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(ABSTRACT) 

Experimental modal analysis (EMA) techniques have become a popular method of studying the 

dynamic characteristics of structures. A survey of literature available reveals that experimental 

modal models resulting from EMA may suffer from inaccuracy due to a host of reasons. Every 

stage of EMA could be a potential source of errors - from suspension of the test structures, trans- 

duction to parameter estimation phase. Though time-domain methods are actively being investi- 

gated by many researchers and are in use, fast Fourier transform (FFT) methods, due to their speed 

and ease of implementation, are the most widely used in experimental modal analysis work. 

This work attempts to quantify errors that result from a typical modal test. Using a simple beam 

with free-free boundary conditions simulated, three different modal tests are performed. Each test 

differs from the other chiefly in the excitation method and FRF estimator used. Using finite ele- 

ment models as the reference, correlation between finite element and experimental models are per- 

formed. The ability of the EMA process to accurately estimate the modal parameters is established 

on the basis of level of correlation obtained for natural frequencies and mode shapes. Linear re- 

gression models are used to correlate test and analysis natural frequencies. The modal assurance 

criterion (MAC) is used to establish the accuracy of mode vectors from the modal tests. The errors 

are further quantified spatially (on a location-by-location basis) for natural frequencies and mode 

shapes resulting from the EMA process. Finally, conclusions are made regarding the accuracy of 

modal parameters obtained via FFT-based EMA techniques.
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Chapter 1 

Introduction 

Historically, the experimental modal analysis technique is a fairly recent development. The past 

two decades have seen a rapid growth in the area of experimental modal analysis. Though the late 

50’s and the early 60’s used the concept of resonance testing, it was not until 1965 when Cooley 

and Tukey [1]! came up with the fast Fourier transform (FFT)? that the experimental modal anal- 

ysis became an attractive tool. In a similar fashion the finite element method also had its birth in 

the 60’s [2-4]. But, it was not until the mid 70’s that the finite element technique became an at- 

tractive tool for dynamic analysis, though it was already a very popular analysis method for solving 

static problems. This was mainly due to the non-availability of suitable solution algorithms and 

the required computing power. But when both became available, the finite element technique, due 

to its versatility, soon became a very powerful and indispensable analysis tool. Since then the 

technique has been exploited extensively making even nonlinear analysis possible, both static and 

dynamic. The enormous growth in computing power along with advancements made in computer 

graphics and related technology, have been instrumental to the growth of finite element technology. 

! Numbers in brackets denote references at the end of this thesis 

2 the abbreviated form FFT will be used to denote fast Fourier transform 
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Analytical dynamic modeling of structures is invariably carried out by the finite element technique. 

There are many advantages in building an analytical model as opposed to an experimental model. 

Some of the important ones are that an analytical model can be made at the design stage and 

modifications can be made and evaluated very easily. Also, several optimization schemes can be 

carried out with very little cost. However, there are inherent uncertainties in building an analytical 

model. Approximation of distributed physical properties, boundary conditions, inaccurate material 

property values, damping representation, modeling of joints, etc. are some of the more obvious 

problems. This makes experimental validation useful. Since the finite element method discretizes 

a structure’s stiffness, mass and sometimes damping, experimental techniques which provide infor- 

mation on the above physical parameters of the structure would be the most useful. Unfortunately, 

experimental determination of physical properties is equally fraught with uncertainty and difficulties 

found in analytical modeling. Consequently, the experimental approach in which the modal pa- 

rameters, viz., natural frequencies, mode shapes and damping ratios, are estimated, has gained 

prominence. Since these modal parameters describe the dynamics of a linear system completely, 

and since they can be estimated with sufficient accuracy, they can be used to obtain an experimental 

dynamic model. Also, the analytical model can be solved mathematically to yield these modal pa- 

rameters. Since the modal parameters are directly related to the physical properties of a structure, 

comparison and correlation of modal parameters from analytical and experimental models has been 

the most popular method of validating one with reference to the other. 

I.1l Problem Statement 

Experimental modal analysis (EMA)? has become a very valuable tool in studying a structure’s 

dynamic characteristics. Its popularity could be attributed, in part, to its complementary nature to 

3. The abbreviation EMA will be used most of the time instead of experimental modal analysis 
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other analytical tools available today to study the dynamic behavior of structures. Also, the tech- 

nique deals with the structure directly, unlike the abstract world of analytical modeling. Therefore, 

experimental modal analysis, like most other experimental techniques, is capable of predicting the 

true behavior of a structure. 

In recent years a major effort has been made to correlate and combine analytical techniques to ex- 

perimental methods in the area of structural modeling. Almost invariably, the finite element 

method is used in analytical modeling of structures. Due to the reliability of its results, experimental 

modal models are used to update finite element models. Extensive work has been done to identify 

errors and inadequacies in the finite element model that yield inaccurate results. An assumption 

associated with finite element model updating from experimental models is that the experimental 

is the reference to which the analytical model is to be matched. This assumption is corrupted by 

a number of factors identified by several authors [5,6]. Due to the diverse and inexact nature of 

some of the processes involved, the final experimental model may deviate from accuracy. Every 

stage of the experimental modal analysis process is a potential source of errors that finally contrib- 

ute to an inaccurate model. Some of the more obvious and critical problems are stated below, 

e The transduction methods are capable of introducing undetectable errors. Typical problems 

with force transducers are their sensitivity to bending and shear loads and measurement errors 

they introduce at resonances. Similarly, transverse sensitivity of accelerometers is a critical 

problem. Both force and response transduction result in inertia-loading (mass-loading)* of the 

structure, the effect of which has several ramifications. Further, the transducers may vary in 

response as a function of frequency. 

e Several techniques are used to support and excite test structures. These may alter the implied 

boundary conditions and hence the dynamic properties of the structure. Also, there is a stag- 

4 Since both translational and rotational inertias of transducers contribute to this effect, the term inertia- 

loading is preferred to mass-loading 
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5 

gering variety of excitation techniques available, each with specific advantages and limitations. 

Thus, the use of an inappropriate excitation method can result in an inaccurate model. 

Several signal processing techniques employed are inexact in nature, and have the effect of al- 

tering the data if used improperly. Principally, leakage of frequency-domain data introduces 

bias errors which are very hard to quantify. 

The accurate estimation of frequency response functions (FRFs)* is central and crucial to re- 

alizing accurate experimental dynamic models, since it forms the basis of experimental modal 

analysis. Inspite of tremendous research activity which this area has attracted, practical and 

efficient methods for unbiased estimation of FRFs are yet to be realized. Problems of meas- 

urement noise, frequency resolution, leakage and nonlinearities are the key contributors to in- 

accurate FRE estimation. 

The estimation of modal parameters by curve-fitting the experimentally acquired FRFs is the 

goal of the modal parameter extraction process. A wide variety of methods are used, both in 

the time- and frequency-domain. Some use a single-degree-of-freedom (SDOF) assumption 

while others use a multiple-degree-of-freedom (MDOF) assumption. The problem is essen- 

tially nonlinear, though several linearized methods are in use. While nonlinear methods yield 

unbiased results with minimum variance, linearized methods yield estimates which have vari- 

ance and bias errors. Several factors affect the accuracy of these modal parameter estimation 

algorithms. Typically, these are high damping, high modal densities, closely spaced modes, 

measurement noise and insufficient frequency resolution. Usually, a higher model order is used 

for accurate estimation of the modal parameters. This results in the creation of extraneous 

(computational) modes which could cause serious problems if the system has closely spaced 

modes. To date, there is no quantitative method to evaluate the accuracy of the curve-fit. 

The terms frequency response function will be denoted by FRF, and FRFs when plural 

Introduction 4



The combination of these errors detract from the confidence and reliability of the experimental 

modal analysis results. Often, this lack of confidence has precluded attempts to perform detailed 

updating of the analytical model. Observing the nature and subtleties of the various processes in- 

volved, it is apparent that quantifying errors in them is a rather difficult task. Nevertheless, it 1s 

necessary if accurate models are to be realized. Even otherwise, the practitioner has to “understand” 

the degree of accuracy his or her model possesses. 

This research effort has been aimed at determining the accuracy of the experimental model from a 

quantitative perspective. A simple structure, a free-free beam, is chosen as the structure (system) 

to be modeled, so that all the above errors which are typically found in an analytical model are re- 

duced to a minimum. Thus, using the analytical model as the reference, attempts are made to study 

the errors arising from deriving an experimental model. The sources of error typically associated 

with experimentation, ie., calibration and linearity of the transduction method, are not the focus 

of this work. Correlation of natural frequencies and mode shapes to an analytical model are per- 

formed, to identify the contribution of the measurement and modal parameter estimation process 

to the inaccuracy of the final modal model. 

1.2 Brief Description of Tasks 

The errors typically found in an EMA process are those due to transduction, signal processing, 

frequency response function (FRF) estimation and modal parameter estimation. The quality of the 

modal model obtained directly depends on the accuracy of the above processes. To study how 

these impact the quality of the modal model, several modal tests are designed. A beam, with sim- 

ulated free-free boundary conditions, is used as the structure whose modal parameters are to esti- 

mated. A finite element model of the beam is used to provide results which are to be used as the 
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reference. All the errors which are typically associated with a finite element model are kept to a 

minimum by using a simple structure such as this beam with free-free boundary conditions. 

Modal Tests 

Two different uniform steel beams are used as test structures to be modeled. All the tests are per- 

formed using base-band analysis. All the tests use a test configuration in which the beam is sus- 

pended vertically. The first test (TEST 1) © is performed using an electrodynamic shaker as the 

excitation source, using burst random excitation. Response measurements are made using an 

accelerometer capable of making simultaneous translational and rotational measurements. Twenty 

three translational and rotational measurements are acquired using the H*’ FRF estimator [7,8], in 

the frequency range 0-1000 Hz. The second test (TEST 2), performed in the range 0-500 Hz, uses 

the impulse excitation technique. Unlike the first test, the excitation location is varied along the 

beam while the response location is fixed. A total of 61 FRFs are acquired using the H, [9] esti- 

mator. The third test (TEST 3) is designed to investigate the influence of exciter location on the 

resulting modal parameters. The test is repeated twice, once with shaker located at the top and then 

with the shaker located at the bottom of the beam. Twenty one FRFs are obtained using the H, 

[9] estimator. A global frequency-domain parameter estimation algorithm, using Forsythe 

orthogonal polynomials [10], is used to extract the modal parameters. The curve-fitting is per- 

formed on individual FRFs in all the tests. In case of global parameters (natural frequencies and 

damping ratios) the mean of all the individual estimates is used along with a statement of variance. 

The details of signal processing, FRF estimation, modal parameter extraction, etc. are elaborated 

in Chapter 5. 

Analytical Modeling 

Two popular beam theories, the Euler-Bernoulli and the Timoshenko beam theory, are used in the 

analytical modeling of the beam. The equations of motion of beams using these two beam theories 

6 Subsequently, the three modal tests will be identified as TEST 1, TEST 2 and TEST 3 

7 Refer to Appendix A for the nomenclature used in this thesis 
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are presented in detail in Chapter 3. The influence of shear deformation and rotatory inertia on the 

natural frequencies of a simply supported beam are shown with the aid of plots available in the 

literature. The free vibration problem of a uniform beam according the Euler-Bernoulli theory 1s 

stated. Also, the frequency and mode shape equations for a beam with free-free boundary condi- 

tions are stated. This is followed by a short discussion of several aspects regarding the analytical 

modeling of the test structure. Equations of rigid-body motion of a beam suspended vertically, by 

means of a string, is derived using a two-degree-of-freedom model. The model is then used to cal- 

culate the rigid-body modes of the test structure 

The choice of finite element method for analytical modeling of the test structure is justified. The 

finite element equations based on the Euler-Bernoulli and the Timoshenko beam theories are de- 

veloped using the Ritz variational approach. The finite element matrices that result from the above 

formulation are stated for both the beam elements. The finite element technique, using these two 

element types, is implemented through a FORTRAN code. The modeling techniques used to 

simulate inertia-loading by transducers, gravity force and boundary conditions that exist in the ac- 

tual testing environment are discussed. The solutions from finite element models are validated by 

comparing them with exact solutions, if they are available. This is done by comparison of natural 

frequencies obtained by both methods. 

Correlations of Experimental and Analytical Models 

The experimental modal model comprises of natural frequencies, damping ratios and translational 

mode vectors (rotational mode vectors are included in TEST 1). Though the parameter estimation 

method used accounts for complex modes, if they exist, normal mode assumptions are used for the 

test structure. Thus, only the imaginary part of the residue is used in establishing the mode vectors. 

The finite element models, on the other hand, comprise of only the natural frequencies and mode 

vectors. Correlation between experimental and analytical natural frequencies are made using linear 

regression models along with tabulations. The mode vectors are correlated using the Modal As- 

surance Criterion (MAC) [11]. The accuracy and hence the levels of errors in the EMA process 

are determined by the degree of correlation obtained with the results from FE model. Subse- 
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quently, the errors in the experimental modal model (natural frequencies and mode shapes) from 

TEST 1 and TEST 2 are quantified. 

1.3 Organization of Thesis 

The current Chapter ends with a summary of results from this work. Chapter 2 reviews pertinent 

work in the literature that identifies errors in the EMA process. Errors associated with transduction, 

test structure support, signal processing, FRF estimation and modal parameter estimation are re- 

viewed via literature that exists. 

Chapter 3 is devoted to the analytical development of the equations of motion of beams. The 

governing equations of motion of a beam using the Euler-Bernoulli and Timoshenko theories are 

presented. The assumptions and limitations of the above theories are stated. Also, frequency and 

mode shape equations from the Euler-Bernoulli beam theory are presented. The Euler-Bernoulli 

and the Timoshenko theories are compared on the basis of significance of shear deformation and 

rotatory inertia effects. The influence of these effects on the natural frequencies of a uniform beam 

with simply supported boundary conditions are illustrated. Further, several aspects of analytical 

modeling of the test structure are discussed. Finally, a section which exclusively discusses corre- 

lation methods, used for correlating experimental and analytical results, is included. 

Derivation of the finite element equations of motion, modeling techniques used and validation of 

finite element models through sample results form the contents of Chapter 4. First, choosing the 

finite element method for analytical modeling of the test structure is justified. The finite element 

equations of motion, based on the Euler-Bernoulli and Timoshenko beam theory, are derived using 

the Ritz variational approach. The element matrices that result from the above variational ap- 
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proach are stated for both the beam elements. The details of computer implementation of the 

method are given. The modeling procedures used to construct the analytical model of the test 

structure, to simulate experimental test conditions, are discussed. These include inertia-loading by 

transducers and gravity force acting on the vertically suspended beam with the associated boundary 

conditions. Also, two different approaches to model the gravity force are discussed. Finally, the 

solutions from finite element models are validated by comparing them with the corresponding exact 

solutions. Such comparison and validation are restricted to Euler-Bernoulli beam elements, since 

exact solutions are available. Furthermore, only natural frequencies are used for comparison and 

validation purposes. 

Chapter 5 is concerned with the experimental modal analysis technique and the modal tests per- 

formed. Some theoretical concepts that form the basis of experimental modal analysis will be 

outlined. These include the assumptions and simplifications that are used in arriving at theoretical 

models (equations) for the FRF. Alternative methods for deriving the FRF, methods in which 

transient and random excitations are used, are stated. The sources and nature of errors that arise 

in the EMA process are mentioned. This includes a detail discussion of the errors that may be 

encountered during transduction, signal processing, FRF estimation and modal parameter ex- 

traction. Next, a detail description of the experimental set-up used and the specifics of each modal 

test performed are presented. The procedures used and their details - transduction (excitation and 

response measurements), signal processing, FRF estimation and modal parameter estimation, are 

presented. This is done for each test performed (TEST 1, TEST 2 and TEST 3). This is done by 

using a chart which provides easy and efficient access to details and information about each test. 

Chapter 6 begins with the presentation of results from finite element analyses of analytical models 

that correspond to TEST 1, TEST 2 and TEST 3. The analytical (FE) model that corresponds to 

each test and its modeling details are given. The results for natural frequencies from each of these 

models are presented. Next, results for natural frequencies and damping ratios from each modal 

test are tabulated, along with the corresponding FEA natural frequencies. This is followed by a 

Section in which the results from EMA and FEA are compared and discussed. This is done on a 
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test-by-test basis, starting from TEST 1. First, the natural frequencies are compared, visually, and 

discussed. Then, a correlation study between experimental and analytical natural frequencies is 

done by using linear regression models. This is followed by a Section in which errors in estimating 

natural frequencies by EMA are quantified. Next, the mode shapes from EMA are correlated with 

those obtained from the corresponding FE models using the modal assurance criterion (MAC). 

The quality of the mode vectors from EMA are assessed based on the degree of correlation, estab- 

lished through MAC, observed. Errors in estimating the modal displacements by EMA are then 

quantified by using mode vectors from FEA as the reference. A discussion of results from EMA 

in which poor correlation is observed is included in the final Sections of the Chapter. The Chapter 

concludes with a summary of results from the study. 

A_note on conventions that will be followed 

Through-out this thesis the SI units will be used. Without exception, only the cyclic frequency, 

expressed in Hertz (Hz), will be used to express frequencies. Several phrases, e.g., experimental 

modal analysis (EMA), finite element analysis (FEA), occur too often and too many times in this 

thesis. It is preferred, therefore, to make use of their abbreviated form whenever necessary. Any 

convention, when used for the first time, will be explained in a footnote. Symbols, both Latin and 

Greek, used are defined at the end of this thesis, in Appendix A. However, certain symbols are used 

on an ad hoc basis in certain portions of this thesis. Under such circumstances, the symbols will 

be defined locally within the text. References will be cited using brackets, and will be numbered 

sequentially in the order that they are made. Equation numbers will be denoted in parenthesis. 

Several references that may not have a direct bearing on this thesis will be referenced through 

footnotes. 
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1.4 Summary of Results and Conclusions 

The goal of this thesis was to identify and quantify errors in modal models derived experimentally 

using FFT-based procedures. The interest was on errors incurred in estimating natural frequencies 

and mode shapes. Specifically, the contribution of the transduction (measurement) and modal 

identification process to the inaccuracy of the final modal model was the focus of the effort. A 

simple uniform steel beam was used as the test structure whose modal properties were to be deter- 

mined. Three modal tests, each differing principally in the excitation method and FRF estimator 

used, were designed and performed on the beam. The experimentally derived modal models were 

compared with corresponding analytical models that were used as the reference, and therefore as- 

sumed to be accurate. The finite element method was used in analytical modeling of the test 

structure. 

The quality of the experimentally derived modal models were assessed based on the degree of cor- 

relation realized with the corresponding analytical models. Linear regression models were used for 

correlating experimental and analytical natural frequencies. Since the FRFs were curve-fitted indi- 

vidually, statistical variation of the estimates of global parameters was available in each case. This 

enabled a quantitative assessment of the degree of variability in estimating global parameters. The 

errors in estimating natural frequencies were also quantified spatially, ie., for each spatial 

location/measurement. The errors in identifying mode shapes were quantified, with reference to 

analytical mode vectors, using the modal assurance criterion (MAC). As was done with natural 

frequencies, the errors in experimental mode vectors were quantified, with reference to analytical 

mode vectors, spatially. 

TEST 1 

The test was done in a base-band of 0-1000 Hz. Both translational and rotational response 

measurements were made at 23 locations along the length of the beam. Burst random excitation, 
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with an exponential window on both excitation and response measurements, was used. The 1° 

estimator with 20 ensemble averages was used for FRF estimation. A total of 10 beam bending 

modes were identified. Based on the results obtained, the following conclusions are made: 

e From linear regression analysis, the natural frequencies from EMA show a high degree of 

correlation with those obtained from FEA. However, there are slight differences between an- 

alytical and experimental values, owing to the fact that accurate material property values were 

not known. The accuracy of the variation (shifts) of natural frequencies from EMA, due to 

inertia-loading, were strongly influenced by the frequency resolution (in the FRF) used in the 

FFT process. This was corroborated by the correlations observed for variation of natural fre- 

quencies due to inertia-loading effect. The inertia-loading affect also accounts for the high 

variances observed in estimating the natural frequencies. The errors in estimating natural fre- 

quencies, from individual FRF measurements, were significant only at locations near nodal 

points of modes. This was due to poor signal-to-noise ratios at these locations, the errors being 

generally less than 2%. 

¢ The quality of the mode vectors from translational measurement are excellent. This is sug- 

gested by the high MAC values (in excess of 0.99) obtained for translational mode vectors. 

Also the EMA process was found to be sensitive enough to measure changes in modal dis- 

placement due to inertia-loading effect. This was shown consistently for all the 10 modes. 

The rotational mode vectors were poor compared to translational mode vectors due to very 

poor signal-to-noise ratios, as was suggested by poor values of coherence function estimates. 

The errors in estimating modal displacements were generally less than 5%, except near nodal 

points of modes. 

The frequency resolution used for FFT computation and poor signal-to-noise ratios seem to be the 

singular factor that has affected the accuracy of modal parameter estimates from individual meas- 

urements. The contribution of the transduction process (inertia-loading) comes second in impor- 

tance, though these are not as significant. The modal parameter estimation phase does not seem 

Introduction 12



to have injected errors that could be recognized as significant, except near nodes, where estimates 

of all three parameters were oftentimes poor. Finally, the choice of test configuration has not in- 

fluenced the modal model significantly. 

TEST 2 

This test was performed in a base-band of 0-500 Hz. Fixed accelerometer location and use of im- 

pact excitation were the main features of this test. Force window for excitation measurements and 

an exponential window for response measurements was used. The H, estimator with 10 ensemble 

averages was used for FRF estimation. A total of 61 FRFs were acquired from translational 

measurements. The following observations were made from the correlations made with analytical 

models: 

e Using linear regression models a high degree of correlation was observed between test and 

analysis natural frequencies. Also, the variability in estimating the natural frequencies were 

much smaller than those observed in TEST 1, where the inertia-loading effect shifted natural 

frequencies. This proved conclusively that the high variances in estimating natural frequencies 

in TEST | were neither due to measurement nor parameter estimation processes, but due to 

inertia-loading. The variances observed from TEST 2 results show the combined (total) errors 

in estimating natural frequencies that are inherent to the EMA processes. Also, with respect 

to the frequency resolution used, the variability observed for natural frequency estimates is not 

significant. The errors in estimating natural frequencies, from individual FRF measurements, 

were significant only at location near nodal points of modes. 

¢ Estimates of mode shapes were considered to be excellent, except for the first mode, on the 

basis of the MAC values obtained. Modes 2 through 8 have MAC values above 0.99. Also, 

the MAC values consistently increased for all the modes when the accelerometer inertias were 

included in the FE model. This showed the sensitivity of the EMA process to detect small 

deviations, such as the one introduced by the accelerometer inertia. The quality of the first 

mode, presumably, was affected by several factors discussed in Chapter 6. The errors in esti- 
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mating modal displacements were all within 5%, except for the first mode, which showed a 

systematic deviation. Also, as was seen for TEST 1, the estimates near nodal points were 

generally poor. 

TEST 3 

This test was performed in the frequency range 0-125 Hz. The main purpose was to assess the in- 

fluence of shaker location on the resulting modal model. The H; estimator with 10 ensemble av- 

erages was used for FRF estimation, and the accelerometer used had very little mass. This was to 

minimize the effect of inertia-loading. The test was performed twice, once with the shaker located 

at the top (Model 1) and then with the shaker located at the bottom of the beam (Model 2). For 

each model 21 response locations were used for acquiring translational measurements. Three 

bending modes were identified in the frequency range. The results are summarized below: 

¢ The natural frequencies from both models differed slightly, but the differences were insignif- 

icant. 

¢ The mode vectors from Model 1 had reasonably good correlation, comparable to the one from 

TEST 2. However, mode vectors from Model 2 had poor correlation, compared to mode 

vectors from Model 1. The first mode in particular had very low MAC value (0.93). This was 

reconciled as being due to the identification (by the parameter estimation algorithm) of a spu- 

rious mode in the range 0-10 Hz, which contaminated the estimates of the first mode. 

In general, results from TEST 3 were poorer, compared to TEST 1 and TEST 2 results. For Model 

2, though the frequency resolution used was high, and only three modes were involved, the quality 

of the experimental model was far from good. A discussion of probable reasons for this was pre- 

sented in Chapter 6. The modal model realized through Model 2 showed the importance of proper 

test structure suspension and exciter location. 

CONCLUSIONS 
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Based on the results obtained from TEST 1, TEST 2 and TEST 3, the following conclusions were 

drawn, 

The contribution of the transduction processes to the inaccuracy was very small. Quality 

transducers and careful measurements can hold this error to negligible levels. 

The errors due to the parameter estimation process were significant only at locations near 

nodal points of modes. 

Both natural frequency and residue estimates were very poor at locations close to nodal points 

of modes. All the four modal parameters were in substantial error at these locations. The 

natural frequency estimates were the poorest of all modal parameters, the error being around 

2 to 3%. 

Poor signal-to-noise ratios and insufficient frequency resolution were the singular limiting fac- 

tors, apparently, to the accuracy of modal parameter estimates from individual FRF measure- 

ments. 

The choice of test structure support has to be carefully made. An erroneous choice may imply 

wrong boundary conditions that may alter the model substantially. 

Finally, in conclusion, a carefully planned and performed modal test that takes into account 

all the sources of error can yield very accurate models. 
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Chapter 2 

Literature Review 

The material presented in this chapter covers pertinent literature that has the scope of identifying 

errors in the EMA process. For the most part it reviews literature that identifies errors and short- 

comings of the experimental modal analysis process. Fast Fourier transform methods, due to their 

speed and versatility, have become very popular in EMA work. Though time-domain techniques, 

methods which use input and output time-domain data as well as those using the impulse response 

function, are being investigated by researchers, a vast majority of modal testing is done using 

FFT-based methods. Therefore, the scope of this thesis, and hence this literature review, is re- 

stricted to FFT-based techniques. 

A typical modal test and analysis begins by making force and response measurements at a number 

of locations on the structure. These force and response signals are processed suitably (signal proc- 

essing) and an FFT is performed to transform the time-domain signals to frequency-domain data. 

Then, using an appropriate estimator the FRF is estimated. This is followed by curve-fitting the 

FRF data using an appropriate modal parameter estimation algorithm. Thus, the modal parame- 

ters, viz., natural frequencies, mode shapes and damping ratios present in the frequency band tested 

are estimated. These modal parameters are then compared to those obtained from an analytical 
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model, typically a finite element model. As identified in the introductory Chapter, there are several 

aspects of FFT-based methods which, in practice, result in less-than-expected accuracy. As men- 

tioned earlier, every stage of the process is a potential source of errors, which has a cascading effect 

on the accuracy of the final modal model. The following Sections review pertinent literature which 

identifies errors in the EMA process. 

2.1 Errors in the Experimental Modal Analysis Process 

The quality of the experimental model depends directly on every stage of the modal test and anal- 

ysis. The State-of-the-Art of Mobility Measurements (SAMM) results presented by Ewins and 

Griffin [5] show the level of accuracy and consistency that could be expected from a modal test. 

They point out, logically, that the variability is due to systematic errors [5]. They point out [5] the 

sources of these systematic errors to such factors as secondary excitations generated by poor shaker 

attachments, uncorrected effects of transducer inertias, poor signal conditioning, amplitude- 

dependent nonlinearity, etc., not to mention modal parameter estimation. Some pertinent literature 

falling within the scope of this thesis will be briefly reviewed here. 

Experimental models are only as good as the measurements made. Therefore, the quality of the 

transduction process is very vital to obtaining an accurate experimental model. Transducer testing, 

calibration and subsequent validation of transducers used is a very important step of every modal 

test. A very detailed discussion of “internal validation” techniques of experimental data is presented 

by Stein [12]. Various techniques that could be used to ensure acquiring of valid data, problems 

related to dynamic properties of measuring systems, environmental factors that influence the re- 

sponse of measuring systems are all identified and discussed in detail. In addition, the problems 

of measuring system/process interaction are stated (e.g., inertia-loading). Hopton and Deblauwe 

[13] show how transducer inertia-loading can result in mode vectors which are complex, even for a 
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proportionally damped system. They state [13] that the problem is essentially due to frequency 

shifts, which makes the problem of estimating the number of poles in a frequency range difficult. 

A method of predicting inertia-loading effects due to transducers is presented by Ole Dossing [14]. 

Dossing uses the theory of structural dynamics modification, and arrives at the following relation 

for predicting natural frequency shifts due to inertia-loading [14], 

2 

wo, = ua (2.1) 

1 +—*—_ bm; 
jira 

where, woig denotes the natural frequency of the original structure, w,¢ and R;,@ are the damped 

natural frequency and the driving-point residue, respectively, from accelerance measurements. The 

quantity 6m; denotes the amount of mass added or removed from the coordinate of interest. 

McConnell [15] studies the sensitivity and measurement errors of force transducers, demonstrating 

that the maximum error occurs at resonances of the structure being tested. The typical case of force 

transducer-stinger-exciter combination is explored. Assuming that the natural frequency of the 

force transducer is ten times that of the structure’s resonance, the maximum and minimum errors 

that are encountered are shown [15] for mass-ratios (ratio of mass of the structure to that of the 

transducer-exciter assembly) ranging from 0.001 to 1. For a mass-ratio of 0.01, he shows [15] that 

amplitude errors can be as high as 27 % and phase errors can be up to 26 degrees, at the structure’s 

resonances. McConnell [15] also investigates the sensitivity of the force transducer to bending 

moment and shear loads. Through an experiment he shows [15] that the force transducer response 

can change substantially, in the presence of bending and shear loads. He also reports [15] con- 

comitant changes in the voltage-to-force sensitivity of the force transducer. Also, he [15] explores 

the effect of the mass of impact hammer and tip on the transducer’s sensitivity, when used for im- 

pact testing. Walter [16] provides some basic factors and insights into accelerometer transduction, 

specifications and calibration techniques. ‘Transducer cross-axis sensitivity is another important 

factor. Han and McConnell [17] discuss the effect of transducer cross-axis sensitivity in exper- 
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imental modal analysis. They develop [18] a theoretical tri-axial accelerometer model to explain the 

characteristics of cross-axis sensitivity. Using this model they [18] show that a tri-axial 

accelerometer is required to measure the true acceleration components, where the cross-axis sensi- 

tivity of each accelerometer is known with respect to the other two directions. The authors [18] 

demonstrate the validity of the model by removing the cross-axis contamination from measured 

FRF data, using the proposed correction model, and comparing it with data from a known struc- 

ture. 

The excitation methods used in modal testing are numerous and they have a direct impact on the 

quality of the modal parameters. Each excitation method has its own advantages and disadvantages 

and a judicious choice has to be made in using the best excitation method in a given situation. 

The choice of an excitation method depends on several, if not many factors. A very definitive 

survey of excitation techniques that were available in the late seventies is made by Brown, Carbon 

and Ramsey [19]. They [19] recommend impact, pure random and periodic random excitations. 

They state [18] that impact testing, due to its simplicity and speed, is attractive if a quick evaluation 

is desired. The pure random excitation, according to the authors {18], provides the best linear ap- 

proximation to a system with nonlinearities, though frequency resolution and leakage are associated 

problems. The periodic random excitation, although alleviating the frequency resolution and 

leakage problem, is much slower than continuous random and impact excitation methods [19]. 

Burst random excitation suggested by Olsen [20], seeks to combine the favourable features of true 

random and impact excitations. A detailed comparison of excitation functions for structural FRF 

measurements is made by Olsen [21]. Olsen compares [21] the merits and demerits of random, 

periodic, transient, steady-state sine and operating excitations, based on leakage/windowing, meas- 

urement speed, linear/nonlinear systems, signal-to-noise ratios, etc. Most of the popular excitation 

methods, with the exception of impact excitation, require the use of an electrodynamic shaker. 

Further, a few to a many shakers are used if multiple input/output procedures are used for FRF 

measurements. Though using a shaker is an attractive proposition, there are several “measuring 

system/process interaction” problems they introduce. The electrodynamic interaction between the 
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shaker and structure is discussed in great detail by Rao [22]. From his investigations Rao [22| 

concludes that grounded structures need lighter armatures while heavier armatures are required for 

free structures. Olsen [23] identifies and discusses some important problems in using 

electrodynamic shakers and suggests means to overcome them. One of the main problems in using 

electrodynamic shakers is the drop-off in force output by the shaker at structural resonances. Based 

on his analysis Olsen [23] concludes that the dominant and controllable parameter which contrib- 

utes to the force drop-off is the armature mass of the shaker. He [23] suggests that minimizing ar- 

mature mass would significantly reduce the force drop-off encountered at structural resonances. 

The problem of force drop-off is also reviewed by Peterson and Mouch [24]. They [24] show how 

the amount of force drop-off could be reduced and suggest practical methods to get around the 

problem. Peterson [25] compares the pros and cons of three different modal excitation techniques, 

Viz., impact, random and burst random. He [25] points out that burst random yields better FRFs 

than continuous random excitation, and continuous random produces superior FRFs than those 

obtained through impact excitation. The problems and errors associated with impact testing and 

their reconciliation is discussed by Corelli and Brown [26]. Sohaney and Nieters [27] review proper 

use of weighting functions to be used with impact testing. Many aspects of signal processing in- 

fluence the quality of the experimental model. The phenomenon of aliasing, leakage, etc. can cor- 

rupt the frequency-domain data. Also, windowing and its effect on data have to be understood. 

A very comprehensive review of the various window functions used for harmonic analysis with the 

discrete Fourier transform is made by Harris [28]. 

The test-configuration, in other words, physical supporting of the test structure, electrodynamic 

shakers, transducers, etc. is also an important aspect of every modal test. An ideal configuration 

would be one that isolates the structure completely and is such that the boundary conditions could 

be simulated accurately in the analytical model. Soucy and Deering [29] show how data acquisition 

conditions can affect the modal parameters estimated. By using a light-weight beam they [29] in- 

vestigate the influence of exciter location, exciter suspension and cable attachment, among other 

parameters, on the estimated modal parameters. They [29] report that the damping estimates are 
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affected the most, while the residue estimates are relatively stable. Wang, Wei and Wei [30], using 

a T-plate, demonstrate that simple boundary conditions like clamped, free, etc. do not exist in 

practice. Also, when substructure synthesis is implemented via experimental modal analysis, rigid- 

body modes of the individual substructures have to be determined. In such cases the way a sub- 

structure is supported and excited influences the accuracy of the estimated rigid-body modes. 

Lamontia [31], using the quantities residual flexibility and inertia restraint in the receptance form 

of FRE equation, 

  Ge S Aik 
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+ Lig (2.2) 

presents procedures for estimating the inertia restraint Y;, through analytical and 

analytical/experimental approaches. Also, the effects of not including inertia restraints for structures 

tested in free-free conditions are shown [31] through an example. Okubo and Furukawa [32] es- 

tablish a criterion for realizing a free-free state in testing, with respect to supporting and exciting 

of structures. The criteria [32] states that the degree of free-free conditions realized is proportional 

to the amount of response, in the frequency range from 0 to the first anti-resonance. Further, the 

response in this frequency range is required to be uniform (flat) in accelerance measurements. They 

[32] also discuss various support/excitation methods to achieve free-free testing conditions. 

The estimation of frequency response function (FRF) is a very important and crucial stage of the 

EMA process. Over the last decade a number of researchers were concerned with the development 

of an estimator which yields the true FRF, which could be equationally stated as 

Guy 

Gyy 

  Hy(w) = (2.3) 
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Since the measured signals are contaminated with noise, several estimators, each differing the other 

in its treatment of measurement noise, were developed. Bendat [9] stated that the optimal FRF 

estimator could be obtained as, 

G 
H,(w) = a (2.4)   

The above model, which is insensitive to output noise, is susceptible to noise at the input. Mitchell 

[33] pointed to the fact that in structural applications interest dwells around the resonance regions 

of the FRF. He showed [33,34] that the H, estimator is highly biased at resonances, where the force 

delivered by an electrodynamic shaker drops to noise levels due to shaker-structure impedance 

mismatch. He proposed an estimator [33,34] which was formulated by minimizing the noise at the 

input. The estimator, and its relationship to the coherence function and the H, estimator are given 

as, 

G H yy 2 1 vy = at (2.5) 
Gy xy HH 
  Hw) = 

For the general case in which noise is present in both the input and output measurements, Mitchell 

showed [33,34] that H2 was a better estimator at resonances and a poorer estimator at anti- 

resonances, the opposite being true for the H, estimator. The accuracy of the FRF required around 

regions of resonance and the force drop-off encountered there-in, indeed, seems to be an ironic 

situation. In this context the H, has been widely accepted to be a better estimator. Further, 

Mitchell [34] presents another estimator, the H3 estimator, which is obtained as an arithmetic mean 

of H, and H,2 estimators. This estimator is shown [34] to yield lesser biased estimates than those 

provided by H, or H2, due to the fact that the latter yield positively and negatively biased estimates 

respectively. The performance of the H, and H, estimators have been investigated by several au- 

thors [35-37]. Several important aspects of the FFT-based approach, viz., frequency resolution, 

leakage/windowing, etc., as it impacts the FRF estimated by H, and H, estimators, are investigated 

by Cawley [35]. He [35] shows that the accuracy of the FRF estimates obtained by FFT-based 
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methods depend on the product of frequency, f, and the damping factor, 4, divided by the fre- 

quency resolution, Af. If a shaker is used to excite the structure, the accuracy obtained 1s also 

shown [35] to be a function of the ratio + where 5 is the ratio of effective shaker plus force gauge 

mass to the modal mass of the structure. The error in the FRF estimate is shown [35] to increase 

with the ratio . and through-out H, being the more accurate of the two estimators. Also, ac- 

cording to Cawley [35], the frequency resolution (and hence the testing time) for a given accuracy 

is reduced by 50% if the H, estimator is used. This is due to the fact that resonance amplitudes 

are under-estimated due to finite frequency resolution used, and since H,> H, for a non-unity co- 

herence condition, the H, estimator yields better estimates [35]. 

The H, and the H, are univariate estimators in that they minimize the effects of noise at either the 

input or the output. Several estimators that seek to minimize the effects of noise at both the input 

and output were developed by several researchers [34,36,38,39]. Such a bivariate estimation is im- 

plicit in the H; estimator proposed by Mitchell [34]. Rocklin, Crowley and Vold [36] present an 

estimator, called the H, estimator, that is a geometric mean of the [; and H, estimators, 

Gyx Gyy 

| Gyx | Gx 

  Hw) = (2.6) 

Though this estimator yields substantially less biased estimates, in the average sense, it is still biased 

at resonances. These authors compare [36] the H,, H2 and H, estimators on the basis of parameters 

like excitation techniques, structure type and modal parameter extraction methods (circle-fits, 

peak-picking and polyreference). They conclude {36] that the H, estimator would yield better results 

when leakage and nonlinearities are present, and are the causes of poor coherence, and when 

wide-band parameter estimation methods are used. A very detailed work involving the estimation 

of FRF in the presence of uncorrelated signals has been carried out by Wicks [38]. An estimator 

developed through this work is presented by Wicks and Vold [39], and is given by 

  

Gyy — 5? Oe tl (S? Gy — Gy)? + 45° GG, 
Hw) = 2G,   (2.7) 

Literature Review 23



In the above estimator the ratio of the autospectra of input and output noise, s?, is assumed to be 

known a priori. The accuracy of this ratio s? determines the accuracy of the FRF estimate. An 

unbiased estimator introduced by Goyder [7] sought to eliminate the problems associated with un- 

correlated content (noise) in the measured input and output signals. In his approach [7], Goyder 

used a third measurement channel that would serve as a reference, from the standpoint of recog- 

nizing noise in the input and output measurements. Goyder used [7] the random signal supplied 

by the signal generator to the shaker, in random excitation tests, as the reference signal s(t). He 

obtained [7] the estimator by forming cross-spectra of the input and output with this reference sig- 

nal. The estimator, called the H* estimator, is given by [7] 

G sy 
2.8 Gop (2.8)   Ha) = 

The idea behind this estimator is that any uncorrelated content with input and output measure- 

ments is eliminated while averaging the cross-spectral data. A detailed investigation of the per- 

formance of the 7° estimator was carried out by Mitchell, Cobb, Deel and Luk [8]. The authors 

show [8] that this estimator provides an unbiased estimate of the true FRF in the presence of un- 

correlated noise content in both the input and output measurement. The authors point out [8] that 

this estimator, however, posseses a bias error due to finite sample size. 

The performance of these various FRF estimators in terms of the resulting modal parameters of a 

system, compared to the true modal parameters, has not been clearly understood. However, Wicks 

and Han [37] present an interesting study on the influence of FRF estimation method on modal 

parameter estimators. They formulate [37] an FRF for an arbitrary degree-of-freedom system and 

perform Monte-Carlo simulation in the frequency-domain. In their study [37] they use a random 

forcing function with a known amount of noise at both the input and output. The force drop-off 

at resonances is simulated by weighting the forcing function with the imaginary part of the FRF. 

They compare [37] the performance of H;, M2, H, and H®* estimators on the basis of accuracy of 

the modal parameters estimated, using a global frequency domain parameter estimation method [10] 
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which uses Forsythe orthogonal polynomials. From their study [37] they conclude that the H, es- 

timator yields biased results for damping and residue, identified as being due to the shaker-structure 

impedance mismatch at resonances. They also conclude [37] that the H, and H* are good estima- 

tors, if a truly independent source signal is present for the latter and the ratio s? is known for the 

former. 

A number of factors contribute to the accuracy of FRF data. The FRF estimators developed 

typically consider only measurement noise in arriving at a model. Errors due to leakage, frequency 

resolution, nonlinearities and excitation type are often very hard to quantify in terms of FRF data. 

Hence, the coherence function has been used universally to validate FRF data. The shortcomings 

of the coherence function as an FRF data quality indicator has been pointed out by Smiley, Patrick 

and Sohaney [40]. They proposed a new index, a quality function Q, 

  

2 

l I g=|—__| | —__!___ (2.9) 
14 dH) 

f af" 

H(f) 

in the range 0 to 1, which accounts for noise and insufficient frequency resolution in the FRF es- 

timation. The authors demonstrate [40] the performance of the quality function, in comparison to 

the coherence function, for a practical measurement. Cobb [41] developed methods, based on the 

three-channel measurements used for H* type estimator, that could be used to quantitatively esti- 

mate the uncorrelated content in the input and output measurements. These estimation methods 

are shown to be useful in detecting leakage, extraneous noise [41] and nonlinear behavior, along 

with the information of their sources. 

Detection and identification of nonlinearities in a syste during the course of a modal test has been 

addressed in the literature by several authors [42-44]. Kirshenboim and Ewins [42] have proposed 

a J factor to characterize the extent of system nonlinearity, on a 0 to 1 scale. He and Ewins [43] 

use a method based on FRF acquired using sine excitation and a single-degree-of-freedom as- 
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sumption. By separating the real and imaginary part of the inverse FRF, they identify [43] the type 

of nonlinear element involved (stiffness and damping). Nonlinear systems exhibit a variety of 

phenomenon which are unique to the type of nonlinearity present. Generally speaking, all aspects 

of modal testing can contribute to inaccurate detection and identification, if the system happens to 

be nonlinear. Zavodney [44] explores some of these possibilities. 

A number of frequency-domain parameter estimation algorithms are in use today. Over the last 

decade several innovative approaches were suggested by researchers for identifying modal parame- 

ters directly from estimated FRFs. Ibrahim [45] reviews and assesses many of these methods. The 

MDOF approaches were a logical and natural extension of SDOF methods, which were inadequate 

for identifying parameters of systems with substantially coupled modes. One of the first demon- 

strations of a MDOF capability was made by Richardson and Potter [46], in which the following 

form of the FRF (partial fraction form) was used, 

  

N Ane Ane 

Hy{o) = a + (2.10) 
/ 2 (im — 5,) (io — 5 ,) 

The authors [46] used a least-squares minimization scheme to estimate the modal parameters. 

Brown, Allemang, Zimmerman and Mergeay [47] outline and discuss several techniques, both 

SDOF and MDOF, for identifying modal parameters from measured data. The theory behind 

SDOF methods like peak-picking, circle-fit, etc. are discussed [47]. The MDOF methods discussed 

[47] are based on the following equation, 

r r® 
Aj, Air 

(iw — ;) 

  

N 
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which accounts for the residual effects due to out-of-band modes. They present [47] a linear least- 

squares algorithm to determine the residues, the natural frequencies and damping ratios having been 
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determined earlier by some other method. The authors also discuss [47] a linearized least-squares 

algorithm for all modal parameters. 

Methods developed over the last decade perform a nonlinear least-squares estimation with appro- 

priate weighting. Since nonlinear least-squares estimation is attempted, numerical stability and 

sensitivity, typically, has been a problem with these modern techniques [48]. The method proposed 

by Richardson and Formenti [48], which draws significantly from the complex exponential algo- 

rithm in the time-domain, seeks to overcome several of these problems. They use [48] the rational 

fraction form of the FRF, 

H(w) = 4=°- — (2.12) 

and make use of orthogonal polynomials to curve-fit the experimental data. The authors demon- 

strate [48] that the use of orthogonal polynomials, instead of ordinary polynomials, alleviates the 

ill-conditioning problem in addition to reducing the number of equations to be solved. In a sub- 

sequent paper [49], the authors show that estimating the natural frequencies and damping ratios first 

and using these estimates in a second curve-fitting process yields better estimates of the parameters. 

The method, called the global method, is shown [49] to yield much better results for situations in 

which substantial modal coupling and measurement noise are present. However, they point out 

[49] that the global method would yield erroneous results if the global properties (natural frequen- 

cies and damping ratios) vary substantially from one location (measurement) to another. Curve- 

fitting methods are typically judged on the basis of their capability of handling the following 

situations, 

¢ Systems with low/high damping 

¢ Systems with closely coupled modes 
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e Systems with high modal densities 

e Measurement noise/inadequate frequency resolution in the estimated FRFs. 

Turunen [50] uses mathematical parameter estimation theory to develop statistical limits to the ac- 

curacy of the estimated modal parameters. Specifically, the impact of signal/noise ratios, model 

order used and the algorithm (linear, nonlinear, etc.) are studied [50]. Two synthesized models, one 

with four well-separated poles and the other with four closely coupled modes, with synthesized 

white noise to simulate measurement noise, are used in the investigation [50]. The author shows 

[50] that linear algorithms produce estimates which are often highly biased and have a variance 

which exceeds the theoretical minimum. Also, near signal-to-noise ratio threshold, linear algo- 

rithms produce estimates with larger bias than variance [50]. In other words, he states that the re- 

sults are repeatable but not accurate. Furthermore, it is also shown [50] that for systems with 

closely spaced modes with low signal-to-noise ratios, very large model orders are required for ob- 

taining reasonable results. This can be particularly troublesome, since this may give nse to com- 

putational modes too close to the closely coupled modes in question. Nonlinear algorithms, 

however, are shown by Turunen [50] to yield optimal results. Lee and Richardson [51] recently 

studied the accuracy of frequency-domain modal parameter estimation techniques. In their study 

[51], the authors use synthesized FRF data with three modes and a frequency resolution of 0.0625 

Hz. They generate various combinations [51] of FRF data - from light modal coupling to high 

modal coupling, by varying the frequency spacing between modes and modal damping values. To 

study the impact of measurement noise the authors [51] use 2.5% random noise in the FRFs, for 

cases in which measurement noise is a parameter. The performance of an SDOF and MDOF 

(using rational fraction polynomials [48]) curve-fitting routine is evaluated [51] in the study. The 

authors [51] report levels of errors that may be incurred in estimating all the four modal parameters, 

for the various combinations of modal coupling, noise and damping. 

The literature surveyed above clearly shows the non-unique nature of each stage of the experimental 

modal analysis process, in that there are several options available to execute each stage. Further, 
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it is noted that each stage is a potential source of errors which finally result in an inaccurate modal 

model. Hence, there is a need for quantitative appraisal of the quality of experimental modal 

models, as pointed out recently by several authors [6,52]. It is the purpose of this thesis to attempt 

at quantifying the errors encountered in deriving an experimental modal model. 
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Chapter 3 

Analytical Techniques 

The objective of this work is to quantify errors in the experimental modal analysis process. The 

choice of a test structure is dictated by two requirements. Firstly, the structure should be fairly 

representative of a general arbitrary structure, in so far as the EMA process is concerned. Secondly, 

the structure is required to be as simple as possible from the standpoint of analytical modeling. 

This enables one to build accurate analytical models, which are to be used as the reference. A 

uniform beam satisfies these requirements adequately. Also, the dynamics of a uniform beam, with 

associated boundary conditions, are better understood than those of many other structural ele- 

ments. 

In the ensuing Sections equations of motion of straight beams, employing the two most popular 

theories, viz., the Euler-Bernoulli and the Timoshenko theory, are presented employing a 

continuum mechanics approach. Subsequently these equations are simplified for specific cases. 

The Euler-Bernoulli and the Timoshenko beam theories are compared on the basis of the influence 

of shear deformation and rotatory inertia on the natural frequencies of a simply supported beam. 

The free vibration problem based on the equations from Euler-Bernoulli theory is stated. The an- 

alytical solution for a beam with free-free boundary conditions and sample results for natural fre- 
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quencies and mode shapes are presented. A brief description of analytical modeling of the 

experimental test structure is included. Finally, a separate Section is devoted to correlation tech- 

niques employed to correlate experimental and analytical models. 

3.1 Bending of Straight Beams 

Beams are members which undergo bending deformation due to transverse forces. Also, they are 

subjected to stretching as in the case of bars. Generally, the following assumptions are used to ar- 

rive at a model of behaviour: 

1. The cross-section of the beam has a longitudinal plane of symmetry. 

2. The transversely applied loads lie in the longitudinal plane of symmetry. 

3. Sections, initially plane and perpendicular to the longitudinal axis, remain plane after bending. 

4. Planes of transverse cross-section do not deform, but may rotate as planes. 

Assumptions | and 2 are used to exclude any possibility of twisting of the member. However, for 

small deformations, the twisting and bending deformations can be superposed. This is because of 

the linearity that could be assumed for small deformations. Implications of assumptions 3 and 4 

are that the normal strains in the transverse directions are zero. The equations presented in the 

following Sections are valid only when the above-stated assumptions are met. However, beams 

with unsymmetric cross-sections and beams subjected to combined bending and torsion are not 

uncommon. Theories which take into account such factors could be found elsewhere in most texts 

on advanced mechanics of materials. 
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3.1.1 The Euler-Bernoulli Beam Theory 

The Euler-Bernoulli beam theory, the so-called classical beam theory, is the simplest and mostly 

used theory of beam behaviour. It results in a single differential equation that relates transverse 

deformations to applied loads. A basic assumption of the theory is that the transverse planes not 

only remain plane after bending but remain perpendicular to the longitudinal axis of the beam. 

This implies that all the shear strains are zero. The popularity of the theory stems from the fact that 

for simple boundary conditions exact solutions are readily available. In the following paragraphs, 

the Euler-Bernoulli beam theory will be be used to arrive at the governing equations of motion of 

a beam®. At this time no assumption is made as to the amount of deformation, small or large, that 

the beam is subjected to. Also, axial loads are allowed to act on the beam. Referring to Fig. 3.la 

we can write the following kinematical relations for the displacement components w% , uw and w 

along the x , y and z coordinate directions. 

uj =u-2( 2) (3.1a) 

uw =0 (3.10) 

uz = W(X, (3. 1c) 

The first of the above equations uses the assumption that straight lines normal to the longitudinal 

axis, X, remain normal. The second equation implies that these lines are inextensible (Poisson ef- 

fects are ignored). The strain components to be used take into account second-order effects. Using 

Green's strain definition? 

8 The derivation of these equations of motion follows the procedure outlined in Ref. [53] 

9 See Frederick, D., and Chang, T.S., Continuum Mechanics, Scientific Publishers, Inc., 1972, Cambridge, 
Massachusetts 
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Figure 3.1. Kinematics of deformation in the (a) Euler-Bernoulli beam theory (b) Timoshenko beam 
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r (3.2) {e} = Lex, ey, &2, Exy, Eyx, xx 

where, 

_ Ou, l Ou, Ou, z Ou; 2 32 

x "ax ay Ox + Ox + Ox (3.2a) 

  grt at Gy te a ta a) 2H 

The strains, for the above assumed displacement field in Eq. (3.1), can be written as, 

ot { Seat (Qe) (3.34) 

ty =£,=0 (3.35) 

exy = by = bz = 0 (3.3¢) 

In deriving the above strains, Poisson effects are ignored. If the material is isotropic and linearly 

elastic, we could write, 

o,=Ee, 

_ au aw lf aw\ 
¢,= {| 32-4 ae )eceyt (3.4) 

The internal stresses developed in the beam have to be in equilibrium with the resultant forces and 

  

moments at any point. This condition yields the following equations of equilibrium, 

| o, dA —~P=0 (3.5) 
A 
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| e.2d4—M=0 (3.6) 
A 

Using Eq. (3.4) in Eqs. (3.5 and 3.6), we can write 

2 
Ou 1 ow 

pa eal M41 (20) (3.7) 

2 
wa -e1( 22) (3.8) 

Ox 

where 4 denotes the cross-sectional area and / the second moment-of-area of the cross-section 

about the y-axis. Figure 3.2a shows a cantilever beam with distributed transverse and axial forces 

acting on it. In Fig. 3.2b the forces and moments acting on an elemental length of the beam (shown 

in Fig. 3.2a) are shown. Considering the dynamic equilibrium of the transverse forces and the 

moments about the y-axis of an infinitesimal element of the beam, we arrive at the following 

equations (see Fig. 3.2b) 

2 
—P+(P+ AP) + pl) x= 9 A( 2 ) as (3.9) 

t 

2 
—V+(V+ AV) —N,+(N, + AN,) + fixp)Ax = pA (2 Jas (3.10) 

t 

2 
+ M = (+ AM) Vs + fo) A c= p A (2) a ct Myx (3.11) 

t 

where x < x%)< Ax +x and 0<c< 1, which are introduced to account for the non-uniform force 

f. The quantity N, denotes the component of the axial force in the transverse direction (z-axis), 

when the beam is in the deformed configuration. It 1s given by the relation, 

au, 1 (dw \’l aw 
N= 6a) 44 (Ou) Be (3.10) 
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using Eq. (3.7) this could be simplified to, 

N,=P( 2) (3.10) 

The quantity MM, denotes the moment of the axial inertial force per unit length of the beam, which 

could be obtained as 

  

_f. &f_ (2) _ 2 () M=| ¢ ae E Zz\ a ea = pl a \ ax (3.12) 

The term on the right-hand side is called Rotatory Inertia, the product of mass moment-of-inertia 

  

pl and the angular acceleration a (2 ). Dividing Eqs. (3.9 through 3.11), by Ax and taking 

the limit Ax - 0 , we obtain 

OP jg ou 3.13) 

av, ON, aw 
Ax + Ox +f=paA “52 (3.14) 

OM _ ye — ae V=M, (3.15) 

Equations (3.13) through (3.15) can now be reduced to two equations, in which transverse de- 

flection w and the axial deflection wu are the primary unknowns. That is, 

2 2 
0 Ou Ow Ou _ - ea} ax t 1/2( ax ) |] +04 2 = p(x,t) (3.16)   
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Figure 3.2. (a) Beam in loaded configuration (b) Forces and moments acting on an elemental length 
of the beam 
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+ pA Be + ot 2 (2) =f (3.17) 

Ot at Ox 

The above are the equations governing the motion of an isotropic elastic beam, with axial forces 

and second-order effects taken into account, according to the Euler-Bernoulli theory. 

3.1.2 The Timoshenko Beam Theory 

The Timoshenko beam theory, as opposed to the Euler-Bernoulli theory, takes into account the 

transverse shear strains. As a result, the assumption that planes normal to the longitudinal axis re- 

main normal after deformation cannot be used anymore. This is because of the fact that these 

planes undergo an additional rotation x(x,#) due to shear deformation. This can be seen from the 

geometry of deformation in Fig. 3.1b. Thus, the total slope is composed of two parts, the slope 

Ow. 
Ox 

slope, therefore, is denoted by 

due to bending of the beam and the slope x due to shearing of the beam. The total (truc) 

Ow(x,t) 
W(x, = 3x + K(x,0 (3.184) 

Figure 3.1b shows the kinematics of deformation assumed in the theory. The following are the 

kinematical relations? 

uy=ut+zy (3.185) 

uy = 0 (3.18c) 

10 These equations were developed in Ref. [53] 
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uz = W(x,d) (3.18d) 

The strains associated with the above displacement field are, 

_ au, (\ 1 (aw) bx =a +2( Ax )+ 5 ( Ox ) (3.194) 

> ow 
ex2=W ta (3.190) 

Again, Poisson effects are neglected, and therefore all other strain components are assumed to be 

zero. Using the conditions of equilibrium of internal moments and equilibrium of internal axial 

and transverse forces (since transverse strains are accounted for), the following equations are ob- 

tained 

| o,dd~P=0 (3.20) 
A 

| ex2d4—M=0 (3.21) 
A 

| Ko,,dA-V=0 (3.22) 
A 

where K denotes the shear correction coefficient, introduced to account for the difference in the 

constant state of shear stress in the theory and the parabolic variation of the actual shear stress. 

Solving Eqs. (3.20 through 3.22), the quantities P, M@ and V are obtained. Thus, 

du, 1 f aw\ 
paea| st (a2) (3.204) 
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ow 
M=ETI ax (3.214) 

V=KGA(d +o ) (3.22a) 

The moment of the axial inertial force per unit length of the beam, M/;, in this case would be 

  
a a’ 

M;=|(pz ¥ zdd = pre (3.23) 
Ot al 

A 

Substituting Eqs. (3.20a through 3.22a) into Eqs. (3.13 through 3.15), we obtain 

3 du, 1fowy eu 
By ca} S44 4 (28) + pAW =P) (3.24) 

ay 

ar 7 

8 | py Ob (2 ) -2[e1 | + KGa ae tv) +l   0 (3.25) 

2 2 
_O- Gu, lf ow\ { dw] a. Ow Ow -s ea} ax TD ( ax ) ay | i | xoa( Ax +¥)| +4 57 = f\x,0) (3.26) 

Thus the Timoshenko theory, in which axial forces and second-order strains are included, results 

in three equations. 

3.1.3 Working Forms of the Equations of Motion of a Beam 

The equations presented above are quite general in that they can be used for cases in which axial 

forces and large displacements are present. However, in most situations the vibration problem is 
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linear and axial forces may not be present. In such situations, the equations of motion presented 

above could be simplified further. In the following paragraphs, the forms of the above equations 

used for specific cases are stated. 

3.1.3.a Small motions with axial forces 

When the displacements are small, second-order effects could be ignored. This results in simple 

strain-displacement relations, relations in which the square of the derivatives of the displacements 
2 

are negligible. Thus the terms involving () in the equations presented until now vanish. 

This results in the following equations for the Euler-Bernoulli and the Timoshenko theories, 

Euler-Bernoulli beam theory 

8 | py ou Ou _ -> | Ea( ax ) + pA a2 p(x,2) (3.16a) 

a aw a ( aw )| aw a ( aw 2} ey SY |} | p( & )\ 4 pa 4 pt ZS So Jape) GB.170) 
ax? ( ax? ) ox ox ar’ at? \ ax? 

Timoshenko beam theory 

a Ou anu _ -3y |£4( Ox ) + pA a2 = p(x,t) (3.24a) 

__o- ep oe +KGA( +4) 4 2% _o (3.25a) 
@x | dx Ox Poe 
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-Z( ow ) -2[xea( 224 ¥) [+e pa oe = flx,t) (3.26a) 

3.1.3.6 Small motions without axial forces 

The case in which the displacements are small and one in which axial forces are absent is the one 

most commonly encountered in practice. The following equations result, 

Euler-Bernoulli beam theory 

  

2 2 2 2 2 

a ei | + ae + 91 (Se) = flx,t) (3.178) 
Ox Ox at? ar’ ax? 

Timoshenko beam theory 

9 | py OY koa( ) 2% @ 9 3.256 ~ ex | Gx | ax 1 ¥) tel = (3.299) 

8 ow ow a | Koa (Oe ae +¥)| +04 ae ft) (3.26) 

3.1.4 Euler-Bernoulli (vs) Timoshenko beam theory 

The Euler-Bernoulli theory is very simple, elegant and gives fairly accurate results for lower modes 

of slender beams. Since inclusion of rotatory inertia term introduces a mixed time derivative, and 
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since rotatory inertia effects are very small for slender beams at low frequencies, the Euler-Bernoulli 

theory seldom includes rotatory inertia terms in the equations of motion. 

The Timoshenko beam theory accounts for shear deformation and therefore is more accurate than 

the Euler-Bernoulli theory. Also, accounting for rotatory inertia results in only second-order time 

derivatives, unlike the Euler-Bernoulli equations. Thus, the standard equations of motion of a 

beam, according to the Timoshenko theory, accounts for both shear deformation and rotatory in- 

ertia effects. 

Shear Deformation and Rotatory Inertia Effects 

Rotatory inertia and shear deformation effects are significant for beams with small slenderness ratios 

(stubby beams). However, even for slender beams, rotatory inertia effects become significant at 

higher frequencies, whereas shear deformation effects become significant at higher modes. Shear 

deformation makes the beam more flexible, and therefore the effect of shear deformation is to re- 

duce the natural frequencies. Since rotatory inertia adds to the existing inertia effects, the effect of 

rotatory inertia is to reduce the natural frequencies. Except for the case where the slenderness ratio 

is very small (stubby beams) shear deformation effects are more significant than rotatory inertia 

effects. The effects of rotatory inertia and shear deformation on the natural frequencies of a beam 

with simply supported boundary conditions are shown in Figs."! 3.3 and 3.4. 

The quantities L and r are the length of the beam and radius of gyration about the neutral axis of 

the beam, respectively. In Figs. 3.3 and 3.4, the quantity (O,2).0s5 denotes the natural frequencies 

of the beam without shear deformation and rotatory inertia effects included (that is, from the clas- 

sical theory). The quantity (Q,7),o.m. denotes the natural frequencies of the beam when only 

rotatory inertia effects are included, and the quantity (Q,,7)seor denotes the natural frequencies of the 

beam when only shear deformation effects are included. The quantity (Q,?) denotes the natural 

11 Figures 3.3 and 3.4 are taken from Dym, C.L. and Shames, I. H., Solid Mechanics: A Variational Ap- 
proach, McGraw IIill, 1973 
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Figure 3.3. Influence of (a) Rotatory inertia (b) Shear deformation on the natural frequencies of a simply 
supported beam: taken from Dym, C.L. and Shames, I. H., Solid Mechanics: A Vari- 
ational Approach, McGraw Hill,1973 
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Figure 3.4. Combined effects of rotatory inertia and shear deformation on the natural frequencies of a 
simply supported beam: taken from Dym, C.L. and Shames, I. H., Solid Mechanics: A 
Variational Approach, McGraw Hill,1973 
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frequencies of a beam with both shear deformation and rotatory inertia effects included. Note that 

(2,7) 
(QU? )otass 

Figure 3.3a shows the effect of rotatory inertia on the natural frequencies as a function of the 

the frequency ratios, eg., , and the slenderness ratios, 4, are dimensionless quantities. 

slenderness ratio L with the mode number 7 as a parameter. Figure 3.3b shows the effect of shear r? 

deformation on natural frequencies, for the same set of variables. From Fig. 3.3, it is clear that 

shear deformation and rotatory inertia effects are significant for stubby beams, even for the first 

mode of vibration, e.g., for an + ratio of 10 the shear deformation effects are 7% and 42% re- 

spectively for the first and the third mode (see Fig. 3.3b), whereas the corresponding rotatory inertia 

effects are 3% and 20% respectively (see Fig. 3.3a). Further, using an £ ratio of 60 to represent 

a less stubbier beam, the shear deformation effects for the first and the third mode are 1% and 10% 

respectively, whereas the corresponding rotatory inertia effects are approximately 0% and 2% tre- 

spectively. As can be seen, shear deformation effects are more significant than those due to rotatory 

inertia, for prismatic structures such as this uniform beam. Figure 3.4 shows the combined effect 

of shear deformation and rotatory inertia on the natural frequencies of a simply supported beam, 

for various slenderness ratios. 

3.2 The Free Vibration Problem 

In this Section the standard procedure used to obtain exact closed-form solutions for differential 

eigenvalue problems resulting from the equations of motion of a beam will be shown. This is done 

merely to illustrate the oversimplifications that are necessary to make the equations of motion 

amenable to an exact closed-form solution. No attempt is being made here to obtain exact sol- 

utions to the differential eigenvalue problem that correspond to the equations of motion, which 

were quite general in nature, presented in the earlier Sections. 
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3.2.1 The Eigenvalue Problem 

Consider the Eq. (3.17b) which represents the equation of motion of a beam according to the 

Euler-Bernoulli theory. Ignoring the effects of rotatory inertia, we can write the following equation 

if there are no external forces acting on the beam, (See Ref. [54]) 

  

2 2 2 

Lo e1( 2s) = — mx) 24 (3.27) 
Ox Ox at 

where, we have replaced pA by m(x) to denote the mass per unit length of the beam. The above 

is the differential equation for free vibration of a beam, ignoring shear deformation and rotatory 

inertia effects. Assuming that the solution is separable in space and time, we could wnite, 

w(x, = W(x) gO (3.28) 

Using Eq. (3.28) in Eq. (3.27) and dividing through-out by m(x) W(x) q(d), we get 

  

2 2 2 

d [a TW) | - 1 4 (3.29) 
mx) W(x) dx? dx? - ro dt’ 

Using the standard procedure, when spatial and temporal independence of the solution is assumed, 

we write the following equations, 

4 2 

fe |e SE | — ames W(x) = 0 (3.30a) 
dx dx 

2 

2H) gy = 0 (3.308) 
dt 
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Equation (3.30b) is that of a harmonic oscillator, signifying the fact that the equations developed 

represent a conservative system. This is to be expected since we did not account for forces which 

dissipate energy (nonconservative). Also, Eq. (3.30a) is a fourth-order differential equation, re- 

quiring four boundary conditions to obtain a solution. The problem of obtaining the values for the 

parameter w? , for which the homogeneous differential equation, Eq. (3.30a), has a non-trivial sol- 

ution, satisfying the homogeneous boundary conditions, is called the characteristic or eigenvalue 

problem. The corresponding functions W(x) are called the characteristic or eigenfunctions. 

3.2.2 Natural Frequencies and Mode Shapes 

In the following paragraphs, the solution to the free-vibration problem of a beam with free-free 

boundary conditions is presented. It is assumed that the beam is uniform, in which case Eq. (3.30a) 

reduces to 

aw 
a) BW(x) = 0 (3.31) 

dx 

where, 

2 
4 _ aw nix) 
i (3.31a) 

Since the beam is not geometrically restrained, geometric boundary conditions cannot be specified. 

However the natural or force boundary conditions at either end could be written as, 

aw aw 
d 2 Pa = 0 d ©) lao = 0 (3.32a) 

x x 

@ Wx) BW(x) 
d 2 leek = 0 d 3 leer = 0 (3.325) 

x Xx 
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The general solution to the Eq. (3.31) is given by, 

W(x) = C, sin Bx + C, cos Bx + C; sinh Bx + Cy cosh px (3.33) 

Using the boundary conditions of Eq. (3.32), we arrive at the following frequency equation, 

cosBL coshBL = 1 (3.34) 

which is a transcendental equation and could be solved numerically to obtain the eigenvalues B. 

The above frequency equation yields a double root, Bp = Bj = 0. For 6B =0 , Eq. (3.31) reduces to 

dw 
at = 0 (3.35) 

ax 

The general solution to the above equation is, 

W(x) = D, + D)x + D3x? + Dyx? (3.36) 

Using the boundary conditions in Eqs. (3.32a and 3.32b), the modes corresponding to the double 

root are obtained as, 

Wo(x) = Ap (3.37) 

W(x) = 4,(x—-— ) (3.38) 

The above two modes represent correspondingly the rigid-body translation and rotation about the 

center of mass of the beam. Since fp is a double root, any linear combination of Wi(x) and W(x) 

is also a natural mode. Equation (3.34) further yields an infinite sequence of eigenvalues 8,. The 

frequencies of the first four flexible modes can be obtained by using the following values for the 

quantity p,L, 

BoL = 4.730041 (3.34a) 
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B3L = 7.853205 

Il Bal = 10.9956] 

Bsl = 14.13717 

Usually, the frequencies of higher modes are approximated by the following relation, 

BL = Ort 

The corresponding eigenfunctions are given by, 

Wx) = A,[(cos B, £L —cosh 8, L) (sin 8.x + sinh B.x)] — 

A,[( sin BL — sinh B,L) (cos Bx + cosh B,)] 

(3.340) 

(3.34c) 

(3.34d) 

(3.34e) 

(3.39) 

The two rigid-body modes and the first two flexible modes for the bar in free-free vibration are 

shown in Fig. 3.5. In Fig. 3.5, Y(x) denotes the eigenfunction for the 7th mode and w denotes 

circular natural frequency expressed in radians per second. The data for the beam used in sample 

results in this Chapter is given in Table 3.1. Sample results for natural frequencies of a bar with 

free-free boundary conditions are shown in Table 3.2. 
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Figure 3.5. First four natural modes of a free-free bar in bending vibration: taken from Ref. [54] 
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Table 3.1. Material and geometric property values of the beam used in sample results 

  

  

  

Material/Geometric 
Property of the Beam Value 

Young's Modulus 1.9306 x 10 0 Pascals 

Mass density 7832.3 kg/m 

Length 1.3970 m 

Width 0.07696 m 

Depth 0.0066 m     
  

Table 3.2. Natural frequencies of the first 10 flexible modes for a beam with free-free boundary condi- 
tions using Euler-Bernoulli theory 
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Mode Natural 

Number Frequency 

(Hz) 

] 17.359 

2 47.851 

3 93.807 

4 155.067 

5 231.644 

6 323.536 

7 430.743 

8 553.265 

9 691.103 

10 844.256   
  

$2



3.2.4 Analytical Modeling of the Test Structure 

The beams used in this work are tested in the configuration shown in Fig. 3.6a (schematic). Figure 

3.6b shows several aspects that have to be considered in the analytical modeling process to realize 

an accurate analytical model. Apart from these, factors like shear deformation and rotatory inertia 

have to be included, if higher modes and frequencies are considered. 

As discussed earlier in the Chapter on literature review, the way a structure is supported and excited 

influences the quality of the modal parameters obtained. The test structure shown in Fig. 3.6a, 

strictly speaking, is not suitably supported to simulate free-free boundary conditions. Also, this way 

of supporting loads the structure due to the gravity force. A simple analytical calculation can be 

made to estimate the frequencies of rigid-body modes, and the corresponding mode shapes. 

Assume the structure in Fig. 3.6a is tested with an impact hammer. Referring to Fig. 3.7, using the 

small-motions assumption, the following linearized equations of motion are derived, 

mL,2 Et mLyL,|(6,) | mel, 0 |(0,) (FL, cos6, 
2 — 1 1 5 .Tt 1 = (3.40) 

> mL,L, > mLy A, 0 > mgL, | (8, FL, cos @4 

where L, and L, denote the lengths of the string and beam respectively. The quantities m and g 

represent the mass of the beam and the acceleration due to gravity respectively. The vector on the 

right hand side of Eq. (3.40) contains the generalized forces, where F denotes the force applied in 

the horizontal direction, as shown in Fig. 3.7. Using Eq. (3.40) the corresponding free vibration 

and eigenvalue problem could be stated as, 

[M1{6} + LK1{0} = (0} (3.40a) 

Det\[K] — w [M]} = 0 (3.41) 
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Figure 3.6. Test configuration and the corresponding physical model 
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For the data, m= 7832.3 kg/m} , L; = 1.3208 m, Lp = 1.5240 m and g = 9.81 m/ sec?, we have the 

following modal parameters, 

0.8837 
f, = 9.3375 Hz {?},; = (3.42a) 

1.0 

—0.6529 
fy = 1.2719 Hz ig}, = (3.425) 

1.0 

As can be noticed, the rigid-body modes for a beam with free-free boundary conditions given by 

Egs. (3.37 and 3.38) have not been realized. 

Next, suspending the beam vertically as shown in Fig. 3.6a induces a body force, due to gravity, 

which varies axially as shown in Fig. 3.6b. This gives rise to a variable coefficient, P(x), in the 

differential equations of motion. Also, if the gravity force is modeled, the associated force boundary 

conditions have to be applied. This may introduce non-classical boundary conditions. Another 

factor that needs to be accounted for is the inertias of transducer masses, shown in Fig. 3.6b. These 

introduce a mass distribution that is non-uniform. The combination of these problems complicates 

the solution process. Therefore, an exact closed-form solution may not be possible. Hence, only 

approximate solution methods have to be investigated. 

A
 NM Analytical Techniques



L; 

—
 

6 

\ 

0; 

  
mg 

Figure 3.7. A two-degree-of-freedom model for estimating the rigid-body modes of the test structure 
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3.3 Techniques for Correlation of Experimental and 

Analytical Structural Dynamic Models 

In structural dynamics modeling the experimental and analytical methods are complementary in 

nature. This has numerous advantages. However, the primary disadvantage of their complementary 

nature is that they do not have so much in common that can be observed or understood physically. 

This results in a situation where one cannot confidently argue about the validity of either model, 

because cross-checking of the physical parameters involved, viz., mass, stiffness and damping, is not 

possible. The strengths of one are the weaknesses of the other. Therefore, correlation methods that 

can give valuable insights into the defects in either model are of paramount importance if benefits 

are to be realized. 

The two most commonly available models are those from a modal testing and finite element anal- 

ysis. Apart from the fact that one is experimental and the other is analytical, a primary difference 

is that they take different approaches to arrive at the models. According to Ewins [55], three dif- 

ferent models are possible and meaningful for comparison. They are: 

1. Spatial model 

2. Modal model 

3. Response model 

As mentioned above, the analytical methods start with the spatial model and arrive at the modal 

model, with which a response model can be built if required. On the other hand, the experimental 

methods start with a response model and arrive at a modal model, from which a generalized spatial 

model can be built, i.e., a spatial model in the modal domain. Though direct comparisons between 
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experimental and analytical modal as well as response models are possible, spatial models can be 

compared only in the modal domain. This is particularly disadvantageous in that the spatial models 

in the modal domain represent generalized stiffnesses and masses, i.e., stiffness and masses in modal 

coordinates, which have no physical meaning. Therefore, most comparisons are restricted to the 

modal and response models, the former being the most popular. A detailed treatment of correlation 

of structural dynamic models can be found in an article by Pakstys [56]. Another excellent review 

is made by Ibrahim [57]. In this work correlation between experimental and analytical models is 

made using modal models. The following Sections detail some of the techniques used for per- 

forming correlation of modal models. 

3.3.1 Correlation of Modal Models 

By and large, this is the most popular and advanced method used to correlate experimental and 

analytical models. Since damping is typically not modeled in a finite element model, the only modal 

parameters that are correlated are natural frequencies (a global property) and mode shapes (a local 

property) of a structure. 

3.3.l.a Natural Frequencies 

This is the first comparison made between analytical and test results. A simple comparison of the 

tabulated natural frequencies is the first step. To gain more insight, a linear plot is made between 

analytical and experimental natural frequencies. A good correlation is indicated by a straight line 

whose slope approaches a value of |. If the slope is more or less than one, then incorrect material 

property values could be the problem (assuming a converged FE solution in the frequency range). 

If there are small random deviations from the straight line, then such errors could be experimental. 
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Thus, if errors exist, insights as to whether they are systematic or random can be obtained from 

such a plot [55]. 

3.3.1.5 Mode Shapes 

There are several methods used in conjunction with each other to correlate experimental and ana- 

lytical mode vectors. Also, there are several aspects relating to mode vectors obtained exper- 

imentally and analytically which need to be mentioned before discussing various techniques used 

for mode shape correlation. The first problem encountered in correlating experimental and analyt- 

ical mode vectors is that due to unequal degrees of freedom. Finite element models usually have 

degrees of freedom which are 1 or 2 orders of magnitude more than that which testing can provide. 

Of course, correlation can be performed by using those points in the analytical model where infor- 

mation is available from testing. However, if updating of finite element models is to be performed, 

the test and analytical degrees of freedom should be identical. 

The above problem is overcome by reducing the FE model to the same degrees of freedom as the 

experimental coordinates. Further, rotational degrees of freedom are not measured in a modal test. 

As a result correlation is performed only for translational degrees of freedom. Several techniques 

that perform finite element model reduction are in use. The most commonly used method is the 

Guyan reduction [58]. Though these methods are highly effective, the condensed system of physical 

matrices involve approximations (mass matrix in the case of Guyan reduction). 
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3.3.2 Methods for Correlating Mode Shapes 

3.3.2.a Visual Inspection 

This is the simplest method used to compare mode shapes from test and analysis. It could be very 

useful if the structure is simple and symmetric. In this case it can reveal locations where analytical 

or test mode vectors are in error. This approach is also used if other methods for correlating mode 

vectors yield results which cannot be reconciled with. 

3.3.2. Orthogonality Check Method 

If a structural dynamic system is proportionally damped, each mode vector is orthogonal to all 

other mode vectors of the system when weighted with the physical matrices, viz., mass, stiffness or 

damping matrix that is a linear sum of mass and stiffness matrices. This fact is used to check the 

orthogonality of the measured mode vectors. Since the physical matrices are not obtainable from 

experimental results, recourse is made to matrices obtained from finite element analysis. The most 

reliable physical matrix that an FE model could provide is the mass matrix, which we shall denote 

as [Mrz]. Therefore, orthogonality checks are usually made with respect to the mass matrix. The 

following relations hold in an ideal situation, 

{U}" [Mpg] {Uj} = 5yM, (3.43) 

where U; denotes the jth mode, M, the generalized mass of mode i, and 6, the Kronecker delta 

function. Alternatively, we can define the mass-normalized mode vectors, {¢,}, as follows, 

{Ui} + __ 3.44 
{U}" [Mpg {U3 oe) 

{o} = 
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Equations (3.43 and 3.44) can be re-arranged to yield 

(¢)" [Mpc] (¢) = by (3.434) 

Now we can define the orthogonality check matrix as, 

[®] ([Mrep] [®] = [O,] (3.45) 

where [®] is the modal matrix which has mass-normalized mode vectors as its columns and [O,] 

is the orthogonality check matrix. 

Ideally the off-diagonal terms are supposed to be “0”. However, such values cannot be realized in 

practice. Values of 0.1 or less are generally acceptable. The shortcoming of the method is that the 

mass matrix is from the FE model, which we are trying to validate. Also, due to the smaller number 

of experimental degrees of freedom, the mass matrix has to be reduced by condensation techniques. 

If the reduction method is Guyan [58], then the condensed mass matrix is inaccurate This can cause 

severe errors. Thus, one cannot identify where the problem lies, in case of poor orthogonality re- 

sults. It could be either due to the measured mode vectors themselves or due to the FE mass matrix 

or due to both. Therefore, a more reliable way of establishing the accuracy of measured modes 1s 

required. 

3.3.2.c Modal Assurance Criterion (MAC) 

The concept of Modal Assurance Criterion (MAC) and Modal Scale Factor (MSF) parallels the 

idea of Coherence Function and Frequency Response Function respectively [11]. Thus, through 

the modal assurance criterion, a causality relationship is established between two vectors. The ref- 

erence or input vector {f}, is assumed to be composed of two parts, one part being completely 

correlated with the output vector {¢}, (the vector to be correlated with) and the other completely 
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uncorrelated. In this manner the modal assurance criterion is defined in exactly the same way as 

the coherence function [11]. Thus, 

2 

( S P mi in’ 

m=] 
  

MAC L{4}; {})] = n n (3.46) 

( ». P mi ini} » P mj in’ 

m=) m= 1 

{¢};' {$}/ 
MSF [{$}.{6},] = —>—> (3.47) 

{oh}; {$}, 

Thus, if the MAC value approaches unity, the modal scale factor computed is correct. It has to 

be noted that all the error has been lumped on one vector, and the reference vector is assumed to 

be error-free. The modal assurance criterion is a scalar constant relating two vectors and the modal 

scale factor is the corresponding linear scaling between the two vectors. The properties, advantages 

and limitations of the modal assurance criterion are discussed elaborately in Ref. [11]. 

Some applications of the Modal Assurance Criterion (MAC) 

1. Experimental mode vectors originating from an undamped or proportionally damped system 

can be evaluated based on their orthogonal relationship. Deviations from orthogonality give 

clues as to the mode vectors that are in error. 

2. Comparisons with analytical mode vectors can be made. If experimental mode vectors are 

assumed to be error-free, then the accuracy of the analytical mode vectors can be estimated, 

or vice versa. Currently, the modal assurance criterion is used almost universally for this pur- 

pose. 
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The modal assurance criterion has found several other uses apart from those mentioned above. It 

is necessary here to point out that the theory behind modal assurance criterion and modal scale 

factor (as is the theory behind coherence function and frequency response function) assumes linear 

and stationary systems. 
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Chapter 4 

The Finite Element Model 

An accurate analytical model is the goal of the analytical modeling process. The purpose here is 

to quantify errors in deriving an experimental modal model, a model that comprises of natural fre- 

quencies, damping ratios and mode shape of a linear system. The reasons for choosing a simple 

beam as the system were outlined in Chapter 3. There, the governing equations of motion for 

sumple beams were developed. Two common beam theories, the Buler-Bernoulli and the 

Timoshenko beam theory, were employed to develop the equations of motion. To establish the 

modal properties of a beam, therefore, the differential eigenvalue problem has to be solved. The 

exact solutions to such differential eigenvalue problems are available for simple (classical) boundary 

conditions, when equations from either beam theory are used. However, such exact solutions may 

not be possible if 

e non-classical boundary conditions exist 

¢ the equations of motion contain variable coefficients 
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In such situations, only approximate methods of solution [54] can be employed. Again, these ap- 

proximate methods may be difficult to implement, because of finding suitable approximation 

functions that satisfy the requirements demanded by these approximate methods. The finite ele- 

ment method, on the other hand, is very versatile in handling situations which are intractable by 

other methods. Here, the finite element method is chosen because of its capability to model and 

simulate various experimental test conditions, without unduly complicating the analytical modeling 

process. This chapter, therefore, deals exclusively with finite element procedures used in the ana- 

lytical modeling of the test structure. 

First, the governing differential equations of motion, from the Euler-Bernoulli and the Timoshenko 

theory, that will be used in the FE formulation are stated. Next, the finite element equations of 

motion are derived using the variational form, employing the Ritz approach. This is performed for 

a typical element, employing both the beam theories. The finite element models based on these two 

element types are implemented through a FORTRAN code, written and executed on the IBM 3090 

mainframe computer system. Writing a code, rather than using a general purpose finite element 

code, is preferred for the following reasons: 

¢ To avoid using the general purpose code as a “Black-box’, since the formulation of element 

equations and the associated assumptions are usually not available. 

¢ To have more flexibility in modeling, and to have better control over the solution process. 

The convergence characteristics of these two beam elements are presented for the case of a free-free 

beam in bending vibration. Also, the modeling techniques used to simulate experimental test 

conditions will be discussed. Subsequently, samples of typical analyses results are presented. 
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4.1 The Finite Element Equations 

In Chapter 3, equations governing the transverse motion of beams were outlined. Their develop- 

ment assumed the presence of distributed axial force and were not restricted to small motions. Also, 

the equations were specialized to cases were the motions were small. The equations for the case in 

which the motions are small and in which axial forces are present are restated here for continuity. 

The finite element models used will be based on those equations. 

4.1.1 The Governing Equations of Motion 

Since the axial and bending deformations are uncoupled (due to the small motions assumption), 

only equations involving bending deformation need to be solved. Therefore, the equation describ- 

ing axial motions is not stated here. Further, the rotatory inertia term from the Euler-Bernoulli 

beam equation will be dropped for simplicity. The equations of motion are stated below, 

Euler-Bernoulli beam theory 

  

  

@ aw |- F 
—— | EI-— —_ P(x) Se w | 4 pA 2 fe (4.1) 
ax? ax? dx 

Timoshenko beam theory 

8_| p, oY -KGA(y + ) + 72 _ 9 (4.2a) 
Ox Ox Ox p oe 

The Finite Element Model 66



a dw a aw aw -2| (4) |-2[xea(v + ay | 04 23-200 (4.25) 

4.1.2 Formulation of the Euler-Bernoulli Beam Element 

The governing equations of motion are now discretized using the Ritz variational approach [59]. 

This results in a weak form of the governing equations. That is, the differentiability and hence the 

continuity requirements on the approximation (interpolation) functions are weakened (lessened). 

First, the formulation of the Euler-Bernoulli beam element is presented, which will be followed by 

the formulation of the Timoshenko beam element’. 

Variational statement of the governing equations 
  

The domain of the beam is discretized into a mesh of finite elements. Figure 4.2a shows a typical 

element in the mesh. Using the test function v(x), the following variational statement of Eq. (4.1) 

could be made, for a typical element 

8 py ow 2 (rc) aw . 
x2 (er ax )- ax P(x) Ax + pA a7 — f(x,0 > |dx =0 (4.3) 

Now, referring to Fig. 4.2a, we could define a local coordinate system such that the length of the 

element is L,. Then, Eq. (4.3) could be written as, 

12 The formulation procedures used here follow those outlined in Refs. [53] and [59] 
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  1S 2? (ny rw 4 ow _ ci we (er os | > o (Poy St ae ) + pd x paa}locne (4.3a) 

Integrating Eq. (4.3a) by parts, twice, we obtain 

  

  

  

  

2 L, 2 L, 
2 ( py Se - p( ) -(- ov Ver Ow \|"* 9 (4.4) 
“Ox. ax Ox 0 Ox a’x /'0 

Evaluating the limits for the terms outside the integral, we note 

L, 

av aw ov. ow O“w 
a aed ax? +P dn ox pAv a v Je 

0 

ov ov _ 
2; 0) - 04(- Fr )|,- Qld - 04 - I, =9 (4.4a) 

where, the quantities Q;, Q2, QO; and Q, are given below (See Fig. 4.1a), 

O aw Ow ow 
O.=- Lz (2 a )-9( 22) ,--21( (4.5) 

x= Q x=0 

a aw aw _ Ow 

am | z(t) 2) am a(S) 
x=L 
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Figure 4.1. Degrees of freedom in (a) Euler-Bernoulli beam element (b) Timoshenko beam element 
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Interpolation 

From the variational statement (weak form), we note that the continuity requirement on the in- 

terpolation function is that it needs to be at least differentiable thrice (Eqs. 4.5 and 4.6). We are 

interested in interpolating both the deflection and the slope degrees of freedom, at each node. Since 

there are two nodes (see Fig. 4.2a) in the element, the interpolation function should be at least a 

Ow ax will be denoted by — @ (negative 6). Observing fourth-order polynomial. For convenience, 

the notation, 

w(0) = w, wW(Le) = W2 (4.7) 

a(0) = 8 A(L,) = 0, (4.8) 

we note that the interpolation function has to satisfy the four parameters, namely, w,, 6;, w2 and 

8,. Therefore, the following fourth-order polynomial is used, 

W(X) = dg +ayxt+ ax” + a,x3 (4.9) 

Now, the above equation can be expressed in terms of the four end-conditions, namely, w,, 01, w2 

and @,. Thus, 

W(X) = Wh 1(X) + 81 h2(X) + Wyh3(X) + A2h4(%) (4.10) 

Using Eqs. (4.7 and 4.8) in Eq. (4.9), the parameters w,, 6,, w2 and 02 are obtained (in terms of a, 

&, @, a, and x). The ¢,’s are now solved by using these parameters in Eq. (4.10). These form the 

basis functions with which interpolation will be carried out. In terms of the element’s local coor- 

dinates shown in Fig. 4.2a, they are as follows" 

b,a9=1-3(-) +2(2) 4.1) 

13, Reference [59] discusses the properties of these interpolation functions 
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(a) 

  

  

    

(b) 

Figure 4.2. A typical element in the mesh shown in local coordinates for (a) Euler-Bernoulli beam ele- 
ment (b) Timoshenko beam element 
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bx) = —x(1 -z) (4.12) 

2 3 

630) =3( 7) -2( 7) (4.13) 

balx) = -\()- 7 (4.14) 

w(x) =) wih (x) (4.15) 

Finite element equations of motion 

Using Eq. (4.15) in Eq. (4.4) and letting v(x) = ¢,, the following equation results, 

      

4 L, 

d’$; *$) dp, 44; 
»(| a dx dx dx dx. dx } uy 

j=1 “0 

4 
L, L, 

»¢ Coddrtylés) y+ j fax — Q,=0 (4.16) 
jel 

More conveniently, we could write, 
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4 4 

j=l j=l 

which can now be put in matrix notation, 

[M°]{i} + [K°] 03 = {FP} (4.165) 

The superscript e is used to denote element quantities, as opposed to global quantities. The 

Euler-Bernoulli beam element and its degrees of freedom are shown in Fig. 4.1a. The element 

stiffness matrix, [K*], mass matrix, [M*], and force vector, {F*}, for the Euler-Bernoulli beam el- 

ement are given below, 

Element matrices for the Euler-Bernoulli beam element 

  

db, Fo, dd, 4d, Ky= a Pe Px x de \& (4.17) 

Q° 

M, = | p Ad; $jdx (4.18) 
Q* 

{u} = (7, 0) wy 02)" (4.19) 

{F}=(F, Fy Fy Fj" (4.20) 

fi= -{ pfx, Ddx + QO; (4.21) o 
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4.1.3 Formulation of the Timoshenko Beam Element 

Again, the domain of the beam is discretized into a mesh of finite elements. Figure 4.2b shows a 

typical element in the mesh. Using the test functions v,(x) and v(x), the following variational 

statement of Eqs. (4.2a and 4.2b) could be made, for a typical element. 

Variational statement of the governing equations 

2 

of 2 oe - KGA( ea Sh acne (4.22a) 

a aw a aw aw | -2 | P(e ) - 2 Ez. (y+ )| + pace =f is = 0 (4.22) 

Again, we assume a local coordinate system for the element as shown in Fig. 4.2b, where L, denotes 

the element length. Using this coordinate system, the variational statements in Eqs. (4.22a and 

4.22b) can be rewritten as, 

  
° 2 of 2 [et ]-noa(oe Be ) vo zy }as=0 (4249 
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L, 

a dw 8 aw aw 
| .f — Ox [P(e )] — Bx Ez (v + ax. ) + pA ae =f} os = 0 (4.235) 

0 

Integrating by parts, once, the weak statements of Eqs. (4.23a and 4.23b) are obtained. Thus, 

  

L, 

% oy aw oy Op pee _ er ax Ox + KGAv, ax + KGAv,y + ply, — 5? dx —v, EI ax lo = 0 (4.24a) 

0 

L, 

OV. Ow Ov. aw aw 
koa ax ax +KGAy +P ——— ax ax + pAv, a? —vof\dx — 

0 

y Koa( SH +y)+r( 2) |*=0 (4.246) 
2 Ox Ox 0 , 

Evaluating the limits for terms outside the integral in Eqs. (4.24a and 4.24b), we obtain 

L, 

Vy Ow ay 
| ers Ox Ox + KGAv, 2 Bx w+ KGAv wb + ply, — 5 dx — 

0 

v,(0) M; — v(L-) Mz = 0 (4.25a) 

The Finite Element Model 75



  OV. Ow V2 Ov, dw aw 
KGA Bx “ax + KGAY Dx +P ax ax + pAvy a? — vf |\dx — 

0 

v2(0) QO) — ¥(L~) QO, = 0 (4.256) 

where, the quantities Q,, Q2, M@, and M) are given below (See Fig. 4.1b), 

a=-[Koa- Rav) +e(H)| me) (4.26) 

Q, = [Koa +y)+P(22)] M, = ei  ) (4.27) 
x=L, 

Interpolation 

Since there are two primary variables '4, w and y, these have to be interpolated separately. From 

the weak statements of Eqs. (4.22a and 4.22b), we note that the interpolation functions chosen for 

w and w& need to be continuous and at least once differentiable. This can be concluded from the 

boundary condition terms in Eqs. (4.26 and 4.27). These conditions are met by the linear Lagrange 

interpolation (shape) functions. However, these are only minimum requirements, and one could 

choose higher-order Lagrange interpolation functions. Also, interpolation functions of different 

orders could be used for w and y. Choosing the quadratic Lagrange interpolation functions for 

both the deflection and slope degrees of freedom, we use the following approximation functions in 

our formulation of the Timoshenko beam element, 

14 See reference [59] for a definition of primary and secondary variables 
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ta
o 

w(x) = wy (x) (4.28) 

3 

VO) = >. sho) (4.29) 
j=l 

Since a higher order interpolation function than that is required is used, additional degrees of free- 

dom (one each for w(x) and y(x)) have to be identified. We choose a center node as shown in Fig. 

4.2b. The center node is similar in every respect to the other nodes, except that it is in the domain 

and the other two are at the boundary of the domain of the finite element. Using the same ap- 

proach employed for finding the shape functions used in the Euler-Bernoulli beam element for- 

mulation, the following quadratic shape functions can be established, 

vi@=1—3() 42/2) (4.30) 

W(x) = 4( 7) -4(=) (4.31) 

¥3(x) = — (i) + 2 ) (4.32) 

Using the approximation functions described by Eqs. (4.28 and 4.29) in the weak form of vari- 

ational statements (Eqs. 4.25a and 4.25b), and letting v(x) = yw; and v(x) =y., the following 

equations are obtained 

finite element equations of motion 
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3 
L, 

(I el vt —M;=0 (4.334) 
0 

j=1 

3 L 
; . 

Ow; y OW; OW; 
7 

j=1 ‘*0 
LM 

3 

L, L, 
»( j pAwb a - \  fdx — O,=0 (4.336) 

j=) 

The above equations can be written as, 

3 3 

11 + 1 2 1. mM yj + > 5) + K! WW) — Fi=0 (4.34a) 

j=l j=1 

3 3 

22 2] 22 2. 

j=l j=l 
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Therefore, the equations of motion of the element, in matrix notation can be compactly written as 

[M*]{i} + [Ky = {FP} (4.35) 

Element matrices for the Timoshenko beam clement 

The element matrices for the Timoshenko beam element, based on the governing equations stated 

by Eqs. (4.2a and 4.2b), are shown below 

  

[KU K"] [Mee] 
[R= | oye 22 [Me = | orar 22 (4.36) [Kv LK] [Me ye") 

The submatrices are given by 

11 ay; ay; 12 _ aby 
K -| E de E+ KAN Hy | K -| [Kcay, The dx (4.37) 

Q° Q” 

dw; diy, db; dy, ab; 
21 i 22 i / i J K y= | [sou ve K", koa ae ge t Pe |e 438) 

2 Q% 

  

M' y= | plb; jax M? = J pAb, pjdx (4.39) 
Q* é 

[M7'] =[m"*] =[0] (4.40) 

{ot fr {u} = {[F}=4 (4.41) 
{w) {F'} 
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where, 

F',=M, P.=9,+] W fx, dx (4.42) 
Q° 

4.2 Computer Implementation 

The first step in the finite element method of solution is to discretize the physical domain into a 

mesh of finite elements. Then, using a suitable element type, the element matrices are evaluated. 

This involves the integration of each term of the finite element matrices, e.g., Eqs. (4.12 to 4.17). 

This can be accomplished in two ways. The entries in each element matrix can be evaluated sym- 

bolically, or, they can be computed numerically. For higher-order elements, especially in two and 

three dimensions, numerical integration is essential. Each element matrix, once computed, is as- 

sembled into the corresponding global matrix using geometric connectivity relations. Once the 

global matrices are completely assembled, the boundary/initial conditions are imposed. Now, the 

system of algebraic equations are solved by using a standard solution algorithm. 

4.2.1 The Free Vibration Problem 

The free vibrations or natural vibrations of a system is one in which the system oscillates freely 

without any external stimuli. In our case, the vibrations of a beam without any external forces 

acting. The global matrices in the finite element model comprise the equations (algebraic) of mo- 

tion of the beam. Thus, the discretized equations of motion are given by, 

The Finite Element Model 80



[M1{U} + [K]{U} = (0) (4.43) 

where, the variables in Eq. (4.43) denote global quantities. The free vibration problem can now 

be stated as, 

[M]{U} + CKI{U} = {0} 

assuming a harmonic solution of the type, 

{U} = {4} sin wt 

the free vibration problem can be stated as, 

{LK] — wo [LMJ}{¢} sin wt = {0} 

which implies, 

{LK] — wo’ LM]}{¢} = {0} 

and we have the following algebraic eigenvalue problem, 

Det{LK] — w’[M]} =0 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

the solution of the above matrix eigenvalue problem yields the natural frequencies w, and mode 

shape vectors {¢}, 

4.2.2 Solution Methodology Used in This Work 

The beams used in the modal tests in this work are very simple and therefore can be easily modeled 

using the finite element technique. Since the beams are prismatic and uniform, there will be no 
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errors due to discretization of the geometry. However, establishing the boundary conditions exist- 

ing in the actual testing environment is not a simple task. Details of the modeling procedures used 

will be discussed subsequently in a separate Section. All the finite element models used in this work 

are generated by a computer code written in FORTRAN. The finite element models are generated 

and solved on the IBM 3090 mainframe computer system. In the next several paragraphs, the de- 

tails of the computer implementation of the problem are discussed. 

Input data to the program 

The input data to the program are the material properties, geometric properties, nertia properties 

of the transducers (when used in the model), a value for the gravity load (when used in the model), 

number of elements in the mesh, coordinates of the nodes, connectivity matrix, nodes in which the 

transducers are located and the boundary conditions information. 

Evaluation of element matrices 

All computations are done using double precision arithmetic. The element matrices are evaluated 

numerically using the Gauss-Legendre quadrature. The number of points (weights) used are se- 

lected to be more than sufficient, to exactly evaluate the integrals. In case of the Timoshenko beam 

element, reduced integration 4 is performed on terms involving the shear modulus G. This is done 

to maintain consistency in interpolation. Reference [4] details the theory behind reduced inte- 

gration. Also the interpolation (shape) functions are transformed to natural coordinates to facilitate 

numerical integration. The mass matrices used are consistent mass matrices, stated by Eqs. (4.18 

and 4.39), for the Euler-Bernoulli and Timoshenko beam elements respectively. 

Assembly of element matrices and imposition of boundary conditions 

1S Since the same interpolation function is used for both deflection and slope degrees of freedom, reduced 
integration becomes necessary. See Ref. [4]. 
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The global matrices are stored in full mode. That is, the global matrices are not stored in the 

band-symmetric storage mode. The problems solved here are for the case of free-free vibrations 

of a beam , and therefore displacement boundary conditions need not be specified. Since modeling 

the gravity force and transducer inertias result in displacement- and acceleration-dependent forces 

(see the Section on modeling), these have to be specified when necessary. However, imposition 

of these boundary conditions result in the mere addition of certain inertia and stiffness terms to 

certain entries of the global mass and stiffness matrices, and can be accomplished easily. 

Solution of the finite element models 

All the finite element models are solved on the IBM 3090 mainframe computer. The International 

Mathematical Subroutines Library’s (IMSL) Eigensystem subroutine DGVCSP is used to solve the 

final matrix eigenvalue problem. The DGVCSP subroutine takes as input the matrices [K] and 

[M], along with their dimensions, resulting from the eigenvalue problem [K]{¢} = ALM ]{¢}. 

Also, the matrices [K] and [M] have to be real and symmetric and have to be stored in full mode. 

Further, the matrix [M] is required to be positive definite. 

4.3 Modeling 

Two important factors which need to be modeled are, 

1. The inertias of the force and response transducers. 

2. The gravity force which induces a body force axially along the beam, as a result of suspending 

the beam vertically. 
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Generally, these factors are ignored in the analytical modeling process, because of their assumed 

negligible influence on the structure’s dynamic behavior. 

4.3.1 Inertias of Transducers 

The inertial effects, both translational and rotational, of the transducers are assumed to act at a 

point. Due to the dynamics of the beam the points of transduction experience a force and a mo- 

ment. The amount of force equals the translational inertia times the acceleration of the point. 

Similarly the amount of moment equals the rotational inertia times the angular acceleration (of the 

beam) at the point. Denoting the node number in the finite element model by i, the external force 

and moment due to inertia-loading at the point in question can be written as, 

Ff; = mm; 

M; = 18; 

where, F; and M, are the force and moment respectively, and w; and 6; the corresponding acceler- 

ations at node i. The quantities ™, and /, denote the translational and rotational inertias respectively, 

of the transducer. Thus, the external loads F; and M; are applied at the points of transduction, along 

with the boundary conditions. Since these inertial loads contain the nodal accelerations as vari- 

ables, they can be rearranged in the system of equations by grouping them with other inertia force 

terms. In fact, the quantities m, and /, simply add to the corresponding diagonal terms of the global 

mass matrix. 

The masses of the both force and response transducers are obtained from the technical manuals 

supplied by the manufacturers. Since the transducers have well-defined geometry, calculation of the 

mass moment-of-inertias is straightforward. The mass moment-of-inertias of the transducers are 

calculated about the neutral axis of the beam. Though the transducers do not posses uniform 
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density, a uniform density assumption is made. The uniform density is computed by dividing the 

total mass by the total volume, for each transducer. For the case of the force transducer, only half 

the translational inertia is used, while modeling. This is due to the fact that the dynamic force being 

measured is at a point approximately at the centre of the force transducer. However, the entire 

geometry and mass of the transducer is used for rotational inertia calculations. 

4.3.2 Body Force Due to Gravity Load 

In all the modal tests performed, the beam is suspended vertically by means of a thin strand of 

nylon cords, which is attached to an elastic bungee cord at the other end. This induces a body 

force, due to gravity, that varies axially as shown in Fig. 4.3. The variation of this load can be de- 

noted by, 

P(x) = pAL(1 - =.) (4.49) 

or, using the notation Py) = pAL, 

P(x) = Po(1 ~ =) (4.492) 

Examining the stiffness coefficients in Eq. (4.17), we could conclude that an axial tensile load would 

increase the system stiffness, and hence its natural frequencies. However, the impact on mode 

shapes cannot be easily (intuitively) assessed. 

Inclusion of the body force (axial force) in the modeling process requires the establishment of the 

associated boundary conditions. Particularly the force boundary conditions, since the displacement 

boundary conditions remain unaltered. Re-examining the derivation of the equations of motion 

of the beam (Chapter 3), we see that the effect of the axial force is to add to the shear force at any 

cross-section of the beam. Further, referring to the weak form of the variational statement in the 
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formulation of the Euler-Bernoulli beam element, Eq. (4.4), we obtain the boundary conditions. 

A discussion of these boundary conditions and alternative modeling procedures used to model the 

body force are discussed in the following Section. 

Boundary conditions 

Referring to Fig. 4.3, the boundary conditions that exist at the top end of the vertically suspended 

beam are not those which correspond to that of a free-free beam. Therefore, it is necessary to es- 

tablish them to simulate the actual boundary conditions. Figure 4.3 illustrates two mathematical 

models that could be used to simulate the boundary conditions. If Eq. (4.1) is used, then the as- 

sociated force boundary conditions are, 

At x= 0, 

2 py Fw — Po( 2) =0 er{ 2 )=9 (4.50) 
ax ax C1 ax ax J " 

and atx=L. 

2 2 

2 ( p, 2¥ \ 9 Er{ 2% \—o (4.51) 
ox ax ax 

The second of equation (4.50) implies a force boundary condition, 

Of, ew \ _ (2) a (er Fe = Pol 3 (4.50a) 

Inclusion of the force boundary condition will result in an unsymmetrical [K] matrix, and hence 

an unsymmetrical eigenvalue problem. Figure 4.3c shows another model, in which the string and 

the beam are modeled as shown there. The following equation is used to model the string with finite 

elements. 
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2 

Z| 19% | = eco (4.52) 

where 7(x) is the tension in the string (assumed to be constant) and p,(x) is the mass of the string 

per unit length. For a beam of weight Po, suspended vertically, the tension 7(x) in the string is given 

by, 

T(x) = P|, 9 = Po (4.53) 

By using this model, the boundary conditions at x = 0 are accounted for, because of the force 

equilibrium and displacement compatibility at the interface, between the string and-the beam ele- 

ment. Also, this model would be able to predict the rigid body modes of the suspended structure, 

in addition to being a more accurate model. 

4.3.3 Sample Results and Discussion 

The Ritz finite element model for the Euler-Bernoulli and Timoshenko beam theories were pre- 

sented. The essential difference between the Euler-Bernoulli and the Timoshenko theories is that 

the latter accounts for shear deformation and rotatory inertia effects. The influence of shear de- 

formation and rotatory inertia are significant for beams with smaller length-to-depth ratios. How- 

ever, even for beams with larger length-to-depth ratios, shear deformation becomes significant for 

higher modes and rotatory inertia becomes significant at higher frequencies. Another important 

aspect was the inclusion of uniformly distributed axial forces in the equations of motion of a beam. 

This results in differential equations with a variable coefficient. The objective here is to have an 

accurate analytical model for validating experimental results. 
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The Euler-Bernoulli beam element uses a cubic Hermite interpolation. Thus the displacement 

function is a cubic function, as is the exact solution, for static problems, according to the Euler- 

Bernoulli theory. Therefore, for the case where the coefficients of the governing differential 

equation are constant, the element gives the exact solution for static problems (at nodes). The 

Timoshenko beam element uses the quadratic Lagrange interpolation function. Reduced quadrature 

is used on shear terms to maintain consistency of interpolation. 

The material and geometric property values of the beam that will be used for sample analyses is 

given in Table 4.1. Table 4.2 shows the convergence characteristics of the Euler-Bernoulli beam 

element for a bar in bending vibration with free-free boundary conditions. The exact solution for 

the natural frequencies of the first ten flexible modes are shown, along with the results obtained 

using 5, 10, 20, 40 and 80 elements. As can be observed 8 elements per mode gives a fairly accurate 

solution. Table 4.3 shows corresponding results for the Timoshenko beam element. Cross com- 

parison with results from Euler-Bernoulli element (Table 4.2) shows that the Timoshenko beam 

element converges at a slower rate. The influence of shear deformation and rotatory inertia can be 

seen for higher modes. 

A simply supported beam with an axial compressive end-load is modeled, to validate the formu- 

lations for the case in which axial loads are present. A mesh of 80 Euler-Bernoulli beam elements 

is used with an axial load of 222.4 N. The exact solution!* from the linear Euler-Bernoulli theory 

is given below, 

2 2 
nr EI L P 

on=(E) Joa V+ Ge) ae (494) 

$,(x) =A sin( 4) x (4.55) 

16 See Timoshenko, S.P., Young, D.H., Weaver, W., Jr., Vibration Problems in Engineering, Wiley, New 
York, 1974, 4th Ed. 
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where, w, denotes the natural frequency of the mth mode and ¢,(x) the corresponding mode shape. 

The results from exact solution and finite element analysis are shown in Table 4.4. As can be seen, 

the first mode is influenced the most. Also, the finite element model accurately predicts results 

obtained from exact solution. Next, the effect of gravity on the modal properties of a beam hung 

vertically is analyzed. The test configuration and the variation of the gravity load is shown in Fig. 

43a. The finite element model with the associated boundary conditions are shown in Fig. 4.3b. 

As before 80 Euler-Bernoulli elements are used in the analysis. The natural frequencies of the first 

10 modes are compared with the case in which no gravity load is present, in Table 4.5. The first 

two modes are also plotted in Fig. 4.4 and Fig. 4.5. The results suggest that the influence of gravity 

is very small and therefore negligible. As expected, the effect on the first mode is the most signif- 

icant. : 

Table 4.1. Material and geometric property data for the beam used in sample analyses 

  

  

Material/Geometric 
Property of the Beam Value 

Young's Modulus 1.9306 x 10°" Pascals 

Mass density 7832.3 kg/m 

Length 1.3970 m 

Width 0.07696 m 

Depth 0.0066 m         
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Table 4.2. Convergence characteristics of the Euler-Bernoulli beam element 

  

  

              

Mode 5 10 20 40 80 Exact 

Number | Elements | Elements | Elements | Elements | Elements | Solution 

1 17.367 17.360 17.359 17.359 17.359 17.359 

2 48.005 47.862 47.851 47.851 47.850 47.851 

3 94.750 93.893 93.812 93.806 93.806 93.807 

4 156.998 155.443 155.092 155.068 155.066 155.067 

5 257.992 232.841 231.728 231.647 231.642 231.644 

6 374.653 326.613 323.764 323.548 323.543 323.536 

7 545.537 437.433 431.279 430.774 430.741 430.743 

8 811.406 565.478 554.389 553.335 553.265 553.265 

9 1416.90 704.008 693.264 691.242 691.106 691.103 

10 1556.14 932.415 848.135 844.512 844.260 844.256   
  

The Finite Element Model 90



Table 4.3. Convergence characteristics of the Timoshenko beam element 

  

  

              

- Mode 5 10 20 40 80 120 
Number | Elements | Elements | Elements | Elements | Elements | Elements 

I 17.385 17.359 17.358 17.358 17.357 17.357 

2 48.375 47.876 47.842 47.839 47.839 47.839 

3 97.521 94.031 93.780 93.764 93.763 93.763 

4 172.471 156.117 155.026 154.953 154.948 154.948 

5 265.651 235.134 231.636 231.395 231.379 231.378 

6 434.304 332.880 323.711 323.063 323.021 323.019 

7 708.859 452.357 431.435 429.933 429.834 429.829 

8 1238.22 598.648 555.104 551.980 551.772 551.760 

9 2676.54 788.528 695.156 689.185 688.782 688.760 

10 22020.1 956.584 852.201 841.536 840.807 840.767   
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Pe) = Pl -7) 

Po 

  

P(x) 

(a) Y (b) 

Figure 4.3. Test configuration and two mathematical models 
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w(x,t) = 0 

T(x) 

  

P(x) 

(c)     
92



Table 4.4. Influence of a constant compressive load on the natural frequencies of a simply supported 
beam 

  

  

  

FEA . 

Mode Exact Exact 80 Euler-Bernoulli 

Number Solution Solution Elements 

P=0N P=222.4N P=222.4N 

j 7.6577 8.1161 8.116] 

2 30.631 31.099 31.099 

3 68.919 69.389 69.389 

4 122.52 122.99 122.99 

5 191.44 191.91 191.91 

6 275.68 276.15 276.15 

7 375.22 375.70 375.70 

8 490.09 490.56 490.56 

9 620.27 620.74 620.74 

10 765.76 766.24 766.24           

Table 4.5. Influence of gravity force on the natural frequencies of the first ten flexible modes of a ver- 
tically suspended beam 

  

  

  

Mode Without With 

Number Gravity Gravity 

Force Force 

1 17.359 17.672 

2 47.851 48.068 

3 93.807 93.978 

4 155.067 155.212 

5 231.644 231.772 

6 323.536 323.653 

7 430.743 430.852 

8 553.265 553.369 

9 691.103 691.205 

10 844.256 844.360       
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Chapter 5 

The Experimental Model 

Experimental modal analysis, today, has emerged as a very reliable tool in studying a structure’s 

dynamics. The technology has evolved and matured significantly. However, owing to the diverse 

nature of the processes involved and due to the inexact nature of some techniques used, the re- 

sulting experimental modal model may be inaccurate. How accurate an experimental model is re- 

quired depends on what the modal parameters will be used for subsequently. In any case there is 

a need to quantify errors in the experimental modal analysis process. 

Errors in the final model can result from various sources during the EMA process, viz., trans- 

duction, supporting and exciting of test structure, signal processing, FRF estimation and modal 

parameter extraction. Choosing the right technique in each of the above processes is very vital to 

obtaining a realistic and accurate model. Also, the levels of error that could creep in and their 

quantification is essential, if meaningful reconciliation and validation of the experimental model is 

to be made. In this Chapter, some theoretical concepts used in experimental modal analysis work 

will be outlined first. Then, the sources and nature of errors that result from the EMA process will 

be reviewed. Finally, the modal tests performed in this work will be described in detail. 
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5.1 Theoretical Concepts in Modal Analysis 

As with any activity in experimental mechanics, strong theoretical foundations form a rational basis 

for investigating physically observable phenomena. To start with, some salient features of single- 

degree-of-freedom (SDOF) systems are outlined. Insights gained from studying the behavior of 

SDOF systems are of fundamental importance in studying multi-degree-of-freedom (MDOF) sys- 

tems. Though the concepts are quite general in nature, discussions are restricted to mechanical and 

structural systems. Further, the systems are assumed to be linear and time-invariant. 

5.1.1 Single-Degree-of-Freedom Systems 

In general, SDOF systems are those which could be characterized by a single second-order differ- 

ential equation. The equation of motion of a simple mechanical system with spring, mass and a 

viscous-damper is given by, 

mx(t) + cx(O + kx(Q) = 0 (5.1) 

where, the variables have their usual meaning (see Appendix A). Using the following notation, 

o,=./ ¢=—£ (5.1a)   

we have the following solution, 

x(t) = Xe ert plrrn/A—e) t (5.2) 

As can be seen, the solution has a real and imaginary component to it. The following features are 

worth noting 
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1. In the absence of any damping the system behaves like a harmonic oscillator, vibrating with a 

frequency w, called the natural frequency. The total energy, the sum of potential and kinetic 

energy, is conserved. Hence, the system is called a conservative system. 

2. Damping renders the system non-conservative, since energy is dissipated from the system 

through the damping element. Also, for the force-free situation, the system oscillates with the 

damped natural frequency w,4, given by 

Org = Of (1-0) (5.2a) 

Next, the forced-response problem, assuming harmonic excitation and response could be stated as, 

m(t) + cx(t) + kx(t) = fe! (5.3) 

which has the following solution, 

ue) 
*) = (k — w? m) + (cw) 

(5.4) 

or, using the parameters w, and € and normalizing /(‘) with respect to k, the system stiffness, Eq. 

(5.4) is written as, 

x) 
Ad 

l 

a [1-2] +iee 2) 
  (5.5) 

the quantity H(w) is called the frequency response function (FRF) or the receptance of the system. 

The most important property of the FRF is 

e It depends only on the physical parameters of the system and frequency. 

It is an inherent property of the system and therefore independent of the excitation (assuming a 

linear system). The above statement implies that any type of excitation could be used to charac- 
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terize the FRF of a system. The choice of a pure harmonic excitation used above is merely a 

mathematical convenience. In Eq. (5.5), the receptance or FRF is a complex quantity. The mag- 

nitude and phase of the above FRF could be written as, 

    | H(w) | = (5.5a) 
@ 27 wo 7 feces] + [2-2] 

_| 2a) 
p(w) = tan7'| ——+— (5.5b) 

1-(3) 

In Eq. (5.5) the FRF has been described using the ratio of displacement to force. Alternatively, 

either velocity or acceleration could be used, instead of displacement. Thus, noting 

W(t) = x(t) = iwXe (5.6) 

at) = X(t) = —aw'Xel (5.7) 

the following representations of the FRF could also be made, 

Vw) = 7) = iwH(o) (5.8) 

A(w) = i = —wH(w) (5.9) 

The quantity V(w) is called the mobility and A(w) inertance or accelerance 
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5.1.2 Multiple-Degree-of-Freedom Systems 

The theory behind vibration of SDOF systems serves as a very good foundation in the study of 

MDOF system behavior. However, in retrospection, it will be observed that the SDOF situation 

is only a special case of MDOF systems. In general, MDOF systems are those which cannot be 

described by a single second-order differential equation. Since the description of MDOF systems 

results in two or more simultaneous differential equations, the use of matrix algebra is inevitable. 

Rather than outlining the most general aspects of MDOF systems, features will be outlined se- 

quentially on a case-by-case basis, starting from the simplest model [55}"’. 

5.1.2.a Undamped multiple-degree-of-freedom systems 

For an undamped system with N degrees of freedom, the governing equations of motion could be 

written as, 

CM]{x} + [LK] {x} = } (5.10) 

In order to establish the natural vibration properties of the system the force-free vibration problem 

is solved first. As with the SDOF problem, a solution of the following type, 

{x()} = (Xj (5.11) 

where, {X} is a vector of constants, is assumed. The implications of the solution of the type above 

are, 

1. the entire system is capable of vibrating at the same frequency. 

17 Most part of Section 5.1.2 is taken from Ref. [55] 
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2. Since {X} is a vector of constant amplitudes, the ratio between any two amplitudes remain 

constant at all trmes. Such a motion is termed synchronous [60]. 

Using solution denoted by Eq. (5.11) in Eq. (5.10) results in, 

(LK] — wo’ LM) Xe" = {0} (5.12) 

Seeking a non-trivial solution to the above equation results in the following algebraic eigenvalue 

problem, 

[KI{X} = ALMILX} (5.13) 

where, 1 = w?. The solution to the above eigenvalue problem yields a set of N eigenvalues A, and 

the corresponding eigenvectors {X}, (r= 1,2,...,N). Thus, we have 

[K1{X}, = o/ LM1{X}, r= 1,2y0,N (5.14) 

The square root of the eigenvalues yield the system natural frequencies. The corresponding 

eigenvectors are called the mode shapes or natural modes of the system. Representation of the 

system in terms of its natural frequencies, damping ratios and mode vectors is called a modal rep- 

resentation or a modal model. 

Some important properties of the modal model 

1. The individual mode vectors are not unique in that {X}, and a{X},, where « is an arbitrary 

constant, represent the same mode vector. Only the ratios between individual elements of a 

mode vector are unique. Further, if the mode vectors are normalized according to a specific 

rule then the resulting modes are called normal modes. In the above sense mass-normalized 

mode vectors are those which are weighted with respect to the system mass matrix. Thus, the 

mass-normalized mode vectors {¢}, are obtained as below, 
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{¢}, = — Sr __ r= 1,2,....4N (5.16) 
7 {A}, LMI{X}, 

The mass-normalized mode vectors are related to the stiffness matrix as follows, 

{6}, TK1($}, = @, P= D,2yeeeos (5.17) 

2. A very important property of the mode vectors of an undamped system is that they are all 

orthogonal to each other, when weighted with respect to the mass or stiffness matrix, (ic) 

{B, 1M, = 0 r#s 1,5 = 1,2,....,V (5.18) 

{X},/[KI{X}, = 0 rdé&s 7,5 = 1,2y..,N (5.19) 

Response of undamped MDOF systems 

Assuming harmonic excitation and response, the equations of motion could be written as, 

(LK] — LMI) {Xje'! = (fre (5.20) 

which could be re-arranged to yield the relation, 

[H(o) 1h} = {x} (5.21) 

where, [H(w)] is the FRF matrix. Using the following relation, 

[H(o)]' =([K] - @*[M]) (5.22) 

and using the orthogonality properties of the mode vectors, the following equation results, 

[H(o)] =[01(Diaglo,? — w*} Lol” (5.23) 
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where, [@] is the mass-normalized modal matrix, which has as its columns the individual mass- 

normalized mode vectors. An important property to be noted here is that the FRF matrix is 

symmetric. In other words, 

Xx: 

Hilo) = = Hylw) = (5.24) 
the jj 

A general element in the FRF matrix is given by, 

N 
Pir P kr Hy(o) = nr (5.25) 

Jk 2 2 
2d Or, —@ 

N 

Hilo) = >. Zed (5.26) 
r=] 

where, 

Zin = Pr (5.26a) 
O, —W 

the quantity Z;, is called the modal participation factor of the rth mode, due to a forcing at k. From 

modal identification standpoint, the following representation is more useful, 

Hjo) = > a> (5.27) 
r=] Or ~@ 

In the above Eq. (5.27), the quantity A,’ is called the modal constant. Oftentimes Aj,’ is referred 

to as the residue and the corresponding natural frequency the pole. 
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5.1.2.h Damped multiple-degrec-of-freedom systems 

The actual mechanism of damping in structural systems is quite complicated. However, models 

developed, though simple, have been adequate in most practical situations. Arbitrarily damped 

MDOF systems are not amenable to simple mathematical models. This is due to the fact that such 

arbitrary damping couples the differential equations of motion. Apart from rendering the modal 

properties complex |, they also destroy the simple orthogonality relationships that characterized 

undamped systems. Therefore, simple models which uncouple the equations of motion are used 

where adequate. The following Sections briefly review the simple and some of the more involved 

damping models [55]. 

PROPORTIONALLY DAMPED SYSTEMS 

Hysteresis (material damping) and viscous damping are the most common damping mechanisms 

found in structural and mechanical systems. Typically, material damping mechanisms are found 

in parallel with stiffness of structural systems and frictional damping mechanisms (viscous or 

Coloumbic) are found in parallel with mass or inertial elements. Consistent with the above ob- 

servation, the following model for damping seems viable, 

CC] = «fM]+ pLK] (5.28) 

where, « and £ are constants that need to be evaluated. A similar assumption is usually made 

for structural damping. The above mathematical simplification enables decoupling the equations 

of motion, rendering the modal damping matrix diagonal. Thus, 

[OV TCI] = oL!] + B(Diag[o,”]) (5.29) 

Since the undamped system’s modal matrix diagonalizes the damping matrix, the undamped modes 

are indeed the eigenvectors for the proportionally damped system. The natural frequencies, 

18 complex-valued 
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damping ratios and the FRF equations for proportionally damped systems with viscous and struc- 

tural damping assumptions are stated below. 

Viscous damping 

    Oq = or Jf1—b, C= pee + = (5.30) 

  

N 
P jr g r Ho) = Y. —=—“= (5.31) 2. 

pay © ~ @ + i(2¢,0,w) 

Structural damping 

a 
  

  

Org = o, (1 + 7) y = B+ (5.32) 

N 
Pip p rT Hy) = >) i (5.33) 2 2 . 2 

r=] Gr ~® + i(y@,") 

GENERALLY DAMPED SYSTEMS 

Structural damping assumption 

The equations of motion of a typical MDOF system with structural damping assumption are re- 

presented as, 

CM]{x} + ((K] + @LA){x} = Y (5.34) 

Assumption, as usual, of a homogeneous solution which is harmonic results in the following 

complex eigenvalue problem, 

([K] + L@iy){x} = ALM Ix} (5.35) 
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The solution to the above eigenvalue problem is a set of N complex eigenvalues and eigenvectors 

given by, 

2, = o/(1 +iy,) {X}, (r = 1,2,.0..,N) | (5.36) 

where, , is the natural frequency and y, is the damping loss-factor for the 7th mode. Further, the 

mode vectors possess orthogonal properties exhibited by undamped and proportionally damped 

systems. Mass-normalizing the mode vectors and defining the modal matrix to be [‘¥], the 

orthogonality relations could be stated as, 

CYVCMIEY] = C7 (5.37) 

[YI(CK1+ LHICY] = Diag i,”] (5.38) 

The FRF is similar to the one given by Eq. (5.25). However, the mode vectors for the general 

damping case are complex. 

Viscous damping assumption 

The case of viscous damping is more involved. Using state-space methods, the set of N second- 

order differential equations is reduced to a set of 2N first-order equations by defining a new coor- 

dinate system, in which the coordinates are both displacements and velocities. Such a vector is 

called a state-vector. Thus the new solution is sought in the state-space. Using this approach the 

solution to the free-vibration problem is sought by defining the following set of first-order 

equations, 

CA]iy} +CBify} = {0} (5.39) 

where, 

{x} CC] [M] [LK] [0] 

y= | | =| | (5.40) 
{x} [M] [0] [0] -—(™] 
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The above problem could be restated as a standard eigenvalue problem as shown below, 

CBlty} = 4,.[Alty} (5.41) 

Since the matrices [A] and [B] are not symmetric the resulting eigenvalues and eigenvectors are 

complex, in general. Further, since they are real, the resulting eigenvalues and eigenvectors occur 

as complex conjugates, and are written as, 

(s, , {%},) (ry = 1,2,....) (5.42a) 

(s, , {w},) (r = 1,2,....N) (5.426) 

Also, the following orthogonal properties hold, 

(¥YVCAILY] = Diagla,) (5.43) 

(vy CBILYI Diag b,] (5.44) 

A typical element in the FRF matrix is given by, 

  

N * * 
Hiy(o) _ y Vir W kr 4 y it v kr (5.45a) 

; * * 

r=1 alia — 5;) a {iw —S ,) 

where, 

= o,( —¢,4if/1—¢, ) (5.46) 

If the mode vectors are mass-normalized with respect to [A], then Eq. (5.45a) could be written as, 

  

N . * 

Hyy(oo) _ y Vir WV kr 4 f Ir v kr (5.458) 
. _ . * 

r=1 (io *r) (ia — s r) 
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5.1.3 Alternative Approaches to Derive the FRF 

In all previous cases the FRF was derived from the equations of motion assuming harmonic 

excitation and response. It was also noted that the FRF is an inherent property of the system, and 

therefore is independent of excitation. It should be observed here, however, that the FRF does not 

have any time variable in it. More importantly, it should be recognized that the FRF is defined in 

the frequency domain. Thus, other non-harmonic excitations should be expressed in the frequency 

domain, in order to facilitate usage of the FRF derived from harmonic excitation/response. 

In the following sections, a more general definition of the frequency response function is made using 

the impulse response function (IRF). Also derivation of FRF from random vibrations are outlined 

briefly. 

5.1.3.a FRF from arbitrary excitation 

The frequency response function H(w) of a constant-parameter linear system is given by the Fourier 

transform of the unit impulse response function A(2) of the system [9] ', 

Hw) = | Aide at (5.47) 
—oo 

For a physically realizable linear time-invariant system, the output to any arbitrary input is given 

by the following convolution integral, 

19 Some of the material in this Section is taken from Ref. [9] 
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(= i A(t) x(t — t)dz (5.48) 

Taking the Fourier transform of both sides of Eq. (5.48), convolution in the time-domain reduces 

to simple algebraic multiplication in the frequency-domain. Thus, we have 

Y(o) = Ho) Xo) (5.49a) 

where, X(w) and Y(w) are the Fourier transforms of the input and output respectively. From the 

expression in Eq. (5.49a), we can deduce the frequency response function to be the simple ratio of 

Fourier transform of the output to the Fourier transform of the input. - 

H(o) = io (5.49) 

In general, the FRF is a complex-valued function, with both magnitude and phase associated with 

it. If the excitation is periodic, the Fourier series approach could be used to compute the FRF at 

the discrete frequencies, using Eq. (5.49b). If the excitation is transient, then, again Eq. (5.49b) can 

be used to compute the FRF. This can be achieved by computing the Fourier transform of the 

transient input and the corresponding response. This is possible because the Fourier transform 

assumes that the functions transformed have an infinite period. In practice, however, the discrete 

Fourier transform (DFT), which assumes that these transient signals are periodic in the observed 

time window, is used. 

5.1.3.a FRF from random excitation 

If the excitation is a random process then the above approach cannot be used. This is due to the 

fact that a random process is not Fourier transformable, because it violates Dirichelet’s conditions 

[9]. However, an alternative approach is afforded. Using concepts from random process theory, 
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the following functions could be defined. An auto-correlation function of a certain random process 

J(é 1s defined as follows [9], 

RAt) = ELD At+7)] (5.50) 

where, E denotes the expectation operation. Unlike f(#, the quantity A(t) is Fourier 

transformable. The resulting quantity is called the power spectral or autospectral density function 

and is given by, 

Go 

So) = = | Pe elt a, (5.51) 

Thus Rt) and S,{w) constitute a Fourier transform pair. Extending the above approach to two 

different random processes x(é) and /(2), the cross-correlation function and cross-spectral density are 

defined as follows, 

Ry ft) = Elx() (t+ 7)] (5.52) 

S _ 2 [- lot 
xf@) = an Rt) edt (5.53) 

Unlike the power spectral density function, the cross spectral density function is complex-valued. 

Also, the following conjugate property is satisfied by the cross-spectral density function, 

So) = Sp (a) (5.54) 

Using the definition of impulse response, 

[o@) 

x(t) = | hia) ft — a)da (5.55) 
0 

and using the following relations [9], 

The Experimental Model 110



fofttt+r) = i j A(a)A(B)x(t — B)x(t + + — a)dadB (5.56) 

x(Oft+rt) = [maracas +7 — «a)da (5.57) 

Taking expected values on both sides of Eqs. (5.56 and 5.57), result in, 

Rt) = I i A(@A(B)R,(t + B — «)dadB (5.58) 

Rxft) = j h(a)R,,(t — a)da (5.59) 

The equations resulting from Fourier transforming Eqs. (5.58 and 5.59) could be simplified to yield 

the following relations, 

Spl) = |H(@)|"S,.(e) (5.60) 

S,fo) = H(e)S,(0) (5.61) 

In a similar fashion, the following relation could also be established [9], 

Siw) = H(w)Sp,(@) (5.62) 
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5.2 The Sources and Nature of Errors in the EMA Process 

In the preceding Sections the analytical approach to modal analysis was outlined. This was done 

by identifying the physical parameters of the system and writing the equations of motion, using the 

assumption of small motions about an equilibrium position. This resulted in a linear description 

of the system in terms of an eigenvalue problem. The solution to the problem yielded the modal 

properties of the system. Subsequently, the frequency response of the system was defined in terms 

of its modal properties. This is the standard analytical approach. 

The experimental approach recognizes the fact that if the FRF be established experimentally, then, 

using an appropriate theoretical model (FRF equation) the modal properties could be extracted 

by curve-fitting the experimental data to the theoretical FRF equation. Indeed, this has been the 

standard experimental approach used most of the time [55]. 

A typical experimental modal test and analysis is begun by making what is called a modal survey. 

This is to establish the locations of measurements (force and response) which are most likely to 

yield the best modal description of the structure. In other words, to determine those locations on 

the structure which are necessary to completely identify all the modes in the desired frequency 

range. Usually a finite element analysis provides this information. Next, a method of exciting the 

structure is chosen (excitation type, single or multi-input/output, etc.). Then, the force and re- 

sponse measurements are processed suitably using digital signal-processing techniques. Then, using 

fast Fourier transform (FFT) techniques, the time-domain signals are transformed into frequency- 

domain data. These frequency-domain data are then used to compute the FRF using an appro- 

priate estimator. This is followed by curve-fitting the FRF data using a suitable modal parameter 

estimation algorithm, to estimate the modal properties in the frequency range tested [55]. 
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5.2.1 Transduction Methods and Test Configurations 

The test configuration, in other words, the right physical supporting of the test structure is very 

important in a modal test. Transducers, shakers, etc., interact with the structure being tested and 

influence their behavior. For substructure analysis the structural components of the superstructure 

are tested with free-free boundary conditions simulated. In such situations the quality of the 

rigid-body modes are sensitive to the suspension system used, location of shakers, etc. If not 

planned out carefully, this could lead to significant errors in the final model [31]. 

Transducer calibration and validation is essential before using them. Transverse sensitivity of 

transducers is another important concern [17]. Proper alignment of transducers with respect to the 

direction of measurement will minimize such errors. Measurements from force transducers are 

typically contaminated with significant error in the regions of resonance [15]. Inertia-loading of the 

structure by transducer masses introduce several type of errors [13]. They shift natural frequencies, 

and render real modes of a structure complex [13]. Typically only rule-of-thumb approaches are 

used in evaluating the impact of the above-mentioned factors on the accuracy of the experimental 

model. 

5.2.2 Signal Processing of Excitation and Response Measurements 

Many aspects of signal processing techniques are inexact in nature. They involve a lot of assump- 

tions and approximations, and deviations from these assumptions result in systematic errors. The 

sources and nature of such errors must be properly understood in order to quantify and reduce them 

[5]. 

The root of the problem lies in the fact that continuous signals have to be converted to digital 

signals in order to be processed. This results in discretization, both in the time-domain and the 
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frequency-domain. The resulting problems are quantization errors and aliasing errors in the 

frequency-domain. The state-of-the-art of present-day technology is capable of reducing these er- 

rors to a very low level. Quantization errors are reduced by using a very good dynamic range of the 

A/D* converter and aliasing errors are reduced by using high-quality anti-aliasing filters, and by 

using only those spectral data that is guaranteed to be “alias-free”. 

The crux of the signal processing problem is the limitation of the length of time record that can be 

sampled. For a given frequency range of analysis, this leads to two problems 

¢ The resolution of spectral data in the frequency range of analysis, since the sample interval T 

limits the frequency spacing between spectral lines. Insufficient resolution of spectral data re- 

sults in bias errors, and such errors could be significant at the lower end of the spectrum when 

performing a base-band analysis (9]. 

e The discrete Fourier transform (DFT) assumes that the time record is periodic in the time 

window in which the it is recorded. Violation of such an assumption leads to a phenomenon 

called leakage, in which the spectral representation of the corresponding time record reflects the 

frequency domain characteristics of the observed signal (assumed periodic), rather than the 

actual signal. 

Typically, the solution to the resolution problem, if critical, is to use a band-selectable (zoom) 

analysis. Usually a trade-off is made between the resulting accuracy and additional time involved. 

One solution to the leakage problem is to use sufficient time record lengths in which the excitation 

and response signals reduce to A/D converter noise-levels, as this would ensure that the signals are 

periodic in the time window. However, this would mean inordinate amount of time required, es- 

pecially for lightly damped systems. Such an approach has been practically infeasible. Another 

solution to the leakage problem is to “window” the time record, ie., weighting certain time- 

20 Analog-to-Digital 
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functions, defined in the interval of the time record, to the time record, so as to enforce periodicity 

of the sample in the time window. Windowing does not eliminate the leakage problem but only 

alleviates it. The degree to which it reduces leakage error depends on both the time record and the 

window-function used [28]. 

5.2.2.a Implications of leakage and windowing on the quality of modal model 

The most widely used window is the Hanning window or the cosine-squared window, which has 

a value of zero at the begining and end of the time record. Other windows in use are the flat-top, 

uniform and exponential windows. The choice of a window-function is determined by the char- 

acteristics of the time record, from periodicity point of view, in the sample interval. The following 

implications are worth noting, 

1. Windowing, though reducing leakage, still yields a biased estimate of the spectra. They shift 

and distort the spectra. 

2. In situations where modes are closely spaced, the specific window function used on excitation 

and response measurements should be able to resolve the individual resonances in the FRF. 

3. The modal property most vulnerable to ineffective leakage reduction is the system damping. 

Finally, each window function has its characteristics which have to be properly understood before 

using them, e.g., the Hanning window has a smoothing effect in that it reduces amplitudes at res- 

onances and increases them at anti-resonances. The exponential window adds artificial damping 

to the data [61]. 
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5.2.3 FRF Estimation 

- 

In Section 5.1 the concept of FRF of linear time-invariant systems was outlined. Various methods 

of deriving FRFs were stated, using harmonic, periodic, transient and random excitations. The fo- 

cus was on mechanical and structural systems. In practice, however, the ideal situation of meas- 

uring the “true” excitation and response signals does not exist. Furthermore, non-ideal behavior 

of systems (nonlinear as opposed linear), incomplete identification of the inputs and outputs of the 

system, when present in incommensurate amounts, give rise to what is collectively called noise. 

Hence, one can obtain only estimates of the FRF. The following section briefly reviews some of 

the more popular models (estimators) used in practice. These estimators were developed on the 

assumption that the excitation and response signals are random. However, these estimators are 

used with transient (deterministic) data as well, though the quantity coherence function, to be de- 

fined in the sequel, bears a different meaning when used with deterministic data [55]. 

5.2.3.a A General Input/Output Model of a Linear System 

A general input/output model of a linear system with noise at both input and output measurements 

is shown schematically in Fig. 5.1. The quantities f(¢) and x(¢) are the true input and output of the 

system, (i) and n(?) are the noise signals which do not pass through the system and are uncorre- 

lated to each other and to the input and output signals. The quantities f (t) and x(2) are the meas- 

ured input and output signals. Thus, 

f() = A) + mls) (5.63) 

x() = x() + n(0 (5.64) 

The quantities S,, and S,,;in Eqs. (5.60 and 5.61) are called the two-sided auto- and cross-spectra 

respectively, of the time records x(t) and f(t). This is because they are the Fourier transforms of the 
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corresponding time records defined in the range — co to + oo. Since, in practice, we use time re- 

cords starting at t= 0, the auto- and cross-spectra for records defined in the range 0 to + co are 

called one-sided spectra. These one-sided spectra will be denoted here by Gy and G,, [9]. 

The H, Estimator 

Using Eqs. (5.63 and 5.64), using the FRF derived for the case of random vibrations and Eqs. (5.60 

and 5.61), the following relation for the FRF could be realized [9], 

OF Ho) = >> (5.65) 
Sf 

G Of Hi(w) = G+ Gon (5.65a) 

Thus, if noise in the input measurement is assumed to be zero (Gam = 0)?!, the H, estimator yields 

an unbiased estimate of the FRF. 

The 2 Estimator 

Using Eq. (5.63) and Eqs. (5.64 and 5.62), the following relation for FRF derived from random 

vibration could be stated [34] 

  
G~~ 

H,() = a (5.66) 
xf 

Gzz + Ge~ 
Hw) = <a (5.662) 

XX 

21 Gmm denotes the autospectra of the noise in the input measurement 
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Figure 5.1. A general input/output model of a linear system 
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Thus, if noise in the output measurement is assumed to be zero (G,, = 0), the H2 estimator yields 

an unbiased estimate of the FRF. 

The Coherence Function 

Given two arbitrary signals f(4) and x(é), the coherence function provides a measure of linear re- 

lationship between /(4) and x(¢). It is analogous to the correlation function coefficient and is defined 

in the frequency-domain. Per se it does not imply causality between f(t) and x(é). However, if an 

assumption of causality is made, then it gives a measure of the degree of causality between the 

signals f(t) and x(t). Recalling Eqs. (5.61 and 5.62), we could write (assuming noise-free measure- 

ments), 

  

  

  

G 

Ho) = (5.67) 
Lf 

G 
H(o) = — (5.68) 

Gyr 

Dividing Eq. (5.67) by Eq. (5.68) yields the following equation, 

H (a) Cpe Gre I Gp” = = (5.69a) 

Ideally, in the absence of measurement noise, the quantities H, and H, are the same FRF. How- 

ever, failing this, one is left with speculating possibilities as to why not. Generally speaking, vio- 

lation of most assumptions made until now could lead to a non-unity condition of Eq. (5.69a). 

Some of the more obvious ones are: 

e Nonlinear or time-invariant system. 

e There are unidentified inputs to the system. 
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e The signals f(t) and x(é) are contaminated with noise. 

e Leakage in estimating the spectra used in Eq. (5.69a) 

Thus, Eq. (5.69a) could be used as a measure of linear causality between the signals f(2) and x(¢). 

Thus, a new quantity y,.?(w) called the coherence function could be defined as [9], 

I Gl? 
—_ (5.696) Gi Gxx Vx () = 

If the autospectra Gy and G,, are non-zero and do not contain any delta functions, then the co- 

herence function has values between 0 and 1, that is 

0<ypx (ow) <1 (5.70) 

The coherence function is the same for both H, and H; estimators. Since coherence function ac- 

counts for the effects of noise at both input and output, it yields a biased estimate. 

THE He ESTIMATOR 

This is a bivariate estimator which minimizes the error due to noise in both the input and the 

output signals. Here, an independent source signal s(t) is used. The requirements on s(¢) are that it 

needs to be correlated to the input signal f(t) but uncorrelated to both the noise sources m(t) and 

nt). The H¢ estimator [7,8] is given by, 

H=—* (5.71)   

This is an unbiased estimator, except that it has a bias error due to finite sample size. However, it 

cannot be used in the case of impact testing. 

RANDOM AND BIAS ERRORS IN FRF ESTIMATION [9] 
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Random Errors 

When using random signals to characterize a system’s FRF, statistical reliability of the data need 

to be established. Two different situations exist here, 

1. The case in which a deterministic signal is contaminated with noise. 

2. Random signals which represent some random processes. 

In the case of random signals, each record is supposed to contain statistically different information. 

Since only finite time records are sampled from such random signals, which are considered to be 

stationary and ergodic, the quantities of interest (autospectra, cross-spectra, etc.) can only be esti- 

mated. Thus, averaging is necessary for better estimates. However, only random errors could be 

reduced by such an averaging. In case of deterministic signals contaminated with noise, the noise 

portion of the signal is usually considered to be due experimental errors. Thus, averaging in this 

case helps reduce the magnitude of such errors. 

Bias Errors 

Bias errors in FRF estimation result, typically, due to the following factors, 

1. Nonlinear/time-invariant systems 

2. Bias errors in estimating autospectral and cross-spectral density functions. Typically, these 

are due to insufficient resolution in the spectra used. From Ref. [9], a simple relation between 

normalized bias error in the autospectral density function estimate, G,.(w,), system bandwidth, 

B., and resolution bandwidth, B,, for a lightly damped SDOF system is given as, 

n 1 { Be , 
Gxx(@) = —> | Be (5.72) 

Also, use of window functions to reduce leakage introduces bias errors. 
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3. 

5. 

Measurement noise at both the input and output lead to bias in the estimate if univariate FRF 

estimators like H, or Hz are used. Using Eqs. (5.65 and 5.65a), the bias in the FRF estimate 

while using the H, estimator could be shown to be [9], 

A G 
| i(w)| = — | (5.73) Live] = -l ats 

A similar result could be established for the H2 estimator. Using unbiased (bivariate) estima- 

tors like the H*¢ estimator” can eliminate this type of bias error. 

If other inputs that are correlated with the measured input are present, then the resulting es- 

timate of the FRF will be biased. This can be corrected only by identifying such inputs and 

making use of the appropriate multiple-input/output model. 

Time-delay bias errors, which occur when the output lags the input in time. 

5.2.4 Modal Parameter Estimation 

Estimating the unknown coefficients of the appropriate FRF equation (theoretical model) by 

curve-fitting the experimentally obtained FRF data comprises the modal parameter estimation 

phase. This phase of the EMA process has grown tremendously over the years and the latest de- 

velopments in numerical analysis procedures are employed, thereby increasing the accuracy, speed 

and robustness of the algorithms used. These advanced parameter estimation techniques are 

available both in time- and frequency-domain. While frequency-domain methods use the FRF, the 

time-domain methods use the impulse response function (IRF), obtained by performing an inverse 

Fourier transform of the FRF. Two important aspects have to be brought into perspective here. 

They are, 

22 It was mentioned earlier about the bias error due to finite sample size when using the H®¢ estimator 
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1. Using the night theoretical model in a given situation. This implies using the appropriate FRF 

equation to represent the system behavior, and hence extracting the modal parameters. In this 

sense, even the best possible curve-fit may yield an inaccurate modal model, on account of 

having used an inappropriate theoretical model [55]. 

2. The second aspect to be considered is that curve-fitting removes noise present in the FRF data. 

However, the bias errors which could have arisen during previous stages of the EMA process 

are still present in the FRF data. If this situation exists, even the best possible curve-fit using 

the right theoretical model does not guarantee accurate modal parameters [55]. 

Generally, two types of modal analysis procedures are used. They are 

e Single-degree-of-freedom (SDOF) analysis methods. Here, it is assumed that around the re- 

gion of resonances the response is mostly dominated by the resonant mode in question. Thus, 

contributions due to other modes are assumed to be very small in that region, and are ap- 

proximated by a constant. Such an assumption leads to a reasonably accurate representation 

for systems with well-separated modes [55]. 

e Multiple-degree-of-freedom (MDOF) analysis methods. Here, contributions to the total re- 

sponse due to other modes are also taken into account. Such a representation closely approx- 

imates the actual linear behavior of systems, and is indeed necessary for systems with closely 

spaced modes and/or systems which have heavily damped modes [55]. 

As might be anticipated, algorithms which use the SDOF assumption require less time than the 

ones using MDOF assumption, though the resulting model is less accurate. 

Typically, modal tests are conducted in a specific frequency range (@,, w»). The FRF observed in 

this range is due to contribution of all the modes of the structure, including the ones present in the 

range (w,, ws). Thus, while extracting the modal properties from the FRF in the range (@,, ws), 
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the modes outside this range have to be accounted for. The following approximation is generally 

made [55], 

  
Yip A'in 
Je Jj 

H;y(o) = — + ) — OO OF Sik (5.74) 
” wo ,f my wo,” —o' + i(y,,’) 

where, Y;, and Z,, are the effect, in the range (w., ws), of modes below w, and above w, respec- 

tively. The quantity Y;, is called the inertia restraint, and Z, residual flexibility. If the modal pa- 

rameters are extracted using the above theoretical model, then the resulting model would 

substantially regenerate the experimentally observed FRF, in the range (a, , 5). 

5.2.4.a Single-degree-of-freedom analysis methods 

In SDOF analysis methods each FRF of the structure is curve-fitted individually. The details of 

some of these techniques can be found in Ref. [47]. The shortcomings of SDOF techniques are, 

¢ Closely spaced modes cannot be successfully extracted. 

¢ Since modal contributions from other modes are assumed to be small, the modal parameters 

extracted are inaccurate. 

¢ FRFs have to be analyzed individually. This could result in variation of modal properties from 

one FRF to another, resulting in an inconsistent model. In addition, some modes are tough, 

if not impossible, to identify. 

The advantages are that SDOF analysis is simple to use and consumes very little time, factors which 

may sometimes offset potential benefits that MDOF methods provide. 
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5.2.4.6 Multiple-degree-of-freedom analysis methods 

MDOF techniques set out to improve on the limitations of SDOF methods. Two approaches exist, 

1. In SDOF analysis, when analyzing a specific mode (say mode s), the contribution due to every 

other mode is assumed to be a constant. This restriction could be relaxed if a knowledge of 

modal properties of the remaining modes, which is usually available from a previous SDOF 

analysis, exists. The following equation illustrates the method [55], 

My 

E 4m ig Me) _ A (5.75 elo) — » 2 2,7... 1k ~~ 71 = 72,7, n 079) rm, 0, — 0 + i(y,o,*) w wo, — wo + i{y,o,) 
  

where, E(w) is the experimentally determined FRF. The quantities A‘, , @, and y, are esti- 

mated over a frequency range near the resonance of mode s, since the quantities on the left 

hand side of Eq. (5.75) are known. Thus, in effect, the right hand side quantity is curve-fitted 

with data which more precisely represents the response due to mode s. 

2. The second approach is more general in nature and is the result of availability of sophisticated 

numerical analysis methods coupled with increased computational capabilities. Unlike the 

previous approach, all the modes in a given frequency range are addressed simultaneously. 

Again, defining Ej,(@) to be the experimental FRF and H,(w) the theoretical model, the error 

in fit, «,, for a given frequency is written as, 

e, = Exlo) — Hla) (i= 1,2, ...m) (5.76) 

the experimental data is known at m frequencies. Since ¢; is a complex quantity, the scalar is 

written as, 
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m m 
2 

e; = > 6 ep = » le,| (5.77) 

i=1 i=1 . 

Further, the quantity e; could be weighted, if necessary. Thus, denoting F as the total squared 

and weighted error, we could write 

E=) we (5.78) 
i= 

The unknown quantities, which are the modal parameters, are estimated by minimizing them 

with respect to the quantity E. Thus, 

OE 2 (2) = 0 OS Dy Wy cesseey Vy Vaseereeer Apes Aji peveee (5.79) 

The above procedure results in a set of equations which are linear in A; and nonlinear in , 

and y,. There are a host of methods which solve the above system, each differing in the type 

of solution methodology (linear least-squares as opposed to nonlinear estimation methods), 

complexity, numerical robustness, degree of user-participation, etc. 

There are several factors which influence the choice of a parameter estimation technique. The fol- 

lowing are some of them, 

e Different regions of the FRF have different degrees of bias errors. Typically, the errors are high 

in the vicinity of resonances. Generally, these errors are due to using certain biased FRF es- 

timators. Further, the resonance regions are more susceptible to leakage errors and deviations 

due to nonlinearities in the system. The linear least-squares algorithm is particularly attractive 

in that it is possible to weight the data as a function of frequency. The coherence function, 

then, could be used to determine the weighting. Reference [10] discusses one such procedure. 
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e The natural frequencies and damping ratios are global properties of a linear system. This fact 

is used in some, if not many, methods of solution. However, this is not strictly observed in 

reality. This could be due to inertia-loading of light-weight structures by transducer masses, 

measurement errors, nonlinearities, etc. In such cases, the algorithms used should be able to 

allow for small variations in global modal properties [47,49]. 

®» Not all methods extract complex modes from FRF data. If the structure exhibits complex 

modes, using models with real mode assumptions can yield erroneous results. 

In summary, the use of right parameter estimation procedure is very crucial to realizing an accurate 

model, however fine the quality of the experimentally acquired data be. Common to all the 

methods is the fact that they come with a set of basic assumptions in their formulation and solution 

methods. Using these methods without understanding the assumptions they are based on can result 

in an inaccurate or even erroneous model. As a result, different curve-fitting routines would gen- 

erally yield different results. Also, the routines have to be used only on an ad hoc basis, so to speak, 

with a good idea of the data they are used on. Therefore, it is very important to quantify errors in 

the modal parameter estimation process. Only then could they be used with any confidence and 

the estimated parameters will have any meaningful quality. 

5.3 Modal Tests Performed and Procedures Used 

The goal of the tests conducted is to study and evaluate systematic errors which may appear due 

to reasons known a priori. Specifically, the contribution of the transduction process, viz., the effect 

of accelerometer inertias, shaker/force transducer-structure interaction, and modal parameter ex- 

traction process will be the focus of the tests and model-derivation process. A simple beam is 
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chosen as the test structure to be modeled. Three different modal tests are performed to asses the 

capability of experimental modal analysis techniques to produce an accurate modal model. The 

following sections detail each of these tests and the procedures used. For all the three tests the 

ZONIC* 6080 multi-channel FFT analyzer was used for acquiring data. 

5.3.1 TEST 1 

The test configuration used in TEST 1 is shown in Fig. 5.2. A uniform steel beam of rectangular 

cross-section with dimensions 1.39224 x 0.07696 x 0.00660 meters is used as the test structure. The 

beam is suspended by means of a thin bungee cord and a strand of thin nylon cords as shown in 

Fig. 5.2. The total length of the bungee cord and the strand of nylon cords is approximately equal 

to the length of the beam. An 18 N electrodynamic shaker is used for exciting the structure at the 

top of the beam as shown in Fig. 5.2. The shaker is suspended freely by the same method used to 

suspend the beam. A tabulation of details of the experimental set-up and test parameters is given 

in Table 5.1. 

Force measurements are made with a piezo-electric transducer (22.5 mv/N) stud mounted to the 

beam. A thin stinger with wing-nuts served to connect the shaker to the transducer. All prec- 

autions were taken to minimize the effect of moment-restraint by the shaker-force transducer as- 

sembly. Response measurements are made at 23 equally spaced locations along the beam with an 

accelerometer capable of making simultaneous rotational and translational measurements. The 

accelerometer is affixed to the beam using a thin layer of bees wax. The validity of the transducer 

has been tested [62]. 

Burst random excitation 1s used through-out the test. Both force and response measurements are 

windowed using an exponential window [61]. The test is done in the range 0-1000 Hz. Low-pass 

23 Zonic Corporation, Milford, Ohio 
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anti-aliasing filters are used and only the first 400 lines of spectral data resulting from a 1024-point 

74 FFT are used. The entire dynamic range of the A/D converter is used to reduce quantization 

errors. 

Through-out the test the quality of the autospectra is monitored. Twenty averages are used to 

obtain the H* type estimation for the FRFs. The quality of the FRFs were validated using the 

coherence function estimates. A total of 46 FRFs, 23 each for rotational and translational meas- 

urements were acquired. 

5.3.2 TEST 2 

The test configuration used in TEST 2 is shown in Fig. 5.3. Again, a uniform steel beam of rec- 

tangular cross-section with dimensions 1.5240 x 0.07615 x 0.00629 meters is used as the test struc- 

ture. The beam is suspended by means of a thin bungee cord and a strand of thin nylon cords as 

shown in Fig. 5.3. The total length of the bungee cord and the strand of nylon cords is approxi- 

mately equal to the length of the beam. This test differs from the previous test in that the beam 

is excited by means of an impact hammer and the response location is fixed at the bottom of the 

beam. A tabulation of details of the experimental set-up and test parameters is given in Table 5.2. 

An impact hammer with a rubber tip is used to excite the beam. The tip is chosen on the basis 

of the quality of the force autospectra and the resulting FRF. Response measurement is made at 

the bottom-most location of the beam, while the forcing is made at 61 equally spaced locations 

along the beam. 

The impulse force signal is windowed using a force window, while the response measurements are 

windowed using an exponential window. The impulse signal used for testing is conditioned in a 

244A 1024-point FFT results in 512 lines of spectral data 

The Experimental Model 129



manner so as to supply sufficient energy across the entire spectrum of interest. The autospectrum 

of the impulse signal was monitored carefully during the testing process. The test is done in the 

range 0-500 Hz. Low-pass anti-aliasing filters are used and only the first 400 lines of spectral data 

resulting from a 1024-point FFT are used. The entire dynamic range of the A/D converter is used 

to reduce quantization errors. 

Through-out the test the quality of the autospectra is monitored. Ten averages are used to obtain 

the H, type estimation for the FRFs. The quality of the FRFs is validated using the coherence 

function estimates. A total of 61 FRFs from translational measurements are acquired. 

5.3.3 TEST 3 

This test was conceived from the standpoint of studying the influence of exciter location, when a 

shaker is used as an excitation device. The test configuration used in this test is shown in Fig. 5.4. 

The same uniform steel beam used in TEST 2 is used here (1.5240 x 0.07615 x 0.00629 meters). 

The beam is suspended by means of a thin strand of nylon cords that is connected to a thin bungee 

cord, as shown in Fig. 5.4. The test is performed twice, once with the shaker attached at the top 

of the beam and once with the shaker attached at the bottom. A tabulation of details of the ex- 

perimental set-up and test parameters is given in Table 5.3. 

Force measurements are made with a piezo-electric transducer (22.5 mv/N) stud mounted to the 

beam. A thin stinger with wing-nuts served to connect the shaker to the transducer. All precautions 

were taken to minimize the effect of moment-restraint by the shaker-force transducer assembly. 

Response measurements are made at 21 equally spaced locations along the beam with an 

accelerometer of minimal mass. The accelerometer is affixed to the beam using a thin layer of bees 

Wax. 
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Burst random excitation is used through-out the test. Both force and response measurements are 

windowed using an exponential window [61]. The test is done in the range 0-125 Hz. Low-pass 

anti-aliasing filters are used and only the first 400 lines of spectral data resulting from a 1024-point 

FFT are used. The entire dynamic range of the A/D converter is used to reduce quantization errors. 

The force autospectra are carefully monitored during the experiment. Ten averages are used in es- 

timating the FRFs. The H, estimator is used in both the tests for FRF estimation. 

5.3.4 Modal Parameter Estimation Procedures 

Global frequency-domain parameter estimation methods are becoming very popular [49]. Partic- 

ularly, techniques which fit orthogonal polynomials to FRF data using nonlinear estimation 

methods have gained currency in recent years [10,48]. Many such techniques in use typically have 

the following drawbacks, 

1. They are numerically unstable, a problem inherent in nonlinear estimation procedures. As a 

result, extracting large number of modes has been a problem. 

2. The FRFs derived through experimental methods have various degrees of bias and random 

error as a function of frequency. Hence, different regions of FRF data have different levels of 

statistical reliability. Many parameter estimation methods in current use do not weight data 

according to their quality, thus yielding less accurate models. 

3. Some of the methods do not work very well with noisy FRF data, data with highly damped 

modes and data involving high modal densities. 

The following Section briefly reviews a global frequency-domain parameter estimation algorithm 

which uses Forsythe orthogonal polynomials to fit FRF data [10]. The method [10] seeks to 
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overcome some of the drawbacks mentioned above with many algorithms. The key features of the 

method are listed below. 

1. The weighting function is suitably chosen in the estimation process to avoid the numerical 

sensitivity of the nonlinear least-squares. 

2. The use of Forsythe orthogonal polynomials enables the use of arbitrary weighting for each 

data point, in addition to allowing arbitrary spacing between data points. The implication of 

these features are: 

¢ Individual data points could be weighted according to their quality. 

e Since uniform data spacing is not required, data that are very poor at certain frequencies 

can be rejected. Also, base-band and zoom data can be combined effectively, thus al- 

lowing fitting of data in all frequency ranges simultaneously. 

3. Many algorithms are over-refined in their capabilities in that they do not recognize the limita- 

tions in accuracy of the FRF data. This algorithm matches the variance of the data to the 

variance of the curve-fit at each frequency, so as to avoid over-modeling. 

The algorithm [10] has many additional features generally found in most global frequency-domain 

methods. The fitting can be done in arbitrarily selected subranges. Out-of-band modes are ac- 

counted for by updating the data for each frequency range selected for fitting. Also, a large number 

of modes can be easily extracted. The capabilities of the algorithm have been demonstrated [10] 

on data with light damping, high modal densities and heavily damped data with complex modes. 

Modal parameter estimation from data of TEST 1, TEST 2 and TEST 3 

The curve-fitter described above [10] was used in the modal parameter estimation from the data of 

results from all the three tests. It is mentioned here in the passing that all the tests were performed 

in the base-band. The curve-fitting was done on individual FRFs for all the three tests. Therefore, 
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there were as many estimates of the global parameters (natural frequencies and damping ratios) as 

there were FRFs. This gave an idea as to the variability in estimating the modal parameters. This 

variability is assumed to be due to a combination of both measurement and curve-fitting errors. 

For the global parameters, the mean of all the individual estimates is used as the true value from 

EMA. Also, these true (mean) values are stated along with the associated variance. This allows 

the user to quantitatively interpret the statistical quality of the fit. 
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Figure 5.2. Test configuration used in TEST 1 
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Table 5.1. Tabulation of test parameters used in TEST 1 

  

  

  

  

  

  

  

  

  

      

TEST PARAMETERS REMARKS 

Test Vertically Hung 

Configuration ( Shaker located at top ) 

Beam 
. . 1.39224 x 0.07696 x 0.0066 m 

Dimensions 

Frequency 
0 - 1000 Hz 

Range 

Number of 23 equally 

Locations / FRFs spaced locations 

Force - 22.5 mv/N (0.025 kg mass) 

Transducers Response - Translational/Rotational 

(0.010 kg mass) 

Excitation Burst Random 

Signal Excitation - Exponential window 

Processing Response - Exponential window 

Cc . 
oo, H  FRF Estimator 

FRF Estimation 

Number of distinct averages = 20 

Global frequency domain parameter 
Modal Parameter . . . aoe 

estimation with variance weighting 
Extraction sae 

( FRFs fitted individually )     
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Figure 5.3. Test configuration used in TEST 2 

The Experimental Model 136



Table 5.2. Tabulation of test parameters used in TEST 2 

  

  

  

  

  

  

  

  

  

      

TEST PARAMETERS REMARKS 

Vertically Hung 
Test . . 

. ; ( Accelerometer location fixed at the 
Configuration 

bottom of the beam ) 

Beam 
1.5240 x 0.07615 x 0.00629 m 

Dimensions 

Frequenc 
wey 0 - 500 Hz 

Range 

Number of 61 equally 

Locations / FRFs spaced locations 

Force - Impact Hammer 
Transducers . 

Response - Translational/Rotational (0.010 kg mass) 

, Impulse excitation using an impact 
Excitation . 

hammer at 61 equally spaced locations 

Signal Excitation - Force window 

Processing Response - Exponential window 

. . Hi FRF Estimator 
FRF Estimation . 

Number of distinct averages = 10 

Global frequency domain parameter 
Modal Parameter oe . ; ae 

estimation with variance weighting 
Extraction Lope ge 

( FRFs fitted individually )     
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Table 5.3. Tabulation of test parameters used in TEST 3 

  

  

  

  

  

  

  

  

  

      

TEST PARAMETERS REMARKS 

Vertically Hung 
Test 

; Model 1 - Shaker located at top 
Configuration 

Model 2 - Shaker located at bottom 

Beam 
; ; 1.5240 x 0.07615 x 0.00629 m 

Dimensions 

Frequenc 
4 y Q - 125 Hz 

Range 

Number of 21 equally 

Locations / FRFs spaced locations 

Force - 22.5 mv/N (0.025 kg mass) 
Transducers . 

Response - Translational 

Excitation Burst Random 

. Signal Excitation - Exponential window 

Processing Response - Exponential window 

oo. Hy FRF Estimator 
FRF Estimation 

Number of distinct averages = 10 

Global frequency domain parameter 
Modal Parameter , ; . o, 

estimation with variance weighting 
Extraction Loge 

( FRFs fitted individually )     
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Chapter 6 

Results and Discussion 

The results from experimental modal tests and analyses and their comparison with analytical (FEA) 

results from the standpoint of quantifying the errors in the experimental mode! will form the con- 

tents of this Chapter. The tests and procedures used in arriving at the final expermmental modal 

models were outlined in detail in the previous Chapter. Also, the details of finite element modeling 

procedures have been dealt with in Chapter 3. As stated earlier, the contribution of the trans- 

duction and the modal parameter estimation process to the inaccuracy of the experimental modal 

model will be the focus and objective of the discussions to follow. 

Comparisons between experimental and analytical (FEA) results are made for natural frequencies 

and mode vectors. Natural frequency comparisons are made with the aid of linear plots between 

experimental and FE natural frequencies. The accuracy of experimental natural frequencies is de- 

termined by using a linear regression model, using FE natural frequencies as the reference. The 

Modal Assurance Criterion (MAC), discussed in Chapter 3, will be used for comparing mode vec- 

tors. These are presented for each test conducted, followed by discussions on the accuracy of the 

modal parameters from EMA. For the experimental models resulting from TEST | and TEST 2, 

errors in estimating natural frequencies and modal displacements (imaginary component of the 
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residue estimate) are quantified. That is, errors are quantified for each spatial location. For the case 

of natural frequencies, percentage deviation from expected nominal values are stated, since the ac- 

tual values are not known. In case of modal displacements, the results from the finite element 

model are assumed to be accurate, and therefore are used as the reference. Again, the errors are 

stated as a percentage deviation from reference values. 

6.1 Results from Finite Element Analyses 

In Chapter 3, the two most commonly used beam theories, the Euler-Bernoulli and the 

Timoshenko theory, were developed using a continuum mechanics approach. The Euler-Bernoulli 

theory, which results in a single differential equation of motion, ignores rotatory inertia and shear 

deformation effects in its development. The Timoshenko theory, which accounts for rotatory in- 

ertia and shear deformation, results in two simultaneous differential equations of motion. The 

Timoshenko theory, though more refined than Euler-Bernoulli theory, ts used only when shear 

deformation/rotatory inertia effects are significant. The influence of shear deformation and rotatory 

inertia on the natural frequencies and mode shapes of uniform beams were stated in Chapter 3. 

The development of the Ritz finite element model using the weak form of the governing equations 

of the above two beam theories was presented in Chapter 4. The Euler-Bernoulli beam element 

was developed using the Hermite cubic interpolation function, while the Timoshenko beam element 

was developed using the quadratic Lagrange interpolation (deflection and slope variables are in- 

terpolated separately) functions. Since the same interpolation function (quadratic) is used for both 

deflection and slope degrees of freedom, reduced integration is used on terms involving the shear 

modulus, to maintain consistency in interpolation. The mass matrices used are consistent. 
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The performance of the two element types was demonstrated in Chapter 4. It was shown that the 

convergence characteristics of the Euler-Bernoulli element was much better than the Timoshenko 

element. This is because of the cubic interpolation used, as opposed to the quadratic interpolation 

used in the Timoshenko beam element. The values of material and geometric properties used in 

FE analyses are shown in Table 6.1. The dimensions of the two beams used in the modal tests are 

shown in Table 6.2. Results from FE analyses, using free-free boundary conditions, are shown for 

the first ten flexible modes in Table 6.2. These are shown for both the Euler-Bernoulli element and 

the Timoshenko element, along with the exact solution from Euler-Bernoulli theory. Based on the 

results from Table 6.2, shear deformation and rotatory inertia effects are not very significant for the 

beams used in this work (for the frequency range considered in the modal tests). For example, re- 

ferring to the tenth mode for BEAM 1 in Table 6.2, the difference is only around 0.5%. Therefore, 

for correlation and comparison purposes with the experimental results, only the results from 

Euler-Bernoulli element will be used. 
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Table 6.1. Material and geometric property values used in FE analyses 

  

  

  

Property Value 

Young's Modulus (E) 2.034 x 10 " Pascals 

Poisson's Ratio 0.29 

Shear Correction 

Factor (K) o/6 

Mass Density 7832.3x 10° kg/m* : 

Accelerometer Inertias 

Translational 0.01 kg 

Rotational 1.0835 x 10 “kg.m* 

° Force-Transducer Inertias 

Translational 0.025 kg 

Rotational 3.9725x 10° kgm? 

Translational 0.0038 kg 

Rotational 2.0566x 10”. kg.m ?         

* Used in TEST 1 and TEST 3 

Results and Discussion 143



Table 6.2. FEA natural frequencies, of the first 10 flexible modes, for the two beams used in the modal 
tests 

  

  

  

              
  

BEAM 1 BEAM 2 

Mode (1.39224 x 0.07696 x 0.00660 m ) (1.5240 x 0.07615 x 0.00629 m) 

Number Euler - Euler - Timoshenko Euler - Euler - Timoshenko 

Bernoulli Bernoulli (120 Quad. | Bernoulli Bernoulli (120 Quad. 

(Exact) (91 Elem.) Elements) (Exact) (91 Elem.) Elements) 

1 17.853 17.853 17.851 14.183 14.183 14.182 

2 49,212 49.212 49.200 39.096 39.096 39.089 

3 96.475 96.476 96.431 76.644 76.644 76.617 

4 159.479 159.476 159.357 126.696 126.696 126.622 

5 238.234 238.234 237.961 189.262 189.262 189.098 

6 332.7399 332.741 332.208 264.342 264.342 264.021 

7 442.997 442.999 442.005 351.934 351.934 351.366 

8 569.005 569.009 567.452 452.040 452.040 451.104 

9 710.764 710.772 708.345 564.695 564.696 563.202 

10 868.274 868.288 864.670 689.791 689.796 687.621 
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6.1.1 Finite Element Models and Results - TEST 1 

The test configuration used in TEST 1 and the testing procedures used were presented in detail in 

the previous Chapter (Fig. 5.2 and Table 5.1). The beam used in this test has dimensions of 

1.39224 x 0.07696 x 0.00660 metres. When including the transducer inertias in the FE model, both 

the force and response transducers are modeled, by including the translational and rotational inertias 

of each transducer. An important feature of TEST 1 is that the accelerometer, which is capable 

of making simultaneous rotational and translational measurements, is moved along the beam to 

facilitate response measurements. The force transducer, which is connected to the shaker through 

a thin stinger, is fixed at the top of the beam through-out the test. Response measurements are 

made at 23 locations along the beam. To simulate this in the FE model, an analysis is done for 

each response location, with the accelerometer mass modeled in the location in question. For each 

mode, the natural frequency and modal displacement, at the location of the transducer, is obtained. 

Therefore, the natural frequency and modal displacement from each location, for every mode, are 

essentially from a different system. The modeling procedure used to simulate the effect of the 

roving accelerometer is illustrated in Fig. 6.1. 

The results from the analyses using 91 Euler-Bernoulli beam elements are shown in Table 6.3 and 

Table 6.4, for the first 10 flexible modes. They show the variation of natural frequency as the 

accelerometer mass is moved along the beam. Figure 6.2 shows the tenth mode plotted with ref- 

erence to the corresponding mode obtained for a beam without any inertia-loading effect by the 

transducers. This is just to show the impact of inertia-loading on the mode which is affected the 

most. 
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Figure 6.1. Figure illustrating the simulation of moving the accelerometer mass in the FE model 
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Table 6.3. Natural frequencies from FEA with inertia-loading effect from TEST | simulated (shown for 

modes | through S for all the 23 response locations) 

  

  

  

            

Mode Number 

Location 

1 2 3 4 5 

1 17.922 48.813 95.505 157.825 235.790 

2 17.942 48.896 95.704 158.181 236.352 

3 17.960 48.950 95.779 158.219 236.233 

4 17.972 48.963 95.732 158.052 236.023 

5 17.979 48.946 95.655 158.016 236.213 

6 17.981 48.916 95.633 158.150 236.382 

7 17.979 48.892 95.684 158.249 236.153 

8 17.974 48.887 95.756 158.156 235.969 

9 17.968 48.903 95.777 157.996 236.195 

10 17.963 48.930 95.724 157.998 236.383 

11 17.959 48.954 95.643 158.159 236.159 

12 17.957 48.963 95.608 158.249 235.971 

13 17.959 48.952 95.651 158.139 236.195 

14 17.963 48.927 95.732 157.987 236.383 

15 17.968 48.901 95.779 158.009 236.159 

16 17.974 48.887 95.750 158.174 235.968 

17 17.979 48.894 95.677 158.247 236.190 

18 17.981 48.919 95.632 158.132 236.383 

19 17.979 48.948 95.663 158.010 236.180 

20 17.972 48.963 95.741 158.076 236.027 - 

21 17.960 48.946 95.778 158.231 236.269 

22 17.941 48.888 95.684 158.160 236.320 

23 17.921 48.803 95.475 158.763 235.680 
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Table 6.4. Natural frequencies from FEA with inertia-loading effect from TEST | simulated (shown for 
modes 6 through 10 for afl the 23 response locations) 

  

  

  

            

Location Mode number 

6 7 8 9 10 

1 329.403 438.673 563.603 704.192 860.440 

2 330.174 439.632 564.700 705.355 861.583 

3 329.816 439.025 563.958 704.715 861.336 

4 329.778 439.400 564.751 705.531 861.515 

5 330.172 439.521 564.099 704.399 861.061 

6 329.901 438.896 564.170 705.538 861.719 

7 329.618 439.423 564.714 704.605 860.889 

8 330.043 439.485 563.833 705.168 861.876 

9 330.093 438.897 564.619 705.080 860.750 

10 329.641 439.470 564.312 704.680 861.989 

11 329.846 439.439 563.989 705.497 860.660 

12 330.182 438.899 564.784 704.412 862.049 

13 329.790 439.513 563.908 705.567 860.629 

14 329.673 439.391 564.435 704.553 862.052 

15 330.131 438.908 564.515 705.242 860.657 

16 329.990 439.552 564.867 705.003 861.996 

17 329.608 439.339 564.766 704.746 860.743 

18 329.959 438.919 564.056 705.448 861.886 

19 330.151 439.580 564.217 704.418 860.873 

20 329.741 439.322 564.692 705.584 861.719 

21 329.871 439.072 563.956 704.626 861.149- 

22 330.152 439.639 564.756 705.478 861.784 

23 329.231 438.423 $64.257 703.736 859.857 
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6.1.2 Finite Element Models and Results - TEST 2 

The details of this modal test are shown in Table 5.2 and Fig. 5.3. The test uses a beam different 

from the one used in TEST 1. The test is done using impulse excitation provided by an impact 

hammer. The response transducer (linear/angular accelerometer) is fixed at the bottom of the beam 

through-out the test. The beam is modeled using 62 Euler-Bernoulli beam elements. The natural 

frequency results from FE analyses for the various modeling conditions are shown in Table 6.5, for 

the first 8 flexible modes. Figure 6.3 shows the eighth mode (with transducer inertias modeled) 

with reference to the corresponding mode of a beam without any gravity and inertia effects modeled. 

Table 6.5. Natural frequencies from FEA for various modeling conditions from TEST 2 _ 

  

  

          

Gravity and 

Mode Simple Gravity Load Accelerometer Accelerometer 

Number Model Included Inertias Inertias 

Included Included 

1 14.183 14.533 14.136 14.486 

2 39.096 39.340 38.972 39.216 

3 76.644 76.836 76.409 76.602 

4 126.629 126.860 126.322 126.486 

3 189.262 189.409 188.723 188.869 

6 264.343 264.476 263.614 263.748 

7 351.938 352.062 350.999 351.123 

8 452.049 452.167 450.880 450.998 
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6.1.3 Finite Element Models and Results - TEST 3 

TEST 3 uses the same beam used in TEST 2. The objective of this test was to asses the influence 

of the exciter (shaker/force transducer) location on the modal properties. As described earlier, the 

test has two models, Model 1 and Model 2. Model 1 tag is used for the case in which the driving- 

point is located at the top of the beam, while Model 2 tag is used for the case in which the 

driving-point is located at the bottom. The transducer used in this test had minimal mass relative 

to the force transducer mass. Hence, it is not modeled in the FE model. The FE analyses done 

was based on 62 Euler-Bernoulli beam elements. The results are shown in Table 6.6. 

Table 6.6. Natural frequencies from FEA for various modeling conditions from TEST 3 (Model 1) 

  

  

          

Gravity and 
Transducer 

Mode Simple Gravity Transducer 
Inertias 

Number Model Included Inertias 
Included 

Included 

1 14.183 14.533 14.051 14.394 

2 39.096 39.340 38.749 38.986 

3 76.644 76.836 75.993 76.179     
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6.2 Results from Experimental Modal Analyses 

In this Section, results obtained from the 3 modal tests will be outlined. Only estimates of natural 

frequencies and damping ratios, along with FE natural frequencies, will be presented. The results 

for mode vectors will be presented in the next Section, where comparisons will be made with FE 

models, using the modal assurance criterion (MAC). Since the FRFs were curve-fitted individually, 

there are as many estimates of the global modal parameters as there are FRFs (measurement lo- 

cations). Therefore, to show the variability in estimating these global parameters, they are stated 

as a mean with the associated standard deviation. Also, the mean value of these parameters are used 

as the true experimental values, for correlation with analytical models. 

6.2.1 Results from TEST 1 

This test was performed, using an electrodynamic shaker as the excitation source, in the frequency 

range 0 - 1000 Hz. FRF estimation was made with the H* type estimator, using 20 distinct aver- 

ages. The details of the test are given in Table 5.1. A total of 46 FRFs were curve-fitted, 23 each 

from translational and rotational response measurements. The FRFs were fitted individually. Ten 

beam bending modes were identified for both translational and rotational measurements. Table 6.7 

shows the first ten beam bending natural frequencies, identified from both translational and rota- 

tional measurements, compared with those from the corresponding FE model. Since the 

accelerometer was moved along the structure to facilitate response measurements at the 23 lo- 

cations, the identified natural frequencies varied slightly for each location. The tabulated results 

show the mean and standard deviation (in parentheses). The figures in the column for FEA natural 

frequencies denote the average value, obtained from the 23 FE analyses (see Tables 6.3 and 6.4), 

and the corresponding standard deviation. 

Results and Discussion 153



Table 6.7. Comparison of FEA and EMA natural frequencies from TEST 1, along with damping ratio 
estimates from EMA 

  

  

  

  

            

EMA 

Mode FEA Translation Rotation 

(S.D.) Natural Freq. Damping Ratio Natural Freq Damping Ratio 

Mean (S.D.) Mean (S.D.) 

1 17.736 17.62 (0.06) 7.135 (1.007) 17.54 (0.25) 7.705 (1.459) 

(0.017) ; 

2 48.899 48.14 (0.19) 2.664 (0.588) 48.16 (0.12) 2-540 (0.116) 

(0.044) 

3 95.878 94.35 (0.33) 1.273 (0.107) 94.26 (0.16) 1.288 (0.110) 

(0.083) 

4 158.512 155.95 (0.59) 0.820 (0.188) 155.78 (0.23) 0.800 (0.226) 

(0.133) 

5 236.817 233.00 (0.28) 0.568 (0.118) 232.97 (0.20) 0.534 (0.031) 

(0.195) 

6 330.792 325.88 (0.24) 0.417 (0.022) 325.89 (0.25) 0.418 (0.047) 

(0.267) 

7 434.435 433.77 (0.33) 0.286 (0.013) 433.80 (0.37) 0.290 (0.014) 

(0.350) 

8 565.743 557.51 (0.40) 0.221 (0.048) 557.52 (0.41) 0.221 (0.050) 

(0.442) 

9 706.711 696.61 (0.51) 0.192 (0.008) 696.92 (0.51) 0.192 (0.010) 

(0.542) ° 

10 863.333 851.93 (0.64) 0.158 (0.006) 851.88 (0.60) 0.156 (0.008) 

(0.648)     
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6.2.2 Results from TEST 2 

This test was performed in the range 0-500 Hz. Impulse excitation using an impact hammer was 

the excitation source. FRFs were obtained using the H estimator, using 10 distinct averages. The 

details of the test are outlined in Table 5.2. The same accelerometer used in TEST 1 is used here 

and the response location is fixed at the bottom of the beam. Impact excitation was made at 61 

equally spaced locations along the beam. FRFs were acquired from only translational measure- 

ments. These FRFs were curve-fitted individually and 8 beam bending modes were identified. 

Table 6.8 shows the results for natural frequencies and damping ratios along with FE natural fre- 

quencies. 

Table 6.8. Comparison of FEA and EMA natural frequencies from TEST 2, along with damping ratio 
estimates from EMA 

  

  

  

        

EMA 
FEA 

Mode . . 
Natural Natural Freq. Damping Ratio 

Numbe 
“ee Freq. Mean (S.D.) Mean (S.D.) 

1 14.486 14.502 (0.152) 4.194 (1.953) 

2 39.216 39.565 (0.084) 1.538 (0.260) 

3 76.602 77.575 (0.117) 0.760 (0.169) 

4 126.486 128.198 (0.346) 0.472 (0.044) 

5 188.869 191.625 (0.035) 0.321 (0.005) 

6 263.748 267.722 (0.149) 0.233 (0.051) 

7 351.123 356.491 (0.042) 0.185 (0.012) 

8 450.998 458.034 (0.182) 0.314 (0.072)   
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6.2.3 Results from TEST 3 

This test was performed in the frequency range 0 - 125 Hz. Two tests, Model 1 (shaker located at 

the top of the beam) and Model 2 (shaker located at the bottom of the beam), were conducted. 

The main objective of the test was to study the influence of the location of shaker on the modal 

parameters. FRFs were acquired from translational measurements using the H, estimator, at 21 

equally spaced locations along the beam. The response measurements were made using an 

accelerometer having minimal mass. The FRFs were curve-fitted individually and three beam 

bending modes were identified. The results for natural frequencies and damping ratios are shown 

in Table 6.9, for both models. 

Table 6.9. Comparison of natural frequencies and damping ratios obtained from EMA for Model 1 and 

  

  

  

              

Model 2 

Shaker attached at Shaker attached at 

top of the beam bottom of Mode p m of the beam 

Number Natural freq. Damping ratio Natural freq. Damping ratio 

Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) 

1 14.389 (0.010) 1.137 (0.074) 14.427 (0.038) 1.154 (0.107) 

2 39.595 (0.032) 0.469 (0.018) 39.588 (0.023) 0.405 (0.321) 

3 77.602 (0.036) 0.281 (0.020) 77.404 (0.103) 0.250 (0.088) 
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6.3 Comparison and Discussion of Results 

6.3.1 Correlation Between Test and Analysis Models - TEST 1 

Natural Frequencies 

Table 6.7 lists the natural frequencies obtained from FEA and EMA. Note that the frequencies 

from FEA are consistently higher than those from EMA. This, among other factors, could be at- 

tributed to uncertain values used for material properties. Furthermore, frequencies identified from 

rotational and translational measurements are not identical, as they are obtained by curve-fitting 

different FRFs. Moving the accelerometer along the structure to make response measurements 

changes the system (structure), hence the natural frequencies. This can be seen from the standard 

deviation of the natural frequencies obtained by EMA for each mode. The correlation between 

EMA and FEA natural frequencies is shown in Fig. 6.4. There is excellent correlation between 

EMA and FEA natural frequencies. The nature and degree of correlation obtained suggests that 

the observed small differences between EMA and FEA frequencies must be the result of using in- 

correct values for the material properties of the beam. 

FE analyses were performed, with the force-transducer and accelerometer mass modeled, for each 

response location used in EMA. For each run (FE analysis), the natural frequency and the modal 

displacement of the location of the accelerometer, for all the 10 modes were recorded. Thus simu- 

lating the effect of moving the accelerometer in the testing. From the results obtained, correlations 

were made with the EMA results to see whether the variation of natural frequency with response 

location in EMA was due to the accelerometer mass. Figure 6.5 shows the correlation obtained, 

for rotations and translations, for the first 10 modes. As can be seen, lower modes show reduced 

correlation, whereas higher modes show correlation of above 95%. Since the spectral resolution 

used in the FRF estimation was 2.5 Hz, fluctuation in frequency for lower modes, being small, 
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tended to be more susceptible to noise. This clearly shows that the variation of natural frequency 

with response location, observed in EMA results, is due to the changing locations of the 

accelerometer. From Table 6.7, the standard deviation of the variation in natural frequencies from 

EMA compares very closely with those from FEA. Also, the variation is closer for higher modes 

than for lower modes (frequencies), which could be attributed to the frequency resolution used. 

Thus, the actual variation of frequencies due to the curve-fitting process is very small. 

A Linear Regression Model for Correlating EMA and FEA Natural Frequencies 

Using the data presented in Fig. 6.4 , a linear regression analysis is performed between FEA and 

EMA natural frequencies. The following linear regression model is used, - 

Y=A+BX (6.1) 

where, coefficients A and B are estimated based on data in Fig. 6.4. The estimates of 4 and B will 

be denoted by Aand B respectively. Based on these estimators A and B, the linear regression model 

in Eq. (6.1) can be represented as, 

A A 

Y=A+BX (6.1a) 

These estimators are unbiased estimators of the linear regression parameters > A and B. That is, 

E\A} = A (6.2) 

E\B} = B (6.3) 

The FEA natural frequencies are denoted by the independent variable X and the EMA frequencies 

by Y. Ideally (for perfect correlation in our case), the estimate A should have a value of “0” and 

the estimate B a value of unity. However, if random and/or bias errors are present, then the esti- 

25 See Draper, N.R. and Smith, H., Applied Regression Analysis, Wiley, New York, 1981, 2nd ed. 
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mates A and B deviate from their ideal values. The estimates A and B are estimated using the 

method of least-squares, and are obtained as 

A = —0.301069 B = 0.986411 (6.4) 

The standard deviation of the above two estimates is obtained as, 

a. = 0.177885 on = 0.000402 (6.5) 

From the above standard deviation for the estimators A and B we note that there is higher vari- 

ability in estimating A than in estimating B. Using the student’s ¢-distribution, 95% confidence 

levels can be established for the parameters (estimates) A and B*6, Based on 8 statistical degrees 

of freedom (a sample size of 10), they are 

—0.621995 < A <_ 0.019857 (6.6) 

0.985484 < B < _  0.9873338 (6.7) 

Since the confidence bounds for the parameter A includes the value “0” in its range, the possibility 

that 0 is the true value of A cannot be ruled out, at 95% confidence level. However, confidence 

bounds for the parameter B does not include the ideal value of “1” in its range. Therefore, the true 

value of B lies in the range specified by Eq. (6.7), at 95% confidence level. Indeed, this is to be 

expected, since the true values for the material properties used in the FE model are unknown. 

Furthermore, shear deformation and rotatory inertia effects are not accounted for in the FE model, 

because of using the Euler-Bernoulli beam element. All these factors contribute to the non-unity 

condition of the parameter B. 

Quantifying Errors in Natural Frequency Estimation 

26 Lipson, C. and Sheth, N., Statistical Design and Analysis of Engineering Experiments, McGraw Hill, 1973 
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Although finite element models are used here as the reference, the true (accurate or actual) values 

of modal parameters are not known. For example, the true values of natural frequencies are un- 

known. However, experimentally obtained natural frequencies are in close agreement_with analyt- 

ically (FEA) established natural frequencies. This conclusion can be made based on the linear 

regression model presented above. It was shown that the experimental and analytical frequencies 

differed only by a scale factor, which was identified as being due to incorrect values of material 

properties used in the FE model. Based on these observations we can conclude that the exper- 

imentally identified frequencies are accurate (within the limits of capabilities of the processes used 

in EMA). Since the curve-fitting was done to each FRF individually, there are as many natural 

frequency estimates as there are FRFs. Ideally, each estimate of the natural frequency should be 

identical. In practice, the combined errors due to measurement (transduction, signal-processing and 

FRF estimation) and modal parameter estimation (curve-fitting) contribute to the scatter observed 

for these estimates. Therefore, the average (arithmetic mean) of these estimates is a good estimate 

of the true natural frequency. Of course, we make the assumption that the scatter is random. 

Furthermore, the scatter (variance) should provide a good indication of the error in the exper- 

imental determination of the natural frequencies. 

The errors in estimating natural frequencies have already been quantified in various forms. Table 

6.7 shows the standard deviation of natural frequency estimates and Fig. 6.5 shows the correlation 

observed for shifts in natural frequencies due to changing accelerometer locations. Figure 6.4 and 

the corresponding linear regression model give an idea of the degree of correlation that exists be- 

tween experimental and analytical natural frequencies. Since the accelerometer location changed 

for each measurement, the natural frequencies of the system changed too, depending on the lo- 

cation. This explained the increased standard deviation observed in estimating higher modes (see 

Table 6.7). 

The error in estimating the natural frequencies can also be quantified for each location (from 

measurement to measurement). This can be done by stating the percentage deviation, from nomi- 

nal or mean value, of each estimate of a natural frequency. Since the natural frequencies change 
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for each measurement, nominal values can be only determined in an approximate fashion. Based 

on this error modeling, the following observation is made 

_ 

e The errors are significant only at locations close to a nodal point of a mode. These errors are 

due to very poor signal-to-noise ratios and are all within 2% of the corresponding nominal 

values. 

Mode Vectors 

Mode shapes from EMA are correlated with those from FEA using the modal assurance criterion 

(MAC). Figures 6.6 and 6.7 show the MAC values for translational and rotational mode vectors 

respectively. Further, these Figures also show the improvement in correlation obtained by includ- 

ing the accelerometer and the force transducer inertias in the FE model. Though the increase in 

correlation is small, higher modes show larger increase in correlation as compared to lower modes. 

This can be seen in Figs. 6.6 and 6.7, corresponding to translational and rotational modes respec- 

tively, where modes 1 through 10 are shown. Thus, the amount and trend in which correlation in- 

creases indicates that the process of experimental modal analysis is sensitive enough to measure the 

effect of accelerometer and force transducer inertias on the structure’s dynamics. The MAC values 

for rotations are very poor compared to translations. This was primarily due to the very poor 

quality of rotational measurements. The signal-to-noise ratios for rotational measurements was 

quite low. Both translational and rotational data exhibit relatively poor correlation for the first 

mode, compared to other lower modes. The only probable reason seems to be the spectral resol- 

ution used in FRF estimation. 

Another observation that can be made from the correlation of translational mode vectors is that the 

MAC value progressively decreases for higher modes. Considering the nature and extent of im- 

provement in correlation realized in including the transducer inertias in the FE model, and ob- 

serving the closeness in standard deviation values obtained from EMA and FEA, for natural 

frequencies, it could be inferred that the cause of such a trend cannot be due to inertia-loading ef- 
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fects of the transducer inertias. The above observations lead to the suspicion of the boundary that 

exist in reality. The shaker attached to the beam adds inertia and moment restraint. These could 

be eliminated by performing a modal test using an impact hammer as the excitation source. 

Quantifying Errors in Estimating Modal Displacements 

Based on the degree of correlation (MAC) seen between experimental and analytical mode vectors, 

we conclude that the mode vectors from EMA must be very accurate. It should be pointed out 

here, as a reminder, that the FE results are based on the Euler-Bernoulli beam element, which does 

not account for rotatory inertia and shear deformation effects. These effects are assumed to be 

negligible for the case at hand, on account of the high degree of correlation observed for the mode 

vectors between EMA and FEA. Also, this was justified because results from Table 6.2 suggest that 

the influence of shear deformation and rotatory inertia effects for the frequency range considered 

here is indeed small. Therefore, based on these assumptions, the errors in estimating modal dis- 

placements are quantified using the FE model as the reference. The error in estimating the modal 

displacement (imaginary component of the residue) is stated as a percentage deviation from the 

corresponding displacement from the FE model. The following observations are made, 

¢ The error in estimating the modal displacement are all within 5%, except for locations near the 

nodal points of a mode. 

e At locations close to nodal points the error is very significant. These are as high as 100 to 200 

percent. However, since these displacements are very small, about two orders of magnitude 

Jess than the maximum modal displacement, such large errors associated with these displace- 

ments do not alter the quality of the mode vectors significantly. 
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6.3.2 Correlation Between Test and Analysis Models - TEST 2 

Based on the results from TEST 1, two main objectives of this test were: 

1. To see the degree of variability in estimating the modal parameters, inherent to the modal test 

and identification procedure. This could not be directly ascertained from TEST 1, due to the 

effect of moving the accelerometer in the test. 

2. To know whether the gravity force acting on the beam, suspended vertically, affects the struc- 

ture’s lower modes significantly. This was suspected because of the lower correlation observed 

for the first mode, compared to other lower modes in the previous test. - 

Natural Frequencies 

Table 6.8 compares natural frequencies obtained from EMA and FEA. Also, damping ratios esti- 

mated from EMA are shown. As can be seen, the FEA frequencies are consistently lower than the 

EMA frequencies. Figure 6.8 shows the correlation between EMA and FEA natural frequencies. 

Again, as with TEST 1, excellent correlation 1s observed. Since the test is done with the 

accelerometer location fixed at the bottom of the beam through-out testing, natural frequencies 

obtained should be consistently same for all locations, within the limits of experimental error. Note 

the high degree of consistency in identifying natural frequencies and damping ratios. ‘These errors 

are quantifiable and are inherent to the EMA process. Note that these errors are much lower than 

those seen in TEST 1. The larger standard deviations observed for TEST | are due to the effect 

of moving the accelerometer mass. 

A Linear Regression Model for Correlating EMA and FEA Natural Frequencies 

Again, as before, a linear regression model based on Eq. (6.1) can be used to assess the degree of 

correlation achieved between FEA and EMA natural frequencies. Using data from Fig. 6.8 (Table 
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6.8), the parameters A and B in Eq. (6.1a) can be estimated using the method of least-squares. The 

estimates A and B are obtained as 

A = —0.273519 B = 1.016124 (6.8) 

The standard deviation of the above two estimates is obtained as, 

a4 = 0.021603 of, = 0.000091 (6.9) 

The standard deviation of both the estimates 4 and B are much lower than those seen for TEST 

1. The standard deviation of the estimator B, in particular, is very low. This could be identified 

as being due to the lower standard deviations seen in estimating the natural frequencies (Table 6.8). 

Using the student’s t-distribution, 95% confidence levels can be established for the parameters (es- 

timates) A and B. Based on 6 statistical degrees of freedom (a sample size of 8), they are 

—0.315375 < A < —0.231663 (6.10) 

1.015900 < B <_ 1.016347 (6.11) 

Since the value 0 (for A) does not lie within the confidence bounds, we could say that the true value 

of A is not 0, at 95% confidence level. Therefore, there is a bias equal to a value specified by the 

range in Eq. (6.10). Since the mean value of this is around -0.274 Hz, the bias is quite negligible. 

Also, the true value of the parameter B lies in the range specified by Eq. (6.11), at 95% confidence 

level. Once again, the same argument used with TEST | data can be used here. Thus, non- 

inclusion of shear-deformation and rotatory inertia effects and incorrect material property values 

used in the FE model could account for the scaling difference. 

Quantifying Errors in Natural Frequency Estimation 

Compared to data from TEST | results (Table 6.7) the scatter in estimating natural frequencies is 

much lower for TEST 2 (Table 6.8). As a result, the parameters in the regression model had lesser 

standard deviation. Since the accelerometer location is fixed in this test, it is possible to use the 

Results and Discussion 168



mean value of all the natural frequency estimates as the nominal value. Again, the errors in esti- 

mating natural frequencies can be stated as a percentage difference between the nominal (mean) 

value and the actual value. The following observation is made, 

* Errors are significant only at locations near nodal points of a mode. These errors are less than 

2% to 3% of the nominal value for each mode. 

Mode Vectors 

Mode shape correlations between EMA an FEA are shown in Figs. 6.9 and 6.10. As with TEST 

1, excellent correlations are observed, except for the first mode which has. a MAC value of 0.977. 

Modes 2 through 8 have a typical MAC value in excess of 0.998. Note the increased MAC values 

obtained by including the accelerometer inertias in the FE model. Figure 6.10 shows this for modes 

2 through 8. The trend seen is qualitatively similar to the one observed for TEST |. Correlations 

performed with the FE model that included the gravity force did not show any significant change 

compared to the correlations with FE model that did not account for gravity force. 

Quantifying Errors in Estimating Modal Displacements 

Using the modal displacements from FE model as the reference, the errors in estimating modal 

displacements are evaluated. The same procedure used for quantifying errors of mode vectors from 

TEST 1 is used here. The following is the observation made, 

¢ Except at locations close to nodal points of modes, the errors are typically less than 5%. At 

locations close to nodal points, as with mode vectors from TEST 1, large errors of the order 

of up to 200% are noted. Since displacements at locations close to nodal points are so small, 

these large errors do not impact the quality of the mode vectors significantly. 
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6.3.3 Correlation Between Test and Analysis Models - TEST 3 

The main objective of this test was to assess the influence of shaker location on the resulting modal 

model. Three modes were identified and the results for damping ratios and natural frequencies for 

the two models are given in Table 6.9. 

Natural Frequencies and Damping Ratios 

Since the test was done on the same beam used for TEST 2, comparisons can be made with results 

from TEST 2. In particular, the damping ratio estimates from this test differ widely from the esti- 

mates from TEST 2. The difference for the first, second and the third mode are approximately 

350%, 300% and 300% respectively. The frequency resolution used in this test being 0.3125 Hz., 

the damping estimates are more accurate than the estimates from TEST 2. The standard deviation 

values seen for natural frequency and damping ratio estimates are much lesser than those observed 

in TEST 2. 

Mode Vectors 

The results of correlation of mode vectors between the test and FEA are shown in Fig. 6.11. Mode 

vectors from Model 1 seem to be as good as the ones from the previous tests (TEST 1 and TEST 

2). However, the MAC values for Model 2 suggest that the quality of the mode vectors are poor. 

The first mode, in particular, seems to have suffered the most, though the natural frequency of the 

first mode has not changed significantly. This implies that the data for the first mode is in serious 

error, and indeed, this is the case. The first mode from Model 1 and Model 2, plotted against the 

corresponding FEA mode vectors are shown in Figs. 6.12 and 6.13 respectively. Compared to 

Model 1, Model 2 results seem to be very poor, as is evident from the plots. 

The driving-point FRFs (accelerance) for the two models are shown in Fig. 6.14. Observing the 

lower end of the frequency range, Model 1 suggests a behavior typical of structures which are 
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dominated by mass effects whereas the corresponding region from the FRF of Model 2 suggests a 

stiffness domination. This leads one to doubt the validity of the boundary conditions which the 

configuration in Model 2 is supposed to simulate. An examination of all the FRFs from Model 2 

showed the same characteristics seen in the lower frequency range of the driving-point FRF (Fig. 

6.14b). Further, examination of all the curve-fits on these FRFs showed a spurious mode below 

the first mode. The first mode was at approximately 14.5 Hz, whereas the spurious mode had na- 

tural frequencies ranging from | to 10 Hz (the median value being between 3 and 4 Hz), depending 

on the FRF. The parameter estimation algorithm had identified a structural mode in the frequency 

range 0 to 10 Hz, for all the FRFs. Since the algorithm is an MDOF curve-fitter that accounts for 

the contribution of out-of-band modes, it produced erroneous estimates for the first mode (note, 

however, the natural frequency estimates for the first mode were not affected ). Though the natural 

frequencies are not substantially different between the two models, the mode vectors are. This 

shows that the importance of proper test configuration and exciter location cannot be under- 

emphasized. Another important observation which could be made from TEST 3 results ts that the 

variance (standard deviation) of the natural frequency and damping ratio estimates are very low, 

compared to tests 1 and 2. In fact, comparison of the estimates from the first three modes from 

TEST 2 proves this point. Therefore, the quality of the modal parameter estimation is seen to be 

excellent. 
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6.4.4 Investigation/Reconciliation of Poor Correlation Observed for the First 

Mode 

The first mode, in all the tests conducted seems to have a poor correlation with analytical pred- 

ictions from FEA. Only the first mode seems to have suffered the most, while the higher modes 

have good correlation with FEA results. Therefore, speculations made to reconcile the observed 

lower correlation for the first mode are limited to those factors which typically yield poor results in 

the lower frequency range. The following are some of them: 

1. The frequency resolution used in the spectral estimation is one plausible reason. The fre- 

quency resolution used in these tests are shown in Table 6.10. The frequency resolution used 

in TEST 1, as a percentage of the natural frequency of the first mode is approximately 14%. 

This could yield substantially biased results. Since the bias results due to frequency resolution, 

both the autospectra and cross-spectra are susceptible to this type of bias error. 

2. In all the 3 tests, the beam was suspended vertically by means of an elastic cord. This intro- 

duces a uniformly varying gravity force on the beam which increases its stiffness and hence its 

potential energy. Since this increase in potential energy is very small, its impact on higher 

modes is negligible. From FE analyses done, the increase in natural frequency for the first 

mode is approximately 0.3 Hz. Compared to the frequency resolution used in the tests, this 

increase does not seem substantial enough to be detectable. Even so, the effect due to other 

factors are more sensible and could mask any changes in modal properties due to the presence 

of the gravity force. 

3. The test configuration used for all the three tests was intended to simulate free-free boundary 

conditions. Ideally the test configuration in which the structure is supported at its center of 

gravity, is the best one to use [32]. It allows for the desired rigid-body motions in the coordi- 

nates used in the testing. However, a knowledge of the location of center of gravity is not 
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known for practical structures. Further, suspending a practical structure suitably at its center 

of gravity may not be practical. 

- 

The test configuration used in the tests conducted do not allow for zero-frequency rigid-body 

motions. Using the analytical model developed in Chapter 3, the following rigid-body prop- 

erties could be realized for the configuration used in TEST 2. 

For the data, m= 7832.3 kg/m? , L; = 1.3208m, L, = 1.5240m and g = 9.81m/ sec*, we have 

the following modal parameters, 

0.8837 : 
f, = 0.3375 Hz {f}, = (6.124) 

1.0 

—0.6529 
fy = 1.2719 Hz {o}. = (6.125) 

1.0 

Equations (6.12a and 6.12b) represent the two rigid-body modes of the the two-degree-of- 

freedom analytical model given by Eq. (3.40) in Chapter 3. Since the rigid-body modes occur 

at very low frequencies, curve-fitting them with in the presence of a lot of noise in the data can 

be a formidable task. If one works on the hypothesis that the rigid-body response contributes 

to the total response at frequencies around the first resonance, then, such a trend should be 

observable in the resulting mode vector. Using such an assumption, the mode vectors from 

FEA (transducer inertias included in the model) are plotted against the mode vector obtained 

from EMA, as shown in Fig. 6.15. Removing 7 of the poorer data points from the data and 

fitting the difference in modal displacements between EMA and FEA to a straight line, the 

following result is obtained 

Y = 0.06756 — 0.001515 X (6.13) 
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where, Y is the difference in modal displacements between EMA and FEA and _X is the coor- 

dinate along the length of the beam. As can be seen in Fig. 6.15, there is a very systematic 

difference between the experimental and analytical mode vector which suggests the linear trend 

seen above in Eq. (6.13). Further, using the mobility form of the FRF equation?’, we could 

write 

  
~ 1D jr Pky 

no) =D) a (6.14 
r=] i —w' + i(2C,w,o) 

If the modal properties of the rigid-body modes are known, then an estimate of its contribution 

to the response at the first resonance can be made. 

4. In the tests conducted, the response signals were weighted with an exponential window. With 

the exception of TEST 2, in which the impulse signal was used, burst random excitation was 

used in all tests, and an exponential window was used to process the data. Since excitation 

and response signals have zero-frequency (DC) components in them, application of an expo- 

nential window would result in significant amount of leakage at the lower end of the spectrum, 

while performing a base-band analysis. This might be a plausible reason for the poor quality 

of the first mode. 

5. Finally, the boundary conditions which exist in reality in the actual structure, which are ob- 

viously different from the ideal free-free conditions, can change the response (modal) charac- 

teristics at low frequencies. Hence, the systematic difference between the EMA and FEA 

results, observed in Fig. 6.15 and described by Eq. (6.13), could be due to the real boundary 

conditions in the test structure, as opposed to the ideal free-free conditions assumed in ana- 

lytical modeling 

27 ‘The curve-fitter uses the mobility form of FRF to extract modal parameters 
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Table 6.10. Results for the first mode from TEST 1,TEST 2 and TEST 3 

  

  

  

          

Test 3 

Parameters Test 1 Test 2 

Model 1 Model 2 

MAC 0.9974 0.977 0.979 0.926 

Natural 
17.62 (0.06) 14.502 (0.152) 14,389 (0.010) 14.427 (0.038) 

Frequency 

Damping 
7.135 (1.007) 4.194 (1.953) 1.137 (0.074) 1.154 (0.321) 

Ratio 

Frequency 
; 2.5 1.25 0.3125 0.3125 

Resolution 

(Hz)     

6.5 Summary of Results 

Three modal tests were performed with a goal of identifying the contribution of the transduction 

and modal identification process to the inaccuracy of experimentally derived modal models. This 

was done by comparing results from three experimental modal test and analyses with those from 

corresponding finite element models. Comparisons were made for natural frequencies and mode 

shapes. Correlation between experimental and analytical natural frequencies was made using linear 

regression models. The modal assurance criterion (MAC) was used to establish the accuracy of the 
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mode vectors from EMA, with reference to those from FEA. The results obtained and the relevant 

discussions were presented in the earlier Sections. They are summarized below: 

e Linear regression models were used to evaluate the degree of correlation between natural fre- 

quencies from EMA and FEA. This was done for both TEST 1 and TEST 2. The nature 

and extent of correlation obtained suggested that the EMA and FEA natural frequencies dif- 

fered only by a scale factor. This was chiefly due to incorrect material property values used in 

the FE model. 

e = Inertia-loading of the structure due to roving accelerometer was a prominent feature of TEST 

1. The variation of natural frequencies due to moving the accelerometer in the test was shown 

to have very good correlation with the variation predicted from FE analysis. With the excep- 

tion of the first three modes, all modes showed correlation in excess of 95 %. Poor correlation 

observed for the lower modes was due to insufficient frequency resolution used in the FRF 

estimation. Further, the amount of variation in natural frequency for modes 5 through 10 were 

shown to be in good agreement with those predicted from the FE model, thereby explaining 

the high variances in estimating the natural frequencies. This clam was made based on the 

results from TEST 2, where the variances were much lower due to fixed (non-roving) 

transducer location. 

e The errors in estimating natural frequencies were quantified, through various comparison 

methods, for both TEST 1 and TEST 2 results. Also, the errors were quantified on a 

location-by-location (spatial) basis. From this it was shown that the EMA natural frequencies 

were in substantial error only at locations near nodal points of modes. These errors were less 

than 2 to 3%. 

e The quality of the mode vectors from the experimental modal models from TEST | and TEST 

2 were excellent. This conclusion was made based on the MAC values obtained for EMA 

mode vectors, using the mode vectors from FEA as the reference. Typically, these were above 
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0.99 for both TEST 1 and TEST 2 results. These MAC values provided a quantitative state- 

ment of the overall error in the mode vectors from EMA. The EMA process was shown to 

be sensitive enough to detect changes in mode shapes due to the inertia-loading effect by 

transducers. This was demonstrated for mode vectors from both TEST 1 and TEST 2. The 

rotational mode vectors obtained from TEST 1, however, are poor. This was due to the poor 

quality of rotational measurements, as the coherence function estimates for rotational meas- 

urements demonstrate. The primary reason for poor coherence was low signal-to-noise ratios. 

In any case, the quality of the coherence function estimates, at the testing stage, did not suggest 

such poor rotational mode vectors. More importantly, this points to the deficiencies in qual- 

ifying the FRF data in a subjective manner, by qualitatively assessing the coherence function 

estimates. 

e The first mode from the three tests, in particular from TEST 2 and TEST 3, had a relatively 

lower correlation, when compared to other lower modes of the structure. The reasons for very 

low MAC value seen for the first mode from Model 2 (TEST 3), were discussed earlier. Since 

the first mode occured at a low frequency, it was affected by several factors which were cited 

and discussed elaborately. The effect of gravity on the first mode of the beam was studied in 

detail analytically, however, analytical predictions were not validated by experimental results. 

This was primarily due to the very small influence of the gravity force on the beam’s first mode, 

in conjunction with insufficient frequency resolution used in the testing. Further, a host of 

other factors were identified, which collectively influenced the data obtained for the first mode, 

that could not be successfully delineated. The influence of the transducer inertias was one 

exception. 

e = As was done for natural frequencies, the error in estimating modal displacements were quan- 

tified spatially, ie., on a location-by-location basis. This was done for mode vectors from both 

TEST 1 and TEST 2 results. The problem locations, again, were nodal points of modes. The 

errors were specified as a percentage difference between EMA modal displacements and the 

corresponding FEA modal displacements. These errors appeared to be random, and were 
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mostly within 5%, except at locations close to nodal points of modes. At locations close to 

nodes, the errors were substantially high, up to 200%. As was stated earlier, these errors were 

insignificant in that the modal displacements (at these locations) themselves were very very 

small. 

e The impact of insufficient frequency resolution on the accuracy of the modal model was shown 

from the three tests. The modal properties of modes with low frequencies were the most vul- 

nerable, as might be expected. The damping estimates in particular were highly susceptible to 

error due to insufficient frequency resolution. This was demonstrated through results from 

TEST 3, for the first three modes, by comparing them with TEST 2 results. 

e It was shown, through results from TEST 3, that proper choice of test-configuration and 

exciter location is very vital to realizing an accurate modal model. Also, the influence of the 

test configuration and exciter location on the first mode was shown by plotting the results from 

EMA against those from FEA. 

e The contribution of the parameter estimation procedure to the inaccuracy and inconsistency 

of the modal model was very negligible, compared to errors introduced into the experimental 

model by other processes used. This was clear from the statistical quality of the global modal 

parameters, in all the three tests. Furthermore, in cases where poor correlation was observed, 

for natural frequencies and mode vectors, and inaccurate damping estimates made, they were 

reconcilable as being due to factors other than parameter estimation. 
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Chapter 7 

Conclusions 

The goal of this thesis was to identify and quantify errors in modal models derived experimentally 

using FFT-based procedures. The interest was on errors incurred in estimating natural frequencies 

and mode shapes. Specifically, the contribution of the transduction (measurement) and modal 

identification process to the inaccuracy of the final modal model was the focus of the effort. Based 

on the results obtained, the following conclusions are drawn: 

e The contribution of the transduction processes to the inaccuracy is very small. Quality 

transducers and careful measurements can hold this error to negligible levels. 

¢ Given good quality FRF data - good signal-to-noise ratios, sufficient frequency resolution, etc., 

the errors that result from parameter estimation are statistically insignificant. 

¢ Both natural frequency and residue estimates are very poor at locations close to nodal points 

of modes. All the four modal parameters are in substantial error at these locations. The na- 

tural frequency estimates were the poorest of all modal parameters, the error being around 2 

to 3%. 
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e Poor signal-to-noise ratios and insufficient frequency resolution were the singular limiting fac- 

tors, apparently, to the accuracy of experimentally derived modal models. 

e The choice of test structure support has to be carefully made. An erroneous choice may imply 

wrong boundary conditions that may alter the final model substantially. 

¢ Finally, in conclusion, a carefully planned and performed modal test that takes into account 

all the sources of error can yield very accurate models. 
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Latin Symbols 

Uy, Ua, Us 

w(x,f) 

Ow 

Ox 

P(x,t) 

V(x,2) 

P(x,t) 

Ax,t) 

K 

L, 

Appendix A. 

Appendix A. Nomenclature 

displacements in the coordinate directions x, y, Z 

transverse displacement of the beam 

slope due to bending deformation of the beam 

Young’s modulus 

Shear modulus 

length of the beam 

radius of gyration of the transverse cross-section of the beam, about the 

neutral axis 

moment of inertia about the neutral axis of the beam 

transverse cross-sectional area of the beam 

distributed axial load acting on the beam 

net shear force at any transverse cross-section of the beam 

distributed axial load per unit length of the beam 

distributed transverse load acting on the beam 

shear correction factor 

length of a finite element 
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W(x), Vil), Vax) 

[K] 

[M] 

[c] 

det 

Diag 

Cf] 

m 

c 

k 

A(t) 

f 

H(a) 

f,, Hz 

Hy, H,, H,, H° 

Vw) 

A(o) 

xj 

Si 

Hij(o) 

LH(o)] 

Exo) 

Z, 

test functions used in the variational statements of the governing 

equations of motion 

stiffness matrix 

mass matrix 

damping matrix 

determinant of a square matrix 

diagonal matrix 

unit matrix 

mass element of a single-degree-of-freedom system 

viscous-damping element of a single-degree-of-freedom system 

stiffness element of a single-degree-of-freedom system 

impulse response function (IRF) of a single-degree-of-freedom system 

cyclic frequency in Hertz (Hz) 

frequency response function (FRF) of a single-degree-of-freedom system 

univariate FRF estimators 

bivariate FRF estimators 

mobility form of frequency response function (FRF) 

accelerance or inertance form of frequency response function (FRF) 

displacement at location j of a multiple-degree-of-freedom system 

forcing at location k of a multiple-degree-of-freedom system 

FRF of a multiple-degree-of-freedom system, for forcing at k and 

response at / 

FRF matrix for a multiple-degree-of-freedom system 

residue or modal constant in the FRF expression 

experimentally obtained FRF at discrete frequencies i, for forcing at 

k and response at j 

Inertia restraint for forcing at k and response at j 

Residual flexibility for forcing at k and response at / 
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R,f7) 

R,At) 

So) 

Gf) 

Sf) 

G,fo) 

m(t) 

n{t) 

Greek Symbols 

O(x,d) 

W(x,0) 

K(x,0 

& U 

@, 

Dred 

Af 

¢ 

Yr 

Q2, 

Pi, Pj 

auto-correlation function of the time record f{2) 

cross-correlation function between the time records x(t) and /(d) 

two-sided autospectral (powerspectral) density function of the record /(#) 

one-sided autospectral (powerspectral) density function of the record f(t) 

two-sided cross-spectral density function between the records x(‘) and 

i) 

one-sided cross-spectral density function between the records x(é) and 

fd 

noise in the input measurement of a single input/single output linear 

system model 

noise in the output measurement of a single input/single output linear 

system model 

slope of a deformed beam in the Euler-Bernoulli theory 

true slope of a deformed beam in the Timoshenko beam theory 

slope due to shearing deformation in the Timoshenko beam theory 

Green’s strain components 

stress components 

mass density of the material of the beam 

circular frequency in radians per second 

natural frequency of the rth mode in radians per second 

damped natural frequency of the rth mode in radians per second 

frequency resolution (spacing between discrete spectral lines) 

damping ratio of the rth mode (viscous damping) 

damping ratio of the 7th mode (structural damping) 

domain of a finite element 

interpolation functions (Hermite) 
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is Wy 

A, 

{P}, 

{p}", 

Lo] 

LY] 

¥7yx(@) 

interpolation functions (Lagrange) 

eigenvalue of the rth mode 

eigenvector of the rth mode (complex in general) 

complex conjugate of the eigenvector of the 7th mode 

mass-normalized modal matrix for proportionally damped systems 

modal matrix for non-proportionally damped systems 

coherence function between the input x(‘) and output /(d) 
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