The Cost of Terminating Optimistic Parailel
Discrete-Event Simulations

Vasant Sanjeevan and Marc Abrams

TR 92-25

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

May 15, 1992



The Cost of Terminating Optimistic Parallel
Discrete-Event Simulations

May 15, 1992
TR 92-25

Vasant Sanjeevan
Marc Abrams

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061-0106

(703) 231-8457
{vasant, abrams }@cs.vt.edu

Abstract

Simulation models use many different rules to decide when to terminate.
Parallel simulation protocols generally use a single, simple rule: each logical
process terminates when it reaches a predefined time. Parallel simulation
protocols can be broadly classified into two categories: conservative and
optimistic. In a previous paper, we proposed seven algorithms for
mechanically adding an arbitrary termination condition to a conservative-
synchronous non-terminating parallel simulation. Informal arguments about the
performance of each algorithm were made, and the arguments were confirmed
through measurement for four of these algorithms. The benchmark used was
the simulation of a torus network using the Bounded Lag protocol on a shared
memory multiprocessor. In this paper, we report on the performance of the
simulation of the same torus network benchmark with the same four termination
conditions using an optimistic protocol on a message-passing multiprocessor,
We also report on the performance of a colliding pucks simulation with three

additional termination conditions.



1. Termination Algorithms for Parallel Discrete-Event Simulations

We consider the parallel simulation termination problem: given a non-terminating
parallel simulation and a termination condition, denoted C, find some value of simulation
time, denoted ¢, such that C evaluated using simulation attribute values at time ¢ has value

true, if such a time exists. In this paper, we will always assume such a time exists.

Figure 1 illustrates a portion of a space-time rectangle (Chandy and Sherman 1989).
Let T denote a set which contains all simulation times at which a simulation attribute
required to evaluate termination condition C changes value. Let n denote the number of
simulation attributes required to evaluate C. There exists a mapping from each element 7 of
set T'to an n-tuple containing the values of the » simulation attributes, ay to a,,_;, required to
evaluate C at time ¢. Set T contains an infinite number of elements, because the simulation
is non-terminating. In the figure, attribute a; changes value at time zpe T, both gy and a,
change value at time #;€7, and so on. The parallel simulation termination problem is
equivalent to searching the space-time rectangle for any time ¢ € T at which condition C,

evaluated using the attribute values at time ¢, yields true.

Two termination algorithms are proposed in a previous paper (Abrams and

Richardson 1991);

Exhaustive Termination Algorithm: Evaluate C(t) at each simulation time

represented by set T in ascending time order until C(t)=true.

Interval Termination Algorithm: Choose any subset of T such that the subset
contains a time for which C(t)=true. Evaluate C(t) at each simulation time represented by

the chosen subset in ascending time order until C(t)=true.



One can construct cases to show that exhaustive termination sometimes requires
less wall clock time than interval termination to identify a simulation time at which C(1) is
true, however the average case performance is that interval termination requires less wall
clock time. The challenge in using interval termination is choosing a subset of T that
contains a time ¢ for which C(t)=true before execution of a simulation begins. However
such a subset can always be chosen before execution for a stable condition. Consider
Figures 2 and 3, which characterize a stable and a non-stable termination condition,
respectively. From Figure 3, for a stable condition, interval termination works for any
subset of T that contains a time ¢ whose value is greater than the first time for which C
evaluates to true for a stable condition, Examples of subsets of T that work for stable
termination conditions are to evaluate the termination condition every tenth time that an
attribute changes value, and to evaluate the termination condition every five seconds of wall

clock time.

We first categorize termination algorithms based on whether the termination
detection is done using the Exhaustive Termination algorithm (category E) or the Interval
Termination algorithm (I). We also categorize termination algorithms based on whether the
evaluation of termination condition C is done sequentially by one processor (S) or is itself
parallelized and done by more than one processor (P). Termination algorithms are
categorized by two letter mnemonics, such as ES.

The first benchmark we use to measure the performance of our termination
algorithms is a simulation of an N X N torus G/G/1 queuing network for any non-
preemptive service discipline (Figure 3, Lubachevsky 1989). Figure 4 illustrates a 3 x 3
network. Each server is modeled by a Logical Process (LP). Jobs which leave a server are
randomly routed with equal probability onto one of the four outgoing links. Initially,
servers are idle and have an equal number of jobs in their queues. We chose 200 as the

initial namber of jobs in each server’s input queue, after verifying by experimentation that




this is a large enough number to preclude the possibility of a server running out of jobs to
process in its input queue. We use an exponentially distributed service time with a mean of
200 simulation time units and a constant of 100 time units added to it. We verified by
experimentation that the simulation running times were not sensitive to these particular
values.

The second benchmark we use is the Colliding Pucks simulation (Jefferson and
Hontalas et. al. 1989). Colliding Pucks is a distributed discrete-event simulation of two-
dimensional pucks moving on a flat surface, colliding with each other and with stationary
cushions on the border of the simulation space. The number of pucks in the simulation is
denoted by K. The flat surface is divided into equal sized sectors which form a grid and
regulate the movement and interactions of pucks within their boundaries. Sectors are
numbered row wise in ascending order starting from 0. Each sector, puck and cushion
comprising the simulation is modeled by an LP. The implementation of Colliding Pucks
employs simple kinematic and dynamic principles such as conservation of momentum and
energy. Since there is total conservation of energy and no friction, the pucks remain in
constant motion.

The term simulation size is defined as the value of N for the torus network
benchmark and as the value of K for the Colliding Pucks benchmark. The number of

processors used in a simulation run is denoted by P.
2 mingation ri for imistic Pr 1

In an optimistic protocol (Jefferson 1985), the set of attributes comprising the
parallel simulation is partitioned among all the LP's. The attributes assigned to a particular
LP are local attributes of that LP. The LP's execute in parallel, performing their
computations and interacting with one another. Interaction between LP's is effected
through the sending and receiving of event messages. A message can cause an LP to

change its local variables and send messages to other LP's or itself, depending on the type

3



of message it receives and the data that the message contains. Every event occurs at a

single instant of simulation time and is executed atomically.

All events in the simulation are ordered by virtual time. The Local Virtual Time
(LVT) of an LP is defined as being equal to the timestamp of the set of messages that the
LP is currently processing or waiting to process. Each message sent from an LP must have
a receive timestamp, which defines the virtual time at which the destination LP will process
the message. Messages cannot be sent backward in virtual time; thus the timestamp of a
message must be greater than the LVT of the sending LP. Each LP maintains an input
queue of all the messages scheduled for it in timestamp order. When an LP executing on a
processor finishes processing an event, the simulation system gives control of the
processor to the LP with the lowest LVT, which then processes the next message in its
input queue. Since each processor schedules events without consulting any other
processor, some events may be performed out of order. The optimistic simulation protocot
will eventually detect such out-of-order events and roll them back, as described shortly.
All effects of an out-of-order event, including any messages it may have caused to be sent,

will be completely undone,

Rollback is effected by maintaining a history of states for each LP as the simulation
proceeds. State information for an LP at a given virtual time consists of all local simulation
attribute values at that virtual time instant. As the simulation proceeds, each LP periodically
saves copies of its state in memory. When an LP needs to be rolled back to a particular
virtual time, the simulation system retrieves state information for that virtual time instant

from the history of states that each LP maintains.

Because some events may need to be rolled back, certain program actions must be
delayed until we are certain they will not be rolled back. Such actions must wait for

commitment. The simulation protocol calculates a quantity called Global Virtual Time



(GVT) to determine when actions can be safely committed. GVT is the virtual time of the
carliest event currently in the simulation that might still be rolled back. The protocol
calculates GVT periodically. When GVT exceeds the virtual time of an irreversible action,
that action is committed. GVT is also used to determine which messages and states can be
garbage collected, freeing memory for reuse. An LP with no messages waiting to be
processed is considered to be at LVT positive infinity. When GVT reaches positive

infinity, the simulation terminates execution.

One can design efficient termination detection algorithms which require
modifications to the mechanism of the optimistic simulation protocol itself. However, the
implementation of such algorithms requires non-trivial changes to the implementation of the
protocol. We propose two termination detection algorithms that can be used with an
existing optimistic simulation protocol. Consequently, the performance we achieve is a
worst case bound on the performance of an optimistic simulation system that incorporates a

termination algorithm.

We augment the parallel simulation with an LP designated the Termination Detector
(TD). The TD runs in parallel with the other LP’s comprising the simulation. One or more
of the LP’s periodically sends an UPDATE_EVENT message with a timestamp equal to its
LVT to the TD. The determination of which LP's need to send UPDATE_EVENT
messages to the 7D depends on the nature of the termination condition. The frequency
with which UPDATE_EVENT messages are sent to the TD, as well as the number of LP’s
sending these messages is determined by the simulation size and the nature of the
termination condition. The UPDATE_EVENT message contains the local attributes of the
sending LP which the TD requires to evaluate the global termination condition C. The TD
maintains a copy of all simulation attributes required to evaluate C. When the TD receives
an UPDATE_EVENT message, it updates its copy of all simulation attributes reported by
the UPDATE_EVENT message and then evaluates C. Since the UPDATE_EVENT



message could conceivably be rolled back in the future, the evaluation of C itself is being
done optimisticaily. If C evaluates to false, the TD does not perform any action. If,
however, C evaluates to true, the TD will send a TERM_EVENT message to all the LP's

and to itself with the timestamp of the UPDATE_EVENT message it just received.

If the timestamp of the TERM_EVENT message sent by the TD is less than the
LVT of the receiving LP, the receiving LP will roll back to a virtual time equal to the
timestamp of the TERM_EVENT message, flush the remaining messages in its input queue
and advance its LVT to positive infinity. If the LP receiving the TERM_EVENT message
does not need to be rolled back, it will process the TERM_EVENT message and advance
its LVT to positive infinity. The simulation ends when all processes, including the TD,

have no messages left to process and GVT reaches positive infinity.

It is conceivable that the TD itself might need to be rolled back after it has scheduled
TERM_EVENT messages for some or all LP's. This could happen if the TD receives an
UPDA'I'E“EYENT message with a timestamp /ess than the timestamp of the message
whose processing caused the evaluation of C to yield true. In this event, rollback is
performed just as transparently as any other message rollback. Out-of-order
TERM_EVENT messages sent by the 7D causes receiving LP’s to advance their LVT’s to
positive infinity. This is undone by rolling back all LP’s which processed the
TERM_EVENT message to a time smaller than the timestamp of the TERM_EVENT and
the simulation then proceeds as normal. Consequently, we could never have a simulation
terminating as a result of optimistically scheduled TERM_EVENT messages which are

rolled back in the future.
1 Algorithm L

Algorithm IS is an interval termination algorithm and detects stable termination

conditions. It employs a subset of LP’s to send an UPDATE_EVENT message to the TD

6



periodically with a user specified frequency. Whenever an LP sends an UPDATE_EVENT
message, it includes the value of any attribute local to the LP required to evaluate C. The
frequency with which UPDATE_EVENT messages are sent depends on the simulation
size. Too high a frequency will overwhelm the 7D with UPDATE_EVENT messages, and
message processing at the TD becomes a bottleneck for the simulation. Too low a
frequency is likely to cause the 7D to detect termination at a virtual time significantly greater
than the first virtual time instant that evaluation of C would have yielded true. This
presents a problem as we need the values of some simulation attributes at the simulation
time at which termination occurred in order to calculate simulation output measures. With
this tradeoff in mind, we choose an UPDATE_EVENT message frequency such that the
arrival rate of messages at the TD is independent of the simulation size and approximately
equal to the arrival rate of messages scheduled for the LP's. This is done by reducing the
frequency with which UPDATE_EVENT messages are sent by individual LP's as the
simulation size increases and the number of LP's sending UPDATE_EVENT messages

increases.

2.2 Algorithm ES

Algorithm ES is exhaustive and it can detect non-stable as well as stable termination
conditions. Each time the LVT of an LP advances, and any attributes required to evaluate
C were modified since the LVT last advanced, the LP sends an UPDATE_EVENT message
to the 7D containing the values of all its modified local attributes. This is necessary to be
able to detect non-stable termination conditions. This algorithm is more likely to create a
bottleneck at the TD than algorithm IS due to the large increase in the arrival rate of

messages at the 7D as the simulation size increases,

imisti rmination Algorithms Performan



We use seven termination conditions for our experiments, Termination
conditions TO, T1, T2 and T3 are used with the torus network benchmark. PO, P1, and P2
are used with the Colliding Pucks benchmark. The seven termination conditions are
described below:

TO: Algorithm IS: "stop when the total number of jobs serviced by all LP's exceeds
100,000"

T1: Algorithm ES: "stop when the total number of jobs serviced by all LP's equals
100,000"

T2: Algorithm IS: "stop when the local virtual time of each LP exceeds 100,000
simulation time units"

T3: Algorithm ES: "stop when the local virtual time of any LP first exceeds 100,000
simulation time units"”

PO: Algorithm IS: "stop when the total number of collisions in all even numbered
sectors is greater than 500.

P1: Algorithm ES: "stop when the total number of collisions in all even numbered
sectors is equal to 500.

P2: Algorithm ES: "stop when there are greater than or equal to 0.75*%K pucks in all
even numbered sectors or the simulation time of all LP's exceeds 4000 simulation

time units,

P2 is a disjunct of two termination conditions. If 75% of the pucks are never in
even numbered sectors, the simulation will still terminate when the simulation time exceeds
4000 simulation time units. We choose the number 0.75%K after verifying by
experimentation that this condition eventually becomes true for both the smallest and largest

values of X that we use.



Performance is evaluated by measuring the speedup of the simulation as processors
are added. Speedup is defined as the ratio of the execution time of a simulation executed by
one processor under a sequential simulator to the execution time of the same simulation
running on multiple processors under a parallel simulator. The only effect of adding
processors is on the speedup of the simulation.

3.1 Predicted Performance

Algorithm IS with T0: Algorithm IS is an interval termination algorithm, and we only
need to send UPDATE_EVENT messages to the TD periodically. Each LP sends one
UPDATE_EVENT message to the TD each time it processes N2/10 messages. The value
N2/10 is selected to ensure that the arrival rate of messages at the TD is independent of N
and that termination is detected soon after evaluation of ¢ would first yield true.

As N is increased, the simulation time at which termination is detected decreases
because the number of servers processing jobs increases. Therefore, we expect a flat curve
for the simulation running time as a function of N for a fixed P. Also, for a fixed N, we
expect a decrease in the running time as P is increased.

Algorithm ES with T1: Algorithm ES is exhaustive, and each LP must send one
UPDATE_EVENT message to the 7D after every job it processes so that the 7D can detect
the earliest simulation time at which the 100,000th job in the simulation is processed.
Therefore the arrival rate of messages at the 7D grows linearly with the number of Servers,
N2. This creates a bottleneck at the 7D and should increase the wall clock time required for
the simulation to terminate as compared to the time taken by an interval termination
algorithm. As was the case with termination condition TO, the simulation time at which T1
holds decreases as N increases. Therefore, as N increases, each server sends the TD fewer
messages, and this decreases the wall clock time at which the simulation terminates. Of the
previous two effects, the tendency of the TD to be a bottleneck is dominant, and we expect

a linear curve with a small positive slope for the running time of the simulation as N is



increased for a fixed P. As before, for a fixed N, we also expect a reduction in the running
time as P is increased.

Algorithm IS with T2: Algorithm IS is an interval termination algorithm, and the
simulation time at which T2 holds is independent of N. We only need to have one LP send
UPDATE_EVENT messages to the TD every time its LVT changes as LP's synchronize
periodically for every GVT computation. This ensures that the arrival rate of messages at
the TD is independent of N and thus message processing at the TD never becomes a
bottleneck. Tt is however conceivable that the single LP we choose to send
UPDATE_EVENT messages to the TD may occasionally pick a very large service time
from the exponential distribution and schedule an event far in the future. This may degrade
performance because the LP could repeatedly process the event far in the future, send an
UPDATE_EVENT message to the TD, and then get rolled back every time an event with a
timestamp in its logical past arrives. As N is increased for a fixed P, we expect the running
time to increase linearly and thus get a curve with a small positive slope. Again, for a fixed
N, we expect a reduction in the running time as P is increased.

Algorithm ES with T3: Algorithm ES is exhaustive, and again the simulation time at
which T3 holds is independent of N. To be able to detect T3, every LP sends an
UPDATE_EVENT message to the TD every time its LVT changes because we need to
detect the first time that the LVT of any LP exceeds 100,000 simulation time units. As was
the case in Algorithm ES with T1, message processing at the 7D is a bottleneck. As N is
increased for a fixed P, we expect the running time to increase either linearly with a large
slope or quadratically. As before, for a fixed N, we expect a reduction in the running time
as P is increased.

Algorithm IS with PO: Algorithm IS is an interval termination algorithm, and the LP's
modeling the pucks send UPDATE_EVENT messages to the 7D periodically. Each LP
modeling a puck sends an UPDATE_EVENT message to the TD after every 10 collisions.

Since both pucks involved in a collision report a collision to the 7D, the TD has to divide

10



its collision count by a factor of 2 to get the correct collision count. As K increases, the
simulation time at which termination is detected decreases because the number of collisions
per unit simulation time is proportional to K. Therefore, we expect to have a flat curve for
the simulation running time as a function of K for a fixed P. Also, for a fixed KX , WE
expect a decrease in the running time as P is increased.

Algorithm ES with P1: Algorithm ES is exhaustive, and the LP's modeling each puck
sends an UPDATE_EVENT messages to the TD after each collision. As in algorithm IS
with PO, the simulation time at which termination is detected decreases as K increases.
However, the arrival rate of messages at the 7D might be high enough for it to become a
bottleneck. Therefore, we expect to have either a flat curve or a curve with a small positive
slope for the simulation running time as a function of K for a fixed P. Again, for a fixed
K, we expect a decrease in the running time as P is increased.

Algorithm ES with P2: Algorithm ES is exhaustive, and the LP's modeling even
numbered sectors send UPDATE_EVENT messages to the TD every time a puck enters or
leaves an even numbered sector. The TD accordingly increments or decrements its count of
pucks in even numbered sectors. The simulation time at which termination is detected is
independent of K. Therefore, we expect to have a curve with a positive slope for the
simulation running time as a function of X for a fixed P. For a fixed K, we would expect a

decrease in the running time as P is increased.

3.2 Measyred Performance

Our simulations were implemented on a BBN Butterfly with 84 processors using
JPL's Time Warp Operating System (TWOS) Version 2.7.1, We use N = 3,4, 6,8, 10,
16 and 20 for the four combinations IS+T0, ES+T1, IS+T2 and ES+T3 and K = 2,4, 8,
16, 32, 64 and 128 for IS+P0, ES+P1 and ES+P2. The number of processors P used for
the parallel simulation is varied from 1 to 64 through powers of 2. We also ran the

simulation on JPL's TWSIM sequential simulator.

11



The simulations were statically load balanced for all runs using the TWOS load

balancer. The load balancer calculates the assignment of LP’s to physical processors that
minimizes overall simulation running time. For the torus network benchmark, load
balancing is done by running the simulation on a sequential simulator for each different
value of N. This generates output files containing statistics of the relative work done by
each LP comprising the simulation for each different value of N. The TWOS load balancer
then uses these files to generate load balanced configurations for all combinations of N and
P. Load balancing for the Colliding Pucks benchmark was done in a similar manner.
Algorithm IS with T0 (Figure 5): The curves have a small positive slope, which we
conjecture is due to an increase in message passing overhead as N increases. The parallel
simulation running time decreases as P is increased from 1 to 32, but it increases with 64
processors. We conjecture that with 64 processors, the TD is close to saturation, when it
receives messages at a rate which is almost equal to its maximum service rate. The parallel
simulation requires more time than the sequential simulation when fewer than 4 processors
are used. The running times are, however, sensitive to the rate with which
UPDATE_EVENT messages are sent by the LP's, which in this case is N2/10.
Algorithm ES with T1 (Figure 6); The curves have a positive slope, as predicted.
The running time decreases as P is increased from 1 to 8, but it becomes disproportionately
large and erratic when P exceeds 8. Asin the IS+T0 case, we conjecture that the 7D is
close to saturation at this point.

Parallel simulation of ES+T1 requires more time than sequential simulation.
Therefore the cost of switching from an interval termination algorithm (IS+T0) to an
exhaustive termination algorithm (ES+T1) for the torus network benchmark is to preclude
any speedup.

Algorithm IS with T2 (Figure 7): The curves have a positive slope, as predicted.
The running time decreases as P is increased from 1 to 64. The parallel simulation requires

more time than the sequential simulation when fewer than 4 processors were used.

12



Algorithm ES with T3 (Figure 8): The curves have a large slope, as predicted. The
running time decreases as P is increased from 1 to 16, but increases with 32 and 64
processors. This could again be due to the TD nearing saturation. Once again the
sequential simulation does better than any of the parallel simulations.

Algorithm IS with PO (Figure 9): The curves have a hump at K=16 but are
otherwise essentially flat. The parallel simulation running time decreases as P is increased
from 4 to 64. The parallel simulation requires less time than the sequential simulation when
more than 4 processors were used. The simulation ran out of memory for P=1 and P=2.
The running times are not sensitive to the rate with which UPDATE_EVENT messages are
sent, which in this case is after every 10 events,

Algorithm ES with P1 (Figure 9): All the running times for this algorithm are
essentially the same as those for Algorithm IS+P0. We conjecture that due to the complex
nature of this simulation, the overhead due to a high message arrival rate at the TD is
negligible compared to the rate with which messages are generated and processed by the

simulation itself.

Algorithm ES with P2 (Figure 10);: The curves have a positive slope, as predicted.
The parallel simulation running time decreases as P is increased from 4 to 32. The parallel
simulation requires less time than the sequential simulation when more than 4 processors

were used. The simulation ran out of memory for P=1 and P=2.
4 Conclusions

This paper proposes four termination detection algorithms for optimistic parallel
discrete-event simulations. All four algorithms employ a user process, the TD, to perform
termination detection. We measure the performanée of two of these algorithms with seven
termination conditions using two benchmarks. We note that using algorithm ES precludes

speedup for the torus network benchmark. We conjecture that this is due to the

13



disproportionately large message arrival rate at the TD, making message processing there a
bottleneck for the entire simulation. One approach to solve this problem might be to
employ a multiplicity of 7D’s in a manner that alleviates the bottleneck caused by using
only one TD, possibly by using combining trees. Another approach might be to make
more intelligent guesses about the time intervals during which the messages are sent to the
TD and reduce the number of messages sent to it while still being able to detect all classes

of termination conditions (Abrams 1992).

We also observe that after a point, adding extra processors may actually degrade

performance and conjecture that this might be due to the saturation of the TD.

Some issues that still need to be addressed are to see how our results would change
if the IS and ES algorithms were embedded in TWOS itself. How biased are the results
obtained by implementing the termination detector as a user process? Algorithm 1S + T2 is
already implemented in TWOS as a user facility embedded in the simulation system.
However it can only detect termination at virtual time instants when GVT 1s calculated and

would detect T2 the first time GVT is calculated after T2 becomes true.

Acknowledgments

We would like to thank the personnel of JPL for the use of their resources. We
made extensive use of JPL’s Time Warp Operating System running on a BBN Butterfly to
run our simulations. We also used the Coiliding Pucks simulation which is part of the

Time Warp software distribution to measure the performance of our termination algorithms.

References

Abrams, M. 1992. Terminating Parallel Simulations. Technical Report 92-01, Computer
Science Department, Virginia Tech, Blacksburg, Virginia.

Abrams, M. and Richardson, D. S. 1991. Implementing a Global Termination Condition

and Collecting Output Measures in Paraliel Simulation. In Proceedings of the 1991
Workshop on Parallel and Distributed Simulation , 86-91. Anaheim, California.

14



Bershad, B. N., Lazowska, E. D. and Levy, H. M. 1987. “PRESTO: A System for
Object-Oriented Parallel Programming”. Technical Report, Department of Computer
Science, University of Washington, Seattle.

Chandy, K. M. and Misra, J. 1988. Parallel Program Design: A Foundation, Addison-
Wesley, Reading, Mass.

Chandy, K. M. and Sherman, R. 1989. Space-Time and Simulation. In Proceedings of
Distributed Simulation 1989, 53-59. Tampa, Florida.

Jefferson, D. R. 1985. Virtual Time. ACM Transactions on Programming Languages and
Systems T: 404-425,

Jefferson, D., Hontalas, P. et. al. 1989, Performance of the Colliding Pucks simulation on
the time warp operating system (Part 1). In Proceedings of Distributed Simulation 1 989,
3-7. Tampa, Florida.

Lakshman, T.V. and Wei, V.K. On efficiently Computing Functions of Distributed
Information.

Lubachevsky, B. 1989. Efficient distributed event-driven simulations of multiple loop
networks, Communications of the ACM 32: 111-123.

Mattern, F. 1987. Algorithms for Distributed Termination Detection. Distributed
Computing 2: 161-175.

Nicol, D. M. 1990. The Cost of Conservative Synchronization in Parallel Discrete Event
Simulations. ICASE Report No. 90-20, NASA Langley Research Center, Hampton,
Virginia.

Richardson, D. S. 1991. Terminating Parallel Discrete Event Simulations. Master’s Thesis,
Technical Report 91-9, Computer Science Department, Virginia Tech, Blacksburg,
Virginia.

Sanjeevan, V. and Abrams, M. 1991. The Cost of Terminating Synchronous Parailel

Discrete-Event Simulations. In Proceedings of the 1991 Winter Simulation Conference,
642-651, Phoenix, AZ .

15



/
a
atiributes required io 2
evaluate the termination 4 1 IU
condition a

0 7F>
ty t t, tyt,
simulation time

Figure 1: Ilustration of Space time rectangle for a
simulation with three attributes. The heavy vertical lines
denote assignment of new values to attributes.

attributes required to
evaluate the termination
condition

simulation time
Figure 2: Example of a stable termination condition. “T”

and “F” denote regions of time-space in which the condition
is true and faise, respectively,

FT F T F TF

atlributes required to // :;
evaluate the termingtion 1 o

conditio:um ] / :f;

simulation time

Figure 3: Example of a non-stable termination condition,

16



Figure 4: A 3 x 3 torus queuing network

17



in seconds

Time

ih seconds

Time

800
4
500
—&— P-=1,8
400 4 —&— P={P
R P2
300 e P
asnreandfinsimn P=8
i P=18
200 [EISRI T P=32
—— P-g4
100
T T T 1
0 100 200 300 400

N2

Figure 5: Wall Clock Time required to complete simulation for N2 LP's
with IS + TO.

2000
b
—&— P=1,5
—e— P=1pP
—— PoD
1000 A e Pg
. cereroreditenoce P= 8
T, )
m@» S —
o %
0 T I I
0 100 200 300 400
N2

Figure 6: Wall Clock Time required to complete simulation for N2 LP's
with ES + T1.

18



in seconds

Time

in seconds

Time

6000

5000 -

4000 -

3000 4

2000 -

1000

Figure 7: Wall Clock Tim

with IS + T2.

€ required to complete simulation for N2 IP's

8000

6000 ~

4000 -

2000

0
0

200 300 400

Figure 8: Wall Clock Time required to complete simulation for N2 LP's

with ES + T3,

19



in seconds

Time

in seconds

Time

2000

n

Cr
- R NN

1000 ~

|

=18
e P32
sl PB4

L r T L} L L ¥ 1 L] - “
0 50 100 150
K

Figure 9: Wall Clock Time required to complete simulation for K LP's
with IS + PO, ES + P1.

300

150

Figure 10: Wall Clock Time required to complete simulation for K LP's
with ES + P2,

20





