Computer Analysis of User Interfaces
Antonio C. Siochi

TR 89-34






COMPUTER ANALYSIS OF USER INTERFACES

Antonio C. Siochi

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

ABSTRACT ' _ _
Interface evaluation is a necessary phase in the production of quality user interfaces. The

usual evaluation techniques involve formal experiments or observation, and can be
invasive. One non-invasive method that can be used at user sites is to record all user input
and system output to a file. This transcript is then algorithmically analyzed to determine
interface problems. A new technique analyzes these transcripts by searching for maximal
repeating patterns (MRPs), on the hypothesis that repeated sequences of user actions
indicate interesting user behavior, and therefore may show problems in the interface. The
technique was tested by using it to evaluate the human-compater interface of a large and
complex image processing system in active use. Results showed MRPs were useful in
detecting specific problems within the interface.

“The null hypothesis can always be rejected. It just depends on how much
money and time you are willing to spend in order to do s0.”
- Anonymous

COMPUTER-BASED INTERFACE EVALUATION

The production of quality human-computer interfaces requires a thorough understanding of
the user that can involve evaluating the system by observing the user working with the
system through field siudies or formal human factors experiments. Such methods
traditionally involve use of techniques such as videotape, protocol analysis, and critical
incident analysis. These methods may be invasive — certainly they require time-consuming
analyses; for example, manually analyzing one hour of videotape can require a day or more
[2]. An alternative approach is to record all user input and systern output onto 2 file, i.c.,
log user sessions. Such transcripts can be collected automatically and over a long period of
time. An important benefit of this method is that data can be collected inexpensively from
user sites, thus providing the evaluator with transcripts which reflect the context of the job
in which the software system is used. Unfortunately this method also produces voluminous
amounts of data. There is therefore a need for tools and techniques that allow an interface
evaluator to extract potential usability problems from such data. This research hypothesizes
that repetition of user actions is a significant indicator of potential user interface problems.
It has resulted in a repetition detection algorithm and an interactive tool constructed to
support detection of these usage patterns.

THE REPETITION HYPOTHESIS

Assuming that user behavior at a computer is purposeful, then the user carries out a
sequence of tasks to achieve some goal (the Rationality Principle [1]). It is therefore
reasonable to assume that repeated sequences of actions in the transcript indicate a task,
- rather than random sequences of user actions. Moreover, the more repetitions of a sequence
that exist, the greater the likelihood that the sequence actually represents a task. Repetition
1s also interesting of itself. Each action performed by a user takes a certain amount of time
and involves a chance for errors. Repeating such actions increases both the user’s
performance time and the likelihood of errors. By detecting frequently repeated actions and



providing macros for them, it may be possible to reduce user performance times and user
eITOrS.

When errors are involved in the repeated actions, it may be the case that users are having
problems with a particular task. Users may be trying variations of a command (e.g.,
changing the order of command arguments) in an attemapt to make it work. Such repetitions
might indicate problems with, for example, the command syntax or help system of the
interface. Our hypothesis is therefore that repeared sequences of user actions are interesting
sequences and may indicate problems with the user interface. The ability to detect such
repeating patterns should be useful to interface evaluators.

MAXIMAL REPEATING PATTERNS .
A session transcript can be modelled as a string of characters where each character

corresponds to a command. The problem of detecting repeating sequences of command
strings in the transcript is equivalent to detecting repeated substrings of characters in a
string. Since our interest is in sequences of user actions, then only substrings of length at
least two are considered.

Detecting repeated substrings presents some difficulties. Consider the string
“abcdabedxab”. Which repeating substrings should be reported? It is more efficient to
report just the substring “abed,” rather than, for example, “abc™ and “bc™ as well, since any
substring of a repeating substring must also repeat. It is doubtful that reporting “abc” and
“be” in addition to “abed” yields more information than reporting just “abcd™ as the
repeating substring. Note, however, that the substring “ab” also occurs independently of
the substring “abed,” i.e., after the “x.” Such substrings should also be reported since they
may Tepresent a task that occurs in more than one context, e.g., as part of a larger repeating
pattern “abed,” or independently of that pattern.

THE REPETITION DETECTION ALGORITHM

The algorithm for detecting repetition is based on a data structure known as a position tree,
which records positions of each repeating substring in the string. Maximal repeating
pattemns are extracted from this data structure by traversing the tree and deleting those
repeating substrings which occur within the longest repeating substring, except for those
which occur independently of the longest one. This is easily done by comparing the
positions at which the substrings occur. This process is repeated from the longest repeating
substring to the next longest remaining substring, until no more substrings can be deleted.
Precise time complexities are not yet available for this algorithm, but in practice it takes
only a few seconds on a Mac II to scan a string thousands of characters in length.

INTERACTIVE TOOL SUPPORT FOR MRP DETECTION

Initial implementations of this algorithm which were run on a session file representing
approximately three months of one user’s activity extracted hundreds of maximal repeating
patterns. This led to an interactive version of the algorithm which allowed management of
this list of maximal repeating patterns, and for the extraction of patterns from this list by
specific attributes such as length of the pattern. Other information such as the number of
patterns by length and occurrence were provided as an aid to deciding which patterns to
investigate further.

RESULTS

This MRP technique was used in the evaluation of a large real world image processing
system. Transcripts of seventeen users, totaling 17,086 command lines, were analyzed
over an eight hour pericd. The average number of MRPs per user was 207, and average
length of the longest MRP was 16. Some of the MRPs were noteworthy on the basis of
violating expected usage patterns of commands. For example, ten commands were found in



MRPs consisting of consecutive invocations of the same command, possibly indicating that
a user needs to perform the same command on several objects, or that the user is “fine-
tuning” a single object. For example, a user may have a list of files that need to be
converted from one format to another, or a user may be debugging a macro. In the first
case, a possible remedy could be to allow an arbitrary number of arguments for each such
command. The second case demands a closer study of the nature of the “fine-tuning.”
Since 82% of the sample users exhibit this MRP type, this indicates a problem inherent in
the interface design, rather than a collection of user idiosyncrasies.

Another type of MRP that was detected consisted of consecutive lines where no commands
were entered, indicating anomalous use of the command line terminator. This MRP type
may be due to factors such as poor keyboard design, defective keyboards, or long response
times. Since 42% of users exhibited this MRP, and because of the lon g experience
designers have with keyboards, system response time is the more likely cause.

MRP technique does not directly show general problems with an interface, detailed
problems are also important, and consequently the technique could be part of a larger
interface evaluaton methodology.

This preliminary evidence suggests that the repetition hypothesis is justified and that the
MRP technique is convinci gly useful. Several extensions to the technique are being
considered, including its use in conjunction with standard videotaping methods where
repetition analysis of the session file could be used to identify interesting sections of the
videotape, thereby eliminatin g the need to review the entire videotape.

REFERENCES
1. Card, S. K., Moran, T. P., and Newell, A, The Psychology of Human-Computer

Interaction. Lawrence Erlbaum, Assoc., New Jersey, 1983,

2. Mackay, W. E.et al. Video: Data for Studying Human-Computer Interaction. In
Proceedings of CHI'88 Conference on Human Faciors in Computing Systems
(Washington, D. C., May 15-19). ACM, New York, 1988, pp. 133-137.



