
Model Reduction of Nonlinear Fire Dynamics Models

Alan M. Lattimer

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

Jeffrey T. Borggaard, Co-chair

Serkan Gugercin, Co-chair

John A. Burns

Lizette Zietsman

March 23, 2016

Blacksburg, Virginia

Keywords: Model Reduction, Fire Models, IRKA, POD, Discrete-Time Systems

Copyright 2016, Alan M. Lattimer

Model Reduction of Nonlinear Fire Dynamics Models

Alan M. Lattimer

(ABSTRACT)

Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for

fires, current numerical models require too much computational effort to be useful in design

and real-time decision making, especially when dealing with fires over large domains. To

reduce the computational time while retaining the complexity of the domain and physics,

our research has focused on several reduced-order modeling techniques. Our contributions

are improving wildland fire reduced-order models (ROMs), creating new ROM techniques

for nonlinear systems, and preserving optimality when discretizing a continuous-time ROM.

Currently, proper orthogonal decomposition (POD) is being used to reduce wildland fire-

spread models with limited success. We use a technique known as the discrete empirical

interpolation method (DEIM) to address the slowness due to the nonlinearity. We create

new methods to reduce nonlinear models, such as the Burgers’ equation, that perform bet-

ter than POD over a wider range of input conditions. Further, these ROMs can often be

constructed without needing to capture full-order solutions a priori. This significantly re-

duces the off-line costs associated with creating the ROM. Finally, we investigate methods

of time-discretization that preserve the optimality conditions in a certain norm associated

with the input to output mapping of a dynamical system. In particular, we are able to show

that the Crank-Nicholson method preserves the optimality conditions, but other single-step

methods do not. We further clarify the need for these discrete-time ROMs to match at ∞

in order to ensure local optimality.

Model Reduction of Nonlinear Fire Dynamics Models

Alan M. Lattimer

(GENERAL AUDIENCE ABSTRACT)

Large fires, such as industrial, coal mine, and wildland fires, represent a significant impact

worldwide with regards to property damage, loss of life, and suppression costs. According

to the National Interagency Fire Center, the amount of land burned by wildland fires in the

United States in 2015 exceeded 10 million acres. The fire suppression costs alone for these

fires was greater than $2.1 billion. This cost continues to grow and was at its highest level

in 2015. Due to the complexity, multi-scale, and multi-physics nature of the mathematical

models for fires, current numerical models require too much computational effort to be

useful in design and real-time decision making, especially when dealing with fires over large

domains. To reduce the computational time, there has been some work done in the area

of reduced-order modeling of fire models. However, the majority of the effort has been

with either simplifying the domain (e.g. network models), or by simplifying the underlying

physics. Reduced-order modeling offers a third approach - retain the complexity of the

domain and physics, but find a more efficient way to expose the essential input-output

behavior of the model. Our research focuses on techniques that lead toward a fully-realized

strategy for reducing the mathematical models related to fires. Our contributions to the field

are to improve existing model reduction techniques for fires, create new reduced-order model

techniques for nonlinear systems, and show when time discretization of the continuous-time

reduced-order model preserves optimality under a certain norm.

Dedicated to my family.

Preston and Miranda

For being there as your father pursued his dreams.

Kara

(I do not know what it is about you that closes

and opens;only something in me understands

the voice in your eyes is deeper than all roses)

nobody,not even the rain,has such small hands

e.e. cummings

iv

Acknowledgments

An endeavor such as this would have never been successful without the incredible support I

received from faculty, friends, and family. While there is no way to thank everyone that has

helped along the way, I would like to point out several people that have provided immense

support and guidance along the way.

First, I would like to thank NIOSH for their funding under contract number 200-2014-59669.

Their funding was instrumental in the coal mine and plume fire research discussed in Chapter

5. I would also like to give a special thanks to Dr. Kray Luxbacher and Ali Haghighat for

all of their support and for including me in this great research team.

To my committee members, Dr. John Burns and Dr. Lizette Zietsman, I would have never

made it to this point without your guidance. I really appreciate the frank advice about my

research and education. To Dr. John Rossi, your passion is infectious. I knew the moment

that I sat down in the first class I had with you that this was my path. Thank you for the

conversations, laughs, and encouragement along the way.

I cannot begin to thank my advisers, Dr. Serkan Gugercin and Dr. Jeff Borggaard, enough.

Both professionally and personally, you have been extraordinary. Your patient guidance

along the way was essential in my success. You allowed me the space to grow and learn, but

v

were still present with advice and suggestions whenever necessary. You seemed to always be

willing to drop everything to help. I am excited about working together for many years to

come.

From a personal standpoint, there is no way I would have made it without my family and

friends. Mom, thanks for just letting me soar, even when it looked like I would crash.

Jonathan, Bryson, and Lynne thanks for all the talks, comfort and prayers. Mother and

Granddaddy, thank you for being the true spiritual giants in my life. To my brothers, Brian

and Charles, I love you! Brian, thanks for teaching me all the engineering background that I

was sorely missing. Charles, thanks for the wordsmithing. To Kelli, thanks for showing me

the ropes in grad school. To George, Chris, Kevin, Joe, Anthony, and Mark; let’s go raise

a glass and celebrate. Who would have thought I would have made it here? Thanks to all

the folks at The Next Door Bake Shop. I really appreciate you letting me set up my writing

“office” there.

Finally, I want to give an extra-special thanks to my family, Kara, Preston, and Miranda.

You guys are my rock and my refuge. You hold me up, and you keep me grounded. You

love and support me unconditionally. It is the three of you that give my life’s work meaning.

Thank you!

vi

Contents

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 2

2 Background 5

2.1 Mathematical Model for Fire Dynamics . 6

2.1.1 Buoyancy Force . 7

2.1.2 Combustion . 8

2.2 Dynamical Systems . 10

2.3 Reduced-Order Modeling . 13

2.3.1 Basic Framework . 14

2.3.2 Interpolatory Model Reduction . 15

vii

2.3.3 Proper Orthogonal Decomposition . 19

3 A Natural Convection Flow Model 28

3.1 Introduction . 28

3.2 The Boussinesq Equations . 29

3.3 Example Problem Description . 29

3.4 Model Reduction of Descriptor Systems . 32

3.5 Numerical Results . 34

4 Towards Input-Independent Methods for Nonlinear Model Reduction 38

4.1 Burgers’ Equation . 40

4.1.1 Problem Definition . 40

4.1.2 Group Finite Element Method (GFEM) 41

4.1.3 Finite Difference Method . 43

4.1.4 Projecting the Quadratic-Bilinear System 44

4.1.5 Tensor Product Computational Strategies 45

4.2 Quadratic-Bilinear Model Reduction . 47

4.2.1 QBMOR Framework . 47

4.2.2 Results . 50

4.2.3 Stability Preservation . 55

4.3 Combining IRKA and POD . 56

viii

4.3.1 Methodology . 56

4.3.2 Results . 58

4.4 Combining Left and Right IRKA Vectors . 64

4.4.1 Methodology . 65

4.4.2 Results . 66

4.5 Summary . 69

5 Reduction of Fire Models 73

5.1 Airflow in a Mine . 74

5.1.1 The Model Reduction Technique . 75

5.1.2 Basic Description . 77

5.1.3 Results . 79

5.2 Fire Plumes . 81

5.2.1 Description and Methods . 85

5.2.2 Buoyancy-Driven Flows . 87

5.2.3 Numerical Results . 88

5.3 Wildland Fires . 96

5.3.1 Basic Description . 97

5.3.2 Discrete Empirical Interpolation Method (DEIM) 98

5.3.3 Methods and Numerical Results . 103

ix

5.4 Summary . 105

6 Analysis of Discrete Time Model Reduction 107

6.1 Optimality Conditions for the ROM . 109

6.1.1 Continuous-time Systems . 109

6.1.2 Discrete-time Systems . 113

6.2 Time Discretization of the ODE . 117

6.2.1 Single-Step Discretization Schemes 120

6.3 Relationship of Transfer Functions . 125

6.3.1 Explicit Forward Euler Method . 126

6.3.2 Implicit Backward Euler Method . 128

6.3.3 Implicit Crank-Nicolson Method . 130

6.3.4 Relationship of Discrete-Time Transfer Functions 133

6.4 Extension of H2 Optimality . 135

6.4.1 Forward and Backward Euler . 136

6.4.2 Crank-Nicolson Method . 140

6.5 Numerical Results . 147

6.5.1 1D Heat Equation . 148

6.5.2 International Space Station Control (ISS12A) 152

6.5.3 Summary . 155

x

7 Conclusions and Future Research 158

7.1 Conclusions . 158

7.2 Future Work . 160

Bibliography 164

Appendices 175

Appendix A Notation 176

Appendix B Burgers’ Equation Control Functions 178

Appendix C Full Results for POD+IRKA 180

Appendix D Full Results for IRKA V ⊕W 189

D.1 Details for r = 15 . 190

D.1.1 Output Plots . 190

D.1.2 Error Plots . 193

D.2 Details for r = 20 . 194

D.2.1 Output Plots . 194

D.2.2 Error Plots . 197

D.3 POD Model Error Plots . 198

xi

List of Figures

3.1 Rayleigh convection on the domain [0, 1]× [0, 1]. 30

3.2 Control function for the natural circulation square. 35

3.3 Frequency response of the full and reduced-order transfer functions. 35

3.4 Comparison of the full-order and reduced-order system response, y(t) for the

natural circulation problem. 36

3.5 Comparison of the state spaces generated via the full and reduced-order mod-

els for the natural circulation problem. 37

4.1 Output for reduced models versus the full state output where q1 = 4. 52

4.2 Output for reduced models versus the full state output where q1 = 5. 53

4.3 Output for reduced models versus the full state finite difference output. . . . 55

4.4 Output error combining POD and IRKA vectors with r = 15 and input u2(t),

(Method 1). 60

4.5 Output combining POD and IRKA vectors with r = 15, (Method 1). 60

xii

4.6 Output error combining POD and IRKA vectors for r = 20 and input u2(t)

(Method 1). 62

4.7 Output combining POD and IRKA vectors for input u2(t) (Method 1). . . . 62

4.8 Combining POD and IRKA vectors with input function u2(t) (Method 2). . 64

4.9 Error comparison to IRKA V ⊕W, u2(t) . 67

4.10 Output IRKA V ⊕W, input u2(t), r = 15 68

4.11 Error comparison to IRKA V ⊕W, u2(t) . 70

4.12 Output IRKA V ⊕W, input u2(t), r = 20 71

5.1 Mine CM face layout. 75

5.2 Comparison of the airflow in the full model versus the airflow at the same

time step generated using various POD modes. 78

5.3 Average outlet velocity magnitude given an average input velocity magnitude

of 0.88 m/s. 80

5.4 Average outlet velocity magnitude given an average input velocity magnitude

of 0.88 m/s. 82

5.5 Average outlet velocity magnitude given an average input velocity magnitude

of 0.92 m/s. 83

5.6 FDS full-order fire model used to generate the various ROMs. 85

5.7 Decay of the singular values associated with the first 200 POD modes. 88

5.8 Dynamics of the fire model shown with respect to the first four POD coeffi-

cients for temperature and velocity. 89

xiii

5.9 Magnitude of the velocity POD modes for the small plume fire. 90

5.10 Temperature POD modes for the small plume fire. 91

5.11 Mean and maximum temperature comparison between ROM and FOM with

r = 20. 93

5.12 Mean and maximum velocity comparison between ROM and FOM with r = 20. 94

5.13 POD coefficients for temperature and velocity. 95

5.14 Comparison of the velocity profiles for the POD ROMs and the FOM. 96

5.15 Visual depiction of the approximation VT f(t) ≈ VTUc(t). 99

5.16 Visual depiction of the approximation VT f(t) ≈ EPFP (t). 101

5.17 FOM versus the POD/DEIM ROM where rT = 250, rS = 150, and rDEIM = 250.103

5.18 Fire spread for FOM, POD, and POD/DEIM. 104

6.1 Graphical view of discrete system proof . 108

6.2 Stability region of time discretization methods. 121

6.3 Plot of H2-optimal points (Heat Eq.) . 149

6.4 Heat equation Bode plot comparing the FOM and ROM 149

6.6 Plot of H2-optimal points from Hr and Hd (Heat Eq.) 151

6.7 ISS12A Bode plot comparing the FOM and ROM 152

6.8 Plot of H2-optimal points (ISS12A) . 153

6.9 Absolute error at optimal interpolation points (ISS12A) 154

6.10 Plot of Hr(1/µk) and H(1/µk) (ISS12A) . 154

xiv

6.11 Plot of H2-optimal points from Hr and Hd (ISS12A) 155

6.5 Plot of Hr(1/µk) and H(1/µk) (Heat Eq.) 157

B.1 Control functions for Burgers equation. 179

C.1 Output combining POD and IRKA vectors with r = 15 and input u1(t). . . 180

C.2 Output combining POD and IRKA vectors with r = 15 and input u2(t). . . 181

C.3 Output combining POD and IRKA vectors with r = 15 and input u3(t). . . 181

C.4 Output combining POD and IRKA vectors with r = 15 and input u4(t). . . 182

C.5 Output combining POD and IRKA vectors with r = 15 and input u5(t). . . 182

C.6 Output combining POD and IRKA vectors with r = 15 and input u6(t). . . 183

C.7 Output error combining POD and IRKA vectors for r = 15. 184

C.8 Output combining POD and IRKA vectors with r = 20 and input u1(t). . . 185

C.9 Output combining POD and IRKA vectors with r = 20 and input u2(t). . . 185

C.10 Output combining POD and IRKA vectors with r = 20 and input u3(t). . . 186

C.11 Output combining POD and IRKA vectors with r = 20 and input u4(t). . . 186

C.12 Output combining POD and IRKA vectors with r = 20 and input u5(t). . . 187

C.13 Output combining POD and IRKA vectors with r = 20 and input u6(t). . . 187

C.14 Selected output error combining POD and IRKA vectors for r = 20. 188

D.1 Output IRKA V ⊕W, input u1(t), r = 15 190

D.2 Output IRKA V ⊕W, input u2(t), r = 15 190

xv

D.3 Output IRKA V ⊕W, input u3(t), r = 15 191

D.4 Output IRKA V ⊕W, input u4(t), r = 15 191

D.5 Output IRKA V ⊕W, input u5(t), r = 15 192

D.6 Output IRKA V ⊕W, input u6(t), r = 15 192

D.7 Error comparison to IRKA V ⊕W . 193

D.8 Output IRKA V ⊕W, input u1(t), r = 20 194

D.9 Output IRKA V ⊕W, input u2(t), r = 20 194

D.10 Output IRKA V ⊕W, input u3(t), r = 20 195

D.11 Output IRKA V ⊕W, input u4(t), r = 20 195

D.12 Output IRKA V ⊕W, input u5(t), r = 20 196

D.13 Output IRKA V ⊕W, input u6(t), r = 20 196

D.14 Error comparison to IRKA V ⊕W . 197

D.15 Error comparison between POD and IRKA V ⊕W 198

xvi

List of Tables

2.1 Constants used in the fire model. 8

4.1 Summary data for Er1 = VTEV , Er2 = WTEV , Ar1 = VTAV , and Ar2 =

WTAV . 51

4.2 Summary data for reduced-order models using QBMOR. 54

4.3 Error for r = 15 using rI number of IRKA vectors and (r − rI) number of

POD vectors in a combined subspace. 59

4.4 Error for r = 20 using rI number of IRKA vectors and (r − rI) number of

POD vectors in a combined subspace. 61

4.5 Errors for ROM (r = 15) combining POD and IRKA (Method 2) 63

4.6 Relative errors IRKA V ⊕W, r = 15 . 66

4.7 Relative errors for all ROMs (r = 15). 67

4.8 Relative errors IRKA V ⊕W, r = 20 . 69

4.9 Relative output error for POD over various sizes and input functions. 70

4.10 Relative errors for all ROMs (r = 20). 71

xvii

5.1 Error between the actual and reduced-order model velocity profiles at 10.0

seconds. 79

5.2 Approximate computation times in hh:mm:ss for full-order versus reduced-

order models. 81

5.3 Error between the actual and reduced-order model velocity profiles at 10.0

seconds. 81

5.4 Sample times to build and store the inner product matrices required to con-

struct the ROM ODE. 92

5.5 Values used for diffusion constants ν and α based on ROM size along with

the typical solution time for the ROM ODE using those values. 93

5.6 Parameter values for the wildland fire spread model given in [71]. 104

5.7 Results for the ROM. Solution time for the FOM was 99.1 s 105

6.1 Relative error between Hr(1/µk) and H(1/µk) 148

6.2 Relative error between d and dr for the heat equation. 151

A.1 Mathematical Notation . 176

xviii

Chapter 1

Introduction

1.1 Motivation

Large fires, such as industrial, coal mine, and wildland fires, represent a significant impact

worldwide with regards to property damage, loss of life, and suppression costs. According

to the National Interagency Fire Center, the amount of land burned by wildland fires in the

United States in 2015 exceeded 10 million acres. The fire suppression costs alone for these

fires was greater than $2.1 billion. This cost continues to grow and was at its highest level in

2015. This cost presents and inherent need for fast, high-fidelity models that provide real-

time or better than real-time analysis of a fire, so that timely decisions regarding evacuations,

fire suppression strategies, and on-scene personnel deployments can be made. Further, as

we look to leverage unmanned and autonomous vehicle technologies, the need for faster

embedded models that capture the true dynamics of the fire just increase.

Due to the complexity, multi-scale, and multi-physics nature of mathematical models for fires,

current numerical approaches are extremely costly, especially when dealing with fires over

1

2 Chapter 1. Introduction

large domains. To reduce the computation time, the majority of current efforts have been

with either simplifying the domain (e.g. network models), or by simplifying the underlying

physics. Reduced-order modeling takes a third approach; retain the complexity of the domain

and physics, but reduce the underlying mathematical complexity of the model.

Our research focuses on techniques leading to a fully-realized strategy for reducing the math-

ematical models related to fires. Our contribution to the field is to improve existing model

reduction techniques for fires, create new reduced-order model techniques for nonlinear sys-

tems, and show when time discretization of the continuous-time reduced-order model pre-

serves optimality under a certain norm. In particular, we design new methods that do

not depend on prior data to be collected for reducing the types of nonlinear models that

arise when looking at fires. We also combine methods to leverage the advantages associated

with each of the individual model reduction strategies. For certain models, we improve the

projection techniques used to create the reduced-order models to significantly reduce the

computation time of the reduced-order model. Finally, we provide the mathematical theory

required to justify the preservation of optimality in a certain norm when applying a time

discretization method to solve a system of time-dependent ordinary differential equations.

Over the coarse of this work, we provide several numerical examples applicable to fires that

reinforce the mathematical concepts presented. Several new algorithms are presented to

explain the methodologies used. In the next section, we cover a more complete outline of

the trajectory of the research covered in this dissertation.

1.2 Outline

In Chapter 2, we present the fundamental concepts that provide the underpinnings for the

work done in this dissertation. We begin by giving an overview of a mathematical model for

1.2. Outline 3

fires (2.1)-(2.5). This model represents a fully-realized physical model for fires. This model

incorporates several physical processes such as diffusion, convection, species transport, and

combustion. As we move through the dissertation, we will refer back to this model as

the primary context for the various examples we present. We then present some basics on

dynamical systems and how we will define them for our work. The last section of the chapter

covers the basics of projection-based model reduction methods, including two fundamental

model reduction techniques used in our research - the proper orthogonal decomposition

(POD) and iterative rational Krylov algorithm (IRKA) methods.

Chapter 3 covers our first efforts towards providing reduced-order models for fires. We

examine the natural circulation flow induced by a temperature difference on the walls of

a unit square. We show how this model is related to the fire model in (2.1)-(2.5) under a

certain set of assumptions. For this model we linearized the flow about a steady-state flow

and then used a modified version of IRKA to reduce the model. We showed how the this

technique does an excellent job mapping inputs to outputs, but with the obvious limitation

that all of the interesting nonlinear flows are removed. We used this experience to help

develop new techniques for nonlinear model reduction.

Chapter 4 introduces new techniques for performing model reduction on nonlinear systems.

Specifically, we designed methods that were more accurate over a larger range of input

conditions for a certain class of problems. For the POD method, the quality of the reduced-

order model is dependent on the data that is used to create the reduced-order bases. So,

POD tends to produce accurate reduced-order models for nearby conditions, but is not as

accurate for distant input conditions or solutions. With our new methods, developed in this

chapter, we have techniques that are more accurate over a wider range of input conditions.

While these methods are not truly input independent, they are moving the in that direction.

Further, one of the methods developed, IRKA V⊕W, does not require data samples to be

4 Chapter 1. Introduction

computed to build the reduced-order model. This method significantly reduces the off-line

costs of building the reduced-order model.

We present three scenarios in Chapter 5 that demonstrate the power of the reduced-order

modeling techniques for problems associated with the management and decision making

during fire disasters. In the first scenario, we demonstrate how reduced-order models can

help make design decisions for airflow to mitigate the dangers of methane fires in coal mines.

The next scenario covers the simulation of fire plumes using reduced-order models. Here we

give a set of criteria used to determine the quality of a reduced-order model in representing a

true fire. The last example is a wildland fire-spread model, in which the computational time

required to solve this model was significantly reduced by addressing the lifting bottleneck

issue using the discrete empirical interpolation method (DEIM).

In Chapter 6, we examine the time-discretization techniques used to solve continuous-time

ODE models resulting from the spatial discretization of a partial differential equation. This

chapter also addresses which of the discretization methods preserve the first-order necessary

conditions for optimality, under a specific norm. The Crank-Nicholson method preserves

these conditions, with certain additions to the optimality conditions; conversely, the forward

and backward Euler methods do not preserve the conditions. We cover specific information

about how these discrete-time systems are related to their continuous-time counterparts.

Finally, we present several theorems that show the preservation, or lack of preservation, of

the first-order necessary conditions for optimality.

Chapter 2

Background

In this chapter, we discuss the mathematical background for the models and model-reduction

techniques that will be employed throughout this dissertation. The material presented in

this chapter is not meant to be a complete or thorough treatment; rather, it is an overview

of the methods we have used in our work. Where there is more detail to be garnered about

a certain technique, we have listed recommended references as a foundation for exploration.

In Section 2.1, we discuss the development of our fundamental fire model. Throughout the

work, we will reference back to this model as the foundation for many subsequent simplified

models. The culmination of this work is to be able to provide accurate reduced-order models

for small plume fires. Inherently, fires represent a very complex, multi-scale problem that

spans thermally driven fluid flows, reaction kinetics, and species transport. We discuss how

we constructed our model with the goal of providing an accurate, surrogate reduced-order

model.

Section 2.2 covers the basics of dynamical systems as we will use them. We define linear and

nonlinear dynamical systems and discuss some of the relationships between them. For linear

5

6 Chapter 2. Background

systems, we discuss the Laplace transformation of the dynamical system and the resulting

input to output mappings in the frequency domain.

We close the chapter by discussing the basics of reduced-order modeling in Section 2.3. We

first examine the basics of projection-based model reduction techniques, showing how we

project a full-order dynamical system to generate a reduced-order model. We then discuss

optimal interpolation-based techniques and the mathematical basis that explains why these

methods provide an accurate approximation for the reduced-order model output. Finally, we

look at the most common nonlinear technique for model reduction - the proper orthogonal

decomposition (POD). We briefly look at the mathematics underlying POD and discuss a

few techniques for projecting the system using the POD basis.

2.1 Mathematical Model for Fire Dynamics

Fire dynamics models consist of modeling three constitutive equations involving airflow,

species and energy transport, and chemical reactions. To begin with, we couple the momen-

tum and energy equations under the assumption that the air is incompressible, although we

plan to remove this assumption in future research. For the two-dimensional model, we let

u(t,x) = u = [u v]T be the velocity vector at a given point, x = (x, y), and time, t. We sim-

ilarly define the velocity and spatial vectors for the three-dimensional model by adding the

velocity component w and the spatial component z. We define the pressure as p = p(t,x) and

temperature as T = T (t,x) at a given point and time. To track the fire, we must also track

the mass fraction of the air, fuel, and product lumped species, ZA = ZA(t,x), ZF = ZF (t,x),

and ZP = ZP (t,x) respectively. This particular mathematical model gives rise to the cou-

pled set of partial differential equations (PDEs) in (2.1)-(2.6). In the development of our

mathematical model for fire, several sources for modeling heat transfer, buoyancy-driven

2.1. Mathematical Model for Fire Dynamics 7

flows, fluid dynamics, combustion, and chemical reaction kinetics were consulted. For more

detailed explanations of the physics leading to the model we put forth, the reader is referred

to [37, 43, 58, 65, 74, 82, 89] and the associated references therein. We present the model

below and then exposit over the different terms and their mathematical justification. Thus,

consider

∂u

∂t
= −u · ∇u−∇p+ ν∇2u− βg(T − T∞), (2.1)

0 = ∇ · u, (2.2)

∂T

∂t
= −u · ∇T + α∇2T + (ρrη)q̇′′′, (2.3)

∂ZA
∂t

= −u · ∇ZA + γa∇2ZA + ṁ′′′A , (2.4)

∂ZF
∂t

= −u · ∇ZF + γf∇2ZF + ṁ′′′F . (2.5)

∂ZP
∂t

= −u · ∇ZP + γf∇2ZP + ṁ′′′P . (2.6)

The constants used in the formulation of the mathematical model (2.1)-(2.6) are given in

Table 2.1. Further, we note that ṁ′′′A , ṁ′′′F , and ṁ′′′P are the mass reduction rates per unit

volume of air, fuel, and products, respectively, and q̇′′′ is the heat release rate per unit

volume. These values arise from combustion in the domain and are discussed in more detail

in Section 2.1.2.

2.1.1 Buoyancy Force

The main model equations for the airflow are based on the Boussinesq equations (2.1)-(2.3).

These arise from conservation of momentum (2.1), conservation of mass (2.2), and con-

servation of energy (2.3), see e.g. [31, 77]. The coupling of the thermal energy back to

the momentum equation is modeled through the body force term in the momentum equa-

8 Chapter 2. Background

Table 2.1: Constants used in the fire model.

Constant Definition

g Gravitational acceleration
ν Kinematic viscosity
α Thermal diffusivity
γa Diffusion constant for air
γf Diffusion constant for fuel
κ Mass stoichiometry constant for air
η Ratio of the heat of combustion ∆hc,F to the specific heat Cp
ρr Ratio of the density of a cell before combustion to after combustion

tion (2.1). Thus, the primary force acting on the air is the temperature-induced buoyancy,

−βg(T −T∞), where we define the temperature contraction coefficient by β(T (t,x)) = 1
T (t,x)

with the temperature, T (t,x) given in Kelvin. It is worth noting that when the temperature

does not vary much over the domain, e.g. < 20◦K, we can treat β as a constant. This as-

sumption greatly simplifies the computation. However, for large variations in temperature,

such as those observed in a fire, a general nonlinear term, β(T) must be retained to correctly

model the dynamics in a fire.

2.1.2 Combustion

At the heart of all mathematical modeling of fires is the combustion, or chemically reac-

tive flow, component. Our full-order fire models were computed using the Fire Dynamics

Simulator (FDS) software developed at the National Institute of Standards and Technology

(NIST). Therefore, to best match our reduced-order models (ROM) to the full-order model

(FOM), we developed our combustion model based on the technical documents for FDS [74].

We simplified the model as informed by [43, 58, 89] to minimize the computational time

while still maintaining the inherent physics of the model. To simplify the chemical reac-

tion calculations, we utilize a lumped species approach to balancing the reaction equations

2.1. Mathematical Model for Fire Dynamics 9

as described in [74]. Here the primitive species are lumped together, and we consider the

simplified reaction equation

Air + Fuel → Products. (2.7)

For example, the chemical reaction associated with the burning of methane is given by the

balanced reaction equation

CH4 + 2O2 + 7.52N2 → CO2 + 2H2O + 7.52N2. (2.8)

With the lumped species approach, we group terms together and handle the reaction sto-

ichiometry at the lumped level. So for the methane reaction in (2.8), the lumped species

approach yields

9.52(0.21O2 + 0.79N2︸ ︷︷ ︸
:=ZA

) + CH4︸︷︷︸
:=ZF

→ 10.52(0.095CO2 + 0.19H2O + 0.715N2︸ ︷︷ ︸
:=ZP

) (2.9)

In this way, we just need to track the lumped species as opposed to every individual species.

Additionally, when we balance the equation we always set the stoichiometric coefficient for

fuel to one. Therefore we can always write the reaction using the volume fractions as follows:

κZA + ZF → (κ+ 1)ZP . (2.10)

A correct balance of fuel and air need to exist for a fire to occur. Further, a sufficient

amount of heat must be present to cause the reaction; more specifically, a correct balance

of heat, fuel and air is required for combustion to occur. We only consider models with a

single fuel for this research. It is possible to have several fuels, and this case is handled in

detail in the FDS Technical Guide [74]. To determine whether the reaction is fuel or air

limited, we determine the amount of air and fuel that will react by equation (2.11) where

10 Chapter 2. Background

the stoichiometry coefficient for air is given by κ. This assumption leads to:

ẐF = (ZA/κ, ZF), (2.11)

ẐA = κZF .

where ẐF and ẐA are the mass fractions of fuel and air, respectively, which will react during

combustion. We consider excess air or fuel as inert when calculating the reaction. Next, we

must determine if enough heat exists to initiate a reaction. We test to see if the reaction

would bring the current temperature above the critical flame temperature, TCFT . If it will

not, then we set q̇′′′ = 0 in (2.3), ṁ′′′A = 0 in (2.4), and ṁ′′′F = 0 in (2.5). Otherwise,

ṁ′′′F = ẐF/τmix in (2.5), ṁ′′′A = ẐA/τmix in (2.4), and q̇′′′ = ṁ′′′F∆h0
f,F in (2.3), where τmix is

the time-scale for mixing and ∆h0
f,F is the heat of formation for the fuel F .

2.2 Dynamical Systems

Throughout this dissertation, we will discuss many techniques used to reduce large-scale

dynamical systems. These systems often arise from applying a spatial discretization, such

as finite differences or finite elements, to a partial differential equation model with time

dependence [6, 10, 12, 13, 17, 32, 33].

We first look at systems that are linear in both the state and input variables. Further, we

assume that the measured output is some linear mapping from the state and input. If we

define x(t) ∈ Rn as the time-dependent state variable, u(t) ∈ Rm as the time-dependent

input or control function, and y(t) ∈ Rp as the measured output over time, then we can

define the linear dynamical system by Definition 2.1.

Definition 2.1. The linear time-invariant (LTI) dynamical system, Σ(E,A,B,C,D), is

2.2. Dynamical Systems 11

given by equation (2.12)

Σ :


Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

, (2.12)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.

We note that D is simply a linear mapping from the input directly to the output, and for

most of the systems we investigate, this will be D = 0. For LTI systems (2.12), we often

desire to look at a direct mapping from the input to the output. It is noted that taking

the Laplace transform of the LTI system Σ(E,A,B,C,D) results in the frequency-domain

description of the system [4, 83, 96] given by equation (2.13).

ŷ(s) = C(sE−A)−1Bû(s) + Dû(s), (2.13)

where ŷ and û are the Laplace transforms of the input and output respectively. We can now

define the transfer function.

Definition 2.2. The finite-dimensional system Σ(E,A,B,C,D) defined by (2.12) has the

transfer function G(s) given by

G(s) = C(sE−A)−1B + D. (2.14)

For the multiple input/multiple output (MIMO) case, G(s) is a matrix valued rational

function, whereas in the single input, single output (SISO) case it is scalar valued. For a

more thorough treatment of linear systems theory and the role of the transfer function, the

reader is referred to [4, 45, 83, 86, 96] and the references contained therein.

The discretization of certain PDE models results in a dynamical system that is not linear.

As we will see in Section 2.3, the type of nonlinearity often determines what methods are

12 Chapter 2. Background

available to reduce the order of the model. For our purposes, we will generally categorize

these nonlinear systems as bilinear, quadratic bilinear, or general nonlinear systems. While

all of the nonlinear systems could be lumped together and defined as a general unstructured

nonlinearity, we will separate them to leverage the structure of certain nonlinearities when

applying model reduction techniques later in the dissertation.

Definition 2.3. The bilinear dynamical system, ζ(E,A,N,B,C,D), is bilinear in state and

control (or input) and is given by

ζ :


Eẋ(t) = Ax(t) +

∑m
k=1 Nkx(t)uk(t) + Bu(t)

y(t) = Cx(t) + Du(t)

, (2.15)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and Nk ∈ Rn×n for all k = 1, . . . ,m.

Further the vector valued input function u(t) is defined by u(t) = [u1(t), . . . , um(t)], where

each uk(t) is a scalar-valued function.

Definition 2.4. The quadratic bilinear dynamical system, η(E,A,H,N,B,C,D), is char-

acterized by being quadratic in state and bilinear in state and control (or input) and is given

by

η :


Eẋ(t) = Ax(t) + H(x(t)⊗ x(t)) +

∑m
k=1 Nkx(t)uk(t) + Bu(t)

y(t) = Cx(t) + Du(t)

, (2.16)

where E,A ∈ Rn×n, H ∈ Rn×nn, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and Nk ∈ Rn×n

for all k = 1, . . . ,m. Further the vector valued input function u(t) is defined by u(t) =

[u1(t), . . . , um(t)], where each uk(t) is a scalar-valued function.

Definition 2.5. The general nonlinear dynamical system where there could be time-dependent

2.3. Reduced-Order Modeling 13

nonlinearities in the state and/or control (or input) given by f [x,u, t] is defined by the

Eẋ(t) = Ax(t) + Bu(t) + f [x(t),u(t), t] , (2.17)

y(t) = Cx(t) + Du(t),

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. Further we restrict the order of

f such that f = o(‖x‖, ‖u‖). If we group the linear and control terms with the nonlinearity

as g [x(t),u(t), t] = Ax(t) + Bu(t) + f [x(t),u(t), t], then we can simplify (2.17) to

Eẋ(t) = g [x(t),u(t), t] , (2.18)

y(t) = Cx(t) + Du(t).

2.3 Reduced-Order Modeling

Model reduction or reduced-order modeling is a process of taking a very large system of

equations and projecting it onto a much smaller subspace. The main goals of the projection

are to significantly reduce the size of the system, often by several orders of magnitude, and

to project the system in such a way as to preserve underlying behaviors of the original

system. For systems with linear dynamics, there are numerous methodologies for effective,

optimal model reduction. For example, one can apply Gramian-based methods such as

Balanced Truncation [80, 81] or rational interpolation-based methods such Iterative Rational

Krylov Algorithm [53]. These transfer function-based methods have been recently extended

to systems with special nonlinearities, for example, to bilinear [10, 14, 39] and quadratic

nonlinearities [15, 48]. We refer the reader to [6, 13, 17] for recent surveys on model reduction

in general. For general nonlinearities, model reduction is most commonly achieved by Proper

14 Chapter 2. Background

Orthogonal Decomposition (POD) [8, 18, 60, 63, 69, 70, 80]. In the following sections, we

discuss the basics of model reduction and the general techniques that were used to reduce

systems related to the fire model given in (2.1)-(2.6).

2.3.1 Basic Framework

Consider an LTI dynamical system Σ(E,A,B,C) defined by (2.12), where D = 0. The goal

is to find a reduced-order model of size r � n such that

Erẋr(t) = Arxr(t) + Bru(t), (2.19)

yr(t) = Crxr(t),

where Er,Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r. Further we seek a model such that yr(t) ∈ Rp

is close to y(t) over the time interval (0, tf) and/or xr(t) is close to x(t) over the domain for

the given time interval and a class of inputs u(t). We will discuss what we mean by “close”

depending on the context and method used. We create left and right projection vectors,

W,V ∈ Rn×r, to satisfy the Petrov-Galerkin condition

WT (EVẋ−AVx−Bu) = 0. (2.20)

If the full state of the system is approximated as x = Vxr, then (2.19) holds with

Er = WTEV, Ar = WTAV, (2.21)

Br = WTB, Cr = CV.

We note that when V = W, this is a Galerkin projection. With this framework, each distinct

method becomes a new way to build V and W, and the choice of V and W depends on the

2.3. Reduced-Order Modeling 15

goals of the reduced-order model. If we are concerned with minimizing the output error over

a wide range of bounded inputs, then we will seek input-independent methods such as the

interpolatory method described in Section 2.3.2. These input-independent methods are well

suited to applications, such as controls or circuits, where we are not necessarily concerned

with the entire state space but in matching output conditions. If we are concerned with

predicting the state space for a nonlinear system, then another method, such as proper

orthogonal decomposition (POD), may be more applicable. We focused on POD for our

research of fire models, and an overview of this technique is given in section 2.3.3.

2.3.2 Interpolatory Model Reduction

An interpolatory method utilizing projections with multiple interpolation points was first

suggested by Skelton et al. [34, 93, 94]. A computationally efficient extension to this method

using Krylov subspaces based on the work by Ruhe [84] was developed in [46]. Choosing the

interpolation for optimality in the H2 norm, defined later by Equation (2.26), has since been

developed for several classes of systems. [14, 52, 53, 54, 90]

As stated in the Section 2.3.1, the goal of this technique is to minimize the error between the

full model output y(t) and the reduced-order model output yr(t) over a wide range of inputs

u(t). For simplicity of the discussion, consider the SISO system Σ(E,A,b, cT) defined by

(2.12) where c ∈ Rn, b ∈ Rn. In this case, input and output functions, u(t), y(t), and yr(t),

are now scalar valued. If needed, this can be extended to the multi-input, multi-output case

as shown by Gugercin et al. [53]. For the SISO system, the full-order scalar-valued transfer

function is given by

G(s) = cT (sE−A)−1b. (2.22)

16 Chapter 2. Background

Combining (2.13) and (2.22), the relationship between the input and output is given by

ŷ(s) = G(s)û(s). (2.23)

Using the same procedure on the reduced linear system (2.19), the transfer function for the

reduced system G̃ is

Gr(s) = cTr (sEr −Ar)
−1br, ŷr(s) = Gr(s)û(s). (2.24)

We are able to keep ‖y−yr‖ small in a suitable norm by ensuring that the transfer functions

are close in an appropriate norm. In particular the relationship of the L∞ error in the output

functions to the H2 error in the transfer functions is shown in [17, 53] to be

max
t>0
|y(t)− yr(t)| = ‖y − yr‖L∞ ≤ ‖G−Gr‖H2

‖u‖L2 , (2.25)

where the error in the H2 norm is given by

‖G−Gr‖H2
=

(
1

2π

∫ ∞
−∞
|G(iω)−Gr(iω)|2 dω

)1/2

. (2.26)

So we see that minimizing ‖G−Gr‖H2
also minimizes ‖y − yr‖L∞ and thus provides the op-

timal reduced-order model (ROM) of dimension r provided we can use this fact to determine

the V and W that generate this ROM.

Theorem 2.6 (First order necessary conditions (SISO)). Given the SISO LTI dynam-

ical system with the transfer function G(s) = cT (sE−A)−1b, the optimal H2 reduced-order

2.3. Reduced-Order Modeling 17

transfer function Gr(s) = cTr (sEr −Ar)
−1br satisfies

G(−λi) = Gr(−λi), (2.27)

G′(−λi) = G′r(−λi), (2.28)

where λi, i = 1, · · · , r are the poles of Gr(s).

Proof. See Meier III and Luenberger [76].

Theorem 2.7 (First order necessary conditions (MIMO)). Given the MIMO LTI

dynamical system with the transfer function G(s) = C(sE − A)−1B, then the optimal H2

r-dimensional reduced-order transfer function is Gr(s) = Cr(sEr −Ar)
−1Br. Let λ̃1, . . . , λ̃r

be the poles of the Gr(s) with the associated rank-1 matrix residues, res[Gr(s), λ̃k] = c̃kb̃
T
k .

Then the reduced-order transfer function satisfies

G(−λ̃k)b̃k = Gr(−λ̃k)b̃k, (2.29)

c̃TkG(−λ̃k) = c̃TkGr(−λ̃k), (2.30)

c̃TkG′(−λ̃k)b̃k = c̃TkG′r(−λ̃k)b̃k, (2.31)

for k = 1, · · · , r.

Proof. See Gugercin et al. [53].

Given a linear dynamical system Σ(E,A,b, cT) as defined in (2.12) with the associated

transfer function (2.22) for the SISO case, Algorithm 2.8 provides a method for iteratively

solving for the optimal interpolation points {σi}ri=1 = {−λi}ri=1 from Theorem 2.6.

18 Chapter 2. Background

Algorithm 2.8 (Iterative Rational Krylov Algorithm (IRKA), Gugercin et al.
[52]).

1. Make an initial selection of σk for k = 1, . . . , r that is closed under conjugation.
Select a convergence tolerance tol.

2. Choose V and W such that

span(V) = span{(σ1E−A)−1b · · · (σrE−A)−1b}, (2.32)

span(W) = span{(σ1E−A)−Tc · · · (σrE−A)−Tc}.

3. While the relative change ‖σcurr − σlast‖ > tol

(a) Er = WTEV and Ar = WTAV

(b) Assign σk ← −λk(Er,Ar) for k = 1, . . . , r.

(c) Update V and W using the new σk such that the equations from (2.32) are
satisfied.

4. Set Er = WTEV, Ar = WTAV, br = WTb, and cTr = cTV.

We extend this to the MIMO case where B ∈ Rn×m and C ∈ Rp×n, by additionally deter-

mining the tangential directions b̃k and c̃Tk for k = 1, . . . , r associated with the shifts σk.

These are updated at each time step, and instead of satisfying (2.32), V and W must satisfy

(2.33).

span(V) = span{(σ1E−A)−1Bb̃1 · · · (σrE−A)−1Bb̃r},

span(W) = span{(σ1E−A)−TCT c̃1 · · · (σrE−A)−TCT c̃r.} (2.33)

The reader is referred to Gugercin et al. [53] and Gugercin et al. [52] for a more thorough

explanation of IRKA including the necessary extensions to the MIMO case.

2.3. Reduced-Order Modeling 19

2.3.3 Proper Orthogonal Decomposition

In POD, one first obtains a matrix of snapshots using a number of benchmark simulations

and then computes the model reduction basis from a truncated singular value decomposition

(SVD) of this snapshot matrix. Finally, one applies a Galerkin projection of the governing

equations onto the low-dimensional using POD basis. The result is a small system of ordinary

differential equations (ODE) that can replace the complexity of the full-order models while

retaining nearly the same accuracy as long as the physics of the system remain “close” to

one of the benchmark simulations.

We will cover a brief overview of POD and how to project the system. The reader is referred

to [8, 18, 60, 63, 69, 70, 80], and the references therein, for a more complete treatment of

this topic.

We start by looking at how the POD projection matrix is created. We must first capture

a series of full-order solutions to our dynamical system over some time interval. These

solutions could be from a full-order simulation or data collected by a physical experiment.

Since these solutions are typically captured at specific time intervals, we refer to them as

full-order data snapshots or simply data snapshots. Then, we create a matrix of N data

snapshots, X = [x1, . . . ,xN], where x ∈ Rn×N represent the individual full-order solutions

that were previously generated. For this matrix, we create an orthonormal basis, U such

that uj ∈ Rn, for j = 1, . . . , N and

xi =
N∑
j=1

γjiuj, i = 1, . . . , N. (2.34)

20 Chapter 2. Background

Choosing k < N of these basis vectors, we build an approximation X̂ to X such that

x̂i =
k∑
j=1

γjiuj, i = 1, . . . , N, (2.35)

and X̂ is close to X in some average sense. If we want to minimize the 2-norm error between

the full and approximated solutions at the snapshot times, i.e.

X∗ = arg min
X̂
‖X− X̂‖2, (2.36)

then this orthonormal basis can be obtained from the singular value decomposition (SVD)

Theorem 2.9 (Singular Value Decomposition (SVD)). If A is a real m-by-n matrix

then there exist orthogonal matrices

U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n, (2.37)

such that

UTAV = diag(σ1, . . . , σp) ∈ Rm×n and p = min{m,n}, (2.38)

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. See Golub and Van Loan [44, p. 70].

Definition 2.10. Given a matrix A ∈ Rm×n with rank(A) = r ≤ min{m,n} has a singular

value decomposition (SVD) where

A = UΣVT , U ∈ Rn×r, Σ ∈ Rr×r, and V ∈ RN×r. (2.39)

This decomposition is called the thin SVD. Σ is a square diagonal matrix diag{σ1, σ2, . . . , σr}

2.3. Reduced-Order Modeling 21

with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. See for example Golub and Van Loan [44].

A useful property of the SVD is the dyadic decomposition defined below.

Definition 2.11. Assume that A = UΣVT is the thin SVD decomposition from (2.39),

where U = [u1 . . .ur] and V = [v1 . . .vr]. The dyadic decomposition of A is the sum of rank

one outer products

A = σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σrurv

T
r . (2.40)

Now with those terms defined we present a theorem from [44] that is critical in the justifi-

cation of the POD technique. Theorem 2.12 essentially tells us that the first k vectors in U

will give us the optimal approximation X∗ from the minimization problem (2.36).

Theorem 2.12. Let the SVD A ∈ Rm×n be given by Theorem 2.9. If k < r = rank(A) and

Ak =
k∑
i=1

σiuiv
T
i , (2.41)

then

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1. (2.42)

Proof. See Golub and Van Loan [44, p. 73, Thm 2.5.3].

We note that Ak is the dyadic decomposition (2.40) truncated to the first k terms. Further,

if we choose the leading k columns of U, written Uk, then we can obtain an orthogonal basis

that will be able to generate a minimizer to (2.42). For the remainder of this section, we let

Φ = Uk and refer to it as the POD basis for the system. It is worth noting that the quality

of this basis largely depends on the quality of the data. In other words, the more snapshots

and the richer the information contained in those snapshots is, the better the POD basis can

be at reconstructing solutions for diverse initial conditions and inputs. The trade off here

22 Chapter 2. Background

is that if the snapshots become too rich or diverse, then it is difficult to obtain a low order

POD basis. As discussed in [4, 18, 69], the quality of the basis is largely dependent on the

decay of the singular values.

Once we have created the POD basis matrix, Φ, we project the system to a low order

subspace. When we have a LTI dynamical system we can apply the Galerkin projection

technique discussed in Section 2.3.1 with V = W = Φ. In this section, we discuss the

extension of this technique to nonlinear systems along with the issue of the lifting bottle-

neck. To obtain computational efficiency and reduce or eliminate the lifting bottleneck issue

for nonlinear systems, we must employ a numerical algorithm that mitigates the repeated

matrix-vector product of the form ΦTg(Φx). There are several numerical methods that can

be employed to address this issue, such as collocation [7, 66], gappy POD [7, 19, 24, 25, 38],

discrete empirical interpolation method (DEIM) [3, 11, 27, 35, 36], and finite-element sub-

assembly methods [2], to name a few. Here we discuss a method to avoid this bottleneck

issue for systems with polynomial nonlinearities by treating the POD bases as basis functions

evaluated at each node.

Nonlinear Model Reduction Using POD

Suppose we have an order n nonlinear system as defined by (2.18). For simplification of

the discussion, we consider nonlinear time-invariant systems where the nonlinearity can be

written as g(x). Given a steady-state solution x̄, we approximate the state by

x(t) ≈ x̃(t) = x + Φxr(t), (2.43)

where Φ ∈ Rn×r is the matrix of r POD basis vectors created using an SVD of the deviations

of the p > r snapshots, S̃ = [(s1 − x) . . . (sp − x)]. It is worth noting that the choice of x̄

2.3. Reduced-Order Modeling 23

depends on the goals of the reduced-order model and the problem itself. For example, x̄

could represent the mean of the snapshots, the initial state, or the final state. The details of

how x̄ should be chosen are beyond the scope of this discussion, and the reader is referred

to [8, 9, 18, 64, 70] for a more thorough treatment of the subject. Substituting (2.43) into

(2.17) and performing a Galerkin projection to ensure that the residual is orthogonal to Φ

and thus in the null space of the POD basis vectors, we obtain

ΦT

(
d[x + Φxr(t)]

dt
− g(x + Φxr(t))

)
= 0. (2.44)

Using the fact that ΦTΦ = Ir, rearranging and simplifying equation (2.44) results in the

following r-dimensional reduced-order model for the nonlinear system,

ẋr(t) = ΦTg(x + Φxr(t)). (2.45)

For r � n, (2.45) should provide a significant computational speedup over the full-order dif-

ferential equation. However, in practice, this is may not the be case. Upon closer inspection,

we see that that g is defined as a vector valued function, i.e. g : Rn → Rn. Therefore, to

evaluate g from the r coefficients of xr, we must first lift xr up to the full state space by

Φxr, add it to the centering vector x, evaluate this using g, and finally project that result

back to the r-dimensional subspace by ΦTg. This so-called lifting bottleneck is covered in

more detail in [26, 27, 28], but the result is that, for the nonlinear portion of the system, the

computational complexity returns to order n. As mentioned earlier, there are several tech-

niques that can be used to mitigate this issue. We cover one technique in the next section

that can be used when we have a polynomial nonlinearity.

24 Chapter 2. Background

Projecting the PDE using POD

To demonstrate this technique, we examine the two-dimensional Navier-Stokes equations for

isothermal, incompressible flows given by

∂u

∂t
− µ∇2u + (u · ∇)u +∇p = 0, (2.46)

∇ · u = 0. (2.47)

This model is well-suited for typical flow speeds and temperatures of airflows found in coal

mines and was used as a starting point in examining mine fires. For any given time, we

can write the velocity flow of the air, u = [u v]T ∈ R2 in the two-dimensional domain

x = [x y]T , as a linear combination of a centering vector u(x, t) and an infinite set of

basis vectors. Using the approximation discussed in the previous section, we create an

r-dimensional approximation of the velocity, (2.48)-(2.49), using r POD basis vectors, i.e.

Φ = [φ1(x) φ2(x) · · ·φr(x)]. Here we have decomposed the basis into its u and v components

as φi = [(φu
i)
T (φv

i)
T]T .

u(x, t) ≈ ũ(x, t) = u(x) +
r∑
i=1

φu
i (x)a(t), (2.48)

v(x, t) ≈ ṽ(x, t) = v(x) +
r∑
j=1

φv
j (x)a(t). (2.49)

Using the same coefficient a(t) for both approximations allows us to enforce the incompress-

ibility condition (2.47) in the reduced-order model. Then using these POD modes Φ as test

functions, we can build the weak formulation of equation (2.46) by multiplying each side

by the test functions and integrating. Applying a straight-forward integration by parts and

gathering terms for each of the velocity directions, we obtain the weak form of the equation.

2.3. Reduced-Order Modeling 25

For example, the weak form in the u direction is given by

(ut,φ
u) = −(uux + vuy,φ

u)− 2µ(ux,φ
u
x)− µ(uy + vx,φ

u
y). (2.50)

We can now substitute the approximation for u from (2.48) and (2.49) into (2.50) for each

φi, i = 1, . . . , r and apply the linearity properties of the inner product to obtain

ai =− (uux,φ
u
i)−

(
u
∑

φu
k,xak,φ

u
i

)
−
(
ux
∑

φu
j aj,φ

u
i

)
−
(∑

φu
j aj
∑

φu
k,zak,φ

u
i

)
− (vuy,φ

u
i)−

(
v
∑

φu
k,yak,φ

u
i

)
−
(
vy
∑

φv
jaj,φ

u
i

)
−
(∑

φv
jaj
∑

φu
k,zak,φ

u
i

)
− 2µ

(
ux,φ

u
i,x

)
− 2µ

∑(
φu
k,x,φ

u
i,x

)
ak

− µ
(
uy,φ

u
i,y

)
− µ

∑(
φu
k,y,φ

u
i,y

)
ak

− µ
(
vx,φ

u
i,y

)
− µ

∑(
φv
k,x,φ

u
i,y

)
ak. (2.51)

Similar formulations are done for each velocity direction. The power in this method is that

we can now apply a finite element discretization and precompute much of the inner product

so that our discretized system is of order r, where we are solving for the coefficients of the

POD basis, a(t). To see how this might be done, we look at the inner product (uux,φ
u
i).

First, let h represent the N finite element basis functions. Then we fully expand the inner

26 Chapter 2. Background

product and the functions in the finite element basis.

(uux,φ
u
i) =

∫
Ω

N∑
m=1

umhm

N∑
n=1

unhn,xφ
u
i dA (2.52)

=
N∑
m=1

N∑
n=1

umun

∫
Ω

hmhn,xφ
u
i dA︸ ︷︷ ︸

[T
(i)
ux]mn

With [T
(i)
ux]mn computed for each i, we compute the inner product for each i and assemble it

into an r dimensional constant vector cucux as given by

cucux(i) = (uux,φ
u
i) = [u]m1[T(i)

ux]mn[u]n1 = (u)TT(i)
uxu, i = 1, . . . , r. (2.53)

where u ∈ R are the values of u(x) at n distinct points in the domain determined by the

spatial discretization. For equation (2.53), repeated indices in the third term are considered

to be implied summations over that index. All the constant terms are computed and then

summed together into a single vector, c. Additionally, we can construct constant matrices

associated with the linear and quadratic terms. For example, the computation below shows

how we precompute

(
u
∑

φu
j,xaj,φ

u
i

)
= [u]m1[T(i)

ux]mn[φu]njaj (2.54)

⇒
(
uTT(i)φ

)︸ ︷︷ ︸
Precomputed

a(t), i = 1, . . . , r and t ∈ [0, tf]

For the linear terms, we simply sum all the precomputed r×r matrices together to construct

the reduced linear matrix, Ã, for the time-dependent ODE. The quadratic term is a little

more complicated. First we precompute the matrices Q̃i, i = 1, . . . , r, that are a sum of r×r

matrices that arise from terms like
(∑

φu
j aj
∑

φu
k,zak,φ

u
i

)
. During the time integration, we

assemble the reduced-order quadratic term using Algorithm 2.13.

2.3. Reduced-Order Modeling 27

Algorithm 2.13 (Quadratic Term Subassembly). Given matrices Q̃i, i = 1, . . . , r,
and the POD coefficient vector an = a(tn) at time step tn, the quadratic term q̃(tn) =
[qn1 , . . . , q

n
r]T is constructed as follows:

1. for i = 1 to r

• qni = (an)T Q̃ia
n;

2. end for

Now we have the following r-dimensional system of ordinary differential equations that can

be solved to obtain the POD basis coefficients a(t) for a given time interval t = [0, tf]:

ȧ(t) = q̃(t) + Ãa(t) + c. (2.55)

Once constructed, this can be solved using a standard ODE solver. The advantage is that

we never have to lift the problem back to the n-dimensional state space for the nonlinearity

under consideration in equation (2.46). Using this technique, we have completely removed

the lifting bottleneck for this nonlinearity while maintaining an exact computation of the

nonlinear terms. The cost of this method is primarily in the precomputation and storage of

the intermediate matrices needed to assemble the reduced-order ODE. These intermediate

matrices are sparse and multiplied by thin n × r matrices, so the precomputation (off-line)

cost is practical. Moreover, since the resulting matrices are all dimension r, the storage

burden is minimal. Solving the ODE (2.55) and plugging the coefficients a(t) into our

approximation in Equation (2.48), we can recover an approximation to the full-order model.

Chapter 3

A Natural Convection Flow Model

3.1 Introduction

Recall that Equations (2.1)-(2.3) represent the momentum and energy equations coupled

together with the assumption that the fluid is incompressible. Under certain physical as-

sumptions we can use these same equations to model the natural circulation of a fluid induced

by a thermally-driven flow. Discretizing this system of PDEs in space results in a nonlinear

dynamical system. For this chapter, we discuss the simplifying physical assumptions about

the model that we have used. Linearizing the system around a steady-state flow results in a

coupled set of linear differential algebraic equations (DAEs) that we can then reduce using

interpolation-based methods. Linearizing a system like this is one approach that is taken

to simplify the computation for large nonlinear systems. Our goal was to investigate the

efficacy of applying reduced-order modeling techniques to these types of systems. Further,

we wanted to see how well we could capture the input to output behavior of the system.

We first cover a description of the problem, and the physical assumptions that we made to

28

3.2. The Boussinesq Equations 29

simplify our model. We then discuss the linearized DAE that is obtained and how the unique

characteristics of the DAE system necessitate certain modifications to the IRKA technique

described in Section 2.3.2. Finally, we present some numerical results of the accuracy of the

reduced-order model for this problem.

3.2 The Boussinesq Equations

As a simplification to the fire model, we ignore the species transport in Equations (2.4)-

(2.6) and focus on reducing a thermally-driven airflow given by Equations (2.1)-(2.3). For

this problem, the primary body force is the temperature difference on opposing wall of the

domain. Further, we assume that the temperature changes across the domain are less than

20◦K. This allows us to treat β as a constant as described in Section 2.1.1. Additionally,

under these assumptions for temperature, we can consider the kinematic viscosity, ν, and

thermal diffusivity, α, as constants. Finally, we assume there is no fuel present and therefore

there is no combustion contribution to the energy equation. These assumptions lead to the

well-known Boussinesq equations given by

∂u

∂t
= −u · ∇u−∇p+ ν∇2u− βg(T − T∞), (3.1)

0 = ∇ · u, (3.2)

∂T

∂t
= −u · ∇T + α∇2T. (3.3)

3.3 Example Problem Description

Consider the natural convection model in a two-dimensional square where there is a tem-

perature difference between the right and left boundaries. The top and bottom boundaries

30 Chapter 3. A Natural Convection Flow Model

have a zero normal gradient, no-slip boundary condition as shown in Figure 3.1a. The tem-

perature differential between the walls generates a rotational flow in the square, such as the

flow shown in Figure 3.1b. Here the fluid rises near the hot wall, Th, and sinks along the

cold wall, Tc.

T = Th T = Tc

∂T/∂n = 0

∂T/∂n = 0

Ω

(a) Problem setup. (b) Representative flow.

Figure 3.1: Rayleigh convection on the domain [0, 1]× [0, 1].

The flow of the fluid inside the square is induced by the buoyant force caused by the temper-

ature difference on opposing walls. The Boussinesq equations (3.1)-(3.3) provide a means for

modeling this type of flow [79]. Another characterization of this model is that it is simply

the incompressible Navier-Stokes equations coupled to the convection-diffusion equation for

temperature via a buoyancy term in the momentum equation.

We define the domain for this particular problem as t ∈ (0, tf) and x = (x, y) ∈ Ω =

[0, 1] × [0, 1] with the boundary defined as ∂Ω = ∂Ωc ∪ ∂Ωh ∪ ∂Ωtb. ∂Ωh and ∂Ωc are the

hot and cold boundaries defined on the x = 0 and x = 1 faces respectively, and ∂Ωtb is the

combined top and bottom boundary y = 0 and y = 1 when x 6= 0 and x 6= 1. We set the

3.3. Example Problem Description 31

boundary conditions as follows:

u(x, t) = 0, x ∈ ∂Ω, (3.4)

v(x, t) = 0, x ∈ ∂Ω,

∂T

∂n
(x, t) = 0, x ∈ ∂Ωtb

T (x, t) = Th(t) = T∞ +
1

2
u(t), x ∈ ∂Ωh

T (x, t) = Tc(t) = T∞ −
1

2
u(t), x ∈ ∂Ωc.

The reference room temperature is given by T∞. By subtracting the last two lines, the

control function is given by (3.5) centered around the reference temperature.

u(t) = Th(t)− Tc(t), (3.5)

The partial differential equations given in (3.1)-(3.2) were linearized about a mean flow and

discretized using a Taylor-Hood finite element approximation. This discretization results in

the Stokes-type descriptor system of index 2,

E11ẋ1 = A11x1 + A12x2 + B1u(t), (3.6)

0 = A21x1 + B2u(t), (3.7)

y = C1x1 + C2x2 + Du(t), (3.8)

where the state is x1 = [u, T]T ,x2 = [p]T . Additionally, for the Boussinesq model with the

given control function u(t), B2 = 0,C2 = 0, and D = 0. The output y(t) is the average

vorticity for the cavity. The state and output equations in (3.6)-(3.8) can be written in the

form of (2.12) if we embed E11 into a larger matrix with zero blocks and note that the block

matrix A22 is zero. For a Stokes-type descriptor system of index 2, E is singular, and the

32 Chapter 3. A Natural Convection Flow Model

system is characterized by the facts that E11 is nonsingular, A12 and AT
21 have full column

rank, and A21E
−1
11 A12 is nonsingular.

3.4 Model Reduction of Descriptor Systems

The focus for reducing this model is to maintain the input to output mapping. In terms

of model reduction, we seek to minimize the error between the full-order and reduced-order

outputs. Given the model in (3.6)-(3.8), we note that E is singular, being of the form

E =

 E11 0

0 0

 . (3.9)

Reducing this type of system is further complicated by the fact that the transfer function is

not a strictly proper rational function. So, the transfer function G(s) can be decomposed

into its strictly proper portion Gsp(s) and its polynomial portion P(s).

G(s) = Gsp(s) + P(s), G̃(s) = G̃sp(s) + P̃(s). (3.10)

Because of this form, particular care must be taken to match the polynomial parts. As is

demonstrated in Gugercin et al. [54], to have bounded H2 or H∞ errors between the full-

order and reduced-order transfer functions, the polynomial portions of the full-order and

reduced-order systems must match exactly, i.e. P(s) = P̃(s). This is accomplished by first

decoupling the system into a differential equation to solve for x1 and an algebraic equation to

solve for x2, as shown in [54]. As described in [54, 90], this decoupling is done implicitly and

thus the deflating projectors, which are expensive to compute, are never computed. Rather,

we use a series of sparse indefinite linear matrix solves to accomplish the reduction and thus

3.4. Model Reduction of Descriptor Systems 33

the implicit decoupling. The differential equation system for x1 is then reduced using an

iterative interpolatory algorithm similar to Algorithm 2.8. Gugercin et al. [54] discuss the

specifics on how to enforce a Hermite interpolation of the transfer function of this descriptor

system. In addition, to improve computational efficiency, Algorithm 3.1 was developed to

find the projection matrices needed to provide a bi-tangential Hermite interpolation.

Algorithm 3.1 (Interpolatory model reduction for Stokes-type descriptor sys-
tems of index 2; Gugercin et al. [54]).

1. Given shifts {σi}ri=1 and tangent directions {bi}ri=1 and {ci}ri=1.

2. For i = 1, . . . , r, solve [
σiE11 −A11 A12

A21 0

] [
vi
z

]
=

[
B1bi

0

]
[
σiE

T
11 −AT

11 AT
21

AT
12 0

] [
wi

q

]
=

[
CT

1 ci
0

]
3. V = [v1 · · · vr], W = [w1 · · · wr]

4. Er = WTE11V, Ar = WTA11V, Br = WTB1, Cr = C1V, Dr = D

Now that we have a computationally effective method to compute V and W, we can embed

Algorithm 3.1 into the IRKA Algorithm 2.8 to find the optimum shifts and directions. This

leads to the version of IRKA that is described in Algorithm 3.2.

34 Chapter 3. A Natural Convection Flow Model

Algorithm 3.2 (IRKA for Stokes-type descriptor systems of index 2;Gugercin
et al. [54]).

1. Select initial shifts {σi}ri=1 and tangent directions {bi}ri=1 and {ci}ri=1.

2. Apply Algorithm 3.1 to obtain Er, Ar, Br, Cr, and Dr

3. while (not converged)

(a) Compute Y∗ArZ = diag(λ1, . . . , λr) and Y∗ErZ = I, where the columns
of Z = [z1, . . . , zr] and Y = [y1, . . . ,yr] are, respectively, the right and left
eigenvectors of λEr −Ar.

(b) σi ← −λi, bTi ← y∗i B̃, and ci ← C̃zi for i = 1, . . . , r.

(c) Apply Algorithm 3.1 to obtain Er, Ar, Br, Cr, and Dr

end while.

With this algorithm, we can now create an H2-optimal r-dimensional reduced-order model

via projection as given by

Er
˙̃x1(t) = Arx̃1(t) + Bru(t), (3.11)

y(t) = Crx̃1(t), (3.12)

that will allow us to solve for x̃1, where x1 ≈ Vx̃1. Once we have calculated x̃1, then x2 can

be recovered using the algebraic equations given in Gugercin et al. [54], Wyatt [90].

3.5 Numerical Results

The temperature induced natural circulation in a 2D square was modeled using the Boussi-

nesq equations and then linearized about a mean flow to create an index-2 Stokes-type

3.5. Numerical Results 35

descriptor system. See Section 3.3 for specific details. For this example, n1 = 7301 and

r = 15, and the control function defined by (3.5) is given by the step function in Figure

3.2. The goal of these particular interpolatory methods is to minimize the error between

0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6
Control Function − u(t)

Time (s)

T
e

m
p

e
ra

tu
re

 D
if
fe

re
n

c
e

 (
K

)

Figure 3.2: Control function for the natural circulation square.

the full-order and reduced-order transfer functions, and as a consequence minimize the error

between the full and reduced order system response. As Figure 3.3 illustrates, the reduced-

order transfer function is a very good approximation of the full-order transfer function for

frequencies along the imaginary axis.

10
−5

10
0

10
5

10
10

−450

−400

−350

−300

−250

−200

−150

−100

−50
Bode Plot

Frequency (rad/s)

S
in

g
u

la
r

V
a

lu
e

s
 (

d
B

)

G

Reduced G

Figure 3.3: Frequency response of the full and reduced-order transfer functions.

36 Chapter 3. A Natural Convection Flow Model

As the theory in [53] and [54] suggest, this leads to a very small error of O(10−6) for the

measured response, y(t), as seen in Figure 3.4.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
x 10

−6 Average Vorticity

Time (s)

V
o

rt
ic

it
y
 (

1
/s

)

Full Model

Reduced Model

(a) System response.

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3
x 10

−6 Average Vorticity Error

Time (s)

R
e

la
ti
v
e

 E
rr

o
r

(b) System response error.

Figure 3.4: Comparison of the full-order and reduced-order system response, y(t) for the
natural circulation problem.

Somewhat unexpectedly, the reduced-order model also provided a good approximation for

the state space as is seen in Figure 3.5.

While the results of this example are excellent, this method is approximating a linearized

system instead of the full nonlinear system. As such, the nonlinearity is ignored, and the

approximations do not account for the nuances developed by the nonlinear terms of the

original system. To capture this nonlinear behavior using input-independent techniques,

new methods must be developed to handle the nonlinearity.

3.5. Numerical Results 37

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Final Velocity Vector Field

(a) State space generated using the full-order
model x1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Final Velocity Vector Field (Reduced)

(b) State space approximated by the
reduced-order model x̃1 = Vx1r .

0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

−3 State Error

Time (s)

R
e

la
ti
v
e

 E
rr

o
r

(c) Relative error over the first 10 seconds.

Figure 3.5: Comparison of the state spaces generated via the full and reduced-order models
for the natural circulation problem.

Chapter 4

Towards Input-Independent Methods

for Nonlinear Model Reduction

Accurately modeling fires inherently requires the use of nonlinear models. While the results

for reducing linear models are excellent, we must move in the direction of nonlinearity to

truly represent the behavior of a fire. In moving from linear to nonlinear systems, we are able

to investigate a larger class of problems. However, this shift often results, except for very

special nonlinearities, in the inability to employ H2-optimal input-independent methods to

reduce the system order.

As stated earlier, large nonlinear dynamical systems typically require methods such as POD

to create the reduced-order models. However, one of the limitations of these methods is

that the reduced-order models are only as good as the full-order samples (i.e. snapshot

matrices) that were used to generate the POD basis used to create the reduced-order model.

Further, even if the ROM performs well for nearby solutions, it may not provide accurate

solutions when input conditions are chosen sufficiently far away from the original full-order

data snapshot samples. This behavior is in contrast to the H2-optimal methods used for

38

39

linear and bilinear systems where the reduced-order model is designed to perform well over a

wide range of bounded input conditions. One of the long term goals of this research is to link

these models to low-resolution, large-scale models, such as network models, to provide local

high-fidelity predictions for the fire behavior. Therefore it is important to provide accurate

input to output mappings to and from the nodal connection points.

Another limitation of POD, is the large off-line cost associated with capturing the data

snapshots. We must capture a sufficiently rich set of data snapshots to build a set of basis

vectors that are able to represent the dynamics of the system well. Additionally, this set must

be targeted enough to allow for a relatively small number of basis vectors to represent the

system [18, 80]. Recalling Theorem 2.12, we note that if the singular values of the snapshot

matrix do not decay quickly, then it is difficult to reduce the system to a desired accuracy

without utilizing a large number of basis vectors.

In this chapter, we begin to look at truly nonlinear dynamical systems, and we examine

new methods to handle those nonlinear dynamical systems. As a test system, we chose the

Burgers’ equation (4.1). In our context, the Burgers’ equation can be seen as a simplified

version of the momentum equation in (2.1), where there is no external body force and the

pressure remains constant over the spatial domain. This is a simple nonlinear system that

embodies some of the challenges that we face in reducing the full fire model. Ignoring

external forces, we see that the components, namely a convection term v(x, t) · vx(x, t) and

a diffusion term νvxx(x, t), are present in equations (2.1), (2.3)-(2.6) of the fire model. In

this way we can test certain methods on a simpler system first to see if they are viable for

the full fire model . After discussing the model generated from the Burgers’ equation, we

will examine three possible techniques for extending input independent methods to nonlinear

equations. The first is a method to reduce the discretized quadratic-bilinear system using

multi-moment matching (QBMOR) [15, 47, 48]. Next we investigate combining POD with an

40
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

input-independent method in an attempt improve the accuracy and stability of the reduced-

order model over a larger range input functions. Finally, we discuss a technique where we

ignore the nonlinear terms and attempt to determine the projection matrices using only the

linear portion of the system.

4.1 Burgers’ Equation

For our research, we solved the 1D Burgers’ equation (4.1) using several different input

functions (see Appendix B). A POD reduced-order model was creating using data snapshots

from the control function u1(t) shown in figure B.1a. This reduced-order model was used

as the standard with which we compared the reduced-order models generated using other

techniques.

4.1.1 Problem Definition

Specifically, we looked at the 1D Burgers’ equation over [0, 1] × [0, tf]. For these tests, we

set Neumann boundary conditions on the right side of the domain and a Dirichlet boundary

control on the left. This leads to the boundary conditions

vt(x, t) + v(x, t) · vx(x, t) = νvxx(x, t), (4.1)

v(0, t) = u(t), (4.2)

vx(1, t) = 0, (4.3)

v(x, 0) = v0(x) = 0. (4.4)

4.1. Burgers’ Equation 41

Examining the convection term, we see that the nonlinearity is actually the derivative of the

quadratic state variable leading to the equivalent form

vt(x, t) +
1

2

∂

∂x
[(v(x, t)⊗ v(x, t)] = ν · vxx(x, t). (4.5)

This system can be spatially discretized by a few different methods. We discuss the group

finite element method (GFEM) and finite difference method below.

4.1.2 Group Finite Element Method (GFEM)

We refer the reader to Krämer [62] for a complete treatment of the GFEM for solving the

1D Burgers’ equation. We will mention a couple of points that have a computational impact

when generating the reduced-order models. Using the weak formulation on (4.1), integrating

by parts, and then projecting to the finite element basis, we are left with the matrix system

Eα̇(t) = Aα(t) + Bu(t) + J (α(t)), (4.6)

where given the finite element basis ϕk(x), k = 1, . . . , N , we can approximate the state space

by (4.7)

v(x, t) ≈
N∑
k=1

αk(t)ϕk(x). (4.7)

Further, the nonlinearity in the system is defined by (4.8) for each j = 1, . . . , N .

J (α(t)) = −
N∑
i=1

N∑
k=1

∫ 1

0

αi(t)αk(t)ϕi(x)ϕ′k(x)ϕj(x) dx. (4.8)

This nonlinearity depends on t and must be recalculated at each time step. This is a major

bottleneck for the computation.

42
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

The GFEM uses the conservative form of the Burgers equation (4.5) when generating the

weak form to eliminate this bottleneck. Looking at the nonlinear term

v2(x, t) ≈

(
N∑
k=1

αk(t)ϕk(x)

)2

, (4.9)

≈
N∑
k=1

α2
k(t)ϕk(x). (4.10)

The last step in (4.10) is justified by the fact that at the nodes xk, k = 1, . . . , N , ϕi(xk)ϕj(xk) =

δij. We then linearly interpolate between the nodes. Now our nonlinear system is a quadratic

nonlinear system of the form

Eα̇(t) = Aα(t) + H(α(t)� α(t)) + Bu(t), (4.11)

where � represents the component-wise multiplication below

α� β = [α1β1, · · · , ; αnβn]T .

Further, H ∈ RN×N is defined by

(H)i,j = −1

2

∫ 1

0

ϕ′i(x)ϕj(x) dx,

which is constant and does not need to be computed at each time step. This system can

now be reduced using the QBMOR method where N = 0.

4.1. Burgers’ Equation 43

4.1.3 Finite Difference Method

In this method for discretizing the Burgers’ equation, the spatial derivatives are approxi-

mated using backward finite difference scheme. For the convective term we approximate the

first derivative using a backward difference

∂v(x, t)

∂x

∣∣∣
x=xi
≈ v(xi, t)− v(xi−1, t)

h
, (4.12)

where h = xi − xi−1. For the diffusion term, the second derivative is approximated using

∂2v(x, t)

∂x2

∣∣∣
x=xi
≈ v(xi+1, t)− 2v(xi, t) + v(xi−1, t)

h2
. (4.13)

The domain is then uniformly discretized as a = x0, x1, · · · , xN , xN+1 = b and the boundary

conditions are applied. This results in an N -dimensional system of ordinary differential

equations to solve for v(t) = [v(x1, t), · · · , v(xN , t)]
T in the discretized state space xN

v̇(xN , t) = Av(xN , t) + H
(
v(xN , t)⊗ v(xN , t)

)
+ Nv(xN , t)u(t) + Bu(t),

y(t) = CTv(xN , t). (4.14)

where y(t) is some output of interest. For this study, the output was simply considered as

the value at x = 1.

It is worth noting that due to sparsity and structure of H ∈ Rn×n2
, the nonlinear term in

the full model can be simplified by

H(v ⊗ v) =
(

(Ĥv)� v
)
,

where Ĥ ∈ Rn×n is a diagonal matrix. Since the corresponding matrix in the reduced-order

44
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

system Hr ∈ Rr×r2 is dense, we cannot make this same simplification. However, since r � n,

this is not a significant computational concern.

4.1.4 Projecting the Quadratic-Bilinear System

Once we have constructed a discrete system for the Burgers’ equation using either the method

described in section 4.1.2 or section 4.1.3, we are left with the quadratic bilinear dynamical

system η(A,H,N,b, c) as defined by (2.16). In general, we will construct our system via

projection similar to what was described for linear systems in section 2.3.1. However, we now

must also project the quadratic and bilinear terms. Again, we start by approximating the

state variable by v ≈ Vvr. Performing a Petrov-Galerkin projection on the state equation

in (2.16) leads to equation

W [Vv̇r(t)−AVvr(t)−H(Vvr(t)⊗Vvr(t))−NVvr(t)u(t)− bu(t)] = 0. (4.15)

We now provide a definition for the projection-based reduced-order model of the quadratic

bilinear system.

Definition 4.1. Given the quadratic bilinear dynamical system η(A,H,N,b, c) given by

(2.16), the projection-based reduced-order model is given by

v̇r(t) = Arvr(t) + Hr(vr(t)⊗ vr(t)) + Nrvr(t)u(t) + bru(t), (4.16)

yr = crvr(t),

4.1. Burgers’ Equation 45

where we define

Ar = WTAV Hr = WTH (V ⊗V) Nr = WTNV (4.17)

br = WTb cr = cV WTV = Ir.

When W 6= V, we consider this a two-sided or Petrov-Galerkin projection. Further, if we

let W = V, then this called a one-sided or Galerkin projection.

For the remainder of this chapter, we will use this projection to determine the reduced-order

model. The only difference in each of the methods is how V and W are determined.

4.1.5 Tensor Product Computational Strategies

Before discussing model reduction strategies for the Burgers’ equation, we must discuss

the computational challenge of reducing the quadratic matrix H in this quadratic-bilinear

system. To understand this issue, we look at the sizes of each of the matrices and the size of

the resulting matrix products. As seen in (4.17), H ∈ Rn×n2
, W,V ∈ Rn×r are required to

compute Hr ∈ Rr×r2 . Since H is sparse and contains O(n) nonzero columns, it only requires

about O(n2) to store the matrix. Further, WTH will result in a sparse matrix Ĥ ∈ Rr×n2

that requires O(r×n) entries to store. The issue comes in the (V⊗V) term which results in

a dense Rn2×r2 matrix. Even for moderately sized systems, this matrix may exceed storage

capacities of many desktop computers. For example, if we reduced a system from n = 1500 to

r = 20 on a double precision machine, it would require almost 2 gigabytes to store (V⊗V),

not to mention that we still have to pre-multiply this matrix by Ĥ. Due to the density of

this matrix we are not able to leverage sparse matrix multiplications. Fortunately, Benner

and Breiten [15] suggest a method that leverages several well known tensor structure and

multiplication properties, which can be found in [61].

46
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

Suppose we have a tensor H ∈ Rm×n×p, then we can create a matricization, H(1) or simply

H, of the tensor H such that H(1) ∈ Rm×np. We call this the mode-1 unfolding of the

tensor H. We can also form the mode-2 unfolding H(2) ∈ Rn×mp and the mode-3 unfolding

H(3) ∈ Rp×mn [61]. Using the properties of tensors and their matricizations, we now present

Theorem 4.2 that will be critical in our being able to reduce these quadratic systems via

projection.

Theorem 4.2. The Hessian H in (2.16) can be symmetrized as shown in [15] without chang-

ing the dynamics of the operator. Further, if it is symmetrized, then the following properties

hold

1. H(2) = H(3)

2. H(u⊗ v) = H(v ⊗ w)

3. wTH(1)(u⊗ v) = uTH(2)(v ⊗ w)

Proof. See Benner and Breiten [15] for details.

Using the properties from Theorem 4.2, we are able to significantly reduce the computation

times and memory requirements for calculating Hr = WTH(V ⊗W). In particular, using

property 3 from Theorem 4.2, we get Algorithm 4.3 which was suggested by [15].

Algorithm 4.3 (Projecting the Quadratic Matrix [15]). Given a symmetrized
matrix H, we calculate the reduced-order projection Hr = WTH(V ⊗V) as follows:

1. Compute tensor Y ∈ Rr×n×n via Y(1) = WTH.

2. Compute tensor Z ∈ Rr×r×n via Z(2) = VTY(2).

3. Compute tensor H̃ ∈ Rr×r×r via H̃(3) = VTZ(3).

4. Form the mode-1 unfolding Hr of the tensor H̃.

4.2. Quadratic-Bilinear Model Reduction 47

Using Algorithm 4.3, we can see that (V ⊗ V) is never actually calculated. Further the

computational costs of the matrix multiplications are significantly reduced. Finally, since

the formation of the mode-2 and mode-3 unfoldings is a trivial re-indexing of the mode-1

unfolding, shifting between modes is very efficient.

4.2 Quadratic-Bilinear Model Reduction

In [47] and [48], a method (QLMOR) is developed to reduce quadratic models of the form

given in (2.16) using moment matching and projections. In this method, the reduced-order

model will match up to the q-th order moments of the first two transfer functions H1(s1) and

H2(s1, s2) at two given frequencies. The method only provides a technique for performing

a one-sided projection. Benner and Breiten [15] use the ideas from Gu [48], but extend the

approach to provide for moment matching at multiple frequencies and allow for two-sided

projections. Benner and Goyal [16] have very recently extended the idea of Gramians and

balanced truncation to model reduction of quadratic-bilinear dynamical systems.

In the following sections, we discuss the basics of two-sided quadratic-bilinear model order

reduction (QBMOR) and then present our results using the techniques described. Finally,

we discuss the stability issues associated with this method when using two-sided projections.

4.2.1 QBMOR Framework

For linear (2.12) and bilinear (2.15) dynamical systems, much is known about how to ef-

ficiently determine H2-optimal reduced-order models [14, 22, 39, 53, 54]. However, for

quadratic systems, the criteria for guaranteeing this H2 optimality are not yet well un-

derstood. In a sense, the research for quadratic systems is in an early stage akin to when

48
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

the linear techniques were first being developed in [5, 46, 50, 51].

While the work by Gu [47, 48] set the stage for using moment matching techniques, it was

focused on one-sided projections. We focus on the two-sided techniques presented by Benner

and Breiten [15]. We start by choosing an appropriate sequence of nested Krylov subspaces

that extends the known results for one-sided projections specified in [48] to implement a two-

sided version of QLMOR defined by Benner and Breiten as defined by Theorem 4.6, which

we refer to here as QBMOR. First, a couple terms are defined to clarify later notation.

Definition 4.4. Given a matrix A ∈ Rn×n and starting vector b ∈ Rn, the associated Krylov

space is defined as

K(A,b) := span{b, Ab, A2b, A3b, . . .}. (4.18)

Further the nth order Krylov subspace is defined as

Kn(A,b) := span{b, Ab, . . . , Anb}. (4.19)

Definition 4.5. Let E,A ∈ Rn×n, b ∈ Rn, q ∈ N, and σ ∈ C. We define the associated

rational Krylov subspace by

Kq(E,A,b, σ) := Kq
(
(σE−A)−1E, (σE−A)−1b

)
. (4.20)

Theorem 4.6 (Benner and Breiten, 2012). Let Σ = (E,A,H,N,b, c) denote a quadratic

bilinear control system of dimension n. Let q1, q2 ∈ N with q2 ≤ q1. Assume that a reduced

QBDAE is constructed by a Petrov-Galerkin type projection

Er =WTEV , Ar =WTAV , Hr =WTH(V ⊗ V)

Nr =WTNV , br =WTb, cr = VTc

4.2. Quadratic-Bilinear Model Reduction 49

where V and W are the orthonormal bases for the span of the union of the following column

spaces

V1 = Kq1(E,A,b, σ)

W1 = Kq1(ET ,AT , c, 2σ)

for i = 1 : q2

Vi
2 = Kq2−i+1(E,A,NV1(:, i), 2σ)

Wi
2 = Kq2−i+1(ET ,AT ,NTW1(:, i), σ)

for j = 1 : min(q2 − i+ 1, i)

Vi,j
3 = Kq2−i−j+2(E,A,HV1(:, i)⊗V1(:, j), 2σ)

Wi,j
3 = Kq2−i−j+2(ET ,AT ,H(2)V1(:, i)⊗W1(:, j), σ),

i.e.

span(V) = span(V1) ∪
⋃
i

span(Vi
2) ∪

⋃
i,j

span(Vi,j
3),

span(W) = span(W1) ∪
⋃
i

span(Wi
2) ∪

⋃
i,j

span(Wi,j
3).

then the following conditions hold

∂iG1

∂si1
(σ) =

∂iG̃1

∂si1
(σ) i = 0, . . . , q1 − 1,

∂iG1

∂si1
(2σ) =

∂iG̃1

∂si1
(2σ) i = 0, . . . , q1 − 1,

∂i+jG2

∂si1s
j
2

(σ) =
∂i+jG̃2

∂si1s
j
2

(σ) i+ j ≤ 2q2 − 1.

50
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

4.2.2 Results

Our initial approach was to look at the Burgers’ equation as set up in Section 4.1. These

equations were first solved using the GFEM method described in 4.1.2 and Krämer [62].

As was suggested in [15], IRKA was run on the linear portion of the system in order to

determine the shift points to use with QBMOR. Using the projections in 4.6, V andW were

calculated and used to create reduced-order models via Galerkin (one-sided) and Petrov-

Galerkin (two-sided) projections. We observed that the two-sided systems were often not

stable.

To test the stability of the one-sided versus two-sided projections, tests were run when using

the various values for q1 and q2. As seen in the data the two-sided projection was unstable

for several different configurations of q1 and q2, while the one-sided projections produced

a bounded output in every case. This is not surprising. Unless the Petrov-Galerkin bases

are chosen by effective/optimal methods such as Balanced Truncation and IRKA, even for

linear systems, one might expect one-sided projections to preserve stability more often the

two-sided ones. Examples of the cases where the two-sided projections converge are shown

in Figures 4.1 and 4.2. As can be seen in the Figures and in Table 4.1, when the two-sided

projection did converge, it was a much better approximation to the full-order solution.

We investigated to see if there was some correlation between the eigenvalues of E−1A and

the stability (see Table 4.1) of the reduced-order model. While there does not seem to be

a direct correlation, it is worth noting that one-sided projections never produced unstable

eigenvalues, but as more moments are matched for the two-sided projections, we start to see

unstable eigenvalues appear in the linear portion of the reduced-order model. Further, while

the condition number of the projected mass matrix of the one-sided projection is always

nearly 1, the condition number for the mass matrix seems to grow when the projection

4.2. Quadratic-Bilinear Model Reduction 51

Table 4.1: Summary data for Er1 = VTEV , Er2 =WTEV , Ar1 = VTAV , and Ar2 =WTAV .

Condition Number # Unstable Eigenvalues Relative Error
q1 q2 r Er1 Er2 λ1(E−1

r1 Ar1) λ2(E−1
r2 Ar2) ‖y − yr1‖/‖y‖ ‖y − yr2‖/‖y‖

3 0 3 1.002 6.114 0 0 0.34942 ∞
3 1 4 1.003 2.718 0 0 0.21131 ∞
3 2 6 1.006 4.621 0 0 0.12979 0.40050
3 3 10 1.014 7.429 0 0 0.04798 0.00806

4 0 4 1.003 19.427 0 0 0.17225 ∞
4 1 5 1.004 6.521 0 0 0.17514 ∞
4 2 7 1.007 4.980 0 0 0.09402 0.08103
4 3 11 1.017 8.129 0 0 0.04118 0.00444
4 4 17 1.494 14.026 0 1 0.02506 ∞

5 0 5 1.005 69.437 0 0 0.15804 ∞
5 1 6 1.006 14.425 0 0 0.11997 ∞
5 2 8 1.010 12.986 0 0 0.05434 0.03009
5 3 12 1.019 8.617 0 0 0.03058 0.00144
5 4 18 1.570 40.088 0 3 0.03338 ∞
5 5 27 1.986 171.625 0 6 0.01393 ∞

6 0 6 1.007 264.469 0 0 0.09385 ∞
6 1 7 1.008 36.903 0 0 0.08121 ∞
6 2 9 1.011 8.532 0 0 0.05957 0.01333
6 3 13 1.020 13.560 0 1 0.03450 ∞
6 4 19 1.784 13.368 0 2 0.02021 ∞
6 5 28 1.985 53.223 0 4 0.01274 ∞
6 6 40 2.184 264.982 0 5 0.01017 ∞

52
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=4 and q2=2, 7 nodes

Actual

One-sided

Two-sided

(a)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=4 and q2=3, 11 nodes

Actual

One-sided

Two-sided

(b)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=4 and q2=4, 17 nodes

Actual

One-sided

Two-sided

(c)

Figure 4.1: Output for reduced models versus the full state output where q1 = 4.

matrices are dominated either by the linear or the quadratic term.

Attempt to Control Stability

Benner and Breiten [15] generated the interpolation points for QBMOR using IRKA applied

to the linear portion of the system. In an attempt to improve the stability results, we ex-

tended this idea of using QBMOR and IRKA together by combining the QBMOR basis with

4.2. Quadratic-Bilinear Model Reduction 53

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=5 and q2=2, 8 nodes

Actual

One-sided

Two-sided

(a)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=5 and q2=3, 12 nodes

Actual

One-sided

Two-sided

(b)

Figure 4.2: Output for reduced models versus the full state output where q1 = 5.

four basis vectors generated by using IRKA. The difference between these two frameworks is

that the first is only seeking the interpolation points to use for QBMOR, whereas the second

merges the bases created using two techniques into a single basis. Our goal was to use the

IRKA vectors to increase the order of the reduced system while still maintaining stability.

These IRKA vectors generated using just the linear portion of the system are known as

H2-optimal vectors since they would be optimal for the linear system. However, they are

not optimal for the full nonlinear system [29]. For QBMOR-IRKA, the IRKA projection

matrices were appended to the QBMOR projection matrices and orthonormalized via QR.

This resulted in a significant improvement in the accuracy over QBMOR alone, with the

output error being almost an order of magnitude less when both converged. However, the

stability of the system was not improved; and for almost every case if the QBMOR method

diverged, then so would the IRKA-QBMOR method, as seen in Table 4.2 and Figure 4.3.

54
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

Table 4.2: Summary data for reduced-order models using QBMOR.

Solution Error ‖y − yr‖

q1 q2 r rIQ 1-sided QB-IRKA 1S 2-sided QB-IRKA 2S

2 0 2 6 5.16e+00 6.08e-01 7.10e+00 Inf

2 1 4 8 1.45e+00 3.05e-01 1.36e+00 3.70e-01

2 2 8 12 4.61e-01 8.13e-02 2.80e-01 6.63e-03

3 0 3 7 2.26e+00 4.24e-01 Inf Inf

3 1 5 9 1.09e+00 1.91e-01 7.68e-01 2.04e-01

3 2 9 13 2.79e-01 7.78e-02 1.44e-01 Inf

3 3 16 20 7.29e-02 2.72e-02 Inf 2.52e-03

4 0 4 8 1.08e+00 2.68e-01 Inf Inf

4 1 6 10 6.88e-01 1.90e-01 5.42e-01 Inf

4 2 10 14 1.87e-01 7.55e-02 5.15e-02 7.57e-03

4 3 17 21 3.96e-02 3.07e-02 Inf Inf

4 4 27 31 3.01e-02 1.76e-02 Inf Inf

5 0 5 9 1.09e+00 2.49e-01 Inf Inf

5 1 7 11 4.30e-01 1.19e-01 6.33e-01 Inf

5 2 11 15 1.39e-01 4.71e-02 2.65e-02 4.27e-03

5 3 18 22 4.88e-02 1.65e-02 Inf Inf

5 4 28 32 2.88e-02 1.60e-02 Inf Inf

5 5 42 46 1.59e-02 8.09e-03 Inf Inf

4.2. Quadratic-Bilinear Model Reduction 55

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=4 and q2=1, 6 nodes 9 with IRKA

Actual
One-sided
Two-sided
IRKA/QBMOR

(a)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=4 and q2=2, 10 nodes 13 with IRKA

Actual
One-sided
Two-sided
IRKA/QBMOR

(b)

0 2 4 6 8 10
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=5 and q2=1, 7 nodes 10 with IRKA

Actual
One-sided
Two-sided
IRKA/QBMOR

(c)

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Output q1=5 and q2=2, 11 nodes 14 with IRKA

Actual
One-sided
Two-sided
IRKA/QBMOR

(d)

Figure 4.3: Output for reduced models versus the full state finite difference output.

4.2.3 Stability Preservation

In looking at the QBMOR method for reducing the quadratic-bilinear system, it was noted

that the oblique Petrov-Galerkin projection often produced unstable reduced-order models.

While these two-sided projections theoretically provide more accurate models, they also may

result in asymptotic instabilities [15, 21]. As noted by [15], there may be a Lyapunov-based

56
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

method to help ensure stability. However, this method requires solving large-scale Lyapunov

equations and may be impractical for very large systems. For our research, we did not

investigate the use of this method, and we refer the reader to [15] for a complete discussion

of the method, including benefits and limitations.

4.3 Combining IRKA and POD

As was shown by Chaturantabut et al. [29], POD and quasi-H2-optimal basis vectors have

been successfully employed to improve the approximations for structure-preserving reduced-

order models of port-Hamiltonian systems. The basis vectors are considered quasi-H2-

optimal because they are generated using IRKA on the linear portion, ignoring the non-linear

terms. Our research shows this could potentially be a new technique for leveraging the best

characteristics of different model reduction techniques. At this point, however, there are no

real guidelines on how these subspaces should be combined.

4.3.1 Methodology

Our first investigation into these methods was combining the linear H2-optimal basis vectors

with two-sided QBMOR in an attempt to improve stability as described in Section 4.2.2. As

said in that Section, we did not see an improvement in the stability, but we did notice an

improvement in accuracy of the approximations when the linear H2-optimal IRKA basis was

augmented to the QBMOR basis. This improvement along with the results from [29] moti-

vated combining POD with the linear H2-optimal IRKA basis to approximate the quadratic

bilinear system given by (2.16). Initially, we developed Algorithm 4.7 to build our projection

vectors V and W. With this method, we first pick a reduced-order size r. Then a number of

4.3. Combining IRKA and POD 57

IRKA vectors, rI , and POD vectors, rP , are chosen such that r = rI + rP . To build V and

W, the IRKA and POD vectors are combined, and an orthogonal basis is generated that

spans the range of the combined basis.

Algorithm 4.7 (POD+IRKA - Method 1). Let Σ = (A,H,N,b, c) be a SISO
quadratic bilinear control system (2.16) of size n. Let r be the desired size of the reduced-
order model and rI be the number of desired IRKA vectors where 1 ≤ rI ≤ r.

1. Generate k POD orthonormal basis vectors Φ = [ϕ1, · · · , ϕk] from full-order snap-
shots created using the baseline input function u1(t), where r = rI + k.

2. Apply IRKA using just the linear terms, A,b, c, to produce VI ,WI ∈ Rn×rI .

3. Create orthonormal bases V and W such that

span{V} = span[VI , ϕ1, . . . , ϕk],

span{W} = span[WI , ϕ1, . . . , ϕk].

4. Create reduced-order model ζ = (Ar,Hr,Nr,br, cr) of size r using a Petrov-
Galerkin (two-sided) projection:

Ar = WTAV, Hr = WTH(V ⊗V),

Nr = WTNV, br = WTb, cr = VTc.

As we will see in the results section 4.3.2, if too many IRKA vectors are chosen, the system

becomes unstable. Therefore, we attempted to control the stability of the reduced-order

model by building a larger space consisting of r POD basis vectors and 1 ≤ rI ≤ r IRKA

basis vectors. We then create an orthogonal basis from these using SVD and truncate back

to the desired reduced-order dimension, r. This idea was motivated by the proper orthog-

onal decomposition technique of computing the SVD and then truncating to the correct

dimension. This technique is summarized in Algorithm 4.8. We do note that with this

second method we attempted both Galerkin (one-sided) and Petrov-Galerkin (two-sided)

projections to see if one method would perform better than the other.

58
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

Algorithm 4.8 (POD+IRKA - Method 2). Let Σ = (A,H,N,b, c) be a SISO
quadratic bilinear control system (2.16) of size n. Let r be the desired size of the reduced-
order model and rI be the number of desired IRKA vectors where 1 ≤ rI ≤ r.

1. Generate POD orthonormal basis vectors Φ = [ϕ1, · · · , ϕr] from from full-order
snapshots created using the baseline input function u1(t).

2. Apply IRKA using just the linear terms, A,B,C, to produce VI and WI .

3. Create orthonormal bases V and W using SVD such that

span{Vf} = span[VI , ϕ1, . . . , ϕr],

span{Wf} = span[WI , ϕ1, . . . , ϕr].

Since Vf ,Wf ∈ Rn×(r+rI) are column ordered by SVD based on the associated sin-
gular vectors, we let V and W be the leading r vectors of Vf and Wf , respectively.

4. Create reduced-order model ζ = (Ar,Hr,Nr,br, cr) of size r using a Petrov-
Galerkin (two-sided) projection:

Ar = WTAV, Hr = WTH(V ⊗V),

Nr = WTNV, br = WTb, cr = VTc.

5. We let W = V for the Galerkin (one-sided) projection.

4.3.2 Results

For our tests we ran full-order simulations of the Burgers’ equation using multiple input

functions, u1(t), . . . , u6(t) (see Figure B.1). We used the state-space solutions from the

simulation with input u1(t) to create our snapshot matrix. From this matrix, we built an

r-dimensional POD basis, Φr. After using this to project the full-order system, we have the

4.3. Combining IRKA and POD 59

following reduced-order model

ẋr(t) = APxr(t) + HP (xr(t)⊗ xr(t)) + NPxr(t)u(t) + bPu(t), (4.21)

yr(t) = cTPxr(t),

where AP ,HP ,NP ,bP , and cP are created via projection as in Definition 4.1 where W =

V = Φr. We then create a second reduced-order model by choosing 1 < k ≤ r and building

k-dimensional IRKA projecting vectors VI and WI . Using Algorithm 4.7, we create a

reduced-order model

ẋr(t) = Akxr(t) + Hk(xr(t)⊗ xr(t)) + Nkxr(t)u(t) + bku(t), (4.22)

yk(t) = cTk xr(t).

Table 4.3: Error for r = 15 using rI number of IRKA vectors and (r − rI) number of POD
vectors in a combined subspace.

rI u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

POD 2.0395e-03 3.3547e-02 2.0889e-02 7.7171e-02 1.9559e-02 3.6554e-02

2 1.1813e-03 1.9170e-02 1.0549e-02 4.9792e-02 1.0588e-02 2.0199e-02
3 1.0157e-03 1.0451e-02 5.2608e-03 3.7456e-02 6.4086e-03 1.6919e-02
4 8.2954e-04 1.0224e-02 5.3244e-03 3.2765e-02 6.0958e-03 1.3249e-02
5 5.6006e-04 2.6137e-02 5.1035e-02 NaN 9.8819e-03 NaN
6 3.3443e-04 1.4983e-02 5.7398e-03 1.7622e-01 5.4606e-03 NaN
7 2.1545e-04 1.1286e-02 5.2093e-03 1.3122e-01 6.1630e-03 NaN
8 1.9037e-04 1.4928e-02 6.8101e-03 3.0147e-01 5.4235e-03 NaN
9 6.1983e-04 NaN NaN NaN 3.9650e-02 NaN
10 7.8468e-04 NaN NaN NaN 1.0426e-01 NaN
11 1.8322e-03 NaN NaN NaN NaN NaN

60
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

Number of IRKA vectors

0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

Error Plot: r=15, u
2
(t)

POD

POD+IRKA

(a) Input u2(t)

Figure 4.4: Output error combining POD and IRKA vectors with r = 15 and input u2(t),
(Method 1).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD + 4 IRKA

(b) POD and IRKA for input u2(t)

Figure 4.5: Output combining POD and IRKA vectors with r = 15, (Method 1).

We then tested each reduced-order model using the various input functions. We calculated

the relative error of each of the results by taking the norm of the difference between the

full-order models and reduced-order models as:

errPOD =
‖y(t̂)− yP (t̂)‖2

‖y(t̂)‖2

errPOD−IRKA =
‖y(t̂)− yk(t̂)‖2

‖y(t̂)‖2

, (4.23)

4.3. Combining IRKA and POD 61

where t̂ are the uniformly spaced solution times from the ODE solver, t̂ = {0 = t0, t1, . . . , tf =

10}. The error results when r = 15 are summarized in Table 4.3, where NaN indicates a

solution that is asymptotically unstable. Figure 4.4 gives a graphical representation of these

results for input function u4(t). It is difficult to see any patterns in the error results, but

we can see an improvement over POD alone for certain combinations of POD and IRKA.

Further, Figure 4.5 shows comparisons between the output for the POD model and the

best combined POD/IRKA reduced-order model for the input function u2(t). Here we see

that augmenting the POD basis with IRKA basis vectors improves the accuracy of the

approximation, especially at the transition points where there are oscillations in the reduced-

order model. See Appendix C for all the error and output plots associated with this test.

Table 4.4: Error for r = 20 using rI number of IRKA vectors and (r − rI) number of POD
vectors in a combined subspace.

rI u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

POD 3.0994e-04 1.3063e-02 7.7132e-03 4.3534e-02 6.1436e-03 1.7336e-02

2 4.1667e-04 8.5916e-03 4.5444e-03 3.4318e-02 4.2229e-03 1.2376e-02
3 4.0444e-04 7.5586e-03 3.6971e-03 3.7349e-02 4.2320e-03 1.1147e-02
4 2.4889e-04 4.3315e-03 2.2410e-03 1.7807e-02 2.3858e-03 6.2902e-03
5 1.9050e-04 1.4183e-03 1.6518e-03 1.2586e-02 6.1097e-04 2.1014e-02
6 1.8958e-04 1.2675e-03 1.1171e-03 9.9517e-03 6.4955e-04 3.5521e-03
7 1.8925e-04 1.1281e-03 1.1015e-03 1.5459e-02 4.4534e-04 6.3730e-03
8 1.8915e-04 3.2229e-03 3.2438e-03 7.0775e-02 5.6806e-04 7.5582e-02
9 1.8954e-04 6.7668e-03 2.5300e-03 2.6656e-01 1.0726e-03 3.4157e-02
10 1.8885e-04 3.2414e-02 2.3428e-02 NaN 3.4075e-03 NaN
11 2.8407e-04 NaN NaN NaN 3.2713e-01 NaN
12 1.8995e-04 1.5509e-02 1.0009e-02 NaN 2.0734e-03 NaN
13 NaN NaN NaN NaN NaN NaN
14 1.4427e-03 NaN NaN NaN NaN NaN

62
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

Number of IRKA vectors

0 5 10 15 20

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

Error Plot: r=20, u
2
(t)

POD

POD+IRKA

(a) Input u2(t)

Figure 4.6: Output error combining POD and IRKA vectors for r = 20 and input u2(t)
(Method 1).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD + 7 IRKA

(b) POD and IRKA for input u2(t)

Figure 4.7: Output combining POD and IRKA vectors for input u2(t) (Method 1).

We then set the reduced-order model size to r = 20 and the results are shown in 4.8. Again,

we show the graphical depiction of the error for the selected function u2(t) in Figure 4.6

and the output in 4.7. Unlike when we looked at the reduced-order models of size r = 15,

we start to see a pattern emerge where there seems to be an optimal number of IRKA

vectors that should be added for each input function. Unfortunately, this varies from input

4.3. Combining IRKA and POD 63

function to input function. We also observe that while the there is a slight improvement in

the amplitude of the oscillations when moving from fifteen to twenty POD vectors, there is

a drastic reduction in the oscillations for the IRKA/POD models. Again the plots for all

the output and error results can be seen in Appendix C.

Finally, we ran a full set of tests after creating reduced-order models using Algorithm 4.8.

As can be seen in Table 4.5 and Figure 4.8, the two-sided projection remained stable, but the

approximations were not as good as we saw with Method 1. The tests using the one-sided

projections were essentially equivalent to using POD alone. While, the reduced-order models

remained asymptotically stable, the errors became worse than POD for a large number of

IRKA vectors relative to the reduced-order model size. That is to say that as rI → r, the

relative error of the output for the combined method exceeds the relative error of just using

POD alone.

Table 4.5: Errors for ROM (r = 15) combining POD and IRKA (Method 2)

Relative Error: ‖yr − y‖/‖y‖
of IRKA bases One-sided Two-sided

1 3.28e-02 2.98e-02
2 3.34e-02 3.27e-02
3 3.34e-02 3.06e-02
4 3.34e-02 2.61e-02
5 3.34e-02 2.42e-02
6 3.35e-02 2.53e-02
7 3.35e-02 2.65e-02
8 3.31e-02 2.80e-02
9 3.45e-02 2.86e-02
10 2.98e-02 2.94e-02
11 3.89e-02 2.97e-02
12 2.68e-02 3.19e-02
13 7.86e-02 5.14e-02
14 5.77e-02 5.69e-02
15 7.00e-02 3.48e-02

64
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
IRKA+POD, r=15, 5 IRKA Vectors

Actual
POD
IRKA/POD (1S)
IRKA/POD (2S)

(a) Output

IRKA Vectors
0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Solution Error for IRKA+POD r = 15

One-Sided
Two-sided
POD Only

(b) Approximation errors

Figure 4.8: Combining POD and IRKA vectors with input function u2(t) (Method 2).

4.4 Combining Left and Right IRKA Vectors

After looking at combining POD and IRKA linear H2-optimal basis, we wanted to see if

projecting the quadratic-bilinear system using the linear H2-optimal projection matrices

alone could successfully reduce the model. Specifically, we were looking to see if we could

obtain similar or better errors than the POD models while maintaining the system stability in

the reduced-order model. The main advantage would be that since the snapshot matrix would

not be needed, the off-line cost of building the reduced-order model would be significantly

decreased. Additionally, we were hoping that we would see the benefits of using an input

independent method, i.e. our reduced-order model would perform better over a larger range

of input functions. Unfortunately, when utilizing a two-sided projection we lost asymptotic

stability in the reduced-order models. When we used the right projection vectors in a one-

sided projection, POD easily out-performed the linear H2-optimal method. We saw similar

results when using B-IRKA. Therefore we sought to find a new input-independent projection

method for reducing the system arising from the Burgers’ equation.

4.4. Combining Left and Right IRKA Vectors 65

4.4.1 Methodology

Algorithm 4.9 (IRKA V⊕W). Let Σ = (A,H,N,b, c) be a SISO quadratic bilinear
control system (2.16) of size n. Let rW be the desired number of left projection vectors,
rV be the desired number of right projection vectors and rW + rV = r where r is the
desired size of the reduced-order model.

1. Apply IRKA using just the linear terms, A,B,C, to produce rW left projection
vectors W.

2. Apply IRKA using just the linear terms, A,B,C, to produce rV right projection
vectors V.

3. Create orthonormal basis V using SVD such that

span{V} = span[V,W].

4. Create reduced-order model ζ = (Ar,Hr,Nr,br, cr) of size r using a Galerkin
projection:

Ar = VTAV , Hr = VTH(V ⊗ V),

Nr = VTNV , br = VTb, cr = VTc.

Since previous methods had shown that two-sided methods performed better when asymp-

totic stability was maintained and that one-sided methods always maintained asymptotic

stability, we created Algorithm 4.9 in an attempt to capture the benefits of each method.

In essence, we select a size r for the reduce order model. We then build rW left projection

vectors W and rV right projection vectors V such that rW + rV = r. These are combined,

and an orthonormal basis is built to span the range of the combined right and left projection

vectors. We emphasize the fact that this method does not depend on any prior solutions, nor

does it depend on the nonlinear matrices H and N associated with the quadratic-bilinear

dynamical system.

66
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

4.4.2 Results

Similar to the tests run for combining POD and IRKA described in section 4.3.1, we started

by building a POD reduced-order model of size r = 15 and r = 20. Additionally, we

built r-dimensional reduced-order models using IRKA, B-IRKA, and QBMOR. To maintain

asymptotic stability, all of these models were built using a one-sided Galerkin projection. All

of these models were run using the six input functions u1(t), . . . , u6(t). The relative output

error was then computed using the same method as equation (4.23). Then a series of tests

were run combining the left and right linearH2-optimal IRKA into a single projection matrix

using Algorithm 4.9 to create the reduced-order model. After selecting the reduced-order

model size, r = 15 or r = 20, we created linear H2-optimal right and left projection vectors

using IRKA for sizes j = 1, 2, . . . , r. We built a reduced-order model using Algorithm 4.9 for

every possible combination for the number of left projection vectors rW and right projection

vectors rV such that rW + rV = r. We then solved each of these reduced order models using

each input function u1(t), . . . , u6(t).

Table 4.6: Relative errors for ROM (r = 15) for each control function given the number
of V vectors (rV) and W vectors (rW). Combinations not shown or with an NaN did not
converge.

rV rW u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

2 13 3.3608e-01 NaN NaN NaN NaN NaN
3 12 1.0926e-01 NaN 1.0789e-01 NaN 1.5231e-01 NaN
4 11 3.1494e-02 8.6793e-02 4.4581e-02 NaN 9.5301e-02 7.4208e-02
5 10 8.7638e-03 3.8002e-02 1.7153e-02 1.3407e-01 2.7604e-02 4.6459e-02
6 9 2.5361e-03 1.2243e-02 5.7546e-03 5.4041e-02 1.0876e-02 2.0137e-02
7 8 6.7241e-04 5.2004e-03 2.5799e-03 3.8746e-02 4.4921e-03 8.6424e-03
8 7 5.7876e-04 3.4269e-03 1.7649e-03 3.0796e-02 2.6200e-03 5.4555e-03
9 6 5.8503e-04 3.8505e-03 1.7381e-03 3.0579e-02 2.8272e-03 5.4379e-03
10 5 6.2066e-04 4.5373e-03 1.9250e-03 2.7459e-02 3.3594e-03 7.0218e-03
11 4 7.5621e-04 6.3001e-03 2.5758e-03 2.7180e-02 4.2327e-03 8.8640e-03
12 3 1.3276e-03 8.8344e-03 3.5321e-03 2.8747e-02 5.6981e-03 1.0070e-02
13 2 1.1310e-02 5.3339e-02 3.2766e-02 8.4221e-02 3.7449e-02 3.6137e-02

4.4. Combining Left and Right IRKA Vectors 67

IRKA V Vectors
0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
2
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

Figure 4.9: Comparison of relative output error of IRKA V⊕W to other methods for r = 15.

Table 4.7: Relative errors for all ROMs (r = 15).

Method u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

POD 2.0395e-03 3.3547e-02 2.0889e-02 7.7171e-02 1.9559e-02 3.6554e-02
QBMOR 8.7004e-03 4.7521e-02 2.5424e-02 1.1485e-01 3.1968e-02 3.8208e-02
B-IRKA 6.9133e-02 1.5061e-01 1.0764e-01 1.8894e-01 1.2208e-01 9.4322e-02
IRKA 1.1751e-02 7.2188e-02 4.7789e-02 1.1534e-01 5.0353e-02 5.5483e-02
IRKA V ⊕W 5.7876e-04 3.4269e-03 1.7381e-03 2.7180e-02 2.6200e-03 5.4379e-03

For our first set of tests, with r = 15, Table 4.6 shows the results for each input function

uj(t), j = 1, . . . , 6, and combination of left and right projection vectors, W and V, respec-

tively. The first observation is that the reduced-order model was stable when almost all the

vectors comprising the deflation space came from either the right or left projection vectors.

Adding a single left projection vector to the right projection vectors causes the system to

lose asymptotic stability. However, if we continue to add left projection vectors until there

are approximately the same number of right and left projection vectors, then the reduced-

order model is both stable and more accurate than POD. We see a graphical depiction of

this in Figure 4.9 where the error is minimized when the right and left projection vectors

68
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
2
(t) (r=15, r

v
=8, r

w
=7)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure 4.10: Comparison of POD to IRKA V ⊕W output for r = 15 and input u2(t).

are balanced. For the Burgers’ equation, when the solution tends towards a shock, the POD

solution begins to exhibit spurious oscillations. We can see this at times t ≈ 1, 3, 5, 7, 9 for

input function u2(t) in Figure 4.10a. As can be seen in Appendix D, these oscillations are the

primary source of error for the POD models. For the IRKA V ⊕W models, the amplitude

of these oscillations are dampened when we balance the number of right and left projection

vectors. We can see evidence of this in Figure 4.10b. Further, as seen in Table 4.7 and Figure

4.9, IRKA V ⊕W is much better than the other one-sided techniques, often reducing the

relative error by more than an order of magnitude.

By increasing the reduced-order model size to r = 20, the relative error continued to improve

as can be seen in Table 4.8. This trend is completely anticipated, but the details are worth

discussing. For the POD models, there is a reduction in the amplitude of the previously

discussed oscillations. However, the oscillations are still pronounced and noticeable in the

POD models (see Figure 4.12a). For IRKA V ⊕W, the oscillations are almost completely

eliminated for r = 20, as is apparent in Figure 4.12b. In looking further into this issue, we

see from Table 4.9 that it requires significantly more POD basis vectors than IRKA V⊕W

4.5. Summary 69

Table 4.8: Relative errors for ROM (r = 20) for each control function given the number
of V vectors (rV) and W vectors (rW). Combinations not shown or with an NaN did not
converge.

rV rW u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

2 18 3.3522e-01 NaN NaN NaN NaN NaN
3 17 1.0856e-01 NaN 1.0686e-01 NaN 1.5151e-01 NaN
4 16 3.1186e-02 8.5943e-02 4.4119e-02 NaN 9.2337e-02 7.1059e-02
5 15 8.6703e-03 3.7222e-02 1.6868e-02 1.2331e-01 2.7329e-02 4.2000e-02
6 14 2.5294e-03 1.2193e-02 5.7197e-03 5.1789e-02 1.0802e-02 1.9243e-02
7 13 6.6779e-04 5.1826e-03 2.5694e-03 3.7794e-02 4.4715e-03 8.5274e-03
8 12 4.8096e-04 1.8670e-03 1.3849e-03 1.8826e-02 1.4777e-03 4.3300e-03
9 11 1.9965e-04 8.1184e-04 1.0471e-03 1.0889e-02 4.8614e-04 1.8296e-03
10 10 2.0426e-04 4.7672e-04 9.7037e-04 6.4960e-03 3.1731e-04 1.1618e-03
11 9 2.0023e-04 5.0618e-04 9.7744e-04 6.4252e-03 3.2124e-04 1.1688e-03
12 8 1.9932e-04 5.4304e-04 1.0025e-03 6.3297e-03 3.2189e-04 1.2003e-03
13 7 1.9426e-04 1.2335e-03 1.0643e-03 1.1081e-02 7.7241e-04 2.2312e-03
14 6 2.0990e-04 1.7699e-03 1.0843e-03 1.3283e-02 1.0994e-03 3.2566e-03
15 5 6.9779e-04 5.3562e-03 2.0825e-03 1.8263e-02 3.3030e-03 5.9685e-03
16 4 1.7395e-03 1.1348e-02 5.2856e-03 2.7913e-02 7.3868e-03 1.0233e-02
17 3 8.5211e-03 6.2610e-02 4.1098e-02 1.0390e-01 4.2642e-02 4.9908e-02
18 2 8.1664e-03 6.2213e-02 4.0871e-02 1.0421e-01 4.2340e-02 5.0144e-02

vectors to achieve the same accuracy in the output. Except for the input function that was

used to generate the POD snapshots, it required over double the number of POD vectors,

rP > 40, to match the performance of IRKA V⊕W with r = 20. Further, the IRKA V⊕W

method compares quite favorably to the other one-sided methods in Table 4.10, especially

when we have balanced the number of right and left projection vectors in the final deflation

space.

4.5 Summary

In this chapter, we presented three potential input-independent methods to reduce a non-

linear system by projection. Our goal was to match the stability of POD while meeting or

70
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

IRKA V Vectors
0 5 10 15 20

R
e
la

ti
v
e
 E

rr
o
r

10
-4

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
2
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

Figure 4.11: Comparison of relative output error of IRKA V ⊕W to other methods for
r = 20.

exceeding the accuracy over a large set of input functions. We chose POD as our benchmark

since it is the most commonly used method for reducing nonlinear systems.

For the first method, QBMOR, we noted that when the solution for the reduced-order model

built by a two-sided projection converged, it compared favorably with POD. However, the

two-sided projections tended to create reduced-order models that did not maintain asymp-

totic stability. The one-sided projections were stable, but were not as accurate as the POD

Table 4.9: Relative output error for POD over various sizes and input functions.

r u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

20 3.2651e-04 1.3789e-02 8.1725e-03 4.5189e-02 6.5918e-03 1.8459e-02
25 1.9566e-04 6.5398e-03 3.7455e-03 2.9637e-02 2.5513e-03 1.1450e-02
30 1.8920e-04 2.9968e-03 1.7827e-03 1.8217e-02 1.0229e-03 7.6764e-03
35 1.8910e-04 1.2722e-03 1.1203e-03 1.0488e-02 4.6636e-04 4.0524e-03
40 1.8887e-04 7.0075e-04 9.9613e-04 6.3618e-03 3.2416e-04 1.8659e-03
45 1.8915e-04 3.8085e-04 9.5396e-04 3.0627e-03 2.7753e-04 1.4988e-03
50 1.8915e-04 3.3627e-04 9.4874e-04 2.0341e-03 2.6627e-04 1.0788e-03

IRKA V ⊕W 1.9426e-04 4.7672e-04 9.7037e-04 6.3297e-03 3.1731e-04 1.1618e-03

4.5. Summary 71

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
2
(t) (r=20, r

v
=10, r

w
=10)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure 4.12: Comparison of POD to IRKA V ⊕W output for r = 20 and input u2(t).

Table 4.10: Relative errors for all ROMs (r = 20).

Method u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)

POD 3.0994e-04 1.3063e-02 7.7132e-03 4.3534e-02 6.1436e-03 1.7336e-02
QBMOR 2.4013e-03 2.2814e-02 1.1544e-02 7.5351e-02 1.4869e-02 2.3034e-02
B-IRKA 3.7288e-02 1.1584e-01 8.0186e-02 1.5691e-01 8.8710e-02 7.7514e-02
IRKA 5.4244e-03 5.2232e-02 3.3940e-02 9.3593e-02 3.4612e-02 4.4689e-02
IRKA V ⊕W 1.9426e-04 4.7672e-04 9.7037e-04 6.3297e-03 3.1731e-04 1.1618e-03

models. An attempt to augment the QBMOR basis with H2-optimal basis vectors did not

improve stability.

We next attempted to augment the POD basis with H2-optimal vectors generated by IRKA.

This method remained stable when the deflating space contained more POD vectors than

IRKA vectors, but was not stable otherwise. There was an improvement in the accuracy

of the reduced-order model over a wide range of inputs using this method when the model

remained stable. However, it was difficult to determine an optimal number of each basis to

use, and these numbers varied depending on the input function. Further, since POD was at

the heart of this method, a full snapshot matrix needed to be built, which did allow for the

72
Chapter 4. Towards Input-Independent Methods for Nonlinear Model

Reduction

cost savings in the off-line calculation.

The final method, IRKA V ⊕W, proved to be the best of the three. Since it did not

depend on POD, there was no need to run a full-order simulation prior to building the

reduced-order model. When the deflating space contained roughly an even number of right

and left projection vectors, then not only was the system stable, but it was significantly

more accurate than POD, often decreasing the error by more than an order of magnitude. It

typically required over twice as many POD vectors as IRKA V ⊕W vectors to achieve the

same accuracy for input functions other than the one used to generate the snapshot matrix.

Even for the input function used to generate the snapshot matrix, the IRKA V⊕W method

was more accurate than POD for a given reduced-order model size r. This method appears

to be a promising substitute for POD on certain nonlinear systems. In general, roughly an

equal number of right and left projection vectors, generated using IRKA, should be used to

build the deflating space to ensure stability and produce an accurate model.

Chapter 5

Reduction of Fire Models

The modeling and simulation of fires is a complex, multi-scale problem. The need to create

accurate models extends from prevention to prediction to damage control management. Since

these problems are so complex, even models of moderately-sized fires in relatively small

domains require significant computational resources and time to solve. Further, the actual

physics are often difficult to model exactly, e.g. the exact fuel loading and distribution in

a burning room or wildland fire. To this end, much of the focus in the fire community

has been on simplifying the physics of the problem to obtain reasonable models. Current

techniques being used for fire models, such as POD for wildland fires [49, 85], often have

limited effectiveness due in large part to the inherent nonlinearities that exist in fire models.

In this chapter, we focus on three problems involving fire where we use reduced-order mod-

eling to reduce the computational time while maintaining a suitable level of accuracy. We

begin by discussing the issue of coal mine ventilation and its relationship to the preven-

tion of fires due to methane build up at a coal mine face. The need here is to provide

surrogate models with a sufficient accuracy that can be solved quickly enough to assist in

making design and best practice decisions for curtain placement and required inlet mass flow

73

74 Chapter 5. Reduction of Fire Models

rates. Next we examine small plume fires in an open environment. Here, we want to ensure

that we can incorporate the full spectrum of physics, such as airflow, buoyant convection,

species transport, and combustion, in a ROM and still provide accurate results. We close

the chapter by discussing a phenomenological model for the radial spread of a wildfire over

flat land with a known fuel density [49, 71, 72, 85]. POD has been applied to these mod-

els, e.g. [49, 85], but the computational gains have been modest. By addressing the lifting

bottleneck, as discussed in Section 2.3.3, using the discrete empirical interpolation method

(DEIM) [27, 28, 35], we show that the time required to solve this reduced-order system can

be significantly shortened.

5.1 Airflow in a Mine

Here we motivate the reduction of computational models of coal mine fires. In a large

number of coal mines today, coal is mined using a machine known as a continuous miner

(CM). The CM “shaves” coal from the face using tungsten teeth mounted to a rotating

drum on the front of the machine. Methane entrained in the coal is released at the CM

face where the coal is being mined. Normally, ventilation airflow at the CM face removes

the methane in sufficient quantities to prevent a fire or explosion. However, depending on

the geometry, including the position of a ventilation curtain and the magnitude of the flow,

isolated pockets of methane can build up to an ignition threshold and result in a catastrophic

event. Therefore understanding airflow is critical to the prevention of fires and/or explosions

in and around the CM face. Figure 5.1 shows the typical configuration at the CM face.

Current techniques for simulating airflows in a mine fall into two categories: computational

fluid dynamics (CFD) models (ANSYS Fluent , COMSOL, OpenFOAM, FDS) [88, 91, 92]

and network models (Ventsim, VUMA, MFIRE) [20, 23, 30, 68, 95]. The resolutions required

5.1. Airflow in a Mine 75

Figure 5.1: Typical configuration at the CM face showing the positioning of the ventilation
curtain and CM.

for CFD solutions to be accurate result in mathematical models which are so large that it is

not practical to simulate the entire mine at once. Further, even for computationally tractable

domain sizes, the computational solve times often exceed the required time constraints for

design or decision making. To overcome these limitations, most designers and decision

makers look to network models as an acceptable alternative to the CFD models. However,

the resolutions of these network models are so coarse that eddy points and gas accumulation

pockets are not able to be realized in the model.

We focus on a third alternative that, up to this point, has seen little exposure in the mining

community. Using model reduction techniques, we seek to obtain a computational solve time

that meets the desired time requirements while maintaining enough system accuracy to be

able to reliably predict potential problems resulting from methane gas build up.

5.1.1 The Model Reduction Technique

We used POD with Galerkin projection to reduce a finite volume approximation of our mine

airflow model. This method is well-suited for our problem size and structure. In particular,

the mathematical model discussed in the next section lends itself to being solved using the

technique covered in Section 2.3.3. When using this method, we are able to circumvent the

76 Chapter 5. Reduction of Fire Models

lifting bottleneck issue by precomputing several small matrices. While this method is a good

fit for our problem, we explore some of the other advantages and disadvantages associated

with using this method.

POD excels as a model-order reduction technique used to simulate flow solutions around

known solutions at a given set of inputs. So, if there is a given flow where the data is

generated either experimentally or computationally via a full-order simulation, then POD

can be used to approximate flows sufficiently close to the given flow [18]. POD is one of the

most used model-order reduction techniques for non-linear systems [4]. While some model

order reduction techniques are focused on input to output mappings, POD is designed to

recreate the entire state space [18] as a linear combination of the individual POD modes.

Thus, it is a good technique to use if the goal is to obtain an approximation of what the flow

is doing in the entire space.

POD is very dependent on the quality and quantity of snapshots. First, the snapshot so-

lutions must be representative of the types of solutions being modeled. For example, the

kinematic viscosity and inlet velocity used to generate snapshots should be close to values

being used in the reduced-order model (ROM). Additionally, since POD determines the most

prominent flow modes by using an eigenvalue computation, the number of reliable modes is

about ten percent of the total number of snapshots in most cases [44]. So, if there are one

hundred snapshots, then we can expect to obtain on the order of ten reliable POD modes.

Finally, creating the actual ROM from the POD modes can be challenging for complex fluid

flows. In particular, solving the ROM quickly requires the computation of several matrices.

These matrices must be stored and then loaded when the ROM is being solved.

5.1. Airflow in a Mine 77

5.1.2 Basic Description

We modeled the airflow in the mine using the Navier-Stokes equations for isothermal, incom-

pressible flows presented here in (5.1)-(5.2). Again, this model is well-suited for typical flow

speeds and temperatures encountered in a coal mine during normal operations [88]. Further,

we can see that these equations are simply the first two equations (2.1)-(2.2) of the general

fire model without the body force term.

∂u

∂t
− µ∇2u + (u · ∇)u +∇p = 0 (5.1)

∇ · u = 0. (5.2)

Reviewing Section 2.3.3, for any given time and n spacial nodes in the domain, we can write

the velocity flow of the air, u = [u v w]T ∈ R3n, as a combination of a centering vector u(x)

and an infinite set of basis vectors, φi(x), as

u(t,x) = u(x) +
∞∑
i=1

φi(x)αi(t). (5.3)

Then an r-dimensional approximation of the velocity, (5.4), can be created by using r basis

vectors. Here we have decomposed the basis into its u, v, and w components as φi(x) =

[φui (x) φvi (x) φwi (x)]T .

u(t,x) ≈ ũ(t,x) = u(x) +
r∑
i=1

φui (x)αi(t),

v(t,x) ≈ ṽ(t,x) = v(x) +
r∑
i=1

φvi (x)αi(t),

w(t,x) ≈ w̃(t,x) = w(x) +
r∑
i=1

φwi (x)αi(t). (5.4)

78 Chapter 5. Reduction of Fire Models

(a) Actual data (b) Mean of the snapshots

(c) 3 POD modes (d) 10 POD modes

Figure 5.2: Comparison of the airflow in the full model versus the airflow at the same time
step generated using various POD modes.

To find an appropriate basis for the system, we first generate k > r full-order snapshot

solutions S = [u1 u2 . . .uk] for the velocity field using ANSYS Fluent as suggested in [88].

We generated the POD modes, as described in Section 2.3.3, by subtracting the mean flow

from each snapshot in S, performing a singular value decomposition (SVD) of the resulting

matrix, and then selecting first r singular vectors Φ = [φ1 . . . φr]. Using the POD modes,

Φ, as the basis functions for the approximation in (5.4), we are guaranteed the best r-

dimensional representation of the snapshot solutions. In Figure 5.2, we show an example of

this approximation at the CM face for a given time snapshot. We see that as the number of

POD basis vectors we use increases, the approximation to the actual airflow improves. Here,

we are just demonstrating how well the POD basis can represent a given solution.

In practical terms, we are not interested in simply reproducing an existing solution; rather,

we would like to build a reduced-order model that can then be used to solve for new solutions

given a different set of parameters and initial conditions. If the anticipated behavior of the

system is close to the snapshot solutions, and thus can be accurately represented in the POD

5.1. Airflow in a Mine 79

Table 5.1: Error between the actual and reduced-order model velocity profiles at 10.0 seconds.

U in U
Act

out U
ROM

out % U
Err

out % UErr

0.90 7.0903 7.0912 0.0121 4.9970

basis, we can expect to represent the behavior of the nearby system reasonably well with

the POD basis functions given by Φ. Using these POD modes as test functions, the weak

formulation of equations (5.1)-(5.2) can be used to perform Galerkin projection as we covered

in Section 2.3.3. Applying a finite element discretization, we obtain an r-dimensional system

of ODEs that can be solved to obtain the POD basis coefficients a(t) for a given time interval

t = [0, tf]. Substituting these coefficients into our approximation (5.4), we can recover an

approximation to the distributed flow states in the full-order model.

5.1.3 Results

The POD vectors and reduced-order model were created using the snapshots generated from

an ANSYS Fluent simulation run with a 0.9 m/s input velocity. The data was then exported

into Matlab R© . We note that ANSYS Fluent solves for the velocity at the center of each

volume element, but exports the data averaged to the nodes. The consequence of this is that

average output velocity as calculated from exported data varies slightly from the internal

ANSYS Fluent calculation. There were 100 data snapshots created from 0.1 to 10.0 seconds.

Due to the accuracy of the eigenvalue solver, we restricted our reduced-order model to ten

POD modes. The total time required to generate the POD modes from the data snapshots

and to create the associated reduced-order model was approximately 7.5 minutes. Using the

initial condition from the snapshots to initialize the reduced-order model, the system was

integrated forward in time from 0.1 to 10 seconds to generate an approximate solution. This

computation took approximately 0.5 seconds to complete. The resulting error between the

80 Chapter 5. Reduction of Fire Models

actual system and the ROM is given in Table 5.1. Further we looked at the average velocity

at the output face over time and compared it to the reduced-order model. As is shown in

Figure 5.3, the ROM is a good approximation of the actual system over the entire time

interval.

time (t)
0 2 4 6 8 10

m
/s

7.06

7.08

7.1

7.12

7.14

7.16

7.18

7.2

7.22

7.24

Average Output Velocity (U
in

=0.90, r=10, POD
0.90

)

Actual
Projected
ROM

Figure 5.3: Average outlet velocity magnitude given an average input velocity magnitude of
0.88 m/s.

While these results are good, it is ultimately just an approximation to simulation data that

we already had. Therefore the total time to create this ROM was the two hours required

to generate the actual data plus the seven to eight minutes necessary to generate the ROM.

However, the benefit of reduced order modeling is the ability to use the ROM created for

one initial condition to approximate nearby solutions without having to generate the full

solution.

The time savings, as shown in Table 5.2, compound as each subsequent solution is generated

from the original ROM. While the time savings are obvious, it would not matter if the

nearby solutions created using the ROM were not good approximations of the full solutions.

To test the accuracy, we generated full solutions at input velocities of 0.88 m/s and 0.92

5.2. Fire Plumes 81

Table 5.2: Approximate computation times in hh:mm:ss for full-order versus reduced-order
models.

Computation Time

U in m/s Full Model ROM

0.90 2:00:00 2:08:00
0.88 2:00:00 0:00:03
0.92 2:00:00 0:00:03

Total 6:00:00 2:08:06

m/s. Each of the solutions took approximately two hours to compute on a 35 processor

high-performance computer. We then computed the solutions using the previously generated

ROM, but changed the initial conditions to the alternate input velocities. To load the ROM

required about 2 seconds and creating the approximate solution took about 0.5 seconds.

Table 5.3: Error between the actual and reduced-order model velocity profiles at 10.0 seconds.

U in U
Act

out U
ROM

out % U
Err

out % UErr

0.88 6.9315 6.9328 0.0180 5.0221
0.92 7.2491 7.2494 0.0048 4.9951

The error comparison in Table 5.3 shows that the approximate solutions compare favorably

to the actual solutions. Further, as with the earlier simulation, we can see in Figures 5.4

and 5.5 that the ROM solution does a good job approximating the average output velocity

magnitude for nearby initial conditions. We also see that it does a decent job capturing the

output airflow dynamics over the entire time of the simulation.

5.2 Fire Plumes

With our focus still on providing reduced-order models for physical processes inside a coal

mine, we look at fire plumes. For our discussions, these are relatively small fires (approx-

82 Chapter 5. Reduction of Fire Models

time (t)
0 2 4 6 8 10

m
/s

6.9

6.92

6.94

6.96

6.98

7

7.02

7.04

7.06

7.08

Average Output Velocity (U
in

=0.88, r=10, POD
0.90

)

Actual
Projected
ROM

Figure 5.4: Average outlet velocity magnitude given an average input velocity magnitude of
0.88 m/s.

imately 40 kw) that are localized and unconstrained by obstructions in the environment.

Our goal here was to understand the dynamics of a fire and to determine if a reduced-order

model could produce a suitable reproduction of the fire. To define a suitable reproduction,

we focused on three aspects of the fire to compare.

Remark 5.1 (Suitability of a ROM for Modeling a Fire). Fire simulations involve

fine scale discretizations of coupled nonlinear PDEs. The complexity of the simulations are

such that one cannot expect reduced-order models to accurately capture every feature of

the simulations. In fact, a fundamental premise of reduced-order modeling in these cases

is an underlying low-dimensional manifold for the full-order simulation. However, many of

the applications of fire modeling do not require knowledge of the states at every point in

time and space, but rather they need to capture certain characteristics of the fire that would

be useful for either making safety design decisions or to evaluate real-time fire suppression

strategies. Thus, we present qualitative measures of reduced-order models that are important

to capture.

5.2. Fire Plumes 83

time (t)
0 2 4 6 8 10

m
/s

7.22

7.24

7.26

7.28

7.3

7.32

7.34

7.36

7.38

7.4

Average Output Velocity (U
in

=0.92, r=10, POD
0.90

)

Actual
Projected
ROM

Figure 5.5: Average outlet velocity magnitude given an average input velocity magnitude of
0.92 m/s.

When considering how well a ROM of a fire matches the full-order fire model we will consider

the following criteria. The idea here is that we are not necessarily interested in matching the

fine scale details in a fire in time and space, but rather at certain characteristics of the fire

that would be useful for either making safety design decisions or for real-time fire suppression

strategies.

1. Dynamics: First, the ROM had to capture the “essential” dynamics of the fire. In

other words, the ROM should actually look “like a fire”. Thus, large-scale dynamical

structures such as vortex shedding, flow oscillations, and other qualities present in a

full-order model need to be captured. Further the general shape of the fire plume as

measured by the velocity and temperature needed to match the FOM.

2. Magnitude: The ROM needs to generally match the magnitudes of the fire (to predict

spread and ignition). We consider two quantitative measures to track our success.

First of all, we track the maximum temperature or velocity magnitudes over the entire

domain. The precise location of the maximum magnitudes are not as important in this

84 Chapter 5. Reduction of Fire Models

measure. The knowledge of these magnitudes can indicate whether or not new combus-

tion can take place or whether or not a fire suppression strategy can be successful. We

also consider the mean of the temperature and square of velocity magnitudes over the

entire domain as an indication of energy. In particular, let T (ξ, t), u = (u(ξ, t), v(ξ, t))

be the solutions for temperature and velocity over the domain, Ω, respectively, of the

fire model. Then, we define the following

FT (t) = max
ξk∈Ω

T (ξk, t) Fu(t) = max
ξk∈Ω
‖u(ξk, t)‖2, (5.5)

GT (t) =
1

N

N∑
k=1

T (ξk, t) Gu(t) =
1

N

N∑
k=1

‖u(ξk, t)‖2. (5.6)

where ξk ∈ Ω are the discrete solution points for the FOM. Similarly, for the ROM

solutions of temperature, Tr(ξ, t) and velocity u(ξ, t) we have

FTr(t) = max
ξk∈Ω

Tr(ξk, t) Fur(t) = max
ξk∈Ω
‖ur(ξk, t)‖2, (5.7)

GTr(t) =
1

N

N∑
k=1

Tr(ξk, t) Gur(t) =
1

N

N∑
k=1

‖ur(ξk, t)‖2. (5.8)

We compare the FOM to the ROM both graphically and numerically. For the graphical

comparison, we simply plot the functions in (5.5)-(5.6) alongside the corresponding

functions in (5.7)-(5.8). For the numerical comparison, we take the average over a

selected time range for each of the functions (5.5)-(5.6) and compare them to the

averages of (5.5)-(5.6) over the same time range.

3. Oscillation Frequency and Amplitude: This is a more esoteric quantity but can be

mathematically quantified by looking at the dominant Fourier frequencies in the am-

plitude coefficients and comparing these to those of the FOM projected onto the same

basis functions.

5.2. Fire Plumes 85

We see that these criteria do not seek to strictly minimize an error between the FOM and

ROM at some particular time step. The issue is that due to the complexity and dynamics

of the fire, it would be almost impossible to produce a ROM that would be able to exactly

capture the behavior. Instead we seek to match the essence of the fire in an effort to determine

the feasibility of ROMs for fires. In this section, we first discuss our general methodology

and then look at some of the initial challenges we faced when attempting to reduce the FOM.

Finally, we discuss the factors above with regards to the quality of the ROM.

5.2.1 Description and Methods

As stated earlier, our focus for this section is on creating reduced-order models of small

plume fires. We used the Fire Dynamics Simulator (FDS) software to generate the full-order

fire model. Our domain was a 1 m × 1 m × 2 m hexahedron open to the atmosphere on all

four sides and the top. The base of the domain was a solid gypsum plaster surface with a

0.2 m × 0.2 m methane burner centered on the base. The burner was set to release methane

at a rate to generate a 40 kw fire. Figure 5.6 shows few image snapshots of the fire.

Figure 5.6: FDS full-order fire model used to generate the various ROMs.

86 Chapter 5. Reduction of Fire Models

With the base geometry determined, the system was discretized to 50 elements in the x

direction, 40 in the y direction and 100 in the z direction. We simulated the system over 20

seconds. We then took a slice of the data at y = 0.5 for temperature and velocity to create

a two dimensional snapshot over the 1 m × 2 m rectangular domain x = [x, y]1. This gives

a mesh of nodal values evenly spaced every 0.02 m in both directions, i.e. 51 × 101 nodes.

This gives a full-order size of n = 5151. We then captured 500 evenly spaced snapshots over

the time domain t = [0, 20] to represent the entire full-order plume fire model. To produce

a ROM from this data, we used the PDE in (5.9)-(5.11) for our model.

∂u

∂t
= −u · ∇u−∇p+ ν∇2u− βg(T − T∞), (5.9)

0 = ∇ · u, (5.10)

∂T

∂t
= −u · ∇T + α∇2T. (5.11)

We see that these are the same equations as the general fire model equations (2.1)-(2.3) with

the chemical reaction term removed. In particular we wanted to investigate how close we

could get to the actual fire model without incorporating the combustion. From the snapshots

we created r POD basis modes for the u velocity, v velocity, and temperature T . We used

the technique from Section 2.3.3 to generate the ROM. We then ran several tests to compare

the ROM to the FOM generated by FDS. To best match the FOM and provide asymptotic

stability in the ROM, we adjusted the diffusion constants ν and α. While this process was

done manually for our research, this process can be automated using sensitivity analysis

[56, 57].

1To bring the notation in line with previous discussions, we will refer to the z direction as y for the rest
of the section when discussing the two-dimensional domain, i.e. x = [x, y].

5.2. Fire Plumes 87

5.2.2 Buoyancy-Driven Flows

Initially, we assumed that temperature contraction coefficient, β, was constant over the do-

main. We had used this constant parameter when we were working on the natural circulation

problem, see Chapter 3. However, when we attempted to adjust the value for β, ν, and α to

build a stable ROM that accurately reflected the FOM, we were unable to create any ROMs

that resembled the FOM. In particular, any stable ROM that we obtained did not match any

of the suitability criteria given earlier in Remark 5.1. In particular, the maximum and mean

values for the ROM were not close to the FOM. Additionally, the ROM quickly produced a

constant solution with none of the dynamics that are apparent in the FOM.

After reconsidering the model, we determined that fundamentally (5.9)-(5.11) were correct,

but that β was actually temperature dependent over the range of temperatures present in

the domain. As seen in [43], β is actually given by β = 1
T

. With temperature variations of

over 1000 K across the domain, β varies by over three orders of magnitude across the domain

at a given time step. By simply changing the body force term to be nonlinear by modifying

β to its actual definition, we were able to produce significantly better ROMs, especially with

respect to the dynamics of the ROM. The downside is that the body force term is no longer

a term that can be handled by precomputing the inner product. We are handling the term

by lifting the temperature to the full state space and then projecting it back down. For our

testing of these ROMs, this is currently not an issue, because of the state space sizes we

have. However, when we move to three-dimensional models this will need to be addressed,

most likely by using DEIM.

88 Chapter 5. Reduction of Fire Models

0 50 100 150 200
10

-4

10
-3

10
-2

10
-1

10
0

Temperature POD Energies

(a) Temperature

0 50 100 150 200
10

-3

10
-2

10
-1

10
0

Velocity POD Energies

(b) Velocity

Figure 5.7: Decay of the singular values associated with the first 200 POD modes.

5.2.3 Numerical Results

When creating a ROM POD as discussed in Section 2.3.3, there are essentially five main

steps that we must accomplish as listed in the following high-level algorithm.

Algorithm 5.2 (High-Level Steps to Building a ROM from Projecting
the PDE using POD).

1. Capture data snapshots.

2. Build POD basis functions from the snapshots.

3. Compute and store the intermediate inner product matrices required to create the
ROM ODE to be solved.

4. Load the inner product matrices and assemble the ROM ODE.

5. Solve the time-dependent ROM ODE using a standard ODE solver.

We will consider each of these steps in turn and look at the numerical results along with

any challenges that we needed to manage. It is worth noting that steps 1-3 in Algorithm

5.2 are considered off-line costs. Once they have been accomplished then we do not need to

5.2. Fire Plumes 89

0 5 10 15 20
-200

-150

-100

-50

0

50

100

150

PODT
1

PODT
2

PODT
3

PODT
4

(a) Temperature

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

2

PODU
1

PODU
2

PODU
3

PODU
4

(b) Velocity

Figure 5.8: Dynamics of the fire model shown with respect to the first four POD coefficients
for temperature and velocity.

repeat them unless we change the size of our ROM or alter the data snapshots. Steps 4-5

are the real-time costs for solving the problem. We emphasize that we change the diffusion

constants or the initial conditions without having to repeat steps 1-3. As we discuss each

step, we will cover the average time required to complete that step.

Capture Data Snapshots

As discussed before, we used FDS to create the data snapshots. It is a finite volume based

solver, and therefore every domain is considered to be three-dimensional (3D). The system

can handle two-dimensional (2D) domains by setting the y direction to be one cell deep.

Due to some of the numerics associated with FDS the depth of cells must be kept small, see

[75]. While there are some challenges correctly setting the size of the fire when using this

2D mode of FDS, it is much quicker than running an appropriately sized and discretized

3D model. In general, computation times for the 3D model were about 40 minutes for a 20

second simulation. In contrast, the 2D models required 8-9 minutes to compute a 20 second

simulation. After FDS, it took approximately one minute to extract the data into snapshots

90 Chapter 5. Reduction of Fire Models

Figure 5.9: Magnitude of the velocity POD modes for the small plume fire. Here we show
POD modes 1, 2, 3, 4, 5, 10, 15, and 20 from left to right, top to bottom.

and convert it to a format usable by Matlab R© .

Build POD Basis

For our ROM we set the size to r = 20 based on the decay of the singular values associated

with the velocity and temperature snapshots as seen in Figure 5.7. Specifically, we create

20 POD basis functions each for the u velocity, v velocity, and temperature. This process

requires less than a minute to complete. Looking at the POD modes in Figures 5.9 and

5.10, we see that even though the fire seems to have a random behavior, there are some

underlying structures in the velocity and temperature. Further, the initial POD modes

capture the overall shape and distribution of the velocity and temperature, whereas the

5.2. Fire Plumes 91

Figure 5.10: Temperature POD modes for the small plume fire. Here we show POD modes
1, 2, 3, 4, 5, 10, 15, and 20 from left to right, top to bottom.

higher modes capture the finer details. Further, in Figure 5.8, we show the temperature and

velocity coefficients for the first four POD modes for the 20 second simulation. We can see

from the oscillations just how complex the dynamics are for the fire model.

We did build larger ROMs to see how well they would perform, but as we will see in the

coming steps, they did perform as well when taking into account the quality of the ROM and

the time required to solve the model. In general, we were seeking models that were better

than real-time.

92 Chapter 5. Reduction of Fire Models

Table 5.4: Sample times to build and store the inner product matrices required to construct
the ROM ODE.

r Time to build (s) Time to store (s)

20 13.97 0.55
50 34.25 2.61
100 70.05 12.65
200 154.26 61.09

Compute Inner Products

While there are no visual results to show at this stage, this is the step that requires the

longest to complete other than the initial generation of the snapshots. The time required is

related to the size of the reduced-order model. The times in Table 5.4 give an indication of

the typical amount of time required to compute and store the matrices. These times do vary

by a second or two, but remain approximately the same. Additionally, the routines used

to compute the inner products had to be compiled into Matlab R© MEX routines. When

not compiling the routines, it took as much as ten to twenty times longer to perform the

calculations.

Assemble the ROM ODE

In general this step is very quick to complete, and even for ROMs of size r = 200, this

only took less than two seconds. Of note here is that while the linear matrix and constant

vector can be computed prior to solving the ROM ODE, β and the quadratic terms must

be solved at each ODE solver time-step. For the quadratic term, this is simply a series

of r-dimensional matrix-vector multiplications, and therefore is fairly quick. As mentioned

before, a more efficient solution for calculating β may need to be done when moving to larger

original systems, such as 3D fire models.

5.2. Fire Plumes 93

time (s)
0 5 10 15 20

T
e
m

p
e

ra
tu

re
 (

K
)

200

400

600

800

1000

1200

1400

1600

1800
Max Temperatures

Actual
POD Proj
ROM
Avg Max

(a) Maximum T̃(t)

time (s)
0 5 10 15 20

T
e
m

p
e

ra
tu

re
 (

K
)

290

300

310

320

330

340

350

360

370

380

390
Mean Temperatures

Actual
POD Proj
ROM
Avg Mean

(b) Maximum T̃(t)

Figure 5.11: Mean and maximum temperature comparison between ROM and FOM with
r = 20.

Solve the ROM ODE

Table 5.5: Values used for diffusion constants ν and α based on ROM size along with the
typical solution time for the ROM ODE using those values.

r ν α Solution time (s)

20 1.0e-02 1.0e-02 3.7
50 9.0e-03 9.0e-03 14.4
100 3.0e-03 3.0e-03 72.3

Our final step is actually solving the ROM ODE. As shown in Section 2.3.3, we are solving

for the coefficients of the POD basis functions Φ over the simulation time. Once we have

numerically solved the ROM ODE, we can apply the coefficients to the basis functions and

add the centering vector back to obtain our approximate solution. To provide the best

solution, we adjusted the diffusion parameters based on the size of the ROM. Typically,

those constants became smaller as the size of the ROM became larger. This is consistent

with typical computational fluid dynamics’ techniques used to stabilize the flow on coarse

meshes, see for example [37, 55, 59, 65]. Table 5.5 shows the constants that were used

for various ROM sizes. Also, as one would expect, the time required to solve the ROM

94 Chapter 5. Reduction of Fire Models

time (s)
0 5 10 15 20

v
e
lo

c
it
y
 (

m
/s

)

0

0.5

1

1.5

2

2.5
Max u Velocities

Actual
POD Proj
ROM
Avg Max

(a) Maximum ũ(t)

time (s)
0 5 10 15 20

v
e
lo

c
it
y
 (

m
/s

)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Mean u Velocities

Actual
POD Proj
ROM
Avg Mean

(b) Mean ũ(t)

time (s)
0 5 10 15 20

v
e
lo

c
it
y
 (

m
/s

)

0

1

2

3

4

5

6

7

8
Max v Velocities

Actual
POD Proj
ROM
Avg Max

(c) Maximum ṽ(t)

time (s)
0 5 10 15 20

v
e
lo

c
it
y
 (

m
/s

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Mean v Velocities

Actual
POD Proj
ROM
Avg Mean

(d) Mean ṽ(t)

Figure 5.12: Mean and maximum velocity comparison between ROM and FOM with r = 20.

ODE increased as the size of the ROM was increased. What was not as obvious was that the

computation times were affected by changing the diffusion parameters. This was not entirely

predictable as it depended on how quickly the coefficients were changing for the given model.

However, there was a general trend that when the diffusion constants were too large for the

ROM, the model tended towards a steady state solution and thus required less time to solve.

Table 5.5 shows the typical solution times for each size model. Again, these did vary some

from one simulation to the next, but were generally close to the values given in Table 5.5.

We will now examine the ROM with r = 20 using the criteria set forth in Remark 5.1. We

5.2. Fire Plumes 95

time (s)
0 5 10 15 20

-200

-150

-100

-50

0

50

100
Temperature Coefficient

Proj Data
ROM

(a) Temperature, r = 20

time (s)
0 5 10 15 20

-1

-0.5

0

0.5

1

1.5

2
Velocity Coefficient

Proj Data
ROM

(b) Velocity, r = 20

time (s)
0 5 10 15 20

-200

-150

-100

-50

0

50

100
Temperature Coefficient

Proj Data
ROM

(c) Temperature, r = 50

time (s)
0 5 10 15 20

-2

-1.5

-1

-0.5

0

0.5

1
Velocity Coefficient

Proj Data
ROM

(d) Velocity, r = 50

Figure 5.13: POD coefficients for temperature and velocity.

will focus on Figures 5.11 and 5.12 as we look at our criteria. The first thing to note is

that the ROM seems to do a good job of capturing the dynamics of the system. While not

exact, we do see the types of behavior seen in a fire as evidenced by the mean and maximum

temperatures and velocities. The model was not quite as good at approximating the mean or

maximum of the temperature or velocity. This result is most likely due to the contribution of

combustion in the FOM. Finally, the frequency of the temperature and velocity oscillations

matches the FOM very well. However, the amplitude of the oscillations was not as large as

the FOM. Overall, the ROM does a good job of capturing the fire dynamics, but to truly

96 Chapter 5. Reduction of Fire Models

(a) POD ROM r = 20 (b) POD ROM r = 50 (c) Full-Order Model

Figure 5.14: Comparison of the velocity profiles for the POD ROMs and the FOM.

match the magnitude of the fire, the combustion aspect will need to be incorporated.

Finally, we compare some of the aspects of the r = 20 ROM to the r = 50 ROM. As Figure

5.14 shows, the more modes the finer the details in the ROM. This behavior is to be expected,

based on Figures 5.10 and 5.9 where with the higher modes, more of the finer details are

included. However, for the larger ROM, it was not as successful in capturing the magnitude

or the oscillation behavior. This is likely due to overcompensation for the higher modes. It

could also be due to a greater effect being realized due the absence of the combustion term.

5.3 Wildland Fires

Large-scale models for real-time simulations, as required for predicting wildland fires, are

avoided due to limited computational resources. On the other hand, lower spatial resolution

limits the physics that can be captured by the models. In our research, a reduced-order

5.3. Wildland Fires 97

model (ROM) technique that retains the underlying physics was employed to predict the

solution to the advection-reaction-diffusion equation, a common component in fire models.

This technique also projects the nonlinearity, resulting in ROMs that decrease the on-line

computational cost by 2-3 orders of magnitude. This ROM technique can be applied in other

large-scale fire applications, such as ventilation for mine fires. The accuracy and improved

computational efficiency are demonstrated by building a ROM for a wildland fire spread

model.

5.3.1 Basic Description

Proper orthogonal decomposition (POD) is the most commonly used technique to produce

reduced-order models for complex nonlinear dynamics. This technique has been applied

to wildland fire models (e.g. [71, 72]) in [49, 85], where their ROMs exhibited an order

of magnitude speedup in computational time while maintaining a high degree of accuracy.

Though ROMs using only POD are effective, they can be significantly improved by addressing

the so-called lifting bottleneck. The lifting bottleneck occurs when computing the reduced

nonlinear term, since standard POD first lifts the reduced variables up to the full-order

dimension, evaluates the nonlinear term, then projects the result back down to reduced

dimension. Since nonlinear terms are computed at full-order dimension, the computational

gains compared to the original model are limited. To improve the performance, the discrete

empirical interpolation method (DEIM) [27, 28] is used to perform an additional projection

on the nonlinear function so that the nonlinearity is calculated on this new projected space

instead of the full-order space. A basic description of DEIM and how it was used in this study

is given in Section 5.3.2. We apply this technique to simulate advection-reaction-diffusion

equations that can be represented as

98 Chapter 5. Reduction of Fire Models

∂θ

∂t
= κ∇2θ − v · ∇θ + S(θ) (5.12)

where θ could be a concentration of chemical species or a temperature that transported

throughout the domain. Typically, S(θ) is a nonlinear function representing source and/or

sink terms such as species production, species consumption, temperature increases due to

reaction kinetics, etc. This type of equation is present in the phenomenological model given

by equations (5.13-5.14) suggested in [71] to predict flame front propagation in wildland

fires. The one-dimensional version of this coupled system was studied to assess the benefits

of POD with DEIM over the standard POD approach.

∂T

∂t
= κ

∂2T

∂x2
− v∂T

∂x
+ α

(
Se−β̃/(T−T0) − γ(T − T0)

)
(5.13)

∂S

∂t
= −γSSe−β̃/(T−T0) (5.14)

These equations model the temperature (T) and mass fraction of fuel (S) in a propagating

fire. Using constant parameters and wind velocity, the nonlinearity of this model occurs via

a reaction term.

5.3.2 Discrete Empirical Interpolation Method (DEIM)

Suppose we have a nonlinear system (2.17) where the state equation is given by

ẋ(t) = Ax(t) + F(x(t)), (5.15)

5.3. Wildland Fires 99

where A ∈ Rn×n, x : R → Rn, and F : Rn → Rn. Suppose that V ∈ Rn×r is the projection

matrix that we determine using POD. Then using a Galerkin projection we see that the

ROM would be

ẋr(t) = VTAV︸ ︷︷ ︸
Ar:r×r

xr(t) + VT︸︷︷︸
r×n

F(Vxr(t))︸ ︷︷ ︸
n×1

, (5.16)

where xr : R → Rr. As can be seen in (5.16), Ar can be precomputed and thus the linear

term is strictly r-dimensional. This is not the case for the nonlinear term where xr(t) must

be lifted back to the original size of the state space, i.e. Vxr(t) ∈ Rn, before evaluating F.

This implies that the computational complexity of calculating the nonlinear term is order n.

Therefore potential gains for reducing the system to r dimensions are lost when computing

the nonlinear term. DEIM is a method that we can use to help reduce this problem. In this

section, we will cover an overview of DEIM and how that method is applied to the wildland

fire model. We refer the reader to [27, 28, 35] for a more thorough coverage of DEIM and

its associated error bounds.

We first define the nonlinear function from the ROM as f(t) := F(Vxr(t)) to simplify the

notation. Now, the nonlinear term for the ROM can be defined as

N(t) := VTF(Vxr(t)) = VT f(t). (5.17)

VT

f

VT

U

c VTU c

r × n

n n×m
m

r ×m

Figure 5.15: Visual depiction of the approximation VT f(t) ≈ VTUc(t).

100 Chapter 5. Reduction of Fire Models

We then seek to approximate f(t) by finding a matrix U ∈ Rn×m where m� n such that

f(t) ≈ Uc(t), (5.18)

where c : R→ Rm. Applying this to (5.17), we now have the approximation to the nonlinear

term given by

N(t)︸︷︷︸
r

≈ Ñ(t) = VTU︸ ︷︷ ︸
r×m

c(t)︸︷︷︸
m

. (5.19)

Figure 5.15 gives a visual depiction of the approximation. Here we also see that VTU ∈ Rr×m

can be computed in advance, thus decreasing the overall computational complexity of Ñ(t)

to be max{r,m} � n. We can calculate U by evaluating the snapshots using the nonlinear

function, F, and then truncating the thin SVD (2.39) to m columns or basis functions.

However, we still do not know how to create c(t) from the original nonlinear function f(t).

This selection matrix is at the heart of the DEIM approximation. Using the method given

in [35], we can create a selection matrix P that will select rows P := [P1, . . . ,Pm] such that

the following holds

PT f(t) = PTUc(t). (5.20)

In other words, borrowing from Matlab R© notation, PTU = U(P, :). Assuming that PTU is

nonsingular, we obtain the following calculation c(t) = (PTU)−1PT f(t). We are now define

our approximation for the nonlinear function f(t) as

f̂(t) = Pf(t), (5.21)

where P is the projector given by P = U(PTU)−1PT . Using (5.21) and using the notation

5.3. Wildland Fires 101

in (5.16), we have the following approximation

F(Vxr(t)) ≈ U(PTU)−1PTF(Vxr(t)) (5.22)

From (5.22), we look specifically at the term PTF(Vxr(t). If F is a component-wise function,

as it is in the wildland fire model, then we can move PT into the function. This gives

F(PTVxr(t)) which has computational complexity of O(m). Further, the matrix PTV ∈

Rm×r only has to be computed once. Returning to (5.16), the full nonlinear term is then

approximated by

VTF(Vxr(t)) ≈ VTU(PTU)−1F((PTV)xr(t)). (5.23)

Define EP := VTU(PTU)−1 and FP (t) := F((PTV)xr(t)), where EP ∈ Rr×m only has to

be computed once and FP (t) : R→ Rm.

VT

f

VT

U

(PTU)−1 FP
EP FP

m×m m r ×m

Figure 5.16: Visual depiction of the approximation VT f(t) ≈ EPFP (t).

For the nonlinear term in the ROM (5.16), Figure 5.16 shows the full reduction using DEIM.

We note that the complexity of this term is O(max{m, r}). We can now give the DEIM

ROM definition as follows

Definition 5.3. Given (5.15), V determined using POD, and (5.19), we precompute Ar =

102 Chapter 5. Reduction of Fire Models

VTAV, VP = PTV, and EP := VTU(PTU)−1. Then the DEIM ROM is given by

ẋr(t) = VTAVxr(t) + EPF(VPxr(t)), (5.24)

For the wildland fire-spread model (5.13)-(5.14), we can discretize the system using finite

differences to create the following discretized model

Ṫ(t)

Ṡ(t)

 =

 AT 0

0 0


T(t)

S(t)

+

 αF [T(t),S(t)]

−γSF [T(t),S(t)]

, (5.25)

where F [T(t),S(t)] = S(t)e−β/(T(t)−T0). For standard POD, an orthonormal basis is built

for T and S, given by VT ∈ Rn×r and VS ∈ Rn×p respectively. Let q = r + p and N = 2n.

We define the following

A =

 AT 0

0 0

 V =

 VT 0

0 VS

 (5.26)

Θ(t) =

T(t)

S(t)

 F̃(Θ(t)) =

 αF [T(t),S(t)]

−γSF [T(t),S(t)]

, (5.27)

where Θ(t) ∈ RN , V ∈ Rq×N , and F̃ : RN → RN . We note that VTV = Iq. Projecting

(5.25) using the definitions in (5.26)-(5.27) results in following POD ROM

Θ̇q(t) = AqΘq(t) + VT F̃(VΘq(t)), (5.28)

where Aq = VTAV ∈ Rq×q, Θq(t) ∈ Rq and Θ(t) ≈ VΘq(t). Now we need to apply DEIM

to our model. We first note that the nonlinear function for T and S are just scalar multiples

of each other. Therefore, our DEIM projection matrix U and selection matrix P will be the

5.3. Wildland Fires 103

same for both T and S. So we will first determine U ∈ Rn×m and P ∈ Rn×m as described

above using just the nonlinear function F [T(t),S(t)] and then we will bring the constants

back into the system when we calculate out DEIM projection matrices. To obtain the full

nonlinear DEIM projection (5.23), we define

EF =

 ET 0

0 ES

 PF =

 P 0

0 P

 , (5.29)

where ET = αVTU(PTU)−1 and ES = −γVSU(PTU)−1. Further, we can let Φ = (PTV).

This gives us the full nonlinear projection approximated as VT F̃(VΘ(t) ≈ EF F̃ (ΦΘ(t))

which has a computational complexity of O(max{2m, q}). Applying this approximation and

the previously defined matrices to (5.28) results in the POD/DEIM ROM ODE used to solve

the system

Θ̇q(t) = AqΘq(t) + EF F̃ (ΦΘq(t)) . (5.30)

5.3.3 Methods and Numerical Results

Figure 5.17: FOM versus the POD/DEIM ROM where rT = 250, rS = 150, and rDEIM =
250.

For our testing we used the parameter values specified in Table 5.6, and the system was

104 Chapter 5. Reduction of Fire Models

Table 5.6: Parameter values for the wildland fire spread model given in [71].

Parameter Value

κ 2.1360e-01
α 1.8793e02

β̃ 5.5849e02
γ 4.8372e-05
γS 1.6250e-01
T0 300 K
v 0.00 m/s

discretized from zero to a 1000 m in 0.2 m increments and solved over 3000 s. The initial

condition has a fire at the 500 m location. The fire then propagates across the domain

towards both boundaries based on equations (5.13-5.14) as seen in Figure 5.17.

x (m)
0 200 400 600 800 1000

T
e
m

p
e
ra

tu
re

 (
K

)

200

400

600

800

1000

1200

1400

1600
Temperature Profile at t = 2500 s

Initial Condition
Full Model
POD
POD/DEIM

time (s)
0 500 1000 1500 2000 2500 3000

x
 p

o
s
it
io

n
 (

m
)

0

100

200

300

400

500

600

700

800

900

1000
Location of Maximum Temperature over Time

Full Model
POD
POD/DEIM

Figure 5.18: Fire spread for FOM, POD, and POD/DEIM.

Using the data snapshots created, rT and rS number of POD bases for T and S, respectively,

were created. Further, POD was enhanced by projecting the nonlinearity using 250 DEIM

vectors. Figures 5.17 and 5.18 show that when rT = 250 and rS = 150, the POD/DEIM

ROM provides an excellent approximation of the full-order model (FOM) matching both the

flame front location and temperature profile quite well.

As shown in Table 5.7, the solution times increase when more POD/DEIM vectors are used,

but even the largest ROM using POD only was five times faster than the FOM. Further the

5.4. Summary 105

Table 5.7: Results for the ROM. Solution time for the FOM was 99.1 s

POD Vectors POD POD/DEIM

rT/rS/rDEIM Time (s) Speed up Rel Error Time (s) Speed up Rel Error

70/35/250 1.33 74.6 1.7471e-02 0.13 760.1 1.7594e-02
200/150/250 15.4 6.38 4.3329e-03 0.72 137.6 5.2877e-04
200/200/250 18.5 5.31 1.8478e-02 0.84 118.2 1.3873e-02

relative error between the full-order and reduced-order model solutions was less 2% in all

cases with a minimum of 0.43% when using 200 POD vectors for T and 150 POD vectors

for S. When using POD with DEIM, the solution times were significantly better than POD

alone while maintaining essentially the same error. The results demonstrate that using POD

with DEIM can reduce the computational time by 2-3 orders of magnitude while retaining

the physics and prediction accuracy.

5.4 Summary

We presented three scenarios in this chapter along with the methodology used to improve

the performance of the numerical computation. These examples lead us towards providing

reduced-order models for fully-realized fire models that include all of the fundamental physics

involved.

For our first example, we showed how we could use POD to project the airflow model inside

a coal mine. Our technique allows us to create and store a reduced-order model that can

then be recalled to simulate nearby starting airflows. There is a potential to embed these

models into network model at critical nodes. By having a stored ROM, the network model

can conceivably be set to call the ROM to provide more detailed information at a given node.

Next, we created a ROM for a plume fire using POD. In this example, we put forth a set

106 Chapter 5. Reduction of Fire Models

of criteria to use when judging the quality of a ROM for a fire. Further, we note that even

without the combustion being specifically modeled, the ROM provides a good representation

of the full model.

Finally, we looked at the fire spread of a wildland fire. There have been previous attempts

to reduce this model using POD [49, 85], but due to the Arrhenius kinetics associated with

the full model, the reduced-order models were only able to realize modest gains in numerical

computation times. We explained the DEIM technique and used it on this model. Our results

show a 2-3 order of magnitude reduction in computation time while maintaining the fidelity

of the POD. These results represented a significant improvement to existing reduced-order

models generated using POD alone.

Chapter 6

Analysis of Discrete Time Model

Reduction

The typical method for solving a time dependent partial differential equation (PDE) begins

with discretizing the spatial domain and then using a method, e.g. finite elements, finite

differences, or finite volumes, to create an N -dimensional system of ordinary differential

equations (FOM ODE). The size of N depends on the density of the spatial mesh and the

number of parameters and routinely becomes very large. This large FOM ODE is then

discretized in time using an ODE solver and results in a fully discretized matrix system

FOM O∆E where the solution at each time step is dependent on some number of solutions

at previous time steps and the corresponding derivatives at those points.

Since these large problems can become computationally intractable to solve in the time

scales necessary for the practical applications needing the solutions, we often need to employ

some method to simplify the problem. As discussed before, we turn to model reduction in

order to produce surrogate models that are computationally tractable and retain the accuracy

required for a particular application. Carlberg et al. [26] investigated the preservation of POD

107

108 Chapter 6. Analysis of Discrete Time Model Reduction

state-space optimality properties when using general multi-step and Runge-Kutta methods

to discretize the ODE systems. In particular, for these systems, [26] looks to preserve

optimality of the data in a least-squares sense, as was discussed in Section 2.3.3. For our

research, we extend this analysis for linear systems, and investigate optimality in terms of

input-independent, transfer-function based optimality conditions.

Typically, we apply input-independent model-reduction techniques, such as IRKA, to the

FOM ODE to create a reduced-order ODE model (ROM ODE). This ROM ODE is then

discretized in time to create the ROMr O∆E. However, we could first discretize the FOM

ODE to obtain the FOM O∆E, and then reduce the FOM O∆E to produce a ROMd O∆E.

Figure 6.1 shows a graphical representation of these different paths. In this chapter, we will

limit our discussion to H2-optimal methods for reducing the FOM ODE or the FOM O∆E.

Again, we refer the reader to [26] and the references therein for general nonlinear systems.

PDE

FOM ODE (G)

ROM ODE (Gr)

ROMr O∆E (Hr)

FOM O∆E (H)

ROMd O∆E (Hd)

Spacial discretization

Continuous-time
H2-optimal ROM

Time discretization

Time discretization
Discrete-time
H2-optimal ROM

Figure 6.1: Comparison of space and time discretized reduced-order models.

The first section in this chapter discusses the H2 optimality conditions for continuous and

6.1. Optimality Conditions for the ROM 109

discrete time systems. While we have discussed continuous-time systems previously, we

present it here to parallel the discussion of the discrete-time systems for the particular

dynamical systems on which we are focusing. We then present the connections between

the continuous time systems and discrete time systems for a certain class of ODE solvers.

In Section 6.3, we discuss the relationship between the associated transfer functions of the

continuous and discrete time systems. We show that there exists a transformation that we

can use to connect the continuous-time system to the discrete-time system. We show that

this transformation depends on the method used for the time discretization. We look, in

Section 6.4, at whether or not the H2 optimality conditions are preserved after applying the

time discretization. We conclude the chapter with a few numerical examples.

6.1 Optimality Conditions for the ROM

Many of the concepts for continuous-time linear time-invariant systems were covered in

Section 2.3.2. We revisit them in here to investigate the conditions necessary to provide a

local minimum for the H2-optimality problem. In addition, we will examine discrete-time

systems through the lens of H2-optimality with a focus on satisfying the first-order necessary

conditions of the H2-optimality problem.

6.1.1 Continuous-time Systems

Let the following be the continuous-time linear time-invariant SISO dynamical system

G :


ẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),

(6.1)

110 Chapter 6. Analysis of Discrete Time Model Reduction

where x ∈ RN , A ∈ RN×N , b, c ∈ RN , and y(t), u(t) are scalar valued functions of t. We

will refer to this as the ODE FOM (ordinary differential equation full-order model). These

systems often arise from the spatial discretization of a PDE using, for example, finite elements

or finite differences. By taking the Laplace transform of this continuous-time system we can

map the input to the output via the transfer function G(s) as follows

ỹ(s) = G(s)ũ(s) (6.2)

where ũ(s), ỹ(s) are the Laplace transforms of the input and output functions, respectively.

Additionally, we define the transfer function G(s) by

G(s) = cT (sI − A)−1b (6.3)

Often times, for these models, the dimension, N , is so large that it becomes impossible

to solve the problem in time constraints needed. Therefore we desire to create a reduced-

order model that closely approximates the full-order model. We create projection matrices

V,W ∈ RN×r where r � N . Using these we create the following reduced-order model

Gr :


ẋr(t) = Arxr(t) + bru(t),

yr(t) = cTr xr(t),

(6.4)

where Ar = WTAV, br = WTb, and cTr = cTV. Similarly, we have the following input to

output mapping

ỹr(s) = Gr(s)ũ(s), (6.5)

=
[
cTr (sI−Ar)

−1br
]
ũ(s). (6.6)

6.1. Optimality Conditions for the ROM 111

So, we now look at the error between the full and reduced-order models, ỹerr(s), in the

frequency domain.

ỹerr(s) = ỹ(s)− ỹr(s) (6.7)

= G(s)ũ(s)−Gr(s)ũ(s) (6.8)

= [G(s)−Gr(s)] ũ(s) (6.9)

=
[
cT (sI−A)−1b− cTr (sI −Ar)

−1br
]
ũ(s) (6.10)

So if we would like to minimize the error between the output of the full and reduced-order

models we keep ‖y−yr‖ small in an appropriate norm by ensuring that the transfer functions

are close, again in an appropriate norm. In particular Gugercin et al. [53] show that

‖y(t)− yr(t)‖L∞ = max
t>0
|y(t)− yr(t)| ≤ ‖G−Gr‖H2

‖u(t)‖L2 , (6.11)

where the error in the H2 norm is given by (6.12).

∥∥∥G− G̃∥∥∥
H2

=

(
1

2π

∫ ∞
−∞

∣∣∣G(iω)− G̃(iω)
∣∣∣2 dω)1/2

. (6.12)

In other words we would like to solve the minimization problem

Gr(s) = arg min
dim(G̃r)=r

∥∥∥G− G̃r

∥∥∥
H2

, (6.13)

where G̃r is stable. As is detailed [53], solving this minimization problem also minimizes

‖y − yr‖L∞ and thus provides the optimal reduced-order model (ROM) of dimension r pro-

vided we can use this fact to determine V and W that generates this ROM. We note here

that it is difficult to find a global minimum for this problem. Therefore, we seek a local

minimum that satisfies the first-order necessary conditions for optimality. Now we tie these

112 Chapter 6. Analysis of Discrete Time Model Reduction

together with the following theorem and lemma.

Lemma 6.1 (Corollary 2.2 from [53]). Consider the system in (6.1) defined by A,b, c,

a set of distinct shifts given by {σk}rk=1, that is closed under conjugation, and subspaces

spanned by the columns of Vr and Wr with

Ran(V) = span{(σ1I−A)−1b · · · (σrI−A)−1b}, (6.14)

Ran(W) = span{(σ1I−A)−Tc · · · (σrI−A)−Tc.}. (6.15)

Then Vr and Wr can be chosen to be real matrices with WTV = I, and the reduced-

order system in (6.4) defined by Ar = WT
r AVr, br = WT

r b, and cTr = cTVr is itself

real and matches the first two moments of G(s) at each of the interpolation points σk, i.e.

G(σk) = Gr(σk) and G′(σk) = G′r(σk) for k = 1, . . . , r.

Proof. See [34, 46, 53, 93, 94]

Theorem 6.2 (SISO: Meier III and Luenberger [76]). Given the transfer function

G(s) = cT (sI − A)−1b, the optimal H2 reduced-order transfer function Gr(s) = cTr (sI −

Ar)
−1br satisfies

G(−λk) = Gr(−λk),

G′(−λk) = G′r(−λk),

where λk, k = 1, · · · , r, are the eigenvalues of Ar.

Proof. See Meier III and Luenberger [76].

6.1. Optimality Conditions for the ROM 113

6.1.2 Discrete-time Systems

We consider the linear time-invariant discrete-time dynamical system defined by the following

set of difference equations

H :


xk+1 = Ãxk + b̃uk,

yk = c̃Txk,

(6.16)

where Ã ∈ RN×N and b̃, c̃ ∈ RN . We can consider xk ∈ RN to be the state at the discrete

time step tk where the time [0, tf] is discretized as {0 = t0, t1, . . . , tk, tk+1, . . . , tf}, and

uk, yk ∈ R are the input and output, respectively, at time tk. Applying a Z-transform to H,

we obtain an input to output mapping in the frequency domain as

y̌(z) = H(z)ǔ(s) = c̃T (zI− Ã)−1b̃ǔ(z) (6.17)

where ǔ(z) and y̌(z) are the Z-transforms of the input and output functions respectively

and H(z) is the discrete-time transfer function. Similarly to before, we can construct a

reduced-order model via projection matrices, Ṽ,W̃ ∈ RN×r, such that

Hd :


xk+1
d = Ãdx

k
d + b̃du

k,

ykd = c̃Td xkd,

(6.18)

with Ãd = W̃T ÃṼ, b̃d = W̃T b̃, and c̃d = c̃T Ṽ. Then the reduced-order transfer function

is given by

Hd(z) = c̃Td (zI− Ãd)
−1b̃d. (6.19)

Similar to the continuous-time case, we would like to find a reduced-order model Hr, that

satisfies the first-order necessary conditions for H2 optimality. In order to do so, we first

define the H2-norm for a discrete-time system.

114 Chapter 6. Analysis of Discrete Time Model Reduction

Definition 6.3. The H2-norm for SISO discrete-time system H is given by

‖H‖H2
=

(
1

2π

∫ 2π

0

H(eiθ)H(eiθ) dθ

) 1
2

(6.20)

As is shown in [22, 53], the conditions are slightly different for the discrete time case. Here

we need to interpolate the transfer function at the shifts σk = 1/µk where µk are the poles of

Hd(z). If we assume that the poles of Hd(z) are closed under conjugation then 1/µk are the

mirror images of the poles of Hd(z) with respect to the unit disk. We now present a couple

theorems that summarize this result.

Theorem 6.4 (First-order Necessary Conditions for H2 Optimality of a Discrete–

Time ROM (Version 1)). Given the transfer function H(z) = c̃T (sI − Ã)−1b̃ for the

discrete-time system H (6.16), the transfer function Hd(z) = c̃Td (sI − Ãd)
−1b̃d satisfies the

first-order necessary conditions for H2 optimality in the norm given by Definition 6.3 when

H(1/µk) = Hd(1/µk), (6.21)

H ′(1/µk) = H ′d(1/µk), (6.22)

where µk, k = 1, . . . , r, are the eigenvalues of Ãd, closed under conjugation.

Proof. See [22, 53].

It important to note here that the first-order necessary conditions given in Theorem 6.4

apply to discrete time systems with no d term. For systems with a d term, our transfer

function becomes

H̃(z) = cT (zI−A)−1b + d. (6.23)

In order for the reduced-order model to be optimal for these types of systems, we need to also

6.1. Optimality Conditions for the ROM 115

match the d terms. Gaier [41] has already showed this result for the case of fixed poles; i.e.,

the only unknowns are the residues of the transfer function. In [41], the poles are assumed

outside the unit disc and the interpolation points are inside the disc. Of course, as expected,

this result can be directly applied in our setting as well. To make this chapter self-contained,

we include this proof here as a corollary to Gaier’s [41] result.

Corollary 6.5 (First-order Necessary Conditions for H2 Optimality of a Discrete–

Time ROM (Version 2)). Given the n-dimensional transfer function H̃(z) = c̃T (sI −

Ã)−1b̃ + d for the full-order discrete-time system H (6.16), the transfer function H̃d(z) =

c̃Td (sI − Ãd)
−1b̃d + dd of dimension r, satisfies the first-order necessary conditions for H2

optimality in the norm given by Definition 6.3 when

H̃(1/λk) = H̃d(1/λk), (6.24)

H̃ ′(1/λk) = H̃ ′d(1/λk), (6.25)

where λk, k = 1, · · · , r, are the eigenvalues of Ãd, closed under conjugation. Further, d = dd

must also be true.

Proof. The conditions given by (6.24) and (6.25) have already been shown for the case

where d = 0 in Theorem 6.4. So we focus on the case where d 6= 0. Using the pole-residue

expansion, we write H̃d(z) as

H̃d(z) = dd +
r∑

k=1

φk
z − µk

, (6.26)

From this expansion, we can see that H̃(z) is generated by the basis

{
1,

1

z − µ1

, · · · , 1

z − µr

}
, (6.27)

116 Chapter 6. Analysis of Discrete Time Model Reduction

where the coefficient of the constant basis function, 1, is dd and the coefficient for each basis

element 1
z−µk

is φk. For H2 optimality, the error between H̃(z) and H̃d(z) must be orthogonal

to each of the basis vectors. So for the constant basis, 1, in (6.27) we need

〈H̃ − H̃d, 1〉H2 = 0, (6.28)

where the H2 inner product is given by

〈H,G〉H2 =
1

2π

∫ 2π

0

H(eiθ)G(eiθ) dθ. (6.29)

So now (6.28) becomes

〈H̃ − H̃d, 1〉H2 = 0, (6.30)

1

2π

∫ 2π

0

H̃(eiθ)− H̃d(e
iθ) dθ = 0 (6.31)

1

2π

∫ 2π

0

H̃(eiθ) dθ =
1

2π

∫ 2π

0

H̃d(e
iθ) dθ (6.32)

We now do a change of variables by letting z = eiθ and dz = ieiθdθ = iz dθ. This gives

1

2πi

∮
γ

1

z
H̃(z) dz =

1

2πi

∮
γ

1

z
H̃d(z) dz, (6.33)

where γ is a contour integral which, in our case, is the unit circle. Now recall the inverse

Z-transform is given by

h[n] =
1

2πi

∮
γ

H(z)zn−1 dz, (6.34)

where γ is a contour that encircles the poles of H(z). From this, we see that both sides of

6.2. Time Discretization of the ODE 117

Equation (6.33) are simply the inverse Z-transforms at n = 0. Therefore,

h̃[0] = h̃d[0]. (6.35)

For discrete-time systems with H(z) = cT (zI − A)−1b + d, the impulse response of h[n]

at n = 0 is the first Markov parameter and this is given by d. This implies that for H2

optimality we must have d = dd and the result is shown.

Theorem 6.6. Given shifts {σk}rk=1 and Ṽ and W̃ chosen such that W̃T Ṽ = I and

Ran(Ṽ) = span{(σ1I− Ã)−1b̃ · · · (σrI− Ã)−1b̃}, (6.36)

Ran(W̃) = span{(σ1I− Ã)−T c̃ · · · (σrI− Ã)−T c̃.}. (6.37)

If the reduced-order model Hd in (6.18) is produced using Ãd = W̃T ÃṼ, b̃d = W̃T b̃, and

c̃Td = c̃T Ṽ, and further if σk = 1/µk where the µk are the eigenvalues of Ãd, closed under

conjugation, then Hd satisfies the first-order necessary conditions for H2 optimality given in

Theorem 6.4.

Proof. See [22, 53].

6.2 Time Discretization of the ODE

We consider a system of N ODEs that was created using some spatial discretization (e.g finite

elements or finite differences) of a time dependent PDE. Let this system can be represented as

the linear time-invariant dynamical system G. To solve this system, we must also discretize

the model in time. While there are several methods that can be used, we will focus on the

linear multistep methods defined below.

118 Chapter 6. Analysis of Discrete Time Model Reduction

Definition 6.7. A linear k-step method to solve the continuous time dynamical system G

in (6.1) is given by
k∑
j=0

αjx
n+k−j = h

k∑
j=0

βj(Axn+k−j + bun−j), (6.38)

where xn is the result at time tn, un = u(tn), h is the time step, the coefficients αj and

βj define the scheme, α0 6= 0, and
k∑
j=0

αj = 0 and
k−1∑
j=0

(k − j)αj =
k∑
j=0

βj is necessary for

consistency. Additionally, if β0 = 0, the method is considered explicit. Otherwise, we say

the method is implicit, [1, 42].

While not explicitly required, it is customary to set αk = 1 and then scale the other coeffi-

cients as necessary. Here, we refer to the time discretized ODE as H. Then H is solved by

the system of algebraic equations at each time step n = N(T/h) where T = [0, tf] given by:

rn(zn) = 0, (6.39)

where zn ∈ RN is the unknown variable and rn : RN → RN denotes the multistep residual

defined by

rn(z) := α0z− hβ0(Az + bun) +
k∑
j=1

αjx
n−j − h

k∑
j=1

βj(Axn−j + bun−j). (6.40)

Then the state can be explicitly updated as xn = zn. If β0 6= 0, the method is considered

implicit. We extend the results in [26] by showing that given any bi-orthogonal right and

left projection matrices, V and W, respectively, the Petrov-Galerkin projection and time

discretization are commutative.

Theorem 6.8 (Petrov-Galerkin: commutivity of the projection and time discretization).

Given right and left projection matrices V,W ∈ RN×r with WTV = I, then perform-

ing a Petrov-Galerkin projection on the governing ODE and subsequently applying a time

6.2. Time Discretization of the ODE 119

discretization using a multistep method yields the same model as first applying the time dis-

cretization and then subsequently performing a Petrov-Galerkin projection.

Proof. We approximate x by Vxr and then enforce the Petrov-Galerkin condition that the

residual is orthogonal to W as follows

WT (Vẋr −AVxr − bu) = 0 (6.41)

From this, we obtain the reduced-order model Gr, possibly not H2-optimal,

ẋr = WTAVxr + WTbu. (6.42)

Applying the multistep method to discretize Gr, we have the following residual

rnr (zr) := α0zr−hβ0(WTAVzr+WTbun)+
k∑
j=1

αjx
n−j
r −h

k∑
j=1

βj(W
TAVxn−j +WTbun−j).

(6.43)

where we solve rnr (znr) = 0 and then let xnr = znr . We now want to show that if we first apply

the multistep method to obtain the full-order discrete-time system H and then apply the

projection that, we will obtain the same result. Set z = Vzr and xi = Vxir and then apply

the multistep method. Again we want to enforce the Petrov-Galerkin condition which now

gives WT rn(Vzr) = 0. Substituting, we obtain

WT rn(Vzr) = WT

[
α0Vzr − hβ0(AVzr + bun) +

k∑
j=1

αjVxn−jr − h
k∑
j=1

βj(AVxn−j + bun−j)

]

WT rn(Vzr) = α0zr − hβ0(WTAVzr + WTbun)+

k∑
j=1

αjx
n−j
r − h

k∑
j=1

βj(W
TAVxn−j + WTbun−j) (6.44)

120 Chapter 6. Analysis of Discrete Time Model Reduction

We see that

rnr (zr) = WT rn(Vzr) (6.45)

at each time step. Therefore, the projection and time discretization commute.

Suppose we let W = Wr and V = Vr be the H2-optimal projection matrices defined earlier

by Theorem 6.2 and Lemma 6.1. Then we can see that while we have created an optimal

reduced-order model, we cannot guarantee that we maintain that optimality once we have

discretized the system in time. However, if we use the discrete-time projection criteria given

in Theorem 6.6 on H, we can obtain an H2-optimal projection of the discrete-time FOM to

the discrete-time ROM Hr.

6.2.1 Single-Step Discretization Schemes

For this research, we focused on three single-step time discretization schemes. We first define

each method using the α and β coefficients for the general multistep method defined by 6.7.

For each of the time discretization schemes, we then discuss how the eigenvalues of A and the

step size, h affect the stability of the discrete system. We present the following definitions

and theorems on stability to establish connections between the stability of the ODE and its

associated time discretization.

Definition 6.9. A continuous-time system of ordinary differential equations (6.1) is said

to be asymptotically stable if for every bounded initial condition and input function, i.e.

‖x(0)‖ < ∞ and ‖u‖L∞ < ∞ respectively, every solution x̃ → 0 as t → ∞. Similarly,

a discrete-time system is asymptotically stable if for every solution x̃, x̃n → 0 as t → ∞

[1, 4, 44, 45, 78].

Theorem 6.10 (Asymptotic Stability of Continuous Systems). The system of ordinary

6.2. Time Discretization of the ODE 121

differential equations

ẋ(t) = Ax(t) with x(0) = x0, (6.46)

is asymptotically stable t = [0,∞), if <(λk) < 0 for all λk ∈ λ(A), the eigenvalues of A.

Proof. See any rigorous book on ODEs, e.g. [78].

Theorem 6.11 (Asymptotic Stability of Discrete Systems). The discrete evolution system

given by

xn+1 = Adx
n with initial state x0, (6.47)

is asymptotically stable for n = 0, 1, . . . ,∞, if |λk| < 1 for all λk ∈ λ(Ad), the eigenvalues

of Ad.

Proof. See [4, 45, 87].

(a) Forward Euler (b) Backward Euler (c) Crank-Nicolson

Figure 6.2: The shaded region is the region of stability for selected single-step methods given
eigenvalues λ of the continuous system A.

Explicit Forward Euler Method

The Forward Euler method is defined by letting k = 1 and setting α0 = 1, α1 = −1, β0 = 0,

and β1 = 1 for the multistep method in Definition 6.7. Since β0 = 0, this is an explicit

122 Chapter 6. Analysis of Discrete Time Model Reduction

method. Applying this method to the equation in (6.1) results in the following discrete time

system.

xn+1 − xn = hAxn + hbu(tn)

xn+1 = xn + hAxn + hbu(tn)

xn+1 = (I + hA)xn + hbu(tn) (6.48)

xn+1 = Adx
n + bdu(tn) (6.49)

Proposition 6.12. The stability of a Forward Euler discretization of an asymptotically stable

ODE 6.46 is dependent on λ(A) and the step size h. Specifically, all λk ∈ λ(A) must satisfy

|1 + hλk| < 1 (6.50)

Proof. Let µk ∈ λ(Ad) and λk ∈ λ(A). Then Theorem 6.11 says that this system is stable

if for all µk and λk, the following condition holds

|µk| < 1

|1 + hλk| < 1 (6.51)

Therefore if all hλk are inside the circle of radius one centered at z = −1 in the complex

plane, as shown in Figure 6.2a, then the system is stable. For a stable continuous system,

the stability of the Forward Euler method is dependent on the step size and magnitude and

argument of λ(A).

This stability requirement can lead to choosing h very small to maintain stability when it

does not need to be nearly that small for accuracy. For example if λmax = max |λ(A)| is real,

then the step size, h must satisfy h < 2/λmax. Additionally, if there are eigenvalues λk such

6.2. Time Discretization of the ODE 123

that =(λk)� <(λk), then the step size h will need to be much smaller than 2/λk to satisfy

the stability requirements. A numerical example of this behavior is presented in Section 6.5.

Implicit Backward Euler Method

The Backward Euler method is defined by setting α0 = 1, α1 = −1, β0 = 1, and β1 = 0 for

the multistep method in Definition 6.7. Since β0 6= 0, this is an implicit method. Applying

this method to the equation in (6.1) results in the following discrete time system.

xn+1 − xn = hAxn+1 + hbu(tn+1)

xn+1 = xn + hAxn+1 + hbu(tn+1)

(I− hA)xn+1 = xn + hbu(tn+1)

(I− hA)xn+1 = xn + hbu(tn+1)

xn+1 = (I− hA)−1xn + h(I− hA)−1bu(tn) (6.52)

xn+1 = Adx
n + bdu(tn) (6.53)

Proposition 6.13. The Backward Euler discretization of an asymptotically stable ODE

given by 6.46 is always stable regardless of the time step size h.

Proof. Let µk ∈ λ(Ad) and λk ∈ λ(A). Then Theorem 6.11 says that this system is stable

if for all µk and λk, the following condition holds

|µk| < 1

1

|1− hλk|
< 1 (6.54)

|1− hλk| > 1 (6.55)

124 Chapter 6. Analysis of Discrete Time Model Reduction

Therefore if all hλk are outside the circle of radius one centered at z = 1 in the complex

plane, as shown in Figure 6.2b, then the system is stable. For a stable continuous system,

<(λk) < 0 and thus the Backward Euler method is always stable, regardless of the choice of

step size.

Implicit Crank-Nicolson Method

The Crank-Nicolson method is defined by setting α0 = 1, α1 = −1, β0 = 1
2
, and β1 = 1

2
for

the multistep method in Definition 6.7. Since β0 6= 0, this is an implicit method. Applying

this method to the equation in (6.1) results in the following discrete time system.

xn+1 − xn = h
2

(Axn + bun + Axn+1bun+1)

xn+1 = xn + h
2

(Axn + bun + Axn+1bun+1)

xn+1 − h
2
Axn+1 = xn + h

2
Axn + h

2
b(un + un+1)(

I− h
2
A
)
xn+1 =

(
I + h

2
A
)
xn + h

2
b (un + un+1)

xn+1 =
(
I− h

2
A
)−1 (

I + h
2
A
)

xn + h
2

(
I− h

2
A
)−1

b (un + un+1) (6.56)

xn+1 = Adx
n + bdu(tn) + bdu(tn+1) (6.57)

Proposition 6.14. The Crank-Nicolson discretization (6.56) of an ODE given by (6.46) is

asymptotically stable if and only if the ODE is asymptotically stable.

Proof. We note that

µ = T (λ) =
1 + (h/2)λ

1− (h/2)λ
(6.58)

is a conformal map from the left half of the complex plane to the unit disk [40, 73]. Suppose

that the ODE (6.46) is asymptotically stable. Then Theorem 6.10 says that for all λk ∈ λ(A),

6.3. Relationship of Transfer Functions 125

<(λk) < 0. Then |T (λk)| < 1 and

T (λk) =
1 + (h/2)λk
1− (h/2)λk

. (6.59)

Since Ad = (I− (h/2)A)−1(I + (h/2)A), the eigenvalues µk ∈ λ(Ad) are given by

µk =
1 + (h/2)λ

1− (h/2)λ
= T (λk) (6.60)

Therefore |µk| < 1 for all µk ∈ λ(Ad). Thus, by Theorem 6.11 the discretized system (6.56)

is asymptotically stable.

For the other direction, let the discretized system (6.56) be asymptotically stable. Then

|µk| < 1 for all µk ∈ λ(Ad). Since conformal maps are invertible [40, 73], we have that

T−1(µk) = λk and <(λk) < 0. Therefore the conditions of Theorem 6.10 are satisfied and

the ODE given by (6.46) is asymptotically stable.

6.3 Relationship of Transfer Functions

When we compute the transfer function for a continuous time system, we take the Laplace

transform; but when we determine the transfer function for a discrete time system, we are

taking the Z-transform. For continuous time systems we let G : S ⊂ C→ C be the transfer

function and let H : Z ⊂ C→ C be the transfer function for discrete time systems. We seek

to find an invertible mapping T : S → Z such that G(s) = H(T (s)) and G(T−1(z)) = H(z).

It turns out that this mapping is dependent on the method that is used to discretize the

continuous time system. We will present results for a couple 1-step methods below.

126 Chapter 6. Analysis of Discrete Time Model Reduction

6.3.1 Explicit Forward Euler Method

Given our standard definition a continuous time linear SISO system below:

Σ :


ẋ(t) = Ax + bu(t)

y(t) = cTx.

(6.61)

As seen before, this system has the transfer function

G(s) = cT (sI−A)−1b (6.62)

For the forward Euler discretization in Equation (6.48), the discrete time linear SISO dy-

namical system is given by

Σd :


xn+1 = (I + hA)xn + hbun

yn = cTxn
(6.63)

We define the transfer function for this discrete time system as

H(z) = cT (zI− (I + hA))−1hb (6.64)

Theorem 6.15. Suppose that the linear SISO system (6.61) is discretized in time using the

forward Euler method resulting in the discrete-time dynamical system given by (6.63). There

is an invertible mapping T from the domain of (6.62), S, to the domain of (6.64), Z, such

6.3. Relationship of Transfer Functions 127

that

G(s) = H(T (s)) (6.65)

H(z) = G(T−1(z)) (6.66)

Further, this map is given by

T : S → Z where s 7→ 1 + hs = z. (6.67)

Proof. Using the transfer functions (6.62) and (6.64), we develop the mapping for T .

G(s) = cT (sI−A)−1b

= cT (sI−A)−1h−1hb

= cT (hsI− hA)−1hb

= cT (hsI + I− I− hA)−1hb

= cT ((1 + hs)I− (I + hA))−1hb

=⇒ G(s) = H(1 + hs) = H(T (s)) (6.68)

This gives the mapping in (6.67) and shows (6.65). It is easy to show that T−1 : Z → S is

128 Chapter 6. Analysis of Discrete Time Model Reduction

defined by z 7→ (z − 1)/h = s. Now we show that G(T−1(z)) = H(z).

H(z) = cT (zI− (I + hA))−1 hb

= cT ((z − 1)I− hA)−1 hb

=
[
h
((

z−1
h

)
I−A

)]−1
hb

=
((

z−1
h

)
I−A

)−1
b

=⇒ H(z) = G(z−1
h

) = G(T−1(z)) (6.69)

6.3.2 Implicit Backward Euler Method

Given the continuous time linear SISO system from (6.61) and its associated transfer function

(6.62), we apply the Backward Euler method from (6.52) to obtain the following discrete

dynamical system

Σd :


xn+1 = (I− hA)−1xn + (I− hA)−1hbun+1

yn = cTxn,

(6.70)

and its associated transfer function

H(z) = cT (zI− (I− hA)−1)−1(I− hA)−1hbz. (6.71)

Theorem 6.16. Suppose that the linear SISO system (6.61) is discretized in time using the

forward Euler method resulting in the discrete-time dynamical system given by (6.70). There

is an invertible mapping T from the domain of (6.62), S, to the domain of (6.71), Z, such

6.3. Relationship of Transfer Functions 129

that

G(s) = H(T (s)) (6.72)

H(z) = G(T−1(z)) (6.73)

Further, this map is given by

T : S → Z where s 7→ 1

1− hs
= z. (6.74)

Proof. Using the transfer functions (6.62) and (6.71), we develop the mapping for T .

G(s) = cT (sI−A)−1b

= cT (h(sI−A))−1hb

= cT (I− hA− I + hsI)−1hb

= cT
[(

1
1−hs

)
((I− hA)− (1− hs)I)

]−1
hb
(

1
hs

)
= cT

[(
1

1−hs

)
(I− hA)− I

]−1
hb
(

1
1−hs

)
= cT

[
(I− hA)−1

((
1

1−hs

)
(I− hA)− I

)]−1
(I− hA)−1hb

(
1

1−hs

)
= cT

((
1

1−hs

)
I− (I− hA)−1

)−1
(I− hA)−1hb

(
1

1−hs

)
s =⇒ G(s) = H(1

1−hs) = H(T (s)) (6.75)

This gives the mapping in (6.74) and shows (6.72). It is easy to show that T−1 : Z → S is

130 Chapter 6. Analysis of Discrete Time Model Reduction

defined by z 7→ z−1
zh

= s. Now we show that H(z) = G(T−1(z)).

H(z) = cT
(
zI− (I− hA)−1

)
h(I− hA)−1bz

= cT (z(I− hA)− I)−1 (I− hA)(I− hA)−1hbz

= cT (zI− zhA− I)−1 hbz

= cT ((z − 1)I− zhA)−1 hzb

= cT
[
zh
((

z−1
zh

)
I−A

)]−1
zhb

= cT
((

z−1
zh

)
I−A

)−1
b

=⇒ H(z) = G(z−1
zh

) = G(T−1(z)) (6.76)

6.3.3 Implicit Crank-Nicolson Method

Again suppose we have the linear SISO dynamical system (6.61) with the associated transfer

function (6.62). Applying the implicit Crank-Nicolson method with time step h to discretize

the state equation in time results in the time discretized state equation (6.56). This leads

to the discrete dynamical system


xn+1 =

(
I− h

2
A
)−1 (

I + h
2
A
)
xn + h

2

(
I− h

2
A
)−1

b (un + un+1)

yn = cTxn
(6.77)

By taking the Z-transform of this system, we obtain the following transfer function:

H(z) = cT
(
zI−

(
I− h

2
A
)−1 (

I + h
2
A
))−1 (

I− h
2
A
)−1 h

2
b(1 + z) (6.78)

6.3. Relationship of Transfer Functions 131

Theorem 6.17. Suppose that the linear SISO system (6.61) is discretized in time using

the implicit Crank-Nicolson method resulting in the discrete-time dynamical system given by

(6.77). There is an invertible mapping T from the domain of (6.62), S, to the domain of

(6.78), Z, such that

G(s) = H(T (s)) (6.79)

H(z) = G(T−1(z)) (6.80)

Further, this map is given by

T : S → Z where s 7→ 2 + hs

2− hs
= z. (6.81)

132 Chapter 6. Analysis of Discrete Time Model Reduction

Proof. Using the transfer functions (6.62) and (6.78), we develop the mapping for T .

G(s) = cT (sI−A)−1b

= cT (sI−A)−1(2h)−12hb

= cT (2hsI− 2hA)−12hb

= cT
(

2I− 2I + 2hsI− 2hA− h2s
2

A + h2s
2

A
)−1

2hb

= cT
[(

2I + hsI− hA− h2s
2

A
)
−
(

2I− hsI + hA− h2s
2

A
)]−1

2hb

= cT
[
(2 + hs)

(
I− h

2
A
)
− (2− hs)

(
I + h

2
A
)]−1

2hb

= cT
[
(2 + hs)I− (2− hs)

(
I− h

2
A
)−1 (

I + h
2
A
)]−1 (

I− h
2
A
)−1

2hb

= cT
[
(2− hs)

((
2+hs
2−hs

)
I−

(
I− h

2
A
)−1 (

I + h
2
A
))]−1 (

I− h
2
A
)−1

2hb

= cT
((

2+hs
2−hs

)
I−

(
I− h

2
A
)−1 (

I + h
2
A
))−1 (

I− h
2
A
)−1

bh
2

4
2−hs

= cT
((

2+hs
2−hs

)
I−

(
I− h

2
A
)−1 (

I + h
2
A
))−1 (

I− h
2
A
)−1

bh
2

2−hs+2+hs
2−hs

= cT
((

2+hs
2−hs

)
I−

(
I− h

2
A
)−1 (

I + h
2
A
))−1 (

I− h
2
A
)−1

bh
2

(
1 + 2+hs

2−hs

)
=⇒ G(s) = H

(
2+hs
2−hs

)
= H(T (s)) (6.82)

This gives the mapping in (6.81) and shows (6.79). It is straight-forward to show that

6.3. Relationship of Transfer Functions 133

T−1 : Z → S is defined by z 7→ 2
h

(
z−1
z+1

)
= s. Now we show that G(T−1(z)) = H(z).

H(z) = cT
(
zI−

(
I− h

2
A
)−1 (

I + h
2
A
))−1 (

I− h
2
A
)−1 h

2
b(1 + z)

= cT
[(

I− h
2
A
)−1 (

z
(
I− h

2
A
)
−
(
I + h

2
A
))]−1 (

I− h
2
A
)−1 h

2
b(1 + z)

= cT
(
zI− h

2
zA− I− h

2
A
)−1 h

2
b(1 + z)

= cT
(
(z − 1) I− h

2
(1 + z) A

)−1 h
2
b(1 + z)

= cT
[
(1 + z)

((
z−1
z+1

)
I− h

2
A
)]−1 h

2
b(1 + z)

= cT
[
h
2

(
2
h

(
z−1
z+1

)
I−A

)]−1 h
2
b

= cT
(

2
h

(
z−1
z+1

)
I−A

)−1
b

=⇒ H(z) = G
(

2
h

(
z−1
z+1

))
= G(T−1(z)) (6.83)

6.3.4 Relationship of Discrete-Time Transfer Functions

For the single-step methods above, we have shown that function values are preserved under

the transformation T . Using this information, we present the following theorem relating the

function values and the derivatives at the H2-optimal interpolation points of the continuous-

time ROM for the discrete-time systems created from the full-order and reduced-order sys-

tems.

Corollary 6.18. Suppose the transfer function H(z) for the discrete-discrete time system,

H, is created from the full-order system, G, with transfer function, G(s). Further, the

transfer function Hr(z) for the reduced-order discrete-time system, Hr, is created from the

ROM, Gr which satisfies the first order necessary conditions for H2 optimality with respect

134 Chapter 6. Analysis of Discrete Time Model Reduction

to G. Let λk, k = 1, . . . , r, be the poles for the reduced-order transfer function, Gr(s). Then

H(T (−λk) = Hr(T (−λk)), (6.84)

H ′(T (−λk) = H ′r(T (−λk)). (6.85)

Proof. From Theorem 6.2, we have that

G(−λk) = Gr(−λk). (6.86)

Based on Theorems 6.15, 6.16, and 6.17, there exist mappings T : S → Z for each single-step

method such that

G(−λk) = H(T (−λk)), (6.87)

Gr(−λk) = Hr(T (−λk)). (6.88)

Therefore

H(T (−λk)) = G(−λk) = Gr(−λk) = H(T (−λk)), (6.89)

and the first equality (6.84) is shown.

Taking the derivative with respect to s and applying the chain rule, we have

G′(s) =
d

ds
[H(T (s))] = H ′(T (s))T ′(s) (6.90)

G′r(s) =
d

ds
[Hr(T (s))] = H ′r(T (s))T ′(s) (6.91)

6.4. Extension of H2 Optimality 135

Looking at the H2-optimal interpolation points λk, k = 1, . . . , r, we have that

H ′(T (−λk))T ′(−λk) = G′(−λk), (6.92)

= G′r(−λk), (6.93)

= H ′r(T (−λk))T ′(−λk), (6.94)

which gives

H ′(T (−λk))T ′(−λk) = H ′r(T (−λk))T ′(−λk), (6.95)

H ′(T (−λk)) = H ′r(T (−λk)), (6.96)

and the second result is shown.

6.4 Extension of H2 Optimality

As stated earlier, it is typical to apply the H2-optimal model reduction directly to the

FOM ODE and then to apply the time discretization to the ROM ODE to create a ROMc

O∆E. We would like to determine whether or not the ROMc O∆E created is an H2-optimal

reduced-order model for the FOM O∆E created from the FOM ODE, and, by extension,

is equivalent to ROMd O∆E. In other words, the time discretization method preserves the

H2 optimality condition of the reduced-order model, and therefore the order with which the

model reduction and time discretization are completed does not matter. It turns out that

this preservation of the H2 optimality condition depends on the time discretization method

as we will see in the following theorems.

For the remainder of this chapter, we will refer to the FOM ODE system as G with the

136 Chapter 6. Analysis of Discrete Time Model Reduction

associated transfer function G(s) and the ROM ODE as Gr with transfer function Gr(s).

The time discretization of G is given by H with its transfer function given by H(z). The

discrete-time system built from Gr is given by Hr with its transfer function Hr(z). Finally,

the discrete-time H2-optimal ROM built from H will be referred to as Hd with transfer

function Hd(z).

6.4.1 Forward and Backward Euler

In the following two theorems, we show that the Forward and Backward Euler methods do

not preserve the H2-optimality of the continuous time ROM.

Theorem 6.19. Given an asymptotically-stable full-order system of ODEs, G, the Forward

Euler method applied to the reduced-order model, Gr, satisfying the first-order necessary

conditions for H2 optimality produces a discrete-time system that does not preserve the first-

order necessary conditions for H2 optimality in the discrete-time system.

Proof. It suffices to show that the Hr does not satisfy the first-order necessary conditions

for H2 optimality with respect to H. Let G be an n dimensional system of ODEs, and Gr

be the r dimensional H2-optimal approximation of that system. Since the original system

is stable then so is the ROM and thus A and Ar are nonsingular. Gr is the H2-optimal

reduced-order model given by

Gr =


ẋr(t) = WT

r AVrxr(t) + WT
r bu(t)

yr(t) = cTVrxr(t),

(6.97)

with the degree r rational transfer function

Gr(s) = cTr (I−Ar)
−1br, (6.98)

6.4. Extension of H2 Optimality 137

where Ar = WT
r AVr, br = WTb and cTr = cTVr. Let λk be the eigenvalues of Ar,

λk ∈ λ(Ar), which are also the poles of Gr(s). Applying the Forward Euler method to Gr

yields a discrete dynamical system Hr with the r dimensional rational transfer function

Hr(z) = cTr (zI− (I + hAr))
−1hbr, (6.99)

with poles at µk = 1 + hλk. By Theorem 6.2, we have that for all λk ∈ λ(Ar)

G(−λk) = Gr(−λk) and G′(−λk) = G′r(−λk) (6.100)

By Theorem 6.15, we have that

Gr(−λk) = Hr(1− hλk) and G′r(−λk) = H ′r(1− hλk), (6.101)

and for the transfer function H(z) defined by (6.64)

G(−λk) = H(1− hλk) and G′(−λk) = H ′(1− hλk). (6.102)

Combining (6.100), (6.101), and (6.102) gives that

H(1− hλk) = Hr(1− hλk) and H ′(1− hλk) = H ′r(1− hλk). (6.103)

By Theorem 6.4, for Hr to be a ROM that satisfies the H2 optimality conditions for H,

Hr(z) must be a Hermite interpolate of H(z) at 1/µk where µk are the poles of Hr(z). From

(6.99), µk = 1 +hλk. Since H(z) is exactly a degree n rational function and Hr(z) is exactly

a degree r rational function, by uniqueness of the interpolation, Hr(z) will only match the

function and derivatives at r points [1, 40]. From (6.103), those points are 1− hλk. Assume

138 Chapter 6. Analysis of Discrete Time Model Reduction

that these points are the optimal points from Theorem 6.4.

1

µk
= 1− hλk,

=⇒ 1

1 + λk
= 1− hλk,

=⇒ 1 = 1− h2λ2
k,

=⇒ h2λ2
k = 0,

=⇒ λk = 0. (6.104)

for k = 1, . . . , r. Clearly, this condition cannot be met in our case. Therefore Hr does

not provide a ROM that satisfies the first-order necessary conditions for H2 optimality with

respect to the discrete-time system H when Gr and G are discretized in time using the

explicit Forward Euler method.

Theorem 6.20. Given an asymptotically-stable full-order system of ODEs, G, the Backward

Euler method applied to the reduced-order model, Gr, satisfying the first-order necessary

conditions for H2 optimality produces a discrete-time system that does not preserve the first-

order necessary conditions for H2 optimality in the discrete-time system.

Proof. This proof follows the same format as the proof for Theorem 6.19. Again, it suffices

to show that the Hr does not satisfy the first-order necessary conditions for H2 optimality

with respect to H. Following the same setup we have the ROM satisfying the first-order

necessary conditions for H2 optimality given by (6.97) and its associated transfer function

(6.98) with all the same properties. Applying the Backward Euler method to the ROM ODE

yields a discrete dynamical system with the r dimensional rational transfer function

Hr(z) = cTr (zI− (I− hAr)
−1)−1(I− hAr)

−1hbrz, (6.105)

6.4. Extension of H2 Optimality 139

with poles at µk = 1
1−hλk

where λk ∈ λ(Ar). By Theorem 6.2, we have that for all λk ∈ λ(Ar),

(6.100) holds. Further, by Theorem 6.16, we have that

Gr(−λk) = Hr(
1

1+hλk
) and G′r(−λk) = H ′r(

1
1+hλk

), (6.106)

and for the transfer function H(z) defined by (6.71)

G(−λk) = H(1
1+hλk

) and G′(−λk) = H ′(1
1+hλk

). (6.107)

Combining (6.100), (6.106), and (6.107) gives that

H(1
1+hλk

) = Hr(
1

1+hλk
) and H ′(1

1+hλk
) = H ′r(

1
1+hλk

). (6.108)

We now show that these interpolation points are not equal to 1/µk, where µk are the poles

of Hr(z), which is required by Theorem 6.4 for Hr(z) to be an H2 optimal interpolation of

H(z). Assume that the points are equal, then

1

µk
=

1

1 + hλk
,

=⇒ 1− λk =
1

1 + hλk
,

=⇒ 1− h2λ2
k = 1,

=⇒ h2λ2
k = 0,

=⇒ λk = 0, (6.109)

for k = 1, . . . , r. By earlier arguments in Theorem 6.19, Hr does not provide a ROM that

satisfies the first-order necessary conditions for H2 optimality with respect to the discrete-

time system H when Gr and G are discretized in time using the implicit Backward Euler

140 Chapter 6. Analysis of Discrete Time Model Reduction

method.

6.4.2 Crank-Nicolson Method

As we pointed out in the proof of Proposition 6.14, the Crank-Nicholson method amounts to

a conformal mapping from left-half plane to the unit disc. Since the reduced-order poles and

the H2-optimal interpolation points are connected by λ = −σ, one might intuitively expect

that after the Crank-Nicholson discretization, the H2-optimality will be preserved as these

points will be mapped as λ and 1/λ together with the fact that the Hermite interpolation

is preserved as we discussed in Corollary 6.18. However, this argument would not take into

consideration the fact that the Crank-Nicholson discretization will introduce a d term that

was not present in the original transfer function. Therefore, one needs to make sure that

the condition of Corollary 6.5 is also met. Below, we will work explicitly with the transfer

function and dynamical system framework to establish these facts.

Theorem 6.21 (H2 Optimal Equivalency for Crank-Nicolson). Let H be the discrete-

time system generated from G using the Crank-Nicholson method. Let Hr be the reduced-

order discrete-time model generated from Gr, where Gr(s) satisfies the first-order necessary

conditions for H2 optimality with respect to G(s). Then Hr(z) satisfies the conditions defined

by Theorem 6.4. That is

H(1/λk) = Hd(1/λk), (6.110)

H ′(1/λk) = H ′d(1/λk), (6.111)

where λk, k = 1, · · · , r, are the eigenvalues of Ãd, closed under conjugation.

Proof. Following the same initial setup as with Theorem 6.19, we have the continuous-time

6.4. Extension of H2 Optimality 141

ROM given by (6.97) satisfying the first-order necessary conditions for H2 optimality and its

associated transfer function (6.98) with all the same properties. Applying the Crank-Nicolson

method from (6.56) to Gr yields a discrete-time dynamical system

Hr :


xn+1
r =

(
I−

(
h
2

)
Ar

)−1 (
I +

(
h
2

)
Ar

)
xnr + h

2

(
I−

(
h
2

)
Ar

)−1
br(u

n + un+1)

ynr = cTr xn
(6.112)

with the r dimensional rational transfer function

Hr(z) = cTr

[
zI−

(
I−

(
h
2

)
Ar

)−1 (
I +

(
h
2

)
Ar

)]−1 (
I−

(
h
2

)
Ar

)−1 (
I +

(
h
2

)
Ar

)
h
2
br(1 + z),

(6.113)

with poles at µk = 1+(h/2)λk
1−(h/2)λk

where λk ∈ λ(Ar). By Theorem 6.2, we have that for all

λk ∈ λ(Ar), (6.100) holds. Further, by Theorem 6.17, we have that

Gr(−λk) = Hr(
2−hλk
2+hλk

) G′r(−λk) = H ′r(
2−hλk
2+hλk

), (6.114)

and for the transfer function H(z) defined by (6.78)

G(−λk) = H(2−hλk
2+hλk

) and G′(−λk) = H ′(2−hλk
2+hλk

). (6.115)

Combining (6.100), (6.114), and (6.115) gives that

H(2−hλk
2+hλk

) = Hr(
2−hλk
2+hλk

) and H ′(2−hλk
2+hλk

) = H ′r(
2−hλk
2+hλk

). (6.116)

We now show that the interpolation points in (6.116) are equal to 1/µk, where µk are the

poles of Hr(z), which is required by Theorem 6.4 for Hr(z) to be an H2-optimal interpolation

142 Chapter 6. Analysis of Discrete Time Model Reduction

of H(z).

1

µk
=

1
1+(h/2)λk
1−(h/2)λk

=
1− (h/2)λk
1 + (h/2)λk

=
2− hλk
2 + hλk

(6.117)

Therefore, the Crank-Nicholson method preserves the conditions given in Theorem 6.4.

We note here that the Crank-Nicholson method produces a d term in the discrete-time

transfer function H(z). Specifically, when we look at the behavior of H(z) as z → ∞, we

see that H(z) 6→ 0. To show this fact, we first define a new transfer function F (z) by

F (z) = c̃T (zI− Ã)−1b̃ = cT
[
zI− (I− h

2
A)−1(I + h

2
A)
]−1

(I− h
2
A)h

2
b. (6.118)

We can write this function in pole-residue form as

F (z) =
n∑
k=1

φk
z − µk

, (6.119)

where µk are the poles of F and φk are the residues. Further, we see that the sum of the

residues is just cT b̃, as shown in [4, 67].

Proposition 6.22. When a continuous-time system G is discretized using the Crank-Nicholson

method the resulting transfer function H(z) contains a d term. In addition this term is given

by

d = cT b̃ (6.120)

where c̃T = cT and b̃ =
(
I− h

2
A
)−1 h

2
b.

6.4. Extension of H2 Optimality 143

Proof. Recall the transfer function for the Crank-Nicholson discretization is given by

H(z) = cT
(
zI−

(
I− h

2
A
)−1 (

I + h
2
A
))−1 (

I− h
2
A
)−1 h

2
b(1 + z),

= c̃T (zI− Ã)−1b̃(1 + z), (6.121)

where c̃T = cT and b̃ =
(
I− h

2
A
)−1 h

2
b. Now, we see that for any discrete-time transfer

function K(z) = cT (zI −A)−1b + d, we can find the d term by looking at the behavior of

K(z) at ∞ as seen by

lim
z→∞

K(z) = lim
z→∞

[cT (zI−A)−1b + d] = d. (6.122)

If the limit is 0, then there is no d term. Otherwise, the limit is the d term. From (6.118),

we have that H(z) = F (z)(1 + z) = F (z) + zF (z). Using the pole-residue form of F (z) and

taking the limit as z →∞ gives

lim
z→∞

H(z) = lim
z→∞

[F (z) + zF (z)]

= lim
z→∞

(
n∑
k=1

φk
z − µk

+
n∑
k=1

zφk
z − µk

)

=
n∑
k=1

φk

lim
z→∞

H(z) = cT b̃ (6.123)

So we have that d = cT b̃ and the result is shown.

Corollary 6.23. Let H and Hr be the stable discrete-time systems created by applying Crank-

Nicholson to the stable continuous-time systems G and Gr, respectively where Gr(s) satisfies

the first-order necessary conditions for H2 optimality with respect to G(s). Let F (z) be

defined as in (6.118) and similarly define Fr(z) for the system Hr. Then the following are

144 Chapter 6. Analysis of Discrete Time Model Reduction

true

1. Fr(z) satisfies the first order conditions for H2 optimality with respect to F (z).

2. Further, if Hr(z) has a pole at 0, then Hr(z) satisfies the first-order necessary condi-

tions for optimality given by Corollary 6.5 with respect to H(z).

Proof. Result 1

Since

lim
z→∞

F (z) = lim
z→∞

n∑
k=1

φk
z − µk

= 0, (6.124)

we need to satisfy the conditions in Theorem 6.4 that

F (1/µk) = Fr(1/µk) F ′(1/µk) = F ′r(1/µk), (6.125)

where µk are the poles of Fr(z) closed under conjugation. We note that the poles of

Hr(z) are the same as the poles of Fr(z). From Theorem 6.21, we have that H(1/µk) =

Hr(1/µk). Since Hr is stable, 0 < |µk| < 1. Then

H
(

1
µk

)
= Hr

(
1
µk

)
(6.126)

=⇒ F (1/µk) +
(

1
µk

)
F
(

1
µk

)
= Fr

(
1
µk

)
+
(

1
µk

)
Fr

(
1
µk

)
(6.127)

=⇒ F
(

1
µk

)(
1 + 1

µk

)
= Fr

(
1
µk

)(
1 + 1

µk

)
(6.128)

=⇒ F
(

1
µk

)
= Fr

(
1
µk

)
(6.129)

6.4. Extension of H2 Optimality 145

for all µk, the poles of F (z). Using this result and Theorem 6.21, we have

H ′
(

1
µk

)
= H ′r

(
1
µk

)
(6.130)

=⇒ F ′
(

1
µk

)
+ 1

µk
F ′
(

1
µk

)
+ F

(
1
µk

)
= F ′r

(
1
µk

)
+ 1

µk
F ′r

(
1
µk

)
+ Fr

(
1
µk

)
(6.131)

=⇒ F ′
(

1
µk

)(
1 + 1

µk

)
+ F

(
1
µk

)
= F ′r

(
1
µk

)(
1 + 1

µk

)
+ Fr

(
1
µk

)
(6.132)

=⇒ F ′
(

1
µk

)(
1 + 1

µk

)
= F ′r

(
1
µk

)(
1 + 1

µk

)
(6.133)

=⇒ F ′
(

1
µk

)
= F ′r

(
1
µk

)
(6.134)

The first-order necessary conditions for H2 optimality for Theorem 6.4 are satisfied by

(6.129) and (6.134) and the result is shown.

Result 2

First note that

lim
z→0

H(1/z) = lim
z→∞

H(z) = d. (6.135)

Let µk be the poles of Hr(z). From Theorem 6.21, we have H(1/µk) = Hr(1/µk). Since

Hr(z) has a pole at 0, we have that

lim
z→∞

H(z) = lim
z→∞

Hr(z). (6.136)

Applying Theorem 6.21 and the result in Equation (6.136), we satisfy the first-order

necessary conditions from Corollary 6.5.

At this point, we need to address whether or not there can be a pole of Hz(z) at 0. It turns

out that if we choose h correctly, then H(z) does indeed have a pole at 0.

Proposition 6.24. Let Gr be the continuous-time reduced-order system given by 6.4. If h

146 Chapter 6. Analysis of Discrete Time Model Reduction

is chosen such that there is an eigenvalue, λ, of Ar such that λ = − 2
h

, then the discrete-time

system Hr generated by applying Crank-Nicholson to Gr satisfies the first-order necessary

conditions for H2 optimality in Corollary 6.5.

Proof. Let Ãr =
(
I − h

2
Ar

)−1 (
I + h

2
Ar

)
. Then we can see that the poles of Hr(z) are the

eigenvalues of Ãr. Given the eigenvalues, λ, of Ar we can calculate the eigenvalues, µ, of Ãr

as follows

µ =
(
1− h

2
λ
)−1 (

1 + h
2
λ
)

(6.137)

Suppose that λ = −h
2

for some eigenvalue of Ar. Then

µ =
(
1− h

2

(
− 2
h

))−1 (
1 + h

2

(
− 2
h

))
, (6.138)

=
1− 1

1 + 1
, (6.139)

= 0. (6.140)

Therefore, in this case, there is a zero pole of Hr(z) and the result follows directly from

Corollary 6.23.

To conclude this section, we look at the optimality preservation given by Carlberg et al. [26].

We note that the optimality in [26] refers to the least-squares optimality tailored toward

approximating an observed trajectory and is input-dependent. In [26], the focus is on showing

when the discretized optimal least-squares Galerkin projection, i.e. POD, is equivalent to the

optimal least-squares Petrov-Galerkin projection performed on the discretized system. For

our research, both the continuous-time and discrete-time H2-optimal projections are Petrov-

Galerkin projections, and we show the conditions under which our input-independent H2-

optimality conditions are preserved for linear dynamical systems. This optimality condition

is in terms of the transfer function and is valid for any bounded input. Carlberg et al. [26]

6.5. Numerical Results 147

showed that to preserve the least-squares optimality when discretizing the system, there

are certain restrictions on the continuous-time system or the discretization scheme. They

demonstrated that for linear systems, any multi-step method will preserve the least-squares

optimality. For nonlinear systems discretized using a multi-step scheme, Carlberg et al. [26]

show that all single-step methods and explicit higher order methods preserve the least-squares

optimality. In our setting, for H2-optimality conditions to be preserved, we found that we

needed a method that would provide a conformal map from the left half of the complex plane

to the unit disk. We then had to control the time step h in order to match the behavior of

the constant d term. In analogy, this is in direct agreement with [26] where it was shown

that to decrease the error for the least-squares Petrov-Galerking ROM, the time step should

be matched to the spectral content of the reduced basis. The important information here is

that in order to maintain optimality in a ROM, one must be cautious in how the resulting

time-dependent ODE system is solved. Regardless of the reduction technique chosen, the

effectiveness of that technique, with respect to the goals of the reduced-order model, can be

reduced by a poor choice of the time-discretization scheme.

6.5 Numerical Results

To investigate the relationships from the previous section, we ran several tests to numerically

verify the theorems. We studied two separate linear dynamical systems; the 1D heat equation

with boundary control and a flex control system from the international space station.

We demonstrate the Crank-Nicolson method does indeed preserve the Hermite interpolation

of the full-order transfer function regardless of whether the Crank-Nicolson method dis-

cretization is applied to the continuous-time ROM or the ROM is built from the full-order

Crank-Nicolson method discretization. Further we show the forward and backward Euler

148 Chapter 6. Analysis of Discrete Time Model Reduction

Table 6.1: Relative error between Hr(1/µk) and H(1/µk) where µk are the poles of the
discrete time transfer function Hr(z)

Relative Error

Heat Equation Heat Equation ISS12A
Method (r = 6) (r = 10) (r = 40)

Forward Euler 4.4433e-06 1.5256e-02 1.3726e-01
Backward Euler 1.2598e-06 2.8978e-09 5.0455e-03
Crank-Nicolson 2.4769e-13 2.2393e-13 4.5262e-10

methods do not preserve this Hermite interpolation. However, while not H2 optimal, these

methods may still provide an adequate approximation for the system.

6.5.1 1D Heat Equation

For this test, we examined the 1D heat equation on the spatial domain Ω = [0, 1], and time

domain t ∈ [0, 10]. The PDE model describes the temperature T over the domain as follows

∂θ(t, x)

∂t
= α

∂2θ(t, x)

∂x2
, (6.141)

θ(t, 0) = 0, (6.142)

θ(t, 1) = u(t), (6.143)

θ(0, x) = θ0(x), (6.144)

where x ∈ Ω, θ0(x) is the initial state, there is a zero Dirichlet boundary condition at x = 0,

and there is a Dirichlet input u(t) at x = 1. The thermal diffusivity constant was set to

α = 0.02.

Further, we define the output to be the value of θ at x = 0.5

y(t) = θ(t, 0.5). (6.145)

6.5. Numerical Results 149

Re
-3 -2 -1 0 1 2 3

Im

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Forward Euler

T(-λ)
1/µ

(a) Forward Euler

Re
-3 -2 -1 0 1 2 3

Im

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Backward Euler

T(-λ)
1/µ

(b) Backward Euler

Re
-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Crank-Nicolson

T(-λ)
1/µ

(c) Crank-Nicolson

Figure 6.3: Plot T (−λk) and 1/µk for the reduced heat equation model.

Applying a finite element discretization to the spatial domain, we obtained a SISO linear

dynamical system G as in (6.61). We then used an H2-optimal IRKA to produce the r-

dimensional ROM Gr. Each of the time-discretization methods was applied to Gr and G

producing Hr and H, respectively. By a common abuse of notation, we will refer to the

dynamical system that each transfer function represents by the same letter, e.g. G(s) is the

transfer function for the dynamical system G.

Frequency (rad/s)
10

-1
10

0
10

1
10

2

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

-250

-200

-150

-100

-50

0
Bode Plot

G(s)
G

r
(s)

Figure 6.4: Heat equation Bode plot comparing the FOM and ROM

One method for looking at the complexity of the underlying model is to examine the Bode

plot which gives the frequency response of the transfer function along the imaginary axis.

Figure 6.4 gives a Bode plot for the various transfer functions associated with the heat

150 Chapter 6. Analysis of Discrete Time Model Reduction

equation. We see that the response curve is fairly simple. We will contrast this later with

the flex control system model for the ISS12A module.

Since Gr is an H2-optimal ROM for G, Gr(s) is a Hermite interpolant of G(s) at −λk,

k = 1, . . . , r where λk are the poles of Gr(s). From Theorems 6.15, 6.16, and 6.17, we know

that the following relationship holds for each of the discretization methods

Hr(T (−λ)) = Gr(−λ) = G(−λ) = H(T (−λ)), (6.146)

H ′r(T (−λ)) = G′r(−λ) = G′(−λ) = H ′(T (−λ)), (6.147)

where T : S → Z as given by (6.67), (6.74), or (6.81) depending on the time-discretization

method used. However, for Hr to be an H2-optimal reduced-order model for H, then Hr(z)

must be a Hermite interpolant of H(z) at 1
µk

, k = 1, . . . , r where µk are the poles of Hr(z).

Our first test is to see if

T (−λk) =
1

µk
(6.148)

for k = 1, . . . , r since (6.146)-(6.147) would imply that Hr is an H2-optimal ROM for H. It

is clear from Figure 6.3, that (6.148) holds for the Crank-Nicolson method, but not for the

forward or backward Euler methods. This supports the theory from Section 6.4.

Even though (6.148) did not hold, we were still interested in whether or not the Hermite

interpolation would still hold. The error between Hr(
1
µ
) and H(1

µ
) is shown in Table 6.2. We

see that the error for the Crank-Nicolson method is effectively machine precision for the heat

equation, whereas Hr(
1
µ
) and H(1

µ
) do not match for the Euler methods. Further, Figure 6.5

illustrates how the value at the optimal interpolation points for the full and reduced-order

discrete-time systems generated using the Crank-Nicolson method are essentially equal and

all lie on the real axis, but for the Euler methods, some of the evaluations of the transfer

function are even off the real axis.

6.5. Numerical Results 151

Re

-3 -2 -1 0 1 2 3

Im

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Forward Euler

H
r
 1/µ

H
d
 1/µ

(a) Forward Euler

Re

-3 -2 -1 0 1 2 3
Im

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Backward Euler

H
r
 1/µ

H
d
 1/µ

(b) Backward Euler

Re

-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Crank-Nicolson

H
r
 1/µ

H
d
 1/µ

(c) Crank-Nicolson

Figure 6.6: Plot 1/µk from Hr(z) and Hd(z) for the heat equation model.

Next, we created an H2-optimal ROM, Hd, using the discrete time version of IRKA. We

evaluated whether or not the H2-optimal interpolation points from Hr(z) matched the H2-

optimal interpolation points from Hd(z). Figure 6.6 again supports the theory that these

points match when using the Crank-Nicolson method, but do not when using the other two

methods.

h d dd Relative Error

0.25748 5.7409030610182e-05 5.7409030610183e-05 1.794129e-14
0.05000 2.0851634758729e-10 1.5674850145348e-10 2.482676e-01

Table 6.2: Relative error between d and dr for the heat equation.

Finally, we numerically validated the optimality conditions from Corollary 6.23 and Propo-

sition 6.22 for the 1D heat equation when discretizing the system using Crank-Nicholson.

For the continuous-time reduced-order model Gr with size r = 10, there was a real eigen-

value of Ar at λ ≈ −7.767. Proposition 6.22 suggests that if we select h = −2/λ for

some eigenvalue of Ar then we should have a zero pole in Hr(z). Indeed, when we selected

h = −2/λ ≈ 0.25748, there is a pole of Hr(z) at zero. We then selected h = 0.05 since there

are no eigenvalues lambda of Ar close to λ = −2/h. In Table 6.2, we compare the dr terms

for the reduced order discrete-time systems Hr to the d terms for the full-order discrete-time

152 Chapter 6. Analysis of Discrete Time Model Reduction

systems H. As can be seen, by choosing the h appropriately, we are able to match d terms

within machine precision. When we do not select the h according to the eigenvalues of Ar,

then we do not match the d terms.

6.5.2 International Space Station Control (ISS12A)

The International Space Station (ISS) is a complex structure made up of several subassembly

modules that were brought to space over the course of several missions of the Space Shuttle.

The ISS Assembly Mission 12A brought, among other items, the second port truss segment.

The flex of this module is tracked by 1412 states. [4] We focused on a single output and

single out to the control system for this module. We will refer to this control system as the

ISS12A model.

Frequency (rad/s)
10

-1
10

0
10

1
10

2

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

-100

-90

-80

-70

-60

-50

-40
Bode Plot

G(s)
G

r
(s)

Figure 6.7: ISS12A Bode plot comparing the FOM and ROM

This model is much more challenging to discretize in time and reduce than the heat equation

modeled earlier. First, the eigenvalues of the system are complex and close to the imaginary

axis. Thus, the system is much more susceptible to perturbations than the heat equation.

Further, since the eigenvalues are relatively large and close to the imaginary axis, the time

step size required for the Forward Euler method to create a stable discrete-time model is be

6.5. Numerical Results 153

prohibitively small to create a stable discrete-time model. Also, as seen in 6.7, the frequency

response for the transfer function of the ISS12A is much more complex than the heat equation

model as seen in 6.4.

Re
-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Forward Euler

T(-λ)
1/µ

(a) Forward Euler

Re
-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Backward Euler

T(-λ)
1/µ

(b) Backward Euler

Re
-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Crank-Nicolson

T(-λ)
1/µ

(c) Crank-Nicolson

Figure 6.8: Plot T (−λk) and 1/µk for the ISS12A space station model.

We followed the same series of tests for this model as we did for the heat model. In particular,

we looked to see if Equation (6.148) was true for k = 1, . . . , r since (6.146)-(6.147) would

imply that Hr is an H2-optimal ROM for H. We can see in Figure 6.8, that the Crank-

Nicolson method provides a good match, whereas for the other two methods 1/µk and T (−λk)

are not a good match at all. In fact, they are much worse than we saw with the heat equation.

This has to to with the fact that T for the Crank-Nicolson method maps the imaginary axis

to the unit circle.

As with the heat equation, we are interested in whether or not Hr(z) is a Hermite interpolant

of H(z) at the optimal points 1/µk where µk are the poles of Hr(z). We see in Table 6.2,

that, as with the heat equation, the Crank-Nicolson matches the function values at the

interpolation points much better.

154 Chapter 6. Analysis of Discrete Time Model Reduction

k

0 5 10 15 20 25 30 35 40

E
rr

o
r

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Absolute Errors between H(1/µ
k
) and H

r
(1/µ

k
)

Crank-Nicolson

Fwd Euler

Bkwd Euler

Figure 6.9: Absolute error between H(1/µk) and Hr(1/µk) for the ISS12A control system.

Further, when looking at the absolute errors at each interpolation point in Figure 6.9, we

see that the error for the Crank-Nicolson method at each point is close to machine epsilon

(1 × 10−16) for almost all the interpolation points. However, for the other two methods,

the error is several magnitudes higher. We can see how these differ for the Crank-Nicolson

method and Forward Euler method in Figure 6.10. There is a pronounced shift in the values

between the two transfer functions at the interpolation points for the Forward Euler method.

In contrast, for the Crank-Nicolson method, the function values are visibly identical.

Re
×10

-3

-1.5 -1 -0.5 0 0.5 1 1.5

Im

×10
-3

-1.5

-1

-0.5

0

0.5

1

1.5
Forward Euler

H(1/µ)
H

r
(1/µ)

(a) Forward Euler

Re
×10

-3

-4 -2 0 2 4

Im

×10
-3

-4

-3

-2

-1

0

1

2

3

4
Crank-Nicolson

H(1/µ)
H

r
(1/µ)

(b) Crank-Nicolson

Figure 6.10: Plot of Hr(1/µk) and H(1/µk) for ISS12A, where µk are the poles of Hr(z)

6.5. Numerical Results 155

Finally, we created an H2-optimal reduced-order model from the full-order discrete-time sys-

tem and compared its transfer function Hd(z) to the transfer function from the discrete-time

system built from the Htw-optimal continuous-time reduced-order model, Hr(z). Specifi-

cally, we looked at the optimal interpolation points, 1/µk, for each discrete-time ROM, where

µk are the k = 1, . . . , r poles of the ROM transfer functions.

Re

-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Forward Euler

H
r
 1/µ

H
d
 1/µ

(a) Forward Euler

Re

-2 -1 0 1 2

Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Backward Euler

H
r
 1/µ

H
d
 1/µ

(b) Backward Euler

Re

-2 -1 0 1 2
Im

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Crank-Nicolson

H
r
 1/µ

H
d
 1/µ

(c) Crank-Nicolson

Figure 6.11: Plot 1/µk from Hr(z) and Hd(z) for the ISS12A space station model.

In Figure 6.11, we plot these optimal points for each method, comparing how changing the

order of reducing the model and discretizing in time affects the optimal interpolation points.

For the Crank-Nicolson method, the order does not matter, but for the Euler methods,

switching the order has a significant impact on the positioning of the interpolation points.

6.5.3 Summary

We see that numerical results support the theory presented in 6.19, 6.19, and 6.21. For the

Crank-Nicolson method we have seen that both branches in Figure 6.1 are equivalent. We

have also seen that care must be taken when choosing discretization methods to apply to

the H2-optimal continuous-time ROM, because the method chosen may remove the first-

order necessary conditions needed for H2 optimality of the fully discretized model. We have

156 Chapter 6. Analysis of Discrete Time Model Reduction

focused on single-step methods in this chapter, but there may be extensions to higher order

methods that should be investigated in the future.

6.5. Numerical Results 157

Re
-0.04 -0.02 0 0.02 0.04

Im

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Forward Euler

H(1/µ)
H

r
(1/µ)

(a) Forward Euler

Re
-0.04 -0.02 0 0.02 0.04

Im

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Crank-Nicolson

H(1/µ)
H

r
(1/µ)

(b) Crank-Nicolson

Figure 6.5: Plot of Hr(1/µk) and H(1/µk) for the heat equation, where µk are the poles of
Hr(z). Plots zoomed to show details near origin.

Chapter 7

Conclusions and Future Research

In this dissertation, we studied and developed reduced-order modeling techniques leading

towards an effective model reduction of fire models. While there is still research to be done

in this area, this research yielded several new techniques and mathematical ideas for model

reduction. In particular, we developed a new method for providing model reduction of a

system without needing sample data sets. We showed that by combining DEIM with POD

for wildland fire models, we could significantly improve performance of the reduced-order

models. We examined the time-discretization of time-dependent ODE models and showed

when the first-order necessary conditions for H2-optimality of the reduced-order model were

preserved in the associated discrete-time system and when they were not.

7.1 Conclusions

We began by giving an overview of the mathematical models and model reduction techniques

that are used throughout the dissertation. We came back to our initial mathematical model

of a fire throughout the discussion to show how each of these techniques were connected back

158

7.1. Conclusions 159

to that model. From this seminal effort, we contributed three major advancements leading

to model reduction for fire-related models.

Our first contribution was in the development of the IRKA V⊕W method. We showed that

given certain nonlinear systems, we could ignore the nonlinear portion of the system when

building the reduced-order model, and still perform better than POD. This is remarkable

since the POD method requires that full-order data snapshots are created a priori, which

can be expensive. However, for this method, we only require the dynamical system, i.e. no

data snapshots are needed. This significantly reduces the off-line costs. Further, since there

is no dependency on a specific set of data, this method performs much better over a wider

range of input conditions. This is an especially effective technique to provide an input to

output map for a nonlinear dynamical system (2.17), as we would use in a control system or

as a detail node in a network model.

The second major contribution is in improving the numerical computation times for wildland

fire-spread models. By using Q-DEIM on these models, we were able to reduce the compu-

tation times by an order of magnitude over POD models and by 2-3 orders of magnitude

over full-order models, while still providing high-fidelity output results. In our research, the

error associated with the POD/Q-DEIM reduced-order models were typically as accurate as

the POD models of the same size. This is a significant development in the field of wildland

fire modeling.

Finally, we have proved that the Crank-Nicolson method for time-discretization of an ODE

model preserves the first-order necessary conditions for H2-optimality and thus ensures that

the fully-discretized reduced-order model retains the property of being at least a local mini-

mum with respect to the H2 norm. Further, we proved that the forward and backward Euler

methods do not preserve this property. This is crucial information when attempting to solve

a reduced-order model developed using IRKA. It specifically says that you should not use

160 Chapter 7. Conclusions and Future Research

the forward or backward Euler method to solve a ROM that was created using IRKA, rather

the Crank-Nicholson method should be used.

7.2 Future Work

We have identified four major areas that should be explored in the near future: 1) fur-

ther testing of IRKA V⊕W, 2) adding combustion to the current reduced-order plume-fire

models, 3) extending the wildland fire-spread models to include two-dimensional domains

and variable initial fuel conditions, and 4) extending the work on discrete-time systems to

identify other methods that preserve the first-order necessary conditions for H2 optimality.

For the IRKA V⊕W technique, we have currently only tested this against the Burgers’

equation. There needs to be continued research to determine to what larger class of problems

this method can be extended. Further, while in general we know that this method performs

best when the number of V and W vectors are balanced, we would like to determine a

specific criteria that determines the number of vectors from V and W that should be used.

To continue to improve the plume-fire models, we need to incorporate the combustion terms.

As discussed in the background section, this requires the tracking of lumped species and

the determination of whether or not the fuel-air concentration is sufficient for combustion

to take place. Since, this behavior is localized to each cell, it is difficult to replicate at the

ROM level.

We plan to couple the species together to preserve the property that all the species must

sum to one. Recalling the fire-model equations for species transport (2.4)-(2.6), the full-order

solutions have the following property

ZA(x, t) + ZF (x, t) + ZP (x, t) = 1, (7.1)

7.2. Future Work 161

for all t ∈ [0, tf] and x ∈ Ω for the domain Ω. We would like to preserve this property in the

ROM. Using the method described in Section 2.3.3, we first calculate the mean of the data

snapshots, Z̄A, Z̄F , and ĀP , for the mass fractions of air, fuel, and products, respectively, as

given by

Z̄A(x) =
1

N

N∑
k=1

ZA(x, tk), (7.2)

Z̄F (x) =
1

N

N∑
k=1

ZF (x, tk), (7.3)

Z̄P (x) =
1

N

N∑
k=1

ZP (x, tk), (7.4)

where 0 = t1, t2, . . . , tN = tf are the N evenly distributed time steps from 0 to tf where the

data snapshots are captured. We see that the mean values preserve the property given in

(7.1).

Z̄A(x) + Z̄F (x) + Z̄P (x) =
1

N

N∑
k=1

ZA(x, tk) +
1

N

N∑
k=1

ZF (x, tk) +
1

N

N∑
k=1

ZP (x, tk), (7.5)

=
1

N

N∑
k=1

(ZA(x, tk) + ZF (x, tk) + ZP (x, tk)) , (7.6)

=
1

N

N∑
k=1

1 = 1. (7.7)

Now, we can define our variable of interest as the deviation from the mean for each of the

species by

ẐA(x, t) = ZA(x, t)− Z̄A(x), (7.8)

ẐF (x, t) = ZF (x, t)− Z̄F (x), (7.9)

ẐP (x, t) = ZP (x, t)− Z̄P (x), (7.10)

162 Chapter 7. Conclusions and Future Research

The sum of the deviations for t = [0, tf] must then be zero as seen by

ẐA(x, t) + ẐF (x, t) + ẐP (x, t) = [ZA(x, t)− Z̄A(x)] + [ZF (x, t)− Z̄F (x)] + [ZP (x, t)− Z̄P (x)],

= ZA(x, t) + ZF (x, t) + ZP (x, t)− [Z̄A(x) + Z̄F (x) + Z̄P (x)],

= 1− 1 = 0. (7.11)

Let Ẑ(x, t) = [ẐA(x, t), ẐF (x, t), ẐP (x, t)]T . We then define the associated 3r-dimensional

POD basis as Φ(x) = [φ(A)(x), φ(F)(x), φ(P)(x)]T . This leads to the approximation

Ẑ(x, t) ≈ Ẑr(x, t) =
r∑
i=1

Φi(x)ηi(t). (7.12)

Since the POD basis preserves the linearity properties, we are guaranteed to maintain the

zero property given in (7.11) in the ROM. This, in turn, ensures that the sum of the species

created using the ROM will sum to one. Additionally, we are investigating methods to ensure

positive solutions for all species. We currently believe that by restricting the coefficients to

a certain manifold, we can ensure that the solutions will remain positive. By combining

these two techniques, we should be able to ensure that the mass fraction of each species will

remain between zero and one. Once the species is in the correct band, we will be able to

implement the combustion. We note that the nonlinear behavior associated with combustion

is no longer quadratic. Therefore, we must look to other techniques, such as Q-DEIM, to

keep the computation times from growing to an impractical level.

With the significant improvements to the reduced-order wildland fire-spread model compu-

tation times, we seek to extend the research in a few specific ways. First we will extend our

research to two-dimensional models. Next, we will investigate methods to handle discontinu-

ous fuel and geographic properties. This may require “stitching” several models together at

the boundaries. In practical terms, these conditions could occur when transitioning between

7.2. Future Work 163

fuel sources, such as moving from fields to forests, or across geographic formations such

as cliffs or mountains. By creating several ROMs specifically tailored to handling certain

fuel loadings and geographic conditions, we could piece them together to simulate a larger

domain.

We have shown that the Crank-Nicholson method preserves the first-order necessary condi-

tions for H2 optimality. However, there may be times when we need to use a method with

better convergence properties. We will extend our current research to see what other meth-

ods may also preserve the first-order Necessary conditions. Specifically, we will investigate

other multi-step methods and Runge-Kutta methods to see when those methods preserve

the first-order necessary conditions for H2 optimality.

Bibliography

[1] A. S. Ackleh, E. J. Allen, R. B. Kearfott, and P. Seshaiyer. Classical and Modern

Numerical Analysis: Theory, Methods and Practice. CRC Press, 2009.

[2] S. S. An, T. Kim, and D. L. James. Optimizing cubature for efficient integration of

subspace deformations. In ACM Transactions on Graphics (TOG), volume 27, page

165. ACM, 2008.

[3] H. Antil, M. Heinkenschloss, and D. C. Sorensen. Application of the discrete empirical

interpolation method to reduced order modeling of nonlinear and parametric systems.

In Reduced Order Methods for Modeling and Computational Reduction, pages 101–136.

Springer, 2014.

[4] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems (Advances in Design

and Control). SIAM, 2005.

[5] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction methods

for large-scale systems. Contemporary Mathematics, 280:193–220, 2001.

[6] A. C. Antoulas, C. A. Beattie, and S. Gugercin. Interpolatory model reduction of large-

scale dynamical systems. In Efficient Modeling and Control of Large-Scale Systems,

pages 3–58. Springer, 2010.

164

BIBLIOGRAPHY 165

[7] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models

described by proper orthogonal decomposition. Automatic Control, IEEE Transactions

on, 53(10):2237–2251, 2008.

[8] J. A. Atwell. Proper Orthogonal Decomposition for Reduced Order Control of Partial

Differential Equations. PhD thesis, Virginia Polytechnic Institute and State University,

2000.

[9] J. A. Atwell and B. B. King. Reduced order controllers for spatially distributed systems

via proper orthogonal decomposition. 1999.

[10] Z. Bai and D. Skoogh. A projection method for model reduction of bilinear dynamical

systems. Linear Algebra and its Applications, 415(2):406–425, 2006.

[11] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical interpola-

tion’ method: Application to efficient reduced-basis discretization of partial differential

equations. Comptes Rendus Mathematique, 339(9):667–672, 2004.

[12] U. Baur, C. Beattie, P. Benner, and S. Gugercin. Interpolatory projection methods for

parameterized model reduction. SIAM Journal on Scientific Computing, 33(5):2489–

2518, 2011.

[13] U. Baur, P. Benner, and L. Feng. Model order reduction for linear and nonlinear systems:

A system-theoretic perspective. Archives of Computational Methods in Engineering, 21

(4):331–358, 2014.

[14] P. Benner and T. Breiten. Interpolation-based H2 model reduction of bilinear control

systems. SIAM Journal on Matrix Analysis and Applications, 33(3):859–885, 2012.

[15] P. Benner and T. Breiten. Two-sided projection methods for nonlinear model order

reduction. SIAM Journal on Scientific Computing, 37(2):B239–B260, 2015.

166 BIBLIOGRAPHY

[16] P. Benner and P. Goyal. Algebraic Gramians for quadratic-bilinear systems and their

application in model order reduction. In Proceedings of the 22nd International Sympo-

sium on Mathematical Theory of Networks and Systems, 2016.

[17] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction

methods for parametric dynamical systems. SIAM Review, 57(4):483–531, 2015.

[18] G. Berkooz, P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in the

analysis of turbulent flows. Annual Review of Fluid Mechanics, 25(1):539–575, 1993.

[19] R. Bos, X. Bombois, and P. Van den Hof. Accelerating large-scale non-linear models for

monitoring and control using spatial and temporal correlations. In American Control

Conference, 2004. Proceedings of the 2004, volume 4, pages 3705–3710. IEEE, 2004.

[20] D. J. Brake. Fire modelling in underground mines using Ventsim Visual VentFIRE

Software. Australian Mine Ventilation Conference/Adelaide, SA, Australia, 2013.

[21] T. Breiten and T. Damm. Krylov subspace methods for model order reduction of bilinear

control systems. Systems & Control Letters, 59(8):443–450, 2010.

[22] A. Bunse-Gerstner, D. Kubalińska, G. Vossen, and D. Wilczek. H2-norm optimal model

reduction for large scale discrete dynamical MIMO systems. Journal of Computational

and Applied Mathematics, 233(5):1202–1216, 2010.

[23] M. Şuvar, D. Cioclea, I. Gherghe, and V. Păsculescu. Advanced software for mine

ventilation networks solving. Environmental Engineering and Management Journal, 11

(7):1235–1239, 2012.

[24] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via

a least-squares Petrov–Galerkin projection and compressive tensor approximations. In-

ternational Journal for Numerical Methods in Engineering, 86(2):155–181, 2011.

BIBLIOGRAPHY 167

[25] K. Carlberg, J. Cortial, C. Farhat, and D. Amsallem. The GNAT nonlinear model-

reduction method with application to large-scale turbulent flows. Technical report,

Sandia National Laboratories (SNL-CA), Livermore, CA (United States), 2013.

[26] K. Carlberg, M. Barone, and H. Antil. Galerkin v. discrete-optimal projection in non-

linear model reduction. arXiv preprint arXiv:1504.03749, 2015.

[27] S. Chaturantabut and D. C. Sorensen. Discrete empirical interpolation for nonlinear

model reduction. In Decision and Control, 2009 held jointly with the 2009 28th Chinese

Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on,

pages 4316–4321. IEEE, 2009.

[28] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical

interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[29] S. Chaturantabut, C. Beattie, and S. Gugercin. Structure-preserving model reduction

for nonlinear port-Hamiltonian systems. arXiv preprint arXiv:1601.00527, 2016.

[30] L. H. Cheng, T. H. Ueng, and C. W. Liu. Simulation of ventilation and fire in the

underground facilities. Fire Safety Journal, 36(6):597–619, Sept. 2001.

[31] A. J. Chorin, J. E. Marsden, and J. E. Marsden. A Mathematical Introduction to Fluid

Mechanics, volume 3. Springer, 1990.

[32] R. Curtain and K. Morris. Transfer functions of distributed parameter systems: A

tutorial. Automatica, 45(5):1101–1116, May 2009.

[33] R. F. Curtain and H. Zwart. An Introduction to Infinite-Dimensional Linear Systems

Theory, volume 21. Springer, 1995.

[34] C. de Villemagne and R. E. Skelton. Model reductions using a projection formulation.

International Journal of Control, 46(6):2141–2169, 1987.

168 BIBLIOGRAPHY

[35] Z. Drmac and S. Gugercin. A new selection operator for the discrete empirical in-

terpolation method–improved a priori error bound and extensions. arXiv preprint

arXiv:1505.00370, 2015.

[36] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approximation for

nonlinear parametrized evolution equations based on empirical operator interpolation.

SIAM Journal on Scientific Computing, 34(2):A937–A969, 2012.

[37] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative

Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press,

2014.

[38] R. Everson and L. Sirovich. Karhunen–Loeve procedure for gappy data. JOSA A, 12

(8):1657–1664, 1995.

[39] G. Flagg and S. Gugercin. Multipoint Volterra series interpolation and H2 optimal

model reduction of bilinear systems. SIAM Journal on Matrix Analysis and Applica-

tions, 36(2):549–579, 2015.

[40] F. J. Flanigan. Complex Variables: Harmonic and Analytic Functions. Courier Corpo-

ration, 1972.

[41] D. Gaier. Lectures on Complex Approximation. Springer, 1987.

[42] W. Gautschi. Numerical analysis. Springer Science & Business Media, 2011.

[43] B. Gebhart, Y. Jaluria, R. L. Mahajan, and B. Sammakia. Buoyancy-Induced Flows

and Transport. 1988.

[44] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University

Press, 1996.

BIBLIOGRAPHY 169

[45] M. Green and D. J. N. Limebeer. Linear Robust Control. Courier Corporation, 2012.

[46] E. J. Grimme. Krylov Projection Methods for Model Reduction. PhD thesis, Citeseer,

1997.

[47] C. Gu. Model Order Reduction of Nonlinear Dynamical Systems. PhD thesis, University

of California, Berkeley, 2011.

[48] C. Gu. QLMOR: A projection-based nonlinear model order reduction approach using

quadratic-linear representation of nonlinear systems. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 30(9):1307–1320, 2011.

[49] E. Guelpa, A. Sciacovelli, V. Verda, and D. Ascoli. Model reduction approach for wildfire

multi-scenario analysis. Parte: http://hdl. handle. net/10316.2/34013, 2014.

[50] S. Gugercin. Projection Methods for Model Reduction of Large-Scale Dynamical Systems.

Thesis, Rice University, 2003.

[51] S. Gugercin and A. C. Antoulas. A comparative study of 7 algorithms for model re-

duction. In Decision and Control, 2000. Proceedings of the 39th IEEE Conference on,

volume 3, pages 2367–2372, 2000.

[52] S. Gugercin, C. Beattie, and A. C. Antoulas. Rational Krylov methods for optimal H2

model reduction. ICAM Technical Report, 2006.

[53] S. Gugercin, A. C. Antoulas, and C. Beattie. H2 model reduction for large-scale linear

dynamical systems. SIAM Journal on Matrix Analysis and Applications, 30(2):609–638,

2008.

[54] S. Gugercin, T. Stykel, and S. Wyatt. Model reduction of descriptor systems by interpo-

latory projection methods. SIAM Journal on Scientific Computing, 35(5):B1010–B1033,

2013.

170 BIBLIOGRAPHY

[55] M. D. Gunzburger. Finite Element Methods for Viscous Incompressible Flows: A Guide

to Theory, Practice, and Algorithms. Elsevier, 2012.

[56] A. Hay, J. T. Borggaard, and D. Pelletier. Local improvements to reduced-order models

using sensitivity analysis of the proper orthogonal decomposition. Journal of Fluid

Mechanics, 629:41–72, 2009.

[57] A. Hay, I. Akhtar, and J. T. Borggaard. On the use of sensitivity analysis in model

reduction to predict flows for varying inflow conditions. International Journal for Nu-

merical Methods in Fluids, 68(1):122–134, 2012.

[58] F. Incropera and D. DeWitt. Introduction to Heat Transfer. 1985.

[59] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element

Method. Courier Corporation, 2012.

[60] G. Kerschen and J.-C. Golinval. Physical interpretation of the proper orthogonal modes

using the singular value decomposition. Journal of Sound and Vibration, 249(5):849–

865, 2002.

[61] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,

51(3):455–500, 2009.

[62] B. Krämer. Model Reduction of the Coupled Burgers Equation in Conservation Form.

PhD thesis, Virginia Polytechnic Institute and State University, 2011.

[63] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for

parabolic problems. Numerische Mathematik, 90(1):117–148, 2001.

[64] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for

a general equation in fluid dynamics. SIAM Journal on Numerical analysis, 40(2):

492–515, 2002.

BIBLIOGRAPHY 171

[65] W. Layton. Introduction to the Numerical Analysis of Incompressible Viscous Flows,

volume 6. SIAM, 2008.

[66] P. A. LeGresley. Application of Proper Orthogonal Decomposition (POD) to Design

Decomposition Methods. PhD thesis, Citeseer, 2005.

[67] J. Leyva-Ramos. Partial-fraction expansion in system analysis. International Journal

of Control, 53(3):619–639, 1991.

[68] I. S. Lowndes, S. A. Silvester, D. Giddings, S. Pickering, A. Hassan, and E. Lester. The

computational modelling of flame spread along a conveyor belt. Fire Safety Journal, 42

(1):51–67, Feb. 2007.

[69] J. L. Lumley. The structure of inhomogeneous turbulent flows. Atmospheric Turbulence

and Radio Wave Propagation, pages 166–178, 1967.

[70] H. V. Ly and H. T. Tran. Modeling and control of physical processes using proper

orthogonal decomposition. Mathematical and Computer Modelling, 33(1):223–236, 2001.

[71] J. Mandel, L. S. Bennethum, J. D. Beezley, J. L. Coen, C. C. Douglas, M. Kim, and

A. Vodacek. A wildland fire model with data assimilation. Mathematics and Computers

in Simulation, 79(3):584–606, 2008.

[72] J. Mandel, J. D. Beezley, J. L. Coen, and M. Kim. Data assimilation for wildland fires.

Control Systems, IEEE, 29(3):47–65, 2009.

[73] J. E. Marsden and M. J. Hoffman. Basic Complex Analysis. Macmillan, 1999.

[74] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt.

Fire dynamics simulator (version 6), technical reference guide. NIST Special Publication,

1018-1(6), 2015.

172 BIBLIOGRAPHY

[75] K. B. McGrattan and G. P. Forney. Fire Dynamics Simulator: User’s Manual. US

Department of Commerce, Technology Administration, National Institute of Standards

and Technology, 2000.

[76] L. Meier III and D. G. Luenberger. Approximation of linear constant systems. Automatic

Control, IEEE Transactions on, 12(5):585–588, 1967.

[77] R. E. Meyer. Introduction to Mathematical Fluid Dynamics, volume 24. Courier Cor-

poration, 1971.

[78] R. K. Miller and A. N. Michel. Ordinary Differential Equations. Courier Dover Publi-

cations, Nov. 2007. ISBN 978-0-486-46248-6.

[79] M. Molla and M. M. A. Sarker. Natural convection flow in a square cavity with temper-

ature dependent heat generation. In Proceedings of the 3rd BSME-ASME International

Conference on Thermal Engineering, December, volume 20, page 22, 2006.

[80] B. C. Moore. Principal component analysis in linear systems: Controllability, observ-

ability, and model reduction. Automatic Control, IEEE Transactions on, 26(1):17–32,

1981.

[81] C. T. Mullis and R. Roberts. Synthesis of minimum roundoff noise fixed point digital

filters. Circuits and Systems, IEEE Transactions on, 23(9):551–562, 1976.

[82] M. Renardy and R. C. Rogers. An Introduction to Partial Differential Equations, vol-

ume 13. Springer Science & Business Media, 2006.

[83] W. J. Rugh. Mathematical Description of Linear Systems. M. Dekker, 1975.

[84] A. Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra

and its Applications, 58:391–405, 1984.

BIBLIOGRAPHY 173

[85] B. R. Sharma, M. Kumar, and K. Cohen. Spatio-temporal estimation of wildfire growth.

In ASME 2013 Dynamic Systems and Control Conference, pages V002T25A005–

V002T25A005. American Society of Mechanical Engineers, 2013.

[86] A. Sinha. Linear Systems: Optimal and Robust Control. CRC Press, 2007.

[87] N. K. Sinha. Linear Systems. Wiley, New York, 1991. ISBN 978-0-471-62341-0.

[88] C. Solnordal, P. Witt, M. Prakash, P. Liovic, K. Tanguturi, and R. Balusu. CFD

modeling of methane gas distribution and control strategies in a gassy coal mine. The

Journal of Computational Multiphase Flows, 6(1):65–78, 2014.

[89] S. R. Turns. An Introduction to Combustion, volume 287. McGraw-hill New York, 1996.

[90] S. Wyatt. Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Sys-

tems and DAEs. PhD thesis, Virginia Polytechnic Institute and State University, 2012.

[91] G. Xu, K. D. Luxbacher, S. Ragab, and S. Schafrik. Development of a remote analysis

method for underground ventilation systems using tracer gas and CFD in a simplified

laboratory apparatus. Tunnelling and Underground Space Technology, 33:1–11, 2013.

[92] G. Xu, K. D. Luxbacher, S. Ragab, J. Xu, and X. Ding. Computational fluid dynamics

applied to mining engineering: A review. International Journal of Mining, Reclamation

and Environment, pages 1–25, 2016.

[93] A. Yousouff and R. E. Skelton. Covariance equivalent realizations with applications

to model reduction of large-scale systems. Control and Dynamic Systems, 22:273–348,

1985.

[94] A. Yousuff, D. A. Wagie, and R. E. Skelton. Linear system approximation via covariance

equivalent realizations. Journal of Mathematical Analysis and Applications, 106(1):91–

115, 1985.

174 BIBLIOGRAPHY

[95] L. Yuan, R. J. Mainiero, J. H. Rowland, R. A. Thomas, and A. C. Smith. Numerical

and experimental study on flame spread over conveyor belts in a large-scale tunnel.

Journal of Loss Prevention in the Process Industries, 30:55–62, July 2014.

[96] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control, volume 40. Prentice

hall New Jersey, 1996.

Appendices

175

Appendix A

Notation

Table A.1: Mathematical Notation

Symbol Description

AT Transpose of a matrix
A∗ Conjugate transpose of a matrix
vt(x, t) Partial derivative with with respect to time, e.g. ∂v

∂t

vx(x, t) Partial derivative with respect to the spatial component, e.g. ∂v
∂x

vxx(x, t) Second partial derivative with respect to the spatial component, e.g. ∂2v
∂x2

ẋ(t) A dotted function indicates the time derivative, e.g. dx
dt

.
∇ Gradient of a function
∇2 Laplacian of a function
<(z) Real part, a, of the complex number z = a+ bi.
=(z) Imaginary part, b, of the complex number z = a+ bi.
λ(A) The set of eigenvalues of A
G(s) Continuous-time transfer functions
H(z) Discrete-time transfer functions

For this dissertation, we will use the conventions listed in Table A.1. Where ambiguities

are possible, we will elucidate the meaning in the discussion. In general, we will adhere to

the convention that bold uppercase letters refer to matrices, e.g. A ∈ Rm×n or B ∈ Cm×n,

and bold lowercase letters refer to column vectors in Rn or Cn. Scalars will simply be italic

176

177

lowercase or uppercase letters depending on the context. Constants will normally be written

using Greek letters and will be considered greater than or equal to zero unless otherwise

noted.

Appendix B

Burgers’ Equation Control Functions

When testing various model reduction techniques on the Burgers’ equation, we first build

the reduced-order model using the control function u1(t) = cos(πt).

178

179

t

0 2 4 6 8 10

u

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) u1(t) = cos(πt)

t

0 2 4 6 8 10

u

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) u2(t) = sin(πt)

t

0 2 4 6 8 10

u

-0.5

0

0.5

1

1.5

2

(c) u3(t) : Step function

t

0 2 4 6 8 10

u

-3

-2

-1

0

1

2

3

4

(d) u4(t) = 4e−t/π cos(πt)

t

0 2 4 6 8 10

u

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(e) u5(t) cos(πt) + sin(3πt) + 1
2 sin(πt3)

t

0 2 4 6 8 10

u

-6

-4

-2

0

2

4

6

(f) u6(t) = P (t)1

Figure B.1: Control functions for Burgers equation.

1 P (t) =− (0.001519632917)t7 + (0.05294205)t6 − (0.729703917)t5 + (5.0421)t4

− (18.1461291)t3 + (31.3845)t2 − (18.765)t− 1

Appendix C

Full Results for POD+IRKA

The appendix gives the plots from all of the tests run using Algorithm 4.7 to combine the

POD and IRKA projection vectors. We tested reduced order model sizes of r = 15 and

r = 20 for all six input functions, u1(t), . . . , u6(t). We present the results here to minimize

the flow of the actual text.

Time

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output for control u
1

FOM

POD

(a) POD for input u1(t)

Time

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output for control u
1

FOM

POD + 8 IRKA

(b) Combined POD and IRKA

Figure C.1: Output combining POD and IRKA vectors with r = 15 and input u1(t).

180

181

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD + 4 IRKA

(b) Combined POD and IRKA

Figure C.2: Output combining POD and IRKA vectors with r = 15 and input u2(t).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
3

FOM

POD

(a) POD for input u3(t)

Time

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Output for control u
3

FOM

POD + 7 IRKA

(b) Combined POD and IRKA

Figure C.3: Output combining POD and IRKA vectors with r = 15 and input u3(t).

182 Appendix C. Full Results for POD+IRKA

Time

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Output for control u
4

FOM

POD

(a) POD for input u4(t)

Time

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3

Output for control u
4

FOM

POD + 4 IRKA

(b) Combined POD and IRKA

Figure C.4: Output combining POD and IRKA vectors with r = 15 and input u4(t).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
5

FOM

POD

(a) POD for input u5(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
5

FOM

POD + 8 IRKA

(b) Combined POD and IRKA

Figure C.5: Output combining POD and IRKA vectors with r = 15 and input u5(t).

183

Time

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Output for control u
6

FOM

POD

(a) POD for input u6(t)

Time

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Output for control u
6

FOM

POD + 4 IRKA

(b) Combined POD and IRKA

Figure C.6: Output combining POD and IRKA vectors with r = 15 and input u6(t).

184 Appendix C. Full Results for POD+IRKA

Number of IRKA vectors

0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-4

10
-3

10
-2

Error Plot: r=15, u
1
(t)

POD

POD+IRKA

(a) Input u1(t)

Number of IRKA vectors

0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

Error Plot: r=15, u
2
(t)

POD

POD+IRKA

(b) Input u2(t)

Number of IRKA vectors

0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-3

10
-2

10
-1

Error Plot: r=15, u
3
(t)

POD

POD+IRKA

(c) Input u3(t)

Number of IRKA vectors

0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-2

10
-1

10
0

Error Plot: r=15, u
4
(t)

POD

POD+IRKA

(d) Input u4(t)

Number of IRKA vectors

0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

10
0

Error Plot: r=15, u
5
(t)

POD

POD+IRKA

(e) Input u5(t)

Number of IRKA vectors

0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

0.015

0.02

0.025

0.03

0.035

Error Plot: r=15, u
6
(t)

POD

POD+IRKA

(f) Input u6(t)

Figure C.7: Output error combining POD and IRKA vectors for r = 15.

185

Time

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output for control u
1

FOM

POD

(a) POD for input u1(t)

Time

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output for control u
1

FOM

POD + 10 IRKA

(b) Combined POD and IRKA

Figure C.8: Output combining POD and IRKA vectors with r = 20 and input u1(t).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD + 7 IRKA

(b) Combined POD and IRKA

Figure C.9: Output combining POD and IRKA vectors with r = 20 and input u2(t).

186 Appendix C. Full Results for POD+IRKA

Time

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Output for control u
3

FOM

POD

(a) POD for input u3(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
3

FOM

POD + 7 IRKA

(b) Combined POD and IRKA

Figure C.10: Output combining POD and IRKA vectors with r = 20 and input u3(t).

Time

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3

Output for control u
4

FOM

POD

(a) POD for input u4(t)

Time

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3

Output for control u
4

FOM

POD + 6 IRKA

(b) Combined POD and IRKA

Figure C.11: Output combining POD and IRKA vectors with r = 20 and input u4(t).

187

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
5

FOM

POD

(a) POD for input u5(t)

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
5

FOM

POD + 7 IRKA

(b) Combined POD and IRKA

Figure C.12: Output combining POD and IRKA vectors with r = 20 and input u5(t).

Time

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Output for control u
6

FOM

POD

(a) POD for input u6(t)

Time

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Output for control u
6

FOM

POD + 6 IRKA

(b) Combined POD and IRKA

Figure C.13: Output combining POD and IRKA vectors with r = 20 and input u6(t).

188 Appendix C. Full Results for POD+IRKA

Number of IRKA vectors

0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-4

10
-3

10
-2

Error Plot: r=20, u
1
(t)

POD

POD+IRKA

(a) Input u1(t)

Number of IRKA vectors

0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-3

10
-2

10
-1

Error Plot: r=20, u
2
(t)

POD

POD+IRKA

(b) Input u2(t)

Number of IRKA vectors

0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-3

10
-2

10
-1

Error Plot: r=20, u
3
(t)

POD

POD+IRKA

(c) Input u3(t)

Number of IRKA vectors

0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-2

10
-1

10
0

Error Plot: r=20, u
4
(t)

POD

POD+IRKA

(d) Input u4(t)

Number of IRKA vectors

0 5 10 15 20

R
e
la

ti
v
e
 E

rr
o
r

10
-4

10
-3

10
-2

10
-1

10
0

Error Plot: r=20, u
5
(t)

POD

POD+IRKA

(e) Input u5(t)

Number of IRKA vectors

0 5 10 15 20

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

Error Plot: r=20, u
6
(t)

POD

POD+IRKA

(f) Input u6(t)

Figure C.14: Selected output error combining POD and IRKA vectors for r = 20.

Appendix D

Full Results for IRKA V ⊕W

The appendix gives the plots from all of the tests run using Algorithm 4.9 to combine the

IRKA right and left projection vectors. We tested reduced-order model sizes of r = 15 and

r = 20 for all six input functions, u1(t), . . . , u6(t). We present the results here to minimize

the flow of the actual text.

189

190 Appendix D. Full Results for IRKA V ⊕W

D.1 Details for r = 15

D.1.1 Output Plots

Time

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output for control u
1

FOM

POD

(a) POD for input u1(t)

time
0 2 4 6 8 10

y

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

IRKA V+W Galerkin u
1
(t) (r=15, r

v
=8, r

w
=7)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.1: Output for combined IRKA right and left projection vectors with r = 15 and
input u1(t).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
2
(t) (r=15, r

v
=8, r

w
=7)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.2: Output for combined IRKA right and left projection vectors with r = 15 and
input u2(t).

D.1. Details for r = 15 191

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
3

FOM

POD

(a) POD for input u3(t)

time
0 2 4 6 8 10

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IRKA V+W Galerkin u
3
(t) (r=15, r

v
=9, r

w
=6)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.3: Output for combined IRKA right and left projection vectors with r = 15 and
input u3(t).

Time

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Output for control u
4

FOM

POD

(a) POD for input u4(t)

time
0 2 4 6 8 10

y

-0.5

0

0.5

1

1.5

2

2.5

3

IRKA V+W Galerkin u
4
(t) (r=15, r

v
=11, r

w
=4)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.4: Output for combined IRKA right and left projection vectors with r = 15 and
input u4(t).

192 Appendix D. Full Results for IRKA V ⊕W

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
5

FOM

POD

(a) POD for input u5(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
5
(t) (r=15, r

v
=8, r

w
=7)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.5: Output for combined IRKA right and left projection vectors with r = 15 and
input u5(t).

Time

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Output for control u
6

FOM

POD

(a) POD for input u6(t)

time
0 2 4 6 8 10

y

-1

0

1

2

3

4

5

6

IRKA V+W Galerkin u
6
(t) (r=15, r

v
=9, r

w
=6)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.6: Output for combined IRKA right and left projection vectors with r = 15 and
input u6(t).

D.1. Details for r = 15 193

D.1.2 Error Plots

IRKA V Vectors
0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
1
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(a) Input u1(t)

IRKA V Vectors
0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
2
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(b) Input u2(t)

IRKA V Vectors
0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
3
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(c) Input u3(t)

IRKA V Vectors
0 5 10 15

R
e

la
ti
v
e

 E
rr

o
r

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
4
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(d) Input u4(t)

IRKA V Vectors
0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
5
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(e) Input u5(t)

IRKA V Vectors
0 5 10 15

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

IRKA V+W Error Comparison for Control u
6
(t) (r = 15)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(f) Input u6(t)

Figure D.7: Relative output error combining left and right IRKA projection vectors for
r = 15.

194 Appendix D. Full Results for IRKA V ⊕W

D.2 Details for r = 20

D.2.1 Output Plots

Time

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Output for control u
1

FOM

POD

(a) POD for input u1(t)

time
0 2 4 6 8 10

y

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

IRKA V+W Galerkin u
1
(t) (r=20, r

v
=13, r

w
=7)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.8: Output for combined IRKA right and left projection vectors with r = 20 and
input u1(t).

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
2

FOM

POD

(a) POD for input u2(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
2
(t) (r=20, r

v
=10, r

w
=10)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.9: Output for combined IRKA right and left projection vectors with r = 20 and
input u2(t).

D.2. Details for r = 20 195

Time

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Output for control u
3

FOM

POD

(a) POD for input u3(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
3
(t) (r=20, r

v
=10, r

w
=10)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.10: Output for combined IRKA right and left projection vectors with r = 20 and
input u3(t).

Time

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3

Output for control u
4

FOM

POD

(a) POD for input u4(t)

time
0 2 4 6 8 10

y

-0.5

0

0.5

1

1.5

2

2.5

3

IRKA V+W Galerkin u
4
(t) (r=20, r

v
=12, r

w
=8)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.11: Output for combined IRKA right and left projection vectors with r = 20 and
input u4(t).

196 Appendix D. Full Results for IRKA V ⊕W

Time

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Output for control u
5

FOM

POD

(a) POD for input u5(t)

time
0 2 4 6 8 10

y

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IRKA V+W Galerkin u
5
(t) (r=20, r

v
=10, r

w
=10)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.12: Output for combined IRKA right and left projection vectors with r = 20 and
input u5(t).

Time

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Output for control u
6

FOM

POD

(a) POD for input u6(t)

time
0 2 4 6 8 10

y

-1

0

1

2

3

4

5

6

IRKA V+W Galerkin u
6
(t) (r=20, r

v
=10, r

w
=10)

Actual
IRKA V+W (1S)

(b) IRKA V ⊕W

Figure D.13: Output for combined IRKA right and left projection vectors with r = 20 and
input u6(t).

D.2. Details for r = 20 197

D.2.2 Error Plots

IRKA V Vectors
0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
1
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(a) Input u1(t)

IRKA V Vectors
0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
2
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(b) Input u2(t)

IRKA V Vectors
0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
3
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(c) Input u3(t)

IRKA V Vectors
0 5 10 15 20

R
e

la
ti
v
e

 E
rr

o
r

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
4
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(d) Input u4(t)

IRKA V Vectors
0 5 10 15 20

R
e
la

ti
v
e
 E

rr
o
r

10
-4

10
-3

10
-2

10
-1

10
0

IRKA V+W Error Comparison for Control u
5
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(e) Input u5(t)

IRKA V Vectors
0 5 10 15 20

R
e
la

ti
v
e
 E

rr
o
r

10
-3

10
-2

10
-1

IRKA V+W Error Comparison for Control u
6
(t) (r = 20)

IRKA V+W
POD error
IRKA V only
B-IRKA V only
QBMOR V only

(f) Input u6(t)

Figure D.14: Relative output error for IRKA V ⊕W compared to other methods with
r = 20.

198 Appendix D. Full Results for IRKA V ⊕W

D.3 POD Model Error Plots

Size of ROM

20 25 30 35 40 45 50

R
e

l
E

rr
o

r

10
-4

10
-3

10
-2

Error for control u
1

POD error

IRKA V+W error

(a) Input u1(t)

Size of ROM

20 25 30 35 40 45 50

R
e

l
E

rr
o

r

10
-4

10
-3

10
-2

Error for control u
2

POD error

IRKA V+W error

(b) Input u2(t)

Size of ROM

20 25 30 35 40 45 50

R
e

l
E

rr
o
r

10
-4

10
-3

10
-2

Error for control u
3

POD error

IRKA V+W error

(c) Input u3(t)

Size of ROM

20 25 30 35 40 45 50

R
e

l
E

rr
o
r

10
-4

10
-3

10
-2

Error for control u
4

POD error

IRKA V+W error

(d) Input u4(t)

Size of ROM

20 25 30 35 40 45 50

R
e
l
E

rr
o

r

10
-4

10
-3

10
-2

Error for control u
5

POD error

IRKA V+W error

(e) Input u5(t)

Size of ROM

20 25 30 35 40 45 50

R
e
l
E

rr
o

r

10
-4

10
-3

10
-2

Error for control u
6

POD error

IRKA V+W error

(f) Input u6(t)

Figure D.15: Relative output error comparison between POD models of various sizes and
IRKA V ⊕W at r = 20

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Outline

	Background
	Mathematical Model for Fire Dynamics
	Buoyancy Force
	Combustion

	Dynamical Systems
	Reduced-Order Modeling
	Basic Framework
	Interpolatory Model Reduction
	Proper Orthogonal Decomposition

	A Natural Convection Flow Model
	Introduction
	The Boussinesq Equations
	Example Problem Description
	Model Reduction of Descriptor Systems
	Numerical Results

	Towards Input-Independent Methods for Nonlinear Model Reduction
	Burgers' Equation
	Problem Definition
	Group Finite Element Method (GFEM)
	Finite Difference Method
	Projecting the Quadratic-Bilinear System
	Tensor Product Computational Strategies

	Quadratic-Bilinear Model Reduction
	QBMOR Framework
	Results
	Stability Preservation

	Combining IRKA and POD
	Methodology
	Results

	Combining Left and Right IRKA Vectors
	Methodology
	Results

	Summary

	Reduction of Fire Models
	Airflow in a Mine
	The Model Reduction Technique
	Basic Description
	Results

	Fire Plumes
	Description and Methods
	Buoyancy-Driven Flows
	Numerical Results

	Wildland Fires
	Basic Description
	Discrete Empirical Interpolation Method (DEIM)
	Methods and Numerical Results

	Summary

	Analysis of Discrete Time Model Reduction
	Optimality Conditions for the ROM
	Continuous-time Systems
	Discrete-time Systems

	Time Discretization of the ODE
	Single-Step Discretization Schemes

	Relationship of Transfer Functions
	Explicit Forward Euler Method
	Implicit Backward Euler Method
	Implicit Crank-Nicolson Method
	Relationship of Discrete-Time Transfer Functions

	Extension of H2 Optimality
	Forward and Backward Euler
	Crank-Nicolson Method

	Numerical Results
	1D Heat Equation
	International Space Station Control (ISS12A)
	Summary

	Conclusions and Future Research
	Conclusions
	Future Work

	Bibliography
	Appendices
	Appendix Notation
	Appendix Burgers' Equation Control Functions
	Appendix Full Results for POD+IRKA
	Appendix Full Results for IRKA VW
	Details for r=15
	Output Plots
	Error Plots

	Details for r=20
	Output Plots
	Error Plots

	POD Model Error Plots

