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Assessing annual urban change and its impacts on evapotranspiration 

Heng Wan 

ABSTRACT 

Land Use Land Cover Change (LULCC) is a major component of global environmental change, 

which could result in huge impacts on biodiversity, water yield and quality, climate, soil 

condition, food security and human welfare. Of all the LULCC types, urbanization is considered 

to be the most impactful one. Monitoring past and current urbanization processes could provide 

valuable information for ecosystem services evaluation and policy-making. 

The National Land Cover Database (NLCD) provides land use land cover data covering the 

entire United States, and it is widely used as land use land cover data input in numerous 

environmental models. One major drawback of NLCD is that it is updated every five years, 

which makes it unsatisfactory for some models requiring land use land cover data with a higher 

temporal resolution. This dissertation integrated a rich time series of Landsat imagery and NLCD 

to achieve annual urban change mapping in the Washington D.C. metropolitan area by using 

time series data change point detection methods. Three different time series change point 

detection methods were tested and compared to find out the optimal one.  

One major limitation of using the above time series change point detection method for 

annual urban mapping is that it relies heavily on NLCD, thus the method is not applicable to 

near-real time monitoring of urban change. To achieve the near real-time urban change 

identification, this research applied machine learning-based classification models, including 

random forest and Artificial Neural Networks (ANN), to automatically detect urban changes by 

using a rich time series of Landsat imagery as inputs. 

Urban growth could result in a higher probability of flooding by reducing infiltration and 
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evapotranspiration (ET). ET plays an important role in stormwater mitigation and flood 

reduction, thus assessing the changes of ET under different urban growth scenarios could yield 

valuable information for urban planners and policy makers. In this study, spatial-explicit annual 

ET data at 30-m resolution was generated for Virginia Beach by integrating daily ET data 

derived from METRIC model and Landsat imagery. Annual ET rates across different major land 

cover types were compared, and the results indicated that converting forests to urban could result 

in a huge deduction in ET, thus increasing flood probability. Furthermore, we developed 

statistical models to explain spatial ET variation using high resolution (1m) land cover data. The 

results showed that annual ET will increase with the increase of the canopy cover, and it would 

decrease with the increase of impervious cover and water table depth.  
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Assessing annual urban change and its impacts on evapotranspiration 

Heng Wan 

GENERAL AUDIENCE ABSTRACT 

Motoring past and current urbanization processes is of importance in terms of ecosystem services 

evaluation and policy-making because urban growth has huge impacts on the environment. First, 

this dissertation designed and compared three different methods for annual urban change 

mapping in Washington D.C. metropolitan area by using a rich time series of Landsat imagery 

and National Land Cover Database (NLCD).  Then, machine-learning based classification 

models were implemented to achieve near real-time urban change identification. Finally, 

spatially-explicit evapotranspiration (ET; the sum of evaporation and transpiration, representing 

water evaporated from the earth’s surface, and water transpired by plants, respectively)  data for 

Virginia Beach, a case study location, were generated and annual ET rates for major land cover 

types were compared to assess the urbanization’s impacts on ET.  
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Chapter 1. Introduction, literature review, and statement of purpose 

1.1 BACKGROUND 

Land use and land cover change (LULCC) is an essential element of global environmental 

change and it has significant impacts on many aspects of ecosystem processes and functions at 

local, regional, and global scales (Turner et al. 1994; Lambin et al. 2003; Wu et al. 2013). Over 

the past several decades, agricultural extensification and intensification, deforestation, and 

urbanization have been increasingly impacting over half of the ice-free Earth surface (Kates et al. 

1990). Numerous published studies have suggested that LULCC has important implications for 

biodiversity, water yield and quality, climate, soil condition, food security and human welfare 

(DeFries et al. 2004; Deng et al. 2014; Messina & Walsh 2001; Muñoz-Rojas et al. 2015; Roy & 

Srivastava 2012; Staudt et al. 2013; Yuan 2008). Although urban areas only constitute a small 

portion of the global land surface, urbanization is widely considered as the most intensive and 

important LULCC type (Mustard et al. 2004). Land transformations from forest and other natural 

lands to urban are typically irreversible and may lead to many ecosystem service related 

problems such as deterioration of water and air quality (Kalnay & Cai, 2003; Yuan 2008), loss of 

biodiversity (McKinney 2002), spread of invasive species (Alston & Richardson 2006), and 

habitat fragmentation (Radeloff et al. 2005). With the rapid migration of population to urban 

areas, urbanization processes have been accelerating during the past decades (Chen et al. 2014).  

Monitoring past and current urban extent and urbanization processes are of critical importance 

for assessing ecosystem services and supporting policymaking.  

The impacts of urbanization on the hydrologic cycle are of critical importance because 

urbanization could cause more floods by reducing evapotranspiration (ET) and infiltration via 

impervious surfaces, leading to huge economic losses and threatening people’s lives (De Roo et 
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al., 2001; Suriya and Mudgal, 2012). Urbanization at the sacrifice of urban forests is of major 

concern in terms of stormwater management and flood control. Urban forests have higher 

evapotranspiration rate compared to other major land cover types. They contribute to water 

removal, thus reduce flood risk (Jim and Chen, 2009). Quantifying ET changes caused by 

urbanization could provide valuable information for urban planners and policy-makers in regards 

to stormwater management and flood control (Voyde et al., 2010). 

 

1.2 AN OVERVIEW OF PAST URBAN MAPPING EFFORTS 

Increasing awareness of the importance of urbanization leads to numerous efforts in urban 

mapping using remote sensing data. Landsat imagery, along with many other satellite data, are 

now routinely used in characterizing urban extents and spatial structures (Anderson 1976; Herold 

et al. 2003; Taubenböck et al. 2012). With the launch of the IKONOS-2 by Space Imaging in 

1999, high resolution (e.g., meters or sub-meter) satellite imagery became available for urban 

analysis (Sawaya et al., 2003). Such urban mapping efforts have been trending from local scale 

to regional scale and many researchers focused their studies on monitoring urban dynamics 

(Klein et al., 2012; Mishra et al. 2010; Lambin 1997). The global scale urban mapping is still a 

significant challenge due to satellite data availability, computational cost, and data quality 

concerns (Verburg et al., 2011; Yifang et al. 2015). Early global land cover products, mainly 

those derived from Normalized Difference Vegetation Index (NDVI) of Advanced Very High-

Resolution Radiometer (AVHRR), have coarse spatial resolutions of 1km to 1º (DeFries and 

Townshend 1994; Loveland & Belward 1997). More recently, several global urban map products 

were generated at 300-m and 500-m resolution using satellite data from SPOT4, MODIS 
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(Moderate Resolution Imaging Spectroradiometer), and MEdium Resolution Imaging 

Spectrometer (MERIS) (Bartholome & Belward 2005; Schneider et al. 2010; Arino et al. 2007). 

In 2014, the spatial resolution was improved to 30 m by the release of a global land cover map 

named GlobeLand30, focusing on 2000 and 2010 mapping years (Chen et al., 2015).  

In the U.S., the National Land Cover Database (NLCD) serves as the major land use land cover 

database. The products covering the conterminous United States are released every 5 years (e.g., 

2001, 2006, 2011, and 2016). Although NLCD are now routinely used in regional and national 

land change studies (Ahlqvist 2008; Masek et al. 2008), the intrinsic 6-year time gap between the 

image-capture date and the product-release date often makes NLCD out of date, especially for 

those areas experiencing fast urbanization processes. Updating NLCD to the annual temporal 

resolution and near real-time is appealing for a wide range of data users. One approach to update 

NLCD is to compare and detect changes between the images acquired from the targeted dates 

and the images from the previous NLCD mapping year (e.g., 2010) (Xian et al., 2009). However, 

this snapshot change detection method may not be applicable in biologically-complex system 

due to phenology-induced problems (Lunetta et al. 2002). Also, this method is flawed by its 

intrinsic undersampling of the temporal series of the spectral information. Thus, multi-temporal 

land change or time series remote sensing data analyses received increasing attention in both 

remote sensing image analysis and land change science domains. New urban change detection 

algorithms, including those based on Normalized Difference Vegetation Index (NDVI) time 

series data analysis, are of particular interests (Lunetta et al. 2006).  
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1.3 TIME SERIES DATA ANALYSIS FOR ANNUAL URBAN MAPPING 

Mapping annual urban change by updating the annual urban extent of NLCD is promising 

because NLCD has a relatively high accuracy (overall accuracy greater than 80%) and the 

resulted dataset could potentially serve a broader range of users since NLCD is the major land 

use land cover dataset in the U.S. (Wickham et al., 2013). By using two NLCD datasets from 

different years (e.g., NLCD 2001 and NLCD 2016), all urban change pixels between these two 

years could be identified, and annual urban change detection can be achieved if specific urban 

change year could be pinpointed for each urban change pixel. 

For annual urban change mapping, Landsat-based NDVI time series data are particularly useful 

(Liu et al., 2015). NDVI is the indicator of vegetation greenness, with higher NDVI values 

indicate healthier and denser vegetation conditions (Carlson and Ripley, 1997). Compared with 

other vegetation index, such as Enhanced Vegetation Index (EVI), NDVI saturates in well-

vegetated areas, which is normally considered as a major limitation (Wang et al., 2003). EVI can 

hardly saturate and is more sensitive to the canopy structural variations, including Leaf Area 

Index (LAI), canopy type, plant physiognomy, and canopy archietecture (Huete et al., 2002). 

These variations are considered as noises when talking about urban change detection. Therefore, 

this saturation limitation of NDVI becomes a merit when dealing with urban change detection 

problem. NDVI values can be calculated from satellite imagery (e.g., Landsat, MODIS) based on 

the following equation: 

NDVI = 
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+ 𝑅𝐸𝐷)
 

Where, NIR and RED represent spectral reflectance measurements from the near-infrared band 

and the red band of the satellite imagery, respectively (Di et al., 1994). Urbanization often starts 
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with clear cut of forests or removal of agricultural land, and subsequent impervious surface has a 

low NDVI value, thus causing a huge drop in NDVI value (Esau et al., 2016). The dramatic 

change of NDVI value linked with urbanization processes enables us to pinpoint urban change 

year based on the statistical analysis of NDVI time series data (Lunetta et al., 20006; Verbesselt 

et al., 2010).  Accordingly, annual urban mapping can be treated as time series change point 

detection problem, and various statistical metrics (e.g., mean, and standard deviation of the time 

series signal) could be used for the detection of change point. For this research, Washington D.C. 

metropolitan area (Figure 1) is chosen as the study site due to its diverse land cover types and 

high urbanization rate during the past decades (Sexton et al., 2013). 

 

Figure 1. Study area in Washington D.C. metropolitan area 
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1.4 MACHINE LEARNING 

Annual urban mapping via NDVI time series change point detection method relies heavily on the 

NLCD dataset to first identify all the urban change pixels. Currently, the most up-to-date version 

of NLCD is for the year of 2016 (Yang et al., 2018), which means annual urban mapping by time 

series change point detection is not applicable for the year after 2016 (e.g., 2017, 2018). New 

methods should be explored to deal with this near real-time urban change detection problem. 

Recently, machine learning algorithms (e.g., random forest, artificial neural networks) are 

increasingly used to deal with classification/regression problems, and their performances are 

often considered superior than traditional statistical methods (Breiman, 2001). The use of 

machine learning algorithm in remote sensing community is quite common, especially for image 

classification tasks (McIver and Friedl, 2001; Shao et al., 2012; Vatsavai et al., 2011). For 

remote sensing researchers, the most important task is to determine how to use one or more 

machine learning algorithms to solve a problem or achieve higher accuracy. For example, to 

achieve near real-time urban change detection, researchers should focus on the usage of available 

data to automate training data development and optimum tuning of algorithms.   

1.4.1 RANDOM FOREST CLASSIFIER 

A decision tree is a classifier that recursively splits a dataset into smaller subdivisions based on 

defined rules at each split node (e.g., maximize information gain; Friedl and Brodley, 1997). A 

random forest classifier consists of various decision trees, where each tree is independent from 

each other to produce its own classification outputs, and the final classification result is 

generated by taking the votes of all the decision trees (Pal, 2005).  There’s low correlation 
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among trees in random forest because each tree is trained based on a different training dataset 

randomly sampled with replacement and the features used for splitting data are also randomly 

selected, thus trees can protect each other from their individual errors (Trawinski et al., 2011). 

The use of random forest does not require the assumption of normal distribution and can deal 

with nonlinear classification problems (Lai et al., 2018). 

1.4.2 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) is designed to mimic the biological neural networks that 

constitute the animal brain (Jain et al., 1996). It consists of numerous nodes (artificial neurons), 

which form input layer, hidden layer, and output layer, and data signal could be transferred from 

input layer to hidden layer, and then from hidden layer to output layer through the 

interconnections between neurons in each layer as shown in figure 2 (Zou et al., 2008). Each 

connection transfers the output of the previous node as the input of the next node, with a weight 

to adjust its relative importance, and then the weighted sum could be further processed by the 

nonlinear function of the next node (Sietsma and Dow, 1991).The training process of ANN is to 

iteratively update those weights by minimizing the cost function (Majhi and Panda, 2011). ANN 

is broadly implemented in classification problems due to its noise-tolerant, high learning and 

generalization characteristics and its excellence in dealing with nonlinear problems (Basheer and 

Hajmeer, 2000). 
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Figure 2. ANN model  

1.4.3 SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) can be used for both regression and classification, but it is 

mainly used for classification problems. SVM algorithm finds out the best hyperplane that 

separates two data classes in the n-dimensional space (n equals to the number of features used for 

classification) by using kernel function to reduce calculation intensity (Amari and Wu, 1999). It 

can be used to deal with nonlinear classification problems and it is robust to outliers (Suykens, 

2001.). 
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1.5 CONSEQUENCES OF URBANIZATION 

Urban growth has direct impacts upon water yield and water quality. In this dissertation, 

urbanization is defined as land cover changes from non-urban categories to urban categories 

based on the NLCD. Large-scale conversion of forest/grassland to impervious surfaces can 

drastically affect surface runoff, interception, evapotranspiration, percolation and soil water 

storage (Weng et al., 2001; Lin et al., 2015). Highly urbanized areas can be more prone to 

flooding (Weng et al., 2001; McDonald et al., 2011). Production of excess nutrient export 

generated from urban expansion and intensification contributes to various water quality problems 

including Harmful algal blooms (HABs) (Paerl et al., 2001). Impacts of urban growth on water 

yield and water quality can be quantified using coupled urban change analysis and process-based 

watershed models (e.g., Zhang et al. 2007; Kling et al. 2014). For example, the Soil Water 

Assessment Tool (SWAT) has been extensively used to assess hydrologic and biogeochemical 

responses to land use and climate change (Arnold et al. 1998; Neitsch et al. 2002). 

Implementation of SWAT, or other process-based watershed models, can be challenging for 

highly developed urban areas because some urban watersheds may have already been heavily 

disturbed so they could not be fully calibrated. There is a pressing need for developing new 

approaches to quantify impacts of urban growth on major components of the hydrologic cycle, 

especially evapotranspiration, which serves as the major water removal agent from the earth’s 

surface.  

1.6 METRIC-DERIVED EVAPOTRANSPIRATION 

Evapotranspiration (ET) data could be directly quantified through measurements, such as using 

Eddy Covariance Tower observations (Liu et al., 2013). But ET data obtained from direct 
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measurement is limited in a relatively small spatial extent, and it is also quite expensive to 

conduct such measurements (El-Baroudy et al., 2010). When considering about estimating ET 

over a large area, remote sensing-based method is preferred rather than direct measurement 

because it cost much less money and labor (Liou and Kar, 2014). Mapping Evapotranspiration at 

High Resolution with Internalized Calibration (METRIC) is a mature surface energy balance-

based model which produces reliable ET estimation by using satellite imagery and ground 

weather observation data (Allen et al., 2007). With 30-m resolution METRIC-derived daily ET 

data readily available through Google Earth Engine, this relatively new geospatial data, 

combined with high temporal resolution (e.g., annual) urban change maps or future urban change 

simulations, could provide unprecedented opportunities for quantifying major impacts of urban 

growth on evapotranspiration. In this dissertation, Virginia Beach (Figure 3) is chosen as a case 

study for assessing urban growth’s impacts on evapotranspiration.  
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Figure 3. Study area in Virginia Beach 

1.7 CHALLENGES OF THE DISSERTATION 

Annual urban mapping by analyzing a rich time series of Landsat imagery required dealing with 

large spatio-temporal datasets. These data processing steps were quite computationally-intensive 

and time-consuming. Once annual urban mapping was completed, conducting a thorough 

accuracy assessment emerged as a new challenge because it was hard to find the real urban 

change years as a reference dataset. The pinpoint of real urban change years required tremendous 

amount of labor and time to manually monitor LULCC by comparing historic high-resolution 

imagery from Google Earth. 
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To quantify urban growth’s impacts on evapotranspiration, spatially-explicit annual ET data was 

generated based on daily ET data from 2000 to 2018. The current Google Earth Engine 

Evapotranspirtion Flux website does not support batch download of daily ET data, thus 

downloading such huge dataset was labor-intensive and time-consuming. These daily ET data 

also suffered from different extents of cloud contamination, and some of the data were flawed by 

noise and outliers. Before using them to generate annual ET data, data cleaning was implemented 

for this large dataset of daily ET, which required lots of computational capability and time.  

 

1.8 STATEMENT OF PURPOSE AND SIGNIFICANT OF RESEARCH 

Land use land cover data plays an important role in environmental modeling, such as ecological 

models, climatic models, and hydrological models (Hepinstall-Cymerman et al., 2009; Miller et 

al., 2007; Pielke et al., 2011). Currently, the broadly used NLCD is updated every five years, 

which might not satisfy some environmental models requiring higher temporal resolution 

(Foresman et al., 1997). Annual urban mapping based on NLCD could provide land use land 

cover data with a higher temporal resolution, which could be beneficial for those environmental 

models, and it can also help us have a better understanding about urbanization processes (Yin et 

al., 2014).  

Urbanization could increase the flood probability and severity mainly by decreasing 

evapotranspiration and infiltration (De Roo et al., 2001; Suriya and Mudgal, 2012). Assessing 

evapotranspiration changes under different urban growth scenarios could potentially provide 

valuable information for urban planning and stormwater management. 

The main goals for this project are to:  
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 Develop annual urban change map using a rich time series of satellite imagery from 1988 

to 2017 and NLCD products.  

 Achieve near real-time urban change detection using NDVI time series data and machine 

learning algorithms 

 Use high spatial-temporal resolution geospatial data to assess impacts of urban growth on 

evapotranspiration. 

 

1.9 STRUCTURE OF THE DISSERTATION 

This dissertation is organized into five chapters. Chapter 1 gives basic introduction and 

literature review about LULCC and its impacts on the environment, and it also states the 

purpose and challenges of this dissertation. Chapter 2 develops and compares three different 

annual urban mapping algorithms by using a rich time series of Landsat imagery and NLCD. 

Chapter 3 implements machine learning algorithms on a rich time series of Landsat imagery 

to achieve near real-time urban change detection. Chapter 4 assesses the evapotranspiration 

changes under different LULCC scenarios. Chapter 5 concludes all the previously stated 

studies and identifies major limitations of this dissertation. 

 

1.10 DATA SOURCES 

All the data used in this dissertation have been listed in table 1, with their corresponding 

sources given. For DEM and 0.5-m land cover data, they were directly obtained from 

Virginia Information Technologies Agency and Tree Canopy Assessment for Virginia Beach, 

respectively, thus there are no corresponding download links.  
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Table1. Data sources  

Data Source 

NLCDs 

Multi-Resolution Land Characteristics Consortium 

(https://www.mrlc.gov/) 

Landsat imagery Earth Explore (https://earthexplorer.usgs.gov/) 

Daily ET data 

Google Earth Engine Evapotranspiration Flux (https://eeflux-

level1.appspot.com/) 

DEM Virginia Information Technologies Agency  

Ground water well 

observations USGS (https://nwis.waterdata.usgs.gov/va/nwis/gwlevels) 

0.5-m land cover data Tree Canopy Assessment for Virginia Beach  
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Chapter 2. Mapping annual urban change using time series Landsat and NLCD 

2.1 INTRODUCTION 

In this chapter, we analyzed NLCD and a rich time series Landsat imagery from 1998 to 2017 to 

achieve annual urban mapping in Washington D.C. metropolitan area. Three different algorithms 

have been designed and compared, and the optimal algorithm can detect annual urban change 

with a high overall accuracy of 89%.  

 

2.2 PUBLICATION 

Wan, H., Shao, Y., Campbell, J.B., Deng, X.W., 2019. Mapping annual urban change using 

time-series Landsat data and NLCD. Photogrammetric Engineering and Remote Sensing, 85, 

715-724. 

 

The manuscript related to this chapter was published in Photogrammetric Engineering & Remote 

Sensing journal and is shown below: 
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Mapping annual urban change using time series Landsat and NLCD 

Develop annual urban change map using a rich time series of satellite imagery from 1988 to 

2017 and NLCD products.  

Abstract 

Annual urban change information is important for an improved understanding of urban dynamics 

and continuous modelling of urban ecosystem processes. This study examined Landsat-derived 

NDVI time series for characterizing annual urban change. To reduce impacts from cloud 

contamination and missing data, USGS Landsat Analysis Ready Data were processed to derive 

annual NDVI layers using a maximum value composite (MVC) algorithm. NLCD land cover 

products from 2001 and 2011 were used as references for generating a decadal urban change 

mask. Within the decadal urban change mask and using annual NDVI as input, we examined 

three time-series change detection methods to pinpoint specific year of urban change: (a) 

minimum-value method, (b) break-point detection, and (c) simple threshold identification. For 

accuracy assessment, we divided change pixels into urbanization and urban-intensification pixel 

groups, defined by initial land cover types. We used Google Earth's High-Resolution Imagery 

Archive as primary reference data for detailed accuracy assessment. Overall, the urbanization 

pixel group has good change detection accuracies of above 82.0% for all three change detection 

algorithms. The break-point detection method resulted in the highest overall accuracy of 88.0%. 

Overall accuracies for urban intensification pixel group were in the range of 35.0%-76.0%, 

depending on choice of change detection algorithm, length of input time-series, and further 

division of pixel subgroups.  
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1. Introduction 

Land use and land cover change (LULCC) has been recognized as a main driver of global 

environmental change. Important consequences of LULCC span a wide range of interconnected 

domains such as local-regional climate, air and water quality, hydrological cycle and 

biogeochemical fluxes, biodiversity, and food production (Messina and Walsh, 2001; DeFries et 

al., 2004; Foley et al., 2005; Yuan, 2008; Roy and Srivastava, 2012; Staudt et al., 2013; Deng et 

al. 2014; Maimaitiyiming et al., 2014; Muñoz-Rojas et al., 2015). Although urban area only 

covers a small percentage of the earth’s land surface, urbanization is probably the most intensive 

type of LULCC to alter local and regional environments. Conversion from forest and other 

natural landscapes to urban are typically irreversible and can lead to many ecological problems 

including deterioration of water and air quality (Kalnay and Cai, 2003; Yuan, 2008), biodiversity 

loss (McKinney 2002), introduction and spread of invasive species (Alston and Richardson, 

2006), and habitat fragmentation (Radeloff et al., 2005).  

Consequences of urban growth have traditionally been treated as local issues, but recent 

studies suggest that impacts are far-reaching, with regional and global implications (Seto et al., 

2012). Currently, over half of the world’s population lives in urban environments, which are 

expected to grow at an unprecedented rate in coming decades, especially in developing countries 

(Cohen, J.E., 2003; Seto, et al., 2009). Monitoring urban dynamics is of critical importance for 

ecosystem service assessment.  

Increasing awareness of the impact of urbanization on a global scale has motivated 

numerous urban mapping efforts using satellite remote sensing. Early satellite-based urban 

mapping applied medium resolution data from Landsat Multi-spectral Scanner System (MSS, 

79m), but its coarse spatial resolution presented a significant challenge for detailed urban studies 
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(Welch, 1982; Barnsley et al., 2003). With the continuous improvement of sensor technology 

and image processing capabilities, remote sensing data with higher spatial and spectral resolution, 

such as those from Landsat (TM/ETM/OLI) and SPOT, are now routinely used for urban 

mapping. The Landsat series of satellite imagery are among the most widely used because of its 

rich archive and open access (Woodcock et al., 2008). Examples of applications include general 

land cover mapping (Fung, 1992; Zha et al., 2003; Lo, 2004; Lu et al., 2011; Zhu et al., 2012; 

Chen et al., 2015), study of urban dynamics (Masek et al., 2000; Yuan et al., 2005; Taubenböck 

et al., 2012; Zhang and Weng, 2016; Wu and Chin, 2016), urban spatial structure analysis 

(Herold et al., 2002; Seto and Fragkias, 2005; Wang et al., 2014), and quantification of urban 

thermal characteristics (Weng et al., 2004; Weng, 2009; Xian and Crane, 2006).  

Most previous studies on urban mapping follow a "snapshot" model using 5-10 year 

mapping intervals. For example, in the U.S., regional- and national-scale urban mapping has 

been routinely conducted every 5 years (e.g., 2001, 2006, and 2011), as part of the National Land 

Cover Database (NLCD) development (Homer et al., 2007; Homer et al., 2015). The arbitrary 

mapping interval, however, is limiting for certain applications requiring land cover data at a 

higher temporal frequency (e.g., annual). For example, spatially distributed landscape process 

models and system dynamic models typically favor high temporal frequency land cover map 

products to support continuous modelling of ecosystem processes and functions (Lunetta et al., 

2006; Winz et al., 2009). Forecasting future land cover distributions can also benefit greatly from 

understanding historical and ongoing urban changes, observed with high temporal frequency 

(Pontius et al., 2008).  

 

Annual urban map products can be derived using a number of image classification and change 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/landsat
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detection techniques. One approach is to conduct image classification for each mapping year. 

Intrinsic image classification errors and their accumulations over all mapping years make this 

one-classification-per year method less appealing (Chen et al., 2003). Xian et al. (2009) 

developed a cost-effective change detection method for updating NLCD every 5 years. 

Specifically, they first identified areas of land cover change between 2001 and 2006 using a 

change vector analysis. The change pixels were subsequently classified into new land cover 

types. Although this method is effective in updating national land cover products at 5-10 year 

intervals, it is unclear whether it is directly applicable for an annual mapping interval because the 

associated change vector analysis may not be fully automated. In addition, the use of bi-temporal 

change detection focuses one image pair a time and does not make full use of rich temporal 

information (Huang et al., 2010).  

 

An alternative approach for annual urban mapping is to make full use of rich time series but 

coarser resolution remote sensing data to conduct change detection. For example, using high-

temporal MODIS (Moderate Resolution Imaging Spectroradiometer) data as input, Lunetta et al. 

(2006) examined annual integrated NDVI (Normalized Difference Vegetation Index) for each 

250m MODIS pixel to identify newly urbanized area. Change pixels were determined by 

applying NDVI change thresholds on a 1 year time-step. Through this approach, annual urban 

mapping is simplified as an annual urban change detection problem. The main limitation of this 

MODIS NDVI-based annual change detection is associated with MODIS 250m coarse spatial 

resolution. Time series analysis with 30 m Landsat data can be challenging because Landsat 

satellite has lower temporal resolution (i.e., 16 days). The U.S. Geological Survey's recent effort 

in analysis-ready Landsat products significantly improved the potential of Landsat-based time 
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series analyses by standardizing data from multiple Landsat satellites (TM, ETM, and OLI) 

(Banskota et al., 2014). The dense Landsat time series stacks from multiple Landsat satellites, 

combined with carefully designed analytical algorithms, are now increasingly used in 

characterizing forest disturbance and land cover change at annual intervals (e.g., Huang et al., 

2009; Huang et al., 2010; Zhu et al., 2012). Few previously published studies, however, have 

examined automated annual urban change mapping using the relatively longer Landsat time 

series data. It is also appealing to develop annual urban maps that maintain an overall 

consistency with the existing national/regional land cover data, especially when the existing 

national/regional land cover products have acceptable classification accuracies (e.g., NLCD). 

Significant resources have been used in generating national/regional products and it is generally 

more cost-effective to update the existing data than develop a completely new urban map product 

(Xian et al., 2009).  

 

The purpose of this study is to evaluate annual urban mapping by combined use of time series 

Landsat data and NLCD. Specifically, we first used decadal NLCD data to identify areas of 

urban change from 2001-2011. Within the urban change mask, we analyzed NDVI time series 

from Landsat data, pixel-by-pixel, to identify year of change. We compared three change 

detection methods using Landsat-derived NDVI time series: (a) minimum-value method, (b) 

break-point detection, and (c) simple threshold identification. We conducted detailed accuracy 

assessments for our annual urban maps by visual interpretation of Google Earth's High-

Resolution Imagery Archive. In addition, we examined how map accuracies vary when the 

length of input NDVI time series changes.   
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2. Methods 

2.1 Study Area  

The study area (22,500 km2) covers the northwest portion of the Washington D.C. metropolitan 

area, northern Virginia, and a small portion of West Virginia (Fig. 1). The Washington D.C. 

metropolitan area and its suburbs (northern Virginia) are among the fastest growing regions in 

the US, with an average urbanization rate of 11±2 km2/year (Sexton et al., 2013). Another reason 

for choosing this study area is due to its diversity in land cover types, including 2.83% of water 

body, 16.88% of urban and barren land, 49.05% of forest, 2.45% of shrub and grassland, 25.29% 

of agriculture, and 3.48% of wetlands in 2001, based on 2001 NLCD data. The robustness of 

annual urban mapping technique can be tested on varied land cover types. Finally, this study area 

has a good collection of high spatial resolution images based on Google Earth's High-Resolution 

Imagery Archive, thereby providing easier implementation of accuracy assessment at higher 

temporal resolution.  
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Fig 1. Study area covers the northwest portion of the Washington D.C. metropolitan area, 

northern Virginia, and a small portion of West Virginia 

 

2.2 Data  

A total of 1,292 Landsat Analysis Ready Data (ARD) (h027v009, ARD tile) surface reflectance 

images from 1988 to 2017 were downloaded from the USGS EarthExplorer 

(https://earthexplorer.usgs.gov). Each image contains 5,000 x 5,000, 30-meter pixels. We 

included imagery with substantial cloud/shadow cover as well as Landsat ETM+ SLC-off 

imagery in our original time series dataset, since for a given image with heavy cloud cover, 

cloud-free parts of the image can be used to enhance the temporal sampling frequency. A 

significant number of high quality pixels in the Landsat SLC-off ETM imagery are also useful 

https://earthexplorer.usgs.gov/
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for time series data analysis. Therefore, all available Landsat 5, 7, and 8 ARD imagery were 

obtained to develop a dense time series stack. We also downloaded two recent NLCD map 

products (NLCD 2001 and NLCD 2011) from the Multi-Resolution Land Characteristics 

Consortium (http://www.mrlc.gov/). Overall accuracies for NLCD are approximately 85% and 

individual class accuracies ranged from 79% to 91% for Anderson Level I classes (Wickham et 

al., 2010).  

 

2.3 Data preprocessing  

We derived NDVI for each Landsat image from 1988 to 2017 and stacked all NDVI layers to 

develop a NDVI time series stack. No additional data preprocessing steps were needed before 

NDVI calculation because Landsat ARD surface reflectance data come readily processed to the 

highest scientific standards. The main reason to use NDVI time series for our annual urban 

mapping was to reduce data dimensionality – one NDVI layer versus six surface reflectance 

bands. In addition, NDVI is good indicator of vegetation condition and status; new urban 

development typically involves vegetation clear-cut and NDVI change (Lunetta et al., 2006, 

Shao et al., 2011).  

 

To reduce cloud contamination, we applied a maximum value composite (MVC) algorithm to the 

original NDVI time series to derive monthly NDVI layers. Each monthly NDVI layer is a 

composite image representing the highest observed NDVI value for each pixel in a given 

compositing month. The same MVC algorithm (Holben, 1986) was used as the compositing 

algorithm in developing 16-day MODIS NDVI products (Huete et al., 2002); here, we applied it 

to 30m Landsat time series. The monthly NDVI images appeared to be noisy, with a significant 

http://www.mrlc.gov/
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amount of missing data due to image availability and cloud impacts. Thus, to further reduce 

cloud impacts and data volume, we applied the MVC algorithm to the NDVI time series to 

derive annual NDVI layer from 1988 to 2017. The resultant annual NDVI layers were stacked to 

construct annual NDVI time series – each pixel has 30 NDVI values covering years from 1988 to 

2017. We applied a Savitzky-Golay smoothing algorithm to remove pseudo hikes and drops from 

the annual NDVI time-series. The Savitzky-Golay filter is among the best performers with 

respect to ease of implementation and robustness of results (Chen et al., 2004; Jia et al., 2014; 

Shao et al., 2016). Fig. 2 shows the flowchart for the above-described data processing steps.  
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Fig. 2. Flowchart of data preprocessing 

 

2.4 Annual urban mapping  

We used NLCD as our primary reference data to evaluate our annual urban mapping methods. 

Starting with NLCD 2001, each release of NLCD divides urban areas into four classes: (a) 

developed open space (< 20% impervious cover; class code 21), (b) low-intensity developed (20-

49% impervious cover; class code 22), (c) medium-intensity developed (50-79% impervious 
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cover; class code 23), and (d) high-intensity developed (≥ 80% impervious cover; class code 24) 

(Homer et al., 2015). By comparing to higher resolution urban map, Irwin and Bockstael (2007) 

stated that NLCD has relatively low classification accuracy for open space and low intensity 

urban classes, mainly due to limitations of 30m Landsat resolution. Therefore, it is more realistic 

to focus on medium-high intensity urban pixels (NLCD classes 23 and 24) for better mapping 

accuracy. Using 2001 NLCD and 2011 NLCD as reference, we identified all pixels influenced by 

urbanization processes (from non-urban land cover to medium-high intensity urban) and pixels 

influenced by urban intensification processes (from open space/low intensity urban to medium-

high intensity urban) during the 10-year time period. These NLCD-derived urban change pixels 

were principal targets for further detection of their corresponding urban change years. 

 

In the following section, we describe three time series analyses used for identifying the specific 

year of urban change. For each time series change detection method, we examined input data for 

two time series, 1998-2014 and 1988-2017, to evaluate how length of input NDVI time series 

affect mapping accuracy.  

 

Minimum-value method 

For the minimum-value method, our assumption was that the minimum NDVI value within each 

NDVI time series should match well with specific urban change year. It is expected to see a 

significant decrease of the NDVI value if a forest/agricultural pixel is converted to a medium-

high intensity urban pixel. Similarly, NDVI values typically decrease, probably with a smaller 

amplitude, when an open space/low intensity urban pixel is further intensified to medium-high 

intensity urban.  
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We used 40 randomly selected urban change pixels (i.e., training data points) to conduct an 

initial assessment of this minimum-value method, using Google Earth's High-Resolution 

Imagery Archive as reference. It should be noted that urban change can be a multi-year process 

from the beginning of clear-cutting to the completion of construction. We used beginning of 

clear-cutting as ‘ground truth’ for urban change. We found that there was typically a three-year 

time lag between the minimum-value year and the observed urban change year from Google 

Earth. In other words, NDVI values may continue to decrease from beginning of clear-cutting 

and reach its lowest value in the next 2-3 years, depending on duration of construction activities. 

Therefore, we simply applied the 3-year adjustment to correct the time lag for the minimum-

value method.  

 

Break-point method 

For each MVC NDVI time series, the specific urban change year could serve as a break point 

dividing the whole time series into two segments. This break point should maximize the 

difference between the mean values of the two segments. To be specific, the identified urban 

change year should result in a maximum value of µ1- µ2, where µ1 is the mean of the time series 

segment ranging from starting year to the year of urban change and µ2 is the mean of the time 

series segment ranging from the urban change year to the ending year of time series. 

 

Simple-threshold identification 

Another approach to identify a specific change year in a time series NDVI is to specify a 

threshold value. Scanning the annual MVC NDVI from the beginning of the time series, the year 
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where NDVI value first dropped below the threshold value can be defined as the urban change 

year.  

 

We evaluated potential threshold values by examining the histogram plots of MVC NDVI values 

for various NLCD 2001 land cover categories. Fig. 3(a) shows the distribution of MVC NDVI 

(2001) values for medium-high intensity urban pixels. A large proportion of medium-high 

intensity urban pixels have relatively low MVC NDVI values (e.g., 0.1-0.7). Conversely, the 

vegetation pixels (e.g., forest and agricultural lands) and open space pixels typically have high 

MVC NDVI values greater than 0.6 (Fig. 3b and 3c). Therefore, it is reasonable to specify a 

threshold value of 0.6 to separate medium-high intensity urban and the other land cover classes. 

For a given NDVI time series, once the MVC NDVI value dropped below 0.6, it would imply an 

urban change event in that year. We started with a 0.6 threshold, then evaluated different 

threshold values ranging from 0.5 to 0.7 for sensitivity analysis. This simple threshold method 

may not produce accurate results for detecting urban intensification processes that involve 

changes from low intensity urban (NLCD class = 22) to medium-high intensity urban, because 

low intensity urban class shows a largely scattered NDVI distribution (0.1-0.9) (Fig. 3d).  
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              (a) Medium-high intensity urban                               (b) Vegetation 

    

                   (c) Developed open space                                  (d) Low intensity urban 

Fig. 3. Histograms of NDVI values for (a) medium/high intensity urban; (b) vegetation (forests 

and agriculture); (c) low intensity urban; (d) developed open space 

 

Detection of no-change pixels 

NLCD data have relatively high accuracy for medium-high intensity urban class (Irwin and 

Bockstael, 2007), but change pixels identified from NLCD 2001-2011 may still include false 

positives. Each of the three NDVI change detection methods could potentially identify those 

false detections from NLCD data. For the minimum-value method, if the NDVI-derived change 

year located outside of the period of 2001-2011, we label the pixel as no-change. For the break-

point method, a negative value of µ1- µ2 signals an increase of NDVI value in the time-series so 

it is reasonable to label the corresponding pixel as no-change. For simple-threshold identification, 

the no-change pixel can be determined based on a pre-defined threshold (e.g., 0.6). For a given 

NDVI time-series, if all NDVI values within the 2001-2011 window are higher than the 

threshold value of 0.6, the pixel could be labeled as no-change.  
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2.5 Accuracy assessment 

We conducted detailed accuracy assessments for two change pixel groups: (1) an urbanization 

group that includes all pixels changed from non-urban land cover classes to medium-high 

intensity urban, and (2) an urban intensification group that includes pixels changed from open 

space or low intensity urban to medium-high intensity urban. We systematically selected a total 

of 400 pixels for accuracy assessment: 200 for the urbanization group and 200 for the urban 

intensification group. Within the urban intensification group, 100 pixels were selected for open 

space to medium-high intensity urban change and low intensity to medium-high intensity urban 

change, respectively.  

 

Each selected change pixel was pinpointed on Google Earth and the actual urban change year 

was recorded by visual interpretation of Google Earth's High-Resolution Imagery Archive. The 

conversion of forest/agriculture cover to urban cover can be a multi-year process from the 

beginning of clear-cutting to the completion of construction. We used beginning of clear-cutting 

as the ‘ground truth’ of urban change. In some cases, it was difficult to detect the starting point 

of clear-cutting due to limited availability of historical satellite images. For example, an ongoing 

construction was observed in the March of 2005 Google imagery and the previous July 2003 

Google image showing forest/agricultural cover, the middle temporal point (year 2004) was then 

selected as the urban change year. For pixels without sufficient high-resolution imagery as 

reference (i.e., imaging gap > 2 years), we simply excluded them from the accuracy assessment 

because we could not define a ‘ground truth’ or observed urban change year. About 29 pixels 

were removed because of their ineligibility for the accuracy assessment, and replenished pixels 

were selected by simple random sampling. The same method was applied to the urban 
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intensification pixel group for determining change years. The only difference is that there might 

not be a clear-cutting event so the observed urban intensification year should be the year when 

construction started.   

 

The urban change years estimated from the NDVI time series analyses were compared with the 

Google Earth-derived data, pixel-by-pixel. Due to image availability issues, the Google Earth-

derived urban change year could have a one-year deviation from the actual urban change year, 

therefore, one-year difference between the NDVI-estimated change year and the Google Earth-

derived change year was considered as a ‘correct’ change detection. Overall accuracies were 

computed to compare three change detection algorithms using such a one-year deviation 

assessment. Additional two-year deviation assessments were conducted for thoroughness.  

 

3. Results  

3.1 Accuracy assessment for urbanization pixels 

Table 1 shows the error matrix of accuracy assessment for change and no-change pixels using 

Google Earth as reference. Note all 200 pixels were previously identified as change pixels (from 

other land cover classes to medium-high intensity urban) by comparing NLCD 2001 and 2011. 

Among the 200 selected pixels, 196 pixels were visually interpreted as change pixels using high 

resolution Google Earth imagery, suggesting very high accuracy of NLCD in determining other 

land cover classes (e.g., forest and agricultural lands) to medium-high intensity urban change. 

Using 1998-2014 NDVI time-series data as input, all three time-series methods performed well 

on the separation of change and no-change pixels, and the minimum-value method had the 

highest overall accuracy of 98.5% (kappa=0.56).  Simple-threshold identification performed 
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worst by falsely identifying no-change pixels, leading to a high commission error of 71.4%. The 

use of longer time-series NDVI (1988-2017) resulted in almost identical overall accuracy 

(difference < 1%) so the detailed error matrix is not presented here.  

 

Table 1. Error matrices of change and no-change for urbanization pixels using reference data 

derived from Google Earth.  

Time series 1998-2014        

 Reference from Google Earth   

 No change Change Total %Correct  %Commission 

Minimum-value 

method 

       

No change 2 1 3 66.7 32.3   

Change 2 195 197 99.0 1.0   

Total 4 196 200 98.5 (n=200)   

%Correct 50.0 99.5      

%Omission 50.0 0.5    Kappa=0.56 

Break-point method        

No change 2 6 8 25.0 75.0   

Change 2 190 192 99.0 1.0   

Total 4 196 200 96.0 (n=200)   

%Correct 50.0 97.0      

%Omission 50.0 3.0   Kappa=0.32   

Simple-threshold 

(t=0.6) 

       

No change 4 14 18 22.2 77.8   

Change 0 182 182 100.0 0   

Total 4 196 200 92.2 (n=200)   

%Correct 100.0 92.6      

%Omission 0 7.4   Kappa=0.34   

 

Table 1 summarizes general accuracy statistics for change and no-change pixels only. Fig. 4 

shows a scatter plot comparing the NDVI-derived and the Google Earth-derived change year, 

pixel-by-pixel. For simplicity, we used results from the break-point algorithm as an example to 
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demonstrate the comparison. Among 200 randomly selected points, ten were interpreted as non-

change pixels either from Google Earth or from the algorithm. The remaining points were plotted 

with different colors representing different frequencies of occurrence in the accuracy assessment. 

One-year deviation from the observed urbanization year from Google Earth is colored in yellow. 

It appears that a large majority of points (90.6%) lie within the one-year deviation zone, 

indicating good overall accuracy (R2 is 0.74 and RMSE value is 1.01 year). 

 

Fig. 4. Scatter plot of observed urbanization year v.s. estimated urbanization year for break-point 

method using MVC NDVI time series 1998 to 2014  

 

Based on one-year deviation definition as well as the classification of change and non-change 

pixels, pixels can be grouped into two categories of correct or wrong classification and overall 
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accuracy can be calculated for each algorithm. Table 2 summarizes overall accuracies for three 

change detection algorithms. Using 1998-2014 time series data as input, the break-point 

algorithm generated the highest overall accuracy of 88.0% for the one-year deviation accuracy 

assessment. The minimum-value and simple-threshold (threshold = 0.6) algorithms had the same 

accuracy of 82.5%. For the simple-threshold algorithm, variation of threshold value to 0.5 and 

0.7 led to reduced overall accuracy to 53.5% and 65.0%, respectively. Differences among three 

change detection algorithms declined when the tolerance level increased to two years of 

deviation. All three algorithms generated above 90% of overall accuracy; the break-point 

algorithm had the highest overall accuracy of 94%.  

 

Table 2. The overall accuracies for urbanization pixel group 

 

 Time series 

1998-2014 

Time series  

1988-2017 

±1 year:   

minimum-value 82.5% 85.0% 

break-point 88.0% 83.5% 

simple-threshold (t=0.6) 82.5% 82.0% 

±2 year:   

minimum-value 92.0% 88.5% 

break-point 94.0% 91.5% 

simple-threshold (t=0.6) 90.0% 89.0% 

 

The accuracy of change detection generally decreased when the longer time series (1988-2017) 

were used as input, except for the minimum-value algorithm in the one-year-deviation 

assessment. For example, the overall accuracy for break-point algorithm decreased to 83.5% 

compared to 88.0% resulted from 1998-2014 change detection. Longer time series data may be 

associated with more complicated NDVI trends involving longer-term NDVI increase/decrease 
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patterns. Our selected change detection algorithms thus can falsely identify change years located 

beyond the 2001-2011 time period. 

 

3.2 Accuracy assessment for urban-intensification pixels 

The classification accuracy of NLCD for urban-intensification pixels was much lower than that 

for urbanization pixels (Table 3). Among 200 randomly selected change pixels, only 168 pixels 

(84%) appeared to be actual change pixels based on Google Earth imagery and the remaining 32 

pixels (16%) should be labeled as no-change pixels. Among three change detection algorithms, 

the break-point method achieved the highest overall accuracy of 86.5% (kappa = 0.49) while 

simple-threshold method performed worst with an overall accuracy of 63.0% (kappa=0.25).  

 

Table 3. Error matrices of change and no-change for urban-intensification pixels  

Time series 1998-2014      

 Google Earth Reference 

 No-change Change Total %Correct %Commission 

Minimum-value method      

No change 7 5 12 58 42 

Change 25 163 188 87 13 

Total 32 168 200 85 (n=200) 

%Correct 22 97    

%Omission 78 3   kappa=0.25 

Break-point method      

No change 18 13 31 58 42 

Change 14 155 169 91.7 8.3 

Total 32 168 200 86.5 (n=200) 

%Correct 56.3 92.3    

%Omission 43.7 7.7   Kappa=0.49 

Simple-threshold 

identification 

     

No change 28 70 98 28.6 71.4 

Change 4 98 102 96.1 3.9 
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Total 32 168 200 63 (n-200) 

%Correct 87.5 58.3    

%Omission 12.5 41.7   kappa=0.25 

 

Fig. 5 shows scatter plots comparing the results from the break-point algorithm (best performing 

one) and the visual interpretation of Google Earth imagery. A total of 45 pixels out of 200 were 

identified as no-change pixels either from Google Earth or from the algorithm, so were not 

displayed on the scatter plot. Compared to the urbanization pixel group, the distribution of the 

scatterplot for urban intensification is more scattered. A much smaller portion of the points lies 

within the correct zone (76.6%), and there are more outliers located further away from the 

correct zone, indicating an inferior estimation of urban change year when compared with 

urbanization pixel group. The R2 (0.54) is much lower than that of urbanization pixel group 

while the RMSE (1.47 year) here is higher.  
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Fig. 5. Scatterplot of observed urban intensification year v.s. estimated urban intensification year 

for break-point method using MVC NDVI time series 1998 to 2014. 

Overall accuracies of urban intensification for the three change detection methods are 

shown in Table 4. Within the urban intensification group, we further divided the change pixels 

into two sub-groups depending on initial 2001 land cover types: subgroup21 represents change 

pixels with initial land cover class of open space (NLCD class 21) and subgroup22 represents 

change pixels with initial land cover class of low intensity urban (NLCD class 22). Using 1998-

2014 time series data as input and one-year-deviation accuracy assessment, the break-point 

algorithm resulted in the highest overall accuracy of 76% for subgroup21 change detection. The 

other two algorithms generated relatively lower accuracies of 59% and 65%, respectively. For 
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subgroup22, the minimum-value algorithm performed best (65.0%), although break-point 

algorithm’s performance was only 4% lower. The simple-threshold identification (threshold=0.6) 

performed worst on subgroup22 change detection. The overall accuracy of 35.0% for 

subgroup22 using simple-threshold identification was substantially lower than accuracy statistics 

derived from other algorithms. We did additional sensitivity analyses by varying threshold 

values from 0.5 to 0.7, the best overall accuracy achieved was only around 55.0%. This result 

suggested poor overall performance of this change detection algorithm.  

 

Table 4. Overall accuracies for urban intensification pixel group 

 

 Subgroup21 Subgroup22 

 Time series 

1998-2014 

Time series 

1988-2017 

Time series 

1998-2014 

Time series 

1988-2017 

±1 year:     

minimum-value 59.0% 59.0% 65.0% 66.0% 

break-point 76.0% 71.0% 61.0% 64.0% 

simple-threshold 

(t=0.6) 

65.0% 73.0% 35.0% 38.0% 

±2 year:     

minimum-value 84.0% 85.0% 75.0% 77.0% 

break-point 88.0% 83.0% 68.0% 71.0% 

simple-threshold 

(t=0.6) 

71.0% 78.0% 38.0% 42.0% 

 

Comparing overall accuracies for two subgroups suggests that the subgroup22 is more 

challenging for annual change detection. This was expected because the initial land cover type 

for subgroup22 is low intensity developed urban which has about 40-49% of impervious cover 

within each 30m Landsat pixel. Although all pixels within the subgroup22 experienced urban 

intensification during the 2001-2011 time period, it was difficult to pinpoint the specific year of 
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intensification through time series NDVI analysis.  

 

For both subgroup21 and subgroup22, overall accuracies generally increased when the length of 

the time series was expanded to 1988-2017, with the exception of break-point algorithm for 

subgropu21 change detection. This was the opposite of the result observed for urbanization 

pixels (i.e., non-urban to NLCD 23/24). This may be explained by the fact that certain 

algorithms’ ability to distinguish between non-change pixels from change pixels had a much 

higher weight on the overall accuracy calculation. A significant portion (16%) of 200 randomly 

selected pixels were actual non-change pixels (i.e., falsely identified by NLCD). When using 

time series 1998 to 2014 as data input, the minimum-value method would falsely assign an urban 

change year to a non-change pixel. By using a much longer time series as input data, more pixels 

would be assigned an urban change year outside the study time period, thus potentially 

increasing overall accuracy. A longer time series did not improve the performance of the break-

point method, because the break-point method detects the point where means of the time series 

change the most, and is less sensitive to length of the time series when compared with other 

methods. 

 

3.3 Urban change maps 

Urban change years for both urbanized pixels and urban-intensification pixels obtained from the 

optimal method (break-point) are shown in Fig. 6. In this figure, we grouped pixels with similar 

urban change years and assigned different colors to each group. To illustrate effects more clearly, 

Fig. 6 shows only a subset of the study area. As we have expected, pixels with the same or closer 

urban change years tend to be clustered together on the map. A part of the Washington 

Dulles Airport development can be seen as the L-shaped structure in the center of figure. All the 
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pixels for this airport have similar urban change years from 2005 to 2008. Figure 7 summarizes 

total numbers of urban change pixels by year. It is clear that the urban change rate increased 

from 1998 to 2003 and then slowly decreased year by year. Overall, a majority of urban 

development in our study area occurred between 2002 and 2007. 

 

 

 

Fig. 6. Urban change years: pixels were grouped into 5 categories for better visualization 



 

51 

 

purpose.  

 

 

Fig. 7. Frequency distribution of annual urban change. 

 

3.4 Novelty and limitation 

In our time series analysis, a maximum value composite (MVC) algorithm was applied to the 

Landsat NDVI time series to develop the annual MVC NDVI time series. The use of annual 

MVC NDVI time series has greatly reduced data volume, and at the same time, removed most of 

the noise in the original NDVI time series. For our accuracy assessment, we divided change 

pixels into two groups, urbanization and urban intensification. Separation of the accuracy 

assessment could provide more detailed information on the performance of our change detection 
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algorithms. 

Among three selected change detection algorithms, the break-point algorithm can be considered 

as optimal, based on two main reasons. First, the break-point algorithm is fully automated 

without user intervention while the simple-threshold identification and minimum-value 

algorithm both need different levels of calibration or threshold tuning.  

 

A fully automated method is much preferred when it is applied for a different study region or 

time-period. Second, the break-point algorithm finds the point at which the mean of the NDVI 

time-series changes the most significantly, thus it is less sensitive to data noise, contributing to 

higher overall detection accuracies.  

 

Our change detection methods, combined with the readily available NLCDs and Landsat 

Analysis Ready Data, can be directly applied to other fast-growing urban regions in the US to 

derive annual urban changes. The annual urban change maps contribute to NLCD impacts. More 

importantly, the high temporal urban change information could potentially improve our 

understanding of urban development patterns/trends. For example, the linkage between urban 

development and population dynamics (or other socio-economic factors) could be examined in a 

more continuous modelling framework.  

 

The main limitation for our change detection algorithms is their poor performance in dealing 

with subgroup22 (pixels changed from low intensity to medium-high intensity urban). However, 

we note that the number of pixels in the subgroup22 pixels is much smaller than those of other 

urban change categories, thus our change detection methods would maintain relatively high 
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overall accuracies when all change pixels are included for accuracy assessment. Future study 

needs to focus on improving change detection accuracy for subgroup 22. Potential solution may 

include exploring other spectral and spatial indices in addition to the commonly used NDVI 

time-series. Newly developed change detection algorithms, especially those dealing with high 

dimensional time-series data (e.g., Cho and Fryzlewicz 2015), could be explored in the future. 

Another limitation for our analytical approach is that annual mapping of urban areas could not be 

accomplished without the support from NLCD. For this study, NLCD 2001 and 2011 served as 

the input data to derive urban change masks. In our future studies, we plan to update our annual 

urban maps to include all study years from 1992 to 2016. The NLCD Retrofit data (1992-2001 

change) and NLCD 2016 data will be used as references for the longer term time-series analysis.   

 

4. Conclusion 

This study was designed for characterizing annual urban changes using time series Landsat and 

NLCD data. We examined both 17-year and 30-year Landsat-derived annual MVC NDVI time 

series using three different change detection algorithms to determine optimal combinations for 

annual urban change mapping. Using Google Earth’s high resolution imagery as reference, 

detailed accuracy assessment was implemented for urbanization and urban-intensification pixel 

groups, defined by the initial land cover types of change pixels. The result showed that the 

combination of break-point algorithm with a time series of 1998-2014 reached the highest 

overall accuracy for estimating both urbanization years (overall accuracy of 88%) and urban-

intensification years (overall accuracies of 76% and 61% for subgroup 21 and subgroup 22, 

respectively). The relatively low overall accuracy for subgroup 22 suggests that it is particularly 

challenging in determining urban intensification years for pixels labeled as low-intensity urban in 
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the NLCD data. Pixels with the same or close urban change years identified by the break-point 

algorithm tend to be clustered together on the map, further validating the overall good 

performance. In addition, the break-point algorithm is easy to implement and can be fully 

automated without user adjustment. It could be generalized to other fast-growing urban regions 

for annual urban change mapping across the US.  
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Chapter 3. Near real-time urban change detection through machine learning 

3.1 INTRODUCTION 

In this chapter, we processed a decadal long Landsat-derived NDVI time series data by using 

machine learning algorithms to achieve near real-time urban change detection. Different machine 

learning algorithms, such as random forest and artificial neural networks, have been tested and 

compared to find out the optimal method. 

 

3.2 MANUSCRIPT 

The manuscript for this chapter is in preparation for submission and is shown below: 
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Near real-time urban change identification through machine learning 

 

Abstract 

Urbanization is the most intensive Land Use Land Cover Change (LULCC) type, resulting in 

biodiversity loss, degradation of water and air quality, alteration of climate patterns, and changes 

in hydrologic cycles. Monitoring past and current urban growth could help us have a better 

understanding of urbanization processes, thus supporting ecosystem service evaluation, urban 

planning, and policy making. In this study, machine learning-based classification models, 

including the random forest classifier and Artificial Neural Networks (ANN), were tested and 

compared to find out the optimal algorithm for near real-time urban change detection. Ten-year-

annual-maximum NDVI time series data were used as data inputs in the classification models. 

Because the number of no-change pixels is much greater than that of urban change pixels, we are 

dealing with an extremely imbalanced dataset, thus different ratios between the number of no-

change pixels and that of urban change pixels were tested. Cross validations determined that a 

ratio of 1:200 between urban change pixels and no-change pixels worked best for urban change 

detection, and ANN achieved higher overall classification accuracy and with a faster 

computation speed than random forest classifier. By using high-resolution imagery archives in 

Google Earth as reference, accuracy assessments for the optimal classification model were 

conducted in three different sampling areas, including urban core, suburb area, and rural area. 

The results indicate that our model works well in urban setting environment, with overall 

accuracies of 95% and 92% for urban core and suburb area, respectively. However, its 

performance is inferior in rural areas where forest clearing could be induced by both urban 

change and forest harvest. Future research should seek to add more data inputs, such as distance 
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to existing urban, elevation and slope in our classification model to better distinguish urban 

change from forest harvest in rural areas. 

 

1. Introduction 

Land Use Land Cover Change (LULCC) causes huge impacts on the environment, including the 

alteration of the hydrologic cycle, climate patterns, air and water quality, biodiversity, and 

biogeochemical fluxes (Homdee et al., 2011; Lawrence et al., 2012; Mahmood et al., 2010; 

Martínez et al., 2009; Wilson and Weng, 2010; Wu et al., 2012). Urbanization is considered to be 

the most irreversible and human-dominated LULCC type, and likely the most intensive one, 

given the  resulting environment impacts at local, regional scales, and global scale (Seto et al., 

2011). In the past decades, urban areas have expanded at a fast rate due to rising population and 

migration from rural to urban areas (Angel et al., 2005). Seto et al. (2011) reported a world-wide 

urban growth of 58,000 km2 from 1970 to 2000. The world’s urban population has surpassed its 

rural counterpart since 2007, and it is predicted that over two-thirds of the world’s population 

will be living in urban areas by 2050 (Dye, 2008; Kammen and Sunter, 2016). This dramatic 

increase in urban population will continue boosting the expansion of urban growth in the 

following decades. 

 

Monitoring past and current urban extent could enable a better understanding of urban growth 

processes, including urban growth rates and patterns, thus supporting ecosystem services 

assessment, urban planning and policy-making (Harts et al., 2003). Numerous studies have 

quantified urban growth at local, regional, and global scales using remote sensing data, 

especially satellite imagery (Schneider et al., 2009; Trianni et al., 2015; Xian and Crane, 2005). 
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Landsat imagery is widely used one for urban growth monitoring due to its high spatial 

resolution (30m), high temporal resolution (approximately every 16 days), rich historic archives 

and open access (Woodcock et al., 2008). In the U.S., Landsat imagery, together with a series of 

ancillary datasets (e.g., topography, census and agricultural statistics, soil characteristics, 

wetlands, and other land cover maps), are used to derive the National Land Cover Database 

(NLCD), which provides land use land cover data for the entire U.S. (Homer et al., 2015). Due to 

its high overall accuracy of around 85% and its broad coverage across the whole nation, NLCD 

has been widely used for providing high spatial resolution (30-m) land use land cover data in 

numerous models (Homer et al., 2015). However, the five-year time gap between each NLCD 

product has limited its applications in some models requiring higher temporal resolution of land 

use land cover data (Winz et al., 2009).  

 

Image classification and change detection techniques are widely used for urban mapping and 

urban change detection (Jensen, 1981; Thapa and Murayama, 2009). One commonly used 

method is to conduct individual image classification for each satellite image obtained in each 

mapping year, and then urban change areas could be simply derived based on comparisons. But 

the intrinsic classification errors in each mapping year would accumulate through time, making 

this mapping method a low accuracy approach (Chen et al., 2003). Another method for annual 

urban mapping is to update the existing urban map products (e.g., NLCD) to an annual temporal 

resolution. Using NLCD as baseline could ensure a relatively higher accuracy for the derived 

annual urban map products, and these products could be utilized by a broader users since they 

are the continuations of NLCD. Wan et al. (2019) has proposed one method for annual urban 

mapping by using NLCD and Landsat-derived maximum annual Normalized Difference 
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Vegetation Index (NDVI) time series data. Here, annual urban mapping is to find out the urban 

change years for both urbanization pixels and urban intensification pixels, with the former one 

represents pixels changing from non-urban categories to medium/high-intensity urban and the 

latter one represents pixels changing from open space/low-intensity urban to medium/high-

intensity urban. The overall accuracy for detecting urban change years of urbanization pixels has 

reached a high level of 89%. There are two major steps in this method: First, NLCD from two 

different years (e.g., NLCD2001 and NLCD2011) are compared to identify all the urban change 

pixels (both urbanization pixels and urban intensification pixels) during this time period; Then, 

urban change year for each identified pixel is determined by analyzing Landsat-derived 

maximum annual NDVI time series data. One major limitation of this method is that it relies 

heavily on NLCD, and it could not be used for recent years where there’s no land cover data 

support from NLCD. To be specific, currently, the most up-to-date version of NLCD is for the 

year of 2016, and this method is not applicable for the years after 2016 (e.g., 2017, 2018, 2019) 

because urban change pixels after 2016 could not be identified due to the lack of NLCD data. 

Finding out pixels experienced with urbanization and urban intensification in recent years is 

considered as near real-time urban change detection. 

 

Urban change detection for recent years can be treated as a classification problem, where areas 

that have experienced urban change are represented by urban change pixels that can be 

distinguished from no-change pixels. Machine learning-based classification models, such as the 

random forest classifier and Artificial Neural Networks (ANN), could be the solution for this 

near real-time urban change detection problem (Feng et al., 2015; Liu and Lathrop, 2002). The 

classification process of these machine learning-based classification models is a black box where 
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classification mechanism is unknown, but these models normally outperform traditional 

statistical models in terms of overall classification accuracy (Breiman, 2001). 

 

The purpose of this study is to compare methods for achieving near real-time urban change 

detection using machine learning-based classification models.  Specifically, I tested and 

compared random forest and ANN to determine the optimal method for urban change detection. 

To test the optimal model’s prediction capability on different land cover settings, accuracy 

assessments will be conducted for three different sapling areas, including urban core, suburb 

area, and rural area. 

 

2. Methods 

2.1 Study area 

Landsat scene (path: 27, row: 9) shown in figure 1 is selected as the study area. The study area 

has a total area of 22,500 km2, and includes the northwestern part of the Washington D.C. 

metropolitan area, northern Virginia, and a small portion of West Virginia. Washington D.C. 

metropolitan area is considered as one of the fastest growing urban areas in U.S., with an average 

urban growth rate of 11±2 km2/year (Sexton et al., 2013). The dramatic urban expansion 

processes in the study area during the past decades is the prerequisite condition for testing our 

near real-time urban change detection methods. Based on NLCD 2001, the study area consists of 

2.83% water, 16.88% urban and barren land, 49.05% forest, 2.45% shrub and grassland, 25.29% 

agriculture, and 3.48% wetlands. The diversity in land cover types in the study area is another 

advantage of the selected scene because it allows us to test the classification accuracy of the 

optimal method at different land cover settings. Finally, a rich time series of high-resolution 
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images for the study area are available on Google Earth’s High-Resolution Imagery Archive, 

which facilitated the accuracy assessment of our method.    

 

Figure1. Study area and associated NLCD classes 

2.2 Data 

A total of 1,084 Landsat Analysis Ready Data (ARD) (h027v009, ARD tile) surface reflectance 

imagery from 1994 to 2019 were downloaded from the USGS EarthExplorer 

(https://earthexplorer.usgs.gov). The downloaded dataset included all the Landsat 5, 7, and 8 

ARD imagery within the designated time domain regardless of its cloud-contamination 

conditions since the cloud-free part of the image could still provide valuable information. Each 

image is composed of 5,000 by 5,000 pixels of 30-m resolution. In addition to Landsat ARD 

imagery, four NLCD map products (NLCD2001, NLCD2006, NLCD2011, and NLCD2016) 

were also downloaded from the Multi-Resolution Land Characteristics Consortium 

(http://www.mrlc.gov/). NLCD products have high overall accuracies of around 85%, with 

individual class accuracies ranging from 79% to 91% for Anderson Level I classes (Wickham et 

al., 2010). 

https://earthexplorer.usgs.gov/
http://www.mrlc.gov/
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2.3 Data preprocessing 

NDVI is commonly used as an index for the characterization of urban growth because 

urbanization is always accompanied by a huge drop in NDVI value (Liu et al., 2010). Therefore, 

NDVI was derived for each satellite image, forming a dense NDVI time series stack from 1994 

to 2019. Converting Landsat imagery into NDVI could also reduce data dimensionality, which 

better facilitated further data analytics. NDVI was directly calculated based on red band and 

near-infrared band of the Landsat ARD imagery, and no additional data preprocessing steps were 

needed before the calculation because ARD data has already been processed to the highest 

scientific standards.  

 

The resulted dense NDVI time series stack contained cloud contamination and noise, which 

should be removed before proceeding to further data analysis. To reduce cloud contamination 

and noise, Maximum Value Composite (MVC) algorithm was applied to the NDVI time series 

stack at an annual interval (Holben, 1986). For each pixel in the study area, its maximum NDVI 

value for each year from 1994 to 2019 was selected as the representation of the NDVI value for 

that year, thus forming a 26 years of maximum NDVI time series stack. This MVC algorithm not 

only reduced cloud contamination and noise, but also decreased data dimensionality, making 

data analytics less computationally-intensive.This maximum annual NDVI time series stack 

could be further used in machine learning-based classifier training and near real-time urban 

change identification. 

 

2.4 Preparing training samples 

The basic idea of this research is to achieve near real-time urban change identification based on 
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machine learning algorithms, including random forest and ANN. The constructed machine 

learning-based models should automatically distinguish pixels experienced with urban change at 

the targeted year from pixels of no-change by using ten-years-annual-maximum NDVI time 

series (NDVI values from eight years before the mapping year, the mapping year, and the 

following one year) as data inputs. For instance, if we want to identify all the urban change 

pixels in 2015, ten annual maximum NDVI time series values from 2007 to 2016 shall be used as 

the data inputs in the classification models. Figure 2 shows the annual maximum NDVI time 

series examples for both urban change pixel and no-change pixel. It is rather simple to detect the 

difference between these two time series. 

 

The most important step for constructing a machine learning-based classifier is to obtain enough 

training samples. Wan et al. (2019) proposed a method for detecting the specific year of urban 

change based on NLCD and Landsat-derived annual maximum NDVI time series data. This 

method could be applied to prepare training samples for urban change pixels. By the comparison 

of NLCD 2001 and NLCD2011, all the urban change pixels in this time period were identified, 

and Wan et al (2019) mapped out urban change year for each identified urban change pixel by 

using annual maximum NDVI time series data from 1998 to 2014. Based on the histogram of the 

urban change years, the majority of the urban changes happened in the middle portion of the time 

period. This phenomenon may reflect the intrinsic urban growth reality in the study area, but it 

may also be resulted from the intrinsic flaw of this method, which may omit some urban change 

pixels towards two ends of the time series.  To enhance data quality, urban change pixels from 

the former three years (2001, 2002, and 2003)  and the latter three years (2009, 2010, and 2011) 

of the time series were excluded, and only the middle five years’ urban change pixels were 
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selected. To increase training samples for urban change pixels, another annual maximum NDVI 

time series data ranging from 2003 to 2019 were analyzed to pinpoint urban change years from 

2006 to 2016. The incorporation of more urban change pixels from other years could contribute 

to a classification model with better generalization capability over time. We also only take the 

middle five years (2009, 2010, 2011, 2012, and 2013) of urban change pixels as training samples 

for a better accuracy. By combining the two data sets, we now have identified all the urban 

change pixels from 2004 to 2013 with their urban change years known. There are a total of 

76,456 urban change pixels. For each identified urban change pixel, its corresponding 10-years-

annual-maximum NDVI time series values will be serving as data inputs in classification models. 

 

The preparation for pixels of no-change is much easier, and we can simply identify all the no-

change pixels by the comparison of NLCD products. To exclude noises from other land cover 

categories, we are only sampling no-change pixels from agricultural land and forests because the 

majority of the urbanization in the study area is converted from agricultural land and forests. To 

be compatible with the urban change pixels, all the no-change pixels shall be sampled from the 

same years, ranging from 2004 to 2013. There are a total of 183,346,290 no-change pixels. For 

each no-change pixel, its corresponding 10 years-annual-maximum NDVI time series values will 

be serving as data inputs in classification models. 
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Figure 2. NDVI time series examples for: (a) pixel urbanized in 2015; (b) no-change pixel. 

 

2.5 Training of machine learning-based classification models 

Cross validation was implemented for parameter-tuning and model selection. The dataset 

combing urban change pixels and no-change pixels was divided into a training dataset (80% of 

total dataset) and a testing dataset (20% of total dataset). Different machine learning algorithms 

have been tested and compared to find out the optima method, including random forest classifier 

and ANN. The ratio between the number of urban change pixels and that of no-change pixels is 

approximately 1:2400, indicating that we are dealing with an extremely imbalanced dataset 

classification problem, thus different ratios shall be tested when training the classification model. 

The change of ratio was accomplished by undersampling the no-change pixel group while 

keeping all the urban change pixels. 

 

2.6 Urban change identification for the year of 2017 

The constructed optimal classification model could be used for the detection of urban change 

pixels in the year of 2017 and 2018. In this study, we only used the constructed model for 

(a) (b)
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identifying urban changes in the year of 2017, which should be sufficient for the justification of 

this proposed method. Annual maximum NDVI time series values from 2008 to 2018 were used 

as data inputs in the classification model to automatically detect urban change pixels in 2017. 

After classification, NLCD 2016 was used to mask out all the medium and high-intensity urban 

areas in 2016. All the identified urban change patches smaller than 4 pixels were also removed to 

exclude potential classification errors.   

 

2.7 Accuracy assessment 

Historic high-resolution imagery on Google Earth was used for the accuracy assessment of this 

study. We have designed three sampling squares (500 by 500 pixel; figure 3) representing urban 

core, suburb area, and rural area in the study area to test the classification capability of the 

optimal model under different land cover settings. Within each sampling square, we have 

randomly sampled 50 pixels for urban change pixel and no-change pixel, respectively. The 

selected sampling pixels were pinpointed on Google Earth, and its reference urban change year 

was determined by observing the historic high-resolution imagery archive. The conversion from 

agriculture/forest to urban can be a process which lasts for several years, and the reference urban 

change year was defined as the year where the clear cut starts because clear cut can decrease 

NDVI value instantly. Due to the lack of historic high-resolution imagery, the starting time of 

clear cut for some pixels may not be observed, and the middle temporal time point shall be 

estimated as the urban change year. For example, an ongoing construction was observed for the 

targeted pixel on June, 2018 from the Google Imagery. The previous Google Imagery for this 

pixel was obtained on September, 2016, showing this pixel was forest on that time. Under this 

circumstance, we could not know the exact time of clear cut, thus the middle temporal time point 
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(2017) was estimated as the reference urban change year. For pixels with insufficient historic 

high-resolution imagery (i.e., imaging gap > 2 years), the middle temporal time point may not be 

a good estimation of its true urban change year, thus we simply exclude those pixels in our 

accuracy assessment. The reference urban change year estimated from the middle-temporal-time-

point method might have a one-year-deviation from its true urban change year, thus, one-year-

difference between the reference urban change year and the designated urban change year (2017) 

shall be tolerated and treated as a ‘correct’ change detection. Exclusions are for those pixels with 

abundant historic high-resolution imagery, which could be used to determine their accurate urban 

change years. Under this circumstance, even if the difference between the reference urban 

change year and the designated urban change year is one-year, it is still considered as ‘incorrect’ 

change detection since the obtained reference urban change year is accurate enough to reject the 

classification result. 

 

Figure3. Sampling areas 

 



 

75 

 

3. Results 

3.1 Model selection 

In this study, ANN outperformed random forest classifier in terms of overall classification 

accuracy and calculation speed, and the ratio of 1:200 between the number of urban change pixel 

and the number of no-change pixel produced the best result. This ANN model was considered as 

the optimal classification model and was then used for the urban change detection in 2017. Table 

1 shows the confusion matrix for the validation result. The omission error for the detection of 

urban change pixel is around 17% while the commission error is 64%. The high commission 

error for detecting urban change pixels indicates that a large portion of no-change pixels (based 

on NLCD) were classified incorrectly as urban change pixels. Detailed analysis on the NDVI 

time series data of these misclassified pixels showed that they actually match the general pattern 

of those urban change pixels (showing a dramatic drop of NDVI value in the final years). This 

may indicate that these no-change pixels are actually mislabeled in the reference data, and the 

high commission error is because of the inaccuracy of the reference data (NLCD). So, this 

validation result could not be used to represent the true power of the classification models, and 

the final accuracy should be based on a more robust method.  

 

Table1. Confusion matrix for the validation result 

  Reference       

 

No-change Change Total % Commission 

No-change 36646366 2586 36648952 0.01% 

Change 22892 12705 35597 64.31% 

Total 36669258 15291 
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% Omission 0.06% 16.91% Overall = 99.93% Kappa = 0.5 

3.2 Accuracy assessment 

Accuracy assessments were individually conducted for three sampling areas (500 by 500 pixels) 

representing urban core, suburban, and rural environments within the study area. There were 163 

urban change pixels identified by our classification model for urban core sampling area, and this 

number for suburb sampling area and rural sampling area were 4,135 and 498, respectively. 

Accuracy assessment result for each sampling area and three areas combined were shown in 

Table 2.  

 

Urban core has the highest overall accuracy and Cohen’s Kappa Coefficient among the three 

sampling areas. This sampling area is mainly focusing on Washington D.C., and it also has the 

most abundant historic high-resolution imagery in support for accuracy assessment, thus the 

accuracy assessment result for this sampling area is the most robust one. Because this area is 

highly urbanized, almost all the urban change events identified here were urban intensification.  

The overall accuracy and Cohen’s Kappa Coefficient for suburb area is in the middle level 

among the three. This area received moderate but sufficient amount of high-resolution imagery 

for accuracy assessment, and the result was reliable. 

 

Performance of the classification model was lowest in t in the rural area, with an overall 

accuracy of 91.3%. The accuracy assessment in this area is the least robust one because the 

related high-resolution imagery is limited here. We defined a large amount of pixels as urban 

change pixels from Google Earth because these pixels underwent clear cut in 2017. But actually 

we could not determine whether these clear cut events are related to urban change or forest 
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harvest because the most recent imagery for this area is obtained in October, 2017, and no further 

imagery could be found to observe the future changes of these pixels. Therefore, accuracy 

assessment result for this area has a low credibility. 

 

Table2. Error matrices of change and no-change pixels in 2017. 

  Reference from Google Earth 

  

No- 

change Change Total %Correct %Commission 

Urban core 

     No-change 50 0 50 100 0 

Change 5 45 50 90 10 

Total 55 45with  100 95 (n=100) 

%Correct 90.9 100 

   %Omission 9.1 0 

  
kappa=0.9 

      

Suburb area 

     No-change 49 1 50 98 2 

Change 7 43 50 86 14 

Total 56 44 100 92 (n=100) 

%Correct 87.5 97.7 

   %Omission 12.5 2.3 

  
Kappa=0.84 

      

Rural area 

     No-change 39 11 50 78 

 Change 2 48 50 96 

 Total 41 59 

 

87 (n=100) 

%Correct 95.1 81.4 
   

%Omission 4.9 18.6 
  

kappa=0.74 

      

All 3 areas 
     

No-change 138 12 150 92 
 

Change 14 136 150 90.7 
 

Total 152 148 
 

91.3 (n=300) 

%Correct 90.8 91.9 
   

%Omission 9.2 8.1     Kappa=0.83 

 

4. Discussion 

4.1 High commission error for detecting urban change pixels in model validation 
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This study has explored the potential of using machine learning-based classification model in 

achieving near real-time urban change identification. ANN outperformed random forest in terms 

of accuracy and calculation speed. The validation result showed a satisfying omission error rate 

of approximately 17% in detecting urban change pixels, although the commission error was 

unacceptably high, at a rate of 64%. This high commission error rate might not be representative 

of our model’s ability in correctly detecting urban change pixels because it is heavily biased due 

to the extreme imbalanced ratio between the number of no-change pixels and that of change 

pixels in the testing dataset. Based on NLCD, there are 36,669,258 no-change pixels in the 

testing dataset while the number for urban change pixel is only 15,291. We know that NLCD 

could not be 100% correct, and suppose only 0.1% of no-change pixels determined by NLCD are 

wrong, then there would be 36,669 pixels that are wrongly labeled as no-change pixels. The 

number of wrongly-labeled pixels is two times larger than that of urban change pixels, thus 

causing a huge increase in commission error.  

 

4.2 Generalization capability of the model 

The near real-time urban change identification method proposed in this study detects urban 

change by identifying the corresponding abrupt NDVI decrease using ANN-based classification 

models. This method works well in urban setting environment because almost all the abrupt 

NDVI decreases were related to urbanization and urban intensification. However, its accuracy is 

inferior working in rural areas where forest harvest could be misinterpreted as urban change 

event. In this study, the lack of high-resolution imagery for rural area limited our ability to 

distinguish urban change from forest harvest, thus the accuracy assessment conducted in this area 

could not be trusted. In future works, more reliable data (such as ground survey data) from this 
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area should be gathered for a more robust accuracy assessment. 

 

Even if we currently do not have a trustworthy accuracy assessment result for this rural area, I 

would still suspect that the method proposed in this study doesn’t perform well in rural areas. 

The data inputs for training the classification model only involve NDVI values, thus it is 

impossible for the current model to distinguish urban change events from forest harvest events. 

In this study, the sampling rural area is far away from existing urban areas, and detailed 

observations found out that the clear cut patch sizes are mostly very large. Therefore, it is highly 

possible that these clear cut events are mostly related to forest harvest, which means the accuracy 

assessment result for this sampling rural area is an overestimation of the true capacity of our 

model in detecting urban change pixels.  

 

To improve the performance of our model in rural areas, future research works should seek for 

adding more data inputs for classification model training so that urban change could be separated 

from forest harvest. Distance from existing urban area, elevation, slope, and change patch size 

could be the potential candidates.  

 

5. Conclusion 

Machine learning-based classification models using annual maximum NDVI time series values 

as data inputs were tested and compared to deal with near real-time urban change detection 

problem. ANN outperformed random forest classifier in terms of both accuracy and calculation 

speed. Accuracy assessments were conducted by using high resolution imagery archives from 

Google Earth. To assess the model’s ability in different land cover settings, accuracy 
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assessments were conducted in three different areas, including urban core, suburb area, and rural 

area. The results found out that our model worked quite well in urban core and suburb areas, 

with an overall accuracy of 95% and 92%, respectively. As for in rural area, the accuracy 

assessment result is not reliable due to the lack of high-resolution imagery in this region. 

Although the overall accuracy for this area is 87%, it’s not trustworthy because of our model’s 

inability to distinguish urban change from forest harvest, both of which starts with clear cut. 

Future work should seek for adding for data inputs, such as distance from existing urban, 

elevation and slope, to strengthen our model’s ability in distinguishing urban change pixels from 

forest harvest in rural areas. 
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Chapter 4. Assessing urbanization’s impacts on evapotranspiration 

4.1 INTRODUCTION 

In chapter 4, we generated spatially-explicit annual ET data for Virginia Beach using daily ET 

data derived from Landsat imagery and METRIC (Mapping evapotranspiration at high resolution 

with internalized calibration) model,  and then assessed evapotranspiration changes under 

different land use land cover change scenarios. The drivers of evapotranspiration are also 

explored.  

 

4.2 MANUSCRIPT 

Wan, H., McLaughlin, D.L., Shao, Y., Eerden, B.V., Raganathan, S., Deng, X., 2020. Remotely-

sensed evapotranspiration for informed urban forest management. Under review at Journal of 

Environmental Management. 

 

The manuscript for this chapter has been submitted to Journal of Environmental Management for 

review on April 24th, 2020. The manuscript is shown below: 
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Abstract 

Evapotranspiration (ET) is a major terrestrial water loss, particularly from forested systems. As 

such, forest patches within urban landscapes can play an important role in stormwater flood 

reduction and urban heat island mitigation. Effective incorporation of urban forests into 

stormwater planning and green infrastructure design thus requires methods that can quantify ET 

across large, mixed-land use landscapes but with sufficient spatial resolution for parcel-specific 

rates. Here, we take advantage of Landsat-derived ET observations (via the METRIC model) to 

estimate ET rates at a 30-m resolution across the City of Virginia Beach, USA, a large (640 km2) 

mixed land-use landscape with increasing flood concerns. Our objectives were to compare ET 

rates across land cover types, with particular attention to forest covers, and then identify land 

cover attributes and models to explain spatial ET variation.  Both upland and wetland forest 

covers had higher ET compared to urban areas, where wetland forest, the dominant forest in our 
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study area, had annual ET rates 3-4 times that of urban and contributed ca. 40% of the total 

landscape ET despite covering only 20% of the area. Urban areas had the lowest mean annual ET 

among all land classes indicating the consequences of urbanization, which we verified when 

parsing ET data between time periods in the context of newly urbanized locations. Relationships 

between ET rates and aggregated, higher resolution land attribute data indicated key drivers, 

where annual ET increased with canopy cover and decreased with impervious cover and depth to 

water table. A regression model combining these drivers explained approximately 70% of the 

total annual ET variation, providing potential means to downscale ET estimates.  Our study 

highlights the disproportional role forests play in ET-associated functions (runoff reduction, 

urban heat island mitigation) in urban landscapes and provides an approach to guide local and 

landscape decisions regarding urban forest conservation and management.  

Keywords: flood reduction, green infrastructure, forest conservation 

 

1.0 INTRODUCTION 

Evapotranspiration (ET) is an important component in the hydrologic cycle and represents a 

major water loss in the landscape (Irmak and Haman, 2003; Rothfuss et al., 2010). Regional ET 

differences are largely driven by climate variables such as temperature and humidity (e.g., 

potential evapotranspiration; PET) (Adnan et al., 2017; Teuling et al., 2009). However, local ET 

can vary widely based on land cover, vegetation types, and available water (e.g., soil moisture 

and depth to water table) (Copper et al., 2006; Zhang et al., 2001). Generally, ET in urban 

settings is much lower compared to forest landscapes (Taha, 1997; Liu et al., 2010), whereas 

annual forest ET can be as much as 60-90% of incoming precipitation (McLaughlin et al., 2013). 

Relatively lower ET rates in urbanized areas can result in a higher probability of stormwater 
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flooding (De Roo et al., 2003; Berland et al., 2017; Kuehler et al., 2017) and also contribute to 

urban heat island effects by reducing latent heat exchange (Qiu et al., 2013). 

 

Numerous studies document the roles of green infrastructure (e.g., green roofs, vegetated swales) 

in flood reduction and mitigation of urban overheating (Block et al., 2012; Emmanuel and 

Loconsole, 2015; Lennon et al., 2014; Liu et al., 2014). Until recently, however, green 

infrastructure practices have mainly focused on infiltration-based technologies (e.g., rain garden, 

permeable pavements) and “street” tree planting and conservation. Larger, urban forest patches 

can be a common feature embedded within otherwise mostly urban areas (Nowak et al., 2001), 

and thus deserve more attention as a green component due to their potentially higher water 

storage capacity (e.g., via canopy interception and soil infiltration) and subsequent water losses 

via ET (Berland et al., 2017). While some research has focused on interception and infiltration 

within urban forests, less attention has focused on water removal through ET (Kuehler et al., 

2017). Within urban forests, ET rates can vary substantially, depending on soil type, depth to 

water table, and vegetation characteristics (El Maayar and Chen, 2006). Yet, few studies have 

quantified ET rates at land-parcel scales (e.g., 1 hectare; Berland et. al., 2017), a spatial scale 

necessary to inform urban planning decisions and green infrastructure design. 

 

Methods for parcel-scale ET measurement (e.g., eddy covariance towers, sap flow sensors, and 

lysimeter system) are costly and limited in spatial representation (Drexler et al., 2004; Glenn et. 

al., 2011). For example, eddy covariance methods are considered as the leading approach for 

accurate ET estimation but can cost over $50,000 and only provide data over ca. 1-2 km2 

(Baldocchi et al., 1996), thus limiting application across large, mixed land-use landscapes. In 
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contrast, remotely sensed-based approaches have been increasingly used to estimate ET at high 

spatial resolution while also over large spatial extents (Courault et al., 2005; Gowda et al. 2007; 

Gonzalez-Dugo and Neale, 2009). For example, using Landsat imagery data as main input, the 

Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model 

(Allen et al., 2011) has been widely implemented for local and regional applications (Allen et al., 

2007; French et al., 2015; Trezza et al., 2013). Currently, 30-m resolution ET map products can 

be readily accessed from METRIC-EEFLUX at Google Earth Engine, and together with detailed 

land cover data may provide insights into ET differences between urban forests and other land 

covers and thus potential consequences of various land change scenarios.  

 

For urban and suburban environments, vegetation surfaces are spatially dispersed and often 

mixed with other land covers (e.g., impervious surface) when they are observed at 30-m spatial 

resolution (Wu and Murray et al., 2003; Shao et al., 2015). ET values (30-m pixels) derived from 

Landsat data thus intrinsically represent mixed signals from sub-pixel land cover components. 

Statistical modeling of ET using sub-pixel land cover composition can improve our 

understanding of ET drivers in urban settings and potentially enable downscaling of ET 

estimates. Previous ET regression models have been largely based on either several site-specific 

locations or aggregated analytical units (e.g., watershed scale and regional scale) (Kişi, Ö., 2006; 

Kişi, Ö., 2011; Lu et. al., 2003; Sanford and Selnick, 2013). Until recently, however, ET 

statistical modeling with sub-pixel land cover data has been rare, mainly due to the availability of 

very high resolution land cover data.  

 

Here, we use Landsat-derived, 30-m ET data to compare annual ET rates among land cover types 
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in Virginia Beach, USA. Using higher-resolution land use, topographic, and groundwater data, 

we also explore potential drivers and associated predictive models of annual ET rates. We focus 

on Virginia Beach because the area has growing concerns related to stormwater flooding and 

increasing efforts to incorporate a portfolio of solutions, including green infrastructure, for flood 

reduction.  Understanding ET differences and associated drivers among land cover types will 

help such efforts in Virginia Beach and is broadly relevant to green infrastructure design and 

forest conservation in other urban landscapes.   

 

2.0 METHODS 

2.1 Study Area 

The City of Virginia Beach encompasses ca. 640 km2, with a population of 450,189 as of 

2018 and with an estimated 2.8% increase in population since 2010 (U.S. Census Bureau). 

According to the National Land Cover Database 2011, Virginia Beach land cover types 

include (Figure 1): urban (“developed”) (39.3%), forested (“woody”) and herbaceous 

wetlands (28.3%), water bodies (12%), agricultural (14.1%), upland forests and shrubs 

(4.8%), and minimal amounts of other covers (e.g., grasslands & barren land). By comparing 

NCLD2001 and NLCD2011 datasets, the newly urbanized area in this decadal time period 

was approximately 13 km2, with a slow annual urbanization rate (< 1%). Soils in the study 

area are dominated by silt loam or loam (50% of the area), with smaller extents of sandy clay 

loam (35%) (NRCS SSURGO Database). The landscape is relatively flat, with a mean slope 

of 2.4%. The climate is considered humid subtropical, with annual precipitation of 1143 mm 

and annual potential evapotranspiration (PET) of 838 mm (for nearby Norfolk; Univ. of 

Virginia Climatology Office). 
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Figure 1. Study area along with land use/land cover data from National Land Cover Database 

2011. 

 

2.2 Data Processing 

2.2.1 Pre-processing METRIC-derived Daily ET Rates 

To estimate ET across our study area required remotely sensed data that cover the required 

spatial scale as well as include enough observations over time to determine annual ET rates 

while accounting for seasonal variability. To do so, we used the METRIC model developed at 

the University of Idaho. This model is based on the previous Surface Energy Balance 

Algorithms for Land (SEBAL) model and is a mature, operational surface energy balance 

model capable of producing reliable ET estimation with high resolution for large spatial 

scales (Allen et al., 2011; Foolad et al., 2018). The model utilizes Landsat satellite thermal 
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data and ground-based weather data (for calibration) to estimate daily ET (mm) at a 30-m 

resolution for each satellite fly-over date (16-day frequency); see example of daily ET 

observations in Figure 2, indicating lower ET values in northern, more urban locations 

(Figure 1). We used the Earth Engine Evapotranspiration Flux (EEFLUX) tool, which 

estimates and calibrates these 30-m ET data using the METRIC model and Landsat imagery 

archived on Google Earth Engine Platform (Allen et al., 2015). 

 

Figure2. Example of METRIC-derived daily ET from Landsat flyover on March 14th, 2013, 

obtained from EEFLUX. 
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Daily ET data for 30-m pixels between 2000 and 2018 were downloaded from EEFLUX 

website (https://eeflux-level1.appspot.com/). Our study area encompasses two Landsat 

scenes, thus daily ET data for each scene were downloaded separately and then merged into 

one integrated dataset. These daily ET data were then manually checked to exclude scenes 

with a total cloud coverage over 30%, as reported in the EEFLUX output data. For the 

remaining scenes (n=301), we downloaded the corresponding original Landsat scenes 

(Landsat Level 1 collection products, including 5, 7, and 8 imagery) from Earth Explorer 

(https://earthexplorer.usgs.gov/). Then, these Landsat imagery data were processed by Fmask 

4.0, a software capable of recognizing clouds and shadows, to generate cloud masks (Qiu et 

al., 2019). The daily ET data and their corresponding cloud mask were integrated to exclude 

cloud-contaminated pixels, providing a time series of cloud-free daily ET data for each 30-m 

pixel.  

 

2.2.2 Statistical Processing to Derive Annual ET rates 

Before deriving annual ET rates, cloud-free daily ET data were further processed to exclude 

outliers and decrease uncertainty in two steps. First, outliers were corrected by truncation 

using the long-term temporal distributions for each pixel, with the reasonable daily ET value 

range for each pixel defined based on the interquartile range rule: 

   Q1 – 1.5*IQR ≤ daily ET ≤ Q3 + 1.5*IQR   [1] 

where Q1 was the first quartile, IQR was the interquartile range, and Q3 was the third quartile for 

the targeting pixel. All the daily ET values beyond this reasonable range were regarded as 

outliers, which were reclassified as the corresponding upper/lower limit value. Second, to reduce 

uncertainty for pixels with limited or highly variable observations in a specific month, processed 

https://eeflux-level1.appspot.com/
https://earthexplorer.usgs.gov/
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data were further corrected by borrowing strength from other pixels from the same land cover 

and month using Bayesian Posterior Processing (see S1). 

With corrected daily ET rates, we determined average daily ET for each pixel and month 

using data between 2000 and 2018; these month-specific daily means were then converted to 

average annual rates (mm/year) for each pixel using number of days in each month. Annual 

means were compared among five major land cover types, as well as subcategories within 

urban and forested categories.  We note that removing cloudy days and pixels was a 

necessary and commonly applied step (due to increased uncertainty under such conditions; 

Chen and Yang, 2012; Hwang and Choi, 2013) but that this results in a consistent bias to 

high (cloud-free) ET days.  As such, derived annual estimates are likely overestimated; 

however, relative comparisons among land cover types should not be affected since this bias 

is equally applied across all pixels and land cover types.  

 

2.3 Exploring Potential ET changes Due to Land Use Change  

The data range used here (2000-2018) was chosen to maximize data availability. For pixels 

experiencing land use (and associated ET) changes over this period, average annual ET rates 

from the full data range may not reflect current conditions. However, a comparison of NLCD 

2001 and NLCD 2011 datasets demonstrated a slow annual urban growth rate (< 1%), 

suggesting that generating the annual ET layer based on ET data from 2000 to 2018 is 

reasonable. However, we did compare average annual ET separately for the 2000-2010 and 

2010-2018 periods to explore potential changes in ET due to land use change over time. To do 

so, we identified two groups of pixels: ones that changed from a non-urban cover to an urban 

cover (i.e., newly urbanized) and those that did not experience land use change between the 
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evaluated time periods. Differences in annual ET between the two time periods were then 

compared between the two groups using the non-parametric Mann-Whitney-Wilcoxon Test. 

 

2.4 Drivers and Models of Annual ET 

To explain ET differences among pixels, we obtained land attribute data for expected drivers, 

including impervious cover, canopy cover, and depth to water table. These data are available at 

higher resolution than the ET data, allowing us to understand aggregate controls on 30-m ET 

observations.  For impervious cover and canopy cover, we used 0.5-m resolution land cover data 

acquired from the Tree Canopy Assessment for Virginia Beach (O’Neil-Dunne, 2019). In 

addition to higher resolution, these data are also independent observations from Landsat imagery 

(used for NCLD datasets) from which our derived ET were based.  For depth to water table, we 

combined LiDAR-derived bare earth digital elevation model (DEM) (3-m spatial resolution) 

from Virginia Information Technologies Agency (VITA; 

https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/elevation---lidar/) and 

USGS groundwater well observations (https://waterdata.usgs.gov/va/nwis/gw) to construct a 

interpolated 3-m raster set. To do so, we used 10 USGS wells, which had overlapping (sub-daily) 

data from 2012 to 2016, and calculated mean annual water table depth for each well. Using 

ground elevation of each well (from the LiDAR DEM), we then converted the mean water table 

depth at each well to water level elevation; these mean water level elevations were then spatially 

interpolated among well locations using inverse distance weighted interpolation to produce a 

continuous groundwater level layer for the entire study domain. With this layer and the DEM, we 

then calculated depth to water table for each 3-m pixel. Data for impervious and canopy covers 

(0.5-m resolution) and depth to water table (3-m) were then resampled to 30-m resolution data, 

https://www.vita.virginia.gov/integrated-services/vgin-geospatial-services/elevation---lidar/
https://waterdata.usgs.gov/va/nwis/gw
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concordant with ET data. 

 

For each dataset, we conducted regression analysis using all pixels (n=713,754), with annual 

ET (for the full data record, 2000-2018) as our response variable. We report the significance 

and goodness-of-fit (R2) for these relationships using all ET pixels but also illustrate the 

general trend in pairwise plots using a subset of 200 pixels, which were randomly sampled 

and equally (n=50) from each of four major land use categories: urban, upland forest, wetland 

forest, and agriculture. We also conducted multiple regression to develop a predictive model 

of ET using all three expected drivers. To address potential nonlinearity, we explored several 

functional forms for both separate and multiple regression models, including quadratic 

polynomial and linear regressions applied with different transformation methods.  

 

3.0 RESULTS 

3.1 Annual ET Comparison among Land Covers 

Figure 3 illustrates the distribution of annual ET values from all pixels and categorized 

by major land cover types. Differences among land cover types are distinct, with wetland 

forest having the highest annual ET while urban has the lowest.  



 

96 

 

 

Figure 3. Frequency distribution of annual ET values from all pixels categorized by 

major land use/cover.   

 

Urban land uses have the lowest average annual ET rates and thus contribute only 23% of the 

total landscape ET, despite disproportionally higher amounts of area coverage (45%) (Table 

1). Mean upland forest annual ET is almost twice that of urban, but with its very low coverage 

(5.5%) contributes the least to the total cumulative ET (4.7%). Among all the land cover 

types, forested wetlands have the highest mean annual ET value (ca. 3.5 times that of urban 

covers) and contribute the highest amount to cumulative landscape ET. We critically note that 

this contribution (42%) by wetland forests is disproportionally higher (almost by a factor of 2) 

than their area coverage (23%). Herbaceous wetlands also have high mean annual ET and 

contribute 13.4% of the total cumulative ET. Agriculture has intermediate ET values relative 
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to the other land uses and contributes 17.7% of the total cumulative ET, a percentage similar 

to its area proportion.  

 

Table 1. Percent of land area and mean, cumulative, and percent contributions of ET for 

major land use/cover types, where the percentages of land area and contributions are 

relative to the total landscape values. Grassland and barren land are excluded from the 

table due to their small area percentage (0.4% and 1%, respectively). 

  

Urban 

 

Agriculture 

Upland 

Forest 

Forested 

Wetland 

Herbaceous 

Wetland 

Area (%) 45.42 16.42 5.48 23.46 9.22 

Evapotranspiration      

Mean (mm) 546 1189 937 1945 1583 

Cumulative (m3) 1.74×108 1.36×108 3.62×107 3.20×108 1.03×108 

Contribution (%) 22.62 17.68 4.71 41.60 13.39 

 

 

A forest-specific analysis demonstrates that all forest types other than forested wetlands have 

similar mean ET rates (920-961 mm; Table 2). Forested wetlands constitute 81% of the total 

forested area but contribute ca. 90% of the cumulative ET provided by all forest cover types. 

For urban subcategories, the range of mean annual ET rates was large (195 to 740 mm), with 

higher values in open space and low-intensity urban as expected due to lower impervious 

cover (Table 3). 
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Table 2. Percent land area and mean, cumulative, and percent contributions for ET, soil 

water storage, and depressional storage of each forest sub-types, where the percentages of 

land area and contributions are relative to the total forest cover. 

 Deciduous 

Forest 

Evergreen 

Forest 

Mixed 

Forest 

Shrub/ 

scrub 

Forested 

Wetland 

Area (%) 5.29 7.87 1.57 4.27 81.01 

Evapotranspiration      

Mean (mm) 949 920 961 948 1945 

Cumulative (m3) 1.02×107 1.47×107 3.07×106 8.22×106 3.20×108 

Contribution (%) 2.86 4.13 0.86 2.31 89.84 

 

 

Table 3. Percent land area and mean, cumulative, and percent contributions for ET, soil 

water storage, and depressional storage of each urban sub-types, where the percentages of 

land area and contributions are relative to the total urban cover. 

 Developed, 

Open Space 

Developed, 

Low-Intensity 

Developed, 

Medium-Intensity 

Developed, 

High-Intensity 

Area (%) 34.55 41.66 18.76 5.03 

Evapotranspiration     

Mean (mm) 740 523 332 195 

Cumulative (m3) 8.15×107 6.95×107 1.98×107 3.12×106 

Contribution (%) 46.86 39.96 11.38 1.80 

 

3.2 Changes in Annual ET from Land Use Change 

We also generated two different mean annual rates (one for 2000 to 2009 and one for 2010 

to 2018) to assess changes between these two time periods. Figure 4A illustrates the pixel- 

specific differences between these two periods (2010-2018 minus 2000-2009), where 

positive values indicate ET increases. The change is relatively small across the study area, 

which is concordant with the documented small change in land use during these two periods. 
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However, there are some evident areas, albeit limited in spatial extent, with ET decreases 

(blue colors in Figure 4A) likely reflecting conversion to urban cover. Indeed, ET changes 

for newly-urbanized pixels were significantly higher (and importantly negative) compared to 

the no-change pixel group (Figure 4B). That is, urbanization generally resulted in lower ET 

values, explaining such locations in Figure 4A, whereas the no-change pixels exhibited ET 

changes centered around zero. There were also some locations with ET increases between 

these two time periods, but to a lesser magnitude than the observed ET declines; such 

locations primarily represent wetland and agriculture areas, suggestive of changes in weather 

variables or water availability that warrants further investigation. 

 

Figure 4. A) Change in mean annual ET between 2000-2009 and 2010-2018, where positive 

values indicate ET increases (warm colors) and negative values indicate decreases 

(coolcolors). B) Distribution of ET change values between 2000-2009 and 2010-2018 for 

A) B)

a b
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pixels with no-change in land use and pixels that were newly urbanized between these two 

time periods. Letters denote significant difference between pixel groups via Mann-Whitney-

Wilcoxon Test. 

 

3.3 Drivers and Models of Annual ET  

Among tested regression models, quadratic polynomial regression performed best for each 

predictor variable. There was a strong and significant (R2 = 0.5, p < 0.001) negative 

relationship between annual ET and impervious cover. Figure 5A illustrates this negative 

trend using a random subset of 200 pixels (50 for each major land use cover denoted with 

different colors), with a similar, albeit lower, R2 (0.34) to that of the entire dataset. As 

expected, urban areas have a high impervious cover and associated low ET rates. 

Interestingly, the other three groups have similar (and very low) impervious covers but 

clearly different ET values; however, the separation by land cover is clear, again with wetland 

forest exhibiting the highest annual ET rates. Differences among these groups are likely due 

to other land cover attributes (canopy cover, depth to water table) that drive ET. 
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Figure 5. Mean annual ET versus A) percent impervious cover, B) percent canopy cover, and 

C) depth to water table for a subset of 200 randomly sampled pixels and equally from four 

major land uses (denoted by colors). Note that a negative depth to water table value 

represents standing water.  Gray area represents 95% confidence interval.  

C)

B)

A)
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There was a positive, significant relationship (R2 = 0.4, p < 0.001) between mean annual ET 

and canopy cover percent, shown in Figure 5B with a subset of 200 pixels and an R2 (0.35) 

similar to that of the entire dataset. Despite this general positive trend, land cover groups 

group together and clearly differ in ET even at similar canopy covers. Wetland forests have 

similar percent canopy cover compared to upland forests but much higher ET rates, likely 

due to shallow water tables and thus more water availability. Similarly, canopy cover percent 

is often similar between urban and agriculture pixels, but agriculture clearly has higher ET 

rates due to crop (not tree canopy) water use.  

 

There was a negative and moderate (R2 = 0.38, p<0.001) relationship between mean annual ET 

and depth to water table, suggesting that shallow water tables (small water table depth values) 

generally increase ET. The subset of 200 pixels illustrates this trend and with a same R2 value 

(0.38; Figure 5C). Of the four major land covers, wetland forest generally has the smallest depths 

to water table (i.e., high water availability) and thus the highest ET values. However, there are 

some occurrences of upland forest and agriculture pixels with similar depth to water tables as 

wetland forest but with lower ET values; this is likely due to differences in canopy cover (see 

Figure 5B). Likewise, urban pixels span similar ranges of water table depths as other categories 

but have substantially lower ET rates due to impervious cover. Together, these results highlight 

the interacting influences of multiple attributes (impervious cover, canopy cover, and water 

availability) on ET rates.  
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The best-fit multiple regression model for ET using impervious cover, canopy cover, and depth 

to water table is shown in Table 4. The resulting model had an R2 = 0.71, with all variables 

significant and similar degree of importance. Figure 6 illustrates this model with a subset of 100 

pairs of predicted and observed values, with a similar R2 value to that when using the entire pixel 

set. 

 

Figure 6. Modeled versus actual annual ET for a subset of 100 randomly selected pixels, 

where the modeled values were produced using the developed statistical model and data for 

impervious cover, canopy cover, and depth to water table. 
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Table 4. Summary of the quadratic polynomial regression model predicting mean annual ET 

with three predictor variables: impervious cover, canopy cover, and depth to water table.  The 

Relative Importance metric represents the relative R2 contribution among regressors 

following Lindemen et al. (1980). 

Summary of Fit   

Multiple R Square 0.71 

    Adjusted R Square 0.71 

    Residual Standard Error 337.9 

    Observations 713754 

    Parameter Estimates   

Term Estimate 
Std 

Error 
t-value Prob > |t|   

Relative 

Importance 

Intercept 1368 0.81 1685.26 <0.0001   

 Impervious cover percent -13.44 0.056 -238.94 <0.0001 0.17 

Impervious cover percent2 0.068 0.00068 99.95 <0.0001 0.10 

Water table depth  -119.5 0.27 -450.98 <0.0001 0.17 

Water table depth2 2.79 0.016 172.07 <0.0001 0.023 

Canopy cover percent -5.24 0.049 -107.28 <0.0001 0.10 

Canopy cover percent2 0.11 0.0005 223.07 <0.0001 0.14 

 

4.0 DISCUSSION 

Using remotely sensed daily ET rates over a ca. 20-year time period, we compared annual ET 

among land cover types in Virginia Beach, a large, mixed-land use urban landscape with 

growing stormwater flooding concerns. Such data enable ET estimation at both the spatial scales 

and resolution (30-m) necessary to inform urban planning and green infrastructure focused on 

ET-associated services, such as flood reduction and urban overheating mitigation. We found 

lower ET from urban covers and disproportional contributions from forest covers to total 

landscape ET, particularly from wetland forests (i.e., ca. 40% of total land ET despite 20% of 

land area). Integrating higher resolution land use data, we were able to explain drivers of ET 
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variation and develop predictive models for potential downscaling ET estimates.  As such, our 

work both points to the value of urban forests in Virginia Beach as well as demonstrates an 

approach for similar application in other urban landscapes to inform incorporation of urban 

forests into green infrastructure design.  

 

4.1 Remotely Sensed ET Data for Annual Estimates 

Landsat-based ET data (via the METRIC model) provide daily estimates since 1985, at a 

frequency ca. 16 days, and over large extents (34,225 km2 for each scene) with relatively high 

resolution (30-m) (Allen et al., 2015); however, there are several considerations for deriving 

annual rates. Specifically, we screened both cloudy scenes and cloud-contaminated pixels to 

remove associated errors in ET estimates. While this is typically conducted (Tsouni et al., 2008; 

Senay et al., 2016), it results in a systematic bias for high ET days since cloud cover decreases 

solar radiation and increases relative humidity, both of which result in lower daily ET rates 

(Zhang et. al., 2016).  Indeed, some of our annual rates for wetland forests approached 2,500 

mm/yr, representing extreme values (compared to PET = 800 – 900 mm/yr in the region).  

Observed ET rates can often exceed PET due to such phenomena as the clothesline and oasis 

effects (Drexler et al., 2004), where advection of dry, hot air from impervious covers stimulates 

ET in adjacent wet, vegetated land covers. Nonetheless, our annual rates likely remain 

overestimates by biasing our dataset to cloud-free days. Such bias can be reduced by 

constructing pixel-specific relationships between (cloud-free) daily ET observations and climate-

based PET estimates, where developed relationships and daily PET are then subsequently used to 

estimate daily ET time series (e.g., Singh et al., 2012).  However, given our objective, we 

decided against this approach, suggesting it may introduce additional uncertainty (Lepot et al., 
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2017).  That is, our objective was to compare ET rates among land covers in one landscape, and 

we contend that relative differences in ET (via annual estimates solely using cloud-free days) are 

maintained and informative in understanding ET drivers and differences among land covers. 

Where absolute annual ET estimates are the objective (e.g., for water budget calculations, 

hydrologic model inputs, and comparisons to other regions), developing ET-PET relationships 

for estimating complete daily ET time series is the more appropriate approach.  

 

4.2 ET Differences Among and Within Land Cover Types 

Relative differences in annual ET among land covers were evident, particularly when assessing 

the proportional contribution to total landscape ET from each land cover type (Table 1). As 

expected, urban rates had the lowest ET among all major land covers, consistent with other 

studies using remotely sensed estimates (Sun et al., 2004; Liu et al., 2010) as well as others using 

on-the-ground approaches (Liu et al., 2008).  As a consequence, urban cover in Virginia Beach 

contributes only 23% of the total ET despite being the dominant land use (45% of area).  To that 

end, we found significant ET decreases for newly urbanized pixels when parsing the ET dataset 

into two time periods (Fig. 4). Yet, there were also clear differences among urban sub-categories 

that highlight consequences of development intensity and continued changes thereof within 

urban areas. For example, ET values for open space and low intensity were 3.8 and 2.7 times 

higher compared to high intensity developed, respectively, and more comparable to (but less 

than) upland ET values (Tables 2 and 3).  In Virginia Beach, and many other large mixed-land 

use localities, lower intensity urban areas can be dominant (approximately 35% of land area in 

Virginia Beach), suggesting their relative contribution to ET-associated functions and 

implications of continued development.  These findings are supported by our regression analysis, 
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where impervious cover decreased ET (Fig. 5A), and are in accordance with other studies 

exploring ET drivers in urban settings (Grimmond and Oke, 1999; Haase, 2009; Liu et al., 2010). 

Upland and wetland forest covers exhibited much higher ET compared to urban areas, indicating 

the relative role of such forest patches in supporting ET-associated functions. In locations such 

as Virginia Beach and many others, growing stormwater flooding concerns are motivating both 

engineered and green infrastructure solutions (Soz et al., 2016). The importance of “street” trees 

in runoff reduction has been recognized (Stovin et al., 2008), but larger forest patches have 

received less attention as potential locations for flood mitigation services. Of particular note in 

our study area, wetland forests represent a major land cover (23% of the area) and are often 

adjacent to urban, flood-prone areas. We found that wetland forest covers have ET rates ca. 3.5 

times that of urban, and thus disproportionately contribute to total landscape ET. Upland forests 

also exhibit higher rates than urban but lower than wetland forests, indicating important 

differences among forest cover types similar to those within the broad urban cover class. 

Regression analysis highlighted the influence of water table depth on ET (Fig. 5c), helping to 

explain higher ET in wetland forests where water availability increases ET rates.  Canopy cover 

can also exert a strong control on forest ET rates (Fig. 5B), and accordingly many ET predictive 

models are largely based on such forest structural attributes, including basal area and leaf area 

index (Yan et al., 2012; McLaughlin et al., 2013).  However, such efforts and targeted urban 

forest conservation may benefit from a better representation of the differences among forest 

types due to forest composition, structure, and water availability.  

 

4.3 Tools to Guide Urban Forest Conservation 

Our results enable estimates of ET change with forest loss scenarios and thus demonstrate the 
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value of forest conservation as an important green infrastructure strategy. As of 2020, 

approximately half of Virginia Beach forests are either protected (reported by the Virginia 

Department of Conservation and Recreation) or controlled by the City of Virginia Beach. For the 

remaining “unprotected” forests, replacing annual ET observations for those pixels with mean 

values for different urban subcategories yields annual ET losses of 11% - 32% compared to 

current total forest ET, the range of which depends on development intensity (data not shown).  

While this scenario assessment is not surprising, and is supported by empirical studies (e.g., 

Teuling et al., 2019; Owen et al., 1998), it helps to emphasize the importance of forest 

conservation.  Going forward, pixel-specific ET observations and mean land cover rates can 

support such scenario analyses but at scales and particular settings relevant for specific land 

planning decisions.  

 

Integrating ET observations with higher resolution land attribute data can further guide planning 

decisions at smaller spatial scales and potentially inform stormwater models and policies.  

Aggregating data for impervious and canopy covers (0.5 m resolution) and water table depth (3-

m) resulted in a multiple regression model that explained 71% of the variation in 30-m annual 

ET estimates. While this model indicates the key, and expected, drivers of ET, it also can be used 

to potentially downscale ET estimates. Most predictive ET models either focus at larger, often 

watershed scales (Billah et al., 2015; Lu et al., 2003) or are more generalizable across regions 

(e.g., Isaac et al., 2004; Sun et al., 2008; Buttafuoco et al., 2010). Clearly, there are benefits to 

such tools, such as streamflow predictions and across-region assessments, but we contend that 

regional variation in relationships among ET, vegetation, and soil water availability suggests that 

site-specific models may be more appropriate when informing site-specific decisions.  To that 
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end, our predictive model for the Virginia Beach area has the potential to use fine-scale land 

attribute data to inform such actions as stormwater credit programs, which often occurs at sub-30 

m scales (Nowak, 2016).  Given that such data are available for other regions, similar efforts 

could be applied, and comparing modeled parameters across regions may also provide insights to 

ET controls and their potential variability across regional climates, soils, and vegetation 

composition.  

 

We largely focused on ET services in the context of flood reduction given the pressing 

stormwater concerns in Virginia Beach, yet urban forest ET supports additional functions.  For 

example, urban forest patches have been shown to mitigate urban overheating, largely due to 

elevated ET and thus latent heat exchange (Hiemstra  et al., 2017).  As such, urban forests can 

serve as “cool spots”, the extent to which can be indicated by relative ET estimates compared to 

other land covers.  Further, ET, particularly in vegetated covers where transpiration dominates 

the flux, is directly linked to carbon uptake rates (Scott et al., 2006) thereby indicating potential 

carbon sequestration rates. Thus, our work and others (e.g., Nowak et al., 2001) focusing on 

urban forest ET has direct relevance to valuing multiple ecosystem services.  Last, and not 

necessarily linked to ET, urban forests provide additional functions (e.g., habitat provision, 

recreation, water quality; Mörtberg, 2001; Arnberger, 2006; Livesley et al., 2016), and quantified 

ET rates can help add to the portfolio of urban forest services and thus guide urban forest 

conservation and management.  

 

4.4 Limitations and Future Work 

We note two limitations of our approach.  First, we derived mean annual estimates using a long-
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term data set (ca. 20 years, with 16-day frequency) to account for: i) natural interannual ET 

variation (e.g., from climate and water availability variation; Zha et al., 2010), ii) limited data for 

some years due to cloud-contamination (removal of approximately 53% of pixel observations), 

and iii) inherent uncertainty in individual observations (Kilic et al., 2016).  To do so, however, 

required the assumption that minimal land cover change occurred over the data record, which is a 

reasonable assumption for our study area (i.e., less than 1% annual increase in urban area 

between 2001 and 2011).  For other study sites, annual ET estimates may not reflect current 

conditions where dramatic land cover conversions have occurred in the study area.  The limited 

data availability from METRIC for any particular year may also preclude analysis of land use or 

climate change-induced temporal differences in ET (Allen et al., 2007), but such could be 

assessed using larger timesteps (10 years in our case; Fig. 4).   

 

Second, and important in the context of flood reduction services, our work estimated relative 

differences in annual ET among land uses but did not quantify the runoff reductions that may be 

realized.  While runoff reduction is expected with higher ET (Rossi et al., 2016), specifically 

within urban forests, the degree to which annual ET estimates affect runoff reduction remains 

largely unknown, particularly at storm-event scales. In low-relief landscapes such as Virginia 

Beach, saturation excess runoff (i.e., shallow water tables limiting infiltration) can be the 

dominant form of runoff (Appels et al., 2016).  As such, runoff potential for any given storm 

event is determined by antecedent water table and soil moisture levels (Hernandez et al., 2003), 

which are largely regulated by preceding ET water losses (Gerla, 1992).  This supports the 

notion that higher ET will lead to runoff reduction and underscores a need to better parameterize 

commonly used stormwater models (e.g., Storm Water Management Model; SWMM) to 
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represent ET differences and drivers among land cover types. Indeed, most applications of 

SWIMM simulate time-varying ET using climate data and apply the same rate across the model 

domain, failing to represent land cover ET controls (but see Feng and Burian, 2016). To do so 

will require daily ET time series and thus ET-PET modeling as discussed above.  Thus, our 

estimates of annual ET differences only point to that research need and the potential for forest 

runoff reduction services, but do not provide the requisite data for such stormwater modeling 

efforts.  

 

Conclusions 

In this work, we used remotely sensed ET data in a large, mixed-land use urban landscape 

(Virginia Beach, USA) and demonstrated large differences in annual ET values across land cover 

types. In particular, wetland forests, the dominant forest cover in our study area, have the highest 

ET rates among all land cover types (roughly 3.5 times that of urban) and contribute ca. 40% of 

the cumulative landscape ET but only ca. 20% of the land area. Upland forests also have higher 

ET values compared to urban areas but their estimated area coverage is low (ca 5%), likely due 

to past urbanization and land use change.  While land use change, specifically urbanization, was 

relatively slow (annual rate <1%) over the ET data record used here (2000-2018), we found 

significant ET reductions in locations with conversion to urban land use categories. As such, our 

analysis demonstrates the role of forests in providing ET-related function such as stormwater 

flood reduction, a service of specific interest in our study area and other flood-prone urban 

settings.  Observed ET differences among land covers can further be used in scenarios of land 

use change to inform and prioritize urban planning and forest conservation decisions. We also 

found significant relationships with expected attributes that drive ET and characterize different 
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land covers, where ET decreased with impervious cover and water table depth and increased 

with canopy cover. Statistical modeling using high-resolution data for all three attributes 

provides a potential approach to downscale ET estimates and thus further inform urban planning 

at smaller spatial scales, including such policies as stormwater crediting.   To quantify potential 

runoff reduction driven by forest ET requires future work to derive daily ET time series and to 

better represent land cover differences in commonly used stormwater models. Our work may 

help to motivate such work in the future but hopefully, at hand, will guide urban forest 

conservation efforts as part of the increasing use of green infrastructure solutions for multiple 

ecosystem services.     

 

Supplemental 1: Bayesian Posterior Processing 

To reduce uncertainty for pixels with limited or highly variable observations in a specific 

month, processed data (outliers removed) were further corrected by borrowing strength from 

other pixels from the same land cover and month using Bayesian Posterior Processing. All 

pixels were first categorized into groups based on their land cover types and image-acquired 

months, leading to a total of 144 pixel groups (i.e., 12 land cover types and 12 months). Using 

the z-score for each pixel and month to maintain relative temporal variability, we then 

corrected pixel, month-specific daily means using information from other pixels in that pixel’s 

group (land cover and month). To do so, the grand mean and grand standard deviation for 

each pixel group were calculated and then used to calculate the corrected month-specific 

mean for each pixel by using the Bayesian posterior mean formula: 

                                       𝐶𝑀 =
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where CM is the corrected pixel month-mean of daily ET values, 𝑠𝑝 is the pixel standard 

deviation of daily ET values within specific month, M is the pixel month-mean of daily ET 

values, n is the number of observations for each pixel within that month, GM is the pixel 

group grand mean of daily ET values, and  𝑆𝑔 is the pixel group grand standard deviation of 

daily ET values.  

 

Corrected month-specific daily means for each pixel are thus the weighted sum of the pixel 

month-means and the pixel group grand mean. When there are a large number of observations 

for any particular pixel and month, or if these observations are consistent (i.e., low standard 

deviation for that pixel and month), then the group grand mean has a smaller weight. If these 

two conditions are not met, it indicates low confidence in the pixel month-specific daily mean 

estimate and hence the need to borrow strength from other pixels from the same group (month 

and land cover).  

 

The corrected daily ET values within a specific month are then calculated as: 

                                                      ETcorr = CM + 𝑠𝑝 * z,                                                  [2] 

where  ETcorr is the corrected daily ET values for each pixel and month, CM is the corrected 

pixel month-specific mean of daily ET values,  𝑠𝑝 is the pixel standard deviation, and z is the 

z-score value of daily ET values for each pixel and month. Note that, in this step, we assume 

that the standard deviation and the relative variability of each pixel over time is reasonably 

well estimated and hence do not attempt to correct for these values.  
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Chapter 5. Conclusions 

Monitoring past and current urban growth rates and patterns can help us better understand 

urbanization processes and provide valuable information for urban planners and policy-makers. 

Mapping urban extent at annual frequency could also be beneficial for those environmental 

models requiring land cover data at high temporal resolution. Such high temporal resolution 

urban change data could also facilitate analyzing the consequences of urban growth on the 

environment.  Using Washington D.C. metropolitan area and Virginia Beach as case study, this 

dissertation has focused on 1)Mapping annual urban change by analyzing Landsat-derived NDVI 

time series data and NLCD; 2) Identifying near real-time urban change using machine learning; 3) 

Assessing urban growth’s impacts on evapotranspiration. 

First, this dissertation designed and compared three different methods for mapping annual urban 

change by analyzing Landsat-derived NDVI time series data from 1998 to 2014 and NLCD. 

Break-point method detects the year where the mean and standard deviation of the time series 

signal changes the most as the urban change year, and is proven as the optimal method among all 

the three. This method is better at detecting urbanization years rather than urban intensification 

years, and future research efforts might be focusing on improving the accuracy of detecting 

urban intensification years.  

Second, this dissertation achieved near real-time urban change identification by using machine 

learning-based classification. Landsat-derived NDVI time series data for ten years were used as 

data input in machine learning classifiers, and the training dataset for urban change pixels were 

derived based on the method introduced in Chapter 2. Random forest classifier and Artificial 

Neural Networks (ANN) were compared, and the result found out ANN produced better result 

than random forest. Our model works well in urban settings, with overall accuracies of 95% and 
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93% for urban core and suburb area, respectively, but its performance is inferior in rural areas 

where urban change is hard to be distinguished from forest harvest. 

Last, this dissertation compared annual ET rates among major land cover types to assess the 

impacts of urban growth on evapotranspiration. The result found out that urban has the lowest 

ET rate of approximately 550 mm/year while wetland forest, the major forest type in Virginia 

Beach, has the highest ET rate of around 2000 mm/year. Wetland forest contributed 

approximately 40% of the total ET by only constituting 20% of the total terrestrial land area. 

Converting forest or agricultural land to urban would result in a huge decrease in ET, thus 

increasing flood probability. Some land attribute data, such as impervious cover, canopy cover, 

and water table depth were used to explain the spatial variations of ET, and the result found out 

ET would increase with the increase of canopy cover and would decrease with the increase of 

impervious cover or water table depth. A polynomial regression model combing all the tree land 

attributes was constructed for the estimation of annual ET, and the R2 has reached around 0.7, 

indicating its good estimation capability. 

Overall, this dissertation proposed novel and accurate methods for annual urban mapping as well 

as ET quantification, and these methods could be potentially be applied elsewhere to provide 

valuable information for local urban planners and policy-makers. 
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