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3.1 Overview

Two main types of measurement were performed in the study of these turbu-

lent flow fields. Velocity measurements were performed using a 2-D Laser Doppler

Velocimeter (LDV). The second type of measurement used consists of acoustic mea-

surements. Acoustic measurements serve to support the velocity measurements es-

pecially in the study of the flow dynamics described in Chapter 5. Design, operation

and maintenance of the LDV is described in detail in Appendix A. The pressure

sensor design and calibration is described in detail in Appendix B.

3.2 Velocity measurements

Velocity measurements using a LDV are often used for highly separated flows be-

cause the measurement is non-intrusive and when properly set up the LDV is capable

of measuring both positive and negative velocities. Statistical moment calculations

and frequency domain calculations are however much more involved due to the fact

that the data points are non-uniformly spaced in time. For an ideal LDV, the time

between data points is random, with a Poisson distribution.

3.2.1 LDV overview

Although LDV design is described in detail in Appendix A it is worthwhile here

to briefly give an overview of some interesting aspects of the present implementation.

The laser used is a 5W Argon-Ion laser operating in multi-band mode so that

a range of visible Argon laser lines are excited. The most dominant among these

wavelengths are: 514.5 nm, 496 nm, 488 nm and 476 nm. The two most powerful

lines are the 514.5 nm (green) and 488 nm (blue) laser lines. These two lines are used

for the 2-D LDV.

The LDV measures velocity by collecting scattered light from the diffraction

pattern formed when two coherent laser beams are focused to the same location in

space. The scattered light is modulated at a frequency proportional to the scattering
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particle’s velocity. Additionally, one of the two beams may be frequency shifted to

generate a moving diffraction pattern which then allows not only velocity magnitude

but also direction to be determined. A 2-D LDV uses two pairs of laser beams focused

to the same spot. Each beam pair measures a velocity vector. If both beam pairs

are focused using the same lens, as is the case here, then the two measured velocity

vectors lie in the same plane.

In the present setup, a green beam pair and blue beam pair are focused using

a single 4” achromatic lens. One beam of each pair is frequency shifted by 40 MHz.

The fringe spacing can be calculated to be 1.71µm and 1.62µm for the green and blue

diffraction pattern, respectively. The green (blue) ellipsoidal measurement volume

measures 0.49 mm (0.47 mm) on the major axis and 0.075 mm (0.071 mm) on the

minor axis. Each beam pair is coupled into a single optical fiber to prevent different

fiber lengths or material strains from affecting beam coherence at the measurement

volume.

The scattered light is collected by a 2” achromatic lens, focusing the light into

a 50µm core multi–mode fiber optic cable. Upon exit from the multimode fiber, the

light is collimated and separated by wavelength using a dichroic mirror. The sepa-

rated beams are then further narrow bandpass filtered for the respective wavelengths

(488 nm and 514.5 nm).

The filtered light flux is converted to electric current by a photo multiplier tube

(PMT). The output of the PMT is transimpedance amplified and then high pass fil-

tered (25 MHz cut-off frequency). The electronic signal is then mixed with a reference

frequency. The output of the mixer is low pass filtered (cut-off frequency of 30 MHz)

to isolate the frequency difference component of the mixer output. The output of the

low pass filter is amplified using a custom built high bandwidth op-amp circuit and

then sent on for collection by high speed data acquisition. The output from the op-

amp circuit is also used as the input to a trigger circuit that is used to determine the

presence of a Doppler burst in the electronic signal. The issued trigger is used to initi-

ate the high speed A/D Doppler burst collection and to time stamp the occurrence of

the burst. The system supports three trigger sources. The system can trigger on the
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presence of a green or blue burst alone, or it can trigger only if both a green and blue

burst are detected within a given coincidence window. For any trigger mode however,

when a trigger is issued both the green and blue electronic signals are collected. Thus

the system always takes coincident data. The system can take successive bursts until

the onboard memory of the high speed data acquisition card has been filled. For lower

flow velocities, where a 25 MHz burst sampling frequency was sufficient, 256 samples

are collected for each burst and 8065 bursts can be collected for each velocity compo-

nent. For higher flow velocities, the burst length had to be increased to 512 samples

to maintain frequency estimation accuracy and consequently only 4064 bursts could

be collected for each of the velocity components. To obtain sufficient data to form

reliable statistical quantities and reasonably smooth power spectra, multiple blocks

of 4064 or 8065 bursts were collected. Ideally, based on the memory on the board,

4096 and 8192 bursts should be able to be collected respectively. However, the high

speed data acquisition board uses some of the memory to store the memory address

of the exact starting and stopping points of each burst.

The collected bursts are analyzed for frequency content using an autoregressive

scheme with 20 parameters representing the spectrum (Marple, 1987). The spectrum

peak is found by quadratic interpolation of the logarithmic power spectrum values.

In addition to the frequency, a measure of the signal to noise ratio (SNR) is also

calculated. For the present application the SNR is defined as the logarithm of the

peak interpolated power spectrum magnitude divided by the average power spectrum

value. The calculated SNR is used to discard low quality Doppler bursts from the

data set. Generally, data points with an SNR greater than 1.50 were found to be

acceptable.

The trigger pulse widths of both trigger circuits can be adjusted using poten-

tiometer dials. The data acquisition trigger pulse width can also be changed by

potentiometer. The data acquisition trigger pulse width can be used to inhibit the

LDV from data collection for some short period of time. For the measurements pre-

sented herein the maximum repeat frequency was allowed to be around 20,000 Hz.

For this high trigger rate, it is likely that a given particles’ velocity was measured
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more than once while in the measurement volume. Investigations using sinusoidal

excitation showed that the high trigger repeat frequency does not affect the results

adversely. Even at a frequency of 400 Hz, the sinusoidal velocity response was un-

affected. Inhibition of the trigger is important in cases where large seed particles

that are unable to follow the flow adequately are present and could cause errors in

the measurement. The present LDV is virtually immune to such a situation because

particles too large to follow the flow adequately are also too large to generate well

defined Doppler bursts due to the relatively small fringe spacing.

3.2.2 Velocity statistics

The interpretation of time resolved velocity data from LDV measurements re-

ceived a lot of attention early in the evolution of the instrument (Donohue et al.,

1972). The major concern is that the random sample rate introduces a bias in the

statistics calculated from an ensemble of data points (i.e. statistics weighted on a

point by point basis). The bias stems from the fact that if seed particles are uni-

formly distributed in the flow to be measured, then more Doppler bursts will be

registered during a period of high velocity than during a period of low velocity. Con-

sequently, different algorithms have been developed to remove such a bias from the

calculated statistics. The most popular among these are the residence time weighted

statistics and the inter–arrival time weighted statistics methods. The residence time

weighted statistics are computed from a knowledge of a given bursts’ actual length.

The longer a burst lasts, the higher its weight. Some LDV burst processors are es-

pecially well equipped to measure the burst length as it is essentially a byproduct of

the burst frequency calculation. The inter–arrival time weighted statistics method

is nothing more than a discrete integral form of the original time average definition,

i.e. signal integrated over a period time T divided by the period. This form of the

velocity statistics calculation is used here. The calculation for the mean of a quantity

and its standard deviation are given in both the time continuous and discrete forms

in Equations 3.1 and 3.2 respectively. The standard deviation can also be called the

Root Mean Square (RMS) value of a data set and the discussion from here on will use
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the term RMS instead of standard deviation to refer to the first moment of a data

set about its mean.

q̄ =

∫ T

0

qdt ≈
N−1
∑

j=2

(

qj

tj+1 − tj−1

2

)

+

q1
t2 − t1

2
+ qN

tN − tN−1

2

(3.1)

qrms =

∫ T

0

(q − q̄)2dt ≈
N−1
∑

j=2

(

(qj − q̄)2 tj+1 − tj−1

2

)

+

(q1 − q̄)2 t2 − t1
2

+ (qN − q̄)2 tN − tN−1

2

(3.2)

The Reynolds stresses are an important quantity in the description of turbulent

flows. In total, there are nine Reynolds stresses of which six are independent. Three

of the stresses, the normal stresses are simply equal to the variance of the three

independent velocity components. The variance is equal to the square of the RMS

value. The other three stresses are the time average of the product of two different

velocity components’ fluctuating parts. In the present study using a 2-D LDV, only

the uw component of these three stresses can be measured. The equation for the

calculation of this stress is given in Equation 3.3. All together, three of the six

Reynolds stresses are able to be measured using the present measurement setup: uw,

uu, ww.

uw =

∫ T

0

((u − ū) ∗ (w − w̄)) dt (3.3)

Another important device in the characterization of a velocity field is the his-

togram. The histogram of velocities often helps characterize the type of flow fluc-

tuations present. The histogram is also helpful in evaluating the validity of a given

data set by clearly revealing any significant data cut-off, if for example the mixing

frequency used is too high. Histograms were calculated for all data sets taken in

the present research effort. The histograms divide the collected data into 200 bins

between the maximum and minimum in the given data set. The high number of bins

78



used allows a relatively smooth distribution to be calculated for most data points,

except in cases where the distribution is very narrow. For very narrow distributions,

the bin width begins to be on the order of the accuracy of the LDV resulting in a

non-smooth distribution.

3.2.3 Flow characterization

As seen in Section 1.3 the two most important non-dimensional parameters char-

acterizing a swirling flow field are the Reynolds number and swirl number. Reynolds

numbers reported in the present study, unless specified as local, will use the area

average nozzle velocity and nozzle size as characteristic length scales. For the case

without center–body the nozzle size is equal to the diameter of the nozzle. For the

case where the nozzle flow is annular due to the presence of a cylindrical center–body,

the nozzle size is equal to its hydraulic diameter which is the difference between the

nozzle diameter and the center–body diameter (White, 1994). The equation for the

Reynolds number is given in Equation 3.4.

Re =
UavgNsz

ν
(3.4)

The swirl number has been defined a myriad of ways. Two definitions will be

reported here. The first swirl number is based on the strict ratio of mean momentum

fluxes, neglecting turbulence transport. This swirl number will be referred to as

the laminar swirl number and is defined by Equation 3.5(e.g. Gouldin et al., 1985).

The second swirl number accounts for turbulent transport in addition to the mean

momentum fluxes. The second swirl number will be referred to as the turbulent swirl

number and is defined by Equation 3.6 (e.g. Holzäpfel et al., 1996). In general the

laminar and turbulent swirl numbers are very similar. If the two differ by more than

one percent, both swirl numbers will be given.

∫ R2

R1
ŪW̄ r2dr

R2

∫ R2

R1
Ū2rdr

(3.5)
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2π
∫ R2

R1
ρ
(

ŪW̄ + u′w′
)

r2dr

2πR2

∫ R2

R1
ρ
(

Ū2 + u′
2
)

rdr
(3.6)

3.2.4 Frequency domain

3.2.4.1 Introduction to power spectrum calculation methods

The transformation of the unevenly sampled data into the frequency domain is

a very difficult subject that has been dealt with in different ways in different areas

of science. In most cases researchers were concerned with obtaining correct estimates

of the power spectrum or periodogram of the unevenly sampled data. The first

approach used in fluid dynamics was introduced by Gaster and Roberts (1977). The

calculation of the power spectrum consists of essentially a modified Direct Fourier

Transform (DFT) method. The equation for the calculation is given in Equation 3.7.

Two aspects of Equation 3.7 are important to note. The power spectrum is not

weighted according to time interval but by point. In this manner, data points with a

relatively large time interval do not contribute more to the power spectrum estimate

than any other points. Additionally, Equation 3.7 subtracts an offset proportional

to the variance of the data set from the direct DFT-like calculation. Gaster and

Roberts (1977) showed that the offset can be calculated to have the precise form

in Equation 3.7 if the inter arrival times of the bursts have a Poisson distribution.

Furthermore, if the data is divided up into blocks and the estimates of the resulting

blocks are averaged, the variance of the estimate can be significantly reduced (Roberts

and Gaster, 1980). Roberts et al. (1980) demonstrate the effective use of the variance

reducing scheme for real LDV data. The estimate derived from Equation 3.7 will be

referred to as the Gaster estimate.

Psd(f) =
2

fsamT





∣

∣

∣

∣

∣

∑

j

q(tj)e
i2πftj

∣

∣

∣

∣

∣

2

−
∑

j

q2(tj)



 (3.7)

The second method for power spectrum calculation is presented in Press et al.

(1992), stemming from the work of Lomb (1976) and Press and Rybicki (1989) in
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astrophysics. In this area of science, the possible periodicity of non-continuous events

is often the subject of investigation. The equation for the normalized power spectrum

is shown in Equation 3.8. The equation can be evaluated at any frequency, although

for a given data set, only a certain set of frequency data points of the periodogram are

independent. These points can not be calculated and a periodogram calculated by

Equation 3.8 must be interpreted as an at least in part interpolated power spectrum.

It can be shown that the algorithm of Equation 3.8 reduces to the calculation of a best

fit approximation to the data using sines and cosines of the frequency in question. For

historical reasons outlined in Press et al. (1992), the estimate given by Equation 3.8

will be referred to as the Lomb estimate.

tan 2ωτ =

∑

j(sin 2ωtj)
∑

j(cos 2ωtj)

Ps(f) =
1

2q2
rms











[

∑

j((qj − q̄) cos ω(tj − τ))
]2

∑

j cos2 ω(tj − τ)
+

[

∑

j((qj − q̄) sin ω(tj − τ))
]2

∑

j sin2 ω(tj − τ)











(3.8)

It must be added that no matter how the estimate for the power spectrum is

calculated, the benefit of random sampling allows the calculated frequency range

to be extended. For truly randomly sampled data, aliasing is not possible in the

frequency interval all the way up to the mean sampling frequency. In practice, since

the data sets have a limited length, valuable information beyond the established limit

for uniform sampling can be obtained, but not up to the mean sampling frequency.

The exact useful upper limit of evaluation is a function of the precise distribution of

sampling intervals and cannot be calculated directly. The power spectra presented

here are not calculated beyond 0.75 times the mean sampling frequency, a range

justifiable given the work presented below.

Neither one of the two methods discussed sofar allows the transformation of the

collected data into the frequency domain. One of the reasons for actual transformation

into the frequency domain is that such a transformation would allow cross-spectra

of velocity components and acoustic pressure to be calculated, along with transfer
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functions among these quantities. Presentations of such results have sofar not been

found in literature. The method used here to obtain an estimate of the frequency

domain representation of the data is given in Equation 3.9 and goes directly back

to the definition of the DFT. The integral’s discrete data point form is also given in

Equation 3.9. The power spectrum is calculated from the DFT using Equation 3.10.

The power spectrum estimate using Equation 3.9 will be referred to as the DFT

estimate. Expressions for the cross spectrum of two data sets, the transfer function

estimate and the coherence are given in Equation 3.11 through 3.13 respectively.

DFT (f) =
1

T

∫ T

0

q(t)e−i2πftdt ≈

1

T

(

N−1
∑

j=2

qj ei2πfktj
tj+1 − tj−1

2
+ q1 ei2πfkt1

t2 − t1
2

+ qN ei2πfktN
tN − tN−1

2

) (3.9)

Ps(f) = DFT (f)∗DFT (f) (3.10)

CPs12(f) = DFT1(f)∗DFT2(f) (3.11)

TF12(f) =
CPs12(f)

Ps1(f)
(3.12)

COH12(f) =
|CPs12|2

Ps1(f)Ps2(f)
(3.13)

3.2.4.2 Comparison of presented methods for power spectrum calculation

In the following, the three methods outlined will be compared on a variety of

trial data sets. The standard of comparison that will be used is the result from the

analogous evenly spaced data set using normal FFT transformation to get into the

frequency domain. The power spectrum estimate derived from the FFT calculation

will be referred to as the FFT estimate. Both evenly spaced time data sets and

Poisson distributed sample time data sets will be studied. Some actual LDV sample

time distributions will also be tested. The probability density function for an ideal
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Poisson distributed data set and for two types of actual LDV sample times are shown

in Figure 3.1. The two types of LDV sample times correspond to the two extremes

of LDV measurement environments: low and high turbulence. The low turbulence

sample time distribution is taken from a data set taken inside the nozzle of the

experimental rig. The turbulence level there is less than 10%. The high turbulence

sample time distribution is taken from the edge of a recirculation zone where the

RMS value is 3 m/sec and the mean velocity is essentially zero. The figure shows that

there are no significant differences in the distribution of the sample times depending

on turbulence intensity. Such an influence is predicted by the model of Tropea (1987).

It is possible that the sample time distribution would change for cases where

the seed concentration is low. In the experiments reported herein, the seed level

is relatively high and apparently turbulence is not causing a significant change in

the sample time distribution. Both distributions are reasonably well approximated

by the ideal Poisson distribution, except at the ends of the distribution. For long

sample times, there simply aren’t enough data points to be able to form a reliable

approximation to the probability density function. At low sample times the deviation

from the ideal distribution is likely caused by the fact that the LDV system is inhibited

some finite amount of time after each burst, due to the trigger pulse width.

The analysis largely follows that of Tropea (1987). An autoregressive model of

second order is used to generate a data series with a known power spectral density

(PSD). In the present analysis, four data sets will be tested. The first is a first order

spectrum, identical to that used by Tropea (1987). Additionally, a second order

spectrum, a first order spectrum with white noise and a second order spectrum with

two sine waves are studied. The generated data series is not restricted to a particular

sample rate and can be scaled to any value with the proportional shift in the spectrum.

To stay non-dimensional, the time interval was chosen as one for the autoregressive

series. The spectrum generated contains energy up to a frequency of 0.5 (relative to

the time step of 1). This means that all of the energy is represented by the data set

with a time spacing of one.

The randomly sampled data is interpolated at some lower sampling rate from the
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Figure 3.1: Ideal Poisson distribution compared to two typical LDV sample time
distributions

primary evenly spaced data series. Spline interpolation is used to obtain the estimates

between the regularly spaced intervals. Since the regularly spaced data set is complete

from an information standpoint, it is expected that interpolation will not alter the

spectral characteristics of the data in the frequency range of the primary signal. To

support the claim that interpolation does not change the spectrum, a primary second

order data series was generated and interpolated at twice its original frequency at

times always between points in the primary data series. The FFT calculated PSDs

of both time series and the true PSD are shown in Figure 3.2. There are no effects

due to interpolation present in the data set at frequencies below 0.4, which is close

to what was expected based on the information argument.

In order to study the estimation methods in a familiar environment, all the meth-

ods are applied to the evenly spaced primary data set (second order spectrum). The

data set is divided into blocks of 512 samples and then averaged. The record is long

enough to accommodate 256 averages. The results shown in Figure 3.3 demonstrate

that all methods perform fairly well except the Gaster estimate. However, this is not

surprising considering the estimate was specifically designed for Poisson distributed
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Figure 3.2: True second order PSD with the FFT calculated spectra of the primary
data series and an interpolated data series

sample times. The effect of the subtracted offset can be clearly identified in the PSD

estimate.

Figure 3.4 shows the results for Poisson distributed sample times around a mean

frequency equal to that of the primary data series. Only 16 averages over blocks of

length 512 are taken. The results show that the Gaster estimate follows the true

spectrum most closely. The Lomb estimate exhibits an offset that doesn’t become

clear until a frequency of approximately 0.02. The DFT estimate matches the Gaster

estimate to a frequency close to 0.08, but then drifts up and approaches the Lomb

estimate. All estimates show the effects of a relatively large variance. Figure 3.5

shows the results for 256 averages. The quality of the estimates has not changed

significantly, but the variance of all estimates appears clearly reduced.

Figure 3.6 shows the results for Poisson distributed sample times with a mean

sampling rate 25% slower than the primary data series. The data set has a second

order power spectrum and 256 averages using blocks of 512 samples were used to

obtain the estimates. The results are very similar to Figure 3.5. The Gaster estimate
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Figure 3.3: PSD estimates of a second order spectrum using the primary evenly
spaced data series
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Figure 3.4: PSD estimates of a first order spectrum using Poisson distributed sample
times (16 averages)
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Figure 3.5: PSD estimates of a first order spectrum using Poisson distributed sample
times (256 averages)

performs best followed by the DFT estimate and the Lomb estimate. The DFT

estimate continues to exhibit very little offset until a frequency of about 0.08, whereas

the offset for the Lomb estimate appears more constant. The variance in the Gaster

estimate appears larger than for the other estimates, but this is due to the logarithmic

scale used in the plot. Figure 3.7 shows the results under identical conditions, except

that the sampling rate has been further reduced to 50% of the original primary data

set. The results are very similar for the Gaster estimate. The Gaster estimate seems

to be able to predict the spectrum over its entire range, except that the variance

appears to have increased over the estimate shown in Figure 3.6. Indeed, Gaster

and Roberts (1977) report that the variance in the estimate is inversely proportional

to the sampling rate. It is not possible to draw strong conclusions concerning the

matter of aliasing based on Figure 3.7 since very little energy is contained beyond

the Nyquist frequency of 0.25. Note also that the block size used is relatively large

at 512 samples. A smoother estimate using the same number of samples could be

obtained by reducing the block length. The smoother estimates would be generated
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Figure 3.6: PSD estimates of a second order spectrum using Poisson distributed
sample times (256 averages - mean frequency 75% of primary series)

at the expense of frequency resolution.

The matter of aliasing is addressed further in Figure 3.8 which shows the spectra

of the same second order data set, except that two sine waves are added. The sine

waves are of unity magnitude and located at frequencies of 0.02 and 0.375. The sec-

ond of the sine waves is located outside the Nyquist interval since the mean sampling

frequency for these estimates is 0.5. The energy in the second sine wave is clearly

significant enough to generate aliased energy in the spectrum. The results however

clearly show that that all estimators locate both sine waves and accurately repre-

sent their magnitude. None of the estimates show aliased energy below the Nyquist

frequency of 0.25.

Figure 3.9 shows the results for a data set where white noise was added to the

primary data series before interpolation. The sample frequency was increased back to

75% of the primary data series frequency. All estimates show the effect of the added

noise. Once again, the Gaster estimate performs best. The tail-off at high frequency

is due to the fact that the random data set was interpolated from the primary data
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Figure 3.7: PSD estimates of a second order spectrum using Poisson distributed
sample times (256 averages - mean frequency 50% of primary series)
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Figure 3.8: PSD estimates of a second order spectrum with two sine waves using
Poisson distributed sample times (512 averages - mean frequency 50%
of primary series)
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set. A very interesting phenomenon is observed when white noise is added to the

primary first order data series (no additional noise) after interpolation. The results

are shown in Figure 3.10. All estimates except the Gaster estimate once again show

the effect of the added noise. The Gaster estimate however follows without any effects

of the added noise the original background first order spectrum. The only plausible

explanation for this is that the Gaster estimate removes uncorrelated parts of the

signal energy when estimating a PSD. Through the interpolation in Figure 3.9, the

noise added to the data series has achieved some degree of correlation, whereas this

is not the case when the noise is added after interpolation. It is beyond the scope

of the work here to investigate this further but no mention of this effect has been

found in the literature. This matter is very important for the interpretation of LDV

measurements, where it is possible that bad data points make it into the final data set

even past the elimination of low signal to noise ratio points. These bad data points,

as they are likely random will not contribute to the energy of the power spectrum,

if the power spectrum is estimated using the Gaster estimate (and the sample times

are Poisson distributed).

The Gaster estimate appears quite powerful for the ideal Poisson time distribu-

tion. Figure 3.11 shows the results for a second order data set interpolated for a

sample time distribution obtained from normalized actual LDV sample times. The

figure shows that the Gaster estimate is still far superior to the other estimates.

However, the estimate does show a noticeable offset from the true spectrum. An

integration of the spectrum shows that in total, the Gaster estimate exceeds the true

power of the signal by two percent. Adding white noise to the interpolated data set,

similar to Figure 3.10 does not change the result for the Gaster estimate. The results

are shown in Figure 3.12. The Gaster estimate exhibits the same amount of offset

seen for the data set without added noise. The integration of the spectrum again

yields an energy excess of two percent. The other estimators once again do capture

the added white noise and are even further offset from the underlying second order

spectrum.

These results show firmly that the best quality PSD estimate for LDV data
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Figure 3.9: PSD estimates of a first order spectrum with white noise using Poisson
distributed sample times (512 averages - mean frequency 75% of primary
series)

is obtained from the Gaster estimate. All power spectra presented in the present

study use the Gaster representation. Since the calculation for each frequency in the

spectrum is independent of the next (in terms of algorithm), the range of frequencies

calculated for true velocity data is divided up into double octaves. The frequency

range is broken up at all points where the frequency has quadrupled. The block size

used for averages at these frequencies is at least 128 samples long but the actual

length is determined by the mean sampling frequency and the lowest frequency in

the range. For a mean sampling frequency of 400 Hz, and a frequency range that

begins with 1 Hz, the minimum block length required is 400 samples. The same

power spectrum will however also be calculated at 200 Hz for which the minimum

block length is 2 samples. In this case the 128 sample minimum block length is used.

The power spectrum pieced together from these individual frequency averages will

not have a constant variance. At low frequencies, the variance will be higher than at

the high end of the frequency range. However, since most energy is contained at low

frequencies, the increased variance may not be visible. At high frequencies, where the
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Figure 3.10: PSD estimates of a first order spectrum with white noise (added after
interpolation) using Poisson distributed sample times (512 averages -
mean frequency 75% of primary series)
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Figure 3.11: PSD estimates of a second order spectrum using a sample time dis-
tribution from measurements (512 averages - mean frequency 75% of
primary series)
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Figure 3.12: PSD estimates of a second order spectrum with added white noise (af-
ter interpolation) using a sample time distribution from measurements
(512 averages - mean frequency 75% of primary series)
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energy is low, the variance will be reduced and the spectrum will be visibly smoother.

The exact frequencies at which the spectrum is evaluated span the range from

1 Hz to 3/4 of the mean sampling frequency. The frequencies are spaced logarithmicly

between 1 Hz and 2000 Hz. The upper limit of evaluation is either 2000 Hz or 3/4 of

the mean sampling frequency, depending on which is lower. The frequencies at which

the spectrum is calculated are not adjusted based on the mean sampling frequency of a

data set. The result is that, in some cases, not all the power spectral density estimates

are independent. This situation is analogous to zero-padding a data set in normal

Fourier analysis. The result is an interpolation of the surrounding independent power

spectral density points with some additional independent information added in. The

additional information arises from the fact that the data was sampled randomly.

Cross-spectra can thus at this point not be calculated reliably using the DFT

method except in cases where the mean sampling frequency is much higher than the

frequency of interest. For some cases studied this is the case and results of cross-

spectral analysis will be presented.

3.2.5 Measurement error

The error associated with the velocity measurements arises from mainly two

sources. The first of the sources has to do with the alignment of the light beams

inside the probe and the alignment of the probe with the experimental facility. The

second source has to do with signal interpretation at the electronics and digital level.

The errors will be discussed separately and then summarized quantitatively. The

measurement error contribution is calculated using the commonly used root-square

method for finding the combined effect of multiple uncertainties as given in Equa-

tion 3.14.

a1 = g(b1, b2, b3, . . . , N)

a1un =

√

√

√

√

∑

i

= 1N

(

∂g

∂bi
ubi

)2 (3.14)
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3.2.5.1 Alignment

Measurement errors due to misalignment are further divided into two categories.

The first deals with misalignment of probe optics that could cause an error in the

fringe spacing. The second deals with the possible misalignment of the probe with

respect to the experimental facility. The fringe spacing is a function of the light

wavelength, beam diameter and focal length of the lens, as given in Equation 3.15.

df =
λ
√

d2
b + 4f 2

l

2db

(3.15)

Using conservative estimates for the uncertainties in the beam separation and

focal distance of the lens of three percent, Equation 3.14 can be used to find an

overall uncertainty in the fringe spacing of 4.1%. Note that the resultant uncertainty

is nearly equal to the uncertainty that would have been obtained, setting the partial

derivatives equal to one (4.2%). Since the internal probe alignment does not change

during a given test, deviations from the expected beam separation and focal distance

cause a bias error in the velocity measurement. The error is present in every data

point to the same degree.

The second source of alignment error is due to an angular misalignment of the

probe with respect to experimental facility. This error is difficult to eliminate with

the large facility used in the present study. In the measurements it is assumed that

the LDV plane of measurement is aligned with the streamwise/cross–stream plane

of the experimental facility. The misalignment between these planes about the three

coordinate axes causes a bias error in the velocity measurement. Figure 3.13 shows a

schematic that helps visualize the errors incurred. In addition, if the probe is aligned

with the center of the test–section in the y-direction, then the y-component of velocity

measured in a traverse along z will be the swirl (azimuthal) velocity component of

the equivalent cylindrical coordinate system.

Angular misalignments between the probe and test section cause errors in the

measurement of the desired components of velocity. Additionally some of these errors

are a function of the other velocity components. Measurements of the swirl velocity
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Figure 3.13: Alignment between test section and LDV probe

component are immune to a rotational misalignment about the y axis. Misalignment

about the z-axis causes the swirl component to contain error directly proportional to

the angle and the axial velocity. Misalignment about the x-axis causes the swirl com-

ponent to contain error directly proportional to the angle and the radial velocity. The

axial velocity component is immune to misalignment about the x axis. Misalignment

about the y-axis causes an error in the measured axial velocity component propor-

tional to the angle and the radial velocity. Misalignment about the z-axis causes an

error proportional to the angle and the swirl velocity. Additionally, all misalignments

cause an error in the location of the probe.

Using a level, the test section and probe could be aligned to each other with

respect to the z- and x-axes to within two degrees. Rotational misalignment about

the z-axis would become evident through changes in the location of the zero-crossing

of the swirl velocity as the axial velocity component develops and changes in the

downstream direction. The measurements did not exhibit a clear drift in the vortex

core location. If all velocity components are nearly equal then a two degree rotational

misalignment causes about a three percent error in the measured velocity. These
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errors can be much larger in areas where the desired velocity component is small as

with for example the swirl velocity component near the vortex core.

In addition to the errors associated with rotational misalignment, a translational

misalignment between the test section radial line and the experimental z-axis traverse

will introduce additional errors inversely proportional to the radial coordinate of

measurement. The desired swirl component of velocity is most susceptible to this

type of misalignment. However, the collocation of the z-axis traverse with the radial

line was able to be precisely estimated from scans of the axial velocity profile in the

y-direction inside the nozzle, knowing that the maximum of axial velocity at each z

location will occur when the radial line is parallel to (crosses) the z axis.

The errors due to rotational probe misalignment are difficult to quantify and

will contaminate the data with both bias and random components due to the error’s

dependence on instantaneous velocity. Experiments did not show clear evidence of

misalignment. Nevertheless it is estimated that rotational alignment errors contribute

around three percent uncertainty to the measurement.

3.2.6 Frequency estimation error

The error in the estimation of the Doppler frequency is composed of the error

in the original shift frequency, the error in the mixing frequency and the error in the

estimation of the burst frequency. The original shift frequency is equal to 40 MHz with

a very small uncertainty of 0.001 MHz. The mixing frequency is measured to within

0.001 MHz but can drift slightly over the period measurements are taken. The drift

is in general less than 0.01 MHz. The error in the estimation of the burst frequency

is difficult to quantify. From Figure A.33 and Figure A.34 it can be seen that the

two methods of frequency identification compared in these figures have differences

only inside the five percent deviation window. A conservative estimate for the error

due to burst frequency estimation is thus five percent. Since the Doppler frequency

is a simple sum and difference of the mentioned frequency components, it is clear

that the error in the Doppler frequency estimate is dominated by the burst frequency

estimation error. It was not possible to determine whether or not the estimation error
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is entirely random, but the figures cited above seem to lend support to the idea that

the errors are at least best described as random.

3.2.7 Total velocity uncertainty

The total uncertainty for velocity measurements can now be estimated. Since all

three error sources discussed are independent, the sum-square method is once again

used to determine the total uncertainty. The uncertainty in the Doppler frequency

estimation and the fringe spacing combine to result in a 6.4% uncertainty. Since there

is no straightforward equation relating the measured velocity to the probe alignment

error, these errors will be combined assuming equal contributions (partial derivatives

equal to one). The resulting uncertainty has a magnitude of 8%. This uncertainty

contains both the contributions of random and bias error. Accounting only for errors

that change from data point to data point, the uncertainty is equal to 7%. Error

bars will not be plotted in the data reported in order to clarify the presentation. The

similarity of measurements at different flow rates reported in Chapter 4 shows that

the repeatability of the measurements is very good and well below 7 %.

3.3 Acoustic measurements

Acoustic measurements were performed to help characterize the dynamic flow

field and help describe interaction between the flow field and the acoustic field. The

microphones used in the present study are constructed from condenser microphone

cartridges by Panasonic in a aluminum threaded rod package. Both resistor and

capacitor components are inside the machined aluminum threaded rod. Cost for each

microphone, excluding the minor machining of the aluminum threaded rod, is around

five dollars. BNC connectors are provided for the microphone signal and excitation

voltage. A photograph of a microphone is shown in Figure 3.14.
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Figure 3.14: Custom microphone package

3.3.1 Calibration

A detailed description of the microphone sensor calibration is given in Ap-

pendix B. All microphones were calibrated against a Bruel&Kjaer reference inside a

long closed–driven tube. To ensure that each microphone is exposed to the identical

acoustic pressure, the microphones were located flush with the end wall of the tube.

The frequency calibration range for the present experiments is 0-200 Hz. Microphone

response is essentially flat starting at 20 Hz. The microphone cartridges are designed

for use in the frequency range of 20 to 20,000 Hz.

3.3.2 Acoustic velocity and intensity

As briefly mentioned in Chapter 1, the interaction between the essentially incom-

pressible low Mach number flow field and the acoustic field is an important component

of the present research. The interaction can be separated into two main mechanisms.

The first mechanism of interaction is through acoustic velocity. The second mech-

anism of interaction is through the dissipation of acoustic energy and conversion to

vorticity.

The velocity perturbations associated with an acoustic wave are proportional to

the local pressure gradient. For plane waves, at low Mach numbers, the acoustic
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velocity field is related to the acoustic pressure field through Equation 3.16 which is

derived from the Euler equation (Crocker and Waser, 1984). Exciting the pressure

field with a speaker causes a distributed excitation of the flow field from the acoustic

velocity oscillations. An important consequence is that the phase between velocity

oscillations at different axial locations is related through the speed of the acoustic

pressure wave which is much higher than the speed of incompressible velocity insta-

bility waves. The speed of incompressible velocity instability waves is on the order

of the mean flow velocity, so that there exists a complete mismatch of time scales

for low Mach number flows between incompressible velocity instability waves and

acoustic velocity waves.

∂~u

∂t
= −1

ρ
∇p (3.16)

The mismatch of time scales between incompressible instability waves and acous-

tic velocity waves leads to the hypothesis that another mechanism must be responsible

for the ability of a flow instability to lock on to acoustic excitation. The proposed

mechanism is that of localized dissipation of acoustic energy and conversion to vortical

energy. Conversion of acoustic energy into vorticity occurs only at sharp boundaries

where shear layer separation occurs. The thin shear layer shed in the immediate

vicinity of a sharp interface allows a local match between the acoustic and incom-

pressible time scales. The dissipation of acoustic energy is especially pronounced at

low frequencies (Bechert et al., 1977). Munt (1990) shows that in order to successfully

model the dissipation, a Kutta condition must be imposed on the flow at the sharp

interface. The measurement of acoustic intensity in the test facility upstream and

downstream of the area expansion (the sharp interface in this case) may allow some

conclusions to be drawn with respect to the amount of acoustic dissipation at the

area expansion. Acoustic intensity is the local acoustic energy density. Local mea-

surements cannot measure total acoustic energy dissipation without the assumption

of plane wave acoustics. The validity of these assumptions and the results will be

discussed further in Chapter 5.

Acoustic intensity is calculated from two acoustic pressure measurements using
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either the method of Crocker and Waser (1984) or the method of Chung and Blaser

(1980). Crocker and Waser (1984) offer a direct way of calculating acoustic inten-

sity via the measurement of the cross-spectrum between two microphones. Chung

and Blaser (1980) propose a transfer function method for the determination of the

transmission properties of an acoustic termination. A method for improving the trans-

mission property estimate through the use of a third microphone in high background

noise environments is also given. The acoustic intensity as a function of the one-sided

cross spectrum between microphones one and two is given in Equation 3.17 (Crocker

and Waser, 1984).

I(ω) = −Im (P ∗

1 P2)

2ωρ∆r
(3.17)

The reflection coefficient of an acoustic termination or obstruction is given by

Equation 3.18 (Chung and Blaser, 1980). The reflection coefficient given here is a

complex quantity that is a function of the physical location of microphone 1 with

respect to the acoustic obstruction. The absolute value of the reflection coefficient

figures into the calculation of the transmitted power. The expression for the power

transmitted through the acoustic obstruction as a function of the pressure magnitude

at microphone location 1 and the reflection coefficient is given in Equation 3.19.

Rp =
H12 − eiki∆r

e−ikr∆r − H12

(3.18)

WT =
A

ρc
|P1|2

1 − |Rp|2
|1 + Rp|2

(3.19)

The measured transfer function can be corrected to obtain a better estimate

using a third microphone. The equation for the corrected transfer function, is given in

Equation 3.20 in terms of the calibration and acquisition corrected measured transfer

function, Hm
12. The correction depends on the ordinary coherence functions between

the three microphones used in the measurement. The coefficients in the equation

actually consist of the positive square root of the ordinary coherence function in

question. The equation for a generic coefficient is given in Equation 3.21.

101



H12 = Hm
12

c23

(c12c31)
(3.20)

cjk =

√

|P ∗

j Pk|2
(PjP ∗

j )(PkPk∗)
(3.21)

All data acquisition clearly initially has units of volts and these units must be

converted to pressure, using the measured calibration transfer functions. Addition-

ally, the measurements performed using the PC data acquisition system are subject

to an inter-channel delay because the card used in these measurements does not have

the simultaneous sample and hold feature. The inter-channel delay was set to 5 µsec

and verified by measuring sine waves of various frequencies on all channels at the same

time. Equation 3.22 shows how the measured transfer function between two micro-

phones is corrected using the calibration and channel delay adjustments necessary.

The calculation of the actual pressure magnitude from the measured voltage magni-

tude is given in Equation 3.23. The calculation of the actual cross spectrum from the

measured voltage cross spectrum between two microphones is given in Equation 3.24.

Hm
12 = Hv

12

Cal1
Cal2

e−iω(ch2−ch1)chd (3.22)

|P1| =
|P v

1 |
|Cal1|

(3.23)

(P ∗

1 P2) =
((P v

1 )∗P v
2 )

Cal∗1Cal2
e−iω(ch2−ch1)chd (3.24)
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