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(Abstract)

An optimal shape control problem for the steady-state Navier-Stokes equations
is considered from an analytical point of view. We examine a rather specific model
problem dealing with 2-dimensional channel flow of incompressible viscous fluid: we
wish to determine the shape of a bump on a part of the boundary in order to minimize

the energy dissipation.

To formulate the problem in a comprehensive manner, we study some properties
of the Navier-Stokes equations. The penalty method is applied to relax the diffi-
culty of dealing with incompressibility in conjunction with domain perturbations and
regularity requirements for the solutions. The existence of optimal solutions for the

penalized problem is presented.

The computation of the shape gradient and its treatment play a central role
in the shape sensitivity analysis. To describe the domain perturbation and to de-
rive the shape gradient, we study the material derivative method and related shape
calculus. The shape sensitivity analysis using the material derivative method and La-

grange multiplier technique is presented. The use of Lagrange multiplier techniques,



from which an optimality system is derived, is justified by applying a method from
functional analysis.

Finite element discretizations for the domain and discretized description of the
problem are given. We study finite element approximations for the weak penalized
optimality system. To deal with inhomogeneous essential boundary condition, the
framework of a Lagrange multiplier technique is applied. The split formulation de-
coupling the traction force from the velocity is proposed in conjunction with the

penalized optimality system and optimal error estimates are derived.
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CHAPTER I

INTRODUCTION

The optimal shape design problem is to find the shape of an object which is op-
timal with respect to some specified mechanical or physical criteria. Here, shape is
the description of a geometrical object in 2- or 3-dimensional Euclidean space, and
optimality is with respect to some physical or geometrical constraints on the object.
In nature, some organic bodies have been observed to change their shapes to adjust

to their physical surroundings.

Optimal shape design problems have been widely studied among structural engi-
neers. Their history goes back to the early part of 20th century. In practice, the
need to design the shape of certain objects arises in the mechanical construction of
structures using elastic or elasto—plastic materials; recent advances in composite and

smart materials enables the implementation of optimally designed structural shapes.

The mathematical foundations, however, have matured only in the last two decades
in accordance with the development of the theory of distributed parameter systems
for partial differential equations and variational formulation techniques. Moreover,
its practical implementation and numerical solutions have been accelerated by the

rapid development of computer technologies and industrial needs.

Simply put, the optimal shape problem may be regarded as a branch of optimal
control theory, which itself is based on the calculus of variations. However, there
are some significant differences between the two. Unlike data or value controls such
as external body forces, stresses, or boundary conditions in a fixed domain, shape
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optimization problems require the identification of the domain among a class of do-
mains satisfying certain criteria. The crucial step in shape optimization is the shape
sensitivity analyses and from it one often tends to derive the necessary optimality con-
ditions leading to a numerical implementation. Hence the formulation has somewhat
different characteristics.
The optimal shape problem can be composed of the following three corelated fac-
tors:
(i) U,4, a family of admissible domains € equipped with appropriate regularities.
(i1) A system of state equations which describes the physical or mechanical states
of the system (usually described by partial differential equations with bound-
ary conditions on each domain 2 in Uyq).
(iii) A cost functional J which depends on the domain through the solution of

the well-posed state equations.

Then, the problem of determining optimal shapes is simply one of finding a domain
Q* in U,q so that J(2*) is a minimum among all J(), N € U,4, and such that the

constraint equations are satisfied.

The purpose of this dissertation is to consider some mathematical issues in shape
optimization in conjunction with the incompressible Navier-Stokes equations. It has
long been believed that the Navier-Stokes equations describe general flows of fluids
ranging from gas motions to the lubrication of ball bearings. Hence, optimal shape
design problems associated with the Navier-Stokes equations, if settled successfully,
have wide valuable, applications in aerodynamics and hydrodynamics such as designs
of car hoods, airplane wings, forebody shapes of jet engines, etc. However, because
of the present state of the study for the Navier-Stokes equations and the lack of
mathematical structure that deals with rough shapes, these studies are in their in-
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fancy. At present, only a scant literatures are available. The first study toward
the optimal shape design problems for the Navier-Stokes equations was attempted
by Pironneau[100]. He tried to find a minimum drag profile submerged in a ho-
mogeneous, steady, viscous fluid by utilizing optimal control theories for distributed
parameter systems due to Lions[90]. Glowinski and Pironneau[61] used a finite dif-
ference method in some computational experiments for minimal drag profiles and
Prandtl’s equations of laminar flows. Koda[85] tried to derive necessary conditions
on the similar problem for the time-dependent Navier-Stokes equations. A successful
application of optimal shape theory in fluid mechanics can be found in the design of
riblets as a minimum drag device by considering a simplified boundary layer approx-
imation of the Navier-Stokes equations (Arumugam et al.[6]). For drag reduction in
Stokes flow, some rigorous mathematical results for the sensitivity analysis was done
by Simon[119]. While the general criterion related to this field is drag reduction, one
may also consider the shape related lift control problem. For example, the location
of transitional points from laminar to turbulent layer closely depends on the wing
shapes (c.f.[23]).
The major difficulties in the study of shape optimization problems associated with

the Navier-Stokes equations arise from the following sources:

e Lack of comprehensive understanding of the Navier-Stokes equations.

e Lack of shape sensitivity analyses dealing with rough geometries.

e The adjoint equations induced from the shape sensitivity analysis have no

physical meaning and it is usually hard to show the existence of its solution.
e Lack of computational efforts due to its massiveness and complexity.
Throughout this dissertation, we will deal with a rather specific model problem in

two—dimensions. However, the approach to the problem will be discussed in general
terms; our aim is to formulate the problem in a comprehensive manner. We show the

3



existence of solutions for a drag minimization problem. The shape sensitivity anal-
ysis using the material derivative method and the Lagrange multiplier technique is
presented. Finally, some aspects of the finite element approximation to the problem

will be discussed.

In this chapter, we propose the model problem and present some necessary prereq-

uisites for the mathematical formulations.

1.1. Model Problem

We consider two—dimensional incompressible flow of a viscous fluid passing through

a channel having a finite depth (Figure 1).
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Figure 1: A 2-D flow through a channel with a bump

Let g, and g, be the preset velocities of the inflow and outflow along sides AB
and CD, respectively. Along the bottom we have a bump which is to be determined,
represented by the arc EF. One can examine several objectives for determining the
shape of the bump, for example, the reduction of drag due to the viscosity or the
identification of the velocity identification at a fixed vertical slit downstream of the

bump.



Setting of 4.

We cast the problem into the setting depicted in Figure 2.
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Figure 2: Setting of domain Q(ea)
Let the boundary shape corresponding to the bump is represented by the graph of
a curve « : [-M;, M;] = R. The domain 2(a) is composed of the following parts:
two fixed rectangles and a domain with a moving boundary. We assume that the

domain () is determined by the shape of the moving boundary I'(a), where
Ia) = {(z1,22) € [-M1, M1] x [0, L] | 2 = a(z1)}.

Let T' = dQ(a) = UL,T; UT(a), where I'; is the side AB, I'; the side CD and
I3 =T'-T, Ul UT(a). Assume I'(a) C [-My, My] x [0, L] and that both end points
of I'(a) are fixed for all admissible domains. Since the domain (a) is determined
by the shape of I'(a), we may define the admissible family of curves defining I'(a) as

follows:
uﬂd = {Q € co'l([_MlaMl]) ' 0 S 0(231) S La |Q'(:E1)| S ﬂvvxl € [_Mh Ml])

a(—My) = a(My) = 0},
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where the positive constant S is chosen in such a way that U,z # #. We denote the
set of Lipschitz continuous functions in [—Mj, M;] by the symbol C%!([—M;, M;]).

The condition |a’(z1)] £ B is set to prevent the blow-up of the boundary, t.e.,
to suppress excessive oscillations of I'(a). (Pironneau [101] provides an example
such that: when the boundaries are allowed to oscillate, the limit of a sequence
that minimizes the objective functional may have nothing to do with the suggested
problem.)

Note that these restrictions on {}(a) play a central constraint role in the nonlinear
program which is an essential part of numerical computations for shape optimization.

Finally, we assume that the graph of a for each a € U,q lies in the rectangular

region EFGH.

State Equation.

We consider the viscous, incompressible, steady-state Navier—Stokes equations in
nondimensional form in Q(«a) for each a € Uygq.
Let u = (uy,u2) denote the velocity and p the pressure, where u; = u;(z;,z,) and

p = p(z1,22), (71,22) € Qa), for i = 1,2. Then, we have

—vAu+(u-V)u+Vp=f in Q) (1-1)

divu=0 in Qa) (1-2)

with the Dirichlet boundary conditions

g1 on Pl
u=g= g2 on Pz (1—3)
0 onl3Ul(e),

where f and g;, (¢ = 1,2) are given functions. Here, A, div and V are usual linear
differential operators. By the symbol A we denote the Laplacian operator in R?, by
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V the gradient operator, and by div the divergence operator. f denotes the given
external force and v the kinematic viscosity. In the nondimensional form of the

Navier-Stokes equations, v stands for the reciprocal of the Reynolds number Re.

Cost Functional.

The cost functional (or, design performance functional in the terminology of shape

optimization) to be minimized is given by

I(a) = J(Q(e),u(a)) =v n( )Vu : Vudz

=v E (Quiye (1-4)

ij=1 Q(a) 3.1:,

where u(a) is a solution of (1-1)-(1-3) in Q(c). This functional represents the rate
of the energy dissipation due to deformation. Physically, this term is equivalent to
the viscous drag of the flow. (We could also consider other functionals such as the

identification of the velocity at a location downstream of the bump.)

We then wish to find (a*,u(a*),p(a*)), where (u(a*),p(a*)) is a velocity and
pressure pair which is a solution of the state equation over 2(a*) and o* is a solution

of

min J(a) . (1-5)

a€ligq

Success in solving this problem depends upon a suitable choice of formulation for the
Navier-Stokes equations, the appropriate technical setting for the shape sensitivity
analysis, and the application of a nonlinear programming method of optimization.
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1.2. Preliminaries

In this section, we present some background material. Function spaces, norms,
domains, and some variational principles are discussed. For a more detailed exposi-
tion, one may refer to Treves[131], Adams[2], Marti[92], Temam[127], and Dautray
and Lions[37].

Let Q be a open subset of R". We denote by C™(2) the set of m-times continuously
differentiable functions on 2. By C7'(f), we denote the elements of C™(§2) with
compact support in 3. We note that C*(2) = [ C™(2) and C(Q) = ) CF(D).
The dual space of C3°(€2) is the space of the dz;isibutions 2'(2). By <m-2,0- >, we
denote the duality map between test functions and their dual elements.

For Galerkin type variational formulations, we mainly depend on the separable

Hilbert spaces H*(1), for s € R. For s € R, each element of H*() is the restriction
of a certain element of H*(P") to 2. When 2 = R*, H*(R") can be characterized by

H*(R™) = {f € LA(R™) | (1 + [¢])*/*F € L*(R™)},

equipped with a norm || f||gsrny) = ||(1 + |£]2)‘/2?||Lz(gn). Here f denote the Fourier
transform (its inverse if s < 0) between tempered distributions. Without the help
of the Fourier transform, there is another intrinsic characterization of the fractional
Sobolev space H* employing L2-Holder continuity. For s > 0, using Parseval’s the-

orem and Peetre’s inequality for the principal symbol, it can be shown that the

following is the square of a norm on H* equivalent to || - |[gs:
o f|2 ID*f(z) — D*f(y)[?
|§]~/ ID fl |;]/ |x — I'n+2(a—[s]) dxdya Vm,y € Q ,

where [s] denote the largest integer < s. Now, H*(Q) = vq(H*(R")), where vq denote
the restriction mapping of H*(R") to . When s < s, there is a continuous injection
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H*(9)) C H*(Q) and when P(D) is a differential operator of polynomial type of order
< k, the map f — P(D)f is a continuous linear map of H*(f2) into H*~*(Q).

When m=nonnegative integer, we easily deduce that
H™(Q) = {f € L*(Q) |D*f € L*(Q), |a| < m},

aq Qan
where a = (a1, , ) is the multi-index and D* = (ﬁl—) e (3‘;"—“) . The inner

product over H™(f2) is given by
(f,9)m =(Fr9)0+ Y (D*f,D%),, (1-6)
o<|a|<m
where (f,g9), = fn fg dS) denotes the inner product over L?(}). Hence, we naturally

associate the norm on H™((?) with

1Al = (£ 1007 (1-7)
We will denote the inner product and norm by (-,-),, o and |||, g, respectively,

when their domain dependency needs to be emphasized.

There is another significant characterization for H™(2). In 1964, it was shown
that H™(2) is equivalent to the completion of C*°(§2) with respect to the || - ||,,—norm
([2])- Many important properties for Sobolev spaces are derived from this feature.
For example, H™*! is densely injected into H™. Let HJ*(§2) be the closure of ()
in H™(§?) with respect to the norm || - ||,,. For variational formulations, we take

H~™(Q) as the dual space of HJ*(?) whose norm is given by

<pf>
bl = swp 1SBS>1 (1-8)
ozserm@ I flln

Since H*(R") = Hj(R"), the duality is naturally recovered in R", i.e., the dual space
of H*(R") is given by H~*(R"™). Each element in H~™(2) can be represented in the
form Z'“IS"“ Dafa, for fa € L'Z(Q)-



Note that the metaharmonic operator —A+ A, where A > 0, provides the prototype
for elliptic operators including the Stokes system. —A + A yields an isomorphism
between Hj(f2) and H~!(€), which can be verified by the Lax-Milgram lemma. In

some sense, this forms the cornerstone for variational formulations.

For our purpose we now turn our attention to the domain specific features of
Sobolev spaces. The compact embedding, trace, and extension properties of Sobolev
spaces are such features.

If we take a € C™'([—Mi, M,]), then our domain Q(a) is Lipschitz continuous.
Hence it excludes the possibility of domains {Q(a)}aeu,, having a cusp. Let T’ denote
the boundary of the domain 2. € is said to have a cusp at z € T if no affine
image in Q of a finite cone has a vertex at . We observe that if a certain domain
has the cone property (c.f. Adams[2]), then using the homogeneity along the line
segment emanating from the vertex of the cone, a function with small support in a
neighborhood of the vertex may be perturbed into the whole cone. Based on this

fact, Chenais[29] showed the following.

Lemma 1.1. The open sets satisfying the cone property are the uniform Lipschitz

sets. DO
For domain perturbations, the following extension property plays a central role.

Theorem 1.1. (Calderdn’s extension theorem)

For every Lipschitz domain §) in R™ and every positive integer m there exists a linear
continuous extension operator
P: H™"(Q) — H™(R") (1-9)
such that
I1Pfllmm < Cllf g (1-10)
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for each f € H™(Q}), where the positive constant C depends only on the cone embed-

ded in €, but not on the domain ) itself. O

For the proof, see Marti[92] or Chenais[29].

Note that yq 0o P = idym(g)=the identity map over H™(Q2) for each m. For this
reason, P is often called a lifting. For a domain 2 C R", if there exists an extension
operator P satisfying (1-9) and (1-10) for m, then the domain  is said to have an
m—eztension property. Theorem 1.1 states that Lipschitz continuous domains have
the m—extension property for each m.

Hence we have the compact embedding property for bounded Lipschitz continuous

domains.

Lemma 1.2. For a bounded Lipschitz continuous domain €2, the natural injection

of H™*1(Q) into H™(R) is compact. O

This can be proved using the Rellich’s theorem for the compact embedding of
H7*1(Q) into H*(Q) and an extension operator P. (For details, see Dautray and

Lions[37]).

Finally, we consider the trace on the boundary. This justifies boundary values for
the variational formulation for the Dirichlet problem. Using a local atlas and com-

bining with the method of Treves[131] for the half plane, we can show the following.

Theorem 1.2. For every Lipschitz domain Q in R" there exists a unique bounded
trace operator

A : HY(Q) — L¥(T) (1-11)
such that Keryr = H}(Q). O

This trace operator satisfies v : HY(Q) — HY?T) if 8Q = T is piecewise
continuously differentiable (see [37]). In this case, we may choose the norm on the

11



boundary I' to be

Ifll1j2r = et o) I fll0- (1-12)
yv=f
and its dual norm to be
. <f4f>
N loijer = sup ——5——, (1-13)
semizay | fllyzr
f#0

where (-)* denote the dual element.

For vector-valued functions and spaces, we use boldface notation. The previous
discussions are naturally inherited. For example, H*(Q) = [H*(2)]" denotes the space
of R"-valued functions such that each component belongs to H*({2).

For the domains of interest to us, we use the space H(Q) = [H'(Q)]* for the
velocity equipped with the norm

. 1/2
Ivil, = (z ||‘v:'||f) : (1-14)
i=1

We consider the semi-norm defined on H'((2):

IVl = (Vv,Vv)L/? = ( / Vv : Vde) (Z_:l I a:: 0) /2. (1-15)

2
Here Vu : Vv=trace of T(VU)VV — E aul 3v,

i,7=1,2 32, 3:5,
between tensors, where 7(-) denote the transpose of (). Then (1-14) can be simply

denotes the inner product

. 2
written as ||V = [V + [vIP.

Let I', be a subset of I' with nonzero measure. Let
Hf Q)={veH'(Q)|v=0o0nT,}.

Note that H{.(22) = H}(Q2).
By directly applying Korn’s inequality, we obtain the following.

12



Lemma 1.3. Let Q) be a Lipschitz continuous bounded domain and I’y be a subset

of I' with a positive measure. Then, there exists a positive constant C such that
vl = Cllvll, , (1-16)

for allv € HL (Q). O

This implies that the semi-norm || - || is a norm which is equivalent to the norm

. on HL (Q). Hence, if we take the inner product on H: (Q) as
1.0 r. r.
((u,v))1 = (Vu, Vv)0 ’

1/2

then JJuf| = ((u, u));*.
Since the pressure is determined only up to a constant in the mathematical formu-
lation of the Navier-Stokes equations with velocity boundary conditions, we take the

space for the pressure to be

() = {p e L(9) | /npdn = 0} .

L3(Q) is isomorphic to L?*(2)/R whose norm is equipped with ||[p]||,q, Where [p]
denote the equivalence class in L2(f2)/R.

Throughout this dissertation, Z will be used to denote the identity mapping, or the
identity matrix which depends on context, and C a generic constant whose value also

depends on context.
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CHAPTER II

VARIATIONAL FORMULATIONS
AND

THE EXISTENCE OF OPTIMAL SOLUTIONS

The difficulties associated with the Navier-Stokes equations originate from three
sources: the nonlinear convective term, the divergence free constraint, and the fact
that it is parameter dependent, i.e., the solution depends on the Reynolds number.
The nonlinear convective term is introduced by the momentum balance law and the
divergence free constraint enforces incompressibility. The Reynolds number is one
of the determinining characteristics of the medium and the flow. The nonlinear
convective term triggers the biggest difficulty. Since it originates from the natural
mechanical balance equations, one cannot avoid it by a mere physical remodelling of

the system.

Because of its complexity and its successes in describing a variety of fluid dynam-
ical phenomena, a vast number of mathematical and numerical studies have been
performed for the Navier-Stokes equations. However, many problems are still to be
resolved (c.f. Heywood[79]). For example, global existence and generic properties

still remain open.

The purpose of this chapter is to cast the state equation into a variational formu-
lation and to show the existence of an optimal solution for our optimization problem
(1-5). In Section 2.1, we give some additional facts concerning our cost functional and

14



the Navier-Stokes equations. In Section 2.2, we briefly introduce some variational for-
mulations and review existence and uniqueness results of the Navier—Stokes equations
to motivate our choice of variational formulation and its continuing development. For
this part, we mainly refer to Temam[126][127], Girault-Raviart[60], Lions[89], Foias
et al.[54] and Gunzburger[64]. In Section 2.3, we reset the proposed problem into a
penalty formulation. In Section 2.4, we show the existence of an optimal solution for

the penalized problem.

2.1. Some Remarks on the Cost Functional and the Navier—Stokes Equa-

tions

Under the assumption of frame indifference, the constitutive equations for a New-
tonian fluid are described in terms of the Cauchy stress S as
S(u,p) = —pZ + 2uT(u) (2-1)
with the isochoric property div u = 0, where p denotes a pressure and g the dynamic
viscosity of the fluid which depends on the temperature and chemical properties of
the fluid, and T(u) = %(Vu+ TVu) is the deformation tensor. Here, —p 7T represents
the stress for an ideal fluid and hence we can interpret (2-1) as the perturbation of
the ideal fluid due to the shearing viscosity effect.
This point of view motivates our choice of the cost functional J(a) of (14) to be

optimized. Physically the drag in the direction of the flow is furnished by

% /ﬂ T(u) : T(u)dQ,

whenever the fluid is isochoric and isotropic (see Gunz urgeret al.[68]). In fact, the

e-component of the dissipative force exerted along the boundary is given by
- (/(—p1+2uT(u))-nd1‘) -e,
r
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where e is a unit vector. Take e = where u,, denotes the uniform velocity of

Uoo
lucs |’
the flow (at infinity). Using integration by parts, this expression may be simplified

2 . -
to —b / T(u) : T(u)dQ due to the incompressibility.
Q

o
|| ucol

Since T(u) : T(u) < %(Vu : Vu), the drag in the flow is bounded above by

u/Vu : VudQ.
Q

Hence, our choice of J(a) in our optimization problem (1-5) is tantamount to reduce
the drag (or, the dissipation energy) by controlling the shape of I'(a).

The state equations are giver by conservation equations. Under the steady-state
assumption, if the fluid is homogeneous, then (1-1) represents conservation of momen-
tum and (1-2) the conservation of mass. The equation (1-2) is called the continuity
equation. The kinematic viscosity is introduced by v = %, where p is the density of

the fluid. We may choose p = 1, so that p = v.

2.2. Approach to the Variational Formulation

In this section, we discuss various aspects of variational formulations for the incom-
pressible Navier-Stokes equations. To begin with, we assume g = 0 on the boundary
T of a Lipschitz continuous domain 2 to motivate the variational formulation for the
problem:

Find (u,p) € H}(Q) x L(Q) satisfying

—vAu+(u-ViYu+Vp=f in Q
divu=0 in Q (2-2)
u=20 on dN=T,
in the sense of distributions, where f € H™*(f) is given.
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Multiplying both sides of (2-2) by v € H}(Q), it readily follows from Green’s

formula that
v((u,v)); + ((u-V)u,v), — (p,divv), =< f,v>_,;, (2-3)

where (-,), denotes the inner product in L*(?) and (:,-), in L?(Q) = L*(Q)? i.e.,
(0, %) = fevdQ in L*(Q) and (&,¥), = ifn éiv; dQ), where & = (¢, ¢) and
¥ = (vy,%,) are elements of L?(). By < -‘,_-1>_1, we denote the duality pairing
between H~1(?) and H}(2).

Motivated by (2-3), we define the following forms:

a(u,v) = ((u, v)l—/Vu : VvdQ = Z/—g—:’—%dx
J 7

5,7=1

c(w,u,v) = ((w-Viju,v), = /(w Viu.vdQ = Z / w;— 7z, v dz

1,7=1
Bv.
b(v,p) =— /pV vdQl = — E / Po dr ,

i=1
forallu, v, w € HI(Q) and p € L*().

Note that a (u,v) Z (g“ g") Obviously a (-, -) is a continuous bilinear form
on H!(Q2) x H(Q) and c( ,*y*) is a continuous trilinear form on H!(Q2) x H'(Q) x
H'(Q) which can be verified by the Sobolev embedding of H!(Q2) C L*(f2) and the
Holder’s inequality.

If we apply ¢ € L3(f) to the second equation of (2-2), we get b(u, q) = 0 for every
q € L2(R2). Thus the weak formulation for (2-2) is given by:

Find (u, p) € H)(Q) x Li(Q) satisfying

va(u,v)+c(u,u,v)+b(v,p)=<f,v>_;,, VveH)Q)

(2-4)
b(u,g) =0, Vge Lj(Q).
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We can approach the solution of (2-4) by decoupling the velocity and pressure.
This can be done by introducing appropriate Sobolev spaces. The basic idea is to
impose the incompressibility constraint on the velocity.

We define the following spaces:

V() = {v eCF(N)?| div v =0}
L(9) = the closure of V() in L*(Q)
V() = the closure of V() in H}()

= {u € H}(Q) | divu = 0}

Then V() is a closed subspace of H}(f2) and the embeddings V(2) C £(Q) C V(Q)*
are continuous.

Note that V(Q) = {v € H}(Q)|b (v,q) = 0 for all ¢ € L}(Q)} and c(w,u,v) =
—c(w,v,u) for all (w,u,v) € (H}(Q) N L(N)) x HY(N) x HY(N).

We restrict c(+,-,-) over V(2) x V() x V(). Then (2-4) is turned into the
problem of finding u € V(§2) such that

va(u,v)+c(u,u,v)=<f,v>_,, YveV(Q). (2-5)

Let ap(w,u,v) = va(u,v)+c(w,u,v). Then ao(:,-,-) is clearly trilinear and contin-
uous over V(§2) x V(2) x V(). Moreover, since c(v,v,v) =0, ao(-,-,-) is coercive
over V(1) by Lemma 1.3. Hence, applying compactness arguments(c.f. Girault-
Raviart[60] or Temam[127]), we see that (2-5) has a solution u in V().

At the present stage, one may ask: how can we recover the pressure p in LZ(f2) ?

From (2-4), this question is equivalent to finding p € L(f2) such that
b(v,p)=<f,v>_;— ao(u,u,v), VveHyQ), (2-6)

where u is a solution of (2-5) in V(). The existence of such a p can be verified
using de Rham’s theorem (see Lions[89]). But on the basis of the mixed variational
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formulation, the existence of p is guaranteed if the following inf-sup condition is

satisfied;
There is a positive constant C such that

b
inf  sup _blv.p) >C. (2-7)
reL3(®) veria) VI llPllo

The inf-sup condition which is often called Ladyzhenskaya—Brezzi-Babuska condition
or div-stability condition is an essential tool to maintain the stability of approxima-
tions. The inf-sup condition can be verified by using the following lemma (for the

proof, see Girault-Raviart[60]);

Lemma 2.1. Let V(Q)* be the space of orthogonal components of V() in HA(Q),
i.e., HY(Q) = V(Q)@®V(Q)*. Then div is isometrically isomorphic from V(Q)* onto
L¥(Q)). Each element v of V(Q)?' is given in the form of v = (—A)~Y(Vq) for some
g € L*}(N). O

This lemma implies that for each p € L3(2) there exists a v € H}(€2) such that
divv = —p in Q. Moreover, ||v||, < K]||p||, for some positive constant K. Hence for

such a choice of v,

1 \4
v, = [ pdivvan = [ gran = ply > 1lal¥ls

1

so that C = x> 0 is a constant satisfying the inf-sup condition (2-7).

Until now, we have observed the fundamental procedure for a mixed variational
formulation of the incompressible Navier-Stokes equations and the search for a so-
lution to the velocity and pressure pair when g = O on the boundary. The major
arguments for this procedure can be summarized as follows.
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Find an appropriate pair of Sobolev spaces for the velocity and pressure so that coer-

civity forao (+,-,-) = va(-,-)+c(-,-,-) and the inf-sup condition for b(-,-) are satisfied.

This principle is also naturally extended to the nonhomogeneous case.
Suppose f and g # O are given in H~'(2) and H'/?(T') respectively. We consider
the problem of finding (u,p) € H'(2) x L(f2) such that
—vAu+(u-Vi)u+Vp=f in Q
divu=0 in Q (2-8)
u=g on I'.
The essential step is provided by the existence of uy in H!() such that
divug=0 in § and u =g on I,
(2-9)
[e(v,u0,v)| < 8|Vl forany >0, VveHyQ),
where g satisfies the compatibility condition [.g-ndl' =0 (c.f. Girault-Raviart[60],
Temam([129]). Then, the problem (2-8) is equivalent to finding w = u — up in V()

that satisfies the following variational formulation:
va(w,v)+c(w,up,v)+c(w,w,v)+c(up,w,v) =< f,v>_,, VWwe V@), (2-10)

where f = f — vAup — (uo - V)ug € H™1(Q).

If we take w in the place of v, (2-10) is reduced to
ao (W, W, W) = va(w,w) +c(w,up,w) =< f,w >_,. (2-11)

Then using (2-9), we easily see that ao (-, -,-) is coercive over V() and the solution
u = up + w of (2-8) exists. The inf-sup condition can be shown in the same manner
as for the homogeneous case.

We state these results in the following theorem for later use.
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Theorem 2.1. Let  be a Lipschitz continuous bounded domain in R" and let the

data (f,g) € H™1(2) x HY*(T") for the equations (2-8) be given. If g satisfies the
compatibility condition [.g-ndl' =0, we then have

(I) There exists at least one pair of solutions of (2-8); (u,p) € H(2) x L3(Q).

(II) Let S be a set of solutions of (2-8) for the velocity. Then S is closed in

H'(Q) and is compact in L%(().
In addition, the uniqueness is secured under stronger conditions;
(II1) If v > (2 £, g) for some positive constant vy which is determined by the

given data, then S is composed of a single element.

Proof: Since the coercivity of ao (+,,) in (2-11) and the inf-sup condition of b(-,-)
are satisfied, the compactness argument (c.f.[60]) finishes the proof of (I). For (II),
the closedness of S in H'(f) easily follows from the continuity of the operators A, V,
div and trace operator. Since the continuous injection H}(f2) into L%(2) is compact
by Rellich’s theorem, the closedness of S in H(f2) ensures the compactness of S in
L2?(9). It remains to show (III).

Let u be any element of S and w = u — u,. We first note that w in (2-11) is
bounded in H!(Q2). Take 6 in (2-11) small so that v > §. Then from (2-9) and
(2-11),

va(w,w)=< f,w >_; — ¢(wyug,w) < ||?||_1||w||1 + 6||lw||}, and hence

1

v—§6

Let u; and u; be any two solutions of (2-8) and u = u; — u,. Let w; = u; — up and

Iwll, < IEll_, - (2-12)

W, = uz;— U, where uy € H'(2) is determined in (2-9). Then i = u; —u; = w; —w;,
is an element of V({2). Plugging w; and w; in the place of w in (2-10), respectively,
and subtracting the results yields

va(1,v) + c(u,up,v) + c(U,wy,v) + c(w2,u,v) + c(uo,u,v) =0, Vv € V().
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Putting v = u, this is simplified to
va (ﬁa ﬁ) = —C(ﬁ, Uy, ﬁ) - C(ﬁvwhﬁ) :

Since — c(u, wy,u) < C||i.‘i||f||‘f||_1 for some positive constant C, applying (2-9) and
(2-12), we find that
C = ~
(v = 8- 55081 ) e < 0.

Hence if we take v large enough so that v > 6 + 4/C ||?||1, then (III) holds when we
take vo(% £,g) = 6+ /CIfEll,. O

(III) also implies the uniqueness of the solution, if data (f,g) € H™! x HY?(T) is
small.
REMARK 2.1: The operator B = — div : H}(Q2) — L%(9) is well defined by Green’s
formula and its adjoint operator B* : L%(f)) — H~1(Q) corresponds to the gradient
operator V through the relation (Bu,p), = (u, B*p),. Hence L%(Q) takes the role of
a pivot space between B and its adjoint B* and V() = Hy(Q) N Ker(B). V() is
often called the space of the solenoidal vector fields.
REMARK 2.2: Let Q be smooth enough, e.g., of class C?(Q?). Consider A = — VA as
an operator from £(2) into £(?) whose domain is Dom(A) = H2(2) N V(Q). Then
since A is a positive definite self-adjoint operator, it has discrete eigenvalues. Let
{(Xj,e;)}2, denote the set of eigenpairs, where {e;}%2, is the orthogonal basis of

L) and0< A A < KA Levvy A = 00 as k£ — 0o, We set

Z)«;Ivjlz ( oo} , foranyse€R.

=1

H,Q)= {u = Zujej, u; € R, ”“”; =

1=l
Then || - || , is a norm on H,, which is equivalent to the norm || - ||, on H*(Q?). This
norm appears to be very useful to describe V() and £(2) and operators on it (c.f.
Fursikov[59] and Foias et al. [51]). For example, {e;}%2, N H'(Q) forms a basis of
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V() and the continuous embeddings V(2) C £(Q) C V(2)* can be rewritten in
a more consistent way as H; C Ho C H_;. This approach seems to be especially
valuable when we wish to construct periodic solutions of the incompressible Navier—

Stokes equations.

REMARK 2.3: There are other ways to formulate the incompressible Navier-Stokes
equations by using other function spaces. For the flows of an incompressible vis-
cous fluid, the streamfunction-vorticity formulation is commonly used instead of the
velocity—pressure formulation. This formulation is motivated by the following simple

fact:

When (2 is a simply connected domain in R? with a suitable regularity,

veV(Q) <<= v=curly = (aa—::i, - g—i), for some function ¢ € HZ(Q).

Such a function 3, which is called the streamfunction for the velocity, is uniquely

. .. . . . 0 0
determined. Combining with the vorticity of the velocity w = curlv = SAL AL

6x1 6X2

and

curl(curlv) = — Av + V(divv), curl(curly)=—-Ayp,

we can exploit the streamfunction-vorticity formulation for (2-2) and (2-8). However,
its relevant equation turns out to have a leading biharmonic term along with a natural
boundary condition and hence a higher regularity assumption need be presumed. In
shape perturbation problems, this may cause difficulties. Hence we do not consider

this formulation.

As we have seen hither to, the two major factors determining the mathematical
behavior of incompressible viscous fluids are the kinematic viscosity and physical
constraints such as incompressibility.
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The kinematic viscosity v plays a central role determining the characteristics of
the mixed variational formulation and its numerical schemes. If v is quite large,
then our variational formulation (2-4) is dominated by the symmetric elliptic term.
Thus, major arguments for elliptic equations such as coercivity and continuity will
be the keynotes in this case. However, if v is small, we encounter the nonsymmetric
convection dominated situation which often causes big difficulties with discretization
methods.

The incompressibility constraint should be kept track of throughout the continuous
and discrete formulations. Even though incompressibility simplifies the mathematical
treatment of the incompressible Navier—Stokes equations, numerically it is a difficult
problem to find stable finite element subspaces of V(f2), especially when the involved

domains are changing.

To relax this constraints and regularity requirements for the solutions, the penalty
method will be applied. The penalized version of the incompressible Navier-Stokes
equations may be stated as:

Find u, and p, satisfying

—vAu.+ (u.-V)u,+ Vp, =f in Q
divu, = —ep, in Q (2-13)
u=g on I',

where € > 0 is a given parameter.

The fundamental idea behind the penalty method is to introduce an artificial com-
pressibility term —ep, in the incompressibility constraint and to expect near incom-
pressibility. Simply put, we wish to approximate the solution (u,p) € H'(Q2) x L3(Q)
of (2-8) by (ue,p.) € H () x L3(Q2) of (2-13). The major advantage of taking this
formulation in our case is that we do not have to deal with the divergence free con-
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straint and the pressure may be eliminated. This will reduce the problem size and

may facilitate the complicated sensitivity analysis.
div u,

For e > 0, p. = — . Plugging into the first equation of (2-13), we get an

equivalent formulation to (2-13) in which only the velocity is involved:
Find u, € H!(9) satisfying
—vAu 4 (U V), — “V(divu)=f in O
€ (2-14)
u =g on I'.

After finding u, from (2-14), the approximate pressure p. can be easily recovered

div u,
from p, = — .
€

Fortunately, there are very reasonable approximation results as € tends to zero

(c.f. Temam[125], Bercovier et al.[16], Hughes et al.[83]). Thus, this mild relaxation
of the divergence free constraint may be combined well with the domain identification
problem.
REMARK 2.4: Temam[125] added additional stabilization term —;—(div u.)u, to the left
hand side of the first equation of (2-14) in the consideration of the Cauchy-Kowalevsk-
aya theorem for the analyticity of the solutions. This results in a minor change to
the trilinear form c(-,-, ).

The penalty parameter € in our case can be chosen in various ways. It should be
chosen small enough so that the compressibility and pressure errors are negligible, but
not so small to avoid ill-conditioning. In the numerical process, its choice depends

on the dynamic viscosity and the machine precision (c.f. Hughes et al.[83]).

2.3. The Penalized Variational Formulation

The purpose of this section is to reset the primal problem into a penalty formu-
lation, to discuss regular branches of solutions of nonlinear problems, and to derive
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some existence and convergence results for the solution of the penalized variational
formulation of the Navier-Stokes equations.

Some difficulties are interlaced with the shape optimization for the Navier-Stokes
equations. As we have already noted in Theorem 2.1, the weak solution of the steady-
state, incompressible Navier—Stokes equations is not unique unless the body force f is
small enough or the kinematic viscosity v is large enough. Hence, we have difficulties

in chasing the natural argument for optimal shape problems:

Q state e‘l“aﬁonjx Yo cost {unctiotﬂ} J(Q) = J(Qy y(ﬂ)) ’

where yg is a solution of the well-posed state equation and J(,y(Q)) is a cost
functional whose value is determined by a pair of admissible family of domains and
a set of solutions of the state equation over a feasible domain.

To overcome this difficulty, we introduce a nonlinear functional setting of the
Navier-Stokes equations involving branches of regular solutions and briefly review
some well-known approximation results originally due to [20]. Motivated by these

results, we recast the primal problem into a penalty formulation.

We consider the penalized steady—state Navier-Stokes equations:

Find u, € H'((a)) satisfying

_vAu - 1V(divu)+ (- V)u =f in Q)
€ (2-15)

u =g on I' = 9Q(a),
in the sense of distribution, where f € H™!(Q(e)) and g € H'?(T') are given. In
this expression, ¢ > 0 is an artificial parameter such that the solution u of the
primal equations is expected to be obtained approximately, i.e., the solution u of the
primal state equations (2-8) lies in a neighborhood of the solution u, of the penalized

26



equations (2-15) in H'(Q(a)) when € is small. Physically, the associated errors from
the penalization amounts to net fluid loss or gain.

For each a € C®—M,, M], let I'3 UT(a) = T'g(a) and 'y = I'1 UT;, so that
0N(a) = Te(a) UTg . Since u, = 0 on I'g(a), we may take a solution u. of (2-15) as
an element in Hy,  ,(@(a)), where

Hry (o) (@) = {u € H(Q(a)) [u=0 on To(a)}.
H}, (o)(®e)) is the space of H'-functions that vanish on T'e(a), i.e., Hp ,((a))
is the space on which the homogeneous essential boundary condition is imposed. Let
Hi..':(a)(ﬂ(a)) be the dual space of H}o(a)(ﬂ(a)). Note that H;:(a)(ﬂ(a)) is a subspace
of H1(Q(a)).

In terms of these function spaces, the corresponding variational formulation for the

penalized state equations is turned into the problem of finding u. € Hp (,,(?(e))
such that for each a € U,4 and for given (f,g) € H;;( o () x Hcl,/ (Ty),

v Vu, : VvdQ + / (uc- Viu,-vdQ + l div u, divv df)
() 0(a) € Ja(a)

— <t,v>_ 10, =<f,Vv>_iro@, VvE€H (Qa)) (2-16)
and
< 8,U > /20, =< 5,8 >_2r, » Vs € HVY(TY), (2-17)
where the duality between Hr , and Hf ., ((c)) is denoted by < -, >_; ry(a)-
Here we denote H/?(T'g) = {s € H/?(T')| s =0 on [¢(a)} and H"/*(Ty) its dual
space and by < -,- >_y/ar, We denote the duality pairing between H~'/%(T'y) and
H'/*(Ty). We can show that
te=v(n-V)u+ % (divu)n  on Iy, (2-18)
where n denote the outward unit normal vector along I'g. t. actually represents the
traction force (or the boundary stress) along the boundary I'y = T'; UT; (see Remark
2.5).
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Since I'g is smooth, the trace mapping 7r, : H!((a)) — HY2(Ty) is well-
defined and H'/?(Tg) = r (Hf () (a)) for each a € Uaa. Hence the equation
(2-17) is well justified. Since g € HY?({Tg), we assume frgg -ndl' = 0 for the
compatibility condition, so that p. € L3(€2). For forthcoming discussions, we define

the following function space;
H(l)/2(]:‘8) = {S € H1/2(I‘\g)| / s-ndl = 0} .
F‘

Now, let 4 be an element of H/?(T'g). It is well-known that HY/?(T'y) is a Hilbert

space with the norm

V¥ = inf v o) -
1 l1/2,rg ven}o(a)(n(a))” ll1.0¢a)

g V=e
Let ¥* be the dual element of ¢ in H~/ 3(T'g). By the definition of the dual norm,

we note that
< 'I’"'l’ >—1/2’F8

%"l -1/2r, =  sup
12T $eH/3(Ig) "¢’”1/2,I‘g
$#0
We derive an equivalent norm to || - ||1/2,r, for our practical use.

Lemma 2.2. It holds that

<4 1TV >_1/2,Fg v'/,a € H—1/2(1—\8) ) (2_19)

l¥*ll_1jor, =  sup
/2Ts veH} () ||V||1,n(a)

v#0

For the proof, we introduce the space of tensors defined by
H(div; Q) = {s = (Si;) € L¥(Q)* | divS = (z;jzlas,-,-/ax,-) € L2(Q)2} :
equipped with the norm

2 ) 2 1/2
ISllsanioy = (ISIaqaye + ll v SliZagap
1/2
= (ZhalSiills + Ti i1 08a/92513)
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For each a € U,4, the following Green’s formula holds:

/ S : VvdQ+ divS.-vd) = / (Son)-vdl' Vve H}o(a)(ﬂ(a)) , (2-20)
Q(a) Qa) Cg
2 2
where Son = (3 Sy;n;, Y. S2;n;). By the operation o, we denote the product of a
Jj=1

I=1
tensor and a vector.

Let us consider the problem of finding w € H}o(a)(ﬂ(a)) such that
—Aw+w=0 in Q(a)
ow (2-21)

— =9 on Iy

on

for a given ¢* € H™1/2(Tg). This can be written in a variational formulation as

Vw : VvdQ+ w-vd(l =<y, v >

VV € H{«O(Q)(Q(a)) . (2—22)
Q(a) Q(a)

-1/2,0g

By the Lax-Milgram Lemma, it has a unique solution w € H}o(a)(ﬂ(a)) such that
(n-V)w = Vwon = ¢* on the boundary. Putting S = Vw, then S belongs to
H(div; Q(a)) by (2-21). Moreover, this S satisfies

Son=9¢" and |[S|laqi;ae) = Wl a@- (2-23)
Next, let £ be an element in H}o(a)(ﬂ(a)) such that 4 ¢ = ¥ and

Ve : VndQ+ | €-nd2=0 VneHLQa)) .

2(a) Q(a)
Clearly such a £ is uniquely determined and by the definition of || - |[12,r,, it follows
that
%ll1/2.,0¢ = lI€ll1,060) - (2-24)

We are now ready to prove Lemma 2.2.

(Proof of Lemma 2.2.): Using the continuity of the ‘race mapping, it follows that

< !Va’YI“;V >_1/2'r" < ||¢'|l—1/2,r‘,||’7r,V||1/2,F3

< l#*ll-jzrgllvihae Yve H}“o(a)(ﬂ(a)) .
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Hence we obtain

sup < ¥V >-1/27
ven;‘o(a)(n(a)) ”vlll,ﬂ(a)

< l¥*ll-1/2,r¢ -

(2-25)

To show the other direction of the inequality, we choose ¢ € H}D(a)(ﬂ(a)) satisfying

(2-24). If we substitute v = ¢ into (2-22), it follows from (2-23) that

<Y ¥ >_ypr, = < ¥, > _1/2Tg = / (Vw : VE+w-¢)dQ

()
< wll,e@)ll€llLa)

= |[VW| '(div; () 1¥]l1 /2,0 -

If we next substitute v = w into (2-22), then
= - 2
<49 y TrgW >-1/2,[“ - ”wlll,ﬂ(a)
= [[Wll1.0e)IVWllrdm; o))
2 |[VWllmgiv; aa) e Wil /2,r5 -
Hence, it follows from (2-26) and (2-28) that
" ll-1/20¢ = VWl H(a10:0(a)) -
Finally, applying (2-29) to (2-27), we get
<MW >y por, = IWllaell#™ll-1/2x -

This implies that there exists w € Hll"o( «)(§2(a)) such that

< "n"sw >—1/2,I‘3

A O
S

Therefore, we come to the conclusion by (2-25). D

ReMARK 2.5: Note that div ( T(Vu,)ov)=Vu, : Vv + Au,-v. Since
- Au,-vdf) = Vu, : Vde—/ T(Vu)ov.ndl
Qo) Q(a) r

= Vu(:Vde—-/(Vuc)on-vdl’
Qo) r
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and v = 0 along I'¢(a), we obtain the formula (2-18) for t. using the Green’s formula
and integration by parts. Since p. = —% div u. in the penalty formulation, t. can be
rewritten as t, = (—p.Z + vVu,)on over I';. As we have already discussed in Section
2.1, the Cauchy stress due to the deformation is given by S(u,p) = —pZ +2v T(u) in
nondimensional form. Since div T(u) = %(Au + Vdivu) = %Au in incompressible
flow, t. is represented by t. = S(u,, p.) o n along I'g, which can be interpreted as the
traction force along the boundary I'y due to the penalized deformation.

t. can also be regarded as a Lagrange multiplier since the domain perturbations
affect the traction force along I'y to keep the mass balance. Gunzburger et al.[65]
used a similar formulation in the boundary velocity control for the Dirichlet problem.
Especially, for finite element approximations, decoupling the computation of t. from

the others in (2-16) will provide the same kind of a simplification suggested in [65].

To overcome some difficulties related to the well-posedness of the penalized Navier—
Stokes equations (2-16)-(2-17), we examine the notion of branches of solutions for
nonlinear problems. From this we get approximation results for our penalized problem
and a modification for the feasible domains. The general discussion for the branch
structure of nonlinear problems can be found in Brezzi et al.[20]. Related to the
branch structure for the Navier-Stokes equations, we closely follow the exposition of
Girault-Raviart[60] with some modification for our purpose. We also refer to [128]
and [65].

The abstract structure of the parameter—-dependent nonlinear problems we consider

is of the form ;

where T : Y — X is a bounded linear mapping, G: A x X — Y is a C*~nonlinear
mapping, X and Y are Banach spaces and A is a compact interval of R. Let the
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solution % of (2-30) depend on the parameter A. We say that {(X,¥()))| A € A} is
a branch of solutions of (2-30) if A ~ 3(]) is a continuous function from A into X
such that F(A,¥())) = 0. By Dy F, we denote the Fréchet derivative of F(-,-) with
respect to the second variable. If DyF(),%(A)) is an isomorphism from X into X
for all A € A, then the branch A — ()) is called a regular branch (or nonsingular
branch). Note that Dy F(A,%) = T+ TDyG(A, ) from (2-30). Hence, if we consider
DyG(),-) as a bounded linear mapping from X into Z, a subspace of Y, where the
inclusion Z C Y is a continuous embedding and T'|z : Z — X is compact, then Dy F
appears to be a compact perturbation of the identity.

This structure is essential in the approximation theory for parameter—-dependent
nonlinear problems. For approximations, we introduce a subspace X* of X and an
approximating operator 7* € L(Y,X"), where £(-,-) denotes the bounded linear
operators between Banach spaces. The approximation problem corresponding to the

form (2-30) is to seek ¥* € X* such that
F*O, ™) = P + TPG(), ¢*) =0 . (2-31)

The convergence to a regular branch of solutions of the approximation problem (2-31)

is ensured under the following assumptions;

DyG(\ %) € L(X,Z) VA€EA and peEX, (2-32)
lim I(T*-T)yllx =0 VyeY (2-33)

and
lim [|(T* = T)lle(zx) = 0 - (2-34)

We now state the fundamental result concerning approximations of the regular branch.
For the proof, refer to [60] and [20].
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Theorem 2.2. Assume that G : A x X — Y is a C®-nonlinear mapping and
that the second Fréchet derivative Dyy,G is bounded on all bounded sets of A x X.
Assume that (2-32)-(2-34) hold and that {(X,%¥()))|X € A} is a branch of regular
solutions of (2-30). Then, there exists a neighborhood O of the origin in X and,
for h < ho small enough, a unique C* function A € A — ¥*()) € X* such that
{(A,%*(X)) | X € A} is a branch of regular solutions of (2-31) and ¥*(X) — (X)) € O
for all A € A. Furthermore, there exists a constant C > 0 which is independent of h

and A, such that

1%*(X) = ¥(Mllx < CIT* = T)GA,p(M))llx YA€A. (2-35)

The steady-state Navier—Stokes equations can be posed in the form of (2-30) via the
Stokes operator and the parameter A = -}: Reynold number Re. The fundamental
idea of a regular branch in the study of solutions of the steady-state Navier-Stokes
equations is based on the fact that bifurcation points and turning points are quite
rare (c.f. Temam[128]). Theorem 2.2 also plays an essential role in error estimations

for the finite element approximations to the Navier-Stokes equations.

We can apply this structure to the penalized Navier-Stokes equations (2-16)-(2-17)
for the study of the convergence when € tends to 0. TakeY = H;:( o () X HY/ (Ty)
and X = HE ,(Qa)) x L3((a)) x H-'Y%(Ty). For the parameter, we take A =

Re = — € A C Ry, where R; denotes the nonnegative real numbers and A is a
v

compact interval in Ry. We also take X* = X and Z = L¥?*(Q(e)) x {0} in the
above discussion.

Let Y be the data space of a Stokes operator and X be its solution space. Let
T:Y - X ((f,§) — (§,5,1)) be the solution operator for the Stokes problem
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defined as follows:
a (ﬁ, V) + b(v,ﬁ)— < ’{,V >_1/2'r*‘ =< f,v > Vv e H%-o(a)(ﬂ(a)) y (2 36)
b(U,q) =0 Vgqe L}(a)),
<s, u >—1/2.F5=< s, g >_1/2'I‘g Vs e H_llz(I‘g) .

The nonlinearity of the Navier-Stokes equations is taken into account by the mapping

G:AxX->Y ((\(w,q,7)) — (n,x) ) defined by

<mv>_y=Xde(w,w,v)-A<f,v>_, VveH (%),
(2-37)
<8,k >_.1/2'1'“ =—-<35,8 >_1/2,[“ Vs € H—1/2(P8) ,

where (f, g) is given in Hl,(Q(a)) x Hy/*(Ty).
Since the weak formulation of the Navier-Stokes equations can be written by
a (u,v) + b(V, Ap)_ < /\t,V >-1/2,P‘
= - [/\C (u, u, V) —-A< f,v >-1,Fo(a)] Vv e H%‘O(G)(Q(a)) ’
b(urg) =0 Vg € Lg(Q(e)), (2-38)
<s,u>_ypor, =—[—<s8,8>_152r,] Vs€ H-Y3(T,),

and the mapping G corresponds to the weak formulation of

{n=/\(W°V)W—/\f,

kK=—g.
Substituting w = u, we obtain from (2-38) that ¢ = Ap, = At and (u, Ap, M\t) =
—TG(u, Ap, At). Hence,
F(\ (u,p,t)) = (u,Ap,At) + TG(A, (u, Ap, At)) =0
is equivalent to the variarional formulation of (1-1)-(1-3).

Next, we associate T¢: Y — X ((f, g) — (W, p., t.)) with the penalized Stokes

operator defined by
a (@, v) +b(v,5)= <tV >pr =<f,v > Vv € Hiy)(R(a))

b(8,q) = €(Pe9)y Vg€ LY(Re)) (2-39)
<Ss, ﬁ( >_1/2‘p‘ =< S,E >-1/2-Fg Vs € H_1/2(Pg) .
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Then, the penalized Navier-Stokes equations (2-16)-(2-18) is equivalent to

Fe(X, (e, Pe, te)) = (Ue, Ape, Ate) + TG(A, (ue, Ape, Ate)) =0 .

Now, we consider the main results for the existence and convergence of the solutions
of the penalized Navier-Stokes equations. We first state the existence of a solution for
the specified system (2-36) for the Stokes equations, whose existence and uniqueness

depends on the following two lemmas.
Lemma 2.3. Let a € U,q be fixed. Let (g,€) € L2(e)) x H™Y%(Ty). Then, there
exists w € Hy (,(Q(e)) such that

divw =gq in$§a)
w =R1¢) on Iy,

where R : H/?2(I'g) — H~V/?(T) is the inverse of the Riesz representation mapping,
t.e.,
<&n>_12r,=< R7Y&),n >1/2r, VYVn€HYY(Ty),

and  ||&]l-1/2,0 = IR} (€)ll1/2,r¢ -

Moreover, there exists a positive constant C such that

lIwll: < C(llgllo + 1l€ll-1/2.x5) -
O

For the proof, refer to Temam([126] and Kikuchi et al.[84].

Let us state the augmented LBB condition coupling the pressure and the traction
force along I'y. For the notational convenience, let us denote M = L2(Q(a)) x
H'/%(T'y) and its dual space by M.
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Lemma 2.4. There exists a constant C > 0 such that

b W, q)— < EWwW > ,
g, O)llmr < sup (w,q) 1/2.

weH]  (R(a)) lIwlix
w#0

, V(g,¢)e M'. (2-40)

Proof: Let (¢,¢) € L3(Q(a)) x H™Y/%(Tg) be given. By Lemma 2.3, there exists
w € H} (%)) such that divw = —g¢ in Q(a), w = —R7!(¢) on I'g and [|w||; <

C(ligllo + ll7ll-1/2,;)- Hence,

b(w,q)— <&W >_12r, = llalls + IRT (Ol /2.,
= llqlls + “5“11/2,1‘8

2 C(llqllo + llel-12x Wl . ©

Let B: V = Hp ,(a)) — M = L§(a)) x H'/%(T;) be the bounded operator

defined by

< Bw,(q,€) >mxm' =< W, TB(q,€) >vxv-
(2-41)

= b(wsq)— <{w >—1/2,F5 .
Then, Lemma 2.4 implies that

I "B(g,&)llv+ 2 Cll(g,&)llm’ V(g,€) € M,

whence || TB||c(m+vr) = C . Using this relation, we easily conclude that B has a closed
range in M and is surjective due to Lemma 2.3. Let us show the existence of the

solution of the system (2-36).

Theorem 2.3. Suppose b(-,-) satisfies the LBB condition (2-7). Then given (f,g) €
HE (@) x H'Y/*(T), there exists a unique solution (u, (p,t)) € HE () (Qa)) x
(L3(a)) x H™Y(Ty)) satisfying

a(u,v) +b(v,p)= <t,v>_ipr, =<f,v>_; Vv € Hp (,)(a)),
b(u,r) =0 Vre Li(Qa)), (2-42)
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<nUu>_y/2r,=<mME >_1/2T, Vn € H—l/z(rs) .

Proof: Using (2-41), (2-42) can be rewritten as
a(u,v)+ < Bv,(p,t) >=<f,v>_; Vv e Hp (%)),
< Bu,(r,n) >= — <n,8 >_1/21, Y(r,n) € Hll‘o(a)(Q(a)) x H™'/%(Ty). 4
Since u = 0 on T'g(a), it is easy to check that Ker B C Hi(?(«)). Since v/a(:,-) =
ll-ll is equivalent to ||-||1, it is obvious that a (-, -) is coercive over Ker B. So, combined
with augmented LBB condition (2-40), the existence theorem for the abstract mixed

formulation([60]) yields the result. O

From the well-posedness of (2-42), the following estimate immediately follows:

llullx + llpllo + lItll-1/2r < C(IEll-1 + ligll/2re) -

In the penalized problem corresponding to (2-42), Lagrange multipliers can be
used to relax both constraints for the incompressibility and inhomogeneous boundary

condition. Let us consider the following saddle point problem:

inf sup E(v,¢),
¢eH'/?(Tg) veH}  (0(a)

where £(-,-) is a Lagrangian difined by

E(v,€) = %a (v,v) + %d(v,v) —£(v) -/F e(v—g)dr.

Note that the coercivity of a(-,:) and the augmented LBB condition (2-40) may
guarantee the existence and uniqueness of the saddle point of the quadratic form £
(refer to [84] for the discussion for the existence of the saddle point). The saddle

point (u,,t) of £ satisfies

1
a(u.,v)+ =d(u.,v)— <t,v>=1f(v) VveHr ,(Qa)),
(u,v) 6( ) (v) Fo(a) (@) (2-44)

<éuo>r,=<¢,g> Vee HYVYTY).
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1 .
Then the pressure can be recovered from p, = - divu, and the Lagrange multi-
ou,
On

of Lagrange multiplier to enforce the inhomogeneous boundary condition. For this

plier is given by t, = (—pZ + ) o n. Hence the traction force plays the role
reason, the variational formulation of the form (2-36) (or (2-39)) is called the mized
Lagrangian formulation for the (penalized) Stokes system incorporating a inhomoge-

neous boundary condition. Some implementation issues shall be discussed in Chapter

Iv.

We are now ready to show the existence and convergence for the solution for the

penalized problem.

Theorem 2.4. Let a € Uyq be fixed. Let {(A,(u(A),Ap(A), d(A) | = .1_ € A}
174

be a branch of regular solutions of (2-8). Then, there exists a neighborhood O of
the origin in Hp, ,,((a)) x L§(Q(a)) x H-'/2(I'y) and for ¢ < ¢ small enough,
a unique C? branch {(A,(u.(A), Ape(A), At(A)) | X € A} of (2-16)-(2-18) such that
u,(A) —u(r) € O for all A\ € A. Moreover, there exists a constant C > 0 which is

independent of € and ), such that
[[ue(2) = u(X)ll1,06) + IP(2) — P(N)llo.a()
+ [[te(A) = t(A)|l—1j2r, < Ce VA€ A (2-45)
Proof: We wish to apply Theorem 2.2. Let ¢ = (u,p,t). Note that
DyG(), (u,p,t)) - (v,¢,8) = A(((v-V)u+ (u-V)v),0) €Y
and
DyyG(A, (u,p,8)) - ((v,4,8),(V,3,8)) = A(((v- V)V + (V- V)v),0) € Y

for all (v, g,s), (V,4,8) € X . It is clear that G belongs to C? and that Dy,G and Dy,G
are bounded on all bounded subset of A x X by the Sobolev embedding theorem. It
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should be noted that (v-V)u+ (u:V)v belongs to L¥?(Q(a)) which is compactly
embedded in H™}(Q(a)). Since Z = L¥%(Q(a)) x {0} is compactly embedded in
Y = H () x HY ?(Tg), (2-34) follows from (2-33). To show (2-33), we consider

(2-36) and (2-39). By Theorem 2.3, (2-36) has a unique solution (u,p,t) in X =
HE (o)) x L3(e)) x H~/2(I'g). Subtracting (2-36) from (2-39), we have

a(fe—U,v)+b(v,p —P)— < tc —t,v >_1/ar,= 0 Vv € H} ,)(Ue)) ,
b(U.—U,q) =€e(P. — P,9)o+ €(P,9)o Vg € Li((a)), (2-46)

<8U —U>_,r,=0 VseH VTy).
Taking v in H}(Q(«)), then the first equation is reduced to
a(i,—4,v)+b(v,p.—p) =0 Vv € H}y(Q(a)) . (2-47)

Since b (-, -) satisfy the inf-sup condition, (2-47) yields

1~ = b(ViPe—P) _ 5 _ =
=lpe—Pllo < sup ’ <|u.—u
[ N O DAL e =l
v3#£0
for some positive constant C' and hence
7 = Pllo < Cllue — 1, . (2-48)

By taking v = U, — u and ¢ = p. — P in (2-46) and (2-47), and by substituting the

second equation of (2-46) to (2-47), we find
a( —U,U, —u) = —€(pc — P, Pe — P)o — € (P, Pc — P)o < —€ (P, Pe — D)o -
Therefore, combining (2-48) with (1-16) we obtain

i —1ll, < Celpll, and  [ipc = Blly < C?e|Bll, -
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Finally, the first equation of (2-46) yields

~ A

<tc—trv >, p < [Uc—al[[vil, + lidiv v]illpe — Bl

< (I8 = 1|, + fI2e = Bll)Ivil; Vv € Hryoy (),
whence from Lemma 2.2, we obtain
It =Bl /a.p, < T = Tll; + N5 = Bllo < (C + C)ellBll, -
Therefore, we have shown
lim ||(T = T)({,&)lx =0 forall (f,8) € Hy(,)(Re)) x H/A(Ty)

and Theorem 2.3 immediately follows from Theorem 2.2. O

Theorem 2.3 implies that branches of regular solutions of the penalized variational
formulation are convergent to those of the primal variational formulations.

Since solutions of the Navier-Stokes equations are regular for almost all Reynolds
numbers, the solutions of the Navier-Stokes equations are locally unique. Hence it is
reasonable to revise the cost functional J(a) to

Je(@) = J(Qa),u(a)) = v Vu, : Vu d?, (249)
Q(a)
where u, is a local solution of the penalized formulation (2-16)-(2-17). Our primal

problem (1-5) is then turned into the problem of finding a* € U,q such that
Je(a*) € 3e(a) Va € Uyq . (2-50)

However, the solution of (2-50) is coupled with the solution of the Navier-Stokes
equations on the corresponding domain. Hence, it is natural to consider the setting of
the coupled admissible family. This will be discussed in the next section in conjunction
with the existence of optimal solutions.
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2.4. The Existence of Optimal Solutions

The main purpose of this section is to show the existence of an optimal solution for
the penalized problem. We first introduce some concepts dealing with convergence in
function spaces and domains. Let X be a normed vector space. We use the notation

“z, — z” to denote the weak convergence of a sequence {z,} in X to z, i.e.,

(n—o0)

Tp =T << < f,Zy>xe —— < f,z >x. forany f e X".

Let Y be a subspace of X. Y is called a weakly closed subspace of X if for every
sequence in {z,} in Y, whenever z, — z* in X, we have z* € Y. In connection
with optimal controls, the following Lemma is very useful for verifying the weak

convergence of sequences.

Lemma 2.3. Let X be a normed vector space. A sequence {z,} in X converges
weakly to ¢ € X if and only if sup ||z.||x < 00 and < f,z, >—< f,z > for each
f € F, where F is a linear span ;f a set which is dense in X*. Moreover, if X is a
reflexive Banach space, each bounded sequence in X contains a weakly convergent

subsequence. O

For the proof, one may refer to Taylor[124].

In general, the most crucial concept in optimization is semi—continuity, especially
when the cost functional contains the gradient of the function. Let S be a subset of
X and J be a real functional on S. We say that J is (weakly) lower semi-continuous
if for every sequence {z,} in S,
whenever

z,— = (Zp—2z) In X,

we have

liminf J(z,) > J(z) .
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Note that the notion of (weak) lower semicontinuity is a local property.

To deal with domain optimization, we need to define an appropriate convergence
criterion with respect to domains. Since domains and corresponding function spaces
are changing, we need a fixed domain Q such that Uaeu, 2 a) C Q to discuss the
convergence of domains and corresponding solutions of the state equations. We sup-
pose hereafter that Q is the interior of the rectangular region ABC D and (), be the
interior of the rectangular region EFGH in (Figure 2) so that

U 2)c®  and  |J @) . (2-51)
a€laq a€lad

The domain class on which optimal shape problems usually have an optimal solution
has been studied by Chenais[29] and Fujii[57]. It was shown by Chenais[29] that the
set of domains with the cone property is compact for the strong Lz(ﬁ)—topology of
the characteristic functions of its elements. Let xq denote the characteristic function
of the domain © which is included in §. The convergence of the sequence {Qn} of

domains having the cone property may be defined by
Qm—rﬂi=>‘/;|x9m—xg|2dﬂ—»0 as m — 0o .
Q

The method of convergence using characteristic functions is often used to solve some
specific shape optimization problems such as the transmission problem governed by
a pair of different elliptic equations over interconnecting regions (c.f. Sokolowski et
al.[121], Pironneau[101] and Ceéa[26]). However, since the convergence of character-
istic functions does not preserve the regularity of domains, it is not appropriate for
dealing with general shape optimization problems in which the regularity of domains
is a concern.

In our case, domains {Q(a)}seu,, are determined by the variable part I'(a) of the
boundary I'. Thus, it is more natural to define the convergence of domains in terms
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of a parameter a belonging to U,q. Let {a,} be a sequence in Uyq. Let Q,, = Q(ay),

for each a, € U,q4. We define the convergence of 2, to Q(a) by

Q, — Qa) <= |lan — |, = max_ |a.(z)—ca(z)|—0. (2-52)
-M;<r<M,

REMARK 2.5: In general shape optimization problems, more stringent topologies are of-
ten introduced to enforce the convergence of geometrical elements (c.f. Pironneau[101]
and Liu et al.[91]). When the inclusive relation between subdomains of R" should be
the main issue as in problems of domain identification, the topology induced by the

following Hausdorff metric is widely used:

Let A and B be two closed subsets of R® and define the Hausdorff metric é by
6(A, B) = max{p(A, B),p(B,A)},  where p(A, B) = sup inf |z — y|Rn.
Then, the topology on the closed subsets of R" is defined by
An — A<= §(Am,A) = 0.

The most important property of this topology is that it preserves the relation of
domain inclusions.

Another important topology can be used in conjunction with mapping techniques.
Let D be a fixed domain in R". Suppose domain perturbations are described by the
family of bijective mappings having some regularities, for example, 3* = {T(D) | T €
C* and T is bijective }. Then, the convergence of domains can be explained using the

minimal norm

IT - Z|| + I T~" - Z|

among the mappings T such that T'(D) € 3*.

Recall that Q(a) is a uniformly Lipschitz continuous domain for each a € U,q4.
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Hence it has the uniform extension property (refer to Section 1.2.). For any v €

HE (o) (Q(e)), let ¥ be its extension to H(), i.e.,

V= Pﬁv ’ (2—53)

where P; is the Calderén’s extension of v defined on {2(a) to Q. Then, by Theorem
1.1, there exists some positive constant C such that ||V||1§ < C|vll1,0(a)s Where C
can be chosen to be independent of a € Uyq.

If v, € Hp (, () and v € H%o(a)(ﬂ(a)), the convergence “v, — v” is defined
by

Vi — VSV, = Ppv, = PRv=V in Hl(ﬁ) . (2-54)

We now turn to the question of existence of optimal solutions. We will use what
is called a direct method in the calculus of variations, i.e., we will try to minimize
the cost functional directly rather than to solve the Euler-Lagrange equations. As
we have already indicated in the previous section, we reset the admissible family U4

into the coupled admissible family Uyq as follows:
Uai = {(@, ue(a)) € Usa x Ho (o) (@)) | Je(a, uc) < 00, and there exists a
t. € HV%(T) such that (2-16)-(2-17) are satisfied} . (2-55)
Let us consider the modified optimal shape problem for the penalized Navier—Stokes
equations:
Find (a*, u.(a*)) € Upq such that
Jo(a®, u(a*)) < J(a,u(a)) for all (a,u(a)) €U (2-56)

where u.(a) € Hp,(,)(Q(a)) is a solution of (2-16) and (*-17).

Fujii[57] has studied a certain class of functionals with the lower semi—continuity
in domain optimization problems. We state one useful result.
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Lemma 2.4. Let Q and {Q,,} be bounded domains having the cone property. Let
u and u,, be elements in H'(Q) and H'(Q,,), respectively. Assume that f(p) is

continuous, nonnegative, and convex for p € R*. Then, the inequality

/f(Vu(:c)) dQ < liminf/ f(Vun(z))d
[e] m—+00 Qm
holds. O

For the proof, see [57].

We are now in a stage to show the existence of an optimal solution for the problem

(2-56).

Theorem 2.4. There exists at least one optimal solution (a*, u.(a*)) € Uyq for the

problem (2-56).

Proof: The nonemptiness of Uyq follows from Theorem 2.3 for the existence of reg-

ular branches of the penalized variational formulation. Note that

Cllu(a)lil a@ < Jela, ue(a)) = v lula)i* (25
)
<v ||u¢(a)||f’n(a) for some constant C > 0.

The first inequality follows from the Korn’s inequality (Lemma 1.3). So, J.(a, u.(a))
is coercive and strongly continuous over Hy ,(Q(a)) for each & € Usy. Moreover,
it readily follows that J.(a, u.(a)) is convex with respect to u.. Hence J(a, u.(a))

is weakly lower semi—continuous by Lemma 2.4. We define u{” = u.(a,), where

{an} is a sequence in Uyq. Let {(an, ugﬂ))} be a sequence in U,4. Since Je(a,u(ea))
is obviously bounded from below for every a € U,q, there exists a minimizing sub-
sequence, which is denoted by the same notation {(an,ugn))}, i.e., there exists a
sequence {(a, usn))} € Uyy such that

lim J(an,u™) = liminf _J(a,u(e)).

nmee (oyue())Eaa
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Since Q, = Q(a,) is contained in Qg for {@,} C U,4, it is a family of uniformly
bounded equicontinuous functions in . Hence, by definition of U,q and the Ascoli-
Arzela theorem, there exists a subsequence of {a,}, which we denote by the same
notation {c,} again, and a* € U,4 such that a, — @* uniformly in [—M;, M;]. Ac-
cording to (2-55) and (2-57), there exists a positive constant K such that [[u™||; o, <
K < oo for all n. Furthermore, due to the uniform extension we can take a positive

constant C to be independent of n such that
&, 5 < Cllu® |10, -
Thus, ||ivl$")||l,ﬁ is uniformly bounded in H!(f}). Also, it is obvious that
™ = y(n.V)u® + % (divu,™)n € HVY(T,)

is uniformly bounded. Consequently, using the compactness of the continuous em-
bedding H!(?) ¢ L2())and HY(I'g) C L*(Tg), we may extract a subsequence of
{@™, 1)} (denoted by {(T™,t™)} again) in H() x H-Y/2(T;) such that

i — g, in HY(Q) (2-58)
™ - g, in L*{Q) (2-59)
t ¢, in HY3(Ty) (2-60)
g (M) = (W)  in HYX(Ty) (2-61)
1 () = (W) in L¥(Ty), (2-62)

for some (i, t.) € H'(2) x H™/%(Ig). Now we define u.(c*) = i, o)’ We wish to

show that u.(a*) is a solution of (2-16)—(2-17) over Q(c*) and t, satisfies
1
te=v(n-V)u(a")+ - (divu(a®))n in H™Y4T,) . {2-63)
Let us define function spaces

W, = {¢ €C®(Q.)? | ¢ = 0 in a neighborhood of To(ay,)=T3UT(ay)}
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and
w = {p € C®(Qa*))? | ¢ = 0 in a neighborhood of Ty(a*) = T3 U '(a*)}.
Then, it is clear that
H:, (o) (@) = the closure of W, in H'(®,) and
H}o(a.)(ﬂ(a*)) = the closure of W in H'(Q(c*)) .
We may consider Hi, ,.,(?(a)) as a closed subspace of
HL (D) = {u e HY(O) | u(z1,0) =0 = u(z,L) } (2-64)

by extending all the elements of H}o(a.)(ﬂ(a*)) to be 0 in {3 — Q(a*). Let us take
¢ = (¢1,92) € W. Since a, — o* uniformly, ¢ € W,, for sufficiently large m (we
suppose m > myg, for example). We consider the equations (2-16)-(2-17) over £,,

for m > mg. If we substitute ¢ for v, we obtain that

v [ vul™ : Vedo + / (uE’"’-V)uﬁ'"’-cpdﬂ+% div u™ dive dQ

Qm m nm
- < tgm),(p >-1/2'1‘8=< f,(p >-1,9m (2—65)
and
<s, ugm) >"1/2,Fg=< 5,8 >_1/2v[‘s Vs e H’I/Z(I‘g) . (2—66)

We take into account each term separately. We first note that

Vul™ : VedQ = f\ vi™ : VedQ (by the extension of u{™ to {1)
Qm Q
(m=c0) ‘[\ Vi, : Ved (from (2-58))
o

= Vua*) : VedQ (by the choice of ¢ in W) .
Q(a*)

In a similar fashion, we can show that
div u."™ div o dQ) — divu.(a*) div e dQ ,
Qm Q(a*)
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as m — oo. Next, we estimate the nonlinear convective term. Since u™ =0 on

To(am) for every m, using integration by parts, we have that

/ (ugm) -V) ug"') cpd) = / (ugm) -n) ugm) . @dl’
Qm

Tg

— / (divuNu™ . odd - [ (U™ .V)p-u™dQ. (2-67)

m Om

Note that the outward unit normal vector n along I'y is fixed through the domain
perturbations because of the given boundary condition and our choice of function

space. It follows from (2-61)-(2-62) that
/(uﬁ"‘)-n)uﬁ"‘)-vdf=/(S-n)g-¢dF
rg FK
- / (@™ . ) T . T
Tg

= [ (udo) myufa’) - ar.
g
For the second and third terms of (2-67), we use the fact that every components ;

and (Ve);; belong to L>(2(a*)). Since ||div ﬁe(m)”Lz < ||u(m)|| & < oo for all m,

@ =

we may extract a subsequence, which is denoted by dwu(m), such tha.t
divi,™ — divii, in L*(0). (2-68)
We note that
/ﬁ (div &™) 5™ . o dO2 — /ﬁ (div ) T, - o dO
= /ﬁ div T, (H™ — ) dO) — / 5. (div 8, ™ — div §,)p d0

Q
— 0, as m — 00.

Consequently, using (2-68) and the uniform extension, it holds that

[ iouyuf o = [(ainal)w. pan
Q

m

(o) | (div i) G- o dO

_ /n (divu.(a*)) u(a”) - wdf .

(e*)
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In a similar fashion, we get as m — oo,

/ (™. V)p-u™dQ — [ (ule®) V)u(e®):¢dQ.
m Q(c*)

Therefore, combining all the results for the three terms in (2-67), we get as m — oo,

./ (™ - V)ul™ . ¢ d0
O

- / (™ . n)ul™ . odl — [ (divu™ - n)ul™ . pd0 — / (W™ . 7)o - ul™ do
e Om

Qm
— [ (ula") musa”)-pdr = [ (divua")u(a) i
I'g 2(a*)
— (u(a*) - V)p-u(a*)d = (ue(a®) - V)u(a®) - ¢ dQ.
Qa*) Q(a*)

Up to the present, we have shown that

v Vu(a*) : Vedd +/ (ue(a®)- V) ua®) . ¢dQ
i(a*) (a*)

1 .
+ - / divuc(a™)divedQ— < t, o >_12r,=<f,90 >_19(a)
Q(a*)

for any choice of ¢ € W. From this formulation, it follows that
* 1 . *
<te, 0 >_y2r,=< v(n-V)u(a") + Z(dwuc(a In,e>_1pr, -

Since W is dense in H}o(a.)(ﬂ(a*)), we can conclude that u.(a*) is a solution of the
penalized variational formulation of (2-16)-(2-17) over (a*) and (2-63) immediately
follows. Therefore, (a*, u.(a*)) € Uyq and this implies that U,, is weakly closed. Since
Je(+,+) is weakly lower semi—continuous, the problem (2-56) has an optimal solution
(a*, uc(e*)) belonging to Uyg. O

It is clear from (2-45) that
|3e(a™) —3(a*)] — 0  as e tends to 0 (2-69)

along the regular branch.
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REMARK 2.7: Since the steady—state Navier—Stokes equations have multiple solutions
for large Reynolds numbers, we cannot expect a unique optimal solution. Even in
the case that the state equation has a unique solution, the optimal shape need not
be unique. This was indicated in Begis et al.[12] in the optimal shape problem for

elliptic state equations. The same argument can also be applied to our case.
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CHAPTER III

SHAPE SENSITIVITY ANALYSIS
AND

THE OPTIMALITY SYSTEM

Generally speaking, the procedure of searching for an optimal shape design may

include all or part of the the following steps:

(i) Determination of the involved factors for the physical problem to be studied.
For example, the reduction of the drag or enhancement of lift, the Joukowsi
condition and the curvature of the boundary surface should be considered
in the design of aerofoils.

(ii) Setting the physical problem into a system of well-organized (tractible) par-
tial differential equations by simplifying minor physical factors and choosing
a design functional to fit into the task to be performed by imposing some
necessary weights or constraints and by checking its validity.

(iii) Selection of an appropriate parametrization for the moving parts of domains.
(iv) Computation of variations of the cost functional and constraints with respect
to design parameters.

(v) Setting adjoint state equations and determining necessary optimality condi-
tions.

(vi) Selection of suitable devices for problem solution and convergence analysis.
This may include discretizations for the state and adjoint state equations,
sensitivity analysis for the discretized problem and adoption or development
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of effective optimization techniques.
(vii) Readjustment of the problem and data according to computed results.
and finally, if possible

(viii) Mathematical justifications for the optimal solution.

The core steps are in the computation of the shape gradient and in the determination

of factors and criteria for the optimality conditions (steps (iv) and (v)).

In this chapter, we are mainly concerned with the shape sensitivity anlysis for the
problem (2-56). Sensitivity analysis in a shape optimization problem is the study
of the effects on the design functional and potential constraints due to variations of
the design parameters. In the circle of structural engineering, shape optimization
problems deal with the design of engineering structures to achieve optimal perfor-
mance criteria and shape sensitivity analysis concerns the relationship between de-
sign variables available to engineers and structural responses or state variables that
are determined by the laws of mechanics (c.f. Haug et al.[78]). Given any design,
a sensitivity analysis determines if it is a stationary point in design space for the
relevant optimization problem. Otherwise, one may try to improve the given design
locally. Improvement of performance can be achieved iteratively by following the
gradient of the cost functional. This is based on the existence of Gateaux derivatives
of the cost functional and constraints in the direction of domain perturbations. The
first result concerning the differentiability with respect to perturbations of a domain
were obtained by Hadamard in 1907 for the first eigenvalue of a membrane. He also
computed the derivative of the Green’s function for the Laplace operator with re-
spect to the normal variations of the domain. This technique, which is known as the
normal variation method, is still widely used in many applications to compute the
first order variation of the design parameters (c.f. [101][49][50]). The basic idea of the
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normal variation method is to consider the change of the design variables as a smooth
function of the normal to the boundary of the domain to utilize the mean value the-
orem. Pironneau[101] developed the normal variation method further to obtain the
necessary optimality conditions for shape optimizations of elliptic systems. He also
examined some problems of fluid mechanics including Stokes and Navier-Stokes equa-
tions to find a minimum drag profile of a body embeded in the flow ([99][100][61]).
Koda[85] took the similar technique to derive the optimality condition of a similar
design performance functional for the evolutionary Navier—Stokes equations. How-
ever, this method requires sufficient regularities for the feasible domain and data of
the state equations. Hence, it can not be generalized into general situations such
as domains with piecewise smooth boundaries and data for the state equation with

lesser regularities.

Zolésio[135] introduced a new technique that is called the material derivative method
(or the speed method) to show the existence of a solution of a domain identification
problem given a velocity field of domain perturbations. This method utilized the
ideas of classical Eulerian and Lagrangian descriptions of the motion of fluid particles
(or spatial and material descriptions in the motion of a body in continuum mechan-
ics). He also developed the shape calculus which can be effectively used for the shape
sensitivity analysis ([136]). There are numerous papers in the literature performing
shape sensitivity analyses using the material derivative method. Standard guidelines
for shape optimization were drawn by Céa ([26][27][28]). General frameworks for the
optimal control problems for the variational inequality were discussed by Mignot ([93]
[94][95]) and Lions ([89]). Haslinger and Sokolowski gave the mathematical founda-
tion of the shape sensitivity analysis for optimal shape control problems governed
by a variational inequality such as the unilateral problem dealing with the contact
problem of elasto-plastic bodies and obstacle problems arising in continuum mechan-
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ics. In recent years, Delfour and Zolésio [45][47] have extended the shape calculus to
obtain the Shape Hessian (or the second order variation of the design parameters)

using the Lagrange multiplier technique associated with the state variables.

In our case, the domain and variables of the state equations are not smooth enough
to accommodate the normal variation method. Moreover, the feasible domains should
be perturbed in a special direction. We will use the material derivative method to
describe the domain perturbation and to compute the shape gradient. The computa-
tion of the shape gradient and its treatment play a central role in the shape sensitivity
analysis. We take the Lagrange multiplier technique associated with the state equa-
tion to obtain the necessary optimality condition leading to the optimality system.
This appears to be an efficient tool to relax regularities for the feasible domain and
state variables.

In Section 3.1, we briefly discuss the material derivative method and introduce some
shape calculus. For this part, we mainly refer to Zolésio[136], Sokolowski et al.[121]
and Delfour et al.[46]. In Section 3.2, we are concerned with the shape sensitivity
analysis for the design functional. We employ the Lagrange multiplier technique
to obtain the adjoint state equations. In Section 3.3, we show the existence of the
Lagrange multiplier by applying a method from functional analysis. In Section 3.4,
we discuss the optimality system and the regularity for the solution of the problem

(2-51). The weak penalized optimality system is presented in Section 3.5.

3.1. The Material Derivative Method

How can we describe continuous variations of a shape? This question is equivalent
to: how can we parameterize the deformation of a domain in Euclidean space? An
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answer to this question is found by considering the domain as a continuum medium.
For the general discussion, we suppose {2 is a bounded simply connected domain in
R™. Since {1 is not an element of a vector space, we need a suitable descriptive tool
for the domain perturbation to get the shape gradient with respect to domain. The
material derivative method utilizes the conventional material and spatial descriptions

for the deformation of a continuum medium in Euclidean coordinates.

We introduce a one parameter family of domains {€:}:>0 in the following way;
Given a domain Q@ C R" and a (smooth) vector field V(¢, -) defined in a neighborhood
of Q, each point p of {1 is continuously transported in a one-to—one fashion onto a

point x(t) at ¢ > 0 through the following system of ordinary differential equations

x(t) = V(¢t,x(¢
{ X0=Viex) o
x(0) =p.
This induces a one-to-one transformation F; : R* — R™ and o > 0 such that
t
Fip)=x(t)=p+ / V(s,x(s))ds, (3-2)
0

for 0 <t <o and p € ! C R*. From this, the domain perturbed in the V-direction
can be defined by ), = F(R), where @ = Qp = Fo(?). Also, the boundary is
preserved under the transformation F3, i.e., I'y = 00y = F(T) and T’ =Ty = Fo(I).

Figure 3: Transformation F,
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In technical terms, F; is called a local configuration, §2 a reference domain and 2,
a domain of spatial fields. The map t — Fy(p) is called the design trajectory of p
and V the design velocity (or simply, velocity). In case that the dependency of F;
on V should be emphasized, we will write F; = F;(V). By the local existence and
uniqueness theorem for the system of ordinary differential equations and the integral

representation (3-2) for the trajectory, it is not difficult to show that

Foru(V)(@) = Fo (Vi )(Fu (V)(a)) (3-3)

for all ¢4, £, > 0 such that 0 <, t3, t; + t2 < o and all points q in a neighborhood
Op of p, where V;,(s,:) = V(t1 + s,-).

For practical applications, we consider the case when all the perturbations of a
domain are constrained in a fixed domain Q. To be more precise, let us assume that
Q is a bounded open set containing ! and that V : [0,?] X @ — R"™ denotes a
continuous vector field. Suppose that ¢t — V(¢,x) is continuous for each x € 1, and

V(t,-) is Lipschitz continuous, i.e., there exists a positive constant ¢ such that
V(t,x1) — V(t,x2)| £ C |x1 — x2|, (3-4)

for t € [0,%] and every x; and X, in Q. Then for any p € £, there exists an & € (0,%),

an open neighborhood O of p in Q and a one-to—one transformation
Fi: Op = F(Op) C R” for 0<t<7,

such that ¢ — F;(p) is a unique solution of (3-1) for 0 < ¢t < &. Now, let us assume
that

U Fi(Op) CQ  forevery pe . (3-5)
OpCQ
0<t<o

This condition is needed to guarantee the existence of the inverse F;! of F; for
0 <t < o, when V(¢,) is defined on Q (see Lemma 3.1 and Remark 3.1).
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Since § is compact, there exists a finite open covering {O;}%, of { in Q with
correponding positive numbers o4, - - , 0, and transformations {f}(i)} such that .7:;(;) :
0; — .T}(i)(O;) C Q is one-to-one for 0 < ¢ < o0;. Let us take O = [JI_, O; and

o = min{oy,--- ,0m,}. Notice that by the uniqueness of the solution of the differential

equations, f;(i)(q) = ]-’t(j )(q) for q € O;NO;. So if we patch them together by defining
Fla)=Fa) i a0,

then clearly F; : @ — ; C Q is a one-to—one transformation for 0 < ¢t < o. The
continuity of F;(-) for all 0 < t < o easily follows from the expression (3-2) of F;
and the Lipschitz continuity of V(¢,-). Furthermore, if V(t,-) is of class C* over Q,
from the classical regularity result (for example, see Lang[84] for a lucid exposition), it
follows that F;(-) is also of class C* over Q. Clearly, (0,0) 3 t — F;(x) is continuously

differentiable for each x € ;.

Next, we consider the inverse F; ! of F;. Note that if ¢ — V(¢,-) is defined in a
neighborhood (—o, ) of 0 and ?3_]; = 0, then F; 44,(q) = F,(Fi,(q)) for all ¢; and
t2 such that —o < {4, {3, t; + 2 < 0 and all points q in a neighborhood Oy of p. In
this case, {F:}-s<t<o is a local one parameter group of transformation whose inverse
is given by F; ! = F_, for —o < t < 0.

Since this is not the case, to discuss its inverse F; !, we consider the following

system of differential equations:

p(s)=-V(t-s,p(s)) 0<s<t,
(3-6)
p(0) = x = F(p(t)) for xeQ, CQ@.

This introduces a 1.nique Lipschitzian solution Ji(x) = p(t).
Lemma 3.1. Under the assumption (3-4) and (3-5), the transformation J; induced

from (3-6) is an inverse of F;. Moreover, if V(t,-) is C¥(Q), so is F;! = J..
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Proof: Consider the map s — F;_,(p) for 0 < s < t. Since Fi,(p) = x(t — s) =
V(t — s,x(t — 3)), s+— Fi_,(p) is a solution (3-6), i.e., F;—y, = J,. Hence

J(F:(p)) = p(t) = Fis(P) =P

whence J; is a left inverse of F;. To show that J; is also a right inverse of F;, we

consider a function y(§) = p(t — £). Since

¥(6) = E"gp(t _ &)= —p(t—€) = V(t— (t— &), p(t - £)) = V(£,¥(£))

from (3-6), y() is a solution of

y(€) =V(y(€),  y(0)=p().

So, it follows that

x = p(0) = y(t) = Fu(p(t)) = F(Te(x))

and hence that J; = F;'. It can be simply written as F;(V)™! = F(-V,), where
Vi(s,:) = V(t — s,-). The second assertion can be proved in the same way as the

regularity of F; using the regularity of V;(s,-) and the equations (3-6). O

Note that from (3-3), Fiya(V) — Fe(V) = (Fa(Ve) — I) o F(V) for t, A > 0. So,

i,ﬁ(V)(p) = V(t, F:(V)(p))- Hence, it follows that

__Bf:

V(t,x) = (f_ (x)) forevery x€, 0<t<o. (3-7)

The argument hitherto can be simply stated as follows: if V(t,-) is of class C*¥ with
k > 0 over Q, there exists a CF—diffeomorphism F; from  onto Q; and wice versa,
if {Fi}o<i<o is a family of C*-diffeomorphisms, V can be recovered from (3-7) and
V(t,-) is also of class C¥. (Note that if V(¢,-) is Lipschitz continous, so is F;, and vice
versa.)
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REMARK 3.1: Zolésio showed in his dissertation(1979) that for any domain D in R®

and a (smooth) velocity V : [0,7] x D — R satisfying

V(t,x)-n(x) =0  if the outward normal n(x) is defined a.e. x € 4D

V(t,x)=0  otherwise,

the solution F; of (3-1) maps D into D for all 0 < ¢t < 7 (c.f. Sokolowski et al.[121]).

Recently, Delfour and Zolésio[46][48] extended the class of V such that (D) C
D, Vt € [0,7], using the “viability theory” introduced by Aubin-Cellina[7]: The
general motivation for the viability theory is to study the viable phenomena such
that a trajectory ¢ — z(t) belongs to a fixed closed subset K of a Hilbert space H.

Let Tk (z) be a Bouligand contingent cone to K at z which is characterized by

di(z + hv) _

h 0,

v € Tk(z) < hhrg(l)l}f

where dg(z) = inf{||z — y||la# | y € K}. Obviously, Tk(z) is a generalization of the
tangent space to K at z, when K is a smooth manifold in B®. The fundamental
theorem for the study of the viability follows from the following version of Nagumo’s
theorem which can be found in [7]:

Nagumo’s theorem: Under the above setting, let f : K — H be a continuous mapping

satisfying the tangential condition
Vze K, f(z)€Tk(z).

Then for all zo € K, there exists 7 > 0 such that the differential equation Z(¢) =
f(z(t)), z(0) = zo has a viable trajectory on [0,7]. O

Take D C R™. Let us consider vector fields V which satisfy the following condi-
tions:

(i) V(¢,-) is Lipschitz continuous,
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(ii) V(¢,x) and —V(¢,x) belong to the Bouligand contingent cone T5(x) to D at
x € dD, for all (t,x) € [0,7] x dD.
The condition (ii) is a double viability condition by Nagumo’s theorem, which guar-

antees the the existence of a homeomorphism F; : D — D (for details, refer to Delfour

et al.[43)]).

We are now in a position to discuss the variation of a function due to the domain
perturbation. Throughout this section, we assume
U I xqcloi]xQ. (3-8)
te[o,t]
Let y; be a regular function defined on ; = F;(Q?). Then the composite y; o F;
is defined on a fixed reference domain Q. The (pointwise) material derivative (or,
Lagrangian derivative) of y; at p € § in the V-direction is defined by the following

semi-derivative (if it exists):
. d
y(piV) = Zu(FP))| - (3-9)
t=0t
If {Q},,<7 is a class of domains with the uniform extension property, we can consider

Y as a restriction of y to {t} x Q, where y is defined globally in [0,%] x Q, i.e.,
y(t,x) = Po(y(F))NF(x)) and  yi(x) = y(2,x). (3-10)

Then, using the chain rule, the material derivative (3-9) can be written as

y(t, Fi(p)) — y(0,p)
t

y(p; V) = lim
*5;* (3-11)

= 5;(0:P) +(Vy-V)(0,p),

Oy

' Oz,

Q; and u(t,-) is its extension to Q, the material derivative of u, can be written as

where Vy = ((%l—, e ). Similarly, if a, is a vector—valued function defined in
1

4(0,p) = J2(0,p) + (V(0,p)- V) u(0,p). (3-12)
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This concept can be naturally generalized into Sobolev spaces. For example, let
v € H™(Q,) and V(t,-) € C*(Q; R") for 0 <t < 1, where 0 < k < m. Since F; is
C*-diffeomorphism, y; o F; € H*(1), which can be verified by Leibniz’s rule. In fact,

HQ) = {y:0 F: | V(t,") € C*(Q; R") and y, € H*()}.

Then, § = §(Q;V) € H*¥(Q) is called the material derivative of y at & C Q in the
direction of V in the Sobolev space HF(f) if

lim “y(ts ﬂ(p)) — y(01 p) _ y(Q, v)”k,ﬂ =0.

t—0t t

Notice that unless & > > pointwise expressions such as (3-9) are meaningless. It
makes sense only a.e. (almost everywhere). To avoid notational confusion, we write

it by
yroFi—yol
t ?

y=9(%V) = lim
where the limit is taken in H*(2). The material derivative in the weak space can be
defined in a similar manner via duality.

If y € H*(Q) is a uniform extension of y, € H*(), the shape derivative y'(Q2; V)

at @ C Q of the uniform extension y € H*¥(Q) in the V-direction is defined by
¥4 V) =9(% V) — Vy(Q) - V(0). (3-13)

Note that y'(Q; V) € H*(Q) from (3-13). If k-1 > g—, since H*(Q) C C'(Q), the
shape derivative can be defined pointwise

, 0
v(®%V) = 5/ (0,p)

=g9(0,p; V) — (Vy - V)(0, »).

As we shall see later, the shape derivative is very crucial in the shape sensitivity

analysis for the domain functional.

61



Next, we are concerned with the domain functional. Let J(f2) be any domain
functional on Q and let j(t) = J(2:). Then the rate of variation of J({2) at the
reference domain § with respect to the domain perturbation may be measured as a
directional semi-derivative

dJ(Q; V) = lim J(E) = J()

t—0+ t

_ %J(}}(V)(Q))h:m = 5(0).

The domain functional J() is said to be shape differentiable if

(a) dJ(;V) exists for all directions V
(b) ¥V — dJ(®;V) is linear and continuous over appropriate admissible vector

fields.

If J(R) is shape differentiable, under the sophiscated structure, we can interpret

V — dJ(Q; V) in the distribution sense:
dJ(V) =< G(),V > . (3-14)

Then G(2) appears to be a vector valued distribution of a finite order acting on the
appropriate test function space which is determined by the regularity of the admissible
domains. In this case, G(§2) is called the shape gradient of the domain functional J(2)

and is usually written as

G(Q) = grad J(R2). (3-15)

Then, the shape optimization problem is rendered into the problem of finding G((2)
so that j(t) < j(0) for ¢t > 0. The method of finding a shape gradient in this manner

is called the material derivative method.

REMARK 3.2: In the above definition, condition (b) requires an appropriate topology
for the admissible vector fields and the continuity of V — dJ(Q;V). For a vector
field V € C°([0,%]; C¥(Q; R™)), i.e., V(t)(-) = V(t,-) a vector valued C*—function with
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compact support in Q, Delfour et al.[46] introduced the inductive limit topology to
utilize the sheaf structure of the distribution:

Let £™* = {V € C™([0,1]; C5(Q; R") | V(t,x) and — V(t,x) belong to the Bouligand
contingent cone to @ at x € dQ}. Let £g’* denote the closed subspace of £™* with
V(t,-) € C5(K; R"), where K is a relatively compact set in Q. The inductive limit

can be introduced by

—m,k

£ =lim{ep* | VK € Q},
K

where lim denotes the inductive limit with respect to relative compact subsets of Q

endowed with the natural inductive limit topology. Under this structure, -Ezk 3

V — dJ(Q; V) is continuous (for details, refer to [46] and [48]).

For the structure of the shape gradient for a domain functional, we demonstrate
fundamental properties for the shape gradient. This structure will be applied to
the shape sensitivity analysis in the next section to obtain the shape gradient for
the problem (2-56). Moreover, by taking this structure, we can relax the regural-
ity requirement for the admissible domains which is common in shape optimization
problems. For the sake of completeness, we provide a brief proof. Our proof is based
on the original thoughts of Zolésio’s[132] and the concept of distribution which can
be found in Hérmander[81]. One may also refer to [121] and [48]. In the sequel, we

will denote the support of any function or functional by supp for simplicity.

Theorem 3.1. We assume V belongs to a class of vector fields satisfying (3—4) and
(3-5). Suppose J(Q) is shape differentiable at O C Q. Then
(1) dI(@V) = dI(@;V(0)), ¥V € C([0,1;CA(Q; RY)). (3-16)
() suppG(Q) cT = 99. (3-17)
(I1II) (Hadamard’s Structure Theorem)
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There exists a scalar distribution g(I') of a finite order such that

dJ (V) =< G(Q), V(0) >q (3-18)

=< g(T),V(0)-n>r, (3-19)
where V(0) - n is the normal component of V(0) on .

Proof: (I); Let o be a positive number found in (3-2). For V € C°([0,%]; C5(Q; R™)),
t
take a positive integer mg so large that — <o Define V,,(t) = V(%) for m > my.
0
Since supp V() C Q, there exists a compact subset K of Q such that

U supp Vn(t) C K, Vm 2> mg.

te[0t]
For every |a| < k, since

0
sup |(5=) (Vi (£,5%) = V(0,))
£

= sup [( )" (V%) = VO, D) — 0 a5 m — oo,

ox

0<t<t
xek

it follows that dJ(Q; V) — dJ(Q;V(0)) and (3-16) follows from the uniqueness of

the limit.

(I1); In the sense of distribution, we note that
supp G(Q) N supp V(t,) =0 =< G(N),V >=0. (3-20)

Let V(t) € CE(Q; R™) be a vector field such that supp V(t)NQ = 0. Since V =0 in
Q, (3-1) yields F;(V) = Z. Hence we have F;(V)() = Q; = @ and dJ(9; V) = 0. So,
it follows from (3-20) that supp V(t) C 2 and

supp G(Q) C Q. (3-21)
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Next, we suppose that supp V(t) C Q. Then, there exists an open set O and a one-
to-one transformation F; such that suppV(t) C © C Q and F,(V)(O) = O, which can
be obtained by using the similar technique we have already discussed in this section.

We consider a one-to—one transformation F;(V) defined on Q by

FV)p), if peO
P, if peQ-0.

Then, clearly F;(V) satisfies (3-1) and F;(2) = Q. This implies that 7o(G(R2)) =0

ft(P)={

and hence that supp G(Q) C @ — Q. So, combined with (3-21), the result follows.

(III); (3-18) immediately follows from (3-16). Note that the distribution
with a compact support has a finite order (c.f. Hérmander[81]). So, from (3-17), ¢(T)
has a finite order (if it exists). Let & C Q be a domain of class C¥, (k > 1). Then
the normal vector field n exists and belongs to C*~!(T'; R"). Consider the continuous

linear mapping
dJ(;-): CX(Q; R™) 3V +— dJ(Q; V) =< G(R),V(0) > € R.
Let K() ={V €C*(Q;R*) | V(0) - n=0 on I'}. We first show that
K(Q) C Ker dJ(€;-); (3-22)

Let V(0)-n = 0 on I'. Then V(0) is a tangent vector field to I'. Hence transver-
sality along I' does not occur, i.e., F(V)(2) = Q. Hence dJ(;V) = 0, i.e,
VY € Ker dJ(%;-).

Therefore, there exists a continuous linear functional A on C¥(Q; R*)/K() such that
dJ(; V)= Ao,

where 7 : C¥(@;R*) 5 V(0) — [V(0)] € C*(Q; R")/K()) denotes the canonical
projection. It is not difficult to show that C¥(Q; R*)/K(f) is isomorphic to C*~1(T")
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(see [48]). So, we can regard A as a continuous linear functional dJ(T;-) on C*~}(T)
and 7 as a projection map onto C¥~1(T') via 7(V(0)) = [V(0) - n]. Hence there exists

a distribution g(T') of (k-1)-order in this case such that

dJ(; V) = dJ(T; V(0) - n) =< ¢(T), V(0) - n >r . O

The representation (3-19) is usually called the Hadamard formula for the shape

gradient of the domain functional J(2).

REMARK 3.3: From (3-22), dJ(; V) can be written as
dJ (V) =< 6(Q),(V(0)- NN >,

where A is a unitary extension of n to Q. Such an extension always exists if T is of
class C¥, (k > 1), which can be verified by using the local atlas along the boundary
of the domain and patching them using cutoff functions (see [121][136], for details).

Hence dJ(2; V) can be written in the integral form as
4I(Q; V) = / (G(Q) - M)(V(0) - ) dO2.
Q

Consequently, in the representation of (3-18) and (3-19) for the shape gradient, g(T')

can be related to G(2) via
g9(T') = (G(2) - N) (3-23)

and conversely,

G(T) = Tar(g(T) - m). (3-24)

REMARK 3.4: Hadamard took the variation of the domain functional only in the nor-
mal direction to the boundary of the smooth domain to obtain necessary optimality
conditions for specific problems (c.f.[48]). This method is usually called the normal
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variation method. By contrast, the material derivative method and the expression

(3-19) for the shape gradient yields a generalization of the normal variation method.

For our work in the next section, we consider two standard examples for the domain

functional;

Jl(nt)=/ ytdﬂt and Jg(Qt)=‘/r‘ ytdFt, (3—25)
Qe t

where I'y = 99, y; is a function defined on ; C Q and I';, respectively. Let ¥ be
a uniform extension of y; in @. Then, under some reasonable assumption on the

regularity for the admissible domain and the class of functions, one can derive

di (V) = /Q %%dﬂ+ /Fyo (V(0) - n)dl’ (3-26)
and
dJL( V) = /r [% + (% + k o) V(0) - n] dr. (3-27)

Here x denotes the curvature of the boundary curve I' when the spatial dimension
of the domain is 2, and the mean curvature of the boundary surface I' when the
spatial dimension is 3. These formulations were induced by many authors. For
demonstrations, one may refer to Zolésio[136], Sokolowski et al.[121], Haug et al.[78]
and Rousselet[110].

In these two standard examples for the domain functional, dJ;(Q2; V) consists of
two main components; a linear term V - n on the boundary and a shape derivative
term ¥/ = y'( V) = g—g In order to obtain the shape gradients for J; and J3,
it should be justified that V — %(Q, V) is linear and continuous over appropriate
admissible vector fields. This implies that §'(f2; V) should be represented as a linear

function of V. A major step toward the shape sensitivity analysis is to give a sense
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to ¥'(R;V) and to find an appropriate linear model for 3'(€2; V). As a preliminary
step, we demonstrate some basic properties of the shape derivative y'(Q2; V).
Lemma 3.2. Let V belong to a class of vector fields satisfying (3-4) and (3-5).
(I) ¥'(9; V) is independent of the uniform extension of y; to Q.
In addition, let V — §($%; V) be linear and continuous. Then
1) y'(% V) =3'(%V(0) -
(III) For a vector field V with compact support in Q such that

YV-n=0 on I' =00,

we have

y' (@ V)=0.

Proof: (I); Let DF; denote the Jacobian matrix of the transformation F3(V) and let
y be an extension defined by (3-10). We first note that

d

= det(DF)| = div V(0). (3-28)

For completeness, we provide a simple proof for (3-28). Let

Fi: R* 3 (p1,-++ ,pn) — (21, ,2,) € R, where
xizzi(t’pla"’,pn)a i=1:"'7n-

We can write det (DF;) = Y (sgno) [[ 7—— B = , where S, denotes the permutations
0ESy i=1 OPo(4)

over {1,--- ,n} and sgno the sign of a permutation o.

d B n 6 ax" n ax:
-CE det(Dﬁ)L=0+ = Z Z (sgna)(apa(j) ot H apa(‘)

j-l 0€Sn i=1(, ;e ) t=0*
= Z Z (sgna v (0) H b; ,a(,))

J=1 6c€Sn 1=1(,#7)
B Z v :(0) = div V(0),

ij=1



where §;; denotes the Kronecker delta. Let 3 be a regular function defined in a

neighborhood of Q. Then,

4

d [ .
il -2 /9 Vi, 7o) det(DF,) 9| _

=0t o+

¢ytthL
_ /¢(y'+vy- V(0) + 7 div V(0)) d2
Q

_ /¢g'd9+/¢ div (FV(0)) d92.
0 Q

Since any two extensions coincide over €2, (I) follows from the last equality.
(I1); Consider the domain functional J(£;) = fmx[) y: dQ. Then, in the same

manner as (I), we have
dI(Q; V) = /Q ¥ (@ V) + 7 div V(0)) d (3-29)

Since V — (€ V) is linear and continuous, it readily follows that J(Q) is shape
differentiable. Hence, dJ(Q2;V) = dJ(Q2; V(0)) by Theorem 3.1. It follows from (3-
29) that (€ V) = 5(£; V(0)) and the result is a consequence of the definition of the
shape derivative.

(III); From (II), ¥'( V) = ¥'(V(0)). Since V-n =0,V € K(?) C
Ker dJ(Q,-) by (3-22). Consequently, applying dJ(Q;V) = dJ(Q;V(0)) = 0 to

(3-29), we get the result. O

3.2. Shape Sensitivity Analysis

The main objective of this section is to compute the shape gradient of the penalized
cost functional (2-56) using the material derivative method. In particular, we wish
to compute the shape gradient of J, at (}(a) in the direction of a specified vector field
of deformation V. As we have already mentioned, the major difficulty to overcome
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is a lack of regularity for the shape derivative of the state variables. For elliptic
equations, the shape derivative of the state variables is usually expressed as a solution
of a boundary value problem which depends on the state variables and the normal
component of the design velocity along the boundary of the reference domain. If the
existence of the solution for this boundary value problem is settled, this equation
can be adopted as an adjoint equation to suppress the regularity requirement and to
facilitate the computation of the shape gradient. However, for a nonlinear problem,
it is rarely expected that one is able to resolve the equations containing the shape

derivative.

To get around these difficulties, we will employ the Lagrange multiplier technique
to attain the adjoint state equation. This can usually be done by introducing ad-
joint variables to combine the constraints with the domain performance functional.
These adjoint variables, which are usually called Lagrange multipliers, play a central
role in eliminating the cumbersome shape derivative of the state variables. Though
direct computation is still widely used, the Lagrange multiplier technique seems to
provide a more sound mathematical justification for the shape sensitivity analysis.
In recent years, similar techniques have been systematically studied in a series of pa-
pers by Delfour and Zolésio ([41][42](44]) using the theory for the differentiability of
the parametrized minmax function due to Correa and Seegel[35] and Dem’yanov|[51].
However, their applications are mainly based on the uniqueness of the saddle points
for the Lagrange formulation, which can hardly be expected in nonlinear problems
such as ours. One can also find a rough framework using the Lagrange multiplier tech-
nique in Cea[28]. For the historical background and simple applications in structural
engineering, one may refer to Komkov[87] and some of the references cited therein.

In this approach, the price we should pay 1is, of course, showing the existence of sta-
tionary points for the Lagrange formulation. Leaving this nontrivial step to the next
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section, in this section we will mainly concentrate on computing the shape gradient
straightforwardly and somewhat formally. We first note that the main contribution
of the deformation to the shape gradient comes from the first order perturbation of
the identity operator. In a sufficiently small neighborhood of ¢ = 0, one can estimate
the deformation at p € 2 as follows:

Using (3-1),

x(t) = x(0) + £ %(0) + o(t, x(0))

=p+tV(0,p)+0(t,p),

where o(t, p) denotes the remainder function such that 1tl_i_’rgi % |o(¢,p)|r» = 0. Hence
p+t V(p) can be considered as a linear approximation of F;(p), where V(p) = V(0, p).
Observe that F;(p) and p + t V(p) yield the same design velocity at ¢ = 0*. Hence,
by Theorem 3.1 and Lemma 3.2, we can easily infer that they yield the same shape

gradient and shape derivative. In this context, we may take

Fip)=p+tV(p)=(T+tV)(p) for 0<t<o. (3-30)

From the second expression for the deformation, we may regard F;(p) as the first

order perturbation of the identity operator over the reference domain.

REMARK 3.5: If sup > |D*V(p)| < 1, we easily see that Z+V and D(Z+V) = I+DVY
are invertible, I;:}}:ex!?sll)(l + V) and DV denote the Jacobian matrices for the de-
formations. Simon([117] and Rousselet[111] used this feature to derive the design
sensitivity analysis: If V is of class C? and sup > |1DV(p)| <1, T+VisC*-
diffeomorphism. Using this device, they derizteeg al,a'si;lilar shape calculus to accom-

modate the Hadamard formula for the shape gradient.

The choice of V is very crucial in the shape sensitivity analysis. In our problem,
we want to keep the variation of I'(a) within the rectangular region EFGH in Figure
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2, te.,

I(a) C Qy for every o € Uya-

Such a restriction may arise from the need to observe the effect on the state variables
over the unperturbed region when the design variables are allowed to change only
in the restricted region. An appropriate choice for the velocity is thus to consider
V = (0,V,). Utilizing the mapping technique, V; can be determined as follows:

For a fixed a € U,q4, we may associate a bijection

Fu: @ — Q) (£,8) — (p1,p2)  via

il
—— 5

41 )
(&2 — L)(L — (1))

Z3, otherwise.

L, f -Mi<z: <M

P2

Let 9 € C%([—M,, M;]) such that 9(—M;) = 9(M;) = 0 and there exists ¢ > 0 such
that the graph of a + ¢4 lies in Q for 0 <t < 0. We may extend 9 to [—M;, M;] by
defining ¥ = 0 over [—M_, —M;] U [M;, M,]. If we consider a bijection

Fores : Qa) — Qa +t9) ((£1,22) = (71,22)),

the composite Foqi9 0 F7': Q(a) — Q(a + td) ((p1,p2) — (z1,22)) is given by
1 =N
— L)Y .
. _{Pz-i—tu if —M<p <M, (3-31)
9 =

(a(p) — L) °
P2, otherwise.

Since 0 < a(p1) < L for all p; € [-M;, Mi], the mapping (3-31) is well-defined and

(z1,22) = (p1,p2) + (0, V2(p1,p2)), where

(= D)
V2(P1ap2) = { (a(Pl) — L) , if M <p <M

0, otherwise .

(3-32)
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Hence, for the perturbation of the domain, it is reasonable to consider the transfor-

mation

Fi(pr,p2) = (p1,p2) + tV(p1,P2) = Foteo 0 F; ' (p1,p2)

where V = (0,V,) is an autonomous vector field. Clearly, F; is a one-to—one trans-
formation from Q(a) onto Q(a + ) whose inverse is given by F; '(z1,z2) = (p1, p2),

where

1=

(L — z3)9(z1)
t )
=4 " (ale) = L+ t9(20))
z7, otherwise.

if —M <z <M

Note that V(py,a(p1)) = (0,9(p1)) for all p; € [—M;, My]. Thus, V = (0,9) along
I'(a) and V = 0 along 0(a) — I'(a). We define a; = a + ¢ 9 for simplicity.

Now, we transform the problem into a Lagrangian formulation. The basic idea is to
turn the constrained optimization problem into a unconstrained one by incorporating
some adjoint variables, and to apply the Lagrange principle which can be precisely
stated as follow: From the variables incorporated in the Lagrangian, one investigates
subproblems determined by the Gateaux differentiability for the variables obtained
by fixing all but one variable. These subproblems constitute the desired necessary

optimality conditions for the original problem (c.f. Tikhomirov[130]).

This technique provides a direct bypass for the computation of the shape sensitivity

without recourse to the equations dealing with the shape derivative.

We introduce the Lagrangian L : U,q x H(Q(e)) x H(Q(a)) x H-Y*(T) — R
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defined by

L(as U, qe, "76)

= J(a,u () — v Vu, : Vq.dQ2 — (ue-V)u,-q.d
Q(a) Q(a) (3-33)
1

T div u, div q. dQ+ < t,,qc >_1/2r + < f,qc >
Q(a)

—<M,U — g >_1/2T,
where t. € H~'/?(T) is given by (2-18) and (qc,n) € H'(Q(a)) x H™Y¥T) is
considered to be a formal Lagrange multiplier. We notice that finding a station-
ary point for the Lagrangian L(e,u.,q.,n) is equivalent to finding a solution pair
(a*,u.(a*)) € Uyq of (2-56). Formally, the minimum principle for optimal control

problems may be employed to deduce the Euler-Lagrange equations for the problem.

Clearly, variations in the Lagrange multipliers q. and n. recover the constraints
(2-16) and (2-17). From the variation in the state variable u., one can derive the

adjoint state equations. The Gateaux derivative

de L(a,u; + Aw, qe, ne) o = 0 for every w € H'(Q(a))

yields the equations for q. and n.. To assign a suitable boundary condition, we assume

qc = 0 on I' = 0Q(«a). Then, we obtain

v Vqe :deQ+/ (Ww-V)u.-q.d2 + (ue-V)w-q.d2
Q(a) Q(a) Q(a)

1
+ - divq. divwdQ+ < e, W >_1jor= 2V Vu, : VwdQ (3-34)
Qo) (a)

for every w € H'(2(e)) and

<8,qe>_15r=0 Vse HVT). (3-35)
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To derive the equations for q. and 7., we first note that

L(W-V)ue-chﬂ+[1(ue. w.qedQ = Z/

(@) () ij=1,2 Y a)
Z / ( Qej auq w; uej'qq'ciwi - _auej Qeiw‘) al
LTS Ba:. Oz; Oz;

-/ (a)( a.- (V) - u,.- (Va,) = (div u,) qe) wdq,

ow;
wj 6 — g + uqa qa)dQ

using integration by parts and q. = 0 on I'. Applying Green’s formula, the formal
computation of (3-34) and (3-35) yields

-V Aqe + Qe - T(Vuc) — U - (ch) - (dl'v uc) qe

- %V(div q.) = —2vAu, in Q(a), (3-36)
Q=0 on T (3-37)

and
n€=2u%—u?;::—%(divq€)n on T. (3-38)

Here we denote the normal derivative along the boundary T' by the operator n =
(n- V). The equations (3-36)-(3-37) can be interpreted as a penalized version of
linearized adjoint incompressible Navier-Stokes equations given by
—~vAq+q-T(Vu)—u-(Vq)+ Vr=—-2vAu in Q(a),
divg=0 in Qa), (3-39)
q=20 on I',
where u is a solution of the incompressible Navier-Stokes equations (1-1)-(1-3) and

r corresponds to the adjoint version of the pressure p. The penalty term for (3-39)

1
is introduced by r. = — - (div qc). In this case, n. of (3-38) corresponds to

Ju Jq
21/5;—1/5;-*—7“ on I. (3-40)
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Hence, (3-34)—(3-35) can be interpreted as an adjoint of the weak penalized formu-

lation of the linearized equations (3-39) together with

Ou, 0q.

on on

1
< Ne,8 >_y2r=< 2V -= (divu)n,s>_yor VsE€E H1/2(I‘). (3-41)

It should be noted that the triplet {(u,p,t)} of velocity, pressure and traction force
for the solutions of the state equations correspond to {(q,r,#)} for those of the adjoint
equations, and the doublet {(u.,t¢)} to {(qe,me)} in the penalized equations. The
existence of (q.,n.) satisfying these relations will be shown at the next section. The

relation between (q.,n.) and (q,n) shall be discussed in Section 3.4.

We now consider the variation in the design control a € U,,. We notice that
aienu{d:JC(a) = aie%d L(a,ue,qe, 1),

whenever (q.,n.) is a solution of (3-34)-(3-35). Thus, computations of the design
sensitivity may involve the sensitivity of the state variables and adjoint state variables.
Recall that V = (0,9) along I'(a) for any ¢ € C%([—M,, M;]) such that 9(—M,;) =
J(M;) = 0. Since the perturbation of a domain is determined by the variation of
the boundary part I'(a), for the computation of inf J.(a), we try to find a semi-

a€U ad
derivative

d3e(a;9) = %3¢(a+w) — i Jelar) = 3(e)

t=0+  t—0+ t ’ (3-42)
where a; = a +td for 9 € C®([—My, M;]). Then this will yield the information for
the gradient of the design functional J.(c). For this purpose, we assume f € L2(ﬁ).
This assumption is needed to guarantee the existence of weak shape derivative of f
in the space of H™1({2) and the regularity of the function space (see Section 3.4).
Hereafter, we are only concerned with the formal computation of the shape gra-

dient rather than the consideration of issues about sufficient regularity to justify
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each computation. Some of these issues shall be discussed in Section 3.4. Let
u.(a:) € H(Q(a;)) be a solution of the penalized incompressible Navier-Stokes equa-

tions over §2(a;), which is represented by the following integral formulations:

14 Vuc(at) :Vw dﬂt + / (uc(at)-V) uc(at)-w th + %‘ / div ue(at) div Wth
Q(at) Q

Q(a) (ex)
aue(at) -wdly — l\/ div uc(at)(w'nt) dl'y = / f-wdf, (3-43)
r, On € Jr, Q

(ort)
for w € H'(2()) and

u () =g, on I. (3-44)

Here I'; = 09(c:), and n; denotes the outward unit normal vector along I';. The
function space H'(§;) is dependent on time t. To remove of this dependence, two

methods are widely used (c.f.[48]):

(i) Using the homeomorphism F;, the situation can be transformed back onto the
reference domain.

(ii) Using the extension property (under adequate regularity of the boundary of the
domain), the situation can be considered to be a mere restriction of a function

space which is defined on Q.

To be consistent with the argument adopted in the existence Theorem 3.1, we choose
the function space extension method (method (ii)).
Let U(t,x) = Py(uce:) o Fi) o F7'(x). Then () is a uniform extension of

. We note that
{t}xQ:

i =1+ (V(0)- V)i, (3-45)

u(a;) to O such that u (a,) = i,

where (V(0) - V) u, = (Vu,) o V(0). From (3-26), we have

d
d3(059) = v n(m)Vuc(at) : Vue(at)dQ,L:M

—2v [ Vuge): ViL'd2+ v /Vuc(a) : V(@) V(0) - ndT,
Qo) r
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where u.’ denotes the shape derivative of an extension u..

!
Note that n = ( ) over I'(a) and dT' = V1 + o’* dz;, where

o 1
Vita? Vi+a?
da(zl )
d.?)]

od(z) = . Since V = (0,9) on I'(e) and (0,0) otherwise,

M,
Vuz1,a(z1)) : Vudlz, a(z1))d(z1)dz; .

/Vue(a) : Vu(a)V(0) - ndl' = —
r
Thus,

di(a;9)=2v [ Vul(a) : Vu.'dQ
2(a) "
- _MIVuc(a:], a(zy)) ¢ Vu(zy,a(z1))d(z1)dz, . (3-46)
As we have mentioned in Section 3.1, dJ. must depend linearly on V(0) - n to have
a meaningful gradient. Since dJ.(e;?) contains a shape derivative term u.’, we may
use the state equations and its adjoint equations to eliminate it.
Let us consider the state equation (3-43). One may take w € Hl(ﬁ)ﬂH}o(a)(Q(a)).
Take the derivative of both sides of (3-43) with respect to time ¢. Since f and w are

independent of ¢, by a similar computation to (3-26), we obtain the following equation

at t =0%:

v| Vu.':VwdQ +/ (- V)ue) -wdQ + / (ue(a)-V)u.'-wdQ
Q(a) Q(a) Qe)

M,
L vt divwdno— [ (wVula) : Vw4 = div u(a) div w)d(z1) day
€

€ JQ(a) -M,
d ou () d(17f,
_E(”{?Emwa‘mm_ﬁ 2 | div ndeyemongar )|

+/((uc(a) -V)u(a) - w)(V(0)-n)dl = /(f -w)V(0)-ndl'.  (3-47)
r r

Since w = 0 on ['¢(a) and V(0) = 0 on I'g, we have

ﬁpwnwymw=/awﬂwmmﬂeo.
r Ty
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Slmlla.rly, /((uc(a) . V)ue(a) . W) (V(O) . n) dl’ = 0.
r

Next, we consider 4 [ 0uco)

dt e ant

we need the surface measure of the transformation.

-wdl'; and %/div u.(a¢) (w - n) dly. For this,
Te

Lemma 3.3. Let Q; be a domain in R™ which is transported by a one-to—one trans-
formation F; and let Ty be the boundary of Q;. If h is an integrable function defined

on I';, we have the following formula for the transformation of boundary integrals:

hdl, = /(h o F;) det(DF)|T(DF;)n|g~dT . (3-48)
T r

O

For the proof, one may refer to Zolésio[136] or Sokolowski et al.[121].
Here, w(t) = det(DF:)| T(DF; ! )n|gn is the cofactor of the Jacobian matrix DF;,
and w(t)dl' denotes the surface measure due to the transformation F;. It is easy to

check that @w(0) = 1. For our purpose, we need the following fact.

Lemma 3.4. If[0,0) 5t — w(t) is differentiable,
='(0) = iw(t)| = div V(0) — (DV(0)n) - n. (3-49)
dt t=0+
Proof: We first note that

_ d _ d 1 T
DF|_ =1, «(DF)|_ =DV(©) and Z(DF)|_ =-"(DV(0).

t=0+

It is clear that w(t)? = (det DF;)*( T(DF;')DF;'n) - n. Taking derivatives with
respect to t and evaluating at ¢t = 0%, it follows from (3-28) that
2w(0)='(0) = 2div V(0) — ((DV(O))n + T(DV(O))n) ‘n
= 2div V(0) - 2((DV(O))n) - .

Since @w(0) = 1, the result follows immediately. O

79



The expression (3-49) defines a differential operator on the boundary surface which

is called the tangential divergence. This introduces an operator div i on the boundary:

divrV = div Y — (DVn) - n. (3-50)
REMARK 3.6: The corresponding (pseudo-) adjoint to divr is the tangential gradient
Vr which is defined by Ve = Ve — g_: - n, t.e., Vr assigns ¢ the tangential

component of its gradient. Combined with the following formula for the boundary

integral
/ Ve (pV)dl
r
=/(dier)gadF+/V-Vp¢dF=/m,oV-ndI‘, (3-51)
r r r
they are fundamental tools to deal with variational problems defined on the boundary

surface of a domain (c.f. Zolésio[136] and Rousselet[112]).

We return to the computation for the boundary integrals. From (3-48), we have

auc(at) dI‘t Z / auﬂ(at dI‘t
T

Ft ant ]

1,7=1

= Z/ 3u¢.(at) w(t)dl,

1,7=1

for w = 0 along I’y (a). Since n; = n = constant vector along I'; for all 0 <t < o,

£ (325

—Z /. [ ("j +9(29D) . y(0)) w; + 0,280 (0, v(0)

t=0+

Oug
+n u@.’z(, )w, div rV(O)]
Since V(0) = 0 along I'y, this computation is reduced to
d Bue(at) _ aﬁc !
E T ant . WdI‘t t=0+ - Tg dn rwdl. (3_52)
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In a similar manner, we can show that

= | div(a.)w-ndl. (3-53)

t=0+ g

4 div (u(oy)) w - n.dly
dt Jr,

Therefore, from (3-52)-(3-53), (3—47) is simplified to
v [ Vi : VwdQ+ ('ﬁe’-V)uE(a)-wdﬂ-}-/ (u(a) - V)i’ - wdQ
o) () (o)

=~ 7
+l/ div u,.' div wdQQ — v ou, -de‘—l/ divu.'w-ndl’
€ 2(a) Tg Bn € Tg

- /M1 (u Vua) : Vw + % div u.(a) div w) d(z1)dz, =0. (3-54)

-M;

Next, we consider the adjoint equations (3-34)-(3-35). If we substitute w = u.’,

then (3-34) may be written in the integral form :

v [ vaq. : Vﬁc’dﬂ+/ (iie'-V)ue(a)-qedQ+/ (u(a)- V).’ - qd2
Q Q

Qo) () ()
1 ~ ~ ~

+— | div q.divu. ' dQ+ /nC u./dl=2v | Vul(e) : Vu./'d. (3-55)
€ Ja(a) r ()

By substituting w = q, into (3-54) and using the fact that q. = O along I, we get

v Vﬁt':chdQ+/(ﬁe’-V)uc(a)'qedQ+ (u(a) - V) &, - q. d2
Q

Q(a) (a) (a)
1 P M 1. .
+- div u,' div q.dQ) — (vVu(a) : Vq, + = div u(a) div q.) ¥(z,) dz;
€ J(a) ~M; €

~0. (3-56)
Hence, it follows from (3-55) and (3-56) that

2v [ Vu(e) : VU, 'dQ
Qo)

" 1 (3-57)
- / (v Vuule) : Vac+ = div ua) div a.) 9(e) das + / ne - ..
-M; r

For the computation of [.# - U.’dl', we note that #i, = u.(a) = g on I, where g is

given. So, i = Vg-V(0) on I'. Using u.'= u. — Vi, - V(0), we get

u.'=V(g—ulfa))-V(0) on T.
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Since g —u.(a) = 0 on I, the gradient of g — u(a) is parallel to the normal direction.

Hence,
~ ,_ 0(g—ula)) _
u ' = o n-Y0) on T. (3-58)
: _ o Oufa) dq. 1 ..
Since 5. = 2v ' on 6(dw q¢) n along T,
L, [dg-ue) (, Oufa) Oa 1 .
./1“n€.u€dr—v/rT. 2v " 3n ;(dwqe)n V(0)-ndl.

However, since V(0) = 0 along I' — I'(«) and g = 0 on I'(a), we obtain

/ﬂc'ﬁe'dr
r

_ /M‘ (M. (20 duda) _ 0 _1 4, qc)n)) I(zy) das .

M\ On On On €

(3-59)

Therefore, it follows from (3-46) and (3-57)-(3-59) that

d(a;9) =2v [ Vula) : VL' V(0)-ndQ + v / Vu,(a) : Vu(a)V(0)- ndl
r

Q(a)
M,
=/ [—uVuﬁ(a) : Vuc(a) + (u Vuca) : Vq¢+%div u, div qc)
-M;
Ju.(a) Jdu.(c) oqe 1, ..
+ (-——6;— (21/ . ' om e (div q¢) n) I(z1) dzy .

Recall that V(0) - ndl’ corresponds to — ¥(z;) dz;. Hence in the sense of (3-19), we

may say that the shape gradient of the design functional J. is given by

ge(T) = grad3, = [VVue(a) : Vu(a) — (ll Vula) : Vq.+ -l— div u, div qc)

CTEW SRR TN R

on dn on €

along the perturbed boundary, and O along the boundary of unperturbed region.

It is useful to summarize the above discussions in the following theorem.

Theorem 3.2. Let (o, u.(a)) € Upg. Let 3(a) = v [ Vu(a) : Vua)dQ be
Q(e)
the design functional which represents the energy dissipation due to the flow. Under
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reasonable regularity assumptions for the data, the shape gradient of 3 is given in the
form of (3-60), where q. is a solution of the adjoint equations (3-36)-(3-38) which

represents the adjoint of the weak linearized incompressible Navier-Stokes equations.

ReMARK 3.7: In the computation of (3-52) and (3-53), the curvature « as for (3-27)
does not appear. This is due to the choice of a trial function w and n; = n along I'.
For any unitary extension A of the normal vector field n on T, the curvature (or the

mean curvature to the surface) is given by
& = divrn = divN .

In the 3 — D case, the computation of the mean curvature to the surface is nontrivial.

In the formal computations, we implicitly assumed the existence of u,.. To justify

these computations, we need two hypotheses (c.f.[136]);

[H1] The material derivative u. exists and V — u.(Q(a); V) is linear and contin-
uous.

[H2] Feasible domains {2(a)}aeu,, are regular enough so that there exists a linear
continuous extension P; : H™(2(a)) — H"‘(ﬁ) for positive integer m.

[H2] is true for uniform Lipschitz domains by the Calderén’s extension Theorem

(Theorem 1.1). Verification of [H1] is nontrivial. This may be verified by applying

the Implicit Function Theorem to resolve the nonlinear structure of the problem.

For the drag reduction problem in Stokes flow, Simon[119] showed the existence of

the material derivative of the velocity (or, the total variation in his terms) using the

iruplicit function theorem in somewhat different context.

Another possible way to perform this task is to reverse the process. We first find

a meaningful boundary value problem for u.’ o’ From it, one may understand 1,
[



through the relation
u, = ﬁe'-{-Vue-v.

! satisfies

Q(a)

From (3-54), if we take w = ¢ with compact support in Q(a), u.

v V.’ : VedQ + W'-V)u.-pdQ + (ue- VYU’ - o dQ
Q(c) 22(a) Q(a)

+—1— divu, ' dive dQ =0 (3-61)
€ J(a)

Recall that

~ r__ a(g "" uf(a))
U= —————n- V(0)

Since g = 0, on I'p(a) and ¥V = 0 along I' — I'(e),

on I'.

On
0, on I' —T(a).

Ou.(a)
~ 4 { - n-Y(0), on I'(a) (3-62)

(3-61) represents the linearized version of a penalized incompressible Navier—Stokes
equations. It can be shown that (3-61)-(3-62) has a solution for almost all Reynolds
numbers. Since this is a linear equation whose boundary value is given by (3-62),

u,’ o) depends linealy on V(0) - n.

3.3. Justification of the Lagrange Multiplier

In the previous section, we have introduced a Lagrange multiplier (qe,n.) €
H!(Q(a)) x H™Y%(T) for a € U,4. We have observed that the Lagrange multiplier
plays a role of an adjoint variable in the derivation of the shape gradient (3-60). The
major drawback in the formal discussion is the lack of mathematical justification for
the choice of q. and n.. Furthermore, we assumed that q. = 0 on I' and observed
that this obviously simplifies the expression for the shape gradient. How can we avoid

such arbitrariness?



In this section, we wish to verify the existence of the Lagrange multiplier. We
will justify the existence of the Lagrange multiplier, when Reynolds number is small.
Then, in conjunction with the well-posedness of the system, a rigrous sensitivity is de-
rived. The general case may be verified using the similar technique. For our purpose,
we will employ some techniques introduced by Gunzburger et al. [65] for boundary

velocity control over a fixed domain and Tikhomirov[130] for minimal principle.

We introduce the following notations:

a(u,v)= Vu : VvdQ,
Q(a)
c(u,v,w) = (u-V)v.-wdQ,
Q)
d(u,v) = div u div vdQ.
Q(a)

Note that a(-,-) and d(-,-) are continuous bilinear functional on H'(2(a)), and
c(,") is a continuous trilinear functional. Let B, = HL ,,((e)) x H-Y%(Ty)
and B; = Hp()(a)) x Hy*(Ty)-

Let us consider the nonlinear mapping M : B; — B; (M(u,t.) = (f,g)) defined
by the weak formulation of the penalized incompressible Navier-Stokes equations,
where B, is a solution space and B; is a data space for the external force and the

given boundary condition, i.e., M(u,t.) = (f,g) if and only if
va(u,v)+c(u,u,v)+ %d(ue,v)— <t,v>_ipar,
=<f,Vv>_1ro@ VVEHE(Qe)), (3-63)
< s, U >o12 ps=< 5,8 >-172r, Vs€HV*(Ty),

Cd¢ .
where t. = 1r, (Va—d' + (dwuc) ) € H-Y%(T,) denotes a traction force along
the boundary which completes the Navier-Stokes equations. By M(u )7 let us de-
note the Gateaux derivative of M in the direction of (w,¢{.) € B; at (u,,t.), i.e.,
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Euﬁte)(wc, C) = (?, g), where (w,,¢.) € B; and (?, g) € By, if and only if

1
va(we,v)+c(We,u.,v)+ c(ue,we, v) + < d(ue,v)— <,V >_1/2r,
=< ’f, A4 >_1y1‘o(a) Vv € H%‘o(a)(ﬂ(a)) ’ (3_64)
< S, We >_1/2r,=<5,8 >_12r, Vs € HYYTy).

Then MZue,tc) is a bounded linear operator from B; into B, for each (u.,t.) € B;.
Lemma 3.5. For (u,t.) € By, the operator Mzuﬁtc) has a closed range.

Proof: Let S,: B; — B, be an operator defined as follows:

Se(We, ) = (?', g) if and only if

1 ~
va(wg,v)+ Ed(we,v)— <, V>_121g=< £,V >_1r(a) YV E H%\o(a)(ﬂ(a)) ,

<Ss,W, >_1/2'rs=< S,E >_1/2,1‘g Vs e H_1/2(Fg) .
(3-65)

Also, let Q. : H}o(a)(ﬂ(a)) x {0} — H;:(a)(ﬂ(a)) x {0} be an operator defined
by

< Qu.(We,0),(v,0) > = ((We - V)uec + (uc - V) we, Vo a(a)

=¢(We, Ue, V) + ¢ (U, We,v) VvV E H%‘o(a)(ﬂ(a)) ’

where < -, > denotes the pairing between H[T:(a)(ﬂ(a)) x{0} C B, and H}‘o(a)(ﬂ(a)) X
{0} C B,". Then M{, ., = Sc+ Qu.. Note that (3-65) is completed if ¢ =
Trg (u % + % (divwe) n) , using integration by parts. Hence S, 1s a weak formula-
tion of the penalized Stokes equations. By the existence and uniqueness of the weak
solution, S, is a semi-Fredholm operator from B, into B; (see Girault—Raviart[60]).
Obviously, Qu, is a compact operator. Hence, Miucrtc) is a compact perturbation of a

semi-Fredholm operator, which is also a semi-Fredholm operator (c.f.[124]). There-

fore, M, ;. has a closed range in B;. O
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Lemma 3.6. When the Reynolds number is small, it holds that M{, . ,(B1) = Ba.

Proof: Suppose that M’(uc.tc) is not surjective. Then, by Lemma 3.5, Mzuﬂt()(Bl)
is a proper closed subspace of B,. Hence, by the Hahn-Banach Theorem, there exists
a nonzero element ¥ € By* such that !F(Miuhh)(Bl)) = 0.

Let ¥ = (€, 7) € HY ,)(2(e)) xH™/2(Tg) and let (f,8) € M, ,(B1). Then, we
have < (&, 7e), (?, g) >»= 0, where < -, - > denotes the pairing between B," and B,.
So, it follows that < ?, € >_1To(a) + < 7e, & >—1/2,0,= 0. Since (f, g) € Mz“ﬂtc)(Bl),

there exists a nonzero element (w,¢) in B; which satisfies the following equations:
1
va(w,v)+c(w,u.,v)+c(u,w,v)+ zd(w,v)— <¢,V >_1/ar,
=<f,v>_iro@ VYVEHL (),
<8,W >_1/2r,=<88 >_12r, Vs€HAT).

Substituting v = ¢ and s = 7, and using < ?, € >_1To(e) + < 70,8 >1 /2rg=0, we

obtain that

1
va(w,é)+c(w,u,&) +c(u,w,&) + - d(w,&)

— <€ >o1/2r, T < T, W >_y721,= 0.
Since this holds for all (w,¢) € By, it follows that

1
va(w,€&)+c(w,u, &)+ c(u,w,&) + - d(w,¢)

+ <7, W>_121,=0 VwEe H%*o(a)(ﬂ(a)) , (3-66)

and

<€ >oippr,=0 Vee HYYT,). (3-67)

We note that & = 0 on I'y, and since & € Hf (,(?(a)), it follows that & = 0 on
['. It is easy to check that the system (3-66)-(3-67) is a weak formulation of the

87



boundary value problem

1
— A+ & T(Vue) — u. - (Ve = V(divg.)

—(diva,) ¢ =0 in Q(a),

(3-68)
¢ =0 on T, (3-69)
and
9% 1 ..
Te= Voo = (dive)n  on Ty. (3-70)

If the Reynolds number is small, by taking w = ¢ in (3-66), we have
1
va (€ €) + (€U, &) + c(Ue &6 &) + — d (&, &) = 0.

Since ld (&, &) > 0, using the Korn’s inequality and the continuity of ¢ (-,,+) in the
€
H'-space, it follows that ¢ = O.

So, ¥ = (&, ) = (0,0) € By*, which contradicts the choice of a nonzero ¥. 0O

This result may be generalized to include general » by adding a natural boundary
condition on a small piece of I'g. Since the natural boundary condition does not affect
the variational formulation, one may have the same formulation with two boundary
conditions along the piece of I'g, which makes it possible to extend the system to be
0 across the piece of I'g. Since this extension includes a compact perturbation of the
adjoint of the homogeneous penalized Stokes system which has a discrete spectrum,
by considering an appropriate extension, if needed, it may be possible to show that

— is not an eigenvalue.
v

Now, we turn to the existence of a Lagrange multiplier. Unlike boundary velocity
controls, shape controls have no known structure to verify the existence of Lagrange
multipliers. In most cases, the technique of adjoint equations to derive the sensitivity
of the design functional is usually used as a formal trick to get around the sensitivity
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of the state variables with respect to the design parameters. In the shape control
problem, the difficulty in manipulating the Lagrange multiplier seems to originate
from the following sources:

— For a fixed domain Q(a) for some a € U,4, we have no control for the state

variables.

— The function spaces are changing according to the domain variations.
In our case, however, we may overcome these difficulties by extending the elements
u.(a) € Hy (,(Q(e)) to the elements ti.(a) of HL () which are defined to be 0 over
Q- Q(a), where HL(f) is defined in (2-64). Then, the mapping u.(a) — .(a) is

continuous from Hp ,(?(a)) — H.(Q) and

(), g = lluda)lla@

for any a € U,4. We may set B = the subspace of H}I(ﬁ) spanned by {u.(a)}aeu,

ad?

which can be regarded as a closed subspace of Hi(ﬁ) Note that
v € B <= v =1.a) € Hy ,,(Ya)) on (a)and v=0on 0 - 9Q(a),

for some a € U,4. We may set the definition of a local optimal solution among the
admissible family {(a, u.(a))} C U,y which is defined in (2-55) as follows:
(e, uc(@*)) € Upq X B is a local optimal solution of (2-55) if and only if there exist

positive numbers ; and 6, such that if |jo — o[l < 61 and |[Uc(a) —Ue(a™)||, 5 < b2,
/A Vii(a) : Vii(a*)d < /A Vii(a) : Vii,(a)df).
0 a

Let B; = B x H™/%(T) and B, = (L*(Q) N H7!(Q)) x HY%Ty). To adjust the
situation, we may extend the functionals a (-,-), ¢(:,+,-) and d(-,-) over Hp_,,((a))
to the functionals @ (-,-), ¢(:,+,-) and d(-,-) over H},(ﬁ) Moreover, we may reset the
nonlinear mapping M : B; — B, to M : B, —> B, which is defined as follows:
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M(H.(),t.) = (f,g) if and only if
& (@), V) + E(@(), Wul@), V) + T A (@le),V)- < Eov >azan,
=<xawf,v>_ 5 VVE ﬁ}o(a)(ﬁ) c HL(D), (3-71)
<s,U(a) >_1/2r,=< 5,8 >_1/2r, Vs€ H3(Ty),

where ﬁ%‘o(a)(ﬁ) denotes the space spanned by the extension ¢ when ¢ spans H}o(a)

(Ya)). We assume f € Lz(ﬁ) N Hzl(ﬁ) (see Lemma 3.8). Since the characteristic

function over Q(a), xa() € H"(ﬁ) for s < 1/2, it follows that xquf € H-1(Q).

Since the nonhomogeneous boundary I'g is invariant under the domain perturbation,

we notice that the system (3-71) is actually equivalent to the system (3-60).

To show the existence of a Lagrange multiplier, let us consider the nonlinear map-

ping K : B, — R x Ez defined by
K(Hi(@), t) = ((H(a)) - 3(@c(a*)), M(Bc(a), t)),

where 3(U(a)) = v ‘/;VEC(Q) : Vii(a) dQ and (a*, U (a*)) € Upg x HL(Q) is a local
)
optimal solution. Let 5;'55(0)';;) : By — R be an operator defined by ’ffl(;c(a)’;:)(w, ¢) =

k € R for some a € U,q if and only if
2va (U (a),w)=*F.

Obviously, 3;';,'!(0)’;:) is a bounded linear operator. The operator ICE; @) B, —
R x Eg may be defined as follows:

E:c(a),i:)(w’c) = (k,f,g) if and only if

20 (i (a), W) = k, (3-72)

~ - - 1~
va(w,v)+<¢(w,u,v)+¢(u,w,v)+ Zd(w,v)— < ¢V > 12T,

=<xawbV>_,5 VveHq cHL@), (3-73)
<s,Ww >_1/2'Fs=< S,E >_1/2'P8 Vs e H—1/2(Fg) . (3—74)
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The equations (3-73)-(3-74) correspond to a bounded linear operator M' AREeE It

follows from Lemma 3.6 that M’ @)D is surjective. The existence of a Lagrange

multiplier depends on the followmg Lemma.

Lemma 3.7. )Czu (&) has a closed range but is not surjective.

Proof: That ICEu (@) has a closed range can be shown in the same manner as that

of Gunzburger et al.[65] (see also [130]). Let us show that it is not surjective. Suppose

K'~ F@ ) is surjective. Then, since M; @)

Hence using the implicit function theorem and the fact that

. . ~! . . .
is surjective, J (3e(0),60) 18 also surjective.

la — a*|les = 0 => H(a)—=T.(c*) in H({),

which can be shown in the same manner as Theorem 2.4, we may choose positive
numbers 8y, é; and (@, Uc(a)) € Ug X B such that ||a — a*|le < 61, |JU(@) —
u,.(a )|| < &2 and /Vue(a) Vil (&) d) — /Vuc(a : Vil (a*)d) < 0. This

contradicts the hypothesis that (a*,.(a*)) € Uaq % B is a local optimal solution. O

Now, we are ready to show the existence of a Lagrange multiplier.

Theorem 3.3. Let (a*,U.(a*)) € Us,a X B be a local optimal solution. When
the Reynolds number is small, there exists a nonzero Lagrange multiplier (q.,n.) €

H! (Q) x H-Y/%(T') such that
~3 G omy,iy (Wa )+ << (G ), M Ffaryin(Wom) >=0, (3-75)

for all (w,n) € B.

Proof: Since IC’ o) has a proper closed range in R X E;, by the Hahn—RBanach

Theorem, there exists a nonzero element (7, Qe, ) € R X (Eg)“‘ such that

< (,4.,7), (K £8) »=0 VELE) ek B,  (3-76)
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where <« -,- > denotes a duality pairing between (R x E;)* and R x B,. Suppose
k=0. Then, using the relation < Xﬂ(a‘)f, q. > ,5t+< 7,8 >-1/2,0g= 0, from (3
73)—(3-74), we may obtain the system equivalent to (3-66)—(3-67) with ¢ = q.(a*)
and 7. = n.. Hence, from Lemma 3.6, we have (q.(a*),n.) = (0,0). Hence its
extension (q.,7n.) = (0,0), which contradicts the choice of a nonzero element. Thus,

k is nonzero and we may assume that k = —1 without loss of generality. By the

definition of X'~ o’ (3-75) follows from (3-76). O

(ue(a*),te
Using q.(a*) = 0 along ' = I'g(a) U Iy (refer the Proof of Lemma 3.6), (3-75)
leads to the adjoint system defined on Q(a*). Hence if we drop (-)*, it is natural to
seek a stationary points (or, decreasing points), i.e., points such that grad3. = 0,
(or, < 0), which is represented by state and its adjoint equations for each domain

perturbation.

3.4. Some Remarks on Regularity and the Optimality System

In Sections 3.3-3.4, by introducing Lagrange multipliers, we have obtained the
adjoint equations needed to derive the shape gradient. We may reverse this process:
A priori, we may introduce the adjoint equations (3-36)-(3-38) and using them, we
can obtain the shape gradient term (3-60). In the shape design problem, this is a
rather popular process. It is interesting to notice that the adjoint equations have
the similar form to those of Pironneau[100] for a simplified minimum drag profile

problem.

The formal computations in Section 3.2 can be basically justified by some reg-
ularities for the domain (geometry) and solution. Moreover, in the finite element
approximation of the problem, error estimates closely depend on the regularity of
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solutions of the optimality system. Let us begin by illustrating an example due to
Serre[116]: Consider a driven cavity problem in a rectangular region. Suppose the
flow is governed by the Navier-Stokes equations with uniform velocity along the top
side. Then Serre showed that the solution u does not even belong to the H!'-space.

The main cause of this irregularity is the existence of jumps of velocities around
corners. We may dispense with this situation by imposing g; to have compact support
on Iy, ( = 1,2). Virtually, since g is a velocity of the continuous flow through the
channel, we may regard g;, (i = 1,2), to be a parabolic flow along the inflow and
outflow boundaries. Then the regularity problem related to the corners A, B, C
and D in Figure 2 does not appear.

The basic requirement for the regularity of the external force field is that f € L2(§).
This requirement originates from the need to justify the material derivative involving

f. It also contributes to the regularity of the optimality system.

Lemma 3.8. Let f € L({)). Then [0,0) 5 t — f o F, € L*(Q)) is weakly differen-
tiable in H-1({).

Proof: When V is smooth enough, the proof can be found in Sokolowski et al.([120],
p.71-p.75). In our case, the same principle can be applied since F; € Co'l(ﬁ) , so that

F: is differentiable almost everywhere. O

Next, we consider the regularity of the domain. If the domain is non-smooth,
rigorous computations of the boundary integral such as (3-47) may introduce extra
jump states at the singular points of the boundary. For example, even though y and
V are smooth in R?, if 0 = I has a piecewise smooth boundary, i.e., I is smooth

except at the points {ay,--- ,ax}, then

%jl:,ydn T /F (% +ny) V(0)-ndl + ZV(O,a,-)['r(a;)],
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where {[r(a;)]} = jump states of the tangents at the singular points a;, 7 =1,--- , k.
However, if the domain has a Lipschitz boundary, a corner is no more a singular
point (Simon[117]). Hence boundary integrals do not involve jump states. If I'(a) €

C%!([-M;, M,]), an outward unit normal vector along the boundary I'(a) exists al-

! 1
most everywhere and n € L*°(T'; R?). This implies that n = ( a , — )
y ( ) P V1i+a? V1+4ea?
€ L*(T(a); R?) exists. We note that V = (0, V) is continuous over () and

(po—L)0'(a—L)—(/ = L)(p2 = L)9 ¥ ,
VYV, = ( (a—L)? ’(a—L)) if —M; <z, <M,

0 otherwise.
Hence V € H'((a)). So, if u. is sought in H!(Q(«a)), since Vu, - V belongs to
2 5 N/
L*((a)), u. or u, o

) will belong to L%(Q(e)). In this case, the computation
(o]

discussed in Section 3.2 may not be justified. However, if we take ¥ to be of class
C''! with smooth contacts at points +M;, then all the regularity needed to justify the

computations is secured.

Now, let us turn to the optimality system we have derived. The state equations and
its adjoint have been used to derive the shape gradient “ grad 3.” in the optimization
process. “grad J.” can be used to determine an optimal design points in the discrete
problem, i.e., the system of equations (2-15) and (3-36)-(3-37) plays the role of
necessary conditions to seek an optimal position of the moving boundary. For this
reason, this system of equations shall be called the optimality system. Using (2-15),

we can replace the right hand side of the first equation of (3-39) by

— vAqc +qc-T(Vu,) — u, - Vq, — (divu,) q
1 1
- -E-V(divqc) =2[f—(u.-V)u+ ZV(divue)].
This replacement facilitates the derivation of error estimates of finite element approx-

imations and the analysis of penalty approximation to the primal problem, for the
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state and adjoint system corresponding to penalty problem employ the same penalty

parameter. From this replacement, the optimality system ( penalized version ) con-

sists of

—vAu, — 1V (divu) + (u. - Vu = f in Q(a), (3-77)
€
u=g on I', (3-78)
— vAqe + q - T(Vu,) — u. - Vq. — (divu,) q. — %V(divqc)
—2[f— (u,-V)u, + %V(divue)] on Qa), (3-79)

and

qe=0 on T. (3-80)

Equivalently, this can be rewritten in the form of

—vAu,+ Vp. =f — (u.- V)u, in Q(a), (3-81)
divu, = —ep, in §(a), (3-82)
u =g on I, (3-83)

—vAq.+ VO, = 2f — 2(u.- V)u, — q, -T(Vuc) +u.- Vg —ep.(qc) on Qa), (3-84)
divq. = —er. on Qa), (3-85)

and

q =0 in T, (3-86)

where 0, = r.+2p. € L}(Q(a)) for @ € U,4. This latter expression makes the analysis
for regularity and error estimates easier.

At this point, one may ask what correponds to the optimality system and the
shape gradient for the primal problem? From (3-81)-(3-86), when ¢ tends to 0%, it

is natural to consider the following system (primal version):

—vAu+Vp=f—-(u-V)u in Qa), (3-87)
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divu=0 in Qa), (3-88)

u=g on I, (3-89)
—vAq+V=2f—2u-Viu—q-T(Vu)+u-Vq on Qa), (3-90)
divg=0 in Q(a) (3-91)

and
q=0 in T. (3-92)

Here 6 = r + 2p € L%(Q(a)), where r € L3(2(e)) is given in (3-39). In this case, the

corresponding shape gradient on I'(a) will be given by

_ _ . . du du Jdq
g(T) =grad3=vVu : Vu—vVu : Vq—g- (2V%—V3_n+(0-2p)n) , (3-93)

for %divue divq, = —epcr, in (3-60) tends to 0.

Let us first state the regularity result of the solutions of the system (3-87)-(3-92).
From the result of Cattabriga[24], the regularity corresponding to the solution of the
Navier-Stokes equations follows from that of the Stokes equations.

Theorem 3.4. Suppose g € Hﬁ/ (') with g; having compact support on T;, (i =

1,2). Letf € L"’(ﬁ). Suppose « is of class C!'! with smooth contacts at points E and
F. If (u,p,q,7) € HY(Q(a)) x L3((e)) x H (2(a)) x Li(Q(a)) denotes a solution
of (3-87)-(3-92), we have that

(u,p,q,7) € H*(Q(e)) x (H' ()N Lo((a))) x H*((a)) x (H" ()N Lg(())) -

Sketch of Proof: In the Stokes problem, the allowable domains 2 for the regu-
larity in H?(§2) are those which are piecewise C!"! with convex corners (see Girault-
Raviart[60] and Grisvard[63]). Since () satisfy these requirement, we may allow the
regularity of the velocity space up to H2(f)(a)). Let us consider the right hand side
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of (3-87), f = f — (u- V)u. Since u € H'(2(a)), u € L¥(Q(a)) and 63_;1] € L}(Q(a))
for j = 1,2, we have that (u- V)u € L3%(Q(a)) and hence f € L3?((a)) C
H~%(Q(«)). Since g € H¥*(T'), from the result of [125], the Stokes system (3-87)-
(3-89) has a solution (u,p) € H¥?(Q(a)) x (HY?*(Q(a)) N L3(2())). Repeating this
argument with f € L2(Q), T € L*(Q(a)), so that (u,p) € HX(Q(a)) x (H(2(e)) N
L3((a))). If we next consider the right hand side of (3-90)~(3-02), then standard
results also lead to (q,r) € H%((a)) x (HY((e)) N LZ(Q(e))). O

REMARK 3.8: From the bootstrap argument, one can show that if the domain ? is
smooth enough and (f,g) € H™(Q) x (H™*¥?(Q) n L(Q)), then (u,p,q,r) C
H™2(Q) x H™1(Q) x H™*?(Q) x H™*1(N). However, if a € C®([—M;, Mi)),
then even though g € Hy/*(T), losing the convexity and regularity of the domain will

result in (u, p) € H¥2-%(Q(a)) x (HY*~%(Q(a)) N LE((a))) for some small § > 0.

3.5. The Weak Penalized Optimality System

Let us consider the approximation of the penalized system to the primal system
as ¢ tends to 0%. For this purpose, we pose (3-81)-(3-86) into a weak formulation as

follows (weak penalized version):

va(u,v)+b(v,p)— <t,v >-1/2Tg
=<f,v>_1 —c(u,u,v) VveHp,(2a), (3-94)
b(ue,q) = €(pe; )0 Vg€ Lg(ﬂ(a)) ’ (3-95)

< 8, u, >_1/2’[\‘=< S, g >"1/21F8 Vs € H_I/Z(Pg) , (3"96)

va(qe,w)+b(w,0)— <7,w>_jpr=2<f,w>_; —2c(u.,u,w)

—c(w,u,,qc) — c(u,w,q.) Ywe HI(Q(Q)) ’ (3_97)
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b(qerp) = €(6, p)o — 2¢ (pey p)o ¥ p € LA(a)) (3-98)

and
< 8,qc >_12r=0 Vse€ HV¥T), (3-99)
where
dq. _ Ou,
Te=V o —0n and t.=v n — pen. (3-100)

In (3-98), we have used the relation 8, = r. + 2p..

Similarly, the corresponding (weak primal version) to (3-87)—(3-92) is given by

va(u,v)+b(v,p)— <t,v >_ipr,

=<f,v>_; —c(u,u,v) Vv e Hp,(2a)), (3-101)
b(u,q) =0 Vg € L3(Oa)), (3-102)

<sU>_1/21,=<8,8 >_1/2T, Vs e H‘1/2(I‘g) y (3—103)

va(q,w)+bw,0)— <7,w>_jpr=2<f,w>_; —2¢c(u,u,w)

—c(w,u,q) — c(u,w,q) Vw € H((a)), (3-104)

b(q,p) =0 Vp € Li((a)) (3-105)
and
<s,q>_1/2r=0 ¥Ys € HVYI), (3-106)
where
rzug—E—Hn and t=ug—z—pn. (3-107)

To study the approximation of the penalized optimality system to the primal system
as ¢ tends to 0%, we may again refer to the nonlinear functional settings discussed in
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Section 2.3. Let
Y = H™(a)) x Hy(Q(e) x (H'((a)))",
X = H}, (,)(a)) x L§(Q(a)) x HA(Tg) x H'(Q(a)) x L§(a)) x HTVX(T),
Z = L¥*(Q(a)) x {0} x L**((a)).
Define the nonlinear mapping G : A x X — Y ((A, (u,p,t,q,0,7)) — (n,%,€)) by
<n,v>.=Ac(u,u,v) = A <f,v>_, VveH (%), (3-108)
<8,k >_1jar,= — < 5,8 >_1/2r, Vs € H*(Ty) (3-109)
and
< ¢&w>_1=2ic(u,u,w) + Ac(w,u,q) + Ac(u,w,q)
2 <f,w>_, VYweH(Qa), (3-110)
where the data (f,g) € Hi,,,(Q(a)) x Hy*(To(c)) is given.
Let the linear operator T : Y — X((f, g, h) — (4,5,%,q,0,7)) be defined in the

following manner:

a(@,v)+b(v,p)- <t,v>_ipr=<f,v>. VveH] (),
b(ﬁ’ q) =0 Vq € Lg(ﬂ(a)) ’ (3_111)

< S,ﬁ >_1/2,I‘x=< S,E >—1/2,l"g Vs € H_1/2(F8)
and

a(q, w) + b(w,0)— <7, w >_yr=< h,w >_; Vw e H(Q(a)),
(d,p) =0 Vp € Lj(N(e)), (3-112)
<y,d>_12r=0 Vy e HVX(T).
Analogously, the penalized operator T¢ € L(Y; X) is defined as follows:
a(lie, v) + b(v, Fe)~ < t, v >_12r,=< ,v >_1 Vv € H} ,)(2a)),
b(ie,q) = €(Pes9)o Vg € Lg(R(a)), (3-113)
< 8,0 >_y/r,=<8,8>_1/21, VSE H/2(Ty)
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and
a(G., W) + b(w,0.)— < 7., w >_;r=< hyw >_; VYw € H'(Q(a)),

b(d., p) = € (e, p)o — 2€ (Be, p)o Vo € LY(a)), (3-114)

<¥,q >_12r=0 Vy e H*I).

Clearly, T and T are composed of two Stokes operators. The weak penalized version
(3-94)—(3-100) is equivalent to finding a solution of
F(X, (We, Pe, ey ey Oc, ) = (Wey APe, Ate, Qey A, A7)

+ TG(A, (ue, Ape, Ate, g, A, A1) =0,
and its primal version (3-101)-(3-107) is equivalent to
F(\ (u,p,t,q,0,7) = (u, Ap, At,q, A0, A7)
+TG(A, (u,Ap,At,q, 0, 7)) =0.

We are now ready to state the main result for the convergence of the weak penalized
system to the primal one.

Theorem 3.5. Assume that A be a compact set in Rt. Let a € U,y be fixed. Let
{(A, (a(A), Ap(A), At(X),q(X), A0(A), Ar (X)) | A = _11; € A} be a branch of regular solu-
tions of the primal optimality system (3-101)-(3-107). Then, for € < €y small enough,
there exists a unique C2-branch {(X, (ue(X), Ape(A), Ate(A), qe(A), A(A), A7 (A)) | A €
A} of (3-94)-(3-100) in the neighborhood of (u(A), p(A),t(A),q(A),0(r), () in X

and a positive constant C' which is independent of € and ), such that

lue = ullx + [[pc = pllo + [Ite — t]l-1/2r,

llae — alls + [16c = llo + [[7e — 7ll-1/20 < Ce VA€ A. (3-115)

Sketch of Proof: Let ¢ = (u,p,t,q,0,7). The Fréchet derivative D,G(},-) satis-
fies
‘DwG(A’ (u7 p? t’ q’ 07 T)) * (v, p’ s’ u, ¢‘) €) = (E7 0, ~)
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for (v,p,s,n, ¢,¢) € X if and only if

< ¢,V >o1=2X(u,v,V) + Ac(v,u,V) VYV e Hp 4(e)),
<7, W >_1 =2xc(u,v,W) + 2Xc(v,u, W) + Ac(W,v,q) + Ae(W,u, )

+ Ac(v,W,q) — Ac(u,w,u) VWwe H(Qa)).

Using the continuity of ¢(-,-,-) over the H!-space, it follows that D,G € L(X;Y).
In the same manner, it can be shown that D,,G € L(X;Y). Moreover, since the
embeddings H'(Q(a)) C L*(Q(e)) C L?*(Qa)) are continuous, we can easily conclude
that D,G(),-) € L(X;Z). Since Z is compactly embedded in Y/, it is sufficient to
check the assumption (2-33) to apply Theorem 2.2. From the result of Theorem 2.3,

we only need to verify that

”(QeagcaTC) —(q, Ga"')”}lleng—lﬂ(I‘) —0, as e— ot.

Subtracting (3-112) from (3-114), we have
a(@ —qw) +b(w,0.—0)— <7 —F,w>_1r=0 Vw € H'(Q(a)),
b(d. — &,p) = € (0. — 0,p)o + 2¢ (Pe — B, p)o + 2¢ (5, p)o
N (3-116)
+e(0,0)0 Vp € Lg(R(a)),
<Y,4.—q>_12r=0 Yy e H/A(T).

We note that

a((i; _a,d; _a) = _b((fc _6756 _5)
< —2¢(Pe — P, 0. — 0)o — 2¢(5,0 — 8)o — € (8,8, — 6)o

< 2M.||6. - 8]0 ,

where M, = 2||p. — Bllo + 2|[Bllo + [|0]lo < o0. So, from Korn’s inequality and the inf-
sup condition for b(-,-), we have ||G. — o < Ce M, and |[6. — 8)|o < CZ% M.. Finally,
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applying Lemma 2.2 to the first equation of (3-116), || — 7||-1/2r < (C + C?)e M..

Note that (3-115) is an immediate consequence of Theorem 2.2. O

For a final remark, let us consider the Lagrange multiplier (qc,n.) defined in (3-

36)—(3-38). Since

. Ou, 0q.
ne = 2v B —v o +ren
Ju, 0q.
—Q(Van —pn)—(l/a—n—(r+2p)n)
=2t — 7,

it follows from Theorem 3.5 that ||(qc,ne) — (q, 7)|lm1((a))xm-1/2(r) tends to 0 as €

goes to 07.
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CHAPTER IV

FINITE ELEMENT APPROXIMATIONS

In this chapter, we are concerned with the finite element approximation of the
problem. Finite element discretizations for the domain and discretized description of
the problem are given in Section 4.1. Discrete problem can be independently studied
by setting the moving boundary nodes as parameters as in [123] or [27]. However, our
main concern is how to utilize the design sensitivity analysis we have already derived.
Two fundamental steps are composed of evaluation of optimality system using finite

elements and the computation of the shape gradient at moving boundary nodes.

In Section 4.2, we discuss the approximation for the optimality system. To deal
with inhomogeneous essential boundary condition, we will take the framework of the
Lagrange multiplier technique. This method was primarily developed by Babuska[9]
for the elliptic equations with constant coefficients and was adapted by several authors
on somewhat different situations[10][18][53]. The main point of the implementation
is to choose appropriate trial functions to enforce the boundary conditions and to
approximate traction forces. To simplify our exposition, we proceed from the idea
of Gunzburger et al.[67][53]. The main idea is to detach the computation of traction

force from the computation of the velocity and pressure.

4.1. Finite Element Approximation

In this section, we shall focus our attention to the finite element discretizations of
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the problem. Instead of considering technical details, we intend to describe how the

problem can be approximated using the standard finite element methods.

4.1.1. Basic Scheme

Based on the continuum approach and optimality criteria, we have derived an op-
timality system and a formula for the shape gradient. A rather important question at
this point is how one can make use of this formula in connection with finite elements
in Q(a) to build a better open set (a*) to reduce the drag of the flow, i.e., we need
a design process to build an iterative sequence §2(a,) so that the performance of the
objective on Q(ayn41) is better than that on Q(a”). With regard to extrema, mathe-
matical programming techniques may be employed to solve the discretized model of
the problem. Fundamental procedures for mathematical programming are based on

the following iterations:
dU+) = 4 4 5,90 j=0,1,2,---,

where d) represents a design vector, s; step length and V) stands for a direction
of search using the local behavior of the design functional and constraints. The effi-
ciency of this procedure depends on available design conditions and shape sensitivity
analyses. Its implementation, however, is not at all a straightforward job. Currently,
many finite element systems only permit the analysis of a given structure, without
providing any specific information about how to improve the design. Hence finding
an efficient method to resolve this system is a rather important question. In this
regard, some efficient methods to implement the present sensitivity analysis based
on the material derivative method should be developed through additional computa-
tional efforts. For this reason, our approach to this problem cannot help but being
somewhat restrictive.
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The following algorithm based on the steepest descent method can be used as a

computational method to find an optimal shape:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Set an appropriate initial guess ap in U, 4.

Find a solution u.(ay) (or (uc(an),pe(an), te(ays))) for the penalized Navier-
Stokes equations (3-77)-(3-78) (or equivalently, (3-94)-(3-96)).

Check if (an, u(ay)) is satisfactory to the expected performance. Otherwise,
Goto Step 4.

Find a solution q.(an) (or (qe(an),8(an), 7(as))) for the adjoint penalized
equations (3-79)-(3-80) (or equivalently, (3-97)-(3-99)).

Find a feasible height ¥, of perturbation. An appropriate candidate is to

compute grad J.(a,) using the gradient formula (3-60) and set

grad3.(ax)
llgrad3e(cs)||

¥, = the projection of on the set of adiissible controls.
Construct the new shape function

Qny1 = Qp + Sp¥y € Upa ,for s, > 0. (4-1)

Set n:=n+1 and Goto Step 2.

M

Note that since dJ (c;9) = — (grad 3c(a)) 9 dzy, in step 5, 9, is taken to satisfy

M

d3c(an;¥,) < 0 for each n. In step 5, it is not easy to give a precise meaning

for the projection. It can be understood to be a regularized process remeding the

discontinuity coming from the computation of grad J. at moving nodes in the same

sense as that in [109).
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4.1.2. Discretization

The computation of g.(a) = grad J.(a) involves the computation of the state
variable u.(a) and the adjoint q.(a) for @ € U,q. Since both variables are defined
on the same domain §2(a), the same triangulation of the domain may be used to
approximate them. In the discretization of the domain at each step, some strategy
should be taken to keep track with the design boundary and to keep the domain from
being flipped over. For this purpose, one may discretize the domain in the following
manner (one may use it as a sample for the triangulation):

Let A > 0 be a parameter constricting the grid size in a triangulation of the
domain into finite elements. The domain Q(a) is composed of two parts; Q(a) =
Qsiz U Qmov(a) for each a € Uyq, where Qy;; denotes the interior of the rectangles
AEBG and FCDH (Figure 2) and Q,00(a) = Q(a) — Qfis.

Since domain perturbations are restricted only in the variable part, the mesh of
Q4i; may be fixed during the iterations. Since we are concerned with the shape of
I'(a*), where a* is an optimal solution to the problem, particular attention is paid
to the variable part. Let —M; = ap < a; < -+ < anyy1 = M; be a partition of
[— M, My] such that max;<i<n41 | @i —ai—1| < h. The discretized set of an admissible

family can be defined by

Uy ={an € Co([-My, Mi]) | e ( € Pi([@i-1,ai]), 0 < an < L,

Qi—1,8;
an(a;) — an(ai-1)
a; — a1

‘ < Byan(~My) = an(My) =0, i=1:N +1},

where P} denotes the set of polynomials in z; and z, of degree < k. Note that each
oy in UL, is completely characterized by a sequence {a; > 0}1<j<n of real numbers
such that

a; - T 1 —ay
an(z1) = T—a; + ——Lajy1, for 71 € [aj,a541],

J
j+1 — @j Qj41 — 4y
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and I'(ap) by N-nodes {(a;,a;)}. This defines a polygonal domain
Qmov(an) = {(z1,z2) | =M1 < 21 < My, ap(z1) <z2<L}.

Since domain changes occur only in the zs-direction, one may attach the mo-
tion of these nodes to the vertical lines connected with fixed top boundary nodes
{(a;, L)}1<j<n. We take a partition of z,-axis into (K + 1)-subintervals such that
bo=0< b <--- < bgy1 = L and maxicj<x+41|bj — bj—1] < h. The triangulation
of Qmou(an) should be chosen not to be too flat. This can be achieved by attaching
each node to the fixed nodes and design nodes in the following manner (c.f. Figure
4); Let D;; denote vertices of a triangulation in Q,,,,(as). The coordinates are given
by

L
Di; = (ai, i +

-, e
M—_H]), fOl’Z—]..N,]—]..M,

t.e., the z;-coordinate of D;; are given by equidistant partition of the vertical line seg-

ment from the design nodes {(a;, a;)}1<i<n to the top boudary nodes {(a;, L)}1<i<n.

e

Figure 4: Discretization of domain Q(ay).

Notice that the triangulation has been chosen in such a way that the triangles are
not too much distorted.
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REMARK 4.1: For each a € U,4, one can construct a € U:‘d satisfying

lim a — a uniformly.
h—0+

For instance, in the equidistant partition of [—M;, M;], one can modify the scheme

adopted by [12] as follows: Let us define ay € C°([—M;, M;]) to be

G’P1 Vi=1:N

ap
[ai,aiqa]

and

-My+(+1)h
an(ih) = / a(s)ds Vi=1:N.
h M1+(,__

Then, it is easy to check that a, € U,q and ||ap — @l < Ch. In fact, since a4 is

obtained by its values on partition points, it is sufficient to check that a) € Uyq.

Once a triangulation of the domain is defined, the finite element approximation of
the optimality system (3-94)-(3-100) can be defined in the usual manner. Let us
assume that o® = o so that Q(a”) = Q(c). One chooses families of finite dimensional
subspaces V* ¢ H(Q(a))N C°(Q(ar)) and S* ¢ L2(Q(a*)), which are parametrized

by the grid size h > 0 tending to zero.

For the velocity-pressure pair, we take Vi .\ = V*n{v* € V* | v* = 0 on T¢(as)}
and S = S* N L3(Q(ar)). Also, we define V& = VA N H}(Q(an)). To represent the
trace and the traction force along the boundary, we introduce P* = 4r(V*) and
P =g (VF(ay)- Since P* C Co(T) and Pt C C°(Tg), we have P* C H'(T) and
PE C H'(Ty).

Then, the finite element analogy corresponding to the penalized optimality system
(3-94)—(3-100) reads:
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Seek (ul,pl,t2,qt, 0%, 71) € VP (,,) X S¢ x PE, x V* x ¢ x P* satisfying

€1 7€er ¢

va (u?’vh) + b(vh,p?)— < t?,vh >Tg

=<f, vk > — C(u?, u?avh) Vvt e V?‘o(ah)’

4-2
b(ut,g") = e(ot,q)0 V€ St 2
<shul>p =<stg>r, Vste P’llg ,
and
va(qh, wh)+b(wh 0 — < 7 wh >p=2 < f,wh > —2¢(u?, ut, wh)
—c(wh, ut, q") —c(ut,wh,q") Ywh e VE, (4-3)
b(ag, p*) = €(8¢,p")o — 2¢(p¢, p*)o V" € S,
<sht,q" >r=0 Vs"eP*.
The discrete shape gradient would then be characterized by the function
gb(r) = [vvut  Vub = (vWul : Vel - (0! - )
ou ( ou*  oqt
- (2= -V C+(0ff—2p£‘)nh) .
(Bn" dnk  Onh ) ra)  (4-4)

g" may be used to locate the height of the next design points. Then, as described in

Section 4.1.1, the speed which defines a direction of steepest descent will be

9" = —g¢ /19 loran) - (4-5)

However, the computation of g* usually yields a discontinuous design boundary. This
follows mainly from the computation of Vu? and n* on I'(a*). Hence, smoothing
out the perturbed boundary in the feasible set in conjunction with the regularity of
resulting finite elements is yet to be solved. Even though technical details remained
to be resolved, these problems of discontinuties at design points may be remedied by
taking the domain smooth enough and by employing finite elements of degree large

enough.

REMARK 4.2: In this direction, some crude methods in simple situations were suggested
by Rousselet[109], which are some sort of ad hoc averaging procedure to treat the
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discontinuity of the perturbed boundary. However, its efficiency cannot be certified
until some computational work is done. In Section 3.2, we have specified the design
velocity by parametrizing the moving boundary as the graph of a (smooth) curve.
One may take another approach to get a continuous perturbed boundary at each
steps as in [109]. Let the image of I'(e*) = UL ,I'®). Since the shape gradient is
represented by the integral form

540V)= [ a(T)V(©)-ndr

ur_ )

2> /r( 9T V() -na, (4-6)

one may exploit the triangulation described in Figure 4. Let {A; = (ai, i) }1<i<n
denote the design points. By taking the design velocity of the form V = (0, En: cidi)
along the image of I'(a), where ¢; is a real number and ¢; denotes a (p{:clewise
linear) shape function such that ¢;(A;) = é;;, one gets V(A:) = (0,c;) and V o =
(0, ci¢; + Cig16i41)- If we employ the y()—coordinate system along T'¥), (4-6) can be

written in the form of
d3.(Q,V) = Z ,/n.) @(F(i))(ci@' + ciy1i41) "gi) dy®,

where §,(I®)) denotes the expression of g.(I'?) in y?—coordinates and n® = (n{), n{")
the outward normal to I'), From this result, the shape gradient will have the form
of (0, gi¢:), where

g = /F( , FTO)gin) dy® + /ﬂ oy D) iy ™ dy ).
This obviously determines a new boundary which is piecewise linear and continuous

(c.£.[109)).

The feasible choice for the speed ¥* can be obtained by projecting g* onto U%, in
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the L%-sense as follows:

9" = =Py (90)/11Pur, (9 lo,r () (4-7)
where Py denotes the L*-projection onto U%,. Based on the scheme described
in Section 4.1.1, this enables one to choose a feasible boundary. By selecting an
appropriate step length s, > 0, the shape function will be determined by the iteration

corresponding to (4-1) such as
ah = al 45,9k, (4-8)

Note that if we follow the scheme for the triangulation described earlier, then the
whole mesh can be automatically determined. Hence, the major factor to determine
the optimal design is to determine the optimality system (or, the stationary condi-

tions) in the appropriate spaces, and to find its solutions.

Finally, let us turn our attention to the penalized optimality system(s). There are
two point of views in the penalty approach to the pressure. We first note from the

second equation of (4-3) that the discrete pressure can be recovered by the formula

1 e .
pt = —Z’Psg(div u’), where Psp denotes the orthogonal projection of L? onto Sk,

i.e., for any ¢ € L*((e)), (¢ — Psn(4), p*)o = 0 for all ¢* € Sg. Similarly, 8 can be
replaced by 6" = —%’Psé.(div q" + 2div u*). Using these terms, we can rewrite (4-3)
and (4-4) as
a(ut,vh) + %(div vh, Psn(div ul))o— < t2,v* >r,
=<f,v* > —c(ul,ul,v*)o VvteVp ., (4-9)
<shu}>r=<s’g>, Vs"ePt,

and

va(qh,wh)+ %(dz'v wh, Pon(div q¢ + 2div ul))o— < 7, wh >r=2 < f,w" >

—2c(ul, ut, wh) — c(wh ut, q") — c(ut, wh, q*) Ywh e Vh, (4-10)
<st,qt >r=0 Vst e P,
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In this case, the corresponding shape gradient will be represented by the form:

gt () = [uVuil : Vuh — (vVui‘ : Vgt + %’Psg(divuf)’Psg(divq?))

ou’ dut 3qC
— (W . (2V anh a o h + Psh(d'lvqc) ))] F(cr"i (4_11)

On the other hand, direct discretization of the optimality system for the continuity

penalty method yields

va(uk,vh) + %(div v divul)o— < th,vh >r,
=<f,v* > —c(ut,u},v*) vvhe VL ., (4-12)
<shul}>r,=<stg>r, Vs'ePp,
and
va(gqt,wh)+ %(div wh, divq® + 2divut)o— < 72wt >r=2 < f,w* >
~2c(ul, ut, wh) — c(wh, u,q¥) — c(ut, wh,q?) Vwh e VP, (4-13)
<sh q" >r=0 Vshe P~.

The discrete pressure is recovered by the form of p”

1
= —=div(u’
T € T

_ 1 . h h
_ = —=div [(q} +2u})

variable will be written by §* T] , where 7 denotes any el-

ement in the subdivision of Q(a*) into finite elements. Since g is virtually sought
in the space VA(Q(a*)) C H(R(e*)) and g € Hy/*(Tg) and u* € HE .\ (")),
it follows from the divergence theorem that p* and 6* belong to S C L3(Q(c*)).
Hence the pressure and its corresponding costate variable are implicitly defined in
the St C Li((a*)). Obviously, both approaches provide some flexible choice for
the pressure space while relaxing the choice among elements satisfying the discrete
incompressibility constraints. However, the formal approach is preferred since it gives
more flexibility in the choice of the pressure space, especially in the nonconforming
approximation of the pressure (c.f.[84]).

The discrepancies between these two approaches have been observed in Cuvelier
et al.[36], Sani et al[113][114] and Gunzburger[64]. The formal approach (what is

112



called the discrete penalty method) is to detach the pressure from the velocity after
discretization while the latter ( the continuous penalty method) detaching the pres-
sure before discretization. Aside from this apparent distinction, there are different
characteristics that are hidden until they are expressed in the matrix form (see, [36]
and [64], for details).

In the numerical imprementation of the scheme, one should reflect these features

on achieving improvement of the design performance.

4.2. Approximation to the Optimality System

In this section, we are mainly concerned with the approximation to the optimality
system in the finite element framework. The major difficulties in the approximation
follow from the existence of inhomogeneous boundary data g, the nonlineality of the

system and the penalized approximation to the pressure.

4.2.1. Split Formulation for the Traction Force

The space Hr,)(§(«)) for the velocity appeared in the consideration of the phys-
ical boundary state and played a crucial role in showing the existence of the optimal
shape design in Theorem 2.4, while it provides the traction force along the part I'y of
the boundary. As we have already indicated, the traction force is an important phys-
ical quantity representing the forces exerted by the flow along the boundary. Even
though this appearance raises additional computational efforts toward the computa-
tion for the traction force, it makes the system stable and physically meaningful. In
the Dirichlet problem, this physical factor appeared in an effort to find an efficient
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method to implement the inhomogeneous essential boundary condition (Babuska[9]
used the Lagrange multiplier technique to overcome the difficulty of finding stable
finite element approximations satisfying the Dirichlet boundary data). In connection
with the finite element methods and the variational principles, this appearance natu-
rally led us to coupling the pressure and the traction force, which are Lagrange multi-
pliers arising from the incompressibility constraint and the inhomogeneous boundary
condition (see p.35 — p.37). Several different approaches have been studied to incor-
porate the traction force (or, the boundary fluz specifically). Using the approximation
of the boundary flux, Bramble[18] decomposed the Dirichlet problem with the inho-
mogeneous boundary condition into equations with natural boundary condition. In
this case, the boundary flux was considered as a parameter to determine the velocity
of the flow. In the consideration of the slip boundary condition, Verfiirth[133] cou-
pled the traction force with the pressure to attain the stability of the resulting mixed
formulation. In our case, however, since the computation of the pressure can be de-
tached from the velocity using the penalized formulation, it is natural to consider a
method that uncouples the traction force from the others. This method of uncoupling
the traction force was studied by Gunzburger et al.[67] (see also [53]). Fundamental
steps include the suitable choice for the boundary interpolation for the boundary data

and the decoupling of the traction force from the velocity.

To avoid unwanted irregularities in the boundary data, we assume g has a compact

h = a for the polygonal choice for the feasible set.

support in I';. We also assume o
For the choice of the boundary interpolation, we first notice from the third equation
of (4-8) that < s*, u} —g 1/, r,= 0 for all s" € Pfis, i.e. u® cannot exactly approx-
imate the boundary data g along I’y by merely taking u® g This in general spoils

g
the accuracy for the approximation. To circumvent it, we take g* as the L(Tg)-
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projection of g, i.e., gh = 'P{lg(g), where ’Pl’is denotes the L?(T'g)-projection from

H'/*(Tg) onto P (c.f. Remark 4.4). Obviously, we have that

[ @=Ph )6 Pl ) a0 =0, Vv € HEy oy (@ah). (4-14)

Before presenting the computational procedure, we make some assumptions for the
approximation properties in the choice of spaces V*, $* and P*. One may choose
any pair of subspaces V* and S* that can be used to the finite element approximation
of the Navier—Stokes equations. We first notice that since Vléo(a;.) C H}\o(ah)(ﬂ(ah)),

a(-)| . is continuous and coercive. In order to attain the stability and
v

h
To(ay) xvro(ﬂh)

convergence properties of the approximation (4-2) to the solution of the Navier—
Stokes equations, we make use of a general result on the mixed formulations (4-2)
known as inf-sup condition (or LBB condition): there exists a constant C which is
independent of h such that

b(v",q")

inf sup ———— =>C. (4-15)
o#aresh oxvhevt |[VE[1llg*]lo

In the mixed formulation, this condition is needed to keep the balance between ve-
locity and pressure, whence to allow the stability of the scheme. This assumption is
rather stronger. In practical situations, the generic constant C of (4-15) can be taken
to depend on the size of the mesh. Even in such cases, the inf-sup condition may
still imply the convergence of the chosen elements, provided that the infimum of the
constant C'(h) decays to zero not too fast (see, e.g., [84]).

For general applications, we assume that V* and S* satisfy the following stan-
dard approximation properties: there exists an integer k£ and a constant C' which is

independent of h, v and ¢ such that

inf llg—q"llo < CA"lgllm-1 Vg € H™ (") N L5(He")) 1<m <k,
gheS}
(4-16)



inf Iv=vl S CA™?||V|lm VYveEH™(Qay)), s=0,1, 1 <m <k, (4-17)
vie

and

inf [[v=vAl, S CA™ vl ¥V € HPOHE ) (Ren), s=0,1, 1 <m < k.
v eVr'o(ﬂh)

(4-18)
Moreover, for P* ¢ HY(T') and P} C H(Iy), we assume the following inverse
Tg g

inequalities:
€* o, < CH**ll€Mler, VE" € PR, —1/2<t<s<1 (4-19)

and

le*l.r < Ch*7?||e*|r VEP € PR, —1/2<t<s<1, (4-20)

where C is independent of k and ¢”*. In (4-16)-(4-18), the integer k is related to the
degree of the polynomial approximation.

Some remarks are in order for the use of (4-15) and (4-16). In the penalized
formulation such as (4-13), the compatibility condition (4-15) between velocity and
pressure rules out spurious modes such as the checkerboard modes in the computation
of the pressure. Hence, as long as only the velocity is concerned, it plays no role in the
stability or in the accuracy. In this case, the assumption (4-16) may be redundant,
for it is surbodinate to the assumption (4-17) or (4-18).

Based on these structure, one can split the system (4-2)-(4-3) in the following

manner (split formulation):

- Given g € H/%(Ty), evaluate gh = 'P{fs(g). (4-21)
- Solve for (uk,pt, q* 6%) € V#o(a,,) X Sh <« VP x S* such that

va(ut,vh) +b(vh pt) =< f,vh > —c(ul,ul,v*) Vvh e V}
b(ut,¢") =e(pl,¢") V¢"€Sg, (4-22)
< st ut>r =<shgh>r, Vste P{ix ,
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and
va(qt,wh)+b(wh, o) =2 < f,wh > —2¢c(u?, ut, wh)

€? e

-—C(W ’ue’qe) c(u(,w )qe) VW EV

4-23
bl r*) = c(0h,") = 260k, p%) V' € 53 (429
< sh ,qe >r=0 Vsh € P-.
— Solve for t* € Pfis and 7! € P* such that
< t?ivh >ps=Va(uf,vh)+b(vh,pc)+c(u€,ue,v")
—<f,vh> Ve Vi, - Ve, (4-24)

and

< thwh >=va(ql,w") +b(w",0) + 2¢(ul, ul, w") + c(w", ul,qf)

€ €Y

+c(ut,wh g -2<f,wh> Vwhe ViV (4-25)

It is interesting that, despite the traction force not being a boundary condition for
the problem considered, a natural postprocessing procedure for the traction force
nevertheless ensues.

Note that using this split formulation, the weak primal version (3-101)-(3-107)

can be rewritten in the form:

~ Solve for (u,p,q,8) € Hy (,,, x L§(Q(e")) x H () x L§((e*)) such that

va(u,v)+b(v,p) =<f,v>_; —c(u,u,v) Vve H}Q")),

{ b(u,g)=0 Vg€ L%(Q(ah)), (4-26)
<s,u>r,=<s,g>r, Vs€HYTy),

and

va(qw)+b(w,0)=2<f,w>_1 —2c(u,u,w)
—e(w,u,9) — c(u,w,q) Vw € HY(Q(a)),
b(q,p) =0 Vp € Li(Q(a")),
<s,q>r=0 VseHYT).
~ Solve for t € H™Y/*(Tg) and + € H~'/2(T") such that

(4-27)

< t,v>r,= va(u,v)+b(v,p) +c(u,u,v)
- <f,v>_ VveHpq,) Q") -Hy(Q"), (4-28)
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and

<7,w>r= va(q,w)+b(w,0) + 2c(u,u,w) + c(w,u,q)

te(uw,q)—2<f,w>_ VweH(Q")-H)Q)). (4-29)

QOur aim is to derive error estimates for this scheme.

4.2.2. Error Estimates

In this subsection, we are concerned with error estimates for the proposed split
formulation. Since the stated approximation properties are fulfilled for the familiar
regular finite elements (see, for example, [33][17][132]), the accuracy of the scheme
mainly depends on how good an approximation g* is to g. For this purpose, we

introduce the H}, -projection Q" from H}o(ah)(ﬂ(ah)) onto VI ., i.e., for w €

H}o(ah)(ﬂ(ah)),
(T - @YW, v")1 = a (T - @)W, v*) = 0 Vv* € Vi) (4-30)

We need some preliminary results for the approximation to g.

Lemma 4.1. There exists a constant C > 0 such that
lrevllar, < CEIvIE+672v][3), (4-31)

for all v € Hy (,,, (")) and 0 < § < 1.

Proof: This is an immediate consequence of Grisvard[63] (Theorem 1.5.1.10) and

the continuity of the trace mapping. O

Lemma 4.2. Let w be an element of H}, ,.,(?(a*)) with yr,w = g. Then

H’"‘s ((I - Qh)w) < CR2|(Z - @Mwls. (4-32)

”o,rs
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Proof: For the proof, one may recourse to the so—called Aubin—Nitsche trick (see [33]
or [98]). Let e = w — Q*w. Since V., » C Hry(a,) (")), e € HE (, ((?)).
Let us assume ¢ € H?> N H}o(ah)(ﬂ(ah)) be the solution of the following auxiliary
problem:

a(€,v)=(2,v)o Vv € Hp,,) ("), (4-33)

where z € H;;(ah)(ﬂ(ah))ﬂL"’ is given. The regularity of (4-33) yields ||¢]|2 < C||z|o-
Now let us take v = e in (4-32). Then, using the symmetry of a (-,) and (4-30), we

have

(zae)o
ello = sup ——
|| ”0 zp ||Z||o
= sup al¢.e)
: |zl
= sup a (f - th’ e)
x l1zllo

where IT, : HE ) ((c")) — VE ) denotes the VIt -interpolant. Hence,
e
fello < Clle - el sup 4oL
+ |lzllo
From the approximation assumption (4-18), we have
lle — Ikl < |l¢ — IIngllx < Chllg]l2 < Chlz]lo,
whence
llello = I(Z — @")wllo < CRI(Z — @*)wll < CR|(Z — Q")w .
Applying the inequality (4-31) by taking § = k2, it follows that

[re(@-w)|.,. < c(h@-Qhwit+hIT-QwiE) < ChllT-QMwiE.

O
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REMARK 4.3: In the auxiliary problem (4-33), we assumed the H?-regularity for the
solution ¢. On a convex domain with C®!'-boundary, the elliptic problem always
guarantees such an order of regularity by the classical regularity theory ([63]). For a
nonconvex domain, however, this may not hold. One may get at most H'**-regularity
for some 0 < p < 1. Nevertheless, the estimate (4-32) does not change, for (4-31)
holds for all § € (0,1), i.e., the minor adjusting of 6§ and the index of A will yield the

same conclusion.

The preliminary estimates for the computation (4-21) can be obtained by refin-
ing the result of Lemma 4.2, using the inverse inequality (4-19). Our approach is

illustrated in the following (non-commutative) diagram:

Qh
Hf*o(a,.)(ﬂ(ah)) - V?‘o(ah)

e | |me

h

P
2 2 Tg R
H'/2(Tg) C L*(Tg) —— Pr,

Let w be an element of H}o(ah)(ﬂ(ah)) such that 4r,w = g. Then, preliminary result
includes in the estimation of g — ’Pl'l‘g in terms of (Z — Q")w (see also [18][17]). Once

the basis of the discrete space P’Ils is known, it is easy to build the approximation g".

Lemma 4.3. For a given g € H'/*(Ty), let g = P} g € P} . It holds that
g — &*llore < CRV?(T — Q%)W) (4-34)

g — &*ll-1/2,r; < CRI(T — Q*)w||x (4-35)

and

g — &"lli/2rg < CIET — @)Wl (4-36)
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Proof: Note that / (g—g")-¢"dl =0 Vo' € P{Eg by (4-14). Since w €
PS

H}o(ah)(ﬂ(ah)) is chosen so that yr,w = g and 7, (Q"*W) =g" € P?g, we have

lg - g"l3r, = [ (8—8") - (& — 10, (Q*W) + 15, (Q"w) — ") dT

8
- [ (&= 8" (6~ my(@w))ar
g
< lig = 8" llorgllrre (Z — @%)wllor -
Hence (4-32) yields
lg — &"llors < ll7re(Z — @M Wllor, < CRYA(T ~ @*)wi1,

so that (4-34) is obtained.
For the proof of (4-35), we need some preliminary facts: For each ¢ € H/%(Ty),
let v4 € Hp(,,(Q(c*)) be a lifting of ¢ for the trace, i.e., 7,V = ¢ and |[vy[ls <

C||#ll1/2,r,- From the orthogonality of the projection Q*, we obtain
Ivellf = (T — @")velli + Q" vsll} -
Hence, it follows that
IZ — @*)vsllr < lIvell < Cllgll/zr, - (4-37)

The inequality (4-35) is the composite result of (4-14), (4-34) and (4-37);
frg(g - gh) -¢dl’

g — &"ll-1/20, =  sup
/e 0£$cH/2(Tg) ll#ll1/2.r
Jr (8 —8") - (¢ — Pt o)dl
= sup
0#cH/2(Tg) llbll1/2,rg

lé = Pt llor
<Clig—g"llor,  sup ”—H
ozsci2(rg)  |9ll1/2rg

h1/2 T — Qh v
< Ch1/2”(1—_ Qh)wlll sup ”( ) 4'”1
0#£4€H/2(Ig) Ivell,

< Ch|[(T - @")wlx.
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In order to show (4-35), we notice that

g — 8" llorg < 18 — s (L W)llorg = ll1re(T — @)W llorg
< CRVA|(T - Q4w

which follows from the orthogonality of 'Pl’n‘s and (4-32). Then, using the inverse

inequality (4-19) and the continuity of the trace mapping, we have

g — &"lli/2rs < Il (T = @")Wllijar, + I, (Q*W) — g"ll1/21r,
<IN — @MWl + A7 2llr (@) — g*llor ]
<O - 2wl + 272(llg — (W) llorg + llg — &*llore) ]
< CIIET - YWl + 72|l (T — @%)Wllorg + llg — &"llorg) ]
< CIIT - @Mwllx + A7V2R||(Z - @*)w|1 ]

<CIT - Mwlha. 0

Using a similar technique, Lemma 4.3 can be generalized: Suppose g € H*(T'g) for

all s €[0,1/2] and g* = ’P{lgg. Let vg be a lifting of g. Then, it follows
lg — &"llorg < CR*I(T — @")Vgllarajz < Ch’|iglls for0<s<1/2.  (4-38)

Moreover, for ¢ € H*(I'g), since

/F (T-Ph)g- ¢dl = jr (T-Ph)g- (T-PL)pdr
g 8
< |I(g - g")lIollZ - PE)élo
< ChY|g|l:h’||o)ls for 0<s, t<1/2,

we obtain

lg—g"l-ar, = sup / (T-Ph)g- $dT < Ch*|g]l.
0#£¢€H*(Ig) JTg
[lellsrg <1
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So, this naturally leads us to

llg — g*]l-sr, < CRY**?||g|l1j2 for 0 < s <1/2. (4-39)

Now, we state the main result for the estimation g" of the 'Pl’lg—projection of g.

Theorem 4.1. Let g and g* be defined as in Lemma 4.3. Then, as h — 0%,

h/%||g — g*lor, — 0, (4-40)
h7 g — g"|-1/2r, — 0, (4-41)
llg — &"ll1/2r, — 0. (4-42)

Proof: Since w is a lifting of g taken arbitrary, (4-34) implies that

B2 g — gh < inf 7 — QMywll;.
g — & ||0,I‘s—weH}o(a)(Q(ah))”( vy

Since C=°(Q(a*)) NHYL (o) (™)) is dense in HY_ (.1 (€(e*)), one can deduce (4-40)
from the approximation property of VI&o(ah)’ (4-41) and (4-42) can be shown in the
similar manner. O

If sufficient regularity is allowed, the estimates of Lemma 4.3 for the approximation

can be sharpened.

Theorem 4.2. Supposeg € H™1/%(Ty) forl <m < kandw € H™NHL () ("))

be a lifting of g. Then, under the same condition with Lemma 4.3, we have

lg — g*llors < CE™ 2wl , (4-43)
g — g*ll-1/2.r5 < CA™[[Wl|m , (4-44)
g — &"ll1/2rg < CA™ W]l (4-45)

Proof: Since Q"w € V{io(ah), from the approximation property (4-18), (4-34) yields

g — &"llory < CRVAIT — @)Wy < CRY2R™ Y |[W|m = CE™ | W|m
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so that (4-43) holds. Similarly, for (4-44) and (4-45). O

REMARK 4.4: The regularity problem we encounter can be simply stated as follows;
For g € H™"1/%(T), can we find w € H™ N H}o(ah)(ﬂ(a")) such that

w

a(w,v) =0 VveHQ(")),
Ends

I'g

This is always true on the smooth domain by the Lax-Milgram Lemma and the
regularity results for elliptic problems (see [33]). On a polygonal domain illustrated
in Figure 4, however, sufficient regularity may not be available (m will be at best 2
(c£.[63])). That explains why we have taken the L?-projection for the approximation
of the boundary data instead of boundary interpolants. Methods using conventional
boundary interpolants do not ensure the convergence nor optimal L2—error estimates

without supplying a sufficient regularity assumption for the solution.

We now wish to derive error estimates for the approximation (u®,p”, q*,6%) to

(u,p,q,0), where (u?,pt q*,6") and (u,p, q,0) are solutions of the systems (4-22)-
(4-23) and (4-26)-(4-27), respectively.

To study the approximation, we invoke the corresponding nonlinear function for-
mulation as in Section 3.5. In fact, exploiting the similar structure, the study of the
approximation can be reduced to the analysis of the corresponding approximation to
the solution of the Stokes formulation whose traction force is decoupled from the ve-
locity and pressure. To be more explicit, we take X = H}o(ah)(ﬂ(a")) x L3(Qah)) x
H!((a*)) x LA(Q(aM), Y = Hil,, ((a*)) x HY(Ty) x (H'((c*))* and Z =
L32(Q(a)) x {0} x L3%(Q(ca*)). We define the solution operator T' € L(Y'; X) for
the Stokes equations by T(?, g, E) = (u,p, '(],5) if and only if

a(@,v)+b(v,p) =<f,v>_; VveHQ0c")),
b(U,q) =0 Vge Lj(a")), (4-46)
<s,u >-1/21,=< s, g >_1/2,0¢ Vse H-llz(rg) )
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a(q,w)+b(w,0)=<h,w>_; VweH}Q")),
b(d,p) =0 Vpe Li(Q(at)), (4-47)
< S,a >_1/2,0= 0 Vse H‘l/z(I‘) .

Analogously, for the solution operator of the discrete penalized Stokes equations, we
=~ ~h ~h ~h 7k . .
define T(f, g, h) = (@*,5.",4.",6. ) € X* = VE | x S& x V] x Sk if and only if
g =Pr(g),
a(@h,vh) + b(vh, 5. =< f,vh > Vvhe Vi,
b(ul,¢") =e(p",¢")o V¢' €SS,
< st U} >r,=<s"g" >r, VstePp,

(4-48)

and h _
a (G, wh) +b(wh 8, )=<h,wh> VYwhteVE,

~ ~h ~ —
b(Qch’ ph) = 6(06 ,ph)O — 2¢ (peh, Ph)o Vph € 5'(',‘, (4 49)
<s"q">r=0 Vs'eP~.
Since X" is a dense subspace of X, T is a bounded lineal operator from Y to X.
To cover the nonlinear part, we take A to be a compact subset of Rt and define the
nonlinear operator G from A x X to Y by G(A, (u,p,q,0)) = (n,%,¢), for A = 1 €A
v
if and only if

<n,v>_=A(u,u,v)-A<f,v>_, VveH}),

<S8,k >_1/2T,= — < 8,8 >_1/2T; Vs€ H‘1/2(I‘g) R

<¢éw >_1=2Ac(u,u,w) + Ac(w,u,q) + Ac(u,w,q)
-A<f,w>_; VweH}Q)).

Then, (4-26)—(4-27) and (4-22)—(4-23) can be written as

(4-50)

(u,Ap,q,A0) + TG(A, (u,Ap,q,A0)) =0

and
(ul, Ap}, af, A62) + TH(X, (ul, Ap}, af, A6)) = 0,
respectively.
It is easy to check that DyG € L(X;Y) and DygyeG € L(X;Y), where ¢ =
(u,p,q,0) € X. Moreover, Z is compactly embeded in Y (refer the proof of Theorem
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3.5). Hence due to the Theorem 2.2, the analysis of the convergence turns into the
analysis of the approximation of T* to 7. Let y = (?, g, fl) € Y be given. The

analysis of the approximation depends on the estimate for ||(7* — T)y||x. For this

purpose, we introduce the discrete operator T* of T' defined by T*y = (u*, 7", §*, 6")

if and only if
g =P8,
a (@, vh) +b(vh, ") =<f,v* > Vvhe Vi,
b(ut,¢*)=0 V¢"e Sk,
<sh @ >r,=<shgh>r, Vste PI’ES,

(4-51)

b@, ") =0 Vohe Sk, (4-52)
<sh,q">r=0 Vs*eP*.
To analyze ||(T* — T)y||x, we first consider ||[(T* — T")y||x.

{ a(qh,wh) + b(wh ") =< h,wh > VYwheVE,

Lemma 4.4. Let y = (f,,h) € Y. Let (@* 5" " 6.") and (@*7",",6") be
solutions of (4—48)—(4-49) and (4-51)-(4-52), respectively. Then, under the inf-sup
condition (4-15), we have

(T2 ~ T")yllx < Ce,

where C is independent of € > 0.

Proof: From (4-48)-(4-49) and (4-51)—(4-52), (T* — T*)y yields

a(@ - v +b(vh P - =0 Vvi e VP, (4-53)
b(ut —ut,¢") = (" -7 0" +€(B,4*)o V" € S, (4-54)
e (G — G, W)+ b(wh 8, —F") =0 Vwh eV (4-55)

and
~ ~ ~h ~ ~ ~ -
b(th - qha Ph) =¢c (06 - oh, ph)o —2¢ (p(h - ph, ph)o
+e(8", "0 — 2¢(3*,p")0 V" € Sk, (4-56)
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As in Theorem 3.5, applications of (4-15) yield

17" = "llo < Ol — @*|:  and

16." = 840 < Cl&" — s -

h

Setting v* = U — U* and ¢* = p.* — " in (4-53), (4-54) yields

a2 — 37 < —e (@, 5" —3")o < el lloll5" — 7" llo

< Celfiig = @ {lall7"llo -

Here, we notice that U* — @*, 4. — q* € V! ¢ H)(Q(c"*)). Since the || - [|-norm in

H}(Q(a?)) is equivalent to the || - ||;~norm, we obtain
i — @iy < Cell*lo-

Similarly, setting w* = §." — §* and p* = lzh — 6" in (4-55), we obtain from (4-56)
that
Gh— G < eMa|l. — 8
llqe I* < eMa|[6 llo s
where My, = 2|, — 7*lo + [[0*llo + 27" lo-
Since ||pc* —7*lo < Cl[tk — @y < C|[B*llo, Ma < 2(C?+1)[[7*[lo+1[6*]lo- Hence,
it follows that

16" = @l < Ce(IIB*llo + 116*]lo) -

Therefore, using the fact that ||0"||0 and |[p*||o are uniformly bounded in &, we have

~ ~ ~ ~h ~
(T = T)ylix < (8¢ — T + 15" = llo + 16" — G}l + 18 = 0*[lo

< Ce.

Notice that the generic constant C has taken independent of €. O

We now state estimates for ||(T* — T)y]||x-
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Lemma 4.5. Lety = (f,g,h) € Y. Let (§,5,q,0) and (ii*,7*,§",6") be solutions
of (4-46)-(4-47) and (4-51)-(4-52), respectively. Then, it holds that

”(Th - T)y”X <C inf. ~ Il(ﬁ”ﬁa a’o) - (ﬁh’pha qhyéh)llx ’ (4_57)
(uh 5" g fr)eX ™

where X% = {(u* p*, g, 0") € VI’io(ah) x Sk x V& x Sk | yr 0t =gk}
Proof: This follows directly from the double application of the result due to Gun-
zburger et al.[65] or [68]. O

One can combine (4-57) with the approximation result for g"* to obtain the following

result.

Lemma 4.6. Under the same conditions with Lemma 4.5, we have

I(T* - T)yllx <C inf ||(4,5,9,8) — (a*, ", 6", 0")lIx - (4-58)

Furthermore, if we assume that (u,p, a,'é) €eXNH™x H™! x H™ x H™!) for
1 < m < k, then there exists a positive constant C, independent of h, such that

I(T* = T)yllx < CR™[|[@]lm + [Bllm-t + [dllm + 18]l;m=1] - (4-59)

Proof: We first show that

I(T* - T)yllx

<C|

~
~ A~ o~

i h h h _h ~ ~h
(""v"hyil'},ph)EX" “(U,P, q, 0) - (11 sT 0 ,p )”X + ”g — £ ”1/2'[*;] . (4_60)

From (4-30), we observe that
IZ-eMill=  inf JE-»n*l<  inf [[E—a".
7€ ¥ To(ap) 7€ ¥ To(an)
Hence, from Korn’s inequality we have
I(Z - @Ml < C T - Ml < ¢ & —n"ls. (4-61)
To(ap)
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Let vt € V?‘o(ﬁh) be a lifting of g* — 1, (Q"*1). Take n* = v* + Q*U. Applying the
continuity of the trace, (4-36) and (4-61), we deduce that

T —n*ll < [ld — Q"ill: + [[v*]a
< [[i - Q"illy + ClIg" — e (Q*W)ll1/2r,
< [ - @"lly + C(I1g — 8*llyzrg + llmre (T — @iilly/2r)
< Ol - Q"lly + I — &*lly/2r,)
< C(llu - "l + |Ig — &"ll1/2rs)

<C[ inf [@—n"l+ I8 - &"ll/2rel-
n EVI‘o(¢=r.)

Hence, (4-60) is obtained from (4-57). We further note from (4-36) and (4-61) that
€~ &"llijzr, <CIT-QYilh <C  inf |T—n*|:. (4-62)
7€V Totan)
Therefore, combined with (4-60), the estimate (4-58) is a composite result of (4-57)
and (4-62).

Next, we turn to showing (4-59). From the regularity result for the Stokes opera-
tor([60][127]), we have; if (1,7) € H™(Q(a?)) x (H™ 1N L3((a*))) for 1 < m <k,
g € H™Y%(Ig). So, it follows from (4-23) that ||§ — g*|li/2r, < CA™ |||
Then, applying the approximation properties (4-16)—(4-18) to (4-60), (4-59) is ob-

tained. O

As a supplementary result to Lemma 4.4 and Lemma 4.6, by employing arguments

similar to those used in the proof of Theorem 3.5, we can obtain the main estimates

for ||(u?, p?,q?,6%) — (u,p,q,9)| x.

Theorem 4.3. Assume that A be a compact subset of R*. For a fixed o* € U}, let
X = H}, (o) (™) x Li(Q(?)) x H (Q(e?)) x L§(Q(*)).
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Suppose {(A, (u(A), Ap(A),q(A),A8(1)) | A = %— € A} be a branch of regular solu-

tions of (4-26)-(4-27). Then, for € < € small enough, there exists a unique regular
branch {(\, (uf(X), Apt(X),q*()), \82(X)) | A € A} of solutions of (4-22)—(4-23) in
the neighborhood of (u(X), p(A),q(XA),8())) in X and a positive constant C, indepen-
dent of € and A € A, such that

lI(ug(X), e (A), @2 (X), 8¢ (1)) = (u(A), p(2), a(A), 8(N))llx < Ce (4-63)

as h — 0%, uniformly in A = -11; € A.
In addition, if we assume that {(u(A),p()),q(A),0())) | A € A} belongs to X N
(H™ x H™! x H™ x H™™!) for 1 < m < k, there exists positive constants C; and

C, which are independent of A € A, € and h such that

lI(ug (), (M), a2 (A), 02 (X)) = (u(X), (1), a(X), 6(N))llx
< Cie+ Coh™ [ Jlu(W) [l + lP(M)llm=1 + la(M)llm + [[8(M)|lm-1],  (4-64)

forall A e A. 0O

We are now concerned with error estimates of the approximations (4-24)—(4-25)
for the state and costate traction forces along the boundary. Some comments are in
order for the choice of an approximation space Pf“g for the traction force (also, P*
for its costate variable). Pl’is has been chosen to accommodate both the trace of the
velocity and the traction force. For strict computation, one may consider taking P{Eg
independently of the velocity space; two different spaces Piﬁ; and *yrg(VI’fz(ah)) with
different meshes may be taken to approximate the traction force and the trace of
the velocity. However, in order to sustain the stability of the scheme, this approach
necessitates an additional requirement for meshes such that h; > Khj, where K is a
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positive constant dependent on the domain (see [9] and [104]). This levies an addi-
tional difficulty of determining K. Our approach is simply 7F8(V?‘o(a;.)) = Pfig and
Pf‘«g , as an approximation space of the traction force, is understood to be embedded in
H~Y*(I'g). Pitkiranta[103] studied similar structure relating the interior mesh to the
boundary for the Lagrange multiplier, which is represented by the normal derivative
terms of state variables. However, his approach consists of taking the approximation
space in L*(T).
Let us begin our discussion by introducing new operator to interpret P'ﬁg in H™1/2(Ty).

We consider the operator ’R’,is : H™Y3(Tg) — Pf‘«g C H™Y%(Ty) defined by
< REE VI Srg=<g,vi>r, YVPeVE . (4-65)

1
It is clear that ’R.l’ls = ’P{i‘ for all s > 3 For our purpose, we call attention to

H+(Tg)
particular properties of 'Rfig.

Lemma 4.6. The operator Rf‘\s defined in (4-65) satisfies the following properties:

(1) 'R.#g is a bounded operator in H;:/ 2

(ii) For ¢ € H™Y/*(T'y), we have
I(Z — REell-1/20, = 0 as h — 0F. (4-66)
(iii) We suppose that ¢ € H*(I'g) for —-;— <s< % Then we have
1T~ REell-1/2g < CRH2]e]lr, (4-67)
Analogous discussion can be found in Gunzburger et al.[67] (see also [17]).
Proof: (i); Let ¢ € H/%(T) and v4 be a lifting of ¢ in HE () 50 that [[vgli <
C|l#|l1/2,rg- Using (4-36) and (4-37), we have
I1Pegll/2re < T = Pr)lli/zrs + lléll/2rg
< CIZ - Q%vell1 + l8ll1/2rs

< Cli¢lliszrg - (4-68)
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Since 'R.I’Egﬁ € P{‘\s, we deduce from (4-14) that

< REE ¢ >r =< REE, (T — PE o+ Pro >r,
=< RE & PE ¢ >1,
=< &Pr ¢ >r,
< ”f”—l/z.r‘g||'P1}“‘g¢||1/2,rg

< Clgll-1/2,rgll®ll1/2,rg -

Therefore, it follows that

”R{igf”—l/z,r‘g = sup < Rﬁfﬁﬁ >r, < 0”5”-1/2,1“5
0£¢€H1/2(T'g)
ll#ll1/2,rg <1

so that HRI"Es"c(n-x/z(ps)) <C.
(i1); We use the fact that C*(T'g) is dense in H~'/?(Ty) and RE, (C=(Tg)) =
'PI’fS(C°°(I‘g)). For ¢ € H™Y*(Ty), take £ € C®(I'y). Since 'R.I’Eg is bounded in

H-'/2(T'y), using (4-39), one can carry out

T — Reell-1/2re = T — R (€ =€) + E)ll-1/2r,

< |lg — €ll-1/arg + IRE (€ — E)ll-1/20g + 1T — PR)E Nl 172

< Clle = €ll-1/2,rg + RlI€ 11720, -

Therefore, (4-66) follows from the denseness of C*(T'g) in H=1/%(Ty).
(iii); Employing interpolation arguments for the Sobolev space ([37]), (4-67)
follows from (4-35) and (4-39). O

In the similar fashion, one can also show:

Lemma 4.7. Let RE : H-Y%(I') - P*» ¢ H"Y*(T') be an operator defined by

< Rie, vt >p=<¢,vi >p Vv e VA, (4-69)
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Then, RE is 2 bounded operator in H™'/%(T") satisfying:
(i) For ¢ € H™YX(D), |(Z — RE)E||-1/20 — O as b — 0*.

(i1) Supposing further ¢ € H{.(T') for --% <s< %, it follows that

IZ = Re)ell-/ar < CR*2lE]lur - (4-70)

O

We are particularly interested in the solution (t,r) of the system (4-28)-(4-29).
For simplification, let us define H = H~'/2(Ty) x H"Y%(I'). We recall that even
though g € H*(T') for s > g, if Q(a*) € C°', the solution (u,p,q,8) of the system
(4-26)-(4-27) belongs to X N (H¥?~% x HY/?-5 x H3?~% x H'/?-%) for some small
6 > 0 (c.f. Remark 3.8). We provide general perspectives for the operator ('R’fg,’Rl’l).
Lemma 4.8. Let (t,r) € H be a solution of the system (4-28)-(4-29). The following
properties hold for (’R,fig, RE):

@) (e, r) — (’R{E‘t,’R{Er)”H —0 ash— 0t (4-71)

(i) If Q(at) € C*' and g € H3?(Ty),

(¢, 7)=(Re b, REw)llae < CRY2 [ {lullajz—s+Iplls 25+l allaz-s+ 1161117251, (4-72)

for some small § > 0.

Under more assumed regularities for the domain, we suppose the solution (u,p, q, 8)
of the system (4-26)—-(4-27) belongs to XN(H™ x H™* ' xH™ x H™ ') for1 < m < k.
Then, we have general estimates:
(iii) If 1 < m < 2, we have
It 7) = (Regt, Rer)line < CA™ [ ullm + lIpllm-1 + lallm + 16]lm-1].  (4-73)
(iv) If m = 2 and Q(c") is polygonal, it holds that

I(t,7) = (RE &, Rew)llwe < R [Jlullz + llpllx + llallz + 161111, (4-74)
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for all0 < 6§ < %
(v) f2 < m < k and (t,7) € r (HY (,,)(2(e?)) N H™ ) x 4r(H™1(Q(c))),

we obtain

(¢, 7) — (RE b, REr)lln < CR™T (wi}}fm[ vellm-1 + IVellm-1], (4-75)

where 3 = {(v¢,v,) € (H}o(a)(ﬂ(ah)) NH™) x H*(Q(a")) | (7rgve,wve) =
(t,7)}.
Proof: (i) follows from Lemma 4.6 and 4.7.
(ii); Since (u,p,q,0) € X N (H3%~% x HY?-5 x H3?~% x HY/*7%), (t,7) €
HN(H%(Tg) x H™%(T)). Hence, from (4-67) and (4-70), we obtain
(¢, 7) — (RE b, RET) |l < CRM2°[|It]|—sr, + ll7ll-sr]
< CR* [ |lullajz—s + Iplls/z-s + llalla/z-s + 16ll1/2-5] -
Similar argument also results in (iii).
(iv); Suppose m = 2 and the domain is polygonal. Since (t,r) = (—pn +
Ju 0q

B_n’_0n+3n

HY?~5(T) for 0 < 6 < % So, from (4-67) it follows that

), (t,7) is not continuous along the boundary and (t,r) € H/?~¥(T'g) x

I8, 7)ll2 < CR*[|Itll-s,rg + lI7]l1-5r]
< CR’[||ullz + llpll: + llallz + [16]1:]-
(v); Since t € H*(I'g) and = € H*(T') for s > %, 'R,I’ig = ’PI’~‘8 and RE = P* so that
we obtain from (4-44)
I(t,7) = (RE g6, REw)|lw < CA™ T [|[Vellmos + Ve llm-a],
where v, and v, are liftings of t and =, respectively. Since this holds for all v¢ and
V., (4-74) follows. O

The main estimates for ||(t?,*) — (£, 7)||» are found by Theorem 4.3 and Lemma
4.8.
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Theorem 4.4. Assume that A be a compact subset of R*.

Suppose {(A, (u(A), Ap(A), q(A), A8(X)) | A = % € A} be a regular branch of solutions

of (4-26)-(4-27) and let (u”()),p*(1),q*(}),0%())) € X be the solution of (4-22)-
(4-23) satisfying (4-63) in the neighborhood of origin in X. Let (t()),7())) € H
and (t*()), 7)) € P{‘\g x P* ¢ H be corresponding solutions of the system (4-28)-
(4-29) and (4-24)-(4-25), respectively. Then, for ¢ < €, small enough, we have the

following error estimates on the same branch :
(@) (), 72(N) = ¢(A), 7(M)llx < C(1+ [lullx + |lalli) €, uniformly as b — 0*.
(i) If Q(a*) € C*' and g € H3?(Ty),
(€2 (), 78(A)) = (6(X), (W)l <

(1 + [[ulls + [lall)[Cre + C2h*~%(|[ull3j2—5 + lIPll1/2-5 + llalls/2-5 + [10]l1/2-6) ] »

for some small § > 0.

Under more assumed regularities for the domain, we suppose (u(X), p(A), q(1), (1))
€ XN(H™x H™ 1 xH™ x H™ 1) for 1 <m < k and let (u?()), p*(1), q*(1), 8% (1))
be corresponding approximate solution on the same branch satisfying (4-64). Then,

the error estimates can be sharpened as followings :

(iii) If 1 £ m < 2, we have
I(E(A), 7(A)) = (REN), REr(N) I <

(1+ lulls + llall)[Cre + C2™ (ullm + lIpllm-1 + llallm + [[0llm-1)]-
(iv) If m = 2 and Q(a") is polygonal, it holds that
I(t(X), 7)) = (R t(A), Rer (Al <

(1 + Jlully + llall)[ Cre + Ch~(llullz + llpll: + llallz + [18]1)],
1

foraHO<5<§.
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(v) If2 <m < k and (t()),7())) € 1g(HE o,y () N H™) x 4r(H™1(Q)), we

obtain

IE), 7(X) = (RE 6(A), Rer(N))llae <

(1+ llully +llqll)[Cre + C2™ wonf  (1Vellm—r + [[Vellm-1)],

t Ve

where 3 = {(vt, V) € H (,)(2(e*)) NH™) x H™(Q(e)) | (rgVe,7wve) = (¢, 7))
Here, C, Cy and C; are constants taken independent of €, h and A € A.

Proof: From the triangle inequality, we have
I8, 7) = (2, 7l < NI(E, 7) = (Ri b Rew) i + I(Reg b, REw) = (b6, 76l - (4-76)

Since the estimates for ||(t,7) —(RE t, R2:+)|| are given in Lemma 4.8, it is sufficient
Tt /o1

to find estimates for |]('R{‘~st, RE7)||%. By the definition of (Rl’igt, REr), we have

< 'R’llgt,vh >r=< t,v" >r,= va(u, v*) + b(v*, p)

+c(u,u,vh)—<f,vP >_; Vvte VI’ES , (4-77)
and

< Rrr,wh >p=< 7,w" >r=va(q,w") + b(W",0) + 2c(u,u, w") + c(w*,u,q)

+c(u,whq)—2<f,wt>_; VYwheVt. (4-78)

Since V* c H((a")) and (u,p,q,8) € X is the solution of the system (4-26)-
(4-27), (4-77) and (4-78) are justified in the same sense with (4-28) and (4-29),

respectively. By subtracting (4-24) from (4-77), we obtain

< R?‘gt _t?’vh >rg= va (u—uf,v")+b(vh,p—pi‘)+c(u—ui‘,u—u£‘,vh)

+c(u—utu,v?) +c(u,u—ut,v*). (4-79)

€
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Let ¢* = Rf t—t? € Pt and v}, be a lifting of ¢* such that ||vi.[l1 < C [|€*]|1/2,r, <
Ch~Y 2||’R,I’lgt — t*||o,r, which is followed by the inverse inequality (4-19). Hence, by

setting v* = v}, in (4-78), we have that

IREE — telor, < (vilu—ugll + llp — pEllo + 1w — wglI + 2flullsflu — wg|l1)||vnlls

< Ch_l/zm(u, y 2 u?’pg)“R{I‘gt - ti‘lloirs ’
where m(u, p, ul, p!) = v ||lu—uwl|li +|p— plllo + lu — w}|| + 2/[ul1||u — u?||;. Thus,
”R?‘Bt - t?”(),rg < Ch-1/29ﬂ(u, P, u?’ p?) . (4_80)

Let ¢ € HY%(I'g) and Pt (¢) = ¢". Let v}, be a lifting of ¢ in Vfio(ah) such that
||v2,.||1 < C||'P15‘g¢||1/2’rg < C||#ll1/2,r> which is followed by (4-68). From (4-39), we
also note that ||(Z — Pl’ig)¢||0,pg < Ch'?| ¢|1/2,r,- Then, using (4-80), we have that

< REt—t!6 >r,=< Rt —t, (T — Pt )¢+ PL 6 >r,
=< Rt —t!,(Z - PL o >r, +va(u—u},vi)+5(vi),p—p})

g,l.l - u?avﬁ") + c(u - u?auav:h) + c(u,u - u?’vzh)

+c(u—u
< IRzt = telloll(Z — Pr,)¢llo + Com(u, p, ug, pe)lIveslh
< Ch™m(u, p,uf, p})ChY?||gll1 /2,0, + C(u, p, u¢, p2)bll1 /2,

< Co(u,p,u, p!)|#ll1/2.x -

Thus,

h
”Rl"st - t?”—ll2rrg = Sup < Rliigt - t?’ ¢ >Fg
$€H/2(T'g)
ll®ll1/2,rg <1

S Cf)ﬂ(u, D, U?, p?) . (4_81)
In a similar fashion, one can show from (4-78) that

”’R{}‘T - "eh”—1/2,I‘ < Cn(q,9, q?’ 0?7 u, u?) ’ (4_82)
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where

Ma,0,q;,0¢,u,u¢) = v g —qells + 16 — 8¢]lo + 2l[u — g}
+2/[u — ug|llall: + 6llu — ug|l:flull +2flu — wil:lla - a? |-

Now, let {A, (u(A), Ap(A),q(A), A0(A)) | A = H € A} be a regular branch of solutions
v

of the system (4-26)-(4-27). Let (u®()),p*(}),q*(1),0%())) € X be the solution of
(4-22)-(4-23) satisfying (4-63) for € < €. Then, since v = -/1{ € A C R* is bounded,

we obviously have in the neighborhood of origin of X,

(R t(2), REr (X)) = (6 (X), 7 (A\)lln < C( + 20)

< C(llaW)lx + llaM) ) (A), (), a(X), 8(X)) — (wl(A), pe(X), &2 (X), 8¢ (M)l -

Hence, combined (4-76) with (4-63) and (4-71), (i) is obtained. The other estimates
are also obtained in a similar manner. O

From the result of Theorem 4.4, we can conclude that the split formulation for the
optimality system and projection techniques discussed in this section yield optimal
error estimates. An obvious advantage of this approach can be realized when the

boundary data with less regularity is dealt with.
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