapter 4) 

Sink – BER and spectral efficiency are calculated here when the 

frame or block is finished being received and 

demodulated/decoded. 
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C h a p t e r  3  

ADAPTIVE MODULATION 

3.1 Introduction 

In this chapter, we will introduce the main focus of this work, 

adaptive modulation.  As stated earlier, adaptive modulation is a 
way to improve the tradeoff between spectral efficiency and bit 

error rate.  We are able to make such optimizations in a Rayleigh 

channel by exploiting its fading dynamics.  Periods of low fade, 

or high gain, will improve our instantaneous SNR, allowing higher 

rate modulation schemes to be employed with low probability of 

error.  Periods of high fade will lower the effective SNR and 

force us to use low rate modulation in order to make transmission 

more robust.   

Additionally, we will discuss ways of making adaptive modulation 

more effective by incorporating channel prediction into our 

system.  We will investigate various receiver functions such as 

FFT channel estimation and SNR estimation, as well as 

transmission delays.  We will begin this chapter with analysis in 

ideal conditions for our three modulation schemes: QPSK, 16QAM 

and 64QAM. 
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We will provide results comparing different system setups and 

investigate the advantages that channel prediction and SNR 

estimation can give us. 

3.2 Adaptation Boundaries 

The first topic that we must discuss is how to change the 

modulation scheme.  In other words, we need a way for the system 
to decide which modulation scheme is best suited for the present 

(or in the case of delayed feedback - future) conditions.  Pons 

and Dunlop [2] claimed that BER at the receiver would be a good 

channel metric to decide switching.  However, we have decided to 

use the metric that Pons and Dunlop rejected, which is to 

estimate the SNR of the link.  Reliable BER estimation is 

difficult over short periods and thus would restrict adaptation 

rate. 

The question now becomes:  How will we decide what ranges of SNR 

will be used for which modulation scheme?  The answer lies in the 

AWGN performance of each modulation scheme. 

Recall that we model our received signal as ( ) ( ) ( ) ( )r t c t s t n t= ⋅ +  (Eq. 

2.5), where c(t) is the Rayleigh channel, s(t) is the transmitted 
signal, and n(t) is the noise signal.  Recall also that SNR is 

signal power divided by noise power.  In our system, we consider 

the signal power to be the power of the transmitted signal 

multiplied by the Rayleigh channel.  This resultant signal power 

is the instantaneous received signal power and can be compared 

directly to the noise power, thus allowing us to consider the BER 

in an AWGN channel.   
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Let us now consider the BER performance of our 3 modulation 

schemes.  From [1] we have equations for their probability of bit 

error: 

)()( γγ QPQPSK =                    (3.1) 
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 (3.3) 

In Equations 3.1 – 3.3, γ  is the SNR, and Q(.) is the Q function,  

2
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Q x e dx
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∞
−

= ∫  

Using the above theoretical calculation of BER for each scheme we 

have the following plot: 
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Figure 3. 1 - BER Performance in AWGN 

In Figure 3.1, the curves from left to right represent the BER of 

QPSK, 16QAM and 64QAM in a strictly AWGN channel, respectively.  

In order to decide the proper switching levels from this plot, we 

have to decide what our operating point, or desired BER is.  In 

our study, we chose to use 10-3 as our operating point.  This 
means that our system will try and keep a BER lower than 10-3 with 

the most spectrally efficient modulation scheme whenever 

possible.  At this point we should define spectral efficiency as 

the number of information bits encoded on a modulated 

transmission symbol.  For example, QPSK has a spectral efficiency 



 

 37 
 

of 2 bits per symbol, 16QAM has 4 bits per symbol, and 64QAM has 

6 bits per symbol.   

Therefore, with our operating point, and the given BER plots, we 
have the following SNR ranges for each modulation scheme: 

QPSK SNR < 17dB 

16QAM 17dB <= SNR <= 23dB 

64QAM SNR > 23dB1 

Table 3.1 – Modulation Schemes to SNR Range 

We came to these levels in the following way:  At an operating 

BER of 10-3, there is no modulation scheme that gives us our 

desired performance at an SNR below 10dB.  Therefore, we choose 

QPSK as it is the most robust.  Between 10 and 17dB, there is 

only one scheme that gives us performance below 10-3, and that is 

QPSK.  Between 17 and 23dB, 16QAM gives us our desired BER at a 

better spectral efficiency than QPSK.  And at SNR higher than 

23dB, 64 QAM gives us the best spectral efficiency while 

providing the desired BER performance.   

3.3 Adaptive Modulation 

Now that we have established the means by which we switch 

modulation, we can discuss the theoretical performance of 

adaptive modulation, both in terms of BER and spectral 

                                                 
1 In our simulations, 25dB was actually used.  We do not expect this to change our results 
significantly as the ideal simulations fit the theoretical expectations. 
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efficiency.  We shall refer to Torrance and Hanzo [1] for an 

analysis of adaptive modulation. 

First, we have to define the PDF of the fluctuations of the 
received, instantaneous, Rayleigh amplitude, s.  The envelope of 

a Rayleigh fading channel has a distribution of: 

S
s

e
S

s
SsF

−

=
2

),(                   (3.4) 

where, S is the average signal power.  Next, we need to determine 

the BER of each modulation scheme.  We can analytically determine 

them by: 
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where Pγ  is the Rayleigh channel BER, and GP  is the BER 

performance in an AWGN channel.  With the above two equations in 

addition to Equations 3.1-3.3, we can find the BER performance of 
adaptive modulation as: 
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         (3.6) 

where the li are the SNR thresholds between the modulation 

schemes and B is the average spectral efficiency.  The values of 



 

 39 
 

li can be inferred from Table 3.1.  The value of B is computed as 

follows: 

32 4

1 2 3

2 ( , ) 4 ( , ) 6 ( , )
ll l

l l l

B F s S ds F s S ds F s S ds= ⋅ + ⋅ + ⋅∫ ∫ ∫          (3.7) 

Having established the mathematical foundation behind adaptive 

modulation, let us look at the results in graphical form. 

 

Figure 3. 2 – Spectral Efficiency for Perfect 
Adaptive Modulation vs. Average SNR for a 

Rayleigh Channel 



 

 40 
 

 

Figure 3. 3 – BER Performance for Perfect 
Adaptive Modulation vs. Average SNR for a 

Rayleigh Fading Channel 

In Figure 3.2, we have a plot of the spectral efficiency of 

adaptive modulation versus average SNR in dB.  Here, we should 

define spectral efficiency.  In our system, we define spectral 

efficiency to be the number of bits sent per modulation symbol.  

We do not take into account whether or not the bits are the 

correct ones that were sent or not.  In other words, we do not 

concern ourselves with ‘goodput’.  Because we have set the target 

BER to a value that we believe the system must operate under, the 

adaptation system will try to achieve that level of performance.  
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Note that at low SNR, the system achieves 2 bits per symbol, as 

QPSK is primarily used.  However, as the SNR increases, the 

throughput also improves steadily, which indicates that we are 

beginning to use more spectrally efficient modulation schemes.  

The curve begins to level out at close to 30 dB, as 64QAM becomes 

the modulation scheme used most often and QPSK is rarely used.  

As SNR improves, the system is more able to choose more efficient 
modulation schemes.   

The more interesting graphic is the one of Figure 3.3.  In Figure 

3.3, we see that the performance of adaptive modulation begins by 

overlapping the QPSK curve.  It is analogous to the spectral 

efficiency curve, as QPSK is the primary modulation scheme used 

in low SNR.  However, as the SNR is increased to 15 dB, we see an 

interesting result.  The performance of adaptive modulation 

begins to improve beyond what QPSK can provide.  Let us examine 
this result.   

Consider a transmission that is encountering a deep fade.  Our 

options here are to use one of three modulation schemes, which 

differ in spectral efficiency and robustness.  If we consider the 

fading to be extremely deep, perhaps half of all bits will be in 

error.  Here, it is advantageous to send fewer bits because the 

total number of errors will be decreased, which influences bit 

error rates much more than total number of bits sent.  When the 

channel is not in a fade, then we want to send as many bits as we 
can.  In this situation, we lower the BER by the increasing the 

number of bits sent because errors become less frequent.   

It is the combination of these two principles that allows the BER 

performance of adaptive systems to be more robust than static 
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systems while simultaneously providing better spectral efficiency 

at most ranges of SNR. 

In the next few sections, we will discuss some of the ways 
adaptive performance is degraded with imperfect system knowledge 

such as FFT channel estimation and frame delays. 

3.4 Performance of Adaptive Modulation in Simulation 

Before we discuss the performance of our system in imperfect 

environments, we should verify that our system simulator 

functions properly in ideal conditions.   
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Figure 3. 4 – BER Performance of Adaptive 
Modulation for Different Doppler Rates 
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Figure 3. 5 – Spectral Efficiency of Adaptive 
Modulation 

In Figures 3.4 and 3.5 we plot the simulated BER and spectral 

efficiency of adaptive modulation in situations where we have 

perfect knowledge of the channel with a frame rate of 640Hz. Note 

that with increasing Doppler frequencies, the BER degrades 

significantly.  It can be seen that there is a 15dB loss in BER 

performance at a 50Hz Doppler rate.  The reason is due to the 

more dynamic state of the channel.  In the 1Hz situation, we have 

fairly constant channel conditions, whereas in the 50Hz 

situation, the power in the present frame may not be the same as 

the power in the next one.  This fluctuation in the channel will 



 

 45 
 

lead to bit errors since the chosen adaptation scheme may no 

longer be optimal.  Additionally, as the Doppler rate increases, 

the SNR no longer remains static over an individual frame. 

Presently, the system measures the immediate SNR and assumes that 

it will not change between frames.  This, of course, is 

suboptimal.  It is possible that we could have a frame with 

17.1dB SNR and the following frame could have 16.7dB.  If we 

assume that the next frame still has a 17.1dB SNR, we would be in 

error and the choice that the system makes would be suboptimal.  

Situations like this occur in channels of all Doppler, but it 

happens more frequently in cases of higher Doppler rates.  If we 

could predict the state of the channel, we would be able to 

alleviate this problem. 

When comparing different curves, we should find that Doppler 

frequency is not the sole factor which determines BER.  It is 

actually a combination of Doppler frequency and the time duration 

of each frame, i.e. adaptation rate.  In the above cases, a 

symbol rate of 96kHz was assumed, with each frame consisting of 

150 symbols.  This leads to a frame duration of 1.56ms per frame.  

With those two figures, we can define a normalized Doppler rate 

that will give us a more accurate comparison of different 

situations.   

D fD f T= ⋅                        (3.8) 

This will be defined as the normalized Doppler rate.  We will 

have similar channel qualities for systems with similar 
normalized Doppler.  A system with high Doppler and short frames 
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will have a similar channel with a system that has low Doppler 

and very long frames times.   

In the above cases, all the frame durations are the same, so only 
the Doppler is variable.  The normalized Doppler for the 1, 10, 

and 50Hz Doppler rates are 1.56E-3, 15.6E-3 and 78.1E-3, 

respectively. 

In Figure 3.5, we see the spectral efficiency of the adaptive 

scheme.  For all Doppler rates, the simulated curves coincide 

well with the theoretical curves.  The reason for this is that 

statistically, with perfect channel and SNR estimation, we should 

always have good spectral efficiency curves.  The proportion of 
time that each of the modulation schemes are chosen is 

independent of Doppler rate.  Note that good spectral efficiency 

does not necessarily indicate good BER performance.   

3.4.1 Channel Estimate Impact on Adaptive Modulation 

In this section, we will remove the assumption of ideal channel 

knowledge that we held in the previous section.  Here, we should 

find that our performance curves become even more degraded.  In 

the following plots, we incorporate FFT channel estimation and 

SNR estimation into our system.  The effectiveness of FFT 

estimation is based on the pilot to information symbol ratio (See 

Equation 2.6).  The more pilots used per frame, the higher 

Doppler rate our estimator can compensate for.  In our 
simulations, we used 1 pilot per every 15 information symbols.   
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Figure 3. 6 – BER Performance of Adaptive 
Modulation in Estimated Environment 
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Figure 3. 7 – Spectral Efficiency of System with 
Estimated Environment 

In Figure 3.7, we have a similar result for the spectral 
efficiency of the system.  Since nothing has fundamentally 

changed the overall statistics of the estimated SNR, we should 

expect no change in the spectral efficiency.  We have more 

interesting results in Figure 3.6.  In the BER curves, we notice 

that each curve has been shifted to the right by approximately 2-

3dB.  This is due to the FFT estimation process.  When we apply 

FFT estimation, there is an unavoidable loss of channel 

information that will degrade the de-rotation process.  
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Fortunately, this degradation is not severe, as we see only a 3dB 

loss of performance.  

 

Figure 3. 8 – FFT Degradation in a Rayleigh 
Channel 10Hz Doppler Rate 

In Figure 3.8, we have the theoretical BER performances of QPSK 
and 64QAM along with their FFT estimated counterparts.  Note that 

there is approximately 3dB difference between the ideal and the 

actual plots.  Also worth noting is the floor that the QAM scheme 

experiences at high SNR.  This performance floor is due to 

channel estimation.   
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Figure 3. 9 – Comparison between Ideal and 
Estimated Adaptation at 50Hz Doppler 

In Figure 3.9, we have a comparison between the ideal and 

estimated (SNR and FFT) adaptation systems for a 50Hz Doppler.  

The shift at low SNR is approximately 3dB, but ends much higher 

due to the estimated curve hitting a performance floor at high 

SNR.   

Now that we have explored the effects that channel estimation has 

on our performance, we can move on to how propagation delays can 

hurt us.   
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3.4.2 Propagation Delay Impact on Adaptive Modulation 

Thus far, we have assumed that there has been no time lag or 

propagation delay when the receiver relays control information 

back to the transmitter.  In the system so far, there has been 

instantaneous relay between receiver and transmitter.  Now, we 

will introduce another system imperfection into our simulations.  

We will introduce a delay in our system that will amount to two 

frames worth of time.  In other words, from the time the receiver 

transmits information back to the transmitter, two more frames 

will be on route to the receiver from the transmitter and are not 
privy to the latest information most recently sent from the 

receiver.   

When we incorporate this factor, the resulting performance with 

perfect estimation is given in Figure 3.10.  
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Figure 3. 10 – Comparison of System with No 
Delay and with Delay 

In Figure 3.10, we see a plot comparing the effect that 
propagation delay has on our performance.  The two lower curves 

represent the system performance at 10 and 50Hz (Normalized 

Doppler rates 15.6E-3, 78.1E-3 respectively) with no frame delay.  

The two upper curves represent the system performance at 10 and 

50Hz with a 2 frame delay.  In this simulation, we see how each 

ideal curve is degraded by the delay.  They seem to be breaking 

off from their ideal counterparts 5 to 10dB earlier.  The 

explanation is due to the changing nature of the channel.  If we 

have a delay in our system, our SNR estimate will be out-dated.  
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This is why the performance with 50Hz Doppler shift suffers more 

from the delay and sooner.  With higher Doppler shifts, we have 

faster variations in the channel.  This explains why high Doppler 

curves show the negative effects of propagation delays sooner 

than their low Doppler counterparts.    

 

Figure 3. 11 – Delay Impact on System with 
Channel Estimation 

In Figure 3.11, we see the effects that frame delays have on the 

system with channel estimation.  With the channel estimation, the 

performance curves are simply shifted as they were in the 

previous section.  With delays and the various estimators in 
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play, we have a performance degradation of 15-20dB for 10Hz and 

50Hz Doppler at high SNR values.  

However for very low Doppler frequencies, the problem is not so 
severe.   

 

Figure 3. 12 – BER Performance of System with 
1Hz Doppler 

In Figure 3.12, we see almost no difference between systems with 

delay and no delay.  It would seem that with when the channel is 
varying sufficiently slowly, propagation delay will not have a 

significant effect on error rates.   
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Let us mention briefly the effect on the spectral efficiency that 

frame delays may cause.   

 

Figure 3. 13 – Spectral Efficiency of Systems with 
Delay 

As Figure 3.13 shows, frame delays do not reduce throughput.  The 

delay will only alter which modulation schemes are used, but will 

not change the overall proportions used; and the proportions of 

modulation schemes used are the measure of spectral efficiency.  

This leads us to conclude that the measure of spectral efficiency 

is not a good indicator of how well the BER will perform. 
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In summary of the estimations and delays, they both make negative 

impacts on the system with respect to ideal performance.  For 

channel estimation, the system has a worse BER no matter what the 

Doppler shift.  However, frame delays hurt only those systems 

which operate in medium to high Doppler.   

The main source of these BER increases is the improper selection 

of modulation schemes.  The system makes these errors because it 

does not have timely information on the channel.  Thus, we 

propose the use of channel prediction with adaptive modulation.   

3.5 Channel Prediction 

The idea behind channel prediction is to use past and present 

channel samples to predict future samples.  We will implement a 

prediction scheme for the specific purpose of anticipating the 

future power level of the Rayleigh channel.  The reasoning behind 
our desire to predict the future of the Rayleigh channel is that 

the results of the previous section showed that the old knowledge 

of the channel is the main cause of degradation with adaptive 

modulation.   

With prediction, we can estimate what the future power level of 

the channel will be, so that propagation delay will be less of a 

problem as we will know what the state of the channel will be by 

the time the transmitter receives the control information from 

the receiver.  Before we present findings for the performance of 
the system with channel prediction, let us first review the 

theory behind it. 
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3.5.1 Linear Prediction  

There has been significant work done in the field of linear 

prediction applied to channel prediction.  Eyceoz and Duel-Hallen 

[15] is one example.   

Recall Equation 2.4: 
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Notice that the channel is dependent on the phases and frequency 

of each sinusoid only (we have normalized all scatterers to unit 

power, 1iA = ).  With this information, we know that the channel 

is correlated from sample to sample, unlike AWGN.  Therefore, we 

can take advantage of the deterministic properties and predict 

what the value of the channel will be at a later time.   

In order to predict the Rayleigh channel, we will employ spectral 

estimation according to the Maximum Entropy Method (MEM) followed 
by linear prediction [15].  The purpose of MEM is to produce a 

set of coefficients, or poles, to use as input to a linear 

predictor.   

Using MEM, we have the frequency response of the channel modeled 

by the following: 
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In Equation 3.9, the jd ’s are the linear prediction coefficients, 

used by the linear predictor, with there being p coefficients.   

The predictor in our case is a simple multiply-and-sum function.   

'
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n j n j
j

c d c −
=

= ∑                   (3.10) 

In summary, '
nc  is a predicted value based on the linear 

combination of p previous values multiplied by the prediction 

coefficients.  To predict multiple samples in the future, we just 

treat the latest predicted sample as an actual sample.  We can 

then predict as far as we desire.  But of course, the farther we 

predict, the less accuracy we have since error will accumulate.  

Press [16] discusses linear prediction in a different manner.  He 

determines the prediction coefficients through an autocorrelation 

method.  Assuming stationarity of the signal, the autocorrelation 

can be found as: 
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Using this result, the prediction coefficients can be found 

through the equation: 
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where M is the number of poles to be calculated, decided by the 

user; the more poles, the more accurate the prediction.  Of 
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course, we cannot have more poles than we have channel samples.  

In our simulations, we used 10 poles with 100 samples of channel 

information for most of our results.  We avoided using many 

poles, as they increased simulation time significantly. 

In actual implementation however, neither of these methods to 

calculate the prediction coefficients were followed explicitly.  

Press concedes that the above method is not very good at 

calculating the autocorrelation figures due to the sensitivity 

that linear prediction has with the autocorrelation figures.  

Instead we used a recursive algorithm provided by Press [16] 

which uses a recursive method to calculate kφ .  In any event, 

this linear prediction algorithm is good for signals that are 

smooth and oscillatory, which would describe Rayleigh fading at 

least somewhat accurately. 

3.5.2 Channel Prediction Tests  

Now that we have established the theory behind our method of 

linear prediction, we will now demonstrate the effectiveness of 

it in trial runs.   
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Figure 3. 14 – Channel Prediction Demonstration 
(See Table 3.2 for System Parameters) 

Figure 3.14 shows the ability of linear prediction in Rayleigh 

channels.  In this example, we used the following specifications 

to the system: 
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Doppler Frequency 50Hz 

Sampling Frequency 500Hz 

Number of Poles 50 

Number of Initial Samples 100 

Number of Predicted Samples 50 

Table 3. 2 – Channel Prediction Specifications 

In Table 3.2, we declare various channel specifications for 

Figure 3.14.  With a sampling frequency of 500Hz and 100 initial 

samples, we have 0.2 seconds of information.  We then try to 

predict the following 50 samples, which amounts to 0.1 seconds of 
received signal.  The figure here shows us that the predictions 

are good for the first half of the prediction period, or about 

0.05 seconds, 25 samples.   

This is a challenging scenario for channel prediction.  The 

normalized Doppler (Fd/Ts) rate in this situation is 50Hz/500Hz, 

which is 0.1.  In our simulations, we will assume a normalized 

Doppler on the order of 8x10-3.  Also, we will not have so many 

channel coefficients at our disposal, as they take a lot of 

processing to calculate.  We will be using either 10 or 30 poles 
in our systems.  This will be sufficient, as we will show in the 

following plot: 
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Figure 3. 15 – Channel Prediction with Higher 
Sampling Rate 

In Figure 3.15, we have a plot of channel prediction working in a 

more realistic case in terms of the situations in which we will 

run.  Clearly, we have much better performance when we have 

increased the sampling rate to 6000 samples per second 

(normalized Doppler of 8.3x10-3) while keeping the same number of 

poles and initial samples.  This shows us that the lower the 

normalized Doppler, the better the performance of the channel 
predictor.  However, in a real simulation environment, we will 

not have a perfect curve to base our predictions.  Instead, we 

will have corrupted estimates, both from the AWGN noise and the 
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FFT estimator.  To see the viability of our predictor in non-

ideal conditions, we will add noise to the initial samples. 

 

Figure 3. 16 – Prediction of Signal Power with 
30dB SNR 

Because we do not know precisely the nature of the corruption of 
the channel estimate we will approximate it by simply adding 

AWGN.  Shown in Figure 3.16 is a demonstration of prediction in 

30dB SNR.  We can see that with noise, we have very poor 

prediction capabilities.  However, we will later show that even 

this level of prediction prowess is sufficient to give us an 

advantage over standard adaptive modulation. 
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3.5.3 Channel Prediction in Adaptive Modulation  

In this section, we will demonstrate the advantages that we will 

have when we implement channel prediction with adaptive 

modulation.  As we have said earlier, the objective of channel 

prediction is to offset the delays encountered when we use 

adaptive modulation in a real system.   

When we apply the prediction algorithm in the cases with frame 

delays, we hope to see the results match the results for the 

ideal case.  But before we start making comparisons between 

prediction and non-prediction, let us first verify that our model 

is valid under ideal present conditions.   
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Figure 3. 17 – Ideal Performance of Adaptive 
Modulation with Prediction 

Figure 3.17 shows us the performance of adaptive modulation with 

channel prediction in an ideal environment with no delay.  SNR 

and channel compensation are also assumed.  The prediction 
specifications include the use of 10 poles and a look-back depth 

of 100 pilot symbols.  Already obvious to us is the fact that the 

10Hz Doppler curve coincides with the ideal performance, much 

like the non-prediction scheme with a Doppler frequency of 1Hz.  

This is very promising performance.  On the other hand, 

prediction does not seem to have the same effect on the 50Hz 
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Doppler curve.  However, we will see it is much better than not 

using prediction. 

 

Figure 3. 18 – Ideal Throughput Performance with 
Prediction with Varying Doppler Rates 

The spectral efficiency of adaptive modulation with prediction 
also coincides with ideal performance as shown in Figure 3.18.  

This result is what we would expect.   

It is instructive to see how the Doppler rate affects the 

accuracy of the channel predictor.  In the following figures, we 

present charts showing the accuracy of the predictions at 
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different Doppler rates and average SNR conditions.  What we are 

predicted vs. actual Rayleigh channel power samples. 

 

Figure 3. 19 – Prediction Accuracy of Channel 
Power in 1Hz Doppler 
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Figure 3. 20 - Prediction Accuracy of Channel 
Power in 10Hz Doppler 
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Figure 3. 21 - Prediction Accuracy of Channel 
Power  in 50Hz Doppler 
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Figure 3. 22 - Prediction Accuracy of Channel 
Power in 100Hz Doppler 

Figures 3.19 – 3.22 show the performance of the prediction of the 

Rayleigh channel in terms of the strength of the channel with a 2 

frame propagation delay.  All of these plots incorporate FFT and 

SNR estimation.  Notice that the precision and accuracy increase 

directly proportional to average SNR and inversely proportional 

with the Doppler frequency.  It is also interesting to note that 

with the increase in Doppler, the power estimates seem to be 

underestimated.  This is most obvious in the 100Hz Doppler case.  
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We will see later that this will pose a liability in later 

simulations.   

Let us now examine the performance when we include frame delays 
with prediction.  We will see if channel prediction can do what 

we intend for it to do when we provide perfect channel samples. 

 

Figure 3. 23 – Prediction Performance with Delay 

With no FFT estimation, the resulting performance is given in 

Figure 3.23.  It is approximately the same performance that we 

obtain with no frame delays.  We still have ideal performance 

with slower Doppler and ideal performance with 50Hz Doppler with 
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average SNR in the range of 0-30dB.  Even the performance at 35 

and 40dB are not far removed from the no-delay version. 

Now that we are confident with prediction performance in ideal 
conditions, we should now compare it with non-prediction in non-

ideal conditions. 

3.5.4 Prediction vs. Non-Prediction in Non-Ideal Conditions  

We should at this point compare the results from the non-

prediction with those from prediction.  We should expect the BER 

results from the predictive scheme to be superior to the ones 

from the non-predictive ones in every aspect; the spectral 

efficiency results from the predictive simulations should be the 

same as the ones from the non-predictive ones.   
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Figure 3. 24 – BER of Prediction and Non-
Prediction @ 10Hz Doppler 

In Figure 3.24, we should note first that the two approaches have 

about the same performance in the range of 0-25dB, at which point 

they deviate from one another.  The non-prediction curve seems to 

bottom out in the BER neighborhood of 10-3, while the predictive 
curve maintains performance that parallels the ideal case.  This 

is also similar to the non-predictive scheme in 1Hz Doppler, 

which indicates that the predictive scheme is doing well in this 

Doppler.  At high SNR, there are very large gains with channel 

prediction. 
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Figure 3. 25 – Throughput Comparison at 10Hz 
Doppler 

In Figure 3.25, we have a comparison of the prediction and non-

prediction throughput curves.  It seems that they are both 

running at the correct proportions to match the ideal curve.  So 

at low Doppler, we have a very significant BER gain, but no gain 

in spectral efficiency.  This result is expected.   

Let us now increase the Doppler frequency to 50Hz and see if we 

have similar results.   
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Figure 3. 26 – BER Comparison at 50Hz 

At 50Hz Doppler, the improvements are less pronounced, as the 

prediction system is less effective at high Doppler.  Instead of 

15dB gains at 10Hz, now we see 5dB gains at 50Hz in high SNR 

regions.  On the other hand, if we look at the medium range SNR, 

about 20-30dB, we see that the predictive scheme gives us a 10dB 
advantage.  This is a region where in the 10Hz case, the two 

curves began to break away from each other.   

The spectral efficiency performance comparison at 50Hz Doppler is 

given in Figure 3.27: 
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Figure 3. 27 – Throughput Comparison at 50Hz 
Doppler 

This is a surprising comparison at first glance.  While the non-
predictive scheme matches perfectly with the ideal throughput, 

our predictive scheme degrades by as much as .75 bits per symbol.  

Because the only difference between the two simulation runs was 

the channel predictor, we must conclude that the predictor has 

come up short with future channel values at high Doppler.  If we 

look back at Figures 3.21 and 3.22, we should recall that at the 

higher Doppler rates, the channel predictor had a tendency to 

predict values that were lower than the actual value.  If this 
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occurred consistently throughout the simulation, a decrease in 

throughput is not surprising.   

To further support the notion that the channel predictor was 
indeed giving lower channel values, we ran a few tests at 25dB 

average SNR to compare predicted SNR and actual SNR at high and 

low Doppler for adaptive systems with channel prediction.  

 

Figure 3. 28 – Predicted and Actual Channel 
Values @ 10Hz 
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Figure 3. 29 – Predicted and Actual SNR @ 10Hz 
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Figure 3. 30 – Predicted and Actual Channel 
Values @ 50Hz 
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Figure 3. 31 – Predicted and Actual SNR Values at 
50Hz 

In Figures 3.28 – 3.31, we have plotted histograms of the values 

at the output of the channel predictor.  We have kept track of 

both the channel samples and the resultant SNR values.  This 

should decisively convince us that our hypothesis of the 

predictor losing precision and accuracy at high Doppler is true.  

In Figures 3.28 and 3.29, we see that the statistics for the 

predicted and actual channel values are the same.  This tells us 

that the predictor is accurate for low Doppler, as we saw in 
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Figures 3.19 and 3.20.  Accurate and precise prediction leads to 

high throughput.   

However, in Figures 3.21 and 3.22, we see that the predicted 
values for the channel and the SNR have deviated quite a bit.  In 

the channel samples comparison, we see that the prediction does 

not give us as large a variance in values as the actual channel 

has; a smaller variance indicates a smaller power.  In the SNR 

histogram envelope, we see that the SNR curve for the prediction 

is to the left of the actual curve by 3dB.  This is an 

interesting result because in Figure 3.27, the throughput curve 

for prediction is to the right of the ideal curve by about 3dB.   

3.6 Conclusions 

In this chapter, we discussed the advantages of adaptive 

modulation over the use of static modulation systems.  We showed 
that better BER can be achieved simultaneously with better 

spectral efficiency for certain system parameters.  We then 

continued to incorporate imperfections into our simulations.  FFT 

and SNR estimation were included and we saw that the performance 

was degraded by approximately 3dB.  When we introduced feedback 

delays, we saw that high Doppler simulations suffered severe BER 

performance losses.  This led us to use channel prediction in our 

adaptation system.   

With channel prediction, we gained significant improvement in BER 
across all Doppler rates.  However, in terms of spectral 

efficiency, we observed a lower throughput.  This was due to the 

channel predictor biasing the prediction at high Doppler rates.  
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We will begin Chapter 4 with a discussion of ways to mitigate 

this bias in the channel predictor.   
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C h a p t e r  4  

IMPROVING ADAPTIVE MODULATION IN HIGH 
DOPPLER RATE ENVIRONMENTS 

4.1 Introduction 

In Chapter 3, we introduced a way of improving adaptive 

modulation through channel prediction.  While it offered improved 

BER performance over non-prediction in all Doppler rates, it gave 

us a poorer throughput performance at higher Doppler.  

Specifically, it was shown that at high Doppler rates, the linear 

predictor exhibits degraded performance which in turns limits the 

performance of adaptive modulation.  In this chapter, we 

investigate ways to improve upon adaptive modulation at high 

Doppler rates.  We will begin by looking into the bias problem of 
linear prediction.  We hope to be able to mitigate the problem of 

the biased predictor.  By improving the predictor we hope to 

improve the performance of adaptive modulation.   

4.2 Bias in Linear Prediction 

According to Press and Rybicki [16], [17], there is an inherent 

bias in linear prediction.  In our experiments, we concluded that 

this bias is most prevalent in cases of high signal fluctuations, 

i.e. high Doppler.  The reason for this lies in the output of the 

linear prediction coefficient generator.  At high Doppler rates, 

the channel poles that are calculated from the generator 
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generally sum to a figure less than 1.  This is a problem when 

considering how the prediction coefficients are combined with 

sample data.  Recall Equation 3.10: 
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When multiplying and summing the result, the mean of the 

predicted signals will be lower than the mean of the actual 

signal which means the predicted samples will also be lower than 

the actual samples.  In other words, the predictor lacks accuracy 

in cases of high Doppler.  We will present three different 

solutions in trying to solve this issue and examine the 

improvement (or lack thereof) they provide to adaptive 

modulation.   

4.2.1 Improved Linear Prediction 

We mentioned in Chapter 3 that we could adjust the number of 

prediction poles and number of input samples to affect the 
accuracy of prediction in the linear predictor.  However, we 

provided no evidence of any improvement.  In this section, we 

will perform various adaptive modulation simulations and 

demonstrate the impact of increasing the number of poles and 

samples.  Also, we examine the effect of decreasing the frequency 

of the prediction samples on the accuracy of the predictions.  

Duel-Hallen [15] acknowledges that by decreasing the sample 

frequency of the predictor, we can increase the depth of 

prediction.  In other words, the smaller the predictor sample 

frequency, the further into the future we can predict.  All of 

these variations in channel prediction will be explored in this 

section.   
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In Chapter 3, we simulated with a consistent number of poles, 

training samples, and predictor sample frequency.  We used 10 

poles, 100 training samples, and used every 16th symbol as a 

training sample, the same symbols used by the FFT estimator for 

channel estimation.  We will first change the sampling frequency 

of the predictor from having 10 samples per frame to 5 and 1 

sample per frame.  Figure 4.1 illustrates the improvement that we 
can get at a normalized Doppler rate of fd*Tf = 78x10-3 (50Hz 

Doppler frequency and 150 symbol frames): 

 
Figure 4. 1 - BER Comparison between Different 

Prediction Sample Rates 
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Figure 4.1 shows us the improvement in BER by decreasing the 

number of pilots per frame that the predictor uses.  By keeping 

the number of training samples the same (100), using 10, 5 and 1 

sample per frame for prediction corresponds to storing 

information from 10, 20, and 100 previous frames, respectively.  

Let us see if there is any gain to be found in spectral 

efficiency.   

 
Figure 4. 2 – Spectral Efficiency for Different 

Sampling Frequencies 
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In Figure 4.2, we see that along with the improvement in BER, we 

also have improvement in spectral efficiency.  It is clear that 

we can get a more accurate prediction of future channel values by 

sampling past values more slowly, spacing out training samples in 

time.  However, we do not reach the ideal spectral efficiency 

curve in any of the frequencies used.   

Let us conjecture on why the lower sampling frequency would 

improve our performance.  A consequence of using fewer pilots per 

frame means that that we do not need to predict as many samples 

into the future for the same amount of propagation delay.  When 

we were using 10 samples per frame, we had to predict 30 samples 

into the future in order to support a propagation delay of two 

frames; ten samples per frame and three frames of information 

means that we have to predict 30 samples ahead.  Now when we use 

only 5 samples per frame, we need only predict 15 samples into 
the future in order to support our delay.  If we use one sample 

per frame, we only need to predict three samples ahead.  The 

significance of this is the following: since we have already 

shown that linear prediction is not perfect (Section 3.5.3), the 

more samples into the future we predict, the more error is 

propagated through our result.  The fewer samples it has to look 

ahead, the smaller the accumulated error will become.  However, 

note that we must still sample fast enough satisfy Nyquist’s 

criterion. 

Now that we have confirmed Duel-Hallen’s claim that slower 

prediction sampling frequencies lead to better future 

predictions, let us see what happens when we adjust the number of 

poles and training samples. Let us begin using 5 samples per 

frame as our rate of prediction sampling.   
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Figure 4. 3 – BER Comparison between Varying 

Number of Poles and Samples 

In Figure 4.3, we varied the number of poles between 10 and 30 

poles, and used 100 and 200 training samples.  At first glance it 

does not seem that there is much of a difference, and indeed 

there is not.  However, from the graph, we can see an interesting 

result.  It would seem that increasing the number of poles has a 

much larger impact on performance than increasing the number of 

sample data.  The difference between the two curves representing 

the use of 30 poles is negligible.  The 30-pole, 200-sample curve 

is only minutely better than the 30-pole, 100-sample curve.  

Also, at high SNR (~40dB), the two sets of curves seem to 
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converge.  Let us examine the results of the spectral efficiency 

curves and see if we find similar gains. 

 
Figure 4. 4 – Spectral Efficiency when Varying 

Parameters 

Indeed, we do find that we have a slightly better spectral 

efficiency when we use 30 poles over 10 at medium SNR.  In cases 

of high and low average SNR, we find that neither poles nor 
training samples make a difference in performance, similar to 

what we found in the BER curves.   
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It is important to observe that an increase in training samples 

does not seem to have any significant effect on performance.  The 

explanation revolves around the functions of the poles and 

training samples.  The purpose of training samples is to 

determine the pole values.  The more training samples we use, the 

more accurate the poles are.  However, the poles are directly 

responsible for the prediction process.  The more poles we use, 
the more past data can be incorporated into the next prediction 

point.  With ten poles and 200 training samples, we are limited 

to ten samples of past information to predict the next sample.  

With more poles, we have more past information to use, and this 

leads to better performance.  The simulation results seem to 

agree with this thinking.  The fact that we have little 

improvement with the increase of training samples tells us that 

100 training samples provides very good estimation of the poles 

to use in prediction. 

We should remind the reader that the previous plots were 

generated by using 5 pilots per frame in the prediction process.  

Let us see what happens when we use a more efficient frequency 

when predicting: One sample per frame. 
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Figure 4. 5 – Performance of Varying Parameters 

in Low Prediction Frequency 

In Figure 4.5, we find that using only one sample per frame 

renders changing the number of poles and training samples 

irrelevant.  We can see that the performances of all four curves 

are very close to one another. However, if we look closely we can 

see that the 10-pole, 100-sample case has the best performance.  

This can most likely be attributed to simulation noise at high 

SNR.  If we take a careful look at the plots, we can see that up 
to about 30dB, the results we see are consistent with our results 

in Figure 4.3. 
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Figure 4. 6 – Spectral Efficiency of Varying 

Parameters at 1 Pilot/Frame 

The spectral efficiency curve that we obtain by varying the 

prediction parameters shows us that when running one prediction 

pilot per frame, we see near identical performance over each 

permutation of poles and training sample numbers.  It is 

important to note that it is about 0.1 bit per symbol short of 

the ideal performance characteristic.   

In summary, increasing the number of poles and training samples 

does have a positive impact on adaptive modulation performance.  

However, the impact that it will have depends more upon the 

sampling frequency that is used by the predictor in acquiring 
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channel samples to use for training.  When we use 5 pilots per 

frame, we can see a small gain in both BER and throughput, but 

when we use only 1 pilot per frame, increasing poles and training 

samples provide negligible gain.  This combined with the earlier 

simulations varying only the sampling frequency tells us that the 

sampling rate is the most significant variable in linear 

prediction among the three variables examined. 

4.2.2 Manipulating Prediction Coefficients 

Now that we have shown that we can get gains by making better 

choices in the number of poles/training samples and prediction 

pilot frequency, we will move on to try and mitigate the bias of 

the predictor.  As stated earlier by [16] and [17], the 

underlying problem of the predictor is the fact that the poles 

generated by the MEM algorithm do not sum to 1.  Instead, they 

sum to a number slightly less than one.  In this section, we 

intend to examine the option of manipulating the prediction poles 

(or coefficients) in such a way that the predictive properties 

are still present, but the sum of the poles will add to 1.  We 

propose to add to the poles the difference it would take to make 
them sum to 1.  Following this line of thinking, we require an 

intelligent method of adding weights to the poles.  We presently 

have two ways of adding weights.  We could divide the difference 

from unity of the poles and evenly distribute them along all 

poles.   

Another approach is to add the difference to only one pole.  The 

pole that would receive the correction factor would be the one 

that corresponds to the most recent channel sample.  The reason 
why we would choose that pole is because it is the sample that 
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would be most correlated with the next sample to be predicted, 

thus minimizing any variation in immediate prediction.   

Experiments were performed to examine the impact of these two 
methods.  The first set of plots corresponds to distributing the 

residual value to all poles.  

 
Figure 4. 7 – Add to All Poles Method vs. No 

Correction 

The plots shown in Figure 4.7 show us that by using the Add to 

All poles (or coefficients) method gives us poorer BER 

performance than the uncorrected version.  We suspect that the 
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reason for this is because the uncorrected version is choosing 

less efficient modulation schemes than the corrected version.   

 

Figure 4. 8 – Spectral Efficiency Comparison for 
Add-to-All and Normal Prediction 

In Figure 4.8, we plot the spectral efficiency curves for the 

Add-to-All correctional type and the normal version of 

prediction.  The efficiency of the Add-to-All correctional method 

does outperform the normal method.  This would explain why the 

BER of the normal method is better than that of the corrected 

method.  We are trading throughput for BER performance. 
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Figure 4. 9 – Comparison of BER When Adding 

Residuals to All Poles 

Figure 4.9 shows the BER performance when forcing the poles to 

equal 1 while adjusting the prediction coefficients.  Not 
surprisingly, using 30 poles, 200 training samples and 1 pilot 

per frame yields the best performance.   
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Figure 4. 10 – Throughput Comparison 

Figure 4.10 shows us the throughput comparison among the 

different ways of implementing this method of correcting linear 

prediction.  In terms of spectral efficiency, the 10 pole, 100 

training sample, 10 pilots per frame case gives us much better 

performance than do the other two.  In fact, it gives us 

performance that surpasses what we would expect with ideal 

performance.  This is not such a surprising result considering 
the BER performance of the 10/100/10 (poles/training 

samples/pilots per frame) curve is much worse than the other two.  

On the other hand, it seems that although the 30/200/1 scheme is 

better for BER than the 10/100/1 scheme, it yields the same 
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spectral efficiency.  What we are seeing here is a tradeoff 

between BER and spectral efficiency.  That is the linear 

predictor is over-estimating the SNR which leads to the use of 

64QAM or 16QAM at lower SNR values.  This increases the spectral 

efficiency but degrades power efficiency.   

Let us move on to the scenario where we add the residual to the 

first coefficient only. 

 
Figure 4. 11 – BER Performance of Add-to-First 

and no Correction 

In Figure 4.11, like the Add-to-All correction method, the Add-

to-First method underperforms compared to the no correction 
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method.  Again, let us plot the performance of the spectral 

efficiency and determine if we have a tradeoff similar to what we 

had in Figure 4.9 - 4.10. 

 
Figure 4. 12 – Spectral Efficiency of Correctional 

Method and Normal Method 

Figure 4.12 shows us that there is a tradeoff between efficiency 

and error performance.  It would seem that the Add-to-First 

method tends to over-estimate the power of the channel and 

chooses higher order modulation schemes at low average SNR.  This 

would explain the large gap in performance in the BER plot at low 

and medium average SNR. 



 

 100 
 

 
Figure 4. 13 – BER of Adding to the First Pole 

Only 

In Figure 4.13, we plot the performance of adding residuals to 

the first coefficient in systems where we vary the number of 
poles and training samples.  The most sophisticated scheme yields 

the best return in terms of BER (30 coefficients and 200 training 

samples). 
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Figure 4. 14 – Throughput of Adding to the First 

Pole 

Looking at Figure 4.14 we find the spectral efficiency, however, 

does change.  In this case, the spectral efficiency in general is 

greater than the ideal performance in all cases.  However, at 

high SNR, we see that all curves seem to level out beneath the 

ideal performance.  Unlike the all-poles addition case, the most 

sophisticated prediction scheme in this case yields the same 

performance as the ideal performance at medium SNR.  It would 

seem that to obtain performance near that of ideal spectral 

efficiency, one must combine the 30-pole scheme with adding 

residuals to the first pole. 
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Let us now compare the strongest correctional methods alongside 

the non-corrected simulations to see if we gain any increases in 

performance. 

 
Figure 4. 15 – BER Comparison of Different 

Correction Methods 

In Figure 4.15, we see the performances of the different 
correctional methods for linear prediction.  While they all have 

relatively the same performance, the best performance comes 

through not correcting at all.  The worst performance is through 

using the Add-to-First method.  The Add-to-All method is only 

slightly inferior to not correcting at all.   
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Figure 4. 16 – Throughput Comparison in 3 

Correction Schemes 

Figure 4.16 shows us the spectral efficiency plots of the three 

correctional methods that have been discussed.  Not surprisingly 

after seeing the BER curves, the Add-to-All method yields nearly 

the same efficiency as the non-corrected version.  Also expected 

is the throughput of the Add-to-One plot being more efficient 

than the other two.  However, the efficiency at high SNR in all 

cases still falls short of ideal. 

In summary of this section, we conclude that even though the non-
corrected method of linear prediction is slightly under the ideal 

spectral efficiency performance curve, it is close enough such 
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that altering the prediction poles in this manner will not 

improve BER and spectral efficiency simultaneously.  Using the 

Add-to-First method was successful in improving the spectral 

efficiency, but degraded the BER whereas the Add-to-All method 

did not improve much of either BER or efficiency. 

At this point we can only conjecture why adding the value of 

difference between the poles and 1 among all poles did not do 

much to change the performance of adaptive modulation.  We 

believe it is because the residual value is so small that adding 

it across all poles (especially over 30) amounts to very little 

change at all.  In testing simulations, we found that often 

times, the residual value would be on the order of 10-2 or 

smaller.  Divide that by 30 and we would not expect predicting 3 

samples in the future to be changed dramatically. 

Perhaps this is why adding to the most recent pole resulted in 

more significant changes.  Adding to the first pole allowed a 

higher weighting on it, making future predictions pull toward it.  

So if on average, we had low predictions, this way of correcting 

would pull them higher.   

4.2.3 Mean Subtraction 

In the previous section, we developed a way to adjust the bias in 

linear prediction by adjusting the linear prediction 

coefficients, or poles directly.  In this section we will explore 
a more conventional approach that involves removing the mean from 

the data set and returned in the predicted signal.  Press and 

Rybicki [16], [17] propose that in order to remove the bias in 

linear prediction, a correctional factor should be subtracted 
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from the data set before the prediction coefficients are 

calculated.  The prediction method should be used with the 

adjusted data and said coefficients followed by adding the 

correctional factor into the predicted data.  Now we have to 

decide what the correctional factor should be.  Press and Rybicki 

state that although it would be intuitive for the correctional 

factor to be the mean of the data set, it is actually an 
autocorrelation-weighted mean [17]. 
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where E is a column vector of unit components of the same length 

as the training data.  S and N are autocorrelation matrices of 

the signal and the noise, both we must assume to have long term 

knowledge.  They are found in the following way [15]: 
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where 0J  represents the first order Bessel function, sT  is the 

symbol period, and 2σ  is the variance of AWGN.   
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Let us observe the performance of the Mean subtraction Method as 

compared to no correction. 

 

Figure 4. 17 – BER Performance between Mean 
Subtraction and No Correction 

In Figure 4.17, we see that there is a very large deviation in 
performance between the Mean Subtraction method and the normal 

technique to perform channel prediction.  This method has given 

us the greatest decrease in performance as compared to the 

coefficient manipulation techniques.  Let us see if there is a 

greater increase in spectral efficiency than the other two 

methods. 
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Figure 4. 18 - Spectral Efficiency of Mean 
Subtraction and Normal Prediction 

The spectral efficiency result that we have in Figure 4.18 is 

very surprising.  We expected that with the decrease in BER, we 

would have a much better spectral efficiency performance with 

Mean Subtraction.  On the contrary, we have roughly the same 
efficiency performance as the non corrective scheme.  This is 

showing us that the mean subtraction method is not a proper 

correction scheme for our purposes.  We run a plot of the 

predicted channel powers against a plot of the actual channel 

powers to see if they agree. 
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Figure 4. 19 – Histogram of Predicted and Actual 
Instantaneous SNR for Mean Subtraction at 25dB 

Average SNR and 50Hz Doppler 

In Figure 4.19, we see that the Mean Subtraction method does not 

eliminate the bias in the predictor.  What we interpret this is 

that Mean Subtraction is not doing anything for us.  One reason 

this may be the case is due to what we are predicting and what 

this correctional algorithm is meant to do.   

The predictor that we employ extrapolates the future channel 
samples in the I and Q channels of the signal separately.  These 

channels both have zero mean, so using a Mean Subtraction method 
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here would not be of value.  However, let us attempt to use this 

method while lowering the predictor’s sampling frequency and see 

if we receive better results.   

In testing the mean subtraction method in combination with slower 

prediction sampling, we used a 50Hz Doppler fading channel and 

two different prediction schemes:  one with 10 poles, 100 

training samples, and one pilot per frame, and another with 30 

poles, 200 training samples, and one pilot per frame.  Here are 

the results that the simulations have produced.   

 
Figure 4. 20 – BER Comparison of Mean 

Subtraction 



 

 110 
 

In Figure 4.13, we see that the 10 pole corrected case has 

significantly worse BER at medium and high SNR, however at 40dB 

SNR, we see convergence of all curves.  The 30-pole case lines up 

exactly where the no correction curve is.  This is very similar 

to the Add-to-First algorithm that we used in the previous 

section.  But it also shows us that with a lower predictor 

sampling frequency, we have comparable results to not correcting 
the predictor, rather than having worse performance. 

 
Figure 4. 21 – Throughput Comparison of Mean 

Subtraction 

In Figure 4.14, we have a plot of spectral efficiency curves for 

mean-subtraction and no correction.  As we expect, the weakest 
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case in terms of BER is the strongest one in terms of throughput.  

At medium SNR we see that the corrected linear prediction 

performs better than the one having no correction.  As with the 

BER performance, the spectral efficiency for the Mean Subtraction 

method has gained enough to match performance of no correction.  

We believe this is due to the resistance of error propagation in 

the lowered sampling rate.  What Mean Subtraction may be doing is 
adjusting the coefficients in such a way that it becomes severely 

suboptimal when predicting many samples ahead, but does not 

change the predictor in the short term. 

Let us now compare the Mean Subtraction method to the Add-to-

First method when using one sample per frame of information for 

the predictor. 
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Figure 4. 22 – BER Comparison Add-to-First and 

Mean Subtraction 

In Figure 4.22, we have the BER comparison between manipulating 
poles and subtracting means.  It is clear that subtracting the 

mean gives us a better BER than manipulating poles in terms of 

BER, and we will now expect that the Add-to-First method will 

have better spectral efficiency.   
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Figure 4. 23 – Throughput Comparison Add-to-

First and Mean Subtraction 

And in Figure 4.23, we do indeed get better efficiency with pole 

manipulation than we get with mean subtraction.  Mean subtraction 

gives slightly better efficiency than no correction at all.   

To summarize this section, it would seem that there is no clear 

way to make significant improvements in BER without taking a 

significant loss in spectral efficiency.  However, by using the 

mean subtraction method of prediction, we can have a very small 

increase in spectral efficiency while simultaneously maintaining 

the BER.  In the pole manipulation methods, we make a tradeoff 
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between BER and throughput; we degrade BER in order to increase 

the throughput. 

4.2.4 Parallel Prediction 

We have demonstrated that our adaptive modulation system when 

implementing linear channel prediction produced better results 

when the predictor samples the channel more slowly.  Performance 
curves indicate that sample rates as low as one channel sample 

per frame can provide better BER and spectral efficiency.  

However, in our system, we use the pilot symbols from the FFT 

estimator to provide this information to the predictor, and the 

slower sampling rate means that there is information that is not 

used by the predictor.  In this section, we are going to explore 

the possible benefits of using parallel prediction.   

In the superior prediction scheme, as demonstrated in Section 
4.2.1, the best performance resulted from using only one 

prediction pilot per frame.  Therefore, there are many pilots 

that carry information that are not being used in our predictor.  

In parallel prediction, we try to harness these samples alongside 

the sample that is being used in the normal case.  If we used one 

prediction sample in the normal predictor, the parallel predictor 

we will use two predictors and separate samples for each one.  

Figure 4.17 illustrates the difference between normal prediction 

and parallel prediction. 
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Figure 4. 24 – Diagram of Normal Prediction and 

Parallel Prediction 

As shown in Figure 4.24, in parallel prediction, we take two 

samples from a frame and run them through two separate but 

identical predictors.  The results from those predictors are 

averaged out and the result is the mean of the two (or more) 
predictors.   

In the following figures, we will see how the parallel prediction 

idea affects performance. 

 



 

 116 
 

 

Figure 4. 25 – BER Performance between Normal 
and Parallel Prediction  

Figure 4.25 shows us a set of BER performance curves for regular 

and parallel prediction.  In this plot, the difference between 

the normal and parallel are the samples chosen to be the inputs 

of the predictor.  In the normal version, the 5th sample (of 10) 
was collected for the predictor, but in the parallel version, the 

3rd and the 7th bits were taken out.  Now that we have detailed the 

difference, we can go on to discuss the result.  It is clear that 

the performances of all curves are virtually identical up to 

medium-high SNR.  The 30-pole double prediction case seems to be 

the best performing curve up to the last point, where the 10-pole 
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normal case seems to outperform.  However, we believe this to be 

a result of simulation noise.  So it would seem that double 

prediction has very little impact, if any.  We say this because 

if there should be any significant benefits for the 30 pole case, 

we should also see it for the 10 pole case, which we do not.  

This leads us to believe that parallel prediction does not 

improve BER performance. 

 
Figure 4. 26 – Spectral Efficiency Performance 

Normal/Parallel Prediction  

In Figure 4.26, we see that the spectral efficiency between all 

curves is exactly the same.  Parallel prediction does not alter 

the spectral efficiency in any way.  



 

 118 
 

The previous case was a simulation of a system that did not alter 

the prediction poles in any way.  Now let us see what happens 

when we run the Add-to-First pole alteration method.   

 
Figure 4. 27 – BER Performance with Pole 

Adjustment  

When we include pole adjustment, we see that there is a large 

separation between the 10 pole and the 30 pole runs.  However, it 

would seem here that like in Figure 4.27 the parallel prediction 

does not do much in terms of benefits.  Both sets of curves show 

us that parallel prediction does not buy us anything in terms of 

BER.  Let us move on to throughput analysis. 
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Figure 4. 28 – Spectral Efficiency with Pole 

Adjustment vs. Average SNR 

In Figure 4.28, we have a more interesting result.  It would seem 

that while our error rates have not changed much with parallel 

prediction, our spectral efficiency has.  If we run pole 

adjustments with parallel prediction, we get a significant 

increase in throughput at lower and medium SNR.  If we look at 
the BER at those same SNR ranges, they are virtually the same.  

This leads us to believe that there is a throughput advantage 

when we use parallel prediction.   
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4.3 Forward Error Correction Coding 

The final area of performance enhancement that we will consider 

in our study of adaptive modulation is the use of forward error 

correction (FEC) coding.  FEC coding has been used in many data 

transfer applications for decades now, ranging from wireless 

communications to optical disk reading [18].  The varieties of 

FEC codes include Reed-Solomon codes to BCH codes to 

convolutional codes to turbo codes.  We will be using 

convolutional codes in our study.   

In modern digital communications, virtually all data systems use 

some sort of FEC coding to guard against errors due to noise or 

interference.  In general, convolutionally coded systems perform 

well in environments where bit errors occur independently, such 

as in AWGN channels.  If a bit is flipped, there is information 

concerning that bit that is spread among adjacent bits.  The 

decoding process is able to correct these isolated errors.  

However, should the channel experience a fade, then it is 

possible that several bits in succession will be in error and the 

decoder will not be able to correct them.  To combat this, 
systems typically include an interleaver to scramble the bits 

after encoding and before decoding.   This will help to 

redistribute errors caused by fades provided that the fade 

duration is shorter than the interleaver length. 

The effects of coding have been documented extensively in 

research.  However, we would like to examine the effects of 

coding on an adaptive modulation scheme in a Rayleigh fading 

channel.  We would like to see how the performance of the system 
reacts to using prediction and adaptive modulation at the frame 



 

 121 
 

level and coding at the block level (a block consisting of many 

frames).  We have seen from Chapter 3 that higher Doppler rates 

decrease the effectiveness that prediction gives us.  However, 

higher Doppler rates also provide coded systems an advantage 

since the interleaver will be able to distribute errors due to 

fades more effectively [19].   

When we incorporated coding into our system, we used coding 

blocks of 4500 bits and a k = 7, r = ½ convolutional code.  Also, 

rather than using hard decision decoding, we chose to use soft 

decision decoding.  Soft decisions can provide a gain of up to 

3dB over hard decisions [18].   

Below are plots of our adaptive modulation system with coding. 
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Figure 4. 29 – Coded Adaptation w/o Prediction 
vs. Average SNR 

Figure 4.29 plots the BER performance of our adaptive modulation 

system with coding along with the ideal adaptive modulation case 

without coding.  We observe at low average SNR the system 

operating at high Doppler rate outperforms the one in low 

Doppler.  However, as average SNR increases, the performance 

becomes the same.  This is due to the fading channel being the 

main error source rather than the receiver noise.  It would 

appear that the coding advantage with high Doppler fading has 

been exhausted in high average SNR. 
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Figure 4. 30 – Coded BER with Prediction vs. 
Average SNR 

Figure 4.30 plots the performance of the adaptive modulation 

system when prediction is applied.  We immediately see that there 

is no overlap in the curves as there was in Figure 4.29.  It 

would seem that the prediction was able to improve the 

performance of the adaptive modulation at 50Hz Doppler.  Combined 

with the coding gain at 50Hz, the performance is significantly 

better than 5Hz.  Figure 3.26 illustrates the difference between 

prediction and non-prediction at 50Hz Doppler.  The 5dB gain we 

have with prediction in Figure 3.26 seems to correspond with the 
5dB gain we see here in the coded system.  And it appears that 
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the 5dB gain occurs in the SNR ranges of 25dB and above, exactly 

where the non-prediction case demonstrated even performance 

between 5 and 50Hz. 

 

Figure 4. 31 – Coded BER at 5Hz vs. Average 
SNR 

In Figure 4.31, we show a comparison between prediction and non-

prediction when applied to the coded system at low Doppler rate.  

We immediately notice that they provide equal performance up to 

approximately 30dB, where the non-prediction curve reaches an 

error floor, but the prediction curve does not.  Figure 3.24 

shows that adaptive modulation with and without prediction have 
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the same performance up to 25dB average SNR.  Here in the 5Hz 

coded situation, we see that they deviate around 30dB, which is 

where a 5Hz comparison without coding would deviate.   

Let us now see how prediction and non-prediction measure up 

against one another at high Doppler. 

 

Figure 4. 32 – Coded BER Performance at 50Hz 
vs. Average SNR 

Figure 4.32 compares the performance between prediction and non-

prediction at 50Hz Doppler.  It would seem that between 10 and 

15dB average SNR, we observe a deviation, with the prediction 
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case being superior to no-prediction.  If we refer to Figure 

3.26, this is the range in which the uncoded adaptive system 

deviated as well.  Unlike the low Doppler situations, we have 

gains up to 10dB when running at high Doppler and medium SNR 

ranges, as opposed to no gains until high SNR.  The coding has 

become more powerful with the in-frame variations from high 

Doppler channels and has also benefited from prediction allowing 
better adaptation choices to be made.   

To show that the gains from high Doppler and prediction are 

coming from the proper choices in adaptation and not from being 

spectrally inefficient, we present the throughput curves of the 

four cases we presented above. 
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Figure 4. 33 – Spectral Efficiency of Coded 
Adaptive Modulation vs. Average SNR 

As we can see in Figure 4.33, all of the throughput curves 

essentially overlap one another.  This confirms that the 

performance gains of the predictive simulations have not come 

from continuously choosing lower modulation schemes.  However, we 

do note that the spectral efficiency here is half of what it was 

without coding.  In summary prediction is particularly powerful 

when coding is used.  Coding tends to work best in moderate to 

high fading environments with a fixed interleaver depth.  Since 
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prediction benefits the link the most in just these scenarios, it 

provides substantial improvement in coded cases. 

4.4 System Performance with Real Channel Data 

Throughout this thesis, we have relied on simulated channel 

values using the Jakes Model.  This section presents the use of 

our system with data collected from real life situations.  As it 
is a real channel, and not one that is being generated using a 

Rayleigh model, we may not have a channel that fits a Rayleigh 

distribution.  Figure 4.34 depicts a small time sample of the 

data: 
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Figure 4. 34 – Real Channel Data 

The data that Figure 4.34 shows is noisier than the channel data 

that was shown in Chapter 2.  From our sample rate, we can 

determine the Doppler rate of this channel by taking the FFT of 
the channel.  Figure 4.35 shows the result.  
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Figure 4. 35 – Frequency Content of the Channel 

From Figure 4.35, we see that the Doppler rate of our channel is 
somewhere between 200Hz and 250Hz, which is faster than anything 

that we have simulated.  To make this data work for models that 

we have used in simulation, we shall interpolate this data by a 

factor of 5 to give us a fading rate of 40Hz to 50Hz.   

To confirm that this is a Rayleigh channel, we present a 

histogram of the distribution of the sampled data. 
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Figure 4. 36 – Histogram Showing the 
Distribution of the Channel is Rayleigh 

Figure 4.36 plots the distribution of our Rayleigh channel.  

Although the curve is not perfectly Rayleigh, the channel is at 

least somewhat Rayleigh distributed. 

Now that we have discussed the characteristics of the data that 

we used to create our channel, we can now run our system with the 

actual interpolated channel data. 
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Figure 4. 37 – Predictive and Non-Predictive 
Adaptive Modulation in Real Channel Data 

In Figure 4.37, we have a pair of performance curves that show 

the processing gain of predictive adaptive modulation.  This plot 

shows that the prediction algorithm works similarly for this 

channel as it does for the simulated one.  

 

 

 



 

 133 
 

 

Figure 4. 38 – Throughput Comparison Between 
Prediction and Non-Prediction in real Channel 

Data 

Figure 4.38 shows us the comparative spectral efficiency 

performance between adaptive modulation with prediction, without 

prediction, and the ideal performance.  Clearly we see that the 

adaptive schemes are not attaining the efficiency of the ideal 

curve.  The reason for this is not due to the predictor, as we 

note that the non-predictive adaptive modulation system suffers 

the same spectral efficiency shortcoming.  The problem is with 

the SNR estimator.  When the SNR estimator in the simulator is 
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set to perfectly estimate the SNR, we find that the efficiency 

problem is avoided. 

4.5 Conclusions 

In Chapter 4, we have presented the problem of bias in linear 

prediction.  This bias was causing the spectral efficiency of the 

predictive systems to be significantly lower than that of non-
predictive systems.  We followed this by presenting various 

solutions to the bias problem.  Included was slowing down the 

sampling rate of the predictor.  Also, we looked at manipulating 

the poles of the predictor by changing their values.  We further 

tried subtracting an auto-correlation weighted mean from the data 

set.  And lastly, we tried to use multiple prediction paths in 

hopes of utilizing more data.  From what we have done, slowing 

down the predictor sampling rate was the most effective.   

The second part of the chapter dealt with adding convolutional 

coding to the adaptive system.  We found that with coding, we 

could significantly improve the BER performance of our adaptive 

systems, especially at high Doppler rates.  However, we had to 

cut our spectral efficiency in half in order to have these 

improvements.  Additionally, we found that prediction provided 

larger gains in a coded system than in an uncoded system. 

To summarize, we were able to overcome the bias problem by 

changing the sampling rate on the predictor and by using FEC, we 
greatly improved BER performance at the cost of half our spectral 

efficiency. 
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C h a p t e r  5  

CONCLUSIONS 

5.1 Conclusions 

In our work we have explored the improvements to adaptive 

modulation by using linear prediction to predict future channel 

power levels in periods of fast fading.  The reason that it was 

worthwhile to explore predictive algorithms was to overcome the 

propagation delay in the feedback channel.  We have shown that we 

can gain significant improvements in BER especially at higher 

Doppler rates.  We explored the effects that SNR and FFT 

estimation had on our system as well.   

At high Doppler rates, we observed that prediction had inherent 

bias difficulties and we proceeded to provide solutions to those 

problems.  We presented methods that involved altering prediction 

coefficients, subtraction means of sample data, and changing the 

sampling frequency of the predictor.   

Coding was also a subject of observation in this thesis.  We saw 

that coding operated more effectively at high Doppler rates and 

could overcome the shortcomings of adaptive modulation in adverse 

channels. 

The highlight of this thesis was the ability of our system to be 

able to operate on real channel data.  Through the use of real 

channel samples, we were able to show the workability of our 
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system in a real environment.  We showed that with real channels, 

we would be able to reap benefits from adaptive modulation with 

prediction over normal adaptive modulation and static modulation. 

5.2 Future Research 

There is still a lot of work that can be done with adaptive 

systems and linear prediction.   

1) Our channel model consisted of a flat fading channel.  It 

would be an interesting study to try prediction on 

frequency selective channels.   

2) Linear prediction was the prediction method of choice in 
this paper.  There are several other prediction methods 

that may be used.  They include subspace methods, ESPIRIT, 

MUSIC, or nonlinear prediction.   

3) Instead of adapting modulation, future research could 

include adaptive coding.  Rather then changing modulation 

schemes, we could keep modulation static while changing 

coding rates.   

4) In all simulations in this work, we assumed that the 

control channels were error free.  It would be of interest 

to see how performance would be affected with an imperfect 

control channel.   

We only dealt with a single link which does not include 

interference.  A study on multiple users would be of interest in 
simulation.   
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