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CHANNEL PREDI CTI ON FOR ADAPTI VE
MODULATI ON I N W RELESS COVWUN CATI ONS

Raynond Chan
( ABSTRACT)

This thesis examnes the benefits of using adaptive nodul ation
and coding in terms of spectral efficiency and probability of
bit error. Specifically, we exam ne the perfornmance enhancemnent
made possible by using linear prediction along wth channel
estimation in conjunction wth adaptive nodul ation. W begin
this manuscript with basic fundamentals of our study, followed
by a detailed view of sinulations, their results, and our
conclusions from them  The study includes simulations in slow
and noderately fast flat fadi ng Rayl ei gh channel s.

W present our findings regarding the advantages of using
predi ctive neasures to foresee the state of the channel and nake
adj ustnents to transm ssions accordingly.

In addition to finding the general advantages of channel
prediction in adaptive nodulation, we explore various ways to
adjust the prediction algorithm when we are faced with high
Doppl er rates and fast fading.

By the end of this work, we should have a better understanding
of when channel prediction is nost valuable to adaptive
nodul ation and when it is weakest, and how we can alleviate the
probl ens that prediction will have in harsh environnents.
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Chapter 1

INTRODUCTION

1.1 Overview of the Problem

In wreless comunications, spectrum is a nost preci ous
conmodi ty. It, along with SNR, is what determnes the rate at
which we can transmt information. For many years, researchers
have been | ooking for ways to either conserve or exploit spectrum
for its nost efficient use. In the early 90's, TDWVA gave us
i nproved spectral efficiency over FDVMA. Later that decade, CDVA
provi ded even better spectral efficiencies (from a system point
of view.

One of the barriers to wireless systens is Rayleigh fading, a
phenomenon that reduces error performance in nobile fading
environnents. Wether in

In this thesis, we investigate ways to take advantage of Rayl ei gh
fading by neans of adaptive nodulation and coding [1],[2]. By
this method, we nean to change the nodul ati on and/or codi ng used
by the transmtter 1in response to the changing channel
conditions. In essence, it is a way to optimze the transm ssion
schenme according to the state of the channel for a required
fidelity. For exanple, when the channel is in a poor state
(i.e., low SNR we can reduce the signal constellation size in

order to inprove fidelity. Conversely, when the channel is in a



good state (high SNR) we can increase the signal constellation
size in order to increase the data rate achi evabl e.

The same argument can be nade for forward error correction
coding. In periods of deep fade, we can |lower the code rate and
make the transmission nore resilient to errors. |In addition to
this, through the wuse of punctured codes, we nay provide
flexibility with the lower conplexity afforded by a conmon
decoder structure.

1.2 Background

Adaptive nodulation for wreless communications has received
significant interest in the past five years [1], [3], [4]. It
has | ong been recognized that adaptive nodul ati on provi des nore
efficient use of the channel than fixed nodulation schenes.
Landl i ne nodens have |ong adapted the nodul ation schenme to the
SNR of the underlying channel. Adaptive nodul ation has also
recently gained nmonmentumin wreless systens. In fact, fornms of

adaptive nodulation are currently inplenented in a packet data
CDVA standard [3] and in wreless LAN standards such as |EEE
802. 11. However, the <challenge associated wth adaptive
nodul ation is that the nobile channel change with tine. Thus,
the feedback of channel information becones the I[imting factor

in adaptive nodul ation. To neet this challenge, in this study we
exam ne the use of channel prediction to allow the use of past

information to predict the future channel state and adjust the
nodul ati on schene accordingly.

Signal prediction is also not a new topic. In the past, linear
prediction was used extensively in speech processing and data



anal ysi s. Algorithns such as ESPIRIT (Estimation of Signal
Paraneters via Rotational |Invariance Techniques) have been
explored by Andersen and Roy [5], [6] for wreless fading
channel s and general signal paraneter estimation (direction of
arrival, systemidentification and tinme series analysis). Hwnang
and Wnters [7] worked on subspace nethods to predict the channel
in periods of fast fading for high frequency carrier waves. Mre
relevant to our topic is the work done by Duel-Hallen [8] on
i near channel prediction. In Duel -Hallen's work, she proposed
upgradi ng adaptive nodulation by nmeans of inplenenting Iinear
prediction to predict the future power levels of the fading
channel. Her work has focused on the use of sinulation data and
the nmean square error of the prediction nethods. She has worked
to study how wel |l prediction works by altering various prediction
paranmeters in her systens. Recently Hu has applied |Iinear
prediction to the adaptive nodul ati on probl em although the work
is still in its early stages [9]. In this work we will nore
fully explore one of the uses of linear prediction in adaptive
nmodul ation building on the work done in adaptive nodul ati on by
Jainin [4].

1.3 Contributions

In this study, we wll denonstrate the advantages of wusing
channel prediction in conjunction wth adaptive nodulation
techni ques. Specifically, we will show the change in throughput
and bit error rate performance when using linear prediction to
estimate the future state of the channel. This thesis nakes

several distinct contributions to the literature:



1. V& examine the inpact of using FFT-based channel estimation
on the performance of |inear prediction

2. W illustrate the inpact that l|inear prediction has on the
BER performance of adaptive nodulation in different Doppler
environments and with reverse |ink propagation del ays

3. W illustrate the inpact that error correction coding has on
the performance of adaptive nodul ation, specifically when using
l'i near prediction.

4. W illustrate the limtations of linear prediction in high
Doppl er environments and denonstrate the inpact that these
limtations have on the performance of adaptive nodul ation.
Further, we investigate several nethods to inprove prediction

accuracy and their inpact on adaptive nodul ati on.

5. W denonstrate the useful ness of channel prediction and
adaptive nodul ati on usi ng actual mneasured channel s.

The organi zation of this thesis is as foll ows:

In Chapter 2 we lay the foundation of the systemnodel. W will
briefly review nodul ati on and Rayl eigh fading. W also introduce
our met hods of channel conpensation and SNR estimation

In Chapter 3 we introduce adaptive nodul ation. V¥ observe the
effects that inperfect channel estinmation has on the performance
of adaptive nodulation and we present linear prediction as a
nmeans of counteracting sonme of these probl ens.



Chapter 4 presents the specific issue of high Doppler fading and
the ways in which we can conpensate for the weaknesses of channel
prediction in high speed channel s.

Chapter 5 briefly concludes this work.



Chapter 2

THE SYSTEM MODEL

2.1 Introduction

In this chapter, we will outline in detail the system nodel used
in this study. VW will begin with a discussion of additive
white Gaussi an noise, followed by a | ook at Rayleigh fading. We
will then discuss the channel estinmation and conpensati on net hods
used, as well as the SNR estinmation techni que enpl oyed.

2.2 Noise

In no exam nation of a comunication systemis a nodel produced
without the inclusion of noise, or some unwanted signal in

addition to the desired information signal. In nost, if not all
studies (ours included), the term noise wll denote additive
white Gaussian noise (AWNIN). The term ‘additive’ neans the

interfering signal is conbined with the information signal by
addition; the term ‘white’ refers to the noise having constant
power spectral density; and Gaussian nmeans that the probability
density function of sanples of the random process i s Gaussi an.

It is interesting to discuss where AWGN originates. The answer
lies in tw places, but for the sanme reason, nanely, Brownian
not i on. One source of noise is from the agitation of charge
carriers in a conductor noving through a potential barrier [10].

This type of noise is called shot noise and usually occurs in



el ectrical devices such as diodes and transistors and general ly
does not cone into play in link |Ievel communication nodels. The
other source of noise is thermal noise. This refers to the
random notion of electrons due to thermal energy. This random
notion at the receiver produces a signal that is independent of
the desired signal and is detected in addition to the information
signal . Since this noise is produced by a large nunber of
i ndependent sources, it is well nodeled by a Gaussian random
pr ocess. Note that decreasing the tenperature of the receiver
can reduce the power of the thermal noise but not shot noi se.

Fromthis point on, all references to noise will be thermal noise
or AWGN

2.2.1 Noise Power

To see the effect that noise has on the received signal, we are
interested in the power of the noise signal relative to the power
of the desired signal. The ratio of the two is known as the
signal -to-noise-ratio (SNR). The units that we will be using are
logarithmc, noted by decibels, or dB. To find the power of the
noi se, one nust know the tenperature in Kelvin at the receiver,
and the recei ver noi se bandw dth [10]:

N, =KkTB (2.1)

where k is Boltzmann’'s Constant (1.38%*102 WHz*K), T is the
thermal tenperature in Kelvin, and B is the effective noise

bandw dth of the receiver in Hz.

The power of the noise in our simulation is such that the
received SNRis in the range of 0 to 40 dB. In a later section,



we will see the significance of noise power in conjunction wth
channel fading.

2.3 Rayleigh Fading

In this section, we will exam ne the inpact that the novenent on
the nobile receiver (or transmtter) causes on the received
si gnal . The resulting effect (typically called fading) has a
significant inpact on the received signal strength which can be
severely degraded as we will showin the follow ng sections.

2.3.1 Doppler Effect

Fading is caused by a phenonenon known as the Doppler Effect.
When dealing with any sort of waves, a receiver’'s novenent in
relation to the source of the wave will distort the perceived
frequency of that wave.

Consider the following figure from[11]:



Saurce

Figure 2.1 - lllustration of Doppler Effect

where a user is at point X, noving toward point Y at velocity v.
W make the approximation that the angle of arrival of the
received signal is the same at all points during transm ssion
(i.e., the source is very far away). The difference in distance
that the transmi ssion nust travel between the receiver at points

X and Y is: DI =vltcosq. The resulting phase change between the
two points is:

Df =2’1—D|:2pVDt>cosq (2.2)
where | is the wavelength in neters. The Doppl er frequency can
t hen be found as:

fd:ixzzlxzosq (2.3)

2p Dt |



One can see that if the receiver is heading toward the source (q
< 90°, the Doppler shift wll be positive and the perceived
frequency of the signal wll be increased. If the receiver is
novi ng away from the source (q > 90°), the Doppler shift will be
negative and the perceived frequency will be decreased. If the
user is noving perpendicular to the source (q = 90°, there wll

be no shift in frequency.

The maxi mum Doppl er shift is lland this is inunits of Hz.

2.3.2 Multipath Channels

In addition to Doppler, our channel nodel will include multipath
distortion. Wat we nean by this is that there will be several
copies of the sane signal being picked up by the receiver com ng
from different angles. This is common in environments such as
netropolitan areas, where electromagnetic waves can bounce off
buildings or in indoor environnents where signals reflect off
wall's, etc. Each of these conponents will have their own Doppl er
shift and phase offset due to different angles-of-arrival and
time delays. The conbination of these paths will be constructive
and destructive due to the different phases causing the signal
strength to change wth nobile novenent. It is this multipath
factor that produces the gains and fades in power that we wll
see in the figures ahead.
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2.3.3 Rayleigh Model

Wth the Doppler shift and nmultipath, we can now build a nodel of
our Rayl eigh channel. From[11], we nodel the received signal as
a sum of non-resolvable nmultipath conponents each wth
i ndependent anplitude, phase and frequency conponents. The
channel is thus nodel ed in conpl ex baseband as

N
C(t):ié A>ej(2pfqt+fi) (2. 4)

JIN G

Were A is the anplitude of the i'" conplex sinusoid which is a

constant of 1 in our case, fi is the random phase uniformy
distributed from zero to 2p, and f. is the Doppler frequency

found as f =f ,cosq, where f is the maxi mum Doppler shift and

i
q is the angle of arrival assumed to be uniformy distributed
fromO to 2p. The channel is nmade up of the sum of N conpl ex
si nusoi ds. W set the nunber of multipaths N to be 32 in all
experi nents. Note that the resulting channel is a conplex
Gaussi an random process due to the sum of independent sinusoids.
The envel ope is thus a Rayl eigh random vari able and thus we call
this Rayl ei gh fading.

In the next few figures, we wll look at some of the
characteristics of Rayl ei gh channel .

11



10

Typical Rayleigh Fading Channel
T
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Figure 2.2 - Typical Rayleigh Fading Channel

In Figure 2.2, we plot the envelope (in dB) of a Rayl ei gh channel
taken over a period of 8000 sanples at a maxi mum Doppler
frequency of 30 Hz and a sanpling rate of 10 kHz. Note the many
short periods of fading throughout channel. 1In this channel, we

can | ose between 5 and 50 dB of power from our signal.

On the other hand, the Rayl ei gh channel is sonewhat deterministic
and sanples that are close to one another have simlar power
| evel s. This tenporal correlation can be exploited as we wll
| ater show. But before we discuss why fading is so bad for

12



transmssion, or how we exploit it, we further examne our
assuned system nodel .

2.3.4 Modulation

In this section, we will examne the transmtter and receiver
architectures assuned in this work. Specifically, we describe
how we take a binary information signal and prepare it for
transm ssion through free space. W will do this by taking a
| ook at a signal transformati on known as nodul ati on.

W will begin with a binary signal of zeros and ones. Wat we
would like to do is encode it in a format that wll travel
through a medium W do that by encoding electromagnetic

si nusoi ds, since radio waves travel readily through the nedi a of
i nterest.

In sinmple nodul ation schenes, it is possible that a binary ‘1
would be represented by a cosine wave wth sone phase and
frequency while a binary ‘0" would be represented by that very
sane wave, but with a 180 degree change in phase. This is called
bi nary phase shift keying, or BPSK W could use any finite
nunber of phases although we typically restrict ourselves to
powers of two (e.g., BPSK 4-PSK, 8-PSK). Qur system will
i ncl ude nodul ati on schenmes QPSK and QAM or Quadrature Anplitude
Modul at i on.

In QAM we map sets of bits to a conplex sinusoid with a
particul ar phase and anplitude. Belowis a diagram[Fig 2.3] for
16 QAM a nodul ation schenme that uses four information bits to
produce one of 16 transm ssion synbols. Qher QAM schenes use a

different nunber of information bits to produce one information

13



synbol , hence, different nodul ati on schenmes can produce different
spectral efficiencies as well as different BER curves. Ve wll
go into nore of this later.

Ceonstelation Diagram for 16 QAM
1 1 1 1] 1 1 1 T

08 1
uﬁ = ! 5 =

04+ -

a2

Irmag (W)
=]
1

| |

04 2

05 x 5 =

A | i I = | i | il |
-1 -0.8 0.6 -0.4 -0.2 4] 0.2 0.4 0B 0.8 1
Real (W)

Figure 2.3 - Constellation Diagram for 16 QAM

Figure 2.3 shows all of the possible nodulation synbols in what
is terned a constellation diagram The angle of the point in two
di mensi ons represents the phase of the synbol while the magnitude
represents the synbol’s anplitude. This diagramillustrates the
recei ved signal points in the absence of noise. W wll call the
points in which the bits are mapped to ‘constellation points’.
The received signal is decoded by nmapping the received signa

14



projected onto this tw dinensional plane to the nearest
constellation point. In other words, the decoded synbol is the
constellation point that is closest to the received synbol.

2.3.5 Effects of Fading and Noise

At the receiver, we can nodel the signal as:
r(t) = c(t)>s(t) +n(t) (2.5)

where r(t) is the received signal, c(t) is the Rayleigh channel
signal defined in Eguation 2.4 and n(t) is Gaussian noise.
Further, as is conventional, we nodel the signals using conpl ex
baseband notation. The information signal is nmultiplied by the
channel, and white Gaussian noise is added to the signal at the
recei ver.

Let us see what happens to a signal when it is put through a
Rayl ei gh channel

15



Rotated Signal
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Figure 2.4 - Rotated 16 QAM signal

In Figure 2.4, we have taken the same QAM signal constellation
from Figure 2.3 and passed it through a Rayleigh channel with a
specific SNR. As can be seen, the received signal constellation
is rotated and scaled and slightly perturbed. In order to
denodul ate this signal properly, one nust conpensate for the
channel by de-rotating the constellation and renoving the
anpl itude nodulation (since we are working with QAM which has
information in the anplitude). However, this is not the only
probl emthat Rayl ei gh fadi ng produces.

16



Rotated Signal
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Figure 2.5 - Information Symbols are Rotated and
Scaled

In Figure 2.5, we have rotation simlar to what we saw in Figure
2.4. Powever, note that the constellation is scaled down nuch
further than it was in Figure 2 4. This produces an additional
pr obl em when noise is introduced to the signal. The snaller the
signal constellation, the |less noise power is necessary to nove
the received synbol from the correct decision region to another.
This is significant because it wll cause synbol errors in a
maxi mum | i kel i hood det ector.

17



Even w thout noise, anplitude and phase rotations can result in
synbols errors if channel distortion is not countered. Wen a
transm ssion encounters a deep fade and synbols are noved around
by noise, synbols errors becone nore and nore |ikely. However
the channel itself can be estimated and its effects mtigated
through a method called Pilot Synmbol Assisted Mdul ation (PSAM.
This is a necessary step in the denmodulation process when
Rayl ei gh fadi ng is invol ved.

2.4 Channel Estimation and Compensation

The job at the receiving end of a transmssion is to decode the
received signal and produce a bit stream that matches the
original transmssion bit stream at the beginning of the
transm ssi on process. Unfortunately, due to the distortion
caused by the channel, we cannot do this directly. Instead, we
must find a way to adjust the received signal before denodul ati on
occurs. W wll do this by neans of Pilot Synbol Assisted
Modul ation (PSAM [12].

The idea behind PSAM is to insert known synbols in our
transm ssion at set intervals. These synbols are called pilot
synbol s.
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Figure 2.6 - Pilot Symbol Insertions

The purpose of the pilot synbol is to have a way at the receiver
to know what the channel value is at the pilot. Using this
system we wll have fairly accurate channel sanples at a
frequency equal to the pilot synbol rate. Using the pilots, we
can interpolate the channel values in-between using a proper
interpolation nethod. In this work, we use an FFT-based approach
as we shall discuss.

Let us look at this process in nore detail. First, there is a
Nyquist condition that nust be nmet [12]. Based on this
criterion, we can show that the following relationship nust be
sati sfied:

fDTsE% (2.6)

where fp is the maxi num Doppl er frequency of the channel; Tsis

the synbol period, and N is the nunber of synbols in a frane and
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a frane is defined as a set of synbols associated with a single
pi |l ot synbol .

Now, let us describe the FFT interpolation procedure. V¢ nust
first take the pilot synbols out of the received transm ssion
stream Then we divide each pilot by the expected information
synbol, typically the synbol wth greatest energy (this is

det erm ned bef or ehand). Next, we take the FFT of that vector
[12].
- jpnly
Gi(n)= a 9gu(l)>exp(- N ) (n=01,...,2N,-J) (2.7)
1=0

Wiere 2N, is the nunber of pilot synbols used to create the
channel estimate and ¢,(I) is the vector of channel sanples
obtai ned fromdividing the received pilot synbols by the expected
pi |l ots. This gives us a vector of channel sanples in the
frequency domain. Once in the frequency domain, zero padding is
used to acconplish interpolation.

:i: NG, (m) EOEMEN, - 1§ u
Gl'(m)=l'0 [No£ mE Ny(2N- 1) - 1] !
;FNGl(m- 2N,(N-1) N_(2N-1) £m£ 2NpN-1"t:)

<

(2.8)

Equation 2.8 [12] shows us the way to inplenment the interpol ation
process in the frequency domain where N is the interpolation
factor.

The I FFT is then perforned with the foll ow ng equati on:
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2o jp mk
' k=01,...,2NN_ - 2.9
2NN, 20 G, "(m)exp( NN ) ( o= D (2.9)

9,'Kk) =

The result of Equation 2.9 is then the channel sanples that we

desire.

To enpl oy these sanples in channel conpensation, recall Equation
2.5:  r(t)=c(t)xs(t) +n(t). Wat we want to do is to renobve the
effect of c(t) on the received signal using the estimated c’ (t)

obtained fromthe FFT algorithm It is the follow ng

2(t) = c(t)>s(t) +n(t) _ c(t)>s(®) . n(t) (2.10)
c'(t) c't) c'(t) '

. . . n
| deal | vy, Egl|s very close to 1, leaving us wth qo4=—§l wher e
c'(t c'(t)
the noise termis hopefully very small conpared to the signal
term Note that this process does not inprove SNR since we are

mul ti plying the data and the noi se by the sane val ue.
2.4.1 Edge Effects of FFT Estimation

There is one drawback to the FFT estimati on nethod that we just

di scussed. As shown in Figure 2.7, at the ends of the

i nterpol ated channel, there are ripples in the channel estinmate
due to the finite block size used. This will cause inaccuracies
when the estinmate is used for conpensation. The problemis that
there are | eakage conponents in the frequency domai n when the
synbols are transforned. Wat is needed in order to counter this
is for the tine interval of gi(l) to be an integer nultiple of
1/fp  Also, applying Equation 2.7 is like truncating in the
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frequency domain. This anmounts to a | oss of information, which

is translated into an edge ripple when the IFFT is applied to the
signal [13].

FFT Performance
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Figure 2.7 — Hlustration of FFT Channel
Estimation Accuracy
Figure 2.7 illustrates an exanple of the accuracy of the FFT

interpolation algorithm Note that the channel in the mddle of

the set is traced fairly accurately, but the channel at the ends
iS not.
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FFT Performance
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Figure 2.8 - Close-up of the edge effect

In Figure 2.8, we see a close up of the edge effect fromthe FFT
al gorithm

To counteract this effect we place additional synbols at each end
of the frane, so that the part of the franme that is corrupted by
the edge effect is of no consequence, and the center of each
frame is free fromany negative effects of the edges. This will
i ntroduce sone delay in our system
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2.5 SNR Estimation

The last function that we will discuss in terns of the system
nodel is the estimation of signal to noise power ratio. The
purpose of measuring SNR is to get a nore accurate view of the
channel state. The signal that we wi sh to receive and denodul ate
will be corrupted by both the Rayleigh channel (an effect which
changes fairly rapidly) and receiver noise (whose statistics do
not change over short intervals). Because of this, we wll
require the short term signal power (to estinmate the effect o
Rayl ei gh fading) and the |ong termnoi se power.

There are nmany papers and articles that discuss SNR estinmation

The estimator that will be discussed in this work is based on
work done by Gagliardi [14] and Jain [4]. The basic idea is the
following: |If we have a signal that is being corrupted by noi se,

we can estimate the signal to noise ratio through ‘nean and
variance’ calculations. First, the average received power after
Rayl ei gh fading is found by taking the square of the nean of the
magni tude of the received signal (after renoving the nodul ation).
This will serve as the estimated signal power. The noi se power
wi Il be found using a variance cal culation on the received signal
(again after renoving the effect of nobdulation). This variance
cal cul ation can then be averaged over a long tinme peri od.

For PSK nodul ation, the follow ng equations are used to find nmean

and variance of the current received bl ock of data

N
z:%iéz_lm (2.11a)
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D
ea (- fe1))’2

T? = .
ysd (2. 11b)

In the above equations, Z represents the nean of the received
signal, T represents the variance of the signal (ignoring the
effects of nodulation and the channel), and N is the nunber of
synbol s over which the statistics are estimated. Note that the
variance calculation depends on the channel estimate c¢; that

cones from the FFT Esti nator. Further the effect of nodul ation

is elimnated by taking the magni tude of the received signal. In
some estimators, the nmean of the signal is used instead of the
channel sanple c;. However, this leads to biased estimation in

hi gh SNR regions with even noderate Doppler rates[4].

For nodul ati on schenmes that have multiple power levels |ike QAM
we have a different set of equations to calculate the nean and

variance of the signal:

18|
Z=—al+ (2. 12a)
N iz d;
1 ey v s
Tzz—aeé r-c'idi| = (2. 12b)
N'l i=1 g

It is worth noting that in the multi-power |evel schenes, the
data synbol itself is needed to renmove the effect that multiple
power |evels would have on the estimator. This is obtained using

U
synbol estimtes, d..
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In order to make these equations useful, we have to have a way to
determne SNR fromthem The SNR can be cal culated as [4]:

@904 - (2.13)

Equation 2.13 is sinply the signal power divided by the noise
power. The units of G are linear, so we nust take the |ogarithm
in order to get the units into decibels. W should note that G
is a short termestinmate based on one value of T? and Z. Since
the noise power is constant over |long periods of tine, we can
i nprove our SNR estinmate by creating a long term noise estimate.
To take long term average, Jain used the follow ng equation to
determ ne |l ong termvariance:

Ty (M) =0.99T2 (- 1) +0.01T% (n) (2.14)
However, this nethod will take time to converge to a reliable
estimate. Furthernore, it weighs the first set of variances a
great deal. So in light of this, we decided to nodify the

equation to suit our needs. W thus have the following to
estimate the noi se power:

n 1
T2.(N)=——T2 (n-)+—T?*(n 2.15
Iong( ) n+1 Iong( ) n+1 ( ) ( )
In Equation 2.15, the first few sanples are still weighted nore,
but not as much as 2.14. In this case, the convergence of the

SNR estimate will be faster.
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2.5.1 SNIR Estimator Results

In this section, we wll present sone results for the SNR
estimator. In these sinulation runs, we sinply wanted to exan ne
the accuracy of the estimator, so we did not include any other
recei ver functions. For the follow ng charts, our commrunication
system consisted only of a nodul ator, denodulator, and the SNR
estimator in a Rayl eigh and AWGN channel .

SNR Estimator Performance @ 5Hz PSK
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Figure 2.9 - SNR Estimation for PSK at 5Hz
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Figure 2.9 plots the performance (i.e., estimated SNR versus true
SNR) of the SNR estimator with perfect channel know edge at a
Rayl eigh fading rate of 5Hz. It can be seen that at very |ow
SNR, the estimate is over-estinmated, but it gives accurate
estimates for SNR at 5dB and higher. The x’s on the graph
represent the individual estimtes of each packet, with its x
coordinate representing the actual SNR of the frane, and the y-
coordinate representing the estimted SNR. The closer any X is
to the line y=x, the nore correct the estimate is to the actual
SNR.

SNR Estimator Performance @ S0Hz PSK
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In Figure 2.10, it can be seen that at higher Doppler, the
estimator is still reliable, albeit slightly biased |low, due to
the faster fading rate. W can see that even though the
i ndi vidual estimates may have a | arge range at tines, the average
cones out to be very close to the expected SNR W see that the
SNR estimator works well with PSK nodul ati on. Figures 2.11 and
2.12 show the estimator’s performance i n QAM schenes.

SNR Estimator Performance @ SHz QAM
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Figure 2.11 - SNR Estimation for QAM at 5Hz
Doppler

29



SNR Estimator Performance @ 50Hz QAM
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Figure 2.12 — SNR Estimation for QAM at 50Hz
Doppler

As shown in Figures 2.11 and 2.12, the SNR estimator is not quite
as good for QAM as it is for PSK  For high SNR the estinates
for SNRin QAM are underestimated in the high Doppler case as it
iswith PSK. For low SNR, the estimate is high. This is because
at low SNR there are a greater nunber of synbol errors that
occur. Those synbols are the input to the estimator. The nore
reliable the synbol information is, the better the SNR estimate
is for QAM schenmes. This is why the estinmates are better at high
SNR. However, this will not prove to be a problem for adaptive
systens as we will discuss in the next chapter.
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2.6 System Block Diagram

In this section, we wll present the block diagram of our

adapti ve nodul ation system

Source

Encoder [{Modulator Switch  HModulator | —Pilot Insert

[Channel

Sink  Decoder-HChannel Measures —Demodulator  Pilot Remove

Figure 2.13 — System Block Diagram

Source — Here is where the information bits are produced.

Encoder — The information bits from the Source are taken and
encoded through an FEC. (Chapter 4)

Modul ator Switch — This is the logic that decides which
nmodul ation schenme to apply the bits from the Encoder or Source.
It requires information from the Channel Measures bl ock in order

to function.

Modul ator — Converts the binary data from the Source or coded
synbol s fromthe Encoder into conplex sinusoids for transm ssion.

Pilot Insert — This is the stage where the pilot synbols are

inserted into the informati on stream in order to use PSAM (In a
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real system these synbols would be added as bits before the
informati on reached the Modul ator. This was done in our

simul ati on for convenience.)

Channel — Rayl eigh fading and AWGN are applied to the transmtted

si gnal .

Pilot Renove — At this point, the pilot synbols are renoved and
stored for later use in the Channel Masures block. Al so, the

channel is also renoved fromthe signal

Denmodul ator — Converts the newy conpensated signal back into

i nformati on bits/coded synbol s.

Channel Measures — Takes information from the stored pilot
synbol s and determ nes the quality of the channel. In predictive
adaptation, this 1is where channel prediction takes place.
Information is then sent back to the Channel Switch for

adapt ati on deci si ons.

Decoder — FEC is renoved fromthe synbols. Information bits are
the output and are sent to the Sink. (Chapter 4)

Sink — BER and spectral efficiency are cal cul ated here when the
franme or bl ock is fini shed bei ng recei ved and
denodul at ed/ decoded.
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Chapter 3

ADAPTIVE MODULATION

3.1 Introduction

In this chapter, we will introduce the main focus of this work,
adaptive nodul ation. As stated earlier, adaptive nodulation is a
way to inprove the tradeoff between spectral efficiency and bit
error rate. W are able to make such optim zations in a Rayleigh
channel by exploiting its fading dynamcs. Periods of |ow fade,
or high gain, will inprove our instantaneous SNR allow ng hi gher
rate nodul ation schenes to be enployed with |ow probability of
error. Periods of high fade will lower the effective SNR and
force us to use lowrate nodul ation in order to nake transm ssion

mor e r obust .

Additionally, we will discuss ways of naking adaptive nodul ation
nore effective by incorporating channel prediction into our

system W will investigate various receiver functions such as
FFT channel estimation and SNR estination, as well as
transm ssion delays. W wll begin this chapter with analysis in

ideal conditions for our three nodul ation schemes: QSK 16QAM
and 64QAM
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W will provide results conparing different system setups and
investigate the advantages that channel prediction and SNR

estimati on can give us.

3.2 Adaptation Boundaries

The first topic that we nust discuss is how to change the
nmodul ati on schenme. In other words, we need a way for the system
to deci de which nodul ation schene is best suited for the present
(or in the case of delayed feedback - future) conditions. Pons
and Dunlop [2] clained that BER at the receiver would be a good
channel netric to decide swtching. However, we have decided to
use the netric that Pons and Dunlop rejected, which is to
estimate the SNR of the Iink. Reliable BER estimation is
difficult over short periods and thus would restrict adaptation
rate.

The question now becomes: How will we decide what ranges of SNR
wi Il be used for which nodul ati on schene? The answer lies in the
AWEN per formance of each nodul ati on schene.

Recal | that we nodel our received signal as r(t)=c(t)xst)+n(t) (Eq.
2.5), where c(t) is the Rayleigh channel, s(t) is the transmtted
signal, and n(t) is the noise signal. Recall also that SNR is
signal power divided by noise power. |In our system we consider
the signal power to be the power of the transmtted signa
multiplied by the Rayleigh channel. This resultant signal power
is the instantaneous received signal power and can be conpared
directly to the noise power, thus allow ng us to consider the BER
in an AWGN channel .
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Let us now consider the BER performance of our 3 nodul ation
schenmes. From[1] we have equations for their probability of bit
error:

Pyrs (9) = Q0) (3.1)

Piooam (9) = ) g?é\/i Qé%/ﬁ _ Qé\fg (3.2)

P ) = 12@ E\F Qg(—+Qg(—+Qg \/7°u
oA 2T 2o
e
i Q%\/:;LE RE,% &35

In Equations 3.1 — 3.3, g is the SNR and Q.) is the Q function,

(3.3)

Q(X)—J—()? 2dX

Usi ng the above theoretical calculation of BER for each schene we

have the foll ow ng plot:
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Figure 3. 1 - BER Performance in AWGN

In Figure 3.1, the curves fromleft to right represent the BER of
QPSK, 16QAM and 64QAM in a strictly AWSN channel, respectively.
In order to decide the proper switching levels fromthis plot, we
have to decide what our operating point, or desired BER is. In
our study, we chose to use 10°% as our operating point. Thi s
means that our systemwill try and keep a BER lower than 102 with
the nost spectrally efficient nodulation scheme whenever
possible. At this point we should define spectral efficiency as
the nunber of information bits encoded on a nodul ated
transm ssion synbol. For exanple, QPSK has a spectral efficiency
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of 2 bits per synbol, 16QAM has 4 bits per synbol, and 64QAM has
6 bits per synbol.

Therefore, with our operating point, and the given BER plots, we
have the followi ng SNR ranges for each nodul ati on schene:

QPSK SNR < 17dB
T6QAM 17dB <= SN\R <= 230B
64QAM SNR > 2305

Table 3.1 - Modulation Schemes to SNR Range

W came to these levels in the following way: At an operating
BER of 103 there is no nodulation schenme that gives us our
desired performance at an SNR bel ow 10dB. Therefore, we choose
@QPSK as it is the nost robust. Between 10 and 17dB, there is
only one schene that gives us performance below 103 and that is
QPSK.  Between 17 and 23dB, 16QAM gives us our desired BER at a
better spectral efficiency than QPSK And at SNR higher than

23dB, 64 QMM gives us the best spectral efficiency while
provi di ng the desired BER perfornmance.

3.3 Adaptive Modulation

Now that we have established the neans by which we swtch
nodul ation, we can discuss the theoretical performance of

adaptive nodulation, both in terns of BER and spectral

YIn our simulations, 25dB was actually used. W do not expect this to change our results
significantly as the ideal sinulations fit the theoretical expectati ons.
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ef fi ci ency. W shall refer to Torrance and Hanzo [1] for an
anal ysi s of adaptive nodul ati on.

First, we have to define the PDF of the fluctuations of the
recei ved, instantaneous, Rayleigh anplitude, s. The envel ope of
a Rayl ei gh fadi ng channel has a distribution of:

F(s,S) = (3. 4)

2/s ef
S
where, S is the average signal power. Next, we need to determ ne

t he BER of each nodul ati on scheme. W can analytically determ ne
t hem by:

Pg(S/N)::‘jDG(s/ N) XF (s, S)ds (3.5)

where P, is the Rayleigh channel BER and P, is the BER

9
performance in an AWGN channel. Wth the above two equations in

addition to Equations 3.1-3.3, we can find the BER perfornmance of
adaptive nodul ati on as:

Al

éh u
P (/N )XF(s,S)ds U
€ U
‘f’ s l;l
P(S/N) = B X&r4(Pqu (S/ N )xF (s, S)dsy, (3.6)
g U
é '4\ U
€+6 (Fragau (8 N )>XE(s, S)dsi
e &« 8|
where the |, are the SNR thresholds between the nodul ation

schenes and B is the average spectral efficiency. The val ues of
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I, can be inferred fromTable 3.1. The value of B is conputed as

fol | owns:
I I3 Iy
B =2>0F(s,S)ds+4x)(s,5)ds+ 6 (s,S)ds (3.7)
Iy I I3

Havi ng established the mathematical foundation behind adaptive

nodul ation, let us ook at the results in graphical form

Spectral Efficiency for Perfect Adaptive Modulation
T
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Figure 3. 2 — Spectral Efficiency for Perfect
Adaptive Modulation vs. Average SNR for a
Rayleigh Channel
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Error Performance for Perfect Adaptive Modulation
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Figure 3. 3— BER Performance for Perfect
Adaptive Modulation vs. Average SNR for a
Rayleigh Fading Channel

In Figure 3.2, we have a plot of the spectral efficiency of
adapti ve nodul ati on versus average SNR in dB. Here, we should
define spectral efficiency. In our system we define spectral
efficiency to be the nunber of bits sent per nodul ati on synbol.
W do not take into account whether or not the bits are the
correct ones that were sent or not. In other words, we do not
concern ourselves with ‘goodput’. Because we have set the target
BER to a val ue that we believe the system nust operate under, the
adaptation systemw Il try to achieve that |evel of performance.
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Note that at low SNR, the system achieves 2 bits per synbol, as
QPSK is primarily used. However, as the SNR increases, the
t hroughput also inproves steadily, which indicates that we are
beginning to use nore spectrally efficient nodul ati on schenes
The curve begins to |l evel out at close to 30 dB, as 64QAM becones
the nodul ati on schenme used nost often and QPSK is rarely used.
As SNR i nproves, the systemis nore able to choose nore efficient
nodul ati on schenes.

The nore interesting graphic is the one of Figure 3.3. In Figure
3.3, we see that the performance of adaptive nodul ati on begi ns by
overl apping the QPSK curve. It is analogous to the spectra

efficiency curve, as QPSK is the primary nodul ati on scheme used
in low SNR However, as the SNRis increased to 15 dB, we see an
interesting result. The performance of adaptive nodul ation
begins to inprove beyond what QPSK can provi de. Let us exam ne
this result.

Consider a transmssion that is encountering a deep fade. Qur
options here are to use one of three nodul ati on schenes, which
differ in spectral efficiency and robustness. |If we consider the
fading to be extrenely deep, perhaps half of all bits will be in

error. Here, it is advantageous to send fewer bits because the
total nunber of errors will be decreased, which influences bit
error rates nmuch nmore than total nunber of bits sent. When t he

channel is not in a fade, then we want to send as many bits as we
can. In this situation, we lower the BER by the increasing the

nunber of bits sent because errors becone | ess frequent.

It is the conbination of these two principles that allows the BER
performance of adaptive systens to be nore robust than static
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systens while simultaneously providing better spectral efficiency
at nost ranges of SNR

In the next few sections, we wll discuss sone of the ways
adaptive performance is degraded with inperfect system know edge
such as FFT channel estimation and frame del ays.

3.4 Performance of Adaptive Modulation in Simulation

Before we discuss the performance of our system in inperfect
environnents, we should verify that our system sinulator
functions properly in ideal conditions.

42



BER

BER Performance of Adaptive Modulation with Perfect Channel Knowledge
107 ¢ T T T T T T

T
i —— 1Hz ]
10Hz |[]
—&— 50Hz |

i I I i
0 5 10 15 20 25 30 35 40
Average SNR (dB)

1 0'5 I 1 I

Figure 3. 4— BER Performance of Adaptive
Modulation for Different Doppler Rates
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Throughput Performance of Adaptive Modulation with Perfect Channel Knowledge
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Figure 3. 5— Spectral Efficiency of Adaptive
Modulation

In Figures 3.4 and 3.5 we plot the simulated BER and spectral
efficiency of adaptive nodulation in situations where we have
perfect know edge of the channel with a frame rate of 640Hz. Note
that with increasing Doppler frequencies, the BER degrades

significantly. It can be seen that there is a 15dB loss in BER
performance at a 50Hz Doppler rate. The reason is due to the
nore dynam c state of the channel. In the 1Hz situation, we have

fairly constant channel conditions, whereas in the 50Hz
situation, the power in the present frame may not be the same as
the power in the next one. This fluctuation in the channel will
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lead to bit errors since the chosen adaptation scheme nmay no
| onger be optinmal. Additionally, as the Doppler rate increases,
the SNR no | onger remains static over an individual frame.

Presently, the system neasures the inmedi ate SNR and assunes t hat

it will not change between frames. This, of course, is
subopt i mal . It is possible that we could have a franme wth
17.1dB SNR and the following frame could have 16.7dB. If we
assune that the next frame still has a 17.1dB SNR, we would be in

error and the choice that the system makes woul d be suboptinal.
Situations like this occur in channels of all Doppler, but it
happens nore frequently in cases of higher Doppler rates. If we
could predict the state of the channel, we would be able to
alleviate this problem

When conmparing different curves, we should find that Doppler
frequency is not the sole factor which determ nes BER. It is
actually a conbi nati on of Doppler frequency and the tinme duration
of each frane, i.e. adaptation rate. In the above cases, a
synbol rate of 96kHz was assuned, with each frane consisting of
150 synbols. This leads to a frane duration of 1.56nms per franme.
Wth those two figures, we can define a nornalized Doppler rate

that will give us a nore accurate conparison of different
situations.

D=f, 7, (3.8)
This will be defined as the normalized Doppler rate. Ve wll

have simlar channel qualities for systens wth simlar
normal i zed Doppler. A systemwth high Doppler and short franes
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will have a simlar channel with a system that has | ow Doppl er
and very long franes tines.

In the above cases, all the frane durations are the sane, so only
the Doppler is variable. The normalized Doppler for the 1, 10,
and 50Hz Doppler rates are 1.56E-3, 15.6E3 and 78.1E3
respectively.

In Figure 3.5 we see the spectral efficiency of the adaptive
schene. For all Doppler rates, the sinulated curves coincide
well with the theoretical curves. The reason for this is that
statistically, with perfect channel and SNR estinmation, we should
al ways have good spectral efficiency curves. The proportion of
tine that each of the nodulation schemes are chosen is
i ndependent of Doppler rate. Note that good spectral efficiency
does not necessarily indicate good BER perfornance.

3.4.1 Channel Estimate Impact on Adaptive Modulation

In this section, we will renove the assunption of ideal channel

know edge that we held in the previous section. Here, we should
find that our performance curves beconme even nore degraded. In
the followng plots, we incorporate FFT channel estimation and
SNR estimation into our system The effectiveness of FFT
estimation is based on the pilot to information synbol ratio (See
Equation 2.6). The nore pilots used per frame, the higher
Doppler rate our estimator can conpensate for. In our
simul ations, we used 1 pilot per every 15 information synbol s.
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BER Performance of Adaptive Modulation with Estimation
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Figure 3. 6 — BER Performance of Adaptive
Modulation in Estimated Environment
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Throughput Performance of Adaptive Modulation with Estimation
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Figure 3. 7 — Spectral Efficiency of System with
Estimated Environment

In Figure 3.7, we have a simlar result for the spectra
efficiency of the system Since nothing has fundamentally
changed the overall statistics of the estimated SNR, we shoul d
expect no change in the spectral efficiency. W have nore
interesting results in Fgure 3.6. 1In the BER curves, we notice
that each curve has been shifted to the right by approximtely 2-
3dB. This is due to the FFT estimation process. Wen we apply
FFT estimation, there is an unavoidable 1loss of channel
informati on that will degrade the de-rotation process.
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Fortunately, this degradation is not severe, as we see only a 3dB
| oss of perfornmance.

FFT Performance in 10Hz Rayleigh Fading
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Figure 3. 8— FFT Degradation in a Rayleigh
Channel 10Hz Doppler Rate

In Fgure 3.8, we have the theoretical BER performances of QPSK
and 64QAM al ong with their FFT estimated counterparts. Note that
there is approximately 3dB difference between the ideal and the
actual plots. Also worth noting is the floor that the QAM schene
experiences at high SNR This performance floor is due to

channel estination.
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Comparison of FFT Estimated and Ideal Adaptive Schemes
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Figure 3. 9— Comparison between ldeal and
Estimated Adaptation at 50Hz Doppler

In Figure 3.9, we have a conparison between the ideal and
estimated (SNR and FFT) adaptation systens for a S0Hz Doppler.
The shift at low SNR is approximately 3dB, but ends nuch higher
due to the estimated curve hitting a performance floor at high
SNR.

Now t hat we have explored the effects that channel estimation has
on our performance, we can nove on to how propagation del ays can
hurt us.
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3.4.2 Propagation Delay Impact on Adaptive Modulation

Thus far, we have assuned that there has been no tine lag or
propagati on delay when the receiver relays control information
back to the transmtter. In the system so far, there has been
i nstantaneous relay between receiver and transmtter. Now, we
wi Il introduce another system inperfection into our sinmulations.
W will introduce a delay in our systemthat will anount to two
franes worth of time. 1In other words, fromthe time the receiver
transmts information back to the transmtter, two nore frames
will be on route to the receiver fromthe transmtter and are not
privy to the latest information nost recently sent from the

recei ver.

When we incorporate this factor, the resulting performance with
perfect estimation is given in Figure 3.10.
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The Impact of Time Delays in Adaptive Modulation

[ : ; L I B o o] —— Ideal |
[ | = No Delay ]
F Delay
107 L .
107k co1DHZ
s Doppler
i
m
10°L
10% L
10° i i i | ; i i
0 5 10 15 20 25 30 35 40

Average SNR (dB)

Figure 3. 10— Comparison of System with No
Delay and with Delay

In Figure 3.10, we see a plot conmparing the effect that
propagati on delay has on our performance. The two |ower curves
represent the system perfornmance at 10 and 50Hz (Nornalized
Doppl er rates 15.6E-3, 78.1E 3 respectively) with no frame del ay.
The two upper curves represent the system performance at 10 and
50Hz with a 2 frane del ay. In this sinulation, we see how each

ideal curve is degraded by the delay. They seem to be breaking

off from their ideal counterparts 5 to 10dB earlier. The
explanation is due to the changing nature of the channel. If we
have a delay in our system our SNR estimate will be out-dated.
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This is why the performance with 50Hz Doppler shift suffers nore
from the delay and sooner. Wth higher Doppler shifts, we have
faster variations in the channel. This explains why high Doppler
curves show the negative effects of propagation delays sooner
than their | ow Doppl er counterparts.

The Impact of Time Delays in Adaptive Modulation
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Figure 3. 11 — Delay Impact on System with
Channel Estimation

In Hgure 3.11, we see the effects that franme del ays have on the
systemw th channel estimation. Wth the channel estimation, the
performance curves are sinply shifted as they were in the

previ ous section. Wth delays and the various estimators in
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pl ay, we have a performance degradation of 15-20dB for 10Hz and
50Hz Doppl er at high SNR val ues.

However for very |ow Doppler frequencies, the problemis not so

severe.

The Impact of Time Delays with 1Hz Doppler
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Figure 3. 12 - BER Performance of System with
1Hz Doppler

In Figure 3.12, we see alnost no difference between systens with
delay and no delay. It would seemthat with when the channel is
varying sufficiently slowy, propagation delay wll not have a

significant effect on error rates.
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Let us nention briefly the effect on the spectral efficiency that
frame del ays may cause.

The Impact of Time Delays on Spectral Efficiency
6 T T ] 1 T T

Bits Per Symbol

0 5 10 15 20 25 30 35 40
Average SNR (dB)

Figure 3. 13 — Spectral Efficiency of Systems with
Delay

As Figure 3.13 shows, frane delays do not reduce throughput. The
delay will only alter which nodul ati on schenes are used, but will
not change the overall proportions used;, and the proportions of
nodul ati on schenmes used are the measure of spectral efficiency.
This | eads us to conclude that the nmeasure of spectral efficiency
is not a good indicator of how well the BER will perform
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In summary of the estinmations and del ays, they both nake negative
impacts on the system with respect to ideal perfornance. For
channel estimation, the systemhas a worse BER no matter what the
Doppl er shift. However, franme delays hurt only those systens

whi ch operate in nediumto hi gh Doppl er

The main source of these BER increases is the inproper selection
of nodul ati on schemes. The system nakes these errors because it
does not have tinely information on the channel. Thus, we
propose the use of channel prediction wth adaptive nodul ati on.

3.5 Channel Prediction

The idea behind channel prediction is to use past and present
channel sanples to predict future sanples. W will inplenent a
prediction scheme for the specific purpose of anticipating the
future power |evel of the Rayleigh channel. The reasoning behind
our desire to predict the future of the Rayleigh channel is that
the results of the previous section showed that the old know edge
of the channel is the main cause of degradation wth adaptive
nmodul at i on.

Wth prediction, we can estimate what the future power |evel of

the channel will be, so that propagation delay will be less of a
problemas we will know what the state of the channel will be by
the tine the transmtter receives the control information from
the receiver. Before we present findings for the performance of

the system with channel prediction, let us first review the
theory behind it.
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3.5.1 Linear Prediction

There has been significant work done in the field of Iinear
prediction applied to channel prediction. Eyceoz and Duel -Hal |l en

[15] is one exanple.

Recal | Equation 2. 4:

1 38 j(2p fot+f i)
ot) = =8 A/

IN'G

Notice that the channel is dependent on the phases and frequency
of each sinusoid only (we have normalized all scatterers to unit

power, A=1). Wth this information, we know that the channe
is correlated from sanple to sanple, unlike AWGN. Therefore, we

can take advantage of the deterministic properties and predict
what the value of the channel will be at a later tine.

In order to predict the Rayleigh channel, we will enploy spectra
estimation according to the Maxi mum Entropy Method (MEM foll owed
by linear prediction [15]. The purpose of MEMis to produce a
set of coefficients, or poles, to use as input to a Ilinear
predi ctor.

Using MEM we have the frequency response of the channel nodel ed

by the foll ow ng:

(3.9)
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In Equation 3.9, the d,”s are the linear prediction coefficients,

used by the linear predictor, with there being p coefficients.

The predictor in our case is a sinple multiply-and-sumfunction.
. _ 8
¢, =a 4G, (3.10)
iz

In summary, C is a predicted value based on the |Iinear

n
conbination of p previous values nultiplied by the prediction
coefficients. To predict multiple sanmples in the future, we just
treat the latest predicted sanple as an actual sanple. W can
then predict as far as we desire. But of course, the farther we
predict, the |ess accuracy we have since error will accunul ate

Press [16] discusses linear prediction in a different manner. He
determ nes the prediction coefficients through an autocorrel ation
nmet hod. Assunming stationarity of the signal, the autocorrelation
can be found as:

No—]

1
fjo<yiyi+j>»—-a YiVi+ (3.11)
N-J i

Using this result, the prediction coefficients can be found

t hrough the equati on:

Qo=

fogdi =f k=@ M) (3.12)

j=1

where Mis the nunber of poles to be cal cul ated, decided by the
user; the nore poles, the nore accurate the prediction. 0]
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course, we cannot have nore poles than we have channel sanpl es.
In our simulations, we used 10 poles with 100 sanples of channel
information for nost of our results. W avoided using nmany

pol es, as they increased simulation time significantly.

In actual inplenentation however, neither of these nethods to
calculate the prediction coefficients were followed explicitly.

Press concedes that the above nethod is not very good at
calculating the autocorrelation figures due to the sensitivity
that linear prediction has with the autocorrelation figures.

Instead we used a recursive algorithm provided by Press [16]
whi ch uses a recursive nethod to calculate f,. In any event,

this linear prediction algorithm is good for signals that are
smooth and oscillatory, which would describe Rayleigh fading at
| east sonmewhat accurately.

3.5.2 Channel Prediction Tests

Now that we have established the theory behind our nethod of
linear prediction, we wll now denonstrate the effectiveness of
it intrial runs.
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Channel Prediction
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Figure 3.14 shows the ability of

channel s.
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Figure 3. 14 — Channel Prediction Demonstration
(See Table 3.2 for System Parameters)

| i near

prediction
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in Rayleigh

In this exanple, we used the follow ng specifications

to the system
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Doppl er Frequency 50Hz

Sanpl i ng Frequency 500Hz
Nunber of Pol es 50
Nurmber of Initial Sanples 100
Nurmber of Predicted Sanpl es 50

Table 3. 2 — Channel Prediction Specifications

In Table 3.2, we declare various channel specifications for
Figure 3.14. Wth a sanpling frequency of 500Hz and 100 initia

sanpl es, we have 0.2 seconds of information. VW then try to
predict the follow ng 50 sanpl es, which amounts to 0.1 seconds of
received signal. The figure here shows us that the predictions
are good for the first half of the prediction period, or about
0. 05 seconds, 25 sanpl es.

This is a challenging scenario for channel prediction. The
normal i zed Doppler (Fy/ Ts) rate in this situation is 50Hz/ 500Hz,

which is 0.1. In our sinulations, we will assume a nornalized
Doppl er on the order of 8x103 Aso, we wll not have so many

channel coefficients at our disposal, as they take a lot of
processing to calculate. W wll be using either 10 or 30 poles
in our systems. This will be sufficient, as we will show in the

follow ng plot:
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Channel Prediction
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Figure 3. 15— Channel Prediction with Higher
Sampling Rate

In Figure 3.15, we have a plot of channel prediction working in a
nore realistic case in terns of the situations in which we wll
run. Cearly, we have much better performance when we have
increased the sanmpling rate to 6000 sanples per second
(normal i zed Doppl er of 8.3x10°°) while keeping the sane nunber of
poles and initial sanples. This shows us that the |ower the
normal i zed Doppler, the better the performance of the channel

predi ctor. However, in a real simulation environment, we wll
not have a perfect curve to base our predictions. I nstead, we
will have corrupted estimates, both from the AWSN noi se and the
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FFT estimator. To see the viability of our predictor in non-
ideal conditions, we will add noise to the initial sanples.

Channel Prediction
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Figure 3. 16 — Prediction of Signal Power with
30dB SNR

Because we do not know precisely the nature of the corruption of
the channel estimate we will approximate it by sinply adding
AWGN.  Shown in Figure 3.16 is a denonstration of prediction in
30dB SNR W can see that with noise, we have very poor
prediction capabilities. However, we will later show that even
this level of prediction prowess is sufficient to give us an

advant age over standard adaptive nodul ati on.
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3.5.3 Channel Prediction in Adaptive Modulation

In this section, we will denonstrate the advantages that we wil
have when we inplenent channel prediction wth adaptive
nmodul at i on. As we have said earlier, the objective of channel
prediction is to offset the delays encountered when we use
adaptive nmodul ation in a real system

Wen we apply the prediction algorithmin the cases with frame
del ays, we hope to see the results match the results for the
i deal case. But before we start naking conparisons between
predi ction and non-prediction, let us first verify that our nodel
is valid under ideal present conditions.
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Ideal BERs of Adaptive Modulation with Prediction
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Figure 3. 17 — Ideal Performance of Adaptive
Modulation with Prediction

Figure 3.17 shows us the performance of adaptive nodulation wth
channel prediction in an ideal environment with no delay. SNR
and channel conpensation are also assuned. The prediction
specifications include the use of 10 poles and a | ook-back depth
of 100 pilot synbols. A ready obvious to us is the fact that the
10Hz Doppler curve coincides with the ideal performance, much
like the non-prediction schenme with a Doppler frequency of 1Hz.
This is very promsing performance. On the other hand,

predi ction does not seem to have the sane effect on the 50Hz
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Doppl er curve. However, we will see it is rmuch better than not
usi ng prediction.

Ideal Throughput of Adaptive Modulation with Prediction
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Figure 3. 18 — Ideal Throughput Performance with
Prediction with Varying Doppler Rates

The spectral efficiency of adaptive nodulation with prediction
al so coincides with ideal perfornance as shown in Figure 3.18.
This result is what we woul d expect.

It is instructive to see how the Doppler rate affects the
accuracy of the channel predictor. In the followng figures, we
present charts showing the accuracy of the predictions at
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different Doppler rates and average SNR conditions. Wat we are
predi cted vs. actual Rayl ei gh channel power sanpl es.

Rayleigh Power Estimation in Simulation @ 1 Hz and 2 Frame Delay

Predicted Rayleigh Power
)
(=]
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Normalized Rayleigh Power 10
30 0 Average SNR

Figure 3. 19 — Prediction Accuracy of Channel
Power in 1Hz Doppler
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Rayleigh Power Estimation in Simulation @ 10 Hz and 2 Frame Delay
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Figure 3. 20 - Prediction Accuracy of Channel
Power in 10Hz Doppler
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Rayleigh Power Estimation in Simulation @ 50 Hz and 2 Frame Delay
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Figure 3. 21 - Prediction Accuracy of Channel

Power in 50Hz Doppler
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Rayleigh Power Estimation in Simulation @ 100 Hz and 2 Frame Delay
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Figure 3. 22 - Prediction Accuracy of Channel
Power in 100Hz Doppler

Figures 3.19 — 3.22 show the performance of the prediction of the
Rayl ei gh channel in terns of the strength of the channel with a 2
frame propagation delay. Al of these plots incorporate FFT and
SNR estimation. Notice that the precision and accuracy increase
directly proportional to average SNR and inversely proportional
with the Doppler frequency. It is also interesting to note that
with the increase in Doppler, the power estinmates seem to be
underestimated. This is nost obvious in the 100Hz Doppl er case.
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W will see later that this wll pose a liability in later
si mul ati ons.

Let us now exam ne the performance when we include frame del ays
with prediction. W wll see if channel prediction can do what
we intend for it to do when we provi de perfect channel sanpl es.

BER of Adaptive Modulation with Prediction and Delay
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Figure 3. 23 — Prediction Performance with Delay

Wth no FFT estimation, the resulting performance is given in
Fi gure 3.23. It is approximately the sane performance that we
obtain with no franme delays. W still have ideal perfornance
with slower Doppler and ideal performance with 50Hz Doppler wth
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average SNR in the range of 0 30dB. Even the performance at 35
and 40dB are not far renoved fromthe no-del ay version

Now that we are confident with prediction performance in idea
conditions, we should now conpare it with non-prediction in non-
i deal conditions.

3.5.4 Prediction vs. Non-Prediction in Non-ldeal Conditions

W should at this point conpare the results from the non-
prediction with those fromprediction. W should expect the BER
results from the predictive scheme to be superior to the ones
from the non-predictive ones in every aspect; the spectra
efficiency results fromthe predictive simulations should be the
same as the ones fromthe non-predictive ones.
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BER Comparison Prediction and Non at 10Hz
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Figure 3. 24— BER of Prediction and Non-
Prediction @ 10Hz Doppler

In Figure 3.24, we should note first that the two approaches have
about the same performance in the range of 0-25dB, at which point
t hey deviate fromone another. The non-prediction curve seens to
bottom out in the BER nei ghborhood of 103 while the predictive
curve maintains performance that parallels the ideal case. This
is also simlar to the non-predictive schene in 1Hz Doppler,
whi ch indicates that the predictive schene is doing well in this
Doppler. At high SNR there are very large gains w th channel

predi cti on.
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Throughput Comparison Prediction and Non at 10Hz
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Figure 3. 25— Throughput Comparison at 10Hz
Doppler

In Figure 3.25, we have a conparison of the prediction and non-
prediction throughput curves. It seens that they are both
running at the correct proportions to nmatch the ideal curve. So
at | ow Doppler, we have a very significant BER gain, but no gain
in spectral efficiency. This result is expected.

Let us now increase the Doppler frequency to 50Hz and see if we
have simlar results.
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BER Comparison Prediction and Non at S0Hz
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Figure 3. 26 — BER Comparison at 50Hz

At 50Hz Doppler, the inprovenents are |ess pronounced, as the
prediction systemis less effective at high Doppler. |Instead of
15dB gains at 10Hz, now we see 5dB gains at 50Hz in high SNR
regions. On the other hand, if we |ook at the medi um range SNR
about 20-30dB, we see that the predictive schenme gives us a 10dB
advant age. This is a region where in the 10Hz case, the two

curves began to break away from each ot her

The spectral efficiency performance conpari son at 50Hz Doppler is
given in Figure 3.27:
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TPUT Comparison Prediction and Non at 50Hz
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Figure 3. 27 — Throughput Comparison at 50Hz
Doppler

This is a surprising conparison at first glance. Wile the non-
predi ctive scheme matches perfectly with the ideal throughput,
our predictive schenme degrades by as much as .75 bits per synbol.
Because the only difference between the two simulation runs was
the channel predictor, we nust conclude that the predictor has
come up short with future channel values at high Doppler. If we
| ook back at Figures 3.21 and 3.22, we should recall that at the
hi gher Doppler rates, the channel predictor had a tendency to

predict values that were |lower than the actual val ue. If this
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occurred consistently throughout the simulation, a decrease in
t hroughput is not surprising.

To further support the notion that the channel predictor was
indeed giving |ower channel values, we ran a few tests at 25dB
average SNR to conpare predicted SNR and actual SNR at high and
| ow Doppl er for adaptive systens with channel prediction.
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Figure 3. 28 — Predicted and Actual Channel
Values @ 10Hz

I



o %10 Histogram of Predicted vs. Actual SNR @ 10Hz Doppler
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Figure 3. 29 — Predicted and Actual SNR @ 10Hz
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Histogram of Channel Values @ 50Hz Doppler
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Figure 3. 30 — Predicted and Actual Channel
Values @ 50Hz
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Histogram of Predicted vs. Actual SNR @ 50Hz Doppler
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Figure 3. 31— Predicted and Actual SNR Values at
50Hz

In Figures 3.28 — 3.31, we have plotted histograns of the val ues
at the output of the channel predictor. W have kept track of
both the channel sanples and the resultant SNR val ues. Thi s
should decisively convince wus that our hypothesis of the
predictor |osing precision and accuracy at high Doppler is true.

In Figures 3.28 and 3.29, we see that the statistics for the
predi cted and actual channel values are the same. This tells us
that the predictor is accurate for |low Doppler, as we saw in
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Figures 3.19 and 3.20. Accurate and precise prediction |leads to
hi gh t hr oughput .

However, in Figures 3.21 and 3.22, we see that the predicted
val ues for the channel and the SNR have deviated quite a bit. In
t he channel sanples conparison, we see that the prediction does
not give us as large a variance in values as the actual channel
has; a snaller variance indicates a smaller power. In the SNR
hi st ogram envel ope, we see that the SNR curve for the prediction
is to the left of the actual curve by 3dB. This is an
interesting result because in Figure 3.27, the throughput curve
for predictionis to the right of the ideal curve by about 3dB

3.6 Conclusions

In this chapter, we discussed the advantages of adaptive
nodul ati on over the use of static nodul ation systens. W showed
that better BER can be achieved sinultaneously wth better
spectral efficiency for certain system paraneters. V¢ then
continued to incorporate inperfections into our simulations. FFT
and SNR estimation were included and we saw that the perfornance
was degraded by approximately 3dB. Wen we introduced feedback
del ays, we saw that hi gh Doppler simulations suffered severe BER
performance | osses. This led us to use channel prediction in our
adapt ati on system

Wth channel prediction, we gained significant inprovenent in BER
across all Doppler rates. However, in terns of spectra
efficiency, we observed a |ower throughput. This was due to the
channel predictor biasing the prediction at high Doppler rates.
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W will begin Chapter 4 with a discussion of ways to mtigate

this bias in the channel predictor.
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Chapter 4

IMPROVING ADAPTIVE MODULATION IN HIGH
DOPPLER RATE ENVIRONMENTS

4.1 Introduction

In Chapter 3, we introduced a way of inproving adaptive
nodul ati on through channel prediction. Wile it offered inproved
BER performance over non-prediction in all Doppler rates, it gave
us a poorer throughput performance at hi gher Doppl er.
Specifically, it was shown that at high Doppler rates, the |inear
predi ctor exhibits degraded performance which in turns limts the
performance of adaptive nodul ation. In this chapter, we
investigate ways to inprove upon adaptive nodulation at high
Doppler rates. We will begin by |ooking into the bias probl em of
linear prediction. W hope to be able to nmitigate the probl em of
the biased predictor. By inmproving the predictor we hope to
i nprove the perfornmance of adaptive nodul ation

4.2 Bias in Linear Prediction

According to Press and Rybicki [16], [17], there is an inherent
bias in linear prediction. |In our experiments, we concluded that
this bias is nost prevalent in cases of high signal fluctuations,
i.e. high Doppler. The reason for this lies in the output of the
linear prediction coefficient generator. At high Doppler rates,
the channel poles that are calculated from the generator
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generally sumto a figure less than 1. This is a problem when
considering how the prediction coefficients are conbined wth
sanpl e data. Recall Equation 3.10:

Wen multiplying and summing the result, the nmean of the
predicted signals will be lower than the nean of the actual
signal which neans the predicted sanples will also be |ower than
the actual sanples. |In other words, the predictor |acks accuracy
in cases of high Doppler. VW will present three different
solutions in trying to solve this issue and examne the
i mpr ovenent (or lack thereof) they provide to adaptive
nodul at i on.

4.2.1 Improved Linear Prediction

W nentioned in Chapter 3 that we could adjust the nunber of
predi ction poles and nunber of input sanples to affect the

accuracy of prediction in the linear predictor. However, we
provi ded no evidence of any inprovenent. In this section, we
will perform various adaptive nodulation sinulations and

denonstrate the inpact of increasing the nunber of poles and
sanples. Also, we exam ne the effect of decreasing the frequency
of the prediction sanples on the accuracy of the predictions.
Duel-Hallen [15] acknowl edges that by decreasing the sanple
frequency of the predictor, we can increase the depth of

pr edi ction. In other words, the smaller the predictor sanple
frequency, the further into the future we can predict. Al of
these variations in channel prediction will be explored in this
secti on.
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In Chapter 3, we simulated with a consistent nunber of poles,
training sanples, and predictor sample frequency. W used 10
poles, 100 training sanples, and used every 16'" synbol as a
training sanple, the sane synbols used by the FFT estimator for
channel estimation. W wll first change the sanpling frequency
of the predictor from having 10 sanples per frame to 5 and 1
sanple per frane. Figure 4.1 illustrates the inprovenment that we
can get at a normalized Doppler rate of f4T; = 78x10° (50Hz
Doppl er frequency and 150 synbol framnes):

BER Comparison Using Different Predictor Sample Frequencies
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o =+ 10/Frame ]
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Figure 4. 1 - BER Comparison between Different
Prediction Sample Rates
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Figure 4.1 shows us the inprovenent in BER by decreasing the
nunber of pilots per franme that the predictor uses. By keeping
t he nunber of training sanples the sane (100), using 10, 5 and 1
sanple per frame for prediction corresponds to storing
information from 10, 20, and 100 previous franes, respectively.

Let us see if there is any gain to be found in spectral
efficiency.

Spectral Efficiencies for Different Sample Frequencies
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Figure 4. 2 — Spectral Efficiency for Different
Sampling Frequencies
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In Figure 4.2, we see that along with the inprovenent in BER we
al so have inprovenment in spectral efficiency. It is clear that
we can get a nore accurate prediction of future channel values by
sanpl i ng past values nore slowy, spacing out training sanples in
tinme. However, we do not reach the ideal spectral efficiency

curve in any of the frequencies used.

Let us conjecture on why the lower sanpling frequency would
i mprove our performance. A consequence of using fewer pilots per
frame means that that we do not need to predict as nmany sanples
into the future for the sanme anount of propagation delay. Wen
we were using 10 sanples per frame, we had to predict 30 sanples
into the future in order to support a propagation delay of two
frames; ten sanples per frane and three franmes of information
neans that we have to predict 30 sanples ahead. Now when we use
only 5 sanples per frane, we need only predict 15 sanples into
the future in order to support our delay. |If we use one sanple
per franme, we only need to predict three sanples ahead. The
significance of this is the following: since we have already
shown that linear prediction is not perfect (Section 3.5.3), the
nore sanples into the future we predict, the nore error is
propagated through our result. The fewer sanples it has to | ook

ahead, the snaller the accumulated error wll becorme. However
note that we nmnust still sanple fast enough satisfy Nyquist’s
criterion.

Now that we have confirned Duel-Hallen's claim that slower
prediction sanpling frequencies lead to  Dbetter future
predictions, |let us see what happens when we adjust the nunber of
poles and training sanples. Let us begin using 5 sanples per
frame as our rate of prediction sanpling.
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BER Comparison Varying Poles and Training Numbers
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Figure 4. 3— BER Comparison between Varying
Number of Poles and Samples

In Figure 4.3, we varied the nunber of poles between 10 and 30
pol es, and used 100 and 200 training sanples. At first glance it
does not seem that there is much of a difference, and indeed
there is not. However, fromthe graph, we can see an interesting
result. It would seemthat increasing the nunber of poles has a
much | arger inpact on performance than increasing the nunber of
sanpl e data. The difference between the two curves representing
the use of 30 poles is negligible. The 30-pole, 200-sanple curve
is only mnutely better than the 30-pole, 100-sanple curve.
Also, at high SNR (~40dB), the two sets of curves seem to
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converge. Let us examine the results of the spectral efficiency
curves and see if we find simlar gains.

TPUT Comparison Varying Poles and Training Numbers
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Figure 4. 4 — Spectral Efficiency when Varying
Parameters

Indeed, we do find that we have a slightly better spectral
efficiency when we use 30 poles over 10 at medium SNR | n cases
of high and low average SNR, we find that neither poles nor
training sanples nake a difference in performance, simlar to
what we found in the BER curves.
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It is inportant to observe that an increase in training sanples
does not seemto have any significant effect on performance. The
expl anation revolves around the functions of the poles and
training sanples. The purpose of training sanples is to
determ ne the pole values. The nore training sanples we use, the
nore accurate the poles are. However, the poles are directly
responsi ble for the prediction process. The nore poles we use
the nore past data can be incorporated into the next prediction
point. Wth ten poles and 200 training sanples, we are limted
to ten sanples of past information to predict the next sanple.
Wth nore poles, we have nore past information to use, and this
leads to better performance. The sinulation results seem to
agree with this thinking. The fact that we have little
i nprovenent with the increase of training sanples tells us that
100 training sanples provides very good estimation of the poles
to use in prediction.

W should remnd the reader that the previous plots were
generated by using 5 pilots per franme in the prediction process
Let us see what happens when we use a nore efficient frequency

when predicting: One sanple per frane.
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BER Comparison Varying Poles and Training Numbers
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Figure 4. 5 - Performance of Varying Parameters
in Low Prediction Frequency

In Figure 4.5, we find that using only one sanple per frame
renders changing the nunber of poles and training sanples
irrelevant. W can see that the performances of all four curves
are very close to one another. However, if we | ook closely we can
see that the 10-pole, 100-sanmple case has the best perfornance.
This can nost likely be attributed to simulation noise at high
SNR If we take a careful |look at the plots, we can see that up
to about 30dB, the results we see are consistent with our results

in Figure 4.3.
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TPUT Comparison Varying Poles and Training Numbers
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Figure 4. 6 — Spectral Efficiency of Varying
Parameters at 1 Pilot/Frame

The spectral efficiency curve that we obtain by varying the
prediction paraneters shows us that when running one prediction
pilot per frame, we see near identical performance over each
pernutation of poles and training sanple nunbers. It is
inmportant to note that it is about 0.1 bit per synbol short of
t he i deal performance characteristic.

In sunmary, increasing the nunber of poles and training sanples
does have a positive inpact on adaptive nodul ati on perfornmance.
However, the inpact that it wll have depends nore upon the
sanpling frequency that is used by the predictor in acquiring
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channel sanples to use for training. Wen we use 5 pilots per
frame, we can see a small gain in both BER and throughput, but
when we use only 1 pilot per frane, increasing poles and training
sanmpl es provide negligible gain. This conbined with the earlier
sinmul ations varying only the sanpling frequency tells us that the
sanpling rate is the nost significant variable in |linear
prediction anmong the three variabl es exam ned.

4.2.2 Manipulating Prediction Coefficients

Now that we have shown that we can get gains by making better
choices in the nunber of poles/training sanples and prediction
pilot frequency, we will nove on to try and mtigate the bias of
the predictor. As stated earlier by [16] and [17], the
underlying problem of the predictor is the fact that the poles
generated by the MEM al gorithm do not sumto 1. I nst ead, they
sum to a nunber slightly less than one. In this section, we
intend to exam ne the option of manipul ating the prediction poles
(or coefficients) in such a way that the predictive properties
are still present, but the sum of the poles will add to 1. W
propose to add to the poles the difference it wuld take to nmake
them sum to 1. Following this line of thinking, we require an
intelligent nethod of adding weights to the poles. W presently
have two ways of adding weights. W could divide the difference
from unity of the poles and evenly distribute them along all
pol es.

Anot her approach is to add the difference to only one pole. The
pole that would receive the correction factor would be the one
that corresponds to the nost recent channel sanple. The reason
why we woul d choose that pole is because it is the sanple that
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would be nost correlated with the next sanple to be predicted,

thus mnimzing any variation in imedi ate prediction.

Experiments were perfornmed to examine the inpact of these two
nmet hods. The first set of plots corresponds to distributing the
residual value to all poles.

Add to All vs. Normal
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Figure 4. 7— Add to All Poles Method vs. No
Correction

The plots shown in Figure 4.7 show us that by using the Add to
Al poles (or coefficients) nethod gives us poorer BER
performance than the uncorrected version. W suspect that the
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reason for this is because the uncorrected version is choosing
| ess efficient nodul ati on schemes than the corrected version.

Spectral Efficiency - Add to All vs. Normal
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Figure 4. 8 — Spectral Efficiency Comparison for
Add-to-All and Normal Prediction

In Figure 4.8, we plot the spectral efficiency curves for the
Add-to-Al | correctional type and the nornal version of
prediction. The efficiency of the Add-to-All correctional nethod
does outperform the nornmal nethod. This would explain why the
BER of the normal nethod is better than that of the corrected
nmet hod. W are trading throughput for BER performance.
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BER Comparison - Adding Residuals to All Coefficients
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Figure 4. 9— Comparison of BER When Adding
Residuals to All Poles

Figure 4.9 shows the BER perfornmance when forcing the poles to
equal 1 while adjusting the prediction coefficients. Not
surprisingly, using 30 poles, 200 training sanples and 1 pilot
per frame yields the best perfornance.
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Spectral Efficiency Comparison - Adding Residuals to All Coefficients
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Figure 4. 10 - Throughput Comparison

Figure 4.10 shows wus the throughput conparison anmong the
different ways of inplenenting this nmethod of correcting |inear
prediction. In terns of spectral efficiency, the 10 pole, 100
training sanple, 10 pilots per frame case gives us nuch better
performance than do the other two. In fact, it gives us
performance that surpasses what we would expect wth ideal
per f or mance. This is not such a surprising result considering
t he BER perfornmance of t he 10/ 100/ 10 (pol es/ trai ni ng
sanpl es/ pilots per frame) curve is much worse than the other two.
On the other hand, it seens that although the 30/200/1 schene is
better for BER than the 10/100/1 schene, it yields the sane
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spectral efficiency. What we are seeing here is a tradeoff
between BER and spectral efficiency. That is the Ilinear
predictor is over-estimating the SNR which leads to the use of
64QAM or 16QAM at | ower SNR values. This increases the spectral
efficiency but degrades power efficiency.

Let us nove on to the scenario where we add the residual to the
first coefficient only.

Add to First vs. Normal
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Figure 4. 11 - BER Performance of Add-to-First
and no Correction

In Figure 4.11, like the Add-to-All correction method, the Add-
to-First method underperfornms conpared to the no correction
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nmet hod. Again, let us plot the performance of the spectral
efficiency and determne if we have a tradeoff simlar to what we
had in Figure 4.9 - 4.10.

Spectral Efficiency - Add to First vs. Normal
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Figure 4. 12 — Spectral Efficiency of Correctional
Method and Normal Method

Figure 4.12 shows us that there is a tradeoff between efficiency
and error perfornmance. It would seem that the Add-to-First
nmethod tends to over-estinmate the power of the channel and
chooses hi gher order nodul ati on schenes at | ow average SNR Thi s
woul d explain the large gap in performance in the BER plot at |ow
and medi um aver age SNR
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BER Comparison - Adding Residuals to First Coefficient
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Figure 4. 13- BER of Adding to the First Pole
Only

In Figure 4.13, we plot the performance of adding residuals to
the first coefficient in systenms where we vary the nunber of
pol es and training sanples. The nost sophisticated schene yields
the best return in terns of BER (30 coefficients and 200 trai ni ng
sanpl es) .
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Spectral Efficiency Comparison - Adding Residuals to First Coefficient
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Figure 4. 14— Throughput of Adding to the First
Pole

Looking at Figure 4.14 we find the spectral efficiency, however,
does change. In this case, the spectral efficiency in general is
greater than the ideal performance in all cases. However, at
high SNR, we see that all curves seemto |level out beneath the
i deal performance. Unlike the all-poles addition case, the nost
sophi sticated prediction schenme in this case yields the sane
performance as the ideal performance at rmedi um SNR It would
seem that to obtain perfornmance near that of ideal spectral
efficiency, one mnust conbine the 30-pole schene wth adding
residuals to the first pole.
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Let us now conpare the strongest correctional nmethods al ongside
the non-corrected sinmulations to see if we gain any increases in
per f or mance.

BER Comparison
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Figure 4. 15- BER Comparison of Different
Correction Methods

In Figure 4.15, we see the performances of the different
correctional methods for linear prediction. Wile they all have
relatively the sane performance, the best performance cones
t hrough not correcting at all. The worst performance is through
using the Add-to-First nethod. The Add-to-All nmethod is only
slightly inferior to not correcting at all.
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Spectral Efficiency Comparison
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Figure 4. 16 — Throughput Comparison in 3
Correction Schemes

Figure 4.16 shows us the spectral efficiency plots of the three
correctional mnethods that have been discussed. Not surprisingly
after seeing the BER curves, the Add-to-All nethod yields nearly
the same efficiency as the non-corrected version. Al so expected
is the throughput of the Add-to-One plot being nore efficient
than the other two. However, the efficiency at high SNRin all
cases still falls short of ideal.

In summary of this section, we conclude that even though the non-
corrected nmethod of linear prediction is slightly under the ideal
spectral efficiency performance curve, it is close enough such
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that altering the prediction poles in this manner wll not
i mprove BER and spectral efficiency sinultaneously. Using the
Add-to-First method was successful in inproving the spectra
efficiency, but degraded the BER whereas the Add-to-Al nethod
did not inprove nuch of either BER or efficiency.

At this point we can only conjecture why adding the value of
di fference between the poles and 1 anong all poles did not do
much to change the performance of adaptive nodulation. Ve
believe it is because the residual value is so small that adding
it across all poles (especially over 30) anobunts to very little
change at all. In testing simulations, we found that often
times, the residual value would be on the order of 10? or
smaller. Divide that by 30 and we woul d not expect predicting 3
sanples in the future to be changed dranmatically.

Perhaps this is why adding to the nost recent pole resulted in
nore significant changes. Adding to the first pole allowed a
hi gher weighting on it, making future predictions pull toward it.
So if on average, we had | ow predictions, this way of correcting
woul d pul I them hi gher.

4.2.3 Mean Subtraction

In the previous section, we developed a way to adjust the bias in
l'i near prediction by adj usting t he l'i near pr edi ction
coefficients, or poles directly. In this section we will explore
a nore conventional approach that involves renoving the mean from
the data set and returned in the predicted signal. Press and
Rybicki [16], [17] propose that in order to renobve the bias in
linear prediction, a correctional factor should be subtracted
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from the data set before the prediction coefficients are
cal cul at ed. The prediction nethod should be used with the
adjusted data and said coefficients followed by adding the
correctional factor into the predicted data. Now we have to
deci de what the correctional factor should be. Press and Rybicki
state that although it would be intuitive for the correctional
factor to be the mean of the data set, it is actually an
aut ocorrel ati on-wei ghted nmean [ 17].

_ET[S+N] 7y
E'[s+ N'E

where E is a colum vector of unit conponents of the sane |ength

(4.1)

as the training data. S and N are autocorrelation matrices of
the signal and the noise, both we nust assune to have long term
know edge. They are found in the follow ng way [15]:

&S(TS) = ‘]O(a) des) (4 2a)
e 1 R.(2T)) -+ RJNT)6
G .. : -
S=¢ Rss(,sz) ,1 ' T (4. 2b)
¢ . 1 RS(ZTS):
§R.(NT) - R(L) 1
a8 * 06
N=¢ . I (4.3)
0 s

where J, represents the first order Bessel function, T, is the

S

synbol period, and s? is the variance of AWG\.
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Let us observe the performance of the Mean subtraction Method as
conpared to no correction.

0 BER - Mean Subtraction vs. Normal
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Figure 4. 17 - BER Performance between Mean
Subtraction and No Correction

In Figure 4.17, we see that there is a very large deviation in
performance between the Mean Subtraction nethod and the nornal
techni que to perform channel prediction. This method has given
us the greatest decrease in performance as conpared to the
coefficient manipul ation techniques. Let us see if there is a

greater increase in spectral efficiency than the other two
met hods.
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Spectral Efficiency - Mean Subtraction vs. Normal
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Figure 4. 18 - Spectral Efficiency of Mean
Subtraction and Normal Prediction

The spectral efficiency result that we have in Figure 4.18 is
very surprising. W expected that with the decrease in BER we
woul d have a nuch better spectral efficiency performance with
Mean Subtraction. On the contrary, we have roughly the sane
efficiency performance as the non corrective schene. This is
showing us that the nmean subtraction method is not a proper
correction schene for our purposes. W run a plot of the
predi cted channel powers against a plot of the actual channel
powers to see if they agree.
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Figure 4. 19 — Histogram of Predicted and Actual
Instantaneous SNR for Mean Subtraction at 25dB
Average SNR and 50Hz Doppler

In Figure 4.19, we see that the Mean Subtracti on nethod does not
elimnate the bias in the predictor. Wat we interpret this is
that Mean Subtraction is not doing anything for us. One reason
this may be the case is due to what we are predicting and what
this correctional algorithmis neant to do.

The predictor that we enploy extrapolates the future channel
sanples in the | and Q channels of the signal separately. These
channel s both have zero nean, so using a Mean Subtraction nethod
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here would not be of value. However, let us attenpt to use this
met hod while lowering the predictor’s sanpling frequency and see
if we receive better results.

In testing the mean subtraction nmethod in conbination with slower
predi ction sanpling, we used a 50Hz Doppler fading channel and
two different prediction schenes: one with 10 poles, 100
training sanples, and one pilot per frame, and another with 30
poles, 200 training sanples, and one pilot per frane. Here are
the results that the sinulations have produced.

BER Comparison - Mean Subtraction
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Figure 4. 20 — BER Comparison of Mean
Subtraction
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In Figure 4.13, we see that the 10 pole corrected case has
significantly worse BER at medi um and high SNR however at 40dB
SNR, we see convergence of all curves. The 30-pole case |lines up
exactly where the no correction curve is. This is very simlar
to the Add-to-First algorithm that we wused in the previous
section. But it also shows us that with a |ower predictor
sanpling frequency, we have conparable results to not correcting
t he predictor, rather than having worse performance.

Spectral Efficiency Comparison - Mean Subtraction
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Figure 4. 21 - Throughput Comparison of Mean
Subtraction

In Figure 4.14, we have a plot of spectral efficiency curves for
nmean- subtraction and no correction. As we expect, the weakest
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case in terns of BERis the strongest one in terns of throughput.
At medium SNR we see that the corrected linear prediction
perfornms better than the one having no correction. As with the
BER performance, the spectral efficiency for the Mean Subtraction
met hod has gai ned enough to match performance of no correction.
W believe this is due to the resistance of error propagation in
the I owered sanpling rate. Wat Mean Subtraction may be doing is
adjusting the coefficients in such a way that it beconmes severely
subopti mal when predicting many sanples ahead, but does not
change the predictor in the short term

Let us now conpare the Mean Subtraction nmethod to the Add-to-
First nethod when using one sanple per franme of information for

the predictor.
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BER Comparison - Add-to-First and Mean Subtraction
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Figure 4. 22 — BER Comparison Add-to-First and
Mean Subtraction

In Figure 4.22, we have the BER conparison between mani pul ating
pol es and subtracting means. It is clear that subtracting the
nmean gives us a better BER than nanipulating poles in terns of
BER, and we wll now expect that the Add-to-First method wll
have better spectral efficiency.
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Efficiency Comparison - Add-to-First and Mean Subtraction
3] T T T I T

— Ideal

550 —+« Add-to-First i , . N
—=— Mean-Subtraction :
—=— No Correction - /

Bits Per Symbol

5 10 15 20 25 30 35 40
Average SNR (dB)

Figure 4. 23 — Throughput Comparison Add-to-
First and Mean Subtraction

And in Figure 4.23, we do indeed get better efficiency with pole
mani pul ati on than we get with mean subtraction. Mean subtraction
gives slightly better efficiency than no correction at all.

To summarize this section, it would seemthat there is no clear
way to make significant inprovenents in BER without taking a
significant loss in spectral efficiency. However, by using the
nmean subtraction method of prediction, we can have a very snall
increase in spectral efficiency while sinultaneously naintaining
the BER In the pole manipul ation nethods, we nmake a tradeoff
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bet ween BER and throughput; we degrade BER in order to increase
t he t hr oughput .

4.2.4 Parallel Prediction

W have denonstrated that our adaptive nodul ation system when
i mpl ementing linear channel prediction produced better results
when the predictor sanples the channel nore slowy. Performance
curves indicate that sanple rates as |low as one channel sanple
per franme can provide better BER and spectral efficiency.
However, in our system we use the pilot synbols from the FFT
estimator to provide this information to the predictor, and the
slower sanpling rate neans that there is information that is not
used by the predictor. 1In this section, we are going to explore
t he possi bl e benefits of using parallel prediction.

In the superior prediction schene, as denonstrated in Section
4.2.1, the best performance resulted from using only one
prediction pilot per frane. Therefore, there are many pilots
that carry information that are not being used in our predictor.
In parallel prediction, we try to harness these sanpl es al ongsi de
the sanple that is being used in the normal case. |If we used one
prediction sanple in the normal predictor, the parallel predictor
we will use two predictors and separate sanples for each one

Figure 4.17 illustrates the difference between normal prediction

and paral l el prediction.
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One Frame

Pilat 1 Predictor 1 —————— Result
One Frame
Mean ——— Result
Pilat 1 Predictor 2

Figure 4. 24 — Diagram of Normal Prediction and
Parallel Prediction

As shown in Figure 4.24, in parallel prediction, we take two
sanmples from a frame and run them through two separate but
identical predictors. The results from those predictors are

averaged out and the result is the mean of the two (or nore)
pr edi ctors.

In the following figures, we will see how the parallel prediction
i dea af fects performance.
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Comparison of Parallel and Normal Prediction
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Figure 4. 25 - BER Performance between Normal
and Parallel Prediction

Figure 4.25 shows us a set of BER performance curves for regular
and parallel prediction. In this plot, the difference between
the normal and parallel are the sanples chosen to be the inputs
of the predictor. In the normal version, the 5" sanple (of 10)
was collected for the predictor, but in the parallel version, the
3% and the 7'" bits were taken out. Now that we have detailed the
difference, we can go on to discuss the result. It is clear that
the performances of all curves are virtually identical up to
medi umhigh SNR  The 30-pol e double predicti on case seens to be
the best performng curve up to the |ast point, where the 10-pole
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nornmal case seens to outperform However, we believe this to be
a result of sinulation noise. So it would seem that double
prediction has very little inpact, if any. Ve say this because
if there should be any significant benefits for the 30 pol e case,
we should also see it for the 10 pole case, which we do not.
This leads us to believe that parallel prediction does not
i nprove BER performance.

Comparison of Parallel and Normal Prediction
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10 Poles Double
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Figure 4. 26 — Spectral Efficiency Performance
Normal/Parallel Prediction

In Figure 4.26, we see that the spectral efficiency between all
curves is exactly the same. Parallel prediction does not alter
the spectral efficiency in any way.
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The previous case was a sinulation of a systemthat did not alter
the prediction poles in any way. Now | et us see what happens
when we run the Add-to-First pole alteration method.

Comparison of Parallel and Normal Prediction w/ Pole Adjustment
T L L T T e e et T
10 Poles Double ]
—&— 30 Poles Normal |
—2— 30 Poles Double ]

i 107}
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107 b e :E: e e e e = -
10* i i | i ! i i
0 5 10 15 20 25 30 35 40

Average SNR (dB)

Figure 4. 27 — BER Performance with Pole
Adjustment

When we include pole adjustnent, we see that there is a large
separation between the 10 pole and the 30 pole runs. However, it
woul d seem here that like in Figure 4.27 the parallel prediction
does not do nuch in ternms of benefits. Both sets of curves show
us that parallel prediction does not buy us anything in terns of
BER. Let us nove on to throughput analysis.
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Comparison of Parallel and Normal Prediction w/ Pole Adjustment
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Figure 4. 28 — Spectral Efficiency with Pole
Adjustment vs. Average SNR

In Figure 4.28, we have a nore interesting result. It would seem
that while our error rates have not changed much with parall el
prediction, our spectral efficiency has. If we run pole
adjustrments wth parallel prediction, we get a significant
increase in throughput at |ower and nedi um SNR If we ook at
the BER at those same SNR ranges, they are virtually the sane.
This leads us to believe that there is a throughput advantage
when we use parallel prediction.
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4.3 Forward Error Correction Coding

The final area of performance enhancenment that we will consider
in our study of adaptive nodulation is the use of forward error
correction (FEC) coding. FEC coding has been used in nmany data

transfer applications for decades now, ranging from wreless

comuni cations to optical disk reading [18]. The varieties of
FEC codes include Reed-Solonon codes to BCH codes to
convolutional codes to turbo codes. VW will be using

convol uti onal codes in our study.

In nmodern digital communications, virtually all data systens use

sone sort of FEC coding to guard against errors due to noise or

i nterference. In general, convolutionally coded systens perform
well in environnents where bit errors occur independently, such
as in AWGN channel s. If a bit is flipped, there is infornmation
concerning that bit that is spread anong adjacent bits. The

decoding process is able to correct these isolated errors.
However, should the channel experience a fade, then it is
possi bl e that several bits in succession will be in error and the
decoder will not be able to correct them To conbat this,
systens typically include an interleaver to scranble the bits
after encoding and before decoding. This wll help to
redistribute errors caused by fades provided that the fade
duration is shorter than the interleaver |ength.

The effects of coding have been docunmented extensively in
resear ch. However, we would like to examine the effects of
coding on an adaptive nodulation schene in a Rayleigh fading
channel. W would like to see how the performance of the system
reacts to using prediction and adaptive nodulation at the frane
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level and coding at the block level (a block consisting of many
franmes). W have seen from Chapter 3 that higher Doppler rates
decrease the effectiveness that prediction gives us. However ,
hi gher Doppler rates also provide coded systens an advantage
since the interleaver will be able to distribute errors due to
fades nore effectively [19].

Wen we incorporated coding into our system we used coding
bl ocks of 4500 bits and a k = 7, r = % convol utional code. Al so,
rather than using hard decision decoding, we chose to use soft
deci sion decoding. Soft decisions can provide a gain of up to
3dB over hard decisions [18].

Bel ow are plots of our adaptive nodul ati on systemw th codi ng.
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Coded Adaptation w/o Prediction

.| — Ideal - No Coding |4
—— SHz N
50Hz

SNR (dB)

Figure 4. 29 — Coded Adaptation w/o Prediction
vs. Average SNR

Figure 4.29 plots the BER performance of our adaptive nodul ation
systemwith coding along with the ideal adaptive nodul ati on case
wi t hout codi ng. W observe at low average SNR the system
operating at high Doppler rate outperforns the one in |ow
Doppl er. However, as average SNR increases, the performance
beconmes the sane. This is due to the fading channel being the
main error source rather than the receiver noise. [t would
appear that the coding advantage with high Doppler fading has
been exhausted in high average SNR
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Coded BER with Prediction
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Figure 4. 30 — Coded BER with Prediction vs.
Average SNR

Figure 4.30 plots the performance of the adaptive nodul ation
system when prediction is applied. W inmmediately see that there
is no overlap in the curves as there was in Figure 4.29. It
would seem that the prediction was able to inmprove the
performance of the adaptive nodul ati on at 50Hz Doppl er. Conbi ned
with the coding gain at 50Hz, the performance is significantly
better than 5Hz. Figure 3.26 illustrates the difference between
predi ction and non-prediction at 50Hz Doppler. The 5dB gain we
have with prediction in Figure 3.26 seens to correspond with the
5dB gain we see here in the coded system And it appears that
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the 5dB gain occurs in the SNR ranges of 25dB and above, exactly
where the non-prediction case denonstrated even performance
bet ween 5 and 50Hz.

Coded Adaptation at SHz Doppler
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| = No Prediction i
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SNR (dB)

Figure 4. 31 - Coded BER at 5Hz vs. Average
SNR

In Figure 4.31, we show a conparison between prediction and non-
predi ction when applied to the coded system at | ow Doppler rate.
W imedi ately notice that they provide equal performance up to
approxi mately 30dB, where the non-prediction curve reaches an
error floor, but the prediction curve does not. Figure 3.24
shows that adaptive nodulation with and without prediction have
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the sanme performance up to 25dB average SNR Here in the 5Hz
coded situation, we see that they deviate around 30dB, which is
where a 5Hz conpari son w thout codi ng woul d devi at e.

Let us now see how prediction and non-prediction neasure up
agai nst one anot her at hi gh Doppl er.

Coded Adaptation at 50Hz Doppler
I

T T F T

Figure 4. 32— Coded BER Performance at 50Hz
vs. Average SNR

Figure 4.32 conpares the perfornmance between prediction and non-
prediction at 50Hz Doppl er. It would seem that between 10 and

15dB average SNR, we observe a deviation, with the prediction
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case being superior to no-prediction. If we refer to Figure
3.26, this is the range in which the uncoded adaptive system
deviated as well. Unlike the |ow Doppler situations, we have
gains up to 10dB when running at high Doppler and nedi um SNR
ranges, as opposed to no gains until high SNR  The coding has
becone nore powerful wth the in-franme variations from high
Doppl er channel s and has al so benefited from prediction allow ng
better adaptation choices to be nade.

To show that the gains from high Doppler and prediction are
comng from the proper choices in adaptation and not from being
spectrally inefficient, we present the throughput curves of the

four cases we presented above.
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Spectral Efficiency Comparison - Adaptation with Coding
3 T T T T T T I

~~ 5Hz No-Pred f A

28l 5Hz Pred ‘ : ; i
: —&— 50Hz No-Pred : ;

50Hz Pred ; :

261 : : : .

N
N
T

Bits Per Symbol
N
T

=
oo
T

16

14

1.2F

0 5 10 15 20 25 30 35 40
SNR (dB)

Figure 4. 33— Spectral Efficiency of Coded
Adaptive Modulation vs. Average SNR

As we can see in Figure 4.33, all of the throughput -curves
essentially overlap one another. This confirns that the
performance gains of the predictive simulations have not cone
from continuously choosing | ower nodul ati on schenes. However, we
do note that the spectral efficiency here is half of what it was
wi t hout codi ng. In sunmary prediction is particularly powerful
when coding is used. Coding tends to work best in noderate to
high fading environments with a fixed interleaver depth. Since
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prediction benefits the link the nost in just these scenarios, it
provi des substantial inprovenment in coded cases.

4.4 System Performance with Real Channel Data

Throughout this thesis, we have relied on simulated channel
val ues using the Jakes Mddel. This section presents the use of
our systemwith data collected fromreal |ife situations. As it
is a real channel, and not one that is being generated using a
Rayl ei gh nodel, we may not have a channel that fits a Rayleigh
di stribution. Figure 4.34 depicts a snall time sanple of the
dat a:
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Actual Fading Channel Samples
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Figure 4. 34 — Real Channel Data

The data that Figure 4.34 shows is noisier than the channel data

that was shown in Chapter 2. From our sanple rate, we can
determne the Doppler rate of this channel by taking the FFT of
the channel. Figure 4.35 shows the result.
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x10* Frequency Content of Channel
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Figure 4. 35— Frequency Content of the Channel

From Figure 4.35, we see that the Doppler rate of our channel is
sonmewher e between 200Hz and 250Hz, which is faster than anything
that we have sinulated. To nake this data work for nodels that
we have used in simulation, we shall interpolate this data by a
factor of 5 to give us a fading rate of 40Hz to 50Hz.

To confirm that this is a Rayleigh channel, we present a

hi stogram of the distribution of the sanpled data.
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Comparison between Channel and Rayleigh PDFs
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Figure 4. 36 — Histogram Showing the
Distribution of the Channel is Rayleigh

Figure 4.36 plots the distribution of our Rayleigh channel.
Al though the curve is not perfectly Rayleigh, the channel is at
| east somewhat Rayl ei gh distributed.

Now t hat we have discussed the characteristics of the data that
we used to create our channel, we can now run our systemwth the

actual interpol ated channel data.
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Comparison Prediction vs. Non-Prediction in Real Channel
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Figure 4. 37 — Predictive and Non-Predictive
Adaptive Modulation in Real Channel Data

In Figure 4.37, we have a pair of performance curves that show
the processing gain of predictive adaptive nodul ation. This plot
shows that the prediction algorithm works simlarly for this
channel as it does for the sinulated one.
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Throughput Comparison Prediction vs. Non-Prediction in Real Channel
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Figure 4. 38 — Throughput Comparison Between
Prediction and Non-Prediction in real Channel
Data

Figure 4.38 shows wus the conparative spectral efficiency
performance between adaptive nodul ation with prediction, wthout
prediction, and the ideal performance. Cdearly we see that the
adaptive schemes are not attaining the efficiency of the ideal
curve. The reason for this is not due to the predictor, as we
note that the non-predictive adaptive nodulation system suffers
the sanme spectral efficiency shortcom ng. The problem is wth
the SNR estimator. Wen the SNR estimator in the sinulator is
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set to perfectly estimate the SNR we find that the efficiency
problemis avoi ded.

4.5 Conclusions

In Chapter 4, we have presented the problem of bias in linear
prediction. This bias was causing the spectral efficiency of the
predictive systens to be significantly |ower than that of non-
predi ctive systens. W followed this by presenting various
solutions to the bias problem I ncl uded was slow ng down the
sanpling rate of the predictor. Al so, we |ooked at nani pul ating
the poles of the predictor by changing their values. W further
tried subtracting an auto-correl ation weighted nmean fromthe data
set. And lastly, we tried to use nultiple prediction paths in
hopes of wutilizing nore data. From what we have done, sl ow ng
down the predictor sanpling rate was the nost effective.

The second part of the chapter dealt wth adding convol utional
coding to the adaptive system W found that with coding, we
could significantly inprove the BER performance of our adaptive
systens, especially at high Doppler rates. However, we had to
cut our spectral efficiency in half in order to have these
i mprovenents. Additionally, we found that prediction provided
|arger gains in a coded systemthan in an uncoded system

To sumarize, we were able to overcone the bias problem by
changing the sanpling rate on the predictor and by using FEC, we
greatly inproved BER performance at the cost of half our spectral
ef ficiency.
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Chapter 5

CONCLUSIONS

5.1 Conclusions

In our work we have explored the inprovenents to adaptive
nodul ati on by using linear prediction to predict future channel

power levels in periods of fast fading. The reason that it was
worthwhile to explore predictive algorithns was to overcone the
propagation delay in the feedback channel. W have shown that we
can gain significant inprovenents in BER especially at higher
Doppl er rates. W explored the effects that SNR and FFT

estimati on had on our systemas well.

At high Doppler rates, we observed that prediction had inherent
bias difficulties and we proceeded to provide solutions to those
problens. W presented nethods that involved altering prediction
coefficients, subtraction neans of sanple data, and changing the

sanpling frequency of the predictor.

Codi ng was al so a subject of observation in this thesis. W saw
that coding operated nore effectively at high Doppler rates and
coul d overcone the shortcom ngs of adaptive nodul ation in adverse
channel s.

The highlight of this thesis was the ability of our systemto be
able to operate on real channel data. Through the use of rea
channel sanples, we were able to show the workability of our
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systemin a real environnent. W showed that with real channels,

we would be able to reap benefits from adaptive nodulation with

predi ction over normal adaptive nodul ation and static nodul ati on.

5.2 Future Research

Ther e

is still a lot of work that can be done with adaptive

systens and |inear prediction.

1) Qur channel nodel consisted of a flat fading channel. It
would be an interesting study to try prediction on
frequency sel ective channel s.

2) Linear prediction was the prediction nmethod of choice in
this paper. There are several other prediction nethods
that may be used. They include subspace nethods, ESPIRIT,
MUSI C, or nonlinear prediction.

3) Instead of adapting nodulation, future research could
i nclude adaptive coding. Rat her then changi ng nodul ation
schenmes, we could keep nodulation static while changing
codi ng rates.

4) In all sinulations in this work, we assuned that the
control channels were error free. It would be of interest
to see how performance would be affected with an inperfect
control channel

W only dealt with a single link which does not include

interference. A study on nultiple users would be of interest in

si mul ati on.
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