
The Cohomology Rings of

Classical Brauer Tree Algebras

by Lee A. Chasen

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

APPROVED:

Lila thea
Edward Green, Committee Chairman

Mathematics Department

Que & Lkle—_

Daniel arkas Peter Fletcher
Mathematics Department Mathematics Department

1m AMG
Robert McCoy |

Mathematics Department

Joseph Ball

Mathematics Department

July 3, 1995

Blacksburg, Virginia

Key Words: Mathematics, Algebra, Ring Theory, Module Theory, Homological

Algebra

The Cohomology Rings

of Brauer Tree Algebras

by

Lee Andrew Chasen

Committee Chairman: Edward Green

Mathematics

Abstract

In this dissertation a simple algorithm is given for calculating minimal projective res-

olutions of nonprojective indecomposable modules over Brauer tree algebras. Those

calculated resolutions lead to an algorithm for calculating a minimal set of genera-

tors for the cohomology ring of a Brauer tree algebra.

With All My Love

This Thesis is Dedicated to

My Wife

My Family

And My Friends

il

Acknowledgments

I would like to thank Dr. Edward Green, my advisor, for all of his help. I am

especially thankful for the patience and good humor that he demonstrated while I

was his student. I would also like to thank Dr. Ball, Dr. Farkas, Dr. Fletcher, and

Dr. McCoy for serving on my committee.

I would also like to recognize all of the other people who helped me reach my goal.

There are many that I will not forget. But here, 1 name only a few. Amy Chasen,

my wife, ensured that this dissertation was actually completed, and completed on

time. Brian Hager always had faith in me and encouraged me frequently. Dan

Eno ligtened my days. James Lynch taught me a great deal about intuition and

understanding. | thank them all.

1V

Contents

Cover 1

Abstract i

Dedication lil

Acknowledgment IV

1 Introduction 1

2 Preliminaries 5

2.1 Path Algebras... 2...2..0 2.00002 eee bee 5

2.2 Brauer Tree Algebras...-2-.----.-2-2-2-202004 5

2.3 rep(QUIV,p) 2... 2. eee 9

3 String Modules and Covering Theory 10

3.1 Strings and String Modules2....2...204.- 10

3.2 Coverings 2... 6... ee ee 13

4 String Functions and their Images 22

5 The Minimal Projective Resolutions of String Modules over Clas-

sical Brauer Tree Algebras 31

5.1 The Picture Algorithm2...2. 2.0.20 0000. 32

5.2. A Simpler Notation... 0... 2. ee 45

5.3 The Walking Algorithm0.200. 50

5.4 The Periodicity of a String Module048. 55

6 A minimal set of generators for Ext(A) 64

6.1 Definitions and Notations 0 weave eee 64

6.2 A minimal set of generators0...0. 2.00000 eee 66

6.3. Summary and Examples0.0 000 2 eee eee ene 89

Vita 94

vi

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.9

4.1

4.2

4.3

4.4

4.6

4.7

. 4.8

4.9

5.1

An underlying Brauer tree... 2... ee 6

A vertex labeled underlying Brauer tree... 7

A quiver for a Brauer tree algebra...- . 8

A sample representation .. 2... 2... . eee ee 12

A quiver... 1. 14

A covering... 6... 15

The covering of an exceptional cycle.+-+20-04 17

A sample projection ... 0.0... 2.00 eee ee ee ee ee 21

Definition of a string function-..-2..--...02008.- 25

Definition of a string function .. 2... 2. ee 20

Definition of a string function2.-02-02-0003% 26

Definition of a string function-.2..-.2004. 26

Two similar underlying strings...-....-2.0-.2 2.0020 27

One commutative diagram0.-02. 0-002 ee eee 28

A partial quiver...) 2. 29

An underlying string for hS 2... 2.0.0.0... 0.02 eee ee 30

A representation of M(S) 2... 2... ee ee ee 30

Case 1 for the Picture Algorithm2.000. 33

Vil

5.2

5.3

0.4

5.6

Of

5.8

5.9

5.10

5.11

9.12

5.13

0.14

5.15

5.16

5.17

5.18

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Case 2 for the Picture Algorithm0.04.

Case 3 for the Picture Algorithm5500.

Case 4 for the Picture Algorithm0248.

Case 5 for the Picture Algorithm

Case 6 for the Picture Algorithm+-2+.2-4

Case 7 for the Picture Algorithm0.2..

Case 8 for the Picture Algorithm2..

Case 9 for the Picture Algorithm-......

Case 10 for the Picture Algorithm.

The simple closed curveC .. 2... 0... 2 eee ee

The closed curve C' at a typical vertex 2...0202004

A partial graph .. 2... ee

oe 8 8 el

eo & © © @© © ee lll

eo 6 mw

oe © © ee lll

A commutative diagram .. 2... 2... 2... eee ee ee ee

Another commutative diagram... 2... 2... ee ee es

Partial underlying strings .. 2... 2. ee

Partial underlying strings0..02.. 20000020 Ge

Partial underlying strings0. 000 eee eee eee

Partial underlying strings 2. 2... 2... ee ee

Aportionof TP... 2... Pe

e 8& © & 28 8 8» © © 2 29 8 @ co 28 © © Partial underlying strings

Vill

6.9 Partial underlying strings02.. 2.000000 0 ee 84

6.10 Partial underlying strings2..-.2 20-0206. 85

6.11 Partial underlying strings2..2.02. 2.00000. 85

6.12 Partial underlying strings0.. 0.2.00. ee eee 86

6.13 The graph... 2 ee eee 91

6.14 The graph TY 2... 9]

1X

Chapter 1

Introduction

Let G be a finite group, K a splitting field of characteristic p 4 0, and B a p-block

of KG having a cyclic defect group where KG is the group ring. We note that

a block is an indecomposable direct factor of KG. In 1941 in [2] Richard Brauer

began using trees, or planar nondirected graphs with n edges and n + | vertices, as

a notational tool for describing the various characters, modules, and other objects

associated with B.

In [12] D. Higman showed that if K is a field of characteristic p which divides

the order of a group G, then KG is of finite representation type if and only if the

p-Sylow subgroups of G are cyclic. Here finite representation type means that there

are only a finite number of nonisomorphic indecomposable modules over KG. Later

Kasch, Kneser, and Kupisch [14] and G.Janusz [13] provide detailed information

about the number of nonisomorphic indecomposable modules in this case.

In [5] E. Dade describes the character theory developed by Brauer for B when B

has a cyclic defect group. This includes the case where G contains a cyclic p-Sylow

subgroup. It is in that case that G. Janusz in [13] used Dade’s results to construct

the complete set of nonisomorphic indecomposable modules over B, a two sided

ideal direct summand of AG. He also showed how to build the multiplication table

for B from the Brauer tree and the character theory for G. Furthermore, he proved

that once the multiplication table is known, the indecomposable modules can be

determined without knowing the character theory.

A few years later, in [1] J. Alperin and G. Janusz began considering resolutions

and periodicity. In particular, they proved that if G is a finite group with a cyclic

p-Sylow subgroup for a prime p and F is a splitting field of characteristic p for G,

then each term of the minimal projective resolution of F over F'G is indecomposable.

Actually they constructed the resolution and showed that it is periodic of period 2n

where n is the number of edges in the Brauer tree corresponding to B the principal

block of FG. From the construction of that resolution, they also obtained minimal

projective resolutions for a few other indecomposable modules. In particular they

obtained minimal projective resolutions for the socle of the projective indecompos-

ables vA where v is a looped vertex of a Brauer quiver and A is the associated

Brauer tree algebra both of which we define in Chapter 2. For a definition of a

looped vertex see section 5.1. We note that at about the same time J.A. Green [11]

obtained similar results.

About a year later P. Gabriel [6] summarized many of the preceding results

using, for the first time, a Brauer quiver, I, and the category rep(T’, p) which I also

define in chapter 2. He credits Dade and Janusz with proving that if G is a finite

group and B is a block of the group algebra KG, where K is an algebraically closed

field of characteristic p > 0, then if B has only finitely many indecomposable B-

modules, then B is either semi-simple, or the category of B-modules is equivalent to

the category rep(I, ») for some Brauer quiver IT and some exceptional cycle. Thus

in this paper we will focus on the category rep(T, ¢) which is Morita equivalent the

category of modules over the Brauer tree algebra corresponding to [. These ring

became known as Brauer tree algebras and are our focus in this thesis. We refer to

them as Classical Brauer trees in the title since in recent years the term Brauer tree

algebra has occasionally taken on different meanings.

Gabriel goes on to credit Janusz and Kupisch with showing that all of the in-

decomposable representations for B in that case correspond to the set of string

modules available for that Brauer quiver. We define those modules in Chapter 3.

Continuing to use the quiver approach M.C.R. Butler and C.M. Ringel [4] gen-

eralize the quiver approach. They defines a large class of algebras called string

algebras. This class of algebras contains the Brauer tree algebras. They also gives

a complete description of the indecomposable modules over string algebras. As an

immediate consequence of their results we have that the set of string modules for

the Brauer tree algebras is a complete set of nonprojective indecomposable mod-

ules for the Brauer tree algebra. So in studying the string modules over a Brauer

tree algebra we will be studying the nonprojective indecomposable modules over the

Brauer tree algebra.

In this thesis we will extend the resolution results of Alperin and Janusz. In

particular we will give a simple constructive algorithm for computing the minimal

projective resolutions for all indecomposable modules over a Brauer tree algebra. We

will show that the periodicity is either n or 2n where n is the number of vertices in

the Brauer quiver. We will use those results to compute a minimal set of generators

for the cohomology ring of the Brauer tree algebra with respect to the Jacobson

radical. We define the Jacobson radical and the cohomology ring in chapters 5 and

6 respectively. We note that in [3] P. Brown, using different techniques, determined

these minimal generating sets less algorithmically for a larger class of algebras,

namely representation-finite biserial algebras.

The basic layout for this thesis is as follows: In Chapter 5 we give an algorithm

for constructing minimal projective resolutions of string modules over a Brauer tree

algebra with exceptional number N > 1. In Chapter 6 we use those resolutions

to compute a minimal set of generators for the cohomology ring of a Brauer tree

algebra with exceptional number NV. On some occasions we compute minimal pro-

jective resolutions for an indecomposable module over a Brauer tree algebra with

exceptional number N > 1 by computing a minimal projective resolution for an

indecomposable module over a Brauer tree algebra with exceptional number 1. We

justify this technique using covering theory which was developed in [7] and [8] which

we present in section 3.2. In Chapter 2 we define both path algebras and Brauer

tree algebras which are quotients of certain path algebras.

In [15] H.Meltzer and A.Skowrotiski gave a short time line describing some of

the events above and it was instrumental in the organization of this introduction.

Although not explicitly referred to, we list the related works [10], [17], and [16].

Chapter 2

Preliminaries

2.1 Path Algebras

We recall the definition of a path algebra. By a quizver path or directed path P we

will mean a finite sequence of arrows a ,a2---a, such that t(a;) = o(a;41), where r

is a positive integer and 1 <i <r. We will frequently leave off the word ‘quiver’

when referring to a quiver path. We also define ¢(P) = the terminus of the path P,

and o(P) = the origin of the path P. The K-basis for KT is the set of all vertices

(i.e. paths of length zero) together with the set of all finite paths. We define the

multiplication on basis elements and extend linearly. Recall that we are thinking of

vertices as paths of length zero. Let P and Q be paths. Then

PQ if t(P) = 0(Q)
P-Q= 0 ift(P) 4 0(Q).

2.2 Brauer Tree Algebras

We define a Brauer tree algebra, A, as a quotient of a path algebra, AT / 7. In this

section we describe the quiver I’ that is associated with the Brauer tree and give

a set of relations (or generators) which generate the ideal 7. We will illustrate the

construction with an example.

A Brauer tree is a finite connected undirected tree that has been placed in a

plane with a clockwise orientation. The tree also has one exceptional node, i.e., one

node that has a positive integer (the exceptional number) associated with it. In the

diagrams we will place the exceptional number close to the exceptional node. Using

the (underlying) Brauer tree we construct a quiver. For our example we use the

underlying Brauer tree in figure 2.1.

Figure 2.1:

As in figure 2.2 we label each edge (approximately at the midpoint), v1, v2,...,Un-

These will be the vertices of the directed quiver I that we will build.

UZ

U8

v2

V1

Figure 2.2:

We enclose each node within a cycle of directed segments (arrows) which connect

the midpoints (vertices) of the edges that have that node as an endpoint. These

directed segments (which are the arrows of I) must follow the orientation of the

plane. Label the arrows that have just been created. See figure 2.3.

From now on when we use the word cycle we will mean one of these cycles of

arrows surrounding a node. We will call the cycle surrounding the exceptional node

the exceptional cycle. And in diagrams we will place the exceptional number in the

center of the exceptional cycle.

n

Figure 2.3:

Thus, given a Brauer tree, we have constructed the quiver I that we will associate

to that tree. To present the relations for the ideal J, the set of which we will call

p, we need some terminology. A path, P, will be called a mazimal path if a) P lies

entirely within a cycle and b) if that cycle is not the exceptional cycle, the length of

P is the number of arrows in the cycle and c) if that cycle is the exceptional cycle,

length of P is N - (the number of arrows that are in the exceptional cycle) where N

is the exceptional number.

There are three types of relations that generate J.

Type A: Any path of length two that doesn’t lie entirely within one cycle.

Type B Any path lying entirely within a cycle that contains a maximal path and

is one arrow longer than that maximal path.

Type C The difference of any two maximal paths that have the same origin (and

hence the same terminus).

For the example that we have been working with

I = < ad, db, be, ec, cf, fh, hk, kn, nl, lo, om, mi, ip, pj, jg, aa, bb, cc, gde fg, def gd,

efgde, fgdef, highighijh,ijhizhijhi,jhijzhijhtj, nn, 00, pp, kimk, lmkl, mklm,a —

defg,b—efgd, c— fgde, hightzhij — gdef,p — phighizhi,

wphijhijh — klm, n — lmk,o — mkl >

2.3 rep(QUIV, p)

For the definitions we follow [7]. We let QUIV be a directed graph and we let p be a

set of generators of an ideal Jin K QUIV. Also let QUIVo be the set of vertices in

QUIV, and QUIV! be the set of arrows in QUIV. A K-representation of QUIV isa

tuple X = (X,, a(@))veguive.aequiv,, Where each X, is a finite-dimensional K vector

space, all but a finite number zero, and if a is an arrow from vertex v to vertex w, then

a(a) is a K-linear map from X, to X,. We will write the maps a(a) on the right.

The category of K-representations of QUIV, denoted rep(QUIV), has as objects

the K-representations of QUIV and as morphisms B : (X,,a(a)) — (Y,, B(a))

tuples B = (B,)vegurv, such that each B, is a K-linear map from X, to Y, such

that if a is an arrow from vertex v to vertex w then B,, 0 a(a) = 8(a)o B,.

We will say that the K-representation X satisfies the relations p if when-

ever []#_, Gi1di2°*-din, € p, we have [[#, a(aj)a(aj)--- A(din,) = 0. We let

rep(QUTV, p) denote the full subcategory of K-representations of QUIV satisfy-

ing the relations p.

Chapter 3

String Modules and Covering

Theory

3.1 Strings and String Modules

Given a quiver, QUIV, which is either [or * and a set of relations rel, we define the

formal inverse of an arrow a to be a~! and define o(a7!) = t(a) and t(a~') = o(a).

We also define (a~')~’ = a. A formal path, a,--- ay, is a sequence where for 1 <7 <

n , a; is of the form a or a7! and ¢(a;) = o(a;4). We define (a, -+-a,)~! = az! --- aj’,

t(ay--:a,) = t(a,), and o(a,---a,) = o(a;).

A string is a formal path a,---a,, where aj4; 4 a;! for all 1 <2 < n, and no

subpath nor its inverse is a maximal path, no subpath nor its inverse is in rel. We

also define strings of length zero. For any vertex, v, of the quiver define 1, to be a

string of length zero. We define and always reduce

l,a = “ if o(a) = v and al,= a if (a) =v
undefined otherwise undefined otherwise.

Following [4], given a string of length greater than zero S = a,---a, we define a

string module M(S). We define it by giving its representation in rep(QU IV, p). Let

u(z) = o(a,;41) for 0 <2 <n and u(n) = t(a,). Then if v is any vertex in QUIV,

10

we let I, = {2|u(2) = v}. M(S), will be a vector space of dimension the cardinality

of I, with basis vectors z;,2 € I,. If a; = a, define a(z;1) = 2, and if a; = a7’,

then define a(z;) = z_1. If y: w > w’ is an arrow and z; is one of the basis vectors

of M(S) and y(z;) has not yet been defined , let y(z;) = 0. Note that M(S) and

M(S~") are isomorphic.

If S = 1, for some vertex in v then we define M(1,) to be the simple repre-

sentation corresponding to the vertex v in QUIV. In other words M(S), is a one

dimensional vector space, M(S), is a zero dimensional vector space for u 4 v, and

all maps are the zero map.

In figure 3.1 we give a quiver I’. Letting the relations be the Brauer tree relations,

we give an example of a string S and the representation for M(S). In our illustration

of the representation we will write v when we are refering to a one dimensional

subspace of M(S),. To distinguish two different one dimensional subspaces of M(S),

we would write v once and v/ another time. We have drawn the nonzero maps which

we note always map one dimensional subspaces to one dimensional subspaces.

11

For S = k'(ij)(efgdef)~ V7

= Vij fled gt fle, /
M(S) =

V4

/'
U5

/
v1 vf

J/\ fs
vy v5 vt

Nf
v4

Figure 3.1:

12

These modules are nice to work with since up to isomorphism they are deter-

mined by only a few pieces of information. We will show that this is the case where

the exceptional number is 1 by showing that string functions can be determined us-

ing only a few pieces of information. We introduce string functions in Chapter 4 and

show that every string module is isomorphic to the image of some string function.

But more than just another pretty module, Butler and Ringel [4] prove

Theorem 3.1 {M(S) : S is a string} is a complete set of the nonisomorphic

nonprojective indecomposable modules over A.

Therefore if we find the minimal projective resolutions for all string modules over

A we will have found all of the minimal projective resolutions for the nonprojective

indecomposable modules over A.

3.2 Coverings

The covering theory that follows was developed by E.L.Green and can be found in

[7] and [8]. Let I be the quiver for a Brauer tree algebra with exceptional number NV.

We will construct a second Brauer tree, I’, and its associated Brauer tree algebra,

A*, with exceptional number 1. The theory works more generally but we only

concentrate on Brauer tree algebras. We define Ig to be the set of vertices of I, and

I, be the set of arrows of . Let W be an arbitrary set function from I; to a group

G. For us G will be the group of integers modulo N which we denote Zy.

A regular covering of I’, l*, is constructed in [7]. We give review that construction

below. The quiver is given as follows: Tj = {v9|v € To, and g € G} It = {a9|a €

T,, and g € G} where if v —> w in TI then v9 —", wI¥()_ Since T and I

are locally homeomorphic it is clear that [* is a quiver associated to some Brauer

13

[*

Figure 3.3:

Theorem 3.2 A* is the Brauer tree algebra with exceptional number 1 associated

to the quiver I™.

Proof. Since [and [™ are locally homeomorphic it is clear that I* is a quiver

associated to some Brauer tree. Therefore we only need to show that p* is precisely

the set of relations of types A,B, and C that define the relations for the Brauer tree

algebra.

We first show that p* contains all of the relations of type A,B, and C. Since the

quivers are locally homeomorphic it is clear that p* contains the relations of type

A, products of arrows not lying in the same cycle.

To see that all of the relations of types B and C are contained in p* we first

show that each maximal path in I™* lifts from a maximal path in I’. Note that each

nonexceptional cycle in I* lifts from a homeomorphic nonexceptional cycle in I’.

Thus it is clear that each maximal path that lies in a nonexceptional cycle in I*

lifts from a maximal path in I.

The exceptional cycle C with exceptional number N in I lifts to an exceptional

cycle C* with exceptional number 1 in I*. These cycles are not homeomorphic. In

fact C* has N times the number of arrows that appear in C’. We illustrate this in

figure 3.4. Where we are letting C' be the cycle with arrows a1, ..,a,, and W(a,) = 1.

We construct C%.

16

T
_ © ,,

i

=
1

Vy

"3

0
vy

|

2
0

,

a,

|

2

|

Vv
Vy

|

°

e

e

a2

°

v2

V1

Figure 3.4:

17

Note that the maximal path in C”,

(aN-2qNAT N-1)(qN-1 —1 aq? a®),
(a?al.. al)(ala?.. a?)-. Q2---a,

projects to the maximal path in C

(a142 1 ++ Gn)(G142...dn) +++ (jaz... Gn)(a1a2... an).

Ntimes

Similarly we see that each maximal path in C* lifts from a maximal path in C.

Now that we have every maximal path in C™ lifts from a maximal path in C’, we

can easily see that all of the relations of types B and C are contained in p*. This

is because they are all either an arrow times a maximal path, or the difference of

two maximal paths. It is also now clear that p* only contains relations of type A,

B,andC.

We will let Mod(A) and Mod(A*) be the categories of modules over A and A*

respectively. We let rep(I, p) be the category of K-representations of I’ satisfying

the relations p that generate 7, which we defined in Section 2.3. In a similar fashion

we define rep(I*, p) where p* are the relations that generate J*. We let F' and J be

the standard functors: F : rep(I’,o) — Mod(A) and J : Mod(A*) — rep(I*, p*).

See [7]

Let X be a tuple in rep(I™, p*) given by (Xz, (@") vers treGaers Where a(a) is

a linear map from the vector space Xa) to Xia). Then we define H : rep(I*, p*) >

rep(T’, p) to be the functor given by H((X)) = (Y%., B(a)) where Y) = [req Xue and

B(a) = Deg a(a’). It was shown in [9] that since A and A* are finite dimensional

over K, H is exact and additive. We define the functor EF to be the composition of

functors, Jo Ho F’. Gordon and Green also showed that FE maps simple A*-modules

18

(respectively A*-projective covers) to simple A*-modules (respectively A-projective

covers). In addition they showed that if r and r* are the Jacobson radicals for A

and A* respectively, then E(r*M) = rE(M) for any A*-module. They proved these

results in the case where G = Z, but the proofs remain the same in the case where

G = Zn. Thus E maps A*-minimal projective resolutions to A-minimal projective

resolutions.

We add to the results above by by showing that F maps indecomposable A*-

modules to indecomposable A-modules. In other words we will show that E maps

A*-string modules to A-string modules. More than that we will show that given a

A-string module, M, there is a A*-string module M* such that E(M*) = M. In

Proposition 3.3 we will construct M*. However, we begin with an illustration (see

section 3.1 for the notation) of the action of FE by drawing part of the representation

for a A*-string module R and the corresponding part of the representation for the

A-string module F(R). That R* is a string is an immediate consequence of the fact

that maximal paths and relations in A lift to maximal paths and relations in A”.

Later when we discuss the homomorphisms that appear in the minimal projective

resolutions we will also describe the image of the homomorphism under FE. In

this way any constructive algorithms that we develop for computing the minimal

projective resolutions of A*-string modules will automatically become a constructive

algorithms for computing minimal projective resolutions of A-string modules.

Proposition 3.3 Given a T-string S = s,---s, where the s; are quiver and formal

arrows, there exists a [*-string S* such that E(M(S*)) = M(S).

Proof. We make the following definition: if s = p~!, where p is a quiver arrow,

and 7 € Zy, we define s' = (p')-!. We let a be the arrow in I such that W(a) =T.

19

Then, if for each 7, w(s;) = 0, then we define S* := sO... 3°. If {s1,,..., Sz, } is

the set of al] arrows in S* such that either s;, = a or a~', then we define S* =

0 0 1 T 2 k-1 ok k : *\\ $175 Si, S447 St Sing Sk $4.41 °°°S,- In either case E(M(S*)) = M(S).

Remark: We could have begun the construction of S* with s) instead of s° and

changed the proof accordingly. We also could have used the inverses of any of the

strings that we construct in this fashion. However, those are all of the strings S*

such that £(M(S*))=M(S).

20

J(M(R*)) :

H(J(M(R*))):

En41

fs

. Ynt1
° Un4+1

Zn-1 a,”

an-1

y U;,”

Vy

a\

Va :

a2

\ fis

. Un+1

a wor\ fs

Un

Figure 3.5:

21

Chapter 4

String Functions and their Images

In this chapter we introduce string functions and show that for every string module

there is a string function with an isomorphic image and vice-versa. We will also

introduce h-strings and underlying strings two convenient notations for describing a

string function. In Chapter 5 we will show that string functions are the homomor-

phisms that appear in a minimal projective resolution of a string module.

For the remainder of this paper we define a loop to be an arrow with the same

origin and terminus. Suppose the number of vertices in the quiver for a classical

Brauer tree algebra is n, then we are going to form a set of n paths. We will call

this set the set of fired mazimal paths. Recall that a maximal path, p, with origin v

is a path which is not a relation, yet every path properly containing p is a relation.

These paths always have the same origin and terminus, and there is always exactly

two of them with the same origin. The set of fired mazimal paths will contain exactly

one maximal path, which is not a loop, with origin v for each vertex v in the quiver.

Given a string S we are going to define a new forma] path, an A-string h.S. While

the notation seems to suggest that an h-string is a string it is not always the case.

There are formal paths that are strings but not A-strings and vice-versa. Using

an h-string, AS, we will construct a homomorphism hS whose image is isomorphic

22

to M(S). (The abuse of notation will cause no confusion.) We will call these

homomorphisms string functions.

We define an hA-string in the same way that we define a string, except that we

do not allow formal] paths of length less than 1, and we do allow formal paths that

are in the set of fixed maximal paths. However, we do not allow any formal paths

that contain maximal paths as proper subpaths.

Before we can create 2S, we must first partition S. We say that a formal path,

S, of length greater than 1, is partitioned if it is written in the form S = s,---s,,

where s; is a formal path lying entirely within one cycle and for 1 <1 <n, s; and

$341 lie in different cycles. If S = 1, for some vertex v, then S is also partitioned.

Note that, since any quiver path lying in two cycles contains a relation, if s; is a

quiver path, then s;,, is a formal inverse of a quiver path. Also if s; is an inverse of

a quiver path, then s;,; is a quiver path. This means that all of the formal paths

s, where k is odd are paths in I’, and all of the formal paths s; where 7 is even are

formal inverses of paths in I’, or vice-versa. But there is a one to one correspondence

between strings and h-strings.

Given a partitioned string S = s;---s,, we define the partitioned h-string, hS

to be s/,---s}. Where s’ is defined as follows. For 1 <i <n, if s; is a quiver path,

then we define s; to be the quiver path such that s,s! is a maximal quiver path. If

s; 1s a formal inverse of a quiver path then define s‘ to be the formal path such that

8,8, is the formal inverse of a maximal quiver path. If s; = 1,, then we define s’ to

be a fixed maximal path such that o(s;) = t(s;) = v. It is easy to see that AS is

indeed an /A-string.

We show that there is a one to one correspondence between strings and h-strings.

Given a partitioned h-string, 2S, we show how to construct a string function. A

23

partitioned h-string hS can be written in one of four different ways which we list

below:

1) AS = P,Q7* P2Q271 +++ P,Qz) or

2) hS = P,Qz'P2 31 Pm or

3) AS = QT’ PeQz' +--+ PmQ;z) or
4) hS = Qy'P2Qz'--- Pm where P; and Q; are quiver paths

For each of these four h-strings we define a string function hS. We do this

in figures 4.1 - 4.4. Along with each definition we provide a diagram called an

underlying string which assists in visualizing the string function. Also, whenever

they are used, c; and d; are in the field K, c;, d; # 0, v; and w; are vertices in T

(or I'*), P; and Q; are the images of P; and Q; in A, and p; = cP; and q; = d;Q;.

Also, for brevity, we identify (0,...,0,0;,0,...,0) of yA @---@v,A with . After

understanding the definition of a string function the reader should note that the

functor & introduced in Section 3.2 maps string functions to string functions, and

that the corresponding h-strings are identical if the coefficients in Mod(A*) are

ignored.

24

To the h-string P,Q’ P2Qz'--- PnQz', and to the constants c; and d;, we asso-

ciate a homomorphism AS: v,A @--- @v,A 4 wiA @+++ @ WmgiA where hS(v;)

= (cy P1, d;Q,,0, eee , 0), for2 =2--- (m _ 1) hS(%;) = (0, woe ,0,¢P;, d;Q,, 0, eee , 0)

where c;P; is in the (2)* coordinate, and hS(%,,) = (0,...,0,¢mPms4mQm):

vy V2

P1 71 P2 q2

Wy We W3 Wm—1 . Wm Wm+1

Figure 4.1:

To the h-string P,Q{'P2Qz'---P,, and to the constants c; and d,;, we associate

a homomorphism hS: vA @--- BmA > wiA ®--: B wWeA where hS(U,) =

(cq P;,d,Q,,0,...,0), for i = 2---(m — 1) hS(%;) = (0,...,0,c;P;,d;Q;,0,...,0)

where c;P; is in the (7) coordinate, and hS(U,,) = (0,...,0,¢mPm):

Vy V2 Um-1 Um

Pi 71 P2 q2

Wy W2 W3 Wm-1 Wm

Figure 4.2:

To the h-string P,Q7'P,Qz'--- Py, and to the constants c; and d;, we associate a

homomorphism hS: v,A@---Pu,zA 3 AS: vj;A@®---PBuyA wy AQ@:--Pw,A where

hS(¥1) = (d1Q,,0,...,0), for i = 2---(m—1) hS(%;) = (0,...,0, Pi, d:Q;, 0,..., 0)

where c;P; is in the (2 — 1)** coordinate, and hS(Um) = (0,---,0,¢m Pm; dmQm):

V4 V2 Um-1 Um

1 P2 q2 sae Pm-1 dm-1 Pm dm

Wy W2 Wm-2 Wm-1 Wm

Figure 4.3:

To the h-string Q7'P2Qz'--- P,, and to the constants c; and d;, we associate a ho-

momorphism AS: v,AQ@---PumA 3 AS: vjA@---BumA 9 wyAQ@---Pwm_-1A where

hS(®;) => (d,Q,,0,. .- , 0), fori =2--- (m—1) hS'(3;) = (0, wee ,0,¢P;,4;Q,, 0, eae , 0)

where c;P; is in the (i — 1)* coordinate, and hS (Gm) = (0,...,0,¢m Pm):

V1 V2 VUm-1 Vm

1 P2 q2

W1 We Wm-2 Wm-1

Figure 4.4:

We next prove that all of the string functions associated with a single h-string are

isomorphic.

26

Lemma 4.1 If f and g are string functions that are both associated with the same

h-string, hS, then Imf ~ Img.

Proof. Without loss of generality we can assume that the coefficients in the

definition of f are all 1. We will only prove the lemma for string functions of the

type described in figure 4.3. The proof is similar for string functions of the other

three types. In figure 4.5 we give an underlying string for f and g.

vy v2 Vm

Um

Cm Pn dan Om

Wy W2 Wm-1 Wm

Figure 4.5:

To prove the lemma it suffices to show that there are isomorphisms X and Y

such that the following diagram commutes.

27

 vy,A@---@v,A - wyA@---PuzA

Y Xx

 VA @---PvuzA g > wi,A @-:--@w,,A

Figure 4.6:

We define the isomorphisms X and Y by defining them on the idempotents

Vj,.--,Um- For 1 <1 < m we will define X(v,;) = z;v; and Y(v;) = y;v; where

r;,y; © K* need to be determined. To ensure that the diagram commutes it suffices

to choose the z;’s and y,;’s so that the diagrams commute on the 2,’s.

For that to happen we need x;d; = y,; and for 2 <2 < m, z,;c; = y;_; and

z;d; = y;. Simplifying we get that for 2<2<m, a;d; = 2;41¢;4,;. Thus by choosing

XZ, = 1 and solving recursively we can find the necessary homomorphisms X and Y.

a

Unfortunately using our definition two different h-strings can have associated

string functions that have isomorphic images. So we need to identify when this can

happen. We do this without proof in Lemma 4.2.

Lemma 4.2 The string function hS ts associated with only the h-strings hS and

(AS).

We conclude the chapter by proving

Proposition 4.3 The image of the string function hS is M(S).

Proof. This is a sketch of the proof for a particular case. The proof clearly

generalizes. However, the general case requires an even more burdensome notation.

28

We consider a graph QUIV and a particular string, S. In figure 4.7 we have drawn

a part of the graph QUIV. We want to show that the string function AS which

corresponds to the h-string AS = ((f1--- fa;)(C1*+* Cn.) "(G1 +++ Gn.) has image iso-

morphic to M(S).

We let S = (b, ---b,,)(dy ---d,,)7"(€1--+ en.) which is a sufficiently complicated

to demonstrate all of the necessary proof techniques for the general case. We

give the underlying string for AS in figure 4.8, and note that AS is a map from

t(fn, JA B tan,)A to tle, JA @ t(d,,)A. It is defined as follows hS((t(fn,),0)) =

(fi->+fnysCi-**Gn,), and hS((0,t(a,,)) = (0,a1-+-an,). After unwinding the defi-

nitions one can see that the image of this map is isomorphic to M(S). We give a

representation of M(S’)) in figure 4.9. There we have drawn all of the nonzero maps

between basis elements. Note that each time a vertex v appears in the diagram it

represents a different basis element in M(S),.

One Cy Cn.

aaa
DD

dn dy f, nf f 1

Figure 4.7:

29

t(€n.) t(dng)

Figure 4.9:

30

Chapter 5

The Minimal Projective

Resolutions of String Modules

over Classical Brauer Tree

Algebras

In this chapter we will prove that the periodicity of a string module is either |I'|

or 2\[|. To accomplish this we will develop algorithms for computing minimal

projective resolutions for string modules over A. We remind the reader that |I'| is

the number of vertices in T.

Let ¥ be the Jacobson radical for A. Then we will be using the following definition

for a minimal projective resolution of a module Mo: the exact sequence

1. Py 2 P, ®s Me

is a minimal projective resolution of the module Mo if Ker(f;) C TP, and P; is

projective for 2 > 1.

31

5.1 The Picture Algorithm

Our goal is to give a simple ‘walking’ (or follow the arrows) algorithm for calculating

the minimal projective resolution of an indecomposable module over A. But, before

we are able to give the ‘walking’ algorithm we must first develop an intermediate

algorithm which we will call the ‘picture algorithm’. This algorithm can be applied

to string modules over A. Hence it can also be applied to A* since A* is a Brauer

tree algebra with exceptional number 1. The algorithm can in fact be applied to any

path algebra whose quiver consists of cycles of arrows and employs the same type

of relations that we have been using. In other words, we can relax the restriction

that we look at a graph that is a tree of cycles.

Lemma 5.1 Given a string function hS. The string function hT that is found

using figures 5.1 - 5.10 is such that Im(hT) = Ker(hS).

Proof. We define two types of vertices looped and nonlooped. We say that a

vertex, v, is a looped vertex if there is arrow, a, with o(a) = t(a) = v. We say that

a vertex is a nonlooped verter otherwise. The proof is broken up into ten cases.

These ten cases correspond to ten different forms that an underlying string might

assume. In each case we have given the underlying string for h.S and directly above

it the underlying string for hT’. Immediately following each diagram we prove that

Im(hT) = Ker(hS). We do not concern ourselves with using only fixed maximal

paths in the underlying strings. They are only used for ease of notation in other

parts of the paper. Here it would be inconvenient. This will cause no problem when

we return to examining h-strings. For if a maximal path does appear in an h-string

our algorithms will only be concerned with the origin of the path.

32

Since our main concern will be in resolving simple modules, we can restrict our

attention to the string functions where the field coefficients in the underlying string

are all ones or alternate between +1 and -1. By that we mean c,,dj,C2,d2,...

alternate between +1 and -1. The proof then becomes somewhat less burdensome

with respect to notation. However, the approach remains the same for the more

general case. After we have proven the lemma we will note the changes that occur

when the sequence cj, d,, c2,d2,... alternates between +1 and -1.

We keep the same notation that we have been using in previous chapters. If P

is a path which lies entirely in one cycle in I’, then P’ is the path such that PP’ is

a maximal path.

Case 1:

t(a) wi

\

\

AT: \ve Oi — Ps

\
v1 v2

hS: Q1 P2 wee Qn-1 Py

Wi Wn-1

Figure 5.1: We let a be the arrow with origin v; which does not lie in the same
cycle as Q; (or w,). We let @ be the arrow with origin v, which does not lie in the

same cycle as P, (or w,_1). Assume n > 1. The left (resp. right) dotted in portion
of T will be present if v; (resp. v,) is a nonlooped vertex.

33

For the remainder of the proof, when defined, we let gq; (resp. pi41) be a linear

combination of distinct paths leaving v; (resp. v;41) in the same cycle as Q; (resp.

P;,,). We first assume that v, and v, are looped. Then to prove hT’ maps onto

Ker hS we will show that

~ lh
{(0,...,0,Q;,-—Pi41,0,...,0) : O< 2 < nand @, is in the jth component} is a

generating set for Ker AS.

Let x € KerhS. Then

n-1 © = (%, Do + G--- Buea + Gre Pan) = DN (0,..-, 0,9, B41, 0,...,0). Since the

product of two paths lying in different cycles is in J, we have that

hS(zx) = (1.0, 2(Dy + G2), Qo(Be + G2) + P3(D5 + 3); vee Qn-1 (Pr1 + Gn-1) + P»By)
+

= (Q1% + PoP, 292 + Psd3,--++Qn—-19n—1 + PrBn)

So, in particular, for 0 <2 <n we have that

AS((0,.--,0,9;,F:41,0,-.-,0)) = (0,...,0, Q,9; + Pi41D,,0,...,0)

(0,...,0).

Therefore, if we define hS; = {y = (0,...,0,9;,B;41,0,...,0) : y € KerhS},

then U5'hS; is a generating set for KerhS. So we only need to show that

for a fixed 2 {y = (0,...,0,4,,;41,0,.-.,0) : y € KerhS} is generated by

(0,-+-,0,Q;, —Pi41,0,-+-,0).

For the remainder of the proof for 0 <2 < n, we let b; be the first arrow of Q,,

and we let a4, be the first arrow of P,,,. If one of the terms of Q,4; (resp. Pi41pi41)

is zero in A*, then it must be a A*-multiple of ,Q,0; (resp. Piss Pg G41) and hence

34

generated by Q,Q;b; (resp. Piss Pi41Gi41):

So if we subtract from Q;9; + Pis1D;41 all terms that are zero in A*, then we

either have nothing left or we have a linear combination of terms that is zero in w;A*.

Up to a scalar multiple there is only one such combination. It is 0.0. ~— Py41P, 44

Since we also have for 0 <i <n (Q;Q, — Pisa Pay)0i = Q,0,6; and

(0.0. Pia P. 41)(-@;) = Psi P P,,,@;, we have 0,9, ~ PiaiP; 41 generates {Q;9; +

—_ 41: (0,...,0,9;,Bj4,0,...,0) Ker hS}. Therefore we have that the element

(0,...,0,Q,, Fo. ,0) generating hS; for each: 0 <2 < n. We conclude

that hT’ maps onto KerhS.

We now deal with the case where v; is nonlooped. We leave the case where v,, is

nonlooped to the reader. We will deal with this case by briefly going back through

the the preceding proof, noting the places where the proof changes.

First we must define p; and a. p, will be any linear combination of distinct

paths starting at v, but not in the same cycle as Q;. a will be the arrow leaving v,

not in the same cycle as Q).

If c € KerhS, then

(Pi + Gis--->Pn—-1 + In-1 Pm) and

AS(z) = (Q(B, +9) + P2(p, + q), Q2(, + G2) + P3(D3 + q3);- Qn-1 (Pry + G1) +P,

= (Q14, + Pod, Q2G9) + PsP3,---, Qn—1In—1 + PrBn)

= (0,...,0).

This implies that (p,,0,...,0) € KerhS. So if we define hSo = {y = (f,,0,...,):

y € KerhS}. Then U™>' hS; is a generating set for Ker hS.

Finally if p is a path beginning with a then Q,p = 0 in A. So (—@,0,...,0)

generates hSy. This completes the proof for case one.

Note that we used (—@,0,...,0) when we could just have easily used (@, 0,..., 0).

We do this for the sake of consistency and ease of notation.

Case 2:

t(a;) W2 t(bn)

/
\

\ / / /
AT : (im M1 Po by

\
V1 V2

hS : P; Q1 P2

Ww we Wn Wn+1

Figure 5.2: The left (resp. right) dotted in portion of hT will be present if P; (resp.
Q@,) is not an arrow. Assume (n > 1).

Case 2 uses the same format as Case 1 so we will move quickly through the proof

noting only the differences.

If x €KerhS, then

c= (D, + 44, P2 + Goy-++5 Pn + Gn)

n~-1

= (p,,0,...,0)+ 5° (0,...,0,%;, Bis1) + (0,---,0, 9)
t=1

36

Hence we have

hS(z) = (Pi(By+%), Q(B, +H) + Poe + Ga), +++ Qm—1 (Pra + Gn-1) + Pan + Ins Qnl

= (Pid,, 21%, + 2P2) ee Qn—1In—1 + PrBnr QnIn)

So once again for 1 <i < n we have (0,...,0,9;, Dj41,0,...,0) EKerhS. But in

addition we have that (p,,0,...,0) and (0,...,0,%,,) €KerhS. Therefore, if we let

So = {(D,,0,...,0) EKer 2S}, S, = {(0,...,0,9,,) EKer AS}, and for 1 <i <n we

let S; = {(0,...,0,9;, 5;41,0,...,0) EKer hS}, then Uji, S; is a generating set for

Ker AS. As before for 1 <2 <n (0,... 0, Q; P4130, ...,0) generates S;. All that

remains is for us find generators for So and Sy.

If Pip, (resp. Q,,9,) is zero in A, then since Pip; (resp. Qndn) contains only paths

lying in a single cycle it must be that each of the paths in Pp, (resp. Q,g,) contains

P, Pia, (resp. QnQ/.b,). Therefor So (resp. S,,) is generated by (-Pa1,0,. ..,0) (resp.

(0,... ,0, Q,.bn)). We have that hT maps onto Ker /5S in either the case where P,

(resp. Qn) is an arrow or not.

However, if P; (resp Q,,) were the arrow a, (resp. b,,), then P; (resp. Q,,) would

be a maximal path. Thus the map AT including the doted portions would not be a

string function. Luckily, the dotted portions become unnecessary in that case. For

then Pa, = Q,Q, (resp. Q,.b, = P,, Pn). Hence,

(—P}a;,0,...,0) =

/

(resp.(0, re) 0, Q,,bn) = (0, ..-,0, Qn-1 ’ P,.)(Pn))

and so (0, ~P,,0, ...,) (resp. (0,...,Q, Q' _,,P.)) generates Sp US;

(resp.S,-1 U Si).

37

Note that we used (-P’,a1,0,. ..,0) instead of the more obvious (P’a1,0,. ..,0).

Again we do this for the sake of consistency and to ease later notation.

Case 3:

t(a) wy

\
\

AT: \<o Q' — Ps

\
Vj v2

AS : Qi P2

 Wi

Figure 5.3: Once again a is the arrow leaving v, not in the same cycle as Q,. The

left dotted in part of hT is included if v; is a nonlooped vertex. The right dotted in

part of hT is included if Q,, is not an arrow. Assume (n > 1).

This case as well as the remaining cases use proof techniques similar to the ones

presented in Cases | and 2. Hence we list the Cases without proof.

38

Case 4:

t(a1) t(b1)

/
/

hT : — Pia; / Ah

/
V1

hs P Qi

Wy We

Figure 5.4: We assume that v; nonlooped. We also assume that if exactly one of P;

or @, is an arrow, then it is Q,. The dotted in part will appear only when Q, is

not an arrow.

39

Case 5:

t(a) t(b1)
/

/

hT: \ & / Hb

/
V1

hS: Qi

Figure 5.5: We assume that v; nonlooped. The dotted in part is included only if Q,
is not an arrow. If Q; is a maximal path, we define Qj to be the vertex vj.

40

Case 6:

t(b1)

hT : Qi br

hS: Q;

Figure 5.6: We assume that v; looped. If Q; is a maximal path, we define Q{ to be

the vertex v}.

4]

Case 7:

t(a;) We Wn t(B)

\

hT : n-1 Pr /

/
Un—1 Un

hS : Qn-1 Pr

Wn

Figure 5.7: We assume that (n > 1). The left dotted in part of hT is included if P,

is not an arrow, the right dotted in part is included if v, is a nonlooped vertex.

42

Case 8:

t(a1) t(b1)
\

\

AT : \ Pha Qi by

\
V1

hS: Py Qi

Wi We

Figure 5.8: We assume that v; nonlooped. We assume that Q, is never an arrow.

The dotted in part of hT’ will be included if P, is not an arrow.

43

Case 9:

t(a1) t(B)
\

\

hT : \ Pha B

\

hS : P

Ww}

Figure 5.9: We assume that v; nonlooped. The dotted in part will be included if P,

is not an arrow. If P, is a maximal path, we define P; to be the vertex v4.

Case 10:

t(a1)

hT : — Pray

AS : P

Wi

Figure 5.10: We assume that v; looped. If P, is a maximal path, we define P; to be

the vertex v}.

It can easily be shown that in each of the 10 cases above whenever the underlying

string for AS has coefficients that are all +1, the coefficients in hT alternate between

44

+1 and -1. If instead the coefficients of hS alternate between +1 and -1, then we

would have the coefficients of hT being all +1. Ml

Lemma 5.2 If f: M — N isa string function, then Ker(f) CTM.

Proof. Without much work it can be shown that 7 is generated by {@: a is an

arrow in the quiver}. By Lemma 5.1 ker(f) = Im(g) for some string function g. By

the definition of a string function it is clear that Im(g) CTM.

The Picture Algorithm

Given hSo we construct the minimal projective resolution of M(So) recursively.

hS;41 is found by letting h.S; play the role of hS in Lemma 5.1. Use the appropriate

case to find hT which is hS;4,;. Lemmas 5.1 and 5.2 prove that the algorithm

constructs the desired resolution.

5.2 A Simpler Notation

In this section we will restrict our attention to classical Brauer tree algebras with

exceptional number 1. In other words, we will be considering A*. For in this case

we can simplify the notation. Since we are able to construct the minimal] projective

resolutions for A-string modules from A*-string modules this is a worthy endeavor.

It will primarily be beneficial when we are constructing the minimal set of generators

for the cohomology ring of A.

We define a string-tuple to be a 4-tuple (x, l,y,r) where x,y € {up,down} and !

and r represent vertices of [*, or the edges in the underlying Brauer tree on which

the vertices lie. We also insist on a certain relationship between x and y. Recall

that the quiver for a classical Brauer tree has an underlying Brauer tree, where each

vertex lies on an edge of the underlying Brauer tree. Recall also that we use the

45

same name for the edge and the vertex lying on it. Let w;---w; be the edge walk

from the edge I to the edge r (w; = / and w; = r.) Then y = down if and only if z

= up and 7 is even or x = down and 7 is odd.

Proposition 5.3 There is a 1-1 correspondence between string-tuples and h-strings.

Proof. Let hS = s;---s, be a partitioned h-string. We describe the string-

tuple (z,1,y,r) that corresponds to hS and show how we will use the information

in the string-tuple to uniquely determine hS. Let 1 = o(s;), r = t(s,), 2 = up if

8, is the formal inverse of a quiver path and down otherwise, and y = up if s, is a

quiver path and down otherwise.

Recall that each vertex in I* sits on an edge of the underlying Brauer tree for

[*. These vertices and the edges that they sit on share the same name. The edges

o(8;)t(s;)t(s2)---t(s,) form a connected edge path. Since the exceptional number

is | and since no s; is a maximal path, the walk never doubles back on itself. Since

this walk takes place on a tree, it is the unique walk from the edge o(s;) to the edge

t(s,) with no repeating edges. So, given / = o(s,) and r = t(s,), we can build the

sequence 0(s})t(s1)t(s2)---#(sp). It this sequence together with the variable z that

will allow us to build AS.

In our construction whenever we are choosing a maximal path we will always

choose from our collection of fixed maximal paths. We build the h-string sj ---s/,.

If z = down, we choose s; to be the quiver path lying in one cycle from o(s;) to

t(s,). If c = up, we choose s} to be the formal inverse of that quiver path. Clearly

s} = 8). For 2 <2 <n, we choose s‘ to be either the quiver path lying in one cycle

from o(s,) to ¢(s,) or its formal inverse. Beginning with s; we alternate between

' choosing a formal inverse and a quiver path. By construction the h-string, s}---s/,,

is the h-string 81 --- Sy.

46

Note that we did not use y. The information contained in y could be used in a

similar fashion to the way z was used to complete the description of h.S. The two

different approaches do not yield contradictory conclusions. In fact the variable y

is unnecessary. However, its presense simplifies later proofs. So we leave it in.

Lemma 4.2 now takes the form of Corollary 5.4.

Corollary 5.4 A string function associated with (x,l,y,r) can only be associated

with the string-tuples (x,l,y,r) or (y,r,2,1). Hence up to an isomorphism of the

image of a string function we have that each string function has only these two

string-tuples associated with tt.

Using the string-tuple notation we are going to restate some of the results of the

picture algorithm in Corollary 5.5. But first we need some new notation. We will

say that the vertex v is one arrow away from the vertex w if there is an arrow from

w tov. If QUIV is a quiver for a classical Brauer tree algebra, v is a nonlooped

vertex in QUIV, and w is any other vertex in QUIV, then we define a new smaller

quiver QU IV,,.. We do this by considering the underlying Brauer tree. There are

two subtrees that contain each edge. The quiver constructed using the subtree

that contains v and w we will call QUIV,,,. We illustrate the idea in figure 5.11.

Definition: We will let |QUIV.,,| be the number of vertices in QUIV,y.

47

YS SO]
NOI

QUIV :

NINO
NOL

Figure 5.11:

QU View :

Corollary 5.5 Given that {(2;,1;,y:,7ri)}25 is a minimal projective resolution of

the image of (zo, lo, yo, 70), we give selective information about (2;,1;,y;,17;) in terms

of (23-1, Ui-1, Yi-1, Ti-1)- We do this by allowing (x;-1, ;-1, ¥i-1,17i-1) to play the role

of hS in Lemma 5.1 and carefully considering the ten different cases. For each case

we will list the cases that would need to be considered. We will be assuming the

notation of Lemma 5.1.

A If l;_y = r;-1 when |; is a nonlooped verter, then the next string-tuple will be

(up,l;,up,r;) where |; and r; will be the two vertices, say u and w, one arrow

away from l;_,;. We are free to choose l; to be u or w. We make a particular

choice when we present the ‘walking algorithm’. To verify this consider cases

5d and 9 of the picture algorithm. For B — F below we will assume that we do

not have l; = 7; when 1; is a nonlooped vertex.

B If 2;., = down and I;_, is looped, then l; is one arrow away from l;_, where

48

the arrow is not a loop. Consider cases 2,4,7,8,9, and 10. We have that 1; = v1

when p, is an arrow, and otherwise 1; = t(a,) where a, is the first arrow in

P,. In either case we have the result.

C If x31 = down and l;_, is nonlooped, then i; is one arrow away from I;_, in

rt
i~17Ti-1°

The same argument used in B works here if we also note that P, lies

2k mT esa:

D If 23-1 = up and l;_; ts nonlooped, then xz; = up and I; is one arrow away

from l;_, not inT7_,,,_,- Consider cases 1, 3, and 5. Note that @ is an arrow

leaving v, not in the cycle containing Q, and hence not in T *

[j-17y-1"

E If x;_1 = up and l;_; is looped, then x; = down and 1; = 1;_,. See cases 1, 3,

and 6.

F If l; is looped and 1; £ 1,1, then x; = up. We only get x; = down if |; = |;-1

where l; is looped or if 1; = v, is nonlooped. Consider all cases.

G All of the (obvious) analogs for B - F concerning x;-1, li-1, x;, and 1; hold

for yi-1, Ti-1, yi, and r;. The proofs look at different cases but the symmetry

makes this easy.

Let v © w represent the connected edge path in the underlying Brauer tree for

I* from v to w that contains no edge twice. Then we have the following corollary.

Corollary 5.6 Let {(2:,1:, y;,7;)}225 be the minimal projective resolution of the im-

age of (20, lo, yo, 0). Then provided l; 4 r;, x; = up if and only if l; does not appear

in ls. © r;_1. Also y; = up if and only if r; does not appear in 1;_1 © rj_1. If

;=1;, then we may choose x; = up and y; = down or vice-versa.

49

The reader should examine the picture algorithm to see that this proposition 1s

valid. Do this by noting that the edges in |; + r; are the vertices that appear from

left to right in the underlying string corresponding to (z;, l;, y;,17;).

5.3 The Walking Algorithm

Let QUIV be the quiver associated with a classical Brauer tree algebra. If there are

m vertices in QUIV then we are going to label 2m evenly spaced points on a unit

circle using the m vertices of QUIV. We will call this the QUIV-unit circle. Each

vertex will be used exactly twice in the labeling process. Definition: We define

any sequence that is formed by recording the labeled points in a clockwise direction

as a QUIV-walking sequence. We will give two different algorithms for labeling the

QU IV-unit circle the closed curve algorithm and the arrow algorithm. We will need

to refer to each from time to time.

The Closed Curve Algorithm

We fix an embedding of QUIV in a plane with a clockwise orientation. In other

words we insist that every cycle has the arrows moving in a clockwise direction. A

point will be considered to be in the exterior of QUIV if it is not on the graph or

bound by the graph. If d is the smallest distance between any two vertices in QUIV,

then we place in the plane a simple closed curve, C, with a clockwise orientation.

We insist that C follows the boundary of the exterior of QUIV at a distance of d/8.

See figure 5.12.

IN, A
LNA CsA ||

AI!

[I NN
|7 NI

Figure 5.12:

Place the center of a circle, D, of radius d/4 any where on the curve C’ such that

no vertex of QUIV lies within D. Then, keeping the center of the circle on C’, begin

to slide the circle D in a clockwise direction. Choose any point on the QU/V-unit

circle and label it the name of the first vertex to enter D. Continue to label the

points on the QUI]V-unit circle in a clockwise fashion using each successive vertex

that enters D. Stop recording when D returns to its starting location.

Consider figure 5.13 and note that every vertex enters D exactly twice as it

traverses C’. Thus as we claimed we have labeled exactly 2m points on the QUIV-

unit circle.

Figure 5.13:

The Arrow Algorithm

1. Choose a looped vertex v.

e Label any two successive points on the QUIV-unit circle v.

e Choose the vertex one arrow away from v. We insist that the arrow not

be a loop.

e Go to step 2.

2. e If the chosen vertex is v, then stop. We have recorded every vertex twice.

Otherwise

e If the chosen vertex is a looped vertex, go to step 3.

e If the chosen vertex is a nonlooped vertex, go to step 4.

3. Continuing in a clockwise direction we label the next two poimts on the

QU IV-unit circle as the chosen looped vertex.

e Choose the vertex one arrow away from that looped vertex. We insist

that the arrow is not a loop.

e Go to step 2.

4. e Continuing in a clockwise direction we label the next point on the QUIV-

unit circle as the chosen nonlooped vertex.

e Choose the vertex one arrow away the nonlooped vertex not in the same

cycle as the previously recorded vertex.

e Go to step 2.

52

The Walking Algorithm

Recall that a [-walking sequence is any sequence formed by recording the points

on the [-unit circle in a clockwise direction. A minimal projective resolution,

{(x:, 1, yi,7:)}2, for the image of some string function hSo € A* can be computed

by using the following algorithm.

1. Choose a string-tuple (29, lo, yo, ro) that corresponds to ASo.

2. Use Corollaries 5.5 and 5.6 to construct (or choose) (21, 4, y1, 11).

3. Construct the I'*-walking sequence {1;}92, which begins with the I'*-walking

sequence {lp, /;}.

4. Construct the I*-walking sequence {r;}%2, which begins with the I*-walking

sequence {r9, 1}.

5. Use Corollaries 5.6 to construct the sequences {x;}%, and {y;}22o.

To validate this algorithm we only need to prove prove Proposition 5.7.

Proposition 5.7 If Corollary 5.5 is used to construct the sequences {l;}2%, and

{r;}S5, then those sequences can be chosen to be *-walking sequences.

Proof. We will show that for 0 <7, that {lo,4,...,di4,} and {ro,71,..-, Tiga}

are [*-walking sequences. The proof will proceed by induction on 2. Using Corollary

5.5 to construct {1;}%p (resp. {r;}22,), it is clear that for i > 0, l; (resp. r;) is always

one arrow (possibly a loop) away from 1;_; (resp. r;_,). Since any two vertices one

arrow (possibly a loop) away from each other appear successively in a clockwise

direction somewhere on the ['*-unit circle, we have that {lo,J,} and {79,71} are I*-

walking sequences. We now assume that {lo,,,...,0;} {ro,171,---,7:} are '*-walking

sequences and show that {lo,l1,...,1;,li41} and {ro,r1,..-,7:, 741} are I*-walking

sequences. We do this by showing that the choice of 1,4; (resp. ri41) using Corollary

5.5 is consistent with the choice of l;,, (resp. r;4,) using the arrow algorithm.

We will first consider the proof when 1; # r;. We note that when |; 4 r;, Corollary

5.5 allows no flexibility in the choice of J;,; and r;4,. In that case by symmetry we

can simply show that the choice of J;,,; using Corollary 5.5 is consistent with the

choice of 1;4 using the arrow algorithm. We consider case where l; is a looped vertex

separately from the case where |; is a nonlooped vertex.

1. J; is looped. If 1;-, = 1;, lj41 is one arrow away from 1;. On the other hand,

if J;_, £ 1; then 1;4; = J;. In either case the looped vertices appear in {1;}%25

in a way that is consistent with the arrow algorithm.

2. 1; is nonlooped.

Figure 5.14:

Using figure 5.14 as a reference for our notation, our goal here is to show that

Corollary 5.5 chooses [;,; to be the vertex v. We consider two cases.

(a) We assume rj_, is in Ij, , but that rj_y 4 1;. Therefore J; is not in

E14 © 7-1. So by Corollary 5.6, 2; = up. Corollary 5.5 chooses 1;44

to be one arrow away from J; not in I'7,,. Since r; must be at most one

arrow away from r;_;, 7; must be in Ij... Therefore since r; # 1;, we

have I'y.,, =Tj,,_,- Hence liga = v.

(b) We assume r;_; is in Ij. Then J; is in rj) J;-1 and so 2; = down.

Therefore [;,1 is one arrow from 1;_; in I7,,,. Since r; is at most one arrow

away from r;-; which is in I, and r; # l;, we have that r; is in Ij, and

therefore I. = liv. So since z; = down, [;4; is one arrow away from |;

: * — * . — in D7, =Ty,. Hence lj41 = v.

We now consider the proof when J; = 7r;. It is clear from Corollary 5.5 that the

I*-walking sequences {l;_,,1;} and {r;_1,r;} are distinct with l; = r; a vertex one

arrow (not a loop) away from each of 1;_; and r;_,. Since 1; = r;, we may apply part

A of Corollary 5.5. It says that we may choose [;,; to be either of the two vertices

that are one arrow away from l,;, and choose r;4; to be the other vertex. Therefore

using Corollary 5.5 we can choose [;,, and r;4, to be consistent with the choice that

would be made by the arrow algorithm. This completes the inductive step of the

argument. We have the result.

Let {(Zm,lmn,Y¥msm)}o_-9 be the sequence of string- tuples corresponding to the

string functions in the minimal projective resolution of the module M(S) € I*

which is constructed using the walking algorithm. Definition: We will call such a

sequence a walking sequence for the module M(S).

5.4 The Periodicity of a String Module

Let {hS;}22. be a minimal projective resolution of the string module M(.S9) in

A. If k is the least positive integer such that M(S;,) ~ M(5S0), then we say that

the periodicity of M(So) is k. Our main goal in this section is to give a method for

50

determining the periodicity for any string module. We will prove that the periodicity

is either |I'| or 2|I| for all string modules. In Theorem 5.13 we will give a test to

determine the periodicity of a string module M(So).

For the remainder of the chapter we will let N be the exceptional number for

I. We let t be the number of times the arrow of weight 1 appears in Sg. Then

using the construction of Proposition 3.3 we find Sj has associated to it a string-

tuple of the form (xo, 1°, yo,r®). We let {hS7}2, be the sequence of string functions

in the minimal projective resolution of M(S*). Also let {(2;, 1, y;, rr?")}S> be a

[*-walking sequence for M(S5).

Lemma 5.8

1. If is the least integer greater than 0 such that E(M(S?)) = M(So), then the

periodicity of M(So) = 1.

2. 2 satisfies (1) above if and only if S* corresponds to a string-tuple of the form

O+7 t+) - .
(0, O*7, yo, rit) or (Yo, To’, £0, Uo 0+3) where 7 is an integer.

Proof. (1) follows from the fact that the functor E preserves minimal projective

resolutions. (2) follows from the proof of Proposition 3.3 I

Lemma 5.9 I[f the superscripts of the vertices in a [*-walking sequence are removed,

then the ['*-walking sequence becomes a T'-walking sequence. Also given the super-

script of the first verter of the [*-walking sequence we can construct the I*-walking

sequence from the T-walking sequence.

Proof. The first statement is an immediate consequence of the fact that [* and

I’ are locally homeomorphic. Letting 779 be the superscript of the first vertex of a

[*-walking sequence. Then if {w;}%) is the l-walking sequence that we construct

by dropping the superscripts from a I’*-walking sequence, we construct the original

[*-walking sequence recursively.

For 2 > 0, if o(a) = w;-1 and t(a) = w;, then ™ = mj_1+1. Otherwise

m= Mj-1- a

Lemma 5.10 /fT consists of a single verter and two loops, then the periodicity for

all string modules over A is 1 when the exceptional number is 1, and 2 otherwise.

Proof. If the exceptional number is 1, then there is only one string module. If

the exceptional number is 2, then there are two string modules with the image of

one being the kernel of the other. Il

For Lemmas 5.11 through 5.13 we assume that I‘ is not the degenerate case that

we just handled in Lemma 5.10.

Lemma 5.11 Let k be the periodicity of the string module M(S), then k divides

air.

Proof. It suffices to show that E(M(Sgir))) ~ M(So). Since the number of

labeled points on the T-unit circle is 2|I'|, by Lemma 5.9, we have that Dahl = =f

(resp. rn = = rift) Suppose 2 = = re. Since (2 = = re by Lemma 5.8 we only need

to show that xr] = Zo and yairj = Yo OF Tar} = Yo and yor) = Zo. But when we

are looking at strings-tuples in I*. If we have (z,v,y,v), either z or y is up and the

other is down. So we have E(M(S3y))) = M(So).

Suppose ie #r. At the beginning of this proof we showed that Deel = = it and

M2iry _ t+1 that ror r) =o - Therefore, if we prove that rar) = xo and yair| = yo, we will have

proven that E(M(S37))) = M(So). However, since the number of edges in 1° ore is

the same as the number of edges in /} & pitt and since that number together with

Lo (resp. x2ir)) determines yo (resp. yejrj), we only need to show that xarj = Zo.

Since, 2 #17, [™ can be determined by xo and [2 © ri. Similarly, since Bry #

41 7 ™2Ir}41 . 1 t+1 : T t+1 rar) loirj4, can be determined by zo and Jjp) @ rap. Since lap) ry; can be

found by adding T to each of the superscripts in [9 © ré, and since Dri = we

must have 2/7; = Zo. In other words, since those portions of I* are homeomorphic,

_ we must have rar) = Xo. In either case we have the result.

Lemma 5.12 If 0 < k < 2|I|, then for k A |T'|, E(M(S{)) is not isomorphic to

M(So). If E(M(S%)) is not isomorphic to M(So), then the periodicity of M(So) is

2\T.

Proof. The second statement follows from the first statement and Lemma 5.11.

We prove the first statement. We first consider the case where lp = rp = v where v

is some vertex. We assume that 7 is such that E(M(S*)) is isomorphic to M(So).

Hence, we must have 1; = r; = v. Also using Corollary 5.5 we can see that sequences

{1}, and {r;}%, have different starting places on the T-unit circle. Hence, the

walking sequences lo,],,... ,1;-1,71,172,---,7; and [o,l,,..., lair) are identical. There-

fore 2 = 2h = |T|. (Note that this could only happen if v is a nonlooped vertex, or

lI is the degenerate case we are not considering here).

Suppose Ip # ro. Then we will assume that 7 is such that E(M(.S*)) is isomorphic

to M(S) and proceed to identify the 2’s for which this can be true. The sequence

lo, f,,...,larj-1 appears on the [-unit circle if we record the points in a clockwise

direction. Recall that although there are 2|I'| points on the unit circle, we only use

the |I'| vertex labels to label them. Thus the label J) appears twice in the sequence

lo,d,,...,larj-1. We locate the point labeled Io which is not the first point in the

58

sequence. For the remainder of this lemma we refer to the point that we have just

located as [p. So that now we will refer to the vertex Jp as lp or Lo. We define Ro

in a similar fashion. We have then that the second time the vertex v = Ip appears

in the [-walking sequence it will be labeled Lo. The third time it appears it will be

labeled Ip once again. With this new notation we can now describe the four possible

scenarios that would lead to having the set of vertices {[o,r,} being the same as the

set of vertices {l;,r;}, a necessary condition for E(M(S*)) = M(So).

Case 1: 1; = Lo, 7; = Ro

Since 1; = [Lo appears in a different location on the T-unit circle than Jp, lig, 4 hh.

Similarly we have r;41 #71. Yet if the periodicity of M(S) is 2, then we must have

E(M(52,,)) = M(S;,). So it must be that rj4, = 1; and 14; = 7). We have four

cases to consider. They each address what happens when only some of the equalities

of equations 5.1 - 5.4 hold.

lb = | (5.1)

= las (5.2)

m= 7 (5.3)

r= Tig (5.4)

Case la: Suppose none of the equalities of equations 5.1 — 5.4 hold. In this case

it must be that part of [must have the form given in figure 5.15. Since no tree of

cycles can have such an arrangement, we see that this case can not occur.

59

lo =k

ae
\/

ro = 7;

ry = 1:41 ©

Figure 5.15:

Case 1b: Suppose exactly one of the equalities of equations 5.1 — 5.4 holds.

Then part of I will have the form given in figure 5.16. No tree of cycle can have

this form, so this case can not occur.

Figure 5.16:

Case 1c: Suppose exactly one of the following four pairs of equations hold:5.1

and 5.2, 5.3 and 5.4, equations 5.3 and 5.2, or 5.1 and 5.4. Then part of T will have

the form given in figure 5.17. No tree of cycles can have this form, so this case can

not occur.

Figure 5.17:

Case 1d: Suppose exactly one of the following two pairs of equations hold: 5.1

and 5.3, 5.2 and 5.4.

60

Then it must be that T is the graph given in figure 5.18. Since |I'| = 2 and 7 must

divide 2|T'], we know that « = 2 or 2 = 1. We need to show that 7 can not be 1.

Suppose it is 1. Then we have Jp = 1; = 4, and r9 = r; = Ty. Since lp and ro are

looped vertices, by Corollary 5.5 we have that zo = yo = up and x; = y; = down.

So in that case £(M(S*)) is not isomorphic to M(So). We are finished with Case 1.

Ov \
Ne

Case 2: l; = rp and 7; =

Then 1:4, 4 1 while rj4, = 4. So that the set of vertices {l,,r,} is not the same

as the set of vertices {li41,ri4i}. Hence E(M(S4,)) is not isomorphic to M(S).

Which gives us that E(M(S*)) is not isomorphic to M(S).

Case 3: |; = Ro and r; = Lo

This forces li4, # ro and ri41 # 1). So to have E(M(Si41,)) = M(S,). This in turn

forces Uj4; = 4, and rj4,; = 7,. Just as in Case 1 there are four cases to consider.

But the cases and the arguments are the same as they were in Case 1.

Case 4: 1; = ro and r; = Ip

This implies that the walking sequences lo,4,...,0;1,71,172,...,7; and

Io, U1,...,l2|P| are identical. Therefore i = zr = |I'|. (We note again that this

could only happen if v is a nonlooped vertex, or I is the degenerate case we are not

considering here). M&

For Lemma 5.13 we continue to use the notation that we developed in Lemma

5.12: the second time the label J, appears on the I’-unit circle as we read the sequence

61

{1;}22, clockwise we relabel the point Lo. Similarly we define Ro. Thus if we say

lr} = ro we mean more than the two vertices are equal we mean that those two

labels correspond to the same point on the [’-unit circle.

Theorem 5.13 The periodicity of M(So) is |['| precisely when lp; = ro and ry) = lo

and the exceptional number is 1. The periodicity of M(Sq) is 2|T| in all other cases.

Proof. The second statement follows from the first and Lemma 5.12. We prove

the first statement. We have already shown that this is true when I’ contains only

one looped vertex and when I contains exactly two vertices both of which are looped

vertices. So we assume that we do not have either of these cases. We first let the

exceptional number be 1. Then there is no need to form the graph I*. Our walking

algorithm works for string modules over A, and we can denote the string-tuples in

the minimal projective resolution of M(So) without using superscripts.

If the vertex [py is the vertex rp, then by arguments that we made in Lemma 5.11

we have E(M(Si))) ~ M(So). So assume that the vertex Jp is not the vertex ro.

Then for the result to hold we need z)r) = yo and yr; = Xo. Since lip) = ro and

rir) = lo, we know that the point [jrj41 is the point r; and that the point rirj41 is the

point /;. Again using similar arguments to those used in the proof of Lemma 5.11

we know that this can only happen if zjr) = yo and yjr) = Zo. So we have that if the

points Jip) = ro and ryr; = lp and the exceptional number is 1, the periodicity is |I’|.

We now show that if the exceptional number is not 1, the periodicity can not be

n. By hypothesis and using Lemma 5.9 we have that the two I-walking sequences

lo,..-, lair) and lo, ..., lirj,r1,.-.,7 rj are identical. Let a be the arrow in I of weight

T. Since there is a unique 7 such that o(a) = 1; and t(a) = 1;4,, it must be that

there is a k < n such that either o(a) = J, and t(a) = U4, or o(a) = r, and

62

t(a) = U41. Thus the string-tuple for hSj) has either the form (2)rj, rips YIT|> i) or

(xr), rit YIP}; 0). By Lemma 5.8 we know that in both of these cases E(M(5Sj7)))

is not isomorphic to M(.S9). We have the result.

We define a short T-walking sequence, {v,v1,...,Un,w}, to be a T-walking se-

quence in which v,w ¢ {v1,..., Un}.

Corollary 5.14 Letv ET. Let 1, be the string So that we have used in the lemmas

for this section. Keeping the same notation that we have been using throughout, the

periodicity of M(1,) is |I| if and only of |Ti1,| = [Tror, | and the exceptional number

is 1.

Proof. By Theorem 5.13 we only need to show that when the exceptional number

is 1, lg = ryrj and rp = lyr if and only if |T)1,| = |Pyor;|. Since in this case lp = ro,

this is equivalent to proving that Jo = Ir) and ro = ry) if and only if |T2,] = |T ror].

Suppose |I"),:,| = |I'ror,|. Then since lo = rg and 1; # 71, by a simple counting

argument it is easy to see that 2|T,:,| = |[]|+ 1. It is also not hard to see that

the short I'-walking sequence {lo,4,...,lo} has length 2/T),,,| — 1 = ||. Therefore

lo = Ir. Similarly we have ro = rir.

Suppose lp = lip) and ro = rir. Since in every '-walking sequence of length 2|T'|

every vertex appears exactly twice, and since we know by previous experience that

lair) = [9 experience, we have that {lo,4,...,ljrj} is a short I-walking sequence.

Therefore it must be that the vertices of that walk are completely contained in

[,,1,- In fact the sequence must have each of the vertices of Tol; appearing exactly

twice. Thus || = 2|Pj,:,|-— 1. Similarly |T| = 2\T,,,,| — 1. Thus we have that

Prot | = [Prors |- a

63

Chapter 6

A minimal set of generators for

Ext(A)

In this chapter we construct a minimal set of generators for the cohomology ring or

Ext-algebra of a classical Brauer tree algebra with respect to the Jacobson radical

of A. By minimal we mean that there is no subset of the generating set that is also

a generating set.

6.1 Definitions and Notations

For each v € To, M(1,) is a string module. So we can apply the algorithms of

Chapter 5 to compute D’, a minimal projective resolution of M(1,). We present

the notation that we will use to describe D” below.

AS? hs? hse
D’ :--- —> Dj — Di — Dj — M(1,) — 0

In this chapter unless otherwise stated a bar over a symbol will mean the equiv-

alence class of that element. Though there will be more than one equivalence class

appearing in the chapter no confusion should arise. Let r be the Jacobson radical

of A. Then r is generated by {a: where a is an arrow inT.}. It is not hard to show

64

that A/r ~ Ler, VAT r(yA)» and that for each v € To, VA (yA) ~ M(1,). Let

A = Ler, M(1v)- Since the (natural) sum of two minimal projective resolutions is

a minimal projective resolution, a minimal projective resolution of A ~ A/r is D =

Llver, D®. In other words, if for k > 0, we define dy = Dyer, ASz and for 2 > 0, we

define D; = [],cr, D7, then we have

do dy dg =>
D:---— D, — D, — Do — A — 0

is a minimal projective resolution of A.

We are now in a position to define the Ext-algebra of A with respect to r. As an

abelian group we define Ext(A) = [[%o Ext’(A/r, A/r). To construct Ext*(A/r, A/r)

we begin with a projective resolution of A/,. Since in our case A is artinian, we

begin with a minimal resolution D. We replace the module A/r in the resolution

with the zero module. We then form the complex

Hom(0, A/r) 2+ Hom(Do, A/) 4+ Hom(D;, A/r) 23 +

where dj is the zero map and di(a) = aod; fori > 1 and a € Hom(D;,, A/r).

For i > 1 we define the abelian group Ext'(A/r,A/r) = Ker disi/tm ds Ifee

Ext'(A/r, A/r), then we will say that e is of degree i.

Since D is minimal, and since A is artinian, general theory gives us that

Ext'(A/r,A/r) Homa(D;,A/r). Hence Ext(A) ~ []%) Hom(D;,A/r). Next

we use the Yoneda product to place a multiplicative structure on Ext(A). Let

f € Homa(D;, A/r) and g € Hom,a(D;, A/r). Since the all D,’s are projective, we

can find a collection of homomorphisms {u,}22, that make the diagram of figure 6.1

commute. We call these homomorphisms liftings. We define f * g = g 0 uj. Since

{f € Homa(D;, A/r) : ¢ > 0} is a basis for Ext(A), we can extend this definition

linearly to complete the definition of multiplication of any two elements of Ext(A).

di4; di42 di4y
Dis; — i¢j-1 ctl Diy a

f

u; | uj-1 1 u; | uol
d; d d d DJ > Diy me D “ D

Figure 6.1:

6.2 A minimal set of generators

Lemma 6.1 Let hS:v,QUIV ©---@v,QUIV — w,QUIV ©: BwmQuIV be

a string function.

1. If QUIV =I, then the vertices v1,...,v, are distinct.

2. If QUIV = I™ and we do not have both n = 1 and m = 1, then the vertices

Vj, --+5Un,W1,...,Wm are distinct.

Proof. Recall that for each of the vertices vj,...,Un,W1,...,Wm there is a corre-

sponding edge in the underlying Brauer tree on which that vertex lies. The edges

V1,-++) Un Wi,---+, Wm are the edges in some connected edge walk from o(v,) to t(w,,).

The edge walk can be found by reading the vertices that appear in the underlying

string for hS from left to right. We let e; <> enim represent that edge walk. Since

the walk is occurring on a tree, if that edge walk never doubles back on itself, the

edges U1,.--,Un,W1,---,Wm are clearly unique and we have the result. If the walk

doubles back on itself we will have some edge E appearing in the walk twice in a

row. This implies that hS contains a formal path, P, lying in one cycle that had

the same terminus and origin.

66

If P lies in a nonexceptional cycle, then P must be a maximal path or an inverse

of one. So if P lies in a nonexceptional cycle or is a maximal path in an exceptional

cycle, (or an inverse of one), hS = P. Therefore we have (1) in the case where

P lies in a nonexceptional cycle. Since every cycle in I* is a nonexceptional cycle

this constitutes a proof of (2). We now prove (1) in the case where P lies in an

exceptional cycle with exceptional number not equal to 1, but is not a maximal

path, nor an inverse of one. In this case the vertex E must also lie in the exceptional

cycle. By the definition of a string function EEE can not be an edge walk contained

in €; <> enym Therefore, since this is a connected edge walk occurring on a tree

of edges, if €) => enim = €) => VEEw <=> enim, then the edge walks ey <> v

and w <=> €n4m must not contain any edges (or vertices) that lie in the exceptional

cycle. Hence the walks e; <> EF and EF <> e€nim are both connected edge walks

that do not double back on themselves. If an edge x appears in both of those walks,

then the unique connected edge walk that doesn’t double back on itself from z to

E has the same number of edges as the one from FE to x. Thus if x = e; = e;, and

if 2 is odd, 7 must be even and vice-versa. Therefore, since the vertices v1,...,Un

appear in €; <=> €n4m as every other edge, they must be distinct.

For each k > 0 and each v € [9, we will define D} = Hwee wA where Gj is the

appropriate set of vertices. If w € Gy, then we will say that w appears in DZ. We

also define an index set G, = {(v,w) : (v,w) is a formally defined symbol, v € To,

and w € G7}. Using this notation we have that D, ~ L,wyeq, WA. To identify the

term sitting in the (v,w) component of D, we will append the subscript (v,w) to

that term.

We are now ready to create a very nice basis for Ext(A). Let v,y € To, w € Gi,

and x € G¥, then we define the function f(’”) : Dy > A /r to be the function such

67

that

(0,...,0,w,0,...,0) where and on the right w

is in the M(w) component
of A/r, and

FEO, wey 0, Wiv,w)> 0,..., 0))

fe" ((0,-.-40,F(y.2),0)---50)) = 0 where (y, x) # (v,w)

By Lemma 6.1 the component wA appears only once in DZ. Therefore, this function

is well defined. We say that fo) only nontrivially projects the vertex w that appears

in Dy to A/r.

Lemma 6.2 {fom :vE€lp,k >0, and w € Gi} is a K-basis for Ext(A).

Proof. Consider the paragraph above and note that all homomorphisms, g, from

vA to A/r are defined as follows g(v) = c(0,...,0,v,0,...,0) where v is a vertex in

the M(1,) component of A/r and cis aconstant.

We call the basis of Lemma 6.2 the standard basis and we refer to the vectors in

this basis as standard basis vectors.

Lemma 6.3 Let z,v,w Eo with w € Gt. Then

(u,v) . —
fon) * foo) _— 0 if v = Ww and

0 otherwise

(z,w)

re * few = i ifr=v and
otherwise

(z,w) .
xyw viv i w=v

0 otherwise

Proof. This is a good exercise to get the reader acclimated to the notation for

subsequent arguments. I

68

Lemma 6.4 Let g € Homa(D;,A/r). Then a collection of liftings {u,}22 for the

product fe) *g may be chosen so that forO < k < j, ug(D},,) sits in the DP

component of D,, and u;(D?,,) = {0} fore Av.

Proof. The proof is by induction on k. We define D_, = A, and for « ET,

D?,=M (2). We first prove the result for k = 0. By definition f{””(D?) = {0} for

x #v, and f(D?) sits in the DY, component of D_,. Hence up must be chosen

so that do(uo(D?)) = {0} for « # v and do(uo(D?)) sits in the DY, component of

D_,. Therefore, since dg = yer, hS§, hSj’(D5) = {0} for « # w, and hSj(Dy)

sits in the DY, component of D_1, ue(D?) is forced to lie in the Dj’ component of

Do, and uo may be chosen so that uo(D?) = {0} for z # v.

We now induct. Assume that we have the result for & = s. Then the proof for

k = s+1 is nearly identical to the one just given for k = 0. Simply replace fen) in

the argument with d,,,,; 0 u, and adjust the indices accordingly.

We call the lifting of Lemma 6.4 a standard lifting for the product.

Corollary 6.5 f{””) + fw) =0 whenx Fy.

Proof. Let {uz}, be a standard lifting for the product. By Lemma, 6.4

u;(D?,;) = {0} for z # v, and u;(D?,,) sits in the DY component of D;. Therefore,

since fo) only nontrivially projects the vertex w that appears in D? to A/r, when

y # w, we must have u; 0 fe = 0. This gives us the result.

Corollary 6.6

Let {uy}?29 be a standard lifting for the product fe” > fe € Ext(A). If

u;(0,..-,0, Wir,w),0,...,0) = (other components, CWiz,w), other components) where c

is a nonzero constant, then fi” x fe) =¢ eo) Otherwise fi" * fe = 0.

69

Proof. This follows from Lemma 6.4 and because the only elements not in the

kernel of fem must have a scalar multiple of w in the wA component of Dj.

It is well known that A is self-injective and of finite representation type and

hence Ext(A) is finitely generated as an algebra. Therefore we can define H to be

a minimal set of generators for Ext(A) which is also a subset of the standard basis.

We will show that H is unique.

Lemma 6.7 fe ¢ H if and only if of’ = fe” * fe for some i,j with

i+j=k, andc#£0.

Proof. This follows from Corollaries 6.5 and 6.6 and because H is a subset of a

basis.

Corollary 6.8 All standard basis vectors in Hom,(Do, A/y) and Homa(D,, A/r)

are in Hi.

Proof. Apply Lemmas 6.3 and 6.7.

Lemma 6.9 Let {uz }?2, be a standard lifting for fir) * fev € Ext(A). For

some fired k, 0 < k < Jj, suppose v € Ghy,, w € Gy, cE Gh

yé€ Gea, uz((0,...,0, %(2,x),0,...,0)) = (other components,(cy@)(g,2), other compo-

nents), di+k41((0,-..,0, Wia,w),0,-..,0)) = (other components,(czb) (a,x), other com-

ponents), and dy41((0,...,0, yg,y),0,...,0)) = (other components,(cs9) (a,c), other

components) where a is a path of any length (including 0) that does not contain a

relation, and b,g are paths of length greater than 0. Also assume that v,w, x,y, a, b,g

all lie in the same cycle, and cy, C2,c3 are constants not equal to 0.

70

1. If ab is a_ path that does not contain a mazimal path,

then ug4i((0,...,0, W(a,w),0,---,0)) = (other components,(c4h)(g,y), other com-

ponents) where h is the path such that gh = ab, and cq is the constant such

that c3c4 = C12.

Proof. We have ugz(di4n41((0,.--,0, Y(a,v),0,---,9))) = (other

components,(c,c2a6 + P)(g,z), other components) where P is a path not in the same

cycle as ab. Also, since AS? 41 is a string function dy; maps at most two compo-

nents of Dy 41 to the zA component of De . However, only one of those (possibly)

two components, zA, is such that z is in the same cycle as ab. That component

is the yA component. Therefore, since ab does not contain a maximal path, and

since dy+1((0,..-,0, ¥y,,0,...,0)) = (other components,(c39).,,other components),

we must have uz41((0,...,0, Ww, 0,---,0)) = (other components,(c4h),, other com-

ponents), where A is a path such gh = ab, and cq is a constant such that c3cq = c1C2.

a

Let hS be a string function. Then we will say that the vertices o(S) and t(S)

are the end vertices of hS. We will refer to all other vertices, w, appearing in the

underlying string for hS, and with vA appearing in the domain for hS as middle

vertices of hS. We note that we will allow a vertex that appears twice in the

underlying string to be both a middle vertex and an end vertex. However, we will

say that an end vertex, v, is an upper end vertex if vA appears in the domain for

hS. You will note that by Lemma 6.1 upper end vertices are never middle vertices.

Note also that both of the cycles that a middle vertex lies within must have length

at least 2. By the length of a cycle we mean the number of arrows in the cycle if

the cycle is not exceptional and N-(the number of arrows in the cycle) otherwise.

Figure 6.2 we supply as a reference for Theorem 6.10 and Lemma 6.11. We never

71

refer to it and simply intend for the reader to use it as a thinking device.

d:. dy

De —> Dgy — Dy-2

| u, {uy luo \ fe?

D, “+ Di —™ Do oo,

Figure 6.2:

For the following lemma we let the length of a cycle be the number of arrows in

the cycle when the cycle is not the exceptional cycle, and N-(the number of arrows

in the cycle) when the cycle is the exceptional cycle with exceptional number JN.

Theorem 6.10 Let v € G2 with v a middle vertex of hS’. Then fi’ € H if and

only if one of the two cycles that v sits in has length two.

Proof. Since v is a middle vertex of hS}, each cycle that v sits in must have

length greater than 1. Let a and b be the two arrows with origin v. Let a’ and

b' be the paths (not vertices) such that aa’ and bb! are maximal paths. Using this

notation we draw part of AS} and AS% in figure 6.3.

12

hSy : a

Figure 6.3:

To argue both directions of the ‘if and only if’ statement we will use the following

fact. By Lemmas 6.3 and 6.7 f{”) ¢ H if and only if f" = cf * fl” for

some w € Ip and some constant c # 0. Without loss of generality we first assume

that the cycle containing aa’ has length two. Then a’ is an arrow and we have figure

6.4.

Figure 6.4:

Let {uz}? be a standard lifting for fee) flO),

Since uo((0,...,0,2(4,2),0,.-.,0)) = (0,...,0,2(2,2),0,...,0), by Lemma 6.9

u((0,...,0, v0,2),9,...,0)) = (0,...,0,v(22),0,...,0). Hence by Corollary 6.4

(oz), flor) = ¢) This gives us that f(’ ¢ H.

73

We now assume that both cycles which v sits in have length greater than two.

Let a and £ be the first arrows of the paths a’ and 6’, and let A and B be the paths

such that aA = a’ and BB = b’. Using this notation we give h.Sf and AS? in figure

6.5.

t(a) t(B)

hoy : \ “ hS} : /

Figure 6.5:

Therefore, fi” will be in H unless either f{’” = cf * f” or

fO) = cf « f" where ¢ # 0. We show that the first equality is not

possible, and symmetry gives us that the second equality is not possible. Let

{u,}e, be a standard lifting for (v2) * fier), Since uo((0,...,0,2(,2),0,...,0) =

(0,...,0,2(2,2),0,...,0), by Lemma 6.9 we have u,((0,...,0,v~.0),0,..-,0) =

(other components, A(z,»), other components). Thus by Corollary 6.4 we have fo x

i

Lemma 6.11 Fork > 2, if w € Gi, where w is a middle vertex of hS}, then

FO) a fw) flO)”, Hence FO € H.

Proof. We first address the existence of f.(w, w) and few) Since w is a middle

vertex, a quick study of its resolution using Corollary 5.1 establishes the existence

of ff’), Similarly, Corollary 5.1 can be used to see that if the middle vertex w

Uw .

) must exist. appears in Dj, it must also have appeared in D?_,. Thus te

74

In figure 6.6 we illustrate a portion of the string functions hSf_,, ASZ, Sy’, hSy.

There we are letting P,Q be paths of length greater than zero in the same cycles

as the arrows a and 6b respectively. P’,Q',a’, and b’ will be the paths such that

PP’,QQ’, aa’, and 60’ are maximal paths. Also we let c = +1. As you consider the

figure recall that if we choose all of the coefficients in the underlying string for the

first homomorphism of a resolution to be +1, then the coefficients of all subsequent

underlying strings are either all +1’s or alternate between +1 and -1.

75

AS? : \ Q’ ceP! /

hse, : / Q cP \

hSy :

AS® : b a

Figure 6.6:

76

From figure 6.6 we see that

d,((0,...,0,Fi,2),0,...,0)) = (0,...,0, B(u,u)>9,--- 50),

d,{(0,...,0, Www), 9,...,0)) = (0,... 50; Bw,2)1 ~Zw,y)? 9 -- +19),

dy—1((0,...,0,7%(o,m),0,---,0)) = (other components, Q,,,,,), other components)

and
—= a —/

d,((0,...,0, iow), 0,...,0)) = (0, .-. 0; Q(umys —CP (wn) 9, -- +» 9).

Note that uo((0,...,0, Wiv,w),0,..-,0)) = (0,...,0, Www), 0,...,0), and apply

Lemma 6.9 to see that

ui((0,...,0, 7 y my, 0,...,0)) =

(other components, Bi.,,2), other components) where B is the path such that

bB = wQ = Q. Since BQ’ = JB’, we can reapply Lemma 6.9 to see that

ui((0,...,0, Wiv,w),0,-..,0)) = (other components, W(y,.), other components). By

Corollary 6.4 we have the result.

Following Lemma 6.11, the only standard basis vectors whose presence in H have

not be determined algorithmically are of the form fem) where w is an upper end

vertex of hS; for k > 2. Those algorithmic conditions are given in Corollary 6.19.

Actually the conditions given in that Corollary are for determining when a standard

is a basis vector of the form ilove) (or fro") is in H where (2m, lm,Ym)!m),,<0

walking sequence for M(1,,) and x,, = up (or ym = up). However those are exactly

the vectors of the form fe where w is an upper end vertex of hS?. To obtain

Corollary 6.19 we are going to construct algorithmic conditions for determining when

the standard basis vectors of the form plots) (or frors)) are elements of the minimal

generating set H* for Ext(A*) where (zm, liny Yrny Tm)oo =o is a walking sequence for

M(1,,) € Mod(A*) and x, = up (or y, = up). Lemma 6.12 justifies this approach.

From Lemma 6.13 to Theorem 6.18 we are are going to leave off the superscripts for

the vertices of [* when no confusion can arrise. For that portion of the paper all

77

standard basis vectors will be assumed to be in Ext(A*).

Lemma 6.12 Let w € Gi CT, 2 € G? CT, andw € G? CT. Then cf) _

feo * fe) if and only if cf) = fr? a fer) where F and t are the

unique elements of Zn such that wi € GY CI* and x® € Gy CI,

oO Proof. Note that by Lemma 6.1 ¢, and #2 are unique. Let {hS* }°°_, and

{hs co_, be the string functions in a minimal projective resolution of M(1,) €

Mod(A) and M(1,7) € Mod(A*) respectively. Let {un} o9 and {uf, }%_» be stan-

dard liftings for f{”) * f fen) and per?) + pee) respectively.

By the proof of Lemma 3.3 if we disregard the superscripts in a string se then

the strings se and 5S” are the same. Similarly if we disregard the superscripts in

the h-string Ase, then the A-strings hse and hS® are the same. Since by Section

3 E(M(S*°)) = M(S*) for all v and m, ux, and u,, will be the same if we disregard

superscripts, and that is the essence of the proof. Ml

Lemma 6.13 Let {(tm,ln,¥m,tTm)}e=9 be a walking sequence for M(1;,) €

Mod A*).

1. 1, is not in 1,1 © rs_1 if and only if rs_1 is not in Pteay

*
2. r, is not in ly Ors; if and only if 1,1 is not in |

Proof. Since 1,_, © rs; is an edge walk on the underlying Brauer tree, and

since jt never doubles back on itself, it is clear from the diagram in figure 6.7 that

the vertex r,_1 € Mtg: if and only if 1, € 15-1 © rs_1. The proof of the second

statement follows in a similar fashion.

78

VY

oN
Figure 6.7:

© Uy-4

Recall that a short I*-walking sequence {v,v,...,Un, w} is a *-walking sequence

in which v,w ¢ {v1,.-., Un}.

Lemma 6.14 In the construction of the walking sequence, {(@m,lnyYmsTm)}e=o5

for M(1,,) € Mod(A*) we may choose x, = up if and only if (Tii,| 2 (iuas!-

Similarly we may choose y, = up if and only if |T*,,,| = Pere |.

Proof. We prove the first statement. The second statement can be proven

similarly. By Corollary 5.6, whenever 1, = r,, we may choose +, = up. Us-

ing the definition of a short [*-walking sequence, one can see that 1, = r, if and

only if the short ['*-walking sequence {l,,1.41,...,4,} and {l,,ls41,---,7s} have the

same length. However, the length of {J,,1,41,...,7;} is the same as the length of

{lo,l1,..-,7To} which is |I'j,,,|, and the length of {I,,l.41,-..,/5} is |[[*l,l,41. There-

fore we have that /, = r, if and only if |[7),| = IT'fu.,,1-

Suppose 1, # r,. Then by Corollary 5.6 +, = up if and only if J, does not

appear in 1,_; © rs,_;. Using Lemma 6.13 we then have z, = up if and only if

rs—1 1s not in VTteas In addition, r,_; not appearing in Totes is equivalent to r,_1

not appearing in the short ['*-walking sequence {I,,1,4,...,/;}. However, r;_; is

not in the sequence {l,,/,41,...,1,;} if and only if the short [*-walking sequence

19

{1,,l541,-.-,7s-1} has length greater than the length of {l,,/.41,...,/s} which is

2 Tea, |. Since {I,,l541,.--,7s-1} has the same length as {l2, /3,...,70,71} which is

2\T71,| — 1, we have z, = up if and only if 2|I7%,,|-1 > 2|I'Z),,,|- Hence, 2, = up

if and only if [T,| 2 (iu, 1-

Combining our results when /, = r, and those we just obtained when /, # r,, we

have that we may choose x, = up if and only if |T%,,| > ("%i,,|-

Corollary 6.15 If we keep the same notation as in Lemma 6.14, and assume that

|, then flo’) ¢ H*. In the same way we have that if |[* | < |P*_, |
TOT1 Tel st} in| < Pte

then for) ¢ H*,

Proof. The result follows immediately from Lemma 6.14.

Lemma 6.16 Let v € I*. Let {(tmylm,Y¥m,1m)}e-9 be a walking sequence for

M(1.) = M(1,,) € Mod(A*). Letk >1,71+ 37 =k, and let c be a nonzero scalar. If

LL ~r, and ofr) = fe” *« fol) and if {(Bim; bins Fis Pm) }o°_9 ts a walking sequence

for M(x), then

1. We may choose l; = |, with Lj; = up,

2. (ign | 2 [Pivesal

3. Wing l 2 Wiuesal-

If l, # rg and cf") = fl + fer) and if {(&myln;9m;Fm)}&a9 is a walking

sequence for M(x), then

1. We may choose ?; =, with £; = up,

2. (Pron | > [Priega TOT)

80

3. Pring | 2 We peeaal- TET i42

Proof. We prove the first set of statements. The other set can be proven us-

ing symmetry. Let {u,,}&_, be a standard lifting for the product fe” * fe,

We first prove (1). For ease of notation we let w = l,. Since the product FO *

fe = cfe™ # 0, we know by Corollary 6.6 that u,((0,...,0, Wj, 0,...,0)) =

(other components, ct(z,~), other components). Since J, is an upper end vertex of

AS, we know that d,((0,...,0, Www), 0,...,0)) = (0,..-,0, c1@v,0(a)),0,---,0) for

some nonzero scalar c; and path a. Hence u,_;(d,((0,...,0, Dw), 0,...,0))) =

(0,..., 0, ¢2aD,n,0(a)),0,---, 0) for some nonzero scalar cy and some path b._ If

w is a middle vertex of hS7, then we know d;(u;((0,...,0, W2w),0,...,0)) =

(0,...,0, €3A(2,0(A)) > c4B(x,0(B))s 0,...,0) where c3,c4 are nonzero scalars, and A and

B are paths that do not contain relations, i.e., A,B # 0. This leads us to the con-

tradiction d;(u;((0,...,0, @i,w),0,.-.,0))) A uj-i(dy((0,...,0, Daw, 0,-.-,0))).

Thus we can choose i =w with £; = up.

We now prove (2) and (3). Using (1) we now choose the walking sequence,

{(Zms bins Ims Pm) } 9s for M(x) so that F =w=1,;, = 1,. And z; = up. We will

show that the walking sequence {(#m, lm, %m;?m)}2=9 can in fact be chosen so that

the sequences {1,,}°_9 and {li4m}_9 are identical with x; = up. Since they are

walking sequences, it suffices to show that the sequences {i5-1, i} and {1;_1,1;} can

be chosen to be identical.

In figure 6.8 we draw part of the underlying strings for AS?,; and hSF

we do this by appealing to the following facts) w = I, and x, = up,

we may choose 1; = w with #; = up, while u;((0,...,0,W(ou),0,-..,0)) =

(other components, ct(z,), other components) by Corollary 6.6. In the figure c;

and cg are nonzero scalars. Since |, #4 r+k, P is not a maximal path. If Q is not a

81

maximal path, then by Lemma 6.9 P and Q must lie in the came cycle. Hence, by

Corollary 5.1 li4;-1 (resp. U,_1) must be the unique vertex such that 1:4; (resp. I)

is one arrow away from l;,;_, (resp. i;-1) in the same cycle as P (resp. Q). Since P

and Q are in the same cycle and since i; = 1:4;, we have Li = 1;4;-1. Therefore the

walking sequence {(Z,,, bins Dons 7m) }o_9 can be chosen so that {Ton } 6 = {lism Yao

are identical.

As an immediate consequence we have that 1]; = lo = 2. By Lemma 6.1 the

vertices appearing in an underlying string for a module in Mod(I™*) are distinct.

Therefore, since f!””) is defined, we know that x; = up. By Lemma 6.14 we conclude

that [Tj 2 Wiin,,|- We have proven (2).

We had shown earlier that 2; = up. So again using that {im ico = {liam Fro

are identical and Lemma 6.14 we have that Wty IE | > Pe = Ting, |- We

have now proven (3).

Ww Ww

/\ /\
[o\ SN

AS? : 5P / \ hS? : 6) / \
3 / \ ’ / \

/ \ / \

Figure 6.8:

a

Lemma 6.17 Letv € I™* and let {(2n, ln, Ym, 1m) }e-9 be a P*-walking sequence for
m=0

M(1,) € Mod(A*).

1. If in accordance with Corollary 5.6 we can choose x, = up and for somei < k,

we can choose x; = up. Let j = k —i. Choose {(Biny lms fins Fin) eo be the

82

walking sequence for M(1,,) such that {1,,}° 9 = {ligm}Sa- If in accordance

with Corollary 5.6 we can choose the sequences {£m} 5 and {Li¢m}ruy to be

, , , lot
identical with x; = x, = up, then for some nonzero scalar c we have cft otk)

fot) * pots _ (lost) + fll),

t%
© If in accordance with Corollary 5.6 we can choose y, = up and for somei < k,

we can choose y; = up. Let j = k—i. Choose {(£mlmyGm;im)}<ap be the

walking sequence for M(r;) such that {7m}°_9 = {Titm}S 9. If in accordance

with Corollary 5.6 we can choose the sequences {itm} 9 and {yi4m}m oo to be

identical with y; = y, = up, then for some nonzero scalar c we have of "*) =

pro) * pro"? _ foro) * fren),

Proof. We prove (1). (2) follows using symmetry. For notations sake we let w =

lp = lj. By Corollary 6.6 we only need to show that u;((0,... £0, La (aty)> 0,...,0))=

(other components, Lictug)s other components). Using induction on m we will prove

the following more general statement. For 0 < m < 7 if zi4m = up, then

Um((0, sey 0, Lk m(alinm)? 0, rey 0)) =

(other components, Cmlism (wjliym) Other components), and if zj,, = down, then

Um—1((0,..., 0, lism (wegen)? 0,...,0)) =

(other components, Cm—1]i4m(ujl;4q,)? Other components). We know from experience

that uo((0,..., 0, Ti@wti)s 0,...,0)) =(0,..., 0, Liaw,t;s 0,...,0). Since z; = up, we have

that the general statement when m = 0. We now assume that it is true for m = t,

O0<t<j7.

We consider four cases, and, in each case, we appeal to figures 5.1 — 5.10 of

Corollary 5.1 to create parts of the underlying strings AS?,,,hS?,,,,,hS)", and hSt ,

that occur in that case. We draw these in figures 6.9 — 6.12. Figure 6.9 represents

83

the case where 2,4; = up and 2;4;4; = down. Figure 6.10 represents the case where

Ligt = up and 244441 = up. Figure 6.9 represents the case where x;4, = down and

Lizt41 = down. Figure 6.9 represents the case where 2;4; = down and 24441 = up.

In the first case the inductive assumption gives us the result immediately. In the

next two cases only one application of Lemma 6.9 gives us the result. In the last

case we need to apply Lemma 6.9 twice in order to obtain the result. We will only

write down the proof for the last case.

In this case since 244; = down, we know that

ur_-1((0,..., 0, e+ i)¢y,4,4,)7 ...,0)) =

(other romans ee leas) other components). By Lemma 6.9 we have that

te((0,---50,Tfey)>0r---90)) =
(other components, k3B,,,,.), other components). where k3 is some nonzero scalar

and B is the path such that P = QB. Note that (BP’)a = (Q’)a. Hence,

we can reapply Lemma 6.9 to see that us4;41((0,.. 0, Utbi+1) (ostegcg1)? ...,0)) =

(other components, C14i41l(t4i41) (eslegegr)? ObBEr components). Since 2144;41 = up, we

have proven the inductive step of the argument.

\ \

\ \

Ria | \\ Ast: \

\
big: = legigt k= Lega

ASty; : hS? : \/

Figure 6.9:

84

leas4y Lega

h thitd : / AStyy : 20 /

hss: / hS? : /

Figure 6.10: We let k,, kz be nonzero scalars, and let a be an arrow.

u . u .
Reig ° h t+1°

AS? : 1a \ hS? : 20 \

lige l,

Figure 6.11: We let k,, 2 be nonzero scalars, and let a be an arrow.

ligigi liga
/ /

/ /
chi Pa / ¥ —koQ'a /

Asteigy : / Ast: /

/ /
y y

\ \
\ . \

Ase; : 'P \ AS? : 10 \

\ \
\ \

bisi l,

Figure 6.12: k,,k, are nonzero scalars, and P and Q are paths lying in the same

cycle which do not contain any relations. a is the first arrow of P, and P’ and Q’

are the paths (or vertices) such that PP’ and QQ’ are maximal paths.

Theorem 6.18 Let {(2m,lm,Ym,1m)}~a9 be a walking sequence for M(1,,) €

Mod{T*).

1. flo") ¢ H* Gf and only f Wisi < Pipa, | 07 there is ant, 0 <1 < k such

that Mion | = Pr it | > {Ty |. Uglga

9. fo) ¢ H* if and only if |T*,,.| < |[*.,.. | or there is ani, 0<i<k such
ToT) TRTK4I1

that |" ..| > \Vreiga] = IT |. TOT) Tel e+1

Proof. We will prove (1). (2) follows from symmetry. Suppose |I7,,, | < [I *

Uxlagy |.

Then by Corollary 6.15 fllote) ¢ H. Suppose, on the other hand, that there is an 2,

0<2<k such that |[%,| > Wha] = IP Then we can findat,0<t<k
lnleay |.

such that [Ty] 2 [Piss] 2 [Pijs,,,| for all 7 where 0 <j <k, and |Ij,,,| = T71,,,1-

Let {(2ims liny Jims fm) }2=p be the walking sequence for M(1),) such that {1,,}°°_, and

86

{In42}&-9 are the the same sequence. By Lemma 6.17 we can show that flor ¢ H*

by showing that we can choose the sequences {z,}*x) and {2t44 kot to be the

same. Let 0 < a < k—t. By our choice of t we have |I'j,,| > [Thy cigay,| if and

only if riisl 2 Whateagi t+ Therefore we have ITF i, > Tiss! if and only if

roan 2 IP . Hence by Lemma 6.14, for 0 < a < k—t, we can choose 244, = i | lepaltta+i

. . a _ o,° . * *

up if and only if we can choose £, = up. In addition since |Ij,,| > [T'Tu,,,|, we can

a — —_— . * * + — “A —

choose £,-1 = 2, = up. Since |I'j,,| = |Phu,,,|, we can also choose x; = Zo = up.

Finally, since we can always choose %9 = up, we have filots) ¢ Hx. We have one

direction of (1).

Suppose ft") ¢ H* and Vion! 2 (iy | Tele # re, then by Lemma 6.16 we

have for some 7,0 <i < k, |PR,1 2 Whasil 2 Wiy,,|- So suppose , = r,, and

that cf") = flr) fe. Then by (1) of Lemma 6.16 we may choose J; = I

with <; = up. Therefore partial underlying strings for A.S7, and AS? and AS? are 3?

as given in figure 6.8 with the dotted portions ommitted. By Lemma 6.9, since

u;((0,... 0, Licctg,t) 95 ...,0)) = (0,... 0, cle(x,t,)> 9; ...,0), and since P is maximal,

we have Q is maximal. Thus hSf = AS? and hence hS},, = hS? forO <t <j.

Thus the walking sequence for M(x), {(Zm, bn, Ym,Tm)}, can be chosen so that the

sequences {(Zn, Ln, YmrTm)}_g and {(2m4islmsis Ym+iy Pm4i) }o_-9 are the same with

l= lo =f) = r;. By the proof of Lemma 6.14, since 1; = r; and |, = rz, we have

ral = ai) and |P7),| = |T%,,,]- Thus we also have the result when 1, = ry.

Let N be the exceptional number for I. We define

yl] = [vw] if Pu» does not contain the exceptional cycle

mw" | [Pow] + (V — 1)|T| otherwise.

87

Corollary 6.19 Let {tm,[™",ym,r°™}&_ be a walking sequence for M (1 jm) E

Mod(A*). Then

1. fl" ¢ HOC Ext(A) if and only if |T'i,1,| > [Pixtegs| 07 there is ant,0<i<k

such that

Pots {| = Pesci Il 2 Prete {l-

2. fo") ¢ HC Ext(A) if and only if |Ti,1,| > Pistegi| 07 there is ant,0<i<k

such that

[Prom ll > [Povrgrll 2 [Prevage

Proof. It follows from the definition of ||P,.1,.4;|] that |[Piaingill = Weare |.

Thus by Theorem 6.18 and Lemma 6.12, we have (1). (2) follows similarly. Mm

Corollary 6.19 is stronger than it appears at first. It seems to imply that we need

to calculate a I*-walking sequence for M (1jmo). However, that is unnecessary. We

can derive the sequences {l,,}°°_, and {rm}, without calculating the sequences

{Im }oo_, and {rbm oo.
Let do be a A-string function corresponding to the h-string So where So is a

maximal path with origin and terminus Ip. Let 5S, be the A-string corresponding

to d, the string function acquired by applying the picture algorithm to dg. Then

let £; = o(S,) (the origin of S,). Similarly let g; = t(.S,). Our choice for these

two vertices may be the reverse from the choices that we would have made had we

gone to A* for our calculations. However, the symmetry makes this irrelevant. The

reader should review Lemma 5.3.

Since A*-walking sequences and A-walking sequences are identical when we ignore

88

the superscripts, the A-walking sequences {#}°°_) and {Ym}e°_) are the walking

sequences {tp,}%_) and {ym} 5.

6.3. Summary and Examples

We can view Ext(A) as a quotient of a path algebra, KT. Below we describe how to

use Theorem 6.10 and Corollary 6.19 to construct T. It is clear from Corollary 6.6

that the generators of the form fo), for k > 1, behave like arrows from a verex v

to a vertex w, and that the generators fo” behave like a vertex v. Even though we

have used the label v in the graph IT we will use it again without confusion in the

graph Y. We will use the label f{’”) for the arrow from the vertex v to the vertex

w corresponding to fom),

It is clear from Corollary 6.8 that, for each vertex v ET, fe” € H. Hence, each

of the vertices appearing in [will also appear in YT. Using Theorem 6.10 we now

decide which of the vertices v will be an origin for an arrow of the form fe. We

do this by considering the lengths of the two cycles in which v lies in I. According

to the theorem the arrow fe” must be included in YT whenever both of the cycles

have length greater than two. Recall that for the theorem we defined the length of

a cycle to be the number of arrows in the cycle unless the cycle is the exceptional

cycle. In that case, the length of the cycle is N-(the number of arrows in the cycle)

where WN is the exceptional number.

Let v (= lo = ro) be a vertex in T. Let {1;}22) and {r;}2, be the two I walking

sequences that begin with v. Then we now need to use Corollary 6.19 to determine

when an arrow pilots) or an arrow fro) is to be included in TY. We know by

Lemma 6.11 that after doing this for each vertex v € [I we will have completed the

construction of the graph of TY. We warn the reader that the algorithm may yield

89

the following: fo € H and feos) € H where |, = r,. This does not mean that

there will be two arrows of degree k from v to I,. The notation for the generators

was well defined. It simply means that fe) = flo,

The reader will be pleased to note that for any T-walking sequences {1;}%p,

lirieke = le Thus |Priggil = [Pimeatairjsnes: 8° by Corollary 6.19 fn k'” ¢ H for

k >1. Thus the algorithm terminates rather quickly.

Example: In figure 6.13 we give a graph IT and in figure 6.14 we give the

constructed graph YT. We give the reader that one of the [-walking sequences for

vis vuwwzyyr. We also list the sizes of the partial graphs in the order in which

they should be considered for determining the arrows leaving the vertex v using that

walk.

Tvl] =14+2\P}=14+2-4=9
[[P wl] = 4
[Pow] = 1
[wal] = 4+ 2|P] = 12

[[Tzyl| = 2
IP vu =1

[Pye || = 12

[Poul] = 11

90

2
L JO

Figure 6.13: IT

fee y)

a7, ST
2

=i J
fe

Figure 6.14: T

91

Bibliography

[1] J. Alperin, G. Janusz, Resolutions and periodicity , Proc. Amer. Math. Soc.

37 (1973) 403-406.

[2] R. Brauer, Investigations on group characters, Ann. of Math. 42 (1941) 936-

958.

[3] P. Brown, The Ext-algebra of a representation-finite biserial algebra, preprint

[4] M.C.R. Butler, C.M. Ringel, Auslander—Reiten Sequences with Few Midale

Terms and Applications to String Algebras, J. of Alg. 76 no.1 (1982) 138-

152.

[5] E. Dade, Blocks with cyclic defect groups , Ann. of Math. 84 (1966) 20-48.

[6] P. Gabriel, Indecomposable Representations II, Symposia Mathematica Soc.

11 (1973) 81-104. New York-London: Academic Press 1973

[7| E. Green, Graphs with Relations, Coverings and Group-Graded Algebras, Trans.

American Math. Soc., 279 (1983), 297-310.

[8] E. Green, Group-Graded Algebras and the Zero Relation Problem.

[9] E. Green, R. Gordon, Representation Theory of Graded Artin Algebras, Comm.

in Alg. 15 (1 and 2) (1987) 145-179.

92

[10] E. Green, D. Zacharia, The cohomology ring of a monomial algebra ,

Manuscripta Mathematica 85 (1994) 11-23.

[11] J.A. Green, Walking around the Brauer tree , J. Austral. Math. Soc. Ser. A

17 (1974) 197-213.

[12] D. Higman, Indecomposable representations at characteristic p, Duke Math. J.

21 (1954) 377-381.

[13] G.J. Janusz, Indecomposable modules for finite groups , Ann. of Math. 89

(1969) 209-241.

[14] F. Kasch, M. Kneser, H. Kupisch, Unzerlegbare modulare Darstellungen

endlicher Gruppen mit xyklischer p-Sylow-Gruppe , Arch. Math. (Basel) 8

(1957) 320-321.

[15] H. Meltzer, A. Skowroriski, Group algebras of finite representation type, Math-

ematische Zeitschrift 182 (no. 1) (1983) 129-148.

[16] Y. Ogawa, Ext for blocks with cyclic defect groups, J. of Alg. 91 (191984)

328-333.

(17] I. Reiten, Almost split sequences for group algebras of finite representation type,

Trans. Amer. Math. Soc. 233 (1977) 125-136.

93

Vita

Lee Andrew Chasen was born in Atlantic City, New Jersey in 1967 where he

spent the first fourteen years of his life. At the age of fourteen he moved to Eliz-

abethville, PA. There he graduated from Upper Dauphin High School in 1985. In

1989, he graduated from Bloomsburg University of Bloomsburg, PA with a B.S. in

mathematics. Lee then went to Virginia Polytechnic Institute and State University

where he received his Ph.D. in mathematics in 1995.

 wie of flats —
Lée Lflinwe— Chasen

94

