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EXECUTIVE SUMMARY 

Heart rate is a strong indicator of a person’s psychophysiological state. For this reason, many 
applications would benefit from the ability to measure noncontact heart rate. The present work 
describes a new procedure for estimating blood volume pulse from video of a person’s face, with 
an emphasis on real-life scenarios like driving. The approach builds on the algorithm known as 
Eulerian VidMag, which has shown promise under laboratory conditions, but exhibits problems 
when applied in naturalistic situations. In particular, problems arise due to movement by the 
subject, changing illumination conditions, and low-frame-rate video. This work describes 
methods developed to address some of these problems, including working with video rates down 
to 10 frames per second. The methods were tested using videos of indoor subjects, as well as 
videos of drivers in naturalistic situations. We assessed the method through analysis of different 
stress levels using the extracted heart rate information for a driver on the road by comparing 
heart rate variability at different stress levels. Experiments showed that a systematic post-
processing strategy can improve the accuracy of the VidMag algorithm’s raw output and achieve 
a good correlation in both instantaneous heart rate and average heart rate with the ground truth 
heart rate measurements. This, in particular, improves with higher quality video sources and 
more controlled experimental conditions. However, the robust broad application of the methods 
on existing lower-quality naturalistic video data remains a challenge.  
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CHAPTER 1. INTRODUCTION 

Driver behavior plays a pivotal role in crash and near-crash scenarios. Factors such as the 
driver’s cognitive workload, stress level, and inattention, including drowsiness, fatigue, driving 
under the influence, and on- and off-road distractions, can all be contributing factors leading to a 
crash or near-crash. A report from the National Highway Traffic Safety Administration 
(NHTSA) states that 35,092 people lost their lives and more than 2.44 million people were 
injured as a result of road accidents in 2015 (NHTSA, 2015). More than 6.3 million crashes, 
including those involving injuries and property damage, were reported in the same year, resulting 
in a total economic and comprehensive cost to society of about one trillion dollars. These 
statistics have led researchers to conduct naturalistic driving studies (NDSs), which are an 
effective way to understand the role of drivers’ performance and behavior as they relate to traffic 
safety. For example, the Second Strategic Highway Research Program (SHRP 2) data contain 
numerous variables showing drivers’ interactions with both their vehicles and traffic. These were 
collected by monitoring variables such as speed, acceleration, following distance, maneuver 
selection, braking patterns, etc. However, one shortcoming of the study is that direct 
measurement and monitoring of the driver’s physiological state was not feasible (a frequent 
limitation of NDSs). Therefore, visual cues from face videos (e.g., percentage of eye closure, 
head droop, head movements) and secondary parametric data (e.g., braking pattern, lane 
deviation, change in heading) are the only methods available to data analysts for assessing a 
driver’s psychophysiological state (e.g., fatigue, anxiety, etc.). Although some of these methods 
have been proven to be effective, they are often costly in terms of required manual labor and 
time commitment. Also, all of these methods rely on secondary behavior rather than direct 
measurement.  

Objective measures of physiological variables, like blood pressure, heart rate, and respiration 
rate may be better indicators of a driver’s true psychophysiological state. However, the major 
constraint for measuring physiological variables is that these objective measurement methods are 
generally intrusive in nature, often requiring devices with wires and heavy instruments, and 
interfere with the driver’s natural behavior. As such, these methods cannot be implemented in 
naturalistic scenarios, particularly NDSs. In order to investigate the driver’s psychophysiological 
condition, it is necessary to implement strategies that do not interfere with the natural driving 
scenario.  

However, recent advances in computer vision and signal processing show that SHRP 2 video 
data may yet have significant potential to indicate drivers’ psychophysiological conditions. This 
research effort was undertaken to evaluate the possibility of using pulse rate as a nonintrusive 
measurement variable in naturalistic conditions and considers its potential to indicate various 
psychophysiological driver states, particularly the following: fatigue, cognitive load, panic 
attack, and influence of alcohol. It has been well established in previous studies that 
psychophysiological conditions are often reflected in the functioning of the autonomic nervous 
system (Picard, Vyzas, & Healey, 2001).  
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NON-INTRUSIVE MEASUREMENT OF HEART RATE 

Although a number of in-vehicle efforts involving collecting heart rate data have been reported 
in the literature, most of them were intrusive in nature. An ideal system for a naturalistic study 
should be nonintrusive, compact, robust, low cost, low in power consumption, safe, easy to use, 
and should not affect the driver’s behavior. In this section, we will review some of the previous 
efforts and discuss their benefits and shortcomings.  

Every cardiovascular pulse sends a volume of blood through the body. Photoplethysmography 
(PPG) measures the blood volume pulse (BVP) by passing light through skin. This process is not 
often convenient in naturalistic scenarios due to its intrusive nature; the subject must wear a 
plethysmograph device and, in most cases, a fingertip pulse meter. The literature shows that over 
the last decade, several other methods and measuring instruments have been engineered. Figure 1 
shows some of these methods and instruments. Lin, Leng, Yang, and Cai (2007) used a pulse rate 
sensor embedded in the steering wheel. Poh, Swenson, and Picard (2010) presented an ear-
wearable plethysmograph for a motion tolerant pulse measurement. The other notable 
contributions were from video monitoring—a less intrusive approach.  

    
(a) (b) (c) (d) 

  
(e) (f) 

Figure 1. Photos. Previous work: (a) Pulse rate sensor embedded in steering wheel (Lin et 
al., 2007); (b) PPG sensor in the ear (Poh et al., 2010); (c) Pulse measurement sensor 

installed on the seat by Ford; (d) Pulse rate estimation from subtle head movement; (e) 
Pulse rate using blind source separation (Poh, McDuff, & Picard, 2011); (f) Video 

magnification for pulse rate measurement (Wu, 2012). 

Balakrishnan, Durand, and Guttag (2013) reported a novel method to track the motion of the 
head. With every cardiovascular pulse, the thrust of blood causes a Newtonian reaction in the 
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veins around the neck and head, resulting in a small pulsating movement in the head. This 
motion is not generally visible, but by carefully tracking points in the head and face, can be 
measured. The main merit of this method is that it does not depend on ambient illumination; 
however, the accuracy of the results depends largely on the natural motion of the head. 

There are two other video monitoring strategies that were developed to allow direct measurement 
of BVP from a stream of video data. Poh et al. (2011) used a blind source separation (BSS) 
method to extract this signal. They assumed that the BVP signal was embedded in all three color 
channels (red, green, blue [RGB]) in different proportions and mixed with other signals linearly. 
They used BSS to transform the RGB channels to three independent channels with the 
assumption that one of the channels had a raw BVP signal. Although this method shows 
interesting results, there lies an ambiguity in the choice of correct channel in the required 
independent component analysis (a class of BSS) from video data. Secondly, this method is 
designed for color video, whereas in many existing naturalistic datasets, such as SHRP 2, face 
videos are in grayscale only. Poh et al. (2011) used three different color channel coding schemes 
based on face skin and applied an independent component analysis to extract the pulse signal. 
McDuff, Gontarek, and Picard (2014a), in their related work, showed that this method returns the 
best results while using a five color-band camera and 12-bit image depth. Thus, it also requires 
very high resolution images with a large number of face pixels. This level of high-quality video 
is not feasible in real-life scenarios or for large-scale affordable naturalistic implementation.  

Finally, Wu et al. (2012) used a method of Eulerian video magnification (VidMag) to extract a 
BVP signal from a video sequence and magnify it to make it visible to normal eyes. We 
determined that this method was more suitable for naturalistic conditions for several reasons. 
First, this method traces the changes in pixel intensities, and hence can be used for SHRP 2 
grayscale video data as well as future studies employing color video. We tested a video in RGB 
and in a transformed grayscale version for comparison. In both cases, the estimated blood 
volume changes were identical. Secondly, the inexpensive SHRP 2 camera sensor induces noise 
in the video that, in general, interferes with the video processing. VidMag uses a Gaussian 
pyramid to reduce such noise. The VidMag approach does not suffer from issues of ambiguity 
and is more tolerant of lower-quality video sources such as SHRP 2 video data. This method, 
which is the focus of the research project described herein, had not yet been refined for use in the 
complex real-world driving environment. 

EULERIAN VIDEO MAGNIFICATION (VIDMAG) 

Based on the findings from a literature review, this work was devoted mainly to the applicability 
of VidMag in naturalistic scenarios (development, testing, and evaluation). Wu (2012) 
successfully introduced a VidMag algorithm that combines spatial and temporal processing. The 
flow of the algorithm is shown in Figure 2. First, each frame is down-sampled using a Gaussian 
pyramid in order to reduce spatial noise in the frame. Then each pyramid level is temporally 
filtered using a bandpass filter to extract the frequency of interest. Finally, each level is 
concatenated with gain factors; these dictate which frequency components will be amplified and 
which will be attenuated in the final version. Each of these three steps will be further described 
in the following chapter along with the additional methods developed as part of this effort. 
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Figure 2. Diagram. Eulerian video magnification (VidMag) techniques – flow of work (Wu et al., 2012). 
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CHAPTER 2. IMPLEMENTATION AND TESTING OF VIDMAG 

The basic strategy for applying VidMag is shown below in Figure 3. The main process is divided 
into four major steps: pre-processing, video magnification, post-processing, and physiological 
analysis. This section introduces the methods applied in each of these steps and is followed by a 
detailed discussion of each method in the subsequent subsections. 

 
Figure 3. Diagram. VidMag application workflow.  

VidMag needs a stable video sequence to maximize pulse detection performance; however, 
development thus far has focused on optimal lab conditions. Therefore, the NDS video needs 
several preprocessing steps before they are fed into the VidMag algorithm. Face detection, 
alignment of faces from consecutive frames, and skin detection are some of the major steps in 
preprocessing. Automatic skin detection is needed so that the algorithm knows which pixels to 
track in order to obtain the vital signal from a consistent patch of skin. Once the video patch is 
selected and magnified, it passes through a bandpass filter that captures fundamental frequency 
components of feasible heart rate. To improve reliability, vital signals are extracted from 
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different patches of the magnified video and combined into a single measure. The post 
processing step includes peak detection, alignment of the peaks from different patches, and 
finally peak filtering to eliminate high frequency noise and spurious peaks. 

FLOW OF ALGORITHM  

As mentioned in the previous section, we divided the implementation into different steps. First, 
we applied a face detector to identify the faces in the video view of the vehicle cabin. The face 
detector localizes the position of the face in each video frame. Standard face detectors can also 
detect the position of fiducial points like eyes, mouth, nose, and eyebrows. These features help 
us track the 3D orientation of the face in the 2D video image coordinates. During normal driving 
conditions, the driver moves his/her face in all three translational and three rotational directions. 
Therefore, a single point on the face is not stable, as it moves within the 2D image and may even 
disappear from view at times. Hence, we need to stabilize the face in order to track each pixel 
over time (later we will introduce patches to improve robustness over single-pixel tracking). This 
process of understanding the face orientation and tracking the areas of interest is known as image 
registration. We automatically selected a reference frame in which all other frames were 
registered. This calibration process mitigates noise that would otherwise result from both the 
driver’s intended face motion as well as motion induced by the vehicle dynamics. Once the faces 
over different frames were registered to their reference locations, the video was ready for the 
VidMag algorithm and the resulting signal magnification. Detailed parameter settings for 
VidMag, such as the filter parameter and gain control for the magnification, are discussed later in 
this chapter.  

Not all parts of the face contain the information from which the pulse rate may be extracted. 
Only the skin provides such information; features such as the eyes and facial hair introduce 
undesirable noise to the assessment. Therefore, before extracting the pulse rate from the 
magnified videos, we implemented an automated skin detection algorithm. An effective 
algorithm was not identified within the existing body of work, requiring us to develop a novel 
skin detection algorithm that could be applied to grayscale skin pixel localization. We then 
selected some square patches from the known locations of the skin pixels. 

For the post-processing step, we extracted pulse information from each patch, and then, by using 
a maximum voting technique, we selected the time instances of the pulse beat’s peak locations. 
We developed an algorithm to compensate for the effect of low frame rates to increase resolution 
of the extracted signal. A Savitzky-Golay (S-G) filter, specialized for filtering non-uniformly 
sampled data, was used to filter the final heart rate data. This step eliminated most of the high 
frequency noise in the heart rate sequence. Finally, to determine drivers’ physiological 
characteristics, the heartbeat sequences were analyzed in the time or frequency domain using the 
Lomb-Scargle periodogram, which is one of the most commonly used frequency analysis tools 
for understanding the psychophysiological condition.  

In the following sections, we will discuss all of the steps in more detail.  
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PREPROCESSING: FACE DETECTION AND COMPENSATION FOR NATURAL 
MOVEMENT OF THE HEAD  

The results reported for the VidMag algorithm in previous studies considered heart rate 
measurements in laboratory settings under restricted conditions; however, naturalistic situations 
are quite different from these settings. VidMag tracks the changes of a pixel over time at a fixed 
location on a person’s face. (The face is well suited for analysis, as it typically provides a 
consistent region of exposed skin). In naturalistic driving scenarios, subjects frequently change 
the position and orientation of the head. Any kind of natural vibration also adds to the random 
motion, which is not well tolerated by VidMag. In standard NDS videos, drivers need to look at 
their vehicle’s mirrors and scan their surroundings to actively monitor road and traffic 
conditions. Substantial head movement is also natural during specific maneuvers, such as lane 
changing, turning into intersections, or interacting with passengers. The frequencies of such 
driver head movements are also governed by traffic conditions, road conditions, and individual 
driving patterns. For example, while driving in a city, drivers need to scan the road, other 
vehicles, and pedestrians more frequently than while driving on an interstate or freeway. In 
comparatively stable driving scenarios, drivers tend to look forward and often use eye 
movements to scan the roadway. These latter cases are particularly favorable for our application. 
Thus, we implemented a face detector and tracker to identify scenarios where the face is 
comparatively stable and the driver is looking forward so that heart rate measures are more 
robust. In the next section, we discuss how a state of the art face detector was leveraged and 
extended to this problem space. Some additional face detectors that were not considered worthy 
of detailed evaluation and application, but which were initially considered, are reported in 
Appendix A.  

Face Detection Using the Histogram of Oriented Gradient (HOG) Method 

While face detection and tracking has been a much studied issue in computer vision for the last 
few decades, researchers have yet to find a face detector that can work reliably in all physical 
and environmental conditions. Due to the deformable structure of the face and the large variation 
of possible poses, solving the problem is quite difficult. Zhu and Ramanan (2012) introduced a 
tree-based approach using a histogram of oriented gradient (HOG) template for detecting faces in 
the wild; to date, it is considered one of the most state-of-the-art face detectors. We tested several 
collected datasets to determine the HOG template’s face detecting accuracy in the desired 
driving context. In this particular study, we attempted to determine how temporal information 
improves the face detector’s performance.  

During evaluation, we found that this approach had some limitations. While testing the face 
detector with different video data, we determined that frame-by-frame calculation is 
computationally costly, which may make the method unsuitable for large NDS datasets. 
Secondly, for different illumination conditions and poses during the driving scenario, it 
sometimes became difficult for the face detector to locate the face independently. Thirdly, this 
method did not necessarily determine the face position in cases of occlusion, which often occurs 
in the vehicle due to head movements and various actions. Lastly, the localization accuracy 
depends on the number of parts in each of the models. Zhu and Ramanan (2012) used three 
models for face detection, whereas we used a 146-part model, which is moderate in terms of 
evaluation time and accuracy.  
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Improvement Strategies 

We incorporated some modifications to the method in terms of time and accuracy and compared 
the results with the frame-by-frame evaluation. The steps taken in that process are described 
below. 

Step 1: We assumed that in the first frame of the video, face detection was accomplished 
correctly. After the face was detected from the first frame, we determined the spatial boundary in 
which the face was located to provide the reference for the face in the next frame. We then 
extended the face boundary from Frame 1 by 70% on both sides and conveyed this spatial 
information to the next frame for an initial crop. For the next calculation, we ran the face 
detector only for the cropped region. Finally, we experimented with our dataset to make sure that 
a 70% extension was enough for two frames at a minimum of 7.5 frames per second (fps).  

Step 2: With the first detection of the face in Frame 1, we also gathered information about the 
pose and the scale of the face in the image. This gave us the flexibility to dictate that, in the next 
frame, the face detector should search only for adjacent poses and the scale of the last detected 
face. In this regard, we assumed that there was minimum distance traveled along the optical axis 
(perpendicular to the face plane). This served to reduce the computation time.  

Step 3: The algorithm used a tree-based search method where the base of the nose was the root 
of the tree. We used an optical-flow-based (Liu, 2009) tracking method to force the algorithm to 
search in a specific location of the cropped image, such that there was consistency in the results 
of the two frames. Figure 4 shows the two consecutive frames. As we knew the location of the 
nose base in the first frame, we computed the optical flow vector (magnitude and direction) and 
then moved the base point estimation accordingly. Next, we biased the detector to search only 
around the estimated point in the given pyramidal scale. This improved accuracy and helped 
reduce the number of tree searches. Figure 5 shows gradual improvements for all the steps and 
indicates that knowledge of the fiducial points from the previous frame drastically reduced the 
computation time for the next frame. The generation of optical flow increased computation costs 
somewhat, but they were much smaller compared to the original frame-by-frame face detection.  

   

 Figure 4. Images. Optical flow tracking. 
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Figure 5. Graph. Improved time efficiency. 

Experiment and Results 

For this study, videos came from naturalistic driving data collected previously by the Virginia 
Tech Transportation Institute (VTTI) and their partners and self-collected on-road driver data 
using an iPhone camera. The second set of data allowed controlled collection under various 
lighting conditions. A total of around 9,000 frames from VTTI and approximately 2,000 self-
collected frames were tested. The results will be discussed here in two ways: (1) in terms of face 
detection accuracy as a whole and (2) in terms of localization accuracy.  

After testing all of the videos, we found that use of temporal information, given that the first 
frame was accurate, resulted in more than 99% accuracy. In all of the cases, the proposed method 
successfully tracked the face irrespective of the situation. Secondly, there were no false positives 
in the results. Some of the results can be seen in Table 1. In this table, the first row shows results 
from the original method (Zhu & Ramanan, 2012), and the second row shows the results after the 
inclusion of temporal information. This shows robustness for false negatives (case a), successful 
face detection in high glare (case b), face detection for infrared cameras (case c), and successful 
detection of the face in case of partial occlusion (case d).  

The second method of testing involved comparisons utilizing the localization error. We 
annotated face data from VTTI videos collected during NDSs. This video data has seven points 
marked on the face: the four eye corners (four points), the mouth corners (two points), and the 
nose tip (one point). When we compared our results, either with or without temporal information, 
we found that temporal information led to better average accuracy (as shown in Figure 6). 
Accordingly, we concluded that the use of video temporal information helps detect faces more 
accurately and quickly.  
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Figure 6. Graph. Localization accuracy. 

Table 1. Face detection accuracy with (top row) and without (bottom row) temporal 
information. 

 

a 

 

b 

 

c 

 

d 

 

a 

 

b 

 

c 

 

d 

Intra-face Face Detection Methods 

Xiong and De la Torre (2013) introduced a method built on the Viola and Jones face detector. 
This method uses a supervised descent method for robust localization of fiducial points. The 
algorithm has a built-in tracking facility for face points, and the authors’ method uses 49 points 
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on the face. We tested this algorithm with some of the quality images from VTTI and found that 
this method had comparatively low localization error relative to the method used by Zhu and 
Ramanan (2012). 

 

(a) 

 

(b) 

 

(c) 

Figure 7. Screenshots. Results from intra-face: (a) daytime, (b) different pose, (c) nighttime 
infrared frame selection. 

We extracted landmark points from each frame using the face detectors (Zhu & Ramanan, 2012; 
Xiong & De la Torre, 2013). Figure 8 shows 49 landmark points extracted for the face, including 
eyebrows, eyes (including eyeballs), nose-bridge, lips, and mouth. In almost 98% of the tested 
cases with MiniDAS (VTTI’s proprietary data acquisition system) video frames, the method was 
able to detect faces with fiducial points in the daylight condition. These face videos contain three 
color channel and the video is recorded at a frame speed of 10 fps. The VidMag tracks changes 
in color intensities of a fixed point on the face over time. Therefore, we had to identify the same 
location on the face and track its changes. Because drivers often change their head position and 
orientation with respect to the camera, tracking a single point requires exact registration of faces 
between frames. Linear methods like homography show very good results for small movements, 
but the error increases as the rotation angle increases. This is partly due to interpolation of the 
missing points and partly due to loss of weak perspective.  

Therefore, we selected a sequence of frames where the head movement was limited. This 
limitation did not particularly affect the testing scenario, as drivers tend to look forward most of 
time (roughly greater than 90% of the driving time). Selecting these particular frames allowed us 
to estimate the heart rate without losing most of the frames due to head movement. In order to 
recognize a sequence of frames with limited head movement, we tracked the fiducial points for 
consecutive frames and calculated the average shift in the Euclidian distance for the 49 points 
over time. If that value was within a defined limit, we accepted the results as an allowable 
sequence of frames. If the value was not within the defined limit, we discarded that sequence. In 
this study, we selected frame sequences where the mean-square shifts of the landmark points 
were limited to 17 pixels, for an average face dimension of 125 × 125 pixels. Figure 9 plots the 
fiducial points for two sequences of frames, showing the spread of the points over time. The face 
images are for illustration purposes. Figure 9(a) shows a compact plot of the points. We qualified 
this as a potential frame sequence on which to apply VidMag for heart rate extraction. The points 
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in Figure 9(b) have very high scatter and so we discarded these frames. These discarded 
sequences mostly consisted of events like mirror checking, blind spot checking, etc.  

 
Figure 8. Screenshot. Face detection with 49 fiducial points. 

 

(a) 

 

(b) 

Figure 9. Screenshots. Selection of frame sequence based on the movement of fiducial 
points: (a) for a sequence where the points are relatively restricted, (b) for a sequence 

where the points move extensively.  

Face Registration 

Natural vibrations of the face can be reduced by registering frames. Registration generally refers 
to alignment of an object from two different frames, where the position of the object may change 
with respect to the camera. In many of these cases, translation-only registration, which reduces 
the complexity of image registration, can be performed. As an example, we extracted landmark 
points from consecutive frames and registered them by translation (Szeliski, 2006). Figure 10 
shows registration of two randomly chosen frames from a video sequence. Figure 10(a) and (b) 
show the frames with their corresponding landmark points. Figure 10(c) shows two 
superimposed frames before the registration process, and Figure 10(d) shows the results after 
linear sub-pixel registration (Szeliski, 2006). The purple and green colors indicate registration 
mismatches from the two frames. In a more challenging video sequence where the user is very 
active, the task of registering a face becomes more challenging. 
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Figure 10. Screenshots. Face registration. (a) & (b) Two randomly chosen faces with 

automatically detected landmark points. Superimposed frames: (c) before registration, (d) 
after registration. 

We had the option of either using direct homography for registration or of first registering faces 
by linear shift and then using homography on the shifted image. In general, we employed an 
incremental registration process, which first aligns the fiducial points on the face for consecutive 
frames by translation and then uses this estimation to align the points with a single frame in the 
video sequence. Our algorithm automatically selected the frame to which all other frames should 
be registered by computing a distance matrix. Next, homography was applied to register faces 
more robustly. Homography calculates a linear transformation between the two frames on the 
basis of the 49 landmark points. The leftmost image of Figure 11 shows the points in the original 
frame sequence. The middle and the right images consecutively show the results of translation 
and homography. This method allowed us to improve the mean deviations of pixels from a 34-
pixel unit to a 5.5-pixel unit. 

 
Figure 11. Screenshots. Frame registration showing improvement in consecutive frames. 

The original scatter sequence shows how fiducial points move with time. After 
homography, the movement of fiducial points has been minimized.  
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SKIN DETECTION AND IMPROVED BEAT ACCURACY  

After we applied the video magnification algorithm to the registered face video, we identified the 
skin pixels, a necessary step to ensure that no unwanted face pixels contributed to the pulse rate 
information. For example, pixels from the eyebrows or nostrils introduce noise into the 
measurement, and therefore need to be eliminated during post processing. Because there was no 
standard algorithm available that detected skin pixels in grayscale images, we developed a novel 
skin detection algorithm.  

For detection in grayscale, we automatically sampled some pixels from the face which we 
believed to represent skin based on their geometric location (e.g., skin patches near the forehead, 
nose, and cheek). Then we created a statistical model with the grayscale and texture information 
from the sample space. Finally, using a prior distribution of face location from the face detector, 
we applied the statistical model in a Bayesian framework to identify skin pixels. Figure 12 shows 
an example of skin detection and subsequent processing. Once the skin pixel locations were 
known, we divided them into small patches. In most of our work, we used square 10 × 10 
patches of pixels. We extracted heart rate information from each of the small patches, detected 
the pulse location, and aligned them together (right part of Figure 12).  

 
Figure 12. Diagram. Skin detection and heart rate estimation. 

Patch Selection 

In practice, each pixel position from the detected skin may contribute noise of different 
magnitude and phase to its extracted temporal pulse rate signal. Therefore, extracting the final 
signal by averaging all the pixel values of a frame in the magnified video may lead to inclusion 
of noise in the final estimate. During the registration process, we saw that the mean error was 5.8 
pixels. Accordingly, we divided the face’s skin pixels into a number of small square patches (i.e., 
10 × 10 pixels) and extracted the pulse rate signal from each to minimize the effect of noise from 
registration error. Formally, we divided the skin pixels into 𝑛𝑛𝑝𝑝 skin patches. Each patch from the 
magnified video independently estimated the pulse signal, 𝑆𝑆𝑛𝑛𝑛𝑛. We detected the pulse positions 
from each 𝑆𝑆𝑛𝑛𝑛𝑛 by using a peak detection algorithm. The pulse positions, 𝑃𝑃𝑛𝑛𝑛𝑛, were then aligned 
together to determine the real signal and eliminate the outliers. Here the basic assumption was 
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that all the patches should ideally produce exactly the same signal without any noise or phase 
delay. 

Skin Detection 

Skin detection using color information is an established field of study. The primary motivations 
for detecting skin in images and videos include face detection (e.g., Terrillon, Shirazi, 
Fukamachi, & Akamatsu, 2000; Chai & Ngan, 1999), gesture and action recognition, 
surveillance, and adult content screening (Fleck, Forsyth, & Bregler, 1996). The primary 
concentration of most research has been the investigation of different color cues for invariance to 
lighting conditions, pose, and ethnicity. A number of authors (Vezhnevets, Sazonov, & 
Andreeva, 2003; Kakumanu, Makrogiannis, & Bourbakis, 2007; Phung, Bouzerdoum, & Chai, 
2005) have provided comprehensive surveys of skin color modeling and skin segmentation 
techniques using different color cues and color spaces. However, the emphasis in these studies is 
on color-based analysis, and SHRP 2 face videos are in grayscale. The camera operates in 
normal mode during the daytime and uses infrared for nighttime video, but in both cases the 
video is in grayscale. As we did not have any color information from the face videos, we used a 
novel skin detection method to identify the skin region on the face. 

Theoretically, if it is possible to locate a face in an image and find the locations of the eyes, 
mouth, nose, and other parts, it should be easy to find the skin pixels from the relative location of 
a pixel with respect to all those parts. But in practice, identification of skin depends on two major 
factors: visibility and local appearance. Facial hair, tattoos, hairstyle, tanning, use of glasses, 
headbands, scarves, and winter-wear are some of the external factors which influence the 
visibility of a skin pixel, while differences in skin pigmentation, which cause a wide variation in 
the appearance of the skin, are the major intrinsic factor. Similarly, external factors like 
illumination conditions, shadows, and reflections also change the skin’s appearance. 
Conventional methods reported in the literature (Phung et al., 2005) have shown that color 
information shows excellent results for skin detection. A particular subspace in the three-
dimensional color spaces successfully represents a wide variety of skin pixels under different 
conditions. But, for grayscale images, that subspace is not accessible. Histogram analysis alone 
does not show any distinctive behavior that may lead to a universal skin classifier.  

Though the appearance of skin can vary in different images, with the exception of cases where 
there are harsh illumination conditions, the characteristics of skin pixels of a single face in a 
single image are close to each other. Based on this premise, we developed a single-image-based 
skin detection algorithm. One of the major advantages of using an image-specific skin detection 
algorithm is that its variability lies within that particular image and, with prudent strategies, 
reasonable information about the variability can be obtained. The sketch of our algorithm is 
shown in Figure 15. We first used a face detector to detect the face and its fiducial points. Next, 
with the help of the points, we sampled an area of the face with a higher probability of being 
skin. Such areas include part of the forehead, the nose, and part of the cheeks. We call this skin 
sample the “mask.” Once we developed the skin mask, we also determined the non-skin mask. 
The non-skin mask comprises the near black parts in the image, including the eyes, mouth, 
eyebrows (as selected by the face detection algorithm), and any dominant edges.  
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We evaluated our results on two standard skin databases: the ECU skin database (Phung et al., 
2005) and the SFA skin database (Casati, Moraes, & Rodrigues, 2013). Both datasets contain 
images of men, women, and children with different skin colors, different head poses, with and 
without facial hair, and under different illumination conditions. Images from the SFA dataset 
were collected with restricted backgrounds and in a studio-like conditions. Each image contains 
only one face in close camera proximity. Figure 13 shows sample images and their ground truth 
from the SFA database, which has 1,118 images in total. Our face detector worked for 701 
images; all statistics and results are discussed based on these images. The ECU database contains 
4,000 images in more naturalistic conditions with a variety of backgrounds. Unlike the SFA 
database, the images in the ECU database contain skin from different parts of the body. This 
database was more challenging because of the varying scale, pose of the person, and several 
occlusions. Figure 14 shows a sample of the ECU dataset with segmented skin ground truth. 

      

      

Figure 13. Images. Sample images from the SFA dataset: This image set comprises face 
images with different level of pigmentation, gender, poses, and variation of facial hair, use 

of glasses, and different hairstyles. 
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Figure 14. Images. Sample images with skin ground truth from the ECU dataset. Images 
from this dataset were taken with different indoor and outdoor backgrounds and more 

challenging situations.  

The skin detection algorithm developed for this project is illustrated in Figure 15. We tested the 
algorithm on a color image, but the image was converted to grayscale and no subsequent 
operations, including the face detection algorithm used any color information. From the 
knowledge of the fiducial points on the face, we selected a skin mask, a non-skin mask, and a 
distance-based weight map, 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼), for image “𝐼𝐼.” This weight map was proportional to the 
prior probability of each pixel in the image being skin. The basic assumption here was that the 
closer the pixel is to the face, the higher its probability of being skin. As the pixel goes away 
from the center of the face, this probability decreases. The distance weight map also included the 
pose information. Depending on the person’s head pose, the weight map changed its probability 
of the pixel being skin. The non-skin map selected the eyes, nostrils, and any other near black 
pixels (intensity < 5). The skin map comprised part of the forehead, nose, and cheeks. Our visual 
inspection showed that the chosen mask areas were mostly uncovered by facial hair and 
clothing/accessories. We tested over 1,200 images from both databases, and a comparison with 
the ground truth showed that 97% of the time the mask was a skin pixel. 

 
Figure 15. Diagram. The skin detection algorithm. 
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Once the skin mask was obtained, it was used as our reference for the full skin area. We 
computed the histogram-based probability of each grayscale value and assigned the probability 
to each of the pixels. The weighted value of each pixel (𝑝𝑝) shown in Figure 15 is given by:  

 
where, 𝑐𝑐 ∈ {0 … 255} are the grayscale values. The corresponding weight map of the image 𝐼𝐼 is 
𝑊𝑊𝑔𝑔𝑔𝑔(𝐼𝐼) ∈ �𝑤𝑤𝑔𝑔𝑔𝑔(𝑝𝑝)�. The final weight map was calculated from these two weight maps, 𝑊𝑊𝑔𝑔𝑔𝑔(𝐼𝐼), 
𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼), and from the knowledge of the non-skin map. Applying a threshold for each pixel, we 
calculated the binary image. Finally, after using morphological operators like erosion and 
dilation, we obtained the final skin map. We used two threshold values in our algorithm. The 
first was for the distance map, 𝑡𝑡𝑑𝑑. This threshold determined how far from a face a pixel should 
be considered a skin pixel. Any pixel beyond that point was given a weight of zero. The second 
threshold was for the grayscale map (𝑡𝑡𝑔𝑔𝑔𝑔). As discussed before, every pixel had a weight 
proportional to the probability derived from the grayscale histogram of the mask. We varied both 
thresholds to find the best set of thresholds to provide acceptable values for precision and recall. 
Figure 16 shows the average precision-recall curve for different threshold combinations. For our 
application, we were more interested in precision than recall. Upon careful inspection of the 
detected skins in the images, we found that the recall of the algorithm was mostly affected by 
misidentification of the neck area skin. However, for our application, we are not specifically 
focusing on the neck area skin. Therefore, a recall of 75% was assumed to be acceptable for the 
areas where we selected thresholds, resulting in an average precision of at least 90%. This 
corresponds to 𝑡𝑡𝑑𝑑 = 0.39, 𝑡𝑡𝑔𝑔𝑔𝑔 = 0.29.  

 
Figure 16. Graph. Precision and recall curve for threshold selection. 

Results from the SFA dataset are shown in and Table 2 and Table 3. Table 2 shows success cases 
and Table 3 shows some of the failure cases. The results showed that this algorithm, although 
simple in nature, could successfully detect skin for people of different gender, age, and ethnicity. 
It often overcame challenges imposed by wearable devices (e.g., glasses), facial hair, and 
occlusion by hair style. One of the major drawbacks of this method was that if any part of the 
face or surrounding area matched the grayscale values in the mask, it blindly selected that area as 
a skin pixel. Also, there were cases where the probability distribution of the ground truth and the 
rest of the image were very similar. In other words, in theory, there would be a very low 
correlation between the distribution of skin and non-skin pixels as well as a low entropy 
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distribution for the skin pixels. In, practice, this does not always hold true. An example can be 
seen in the top row of Table 3, where the hair or shirt of the person was confused for a skin pixel. 
In the bottom-right case, the same confusion can be seen over the change in an individual’s skin 
tone. Illumination and other reflections also created ambiguous situations that confused the 
algorithm, as they modified the appearance of the skin totally, as shown in the bottom left 
example in Table 3. Finally, as our algorithm primarily depended on a face and fiducial point 
detector, any fault in that detector propagated to the outcome of the whole algorithm. The 
bottom-middle example in Table 3 is one such case—the face detection algorithm fired at the 
wrong area of the image, leading to inaccurate selection of the skin-mask, throwing off the 
subsequent skin pixel detection process.  
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Table 2. Example of successful cases of skin detection from the SFA database. 
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Table 3. Failure cases from the SFA dataset – Top-left and top-right: hair is confused as 
skin; top-middle: part of shirt has been selected; bottom-left: illumination and background 

confusion; bottom-middle: effect of wrong-face detection; bottom-right: inadequate 
grayscale sampling from mask.  

      

      

Given the aforementioned pros and cons, using other facial features, especially texture features, 
is recommended for guaranteeing better skin segmentation. In some cases, researchers have used 
texture (Cula, Dana, Murphy, & Rao, 2005; Fotouhi, Rohban, & Kasaei, 2009; Garcia & Tziritas, 
1999) or shape (Drimbarean, Corcoran, Cuic, & Buzuloiu, 2001) information in combination 
with color-based methods in order to refine the resulting skin segmentation. Wavelets, 
contourlets, and textons are among the textural features that have been previously used in 
conjunction with color or grayscale cues. Fractals, lacunarity, GLCM, and local binary patterns 
are some of the other methods that have been used for detecting texture in images. The particular 
method presented here has the major advantage of having a very low processing time. As face 
detection is part of the actual algorithm, this method only needs to find the grayscale histogram 
and assign a probability to every pixel. As such, using these other features was not explored 
further due to the anticipated additional processing requirements. 

VIDEO MAGNIFICATION: PEAK DETECTION AND RESAMPLING 

Once the face detection, registration, and skin patch selection were complete, we sent the video 
frames through the VidMag algorithm. In most real-life applications of interest, video data with a 
very high frame rate are not available. Recordings from standard mobile devices and surveillance 
cameras often range from 10 fps to 30 fps. The frequencies of interest for heart rate lie within the 
range of 40 to 200 beats per minutes (bpm), which is equivalent to 0.667 to 3.33 Hz. The rate of 
10 fps satisfies the Nyquist criterion for this frequency range, but imposes limitations on the 
accuracy and resolution of the estimated pulse rate signal. 

The basic VidMag work flow is summarized in Figure 17. Each registered video sequence was 
fed to the VidMag algorithm, which attempted to extract the temporal BVP signal. The BVP 
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signal extracted from the magnified video was noisy, partially due to artifacts from motion and 
illumination, as well as from the low frame rate. Figure 18 shows one such sample, which 
includes spurious peaks. Additionally, the mean intensity varied over time. Even after smoothing 
and peak detection, the resulting sample suffered from low frame rate. For a 30-fps video, the 
heart rate estimator could not detect a heart rate that was known to be between 90 and 94.7 bpm. 
To address these problems, the BVP signal was resampled by a factor of 20 before the peak 
detection algorithm was applied. This helped increase the resolution of consecutive heart rate 
estimates, and heart rate could be calculated with a resolution less than 0.2 bpm. 

 
Figure 17. Diagram. Heart-rate extraction flowchart of the new system. The VidMag 
algorithm is used to extract a raw signal that is analyzed further for noise reduction, 

interpolation to address low frame rate, peak detection, and heart rate extraction. 

 
Figure 18. Graph. Raw output of BVP. 

HEART RATE VARIABILITY (HRV) 

Before we describe the methods for post processing of the extracted heart rate, we will discuss 
heart rate variability (HRV). Consideration and conservation of HRV was the biggest motivation 
for our post-processing algorithm development. In the following sections, we will describe HRV 
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and the associated experimental setup for verification of HRV using VidMag. This discussion 
will lead us to successfully demonstrate the post-processing strategies for VidMag. 

Overview of HRV 

HRV represents the variability of time between two consecutive pulses (or R-R interval) as 
shown in Figure 19. HRV reflects the state of the autonomous nervous system and the balancing 
of the sympathetic and parasympathetic nervous systems. A detailed review by Acharya, Joseph, 
Kannathal, Lim, and Suri (2006) shows examples of HRV time domain analysis and frequency 
domain analysis. Healey and Picard (2005) used the Lomb-Scargle periodogram to study the 
stress level of a driver on the road, showing that the power spectral density in different frequency 
ranges is correlated with the stress level of the driver. Their work also shows that frequency 
analysis can provide information concerning the respiration of the driver. Rodriguez-Ibañez, 
Garcia-Gonzalez, de la Cruz, Fernandez-Chimeno, and Ramons-Castro (2012) showed the 
potential of using HRV for drowsiness detection using R-R intervals of electrocardiogram (ECG) 
data. Their technique calculates different time domain and frequency domain properties, and they 
show that specific HRV properties indicate distinct evidence of drowsiness. Acharya et al. 
(2006) further state that alcohol induces sympathetic activation and/or parasympathetic 
withdrawal. This in turn affects the measured HRV parameters. These characteristics of HRV 
could be crucial in assessing a person’s psychophysiological conditions, particularly those that 
might lead to a crash.  

 
Figure 19. Graph. R-R interval. A sample ECG signal from the MIT-BIH arrhythmia 

dataset Goldberger et al., 2000). 

Data Collection for HRV Verification 

As we discussed above, HRV plays a crucial role in defining a driver’s physical and 
psychological condition. Therefore, it is necessary to evaluate how precisely the VidMag 
algorithm represents the beat-to-beat accuracy. This requires an accurate measurement of the 
ground truth physiological signals with high resolution. We used a GE S/5 medical instrument to 
measure the ECG and pulse signal at a resolution of 100 Hz while recording video at a rate of 30 
fps using a Canon Powershot on a tripod. Figure 20(a) shows the experimental set up. The S5 
uses a three-point ECG measurement where the pulse is measured from the PPG pulse meter 
attached to the finger. Figure 20(b) shows sample signals from the ECG and pulse meter reading. 
As discussed in previous sections, we were interested in measuring the accuracy of the beat-to-
beat interval as well as the actual traces of the signals. Figure 21 shows an example of the face 
video with a manually selected skin area. 
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(a) 

 
(b) 

Figure 20. Photos. Experimental setup for data collection phase III. (a) PPG pulse meter is 
worn on the fingertip and one of the three leads of the ECG measurement kit is attached to 

the participant’s left wrist. (b) The S5 machine with the data recording software.  

 
Figure 21. Screenshot. Manual selection of skin area of interest. 

POST PROCESSING OF MAGNIFIED VIDEO 

Pulse Signal Extraction 

This section explains post processing of the raw heart rate signal extracted from the magnified 
face video. Estimation of actual heart rate can be challenging, particularly when the range of 
heart rate in a given time sequence is unknown. Human heart rates can vary from 40 bpm (0.667 
Hz) to 240 bpm (4 Hz) depending on the subject’s physical and cognitive condition, age, gender 
and various other factors. As a 240-bpm (4 Hz) heart rate, which is considered very high, is 
unlikely to occur in most real-life scenarios, we first used a wide bandpass filter in the range of 
0.667–2.5 Hz and magnified any temporal signal in this range in the evaluation test. Due to the 
use of a wide bandpass signal, the extracted heart rate was often corrupted by noise from 
frequencies other than the true embedded heart rate. This noise was eliminated by learning the 
passband frequencies, or, in other words, using a narrow-band filter. At this point, we assumed 
that the signal-to-noise ratio in the initial magnified video was high and that most of the true 
heart rate signals had been captured. Therefore, performing a histogram analysis of the extracted 
heart rate returned an estimate of the actual range of heart rate for that specific time sequence. 
The 5% and 95% frequency values were assigned as the lower and upper cutoff frequencies for 
the updated bandpass filter. An analysis of the MIT-BIH arrhythmia dataset (Goldberger et al., 
2000) indicates that instantaneous human heart rate may vary within a range of 20–50 bpm, 
which justified our new frequency band choice. Once the passband was defined, we ran the 
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VidMag algorithm again with the new bandpass filter. In a more challenging scenario, this could 
be performed iteratively until convergence. Table 4 shows the algorithm used to find the final 
narrow bandpass frequencies.  

Table 4. Algorithm 1 – Select narrow bandpass frequencies. 

Step  Action 
1  Select a face video. 

2  Initialize passband frequencies, 𝑓𝑓𝑙𝑙 = 2
3

 𝐻𝐻𝐻𝐻, 𝑓𝑓ℎ = 4 𝐻𝐻𝐻𝐻. 
3  Perform VidMag frequencies, 𝑓𝑓𝑙𝑙, 𝑓𝑓ℎ. 

4  Calculate instantaneous heart rate. 

5  Perform cumulative histogram analysis. 

6  Assign new passband frequencies, 𝑓𝑓𝑙𝑙, 𝑓𝑓ℎ, from 5th and 95th 
percentile value from Step 5. 

7  Repeat Step 3–Step 6 until convergence. 

Savitzky-Golay (S-G) Filter Analysis 

Once the frequency range of the passband filter was determined, the raw signal from the 
magnified video was extracted and heart rate was estimated for every single beat. The blue line 
in Figure 22 shows the raw output of the extracted heart rate. Clearly, there is a considerable 
mismatch between the output and the ground truth measurements (green line) from the pulse 
meter. This is often the result of noise from sampling and peak detection error. To minimize this 
error, we used an S-G filter (Press, 2007). Human heartbeats do not appear at a constant interval, 
and therefore heartbeat data are a classic example of non-uniformly sampled data. To address 
this, the S-G filter, which uses a locally concentrated least square method, was applied to smooth 
the raw data. Figure 23 shows the filtered result (𝐻𝐻𝑅𝑅𝑣𝑣𝑣𝑣) being very close to the ground truth 
(𝐻𝐻𝑅𝑅𝑔𝑔𝑔𝑔). To get the average heartrate (𝐻𝐻𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎), we used a moving average filter with a window of 
5 seconds.  

 
Figure 24 shows the ground truth average and the 𝐻𝐻𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎.  

 
Figure 22. Graph. Raw heart rate estimation from VidMag. 
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Figure 23. Graph. Heart rate after filtering. 

 

 
(a) 

 
(b) 

Figure 24. Graphs. Comparison for average of heart rate. The heart rate has been 
averaged for every 5 seconds. 

Lomb-Scargle Periodogram  

Finally, we compared our results in the frequency domain. The sampling rate of the heart rate 
signal and the R-R intervals are non-uniform in nature. Therefore, standard frequency analysis 
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methods using a standard periodogram often fail to provide a correct analysis. If there is any 
discrete time series data 

 
then the classical periodogram calculates the spectral power as  

 
When the samples are equispaced, then the fast Fourier transform (FFT) algorithm can easily 
calculate the spectral power at each frequency component. But, when the samples are taken at 
non-uniform time intervals, this algorithm does not apply. Resampling the data to uniform 
sampling is a simplified solution to this problem, but has the accompanying risk of losing data as 
well incorporating interpolation error. Lomb (1976) and Scargle (1982) address this problem by 
introducing a least square spectral analysis method:  
 

 
where 

 
 

The parameter 𝜏𝜏 is a time delay that Scargle introduced. He proved that the 𝜏𝜏 is selected by the 
algorithm in such a way that it makes the expression of 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜔𝜔) equivalent to estimating the 
harmonic content at any angular frequency 𝜔𝜔 by least square fit to the model:  
 

 
This makes the algorithm a better choice than conventional FFT methods for any non-uniformly 
sampled data. There is an emphasis on each point, so all observation points are used for the 
periodogram. Laguna, Moody, and Mark (1998) have shown the usefulness of the Lomb-Scargle 
method for analysis of the heart rate. We used the Lomb-Scargle periodogram to compare our 
results to the ground truth, and Figure 25 shows that our results closely matched the reference 
heart rate. Although there was some noise in the higher range of the periodogram, most of the 
high-power frequency components were present. We further analyzed the whole sequence of 
heartbeats with a spectrogram analysis. We selected a small window (𝑇𝑇𝑤𝑤) in the given time and 
performed the Lomb-Scargle periodogram, then shifted the window by 𝑇𝑇𝑠𝑠ℎ and performed it 
again. We used 𝑇𝑇𝑤𝑤 = 30 sec and 𝑇𝑇𝑠𝑠ℎ = 1 sec as the measurements. Figure 26 illustrates the 
comparison in the frequency domain when we used the Lomb-Scargle periodogram to compare 
power spectral density of the instantaneous heart rate values from VidMag and the ground truth 
measurement, indicating that the two show similar behavior.  
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Figure 25. Graph. Comparison of instantaneous heart rate in frequency domain. The 

power spectral density is computed using the Lomb-Scargle periodogram. 

 
(a) 

 
(b) 

Figure 26. Graph. Comparison of VidMag algorithm by spectrogram analysis: (a) shows 
the spectrogram from the pulsemeter and (b) shows the results from the VidMag 

algorithm.  

Error Analysis 

In this section, we compare the ground truth measurement of the pulse rate with the final 
estimation of the pulse rate. We performed our analysis in both the time domain and the 
frequency domain. Figure 27 shows a scatter plot of the measured heart rate (𝐻𝐻𝑅𝑅𝑣𝑣𝑣𝑣) against the 
reference ground truth (𝐻𝐻𝑅𝑅𝑔𝑔𝑔𝑔) with a good correlation at 88.4%. The graphs in Figure 28 show 
that we can achieve an error rate of less than 2.84 bpm for the average value of the heart rate and 
an average error rate of less than 9.07 bpm for the instantaneous heart rate with a success rate of 
95%.  
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Figure 27. Graph. Comparison of instantaneous heart rate. 

  
Figure 28. Graphs. Error analysis of heart rate. 
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CHAPTER 3. DATA COLLECTION 

We collected data both for static subjects in indoor conditions as well as for subjects outside in 
vehicles. The data were used to tune and evaluate the video-based heart rate measurement 
methods described previously. In this section, we describe the collection methods and scenarios.  

PHASE I – STATIC CONDITIONS 

For initial validation of the VidMag algorithm, we ran an experiment in static indoor conditions. 
Reference heart rate data were collected using a Garmin Forerunner 620 wrist watch with a 
Garmin heart rate monitor (HRM; Figure 29). The HRM was chest wearable and transmitted 
heart rate information wirelessly to the Forerunner wrist watch. It provided a time-averaged heart 
rate for the wearer, and recorded a value once every second. In this case, three participants were 
asked to stand with minimal head movement, and videos were captured using a commercially 
available Canon PowerShot SX 120 IS that recorded RGB videos at 30 fps. Each participant was 
asked to rest before data collection, so that cognitive loads would be low. Each session was 
recorded for 60 seconds. No special control was imposed on the illumination condition. 

 
Figure 29. Photo. Garmin wrist watch and HRM. (Image source: 

http://www.garmin.com/en-US). 

PHASE II – DYNAMIC CONDITIONS 

The second set of data was recorded from the MiniDAS, a data acquisition system that was 
developed in-house at VTTI, which was specially designed for collecting in-vehicle data. Figure 
30 shows a forward-view camera screenshot and a face-view camera screenshot of the collected 
video. The face-view camera was rigidly mounted near the rearview mirror. The system 
collected RGB face video data at a rate of 10 fps. A total of 2.5 hours of video was recorded for 
two participants. The Garmin heart rate data and video data were synchronized through Global 
Positioning System (GPS) time. Figure 31 shows cropped screenshots of the face-view video. 
The collected data included diverse situations, including low and high illumination, varying head 
poses, and normal and near-infrared videos.  

http://www.garmin.com/en-US)
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Figure 30. Screenshots. Example of collected video. 

    

    

    

Figure 31. Screenshots. Sample screens from the collected video data using MiniDAS. 

RAW-DATA ANALYSIS 

Manual video analysis was performed to study drivers’ behavior in naturalistic conditions. We 
manually examined each of the videos to see how drivers behaved on different road types, 
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including city and interstate. Figure 32 shows the heart rate data reading for a session of driving, 
which can easily be divided into three segments.  

1. In Segments A1, A2, and B, the participant was driving in a metropolitan area.  

2. During Segment C, the participant was driving on an open highway with less traffic.  

3. Segment B shows a sudden increase in the heart rate during the performance of a 
secondary task (searching for an item inside the vehicle) while continuing to drive.  

A similar boost in the heart rate data occurred for the second participant when they suddenly had 
to brake hard at a traffic signal (Figure 33). These examples indicate that heart-rate analysis may 
have the potential to produce valuable information about driver state in naturalistic conditions. 
From the overall dataset, we selected some particular samples from the trip to test with the 
VidMag algorithm. 

 
Figure 32. Graph. Sample run using Garmin HRM: Participant 1 – (A1 and A2 – inside 
city, B – inside city secondary task and extra cognitive load, C – interstate driving – less 

cognitive load). 

 
Figure 33. Graph. Sample run using Garmin HRM: Participant 2 – an instance of panic 

during hard braking. 

EXPERIMENTS AND RESULTS  

Figure 34 shows the result for a 1-minute video of a stationary subject indicating that the 
estimated heart rate matches the measured average heart rate value from the Garmin HRM 
reasonably well. The estimated heart rate has some outliers due to multimodal peaks in several 
situations.  
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Next, we chose a video sequence from our naturalistic video dataset, so that the head movement 
was within specified limits. Figure 35 shows the result for a participant driving on an interstate 
highway (Segment C from Figure 32). Figure 36 shows heart rate estimation for Segment B, 
where the driver had diverted attention due to the in-vehicle secondary task, as well as a high 
cognitive load due to driving in the city. In all cases, the results show good matches between the 
estimation and the ground truth. The results also indicate that the human heart rate can vary 
within a band of ±10 bpm. This variability corresponds well with results that we obtained with 
sample ECG signals from MIT-BIH (Goldberger et al., 2000). 

 
Figure 34. Graph. Heart rate estimation using the new procedure for a subject indoors. 

 
Figure 35. Graph. Heart rate estimation using the new procedure for video obtained while 

the subject was driving. 
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Figure 36. Graph. Heart rate estimation using the new procedure. The subject was 

performing a secondary task while driving in city conditions. This corresponds to Segment 
B in Figure 32. 

HEART RATE VARIABILITY (HRV) ANALYSIS 

The last step of the process was to analyze HRV in different situations in order to determine 
different psychophysiological conditions. HRV is generally computed from consecutive R-R 
intervals of a cardiac signal. Acharya et al. (2006) summarized different time domain, frequency 
domain, and nonlinear analyses of HRV from R-R intervals. We analyzed Segments B and C 
from Figure 32, first extracting the heart rate from the face video using the VidMag method as 
described in the previous sections, and then analyzing those segments using Kubios, a Matlab-
based software for HRV analysis (Tarvainen, Niskanen, Lipponen, Ranta-Aho, & Karjalainen, 
2009). As mentioned earlier, Segment B corresponds to a high cognitive load for the driver, and 
Segment C corresponds to interstate driving, where the cognitive load was comparatively low. 
Table 5 and Figure 37, respectively, show time domain analysis and frequency domain analysis 
using Welch’s periodogram for Segment C. We compared this to results from Segment B in 
Table 6 and Figure 38. The comparison of mean heart rate (or R-R) values from the time domain 
analysis shows that the driver had a higher heart rate than normal during Segment B, as expected. 
The ratio of the areas under the power spectral density curves relates to the stress level (Healey 
& Picard, 2005). The red, blue, and yellow areas in Figure 37 correspond to very low frequency 
(VLF), low frequency (LF), and high frequency (HF) components of the spectrum, respectively. 
The higher the LF/HF ratio, the higher the cognitive load. Our experiment shows that Segment B 
had an LF/HF = 0.789, which is higher compared to Segment C (LF/HF = 0.688). This agrees 
with Healey and Picard’s (2005) findings and validates our experiment.  
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Table 5. Time domain analysis of HRV for Segment C. 

Variable Units Value 
Mean RR 𝑚𝑚𝑚𝑚 849.0 
STD RR (SDNN) 𝑚𝑚𝑚𝑚 53.3 
Mean HR 𝑚𝑚𝑚𝑚𝑛𝑛−1 70.97 
STD HR 𝑚𝑚𝑚𝑚𝑛𝑛−1 4.88 
RMSSD 𝑚𝑚𝑚𝑚 57.5 
NN50 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 7 
pNN50 % 25 
RR Triangular index  7.250 
TINN 𝑚𝑚𝑚𝑚 175 

Table 6. Time domain analysis of HRV for Segment B. 

Variable Units Value 
Mean RR 𝑚𝑚𝑚𝑚 436.4 
STD RR (SDNN) 𝑚𝑚𝑚𝑚 17.8 
Mean heart rate 𝑚𝑚𝑚𝑚𝑛𝑛−1 137.71 
STD heart rate 𝑚𝑚𝑚𝑚𝑛𝑛−1 5.42 
RMSSD 𝑚𝑚𝑚𝑚 26.6 
NN50 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 9 
pNN50 % 7.2 
RR Triangular index  5.040 
TINN 𝑚𝑚𝑚𝑚 90 

 

 
Figure 37. Graph. Frequency domain analysis of Segment C. 
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Figure 38. Graph. Frequency domain analysis of Segment B. 
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CHAPTER 4. DISCUSSION – CHALLENGES AND CONSIDERATIONS FOR FUTURE 
WORKS  

This study demonstrated the feasibility of non-contact heart rate monitoring in naturalistic 
scenarios. The method used in this study was the VidMag algorithm, which measures BVP from 
face video data by exaggerating small, nearly imperceptible changes over time in pixel 
intensities. The use of the VidMag algorithm in real-life situations is challenging due to head 
movement, changes in illumination, low spatial resolution, low frame rate, and image noise. This 
report introduced a novel approach to addressing several of these limitations for the purpose of 
continuous heart-rate monitoring. Small movements of the head, for example, can be 
compensated for by careful registration of images over time.  

One of the main contributions of this work is the introduction of an adaptive filtering technique 
that extracts heart rate from the video at a low frame rate. This novel approach suppresses noise 
and performs peak detection from magnified video, which relates to the R-R intervals in an ECG. 
The technique was tested for subjects in controlled conditions as well as for subjects driving 
under naturalistic conditions. This approach has the potential to extract information related to the 
psychophysiological state of a person in real time using HRV, and could perhaps be used for 
biometric authentication. The work done for this study demonstrates the feasibility of stress 
detection in real-life situations using time-domain and frequency-domain analysis. We believe 
that the use of advanced vision algorithms and signal processing methods and better quality 
video can further improve performance.  

The preceding results included discussion and some concluding remarks; however, the work 
herein was largely exploratory in nature and resulted in a proof of concept. Along with these 
contributions and advancements, this work has given rise to a number of concerns that must be 
addressed before the proposed method can be successfully implemented in real-time cases. In the 
following section we will discuss some of the cases where our investigation did not reach a 
strong feasibility conclusion and raised questions for future work.  

HRV ANALYSIS FROM BVP SIGNAL: AN ANALYSIS 

In this work, we analyzed HRV, where the heart rate is measured from the BVP. Historically, 
HRV has been defined for the heart rate as extracted from an ECG signal. Therefore, a question 
still remains as to whether the HRV analysis from the BVP signal analyzed herein is equivalent 
to an HRV analysis from the conventional (and more thoroughly studied) ECG signal. An ECG 
signal is the reflection of the electrical behavior of the heart, whereas any BVP measurement, 
such as PPG, is an indication of the flow of blood volume in the periphery as a result of the 
heart’s mechanical action. If we define the peak position from the ECG and PPG to be 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 
and 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 and the time instant of the peaks to be 𝑇𝑇𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑇𝑇𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 then for a particular beat 
occurrence, 𝑇𝑇𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, where 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 primarily indicates the total time delay for 
the blood to reach the measuring part of the PPG (often the fingertip) after the electrical signal 
for the beat is initialized. Even if we ignore the delay induced by the measuring instruments and 
other noise sources for simplicity, the mechanical delay may not be constant. Therefore, the 
distance between two consecutive heart rates are not always the same for an ECG and a PPG. 
Various studies (Selvaraj, Jaryal, Santhosh, Deepak, & Anand, 2008; Schäfer & Vagedes, 2013) 
over the last three decades indicate that most researchers agree that the behavior of HVR from 
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both sources shows good correlation for time domain, frequency domain, and nonlinear analysis. 
Only a limited number of researchers have shown that, except from the resting position 
measurements, the short-term HRV may vary  from one instance to the next (Khandoker, 
Karmakar, & Palaniswami, 2011).  

FACIAL MAP FOR HEART RATE MEASUREMENTS 

Physiologically, not every skin patch on the face provides the same amount of visual information 
for peripheral blood flow. Due to the variation of the density of the peripheral blood vessels, the 
amplitude of the extracted PPG signal will vary, and given a constant noise level, lower 
amplitude PPG signals are more prone to be corrupted by noise. In addition, blood flow due to 
the cardiovascular pulse does not reach each part of the face at the same time, which may 
introduce delay in the extracted PPG signals from each of the patches and influence the resulting 
heart rate measures in unknown ways. To have a deeper understanding of these variables and 
create a reliable weight map for refining the algorithms, future research projects should employ 
very high resolution video data.  

ILLUMINATION 

Challenges 

This work made clear that one of the major problems with using naturalistic videos in 
conjunction with machine vision are varying illumination conditions. The problem is difficult to 
overcome with existing machine vision techniques, and is important for several reasons: 

1. During the daytime, most illumination is from the sunlight. Because no road is exactly 
straight, the incident angle of the sun changes every moment. As a result, the amount of 
light appearing on the face varies.  

2. The differences in the interior design and color of the vehicle pose another challenge. 
Ambient light generally enters though windows or the windshield and gets reflected from 
the interior parts of the car. This reflection affects the light rays that appear on the 
driver’s face.  

3. A similar effect may be observed from the light reflected from the surroundings. For 
instance, if a red car passes by, its reflection will affect the total volume flow of the light 
field inside the vehicle and thus on the driver’s face. 

4. The topography of the road plays a major role in the illumination condition. If the car is 
going through a forest or road with trees, then the perforated nature of the trees make the 
light field highly variable.  

5. Lastly, shadow plays a vital role in illumination, as it results in the various points on the 
face not being illuminated uniformly. Hard shadows or an extremely bright background 
cause problems for the face detector as well as relative weight for every face patch, which 
determines which part of the face and the skin patches should get more priority. These 
need to be monitored and adjust constantly.  
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Figure 39 shows the luminance map of a frame where the gradient and variability is clearly 
visible. Given the challenges discussed above, we propose several mitigation strategies. 

 
Figure 39. Diagram. Illumination gradient on the face. 

Use of Vehicle’s Stationary Parts for Illumination Correction 

The interior body of the car visible to the camera is mostly stationary. The vibration of the 
camera due to speed and road conditions may lead to slight changes in the 2D location of a fixed 
point in the automobile, but for the purposes of this discussion, we will discard the effect of 
vibration. The movement of the driver may also occlude certain portions of the interior from time 
to time. Figure 40 shows an example of the interior of the car cropped from the actual image. 
Although it is generally assumed that the color and appearance of the interior will be uniform, 
the image depicts the variability discussed in the previous section. To provide an example of a 
means to address this, we took the driver side part of the interior and the parts closer to the driver 
(driver side window, back of mirror, etc.) and divided them into small patches. Next, the 
luminance part of each of the patches was tracked by converting the RGB image to the CIELUV 
color space. Generally, the “L” channel of the CIELUV color space captures the luminance. The 
luminance map from each point is mapped in Figure 41, where it is plotted against time in the x-
axis and patch number in the y-axis. Ideally, there should be a correlation both spatially and 
temporally. The figure shows a pattern in the signal, although the patterns are not consistent for 
all the patches. Tracking background pixels from a fixed part of the car may be a useful way to 
eliminate the effect of illumination to a certain extent. This should be further explored in future 
work.  

 
Figure 40. Screenshot. Stationary part of car interior. 
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Figure 41. Graph. Interior illumination variation with time. 

USE OF LAMBERTIAN SURFACE 

The appearance of any surface is largely dependent on the ambient illumination, the reflectance 
of the surface, and the camera parameters. Recovering all of these parameters has been an active 
area of research in the field of face recognition and photo-realistic face generation. In addition, 
practical applications often require understanding the ambient lighting condition to optimally 
model the face parameters. We propose assuming that the human face is a Lambertian surface 
and modeling the problem as a Markov Random Field (MRF) to simultaneously find the texture, 
albedo, and the ambient illumination. 

There have been a number of works related to relighting, shape, and texture in determining faces 
under various lighting conditions (Shan, Gao, Cao, & Zhao, 2003; Shim & Chen, 2008; Wang et 
al., 2007; Wang et al., 2009; Atick, Griffin, & Reclich, 1996), but the research by Wang et al. 
(2007; 2009) provides a systematic method for modeling the face albedo, texture, and 
illumination in a spatially connected model. Using spherical harmonic representation (Basri & 
Jacobs, 2003), it has been shown that the set of images of a convex Lambertian object obtained 
under a wide variety of lighting conditions can be approximated by a low-dimensional (nine or 
four) linear subspace. The model divides the face image into smaller regions and uses a different 
set of face model parameters for each region. This reduces the overall estimation error more than 
a single holistic approximation, and introduces neighboring coherence constraints to the albedo 
estimation for the divided regions. The energy minimization problem for a single image is 
formed as:  

 

where 𝜌𝜌 is the output albedo, (𝑢𝑢, 𝑣𝑣) is the pixel index, l is the illumination, 𝑞𝑞 denotes the qth 
region, Ν = �(𝑖𝑖, 𝑗𝑗)|Ωi 𝑎𝑎𝑎𝑎𝑎𝑎 Ω𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� is the set of all pairs of neighboring regions, 
𝑛𝑛�⃗ 𝑀𝑀is constrained by the shape subspace normal, and 𝜌𝜌𝑞𝑞 is constrained by the texture subspace 
(Wang, 2007). The objective function is an energy function of an MRF. The first two terms in 
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the equation are the first-order potentials corresponding to the likelihood of the observation data 
given the model parameters, and the third term is the second-order potential, which models the 
spatial dependence between neighboring regions. Therefore, the problem of jointly recovering 
the shape, texture, and lighting of an input face image is formulated as an MRF-based energy 
minimization (or maximum a posteriori) problem. In the case of multiple frames, this can be 
extended with a minimization in the variance of the albedo and texture, given that the face 
belongs to the same person. Wang et al. (2009) approached the optimization using an iterative 
process. We propose future work to investigate the problem from the perspective of a graphical 
model and exploring relevant algorithms for optimization of similar problems and then making a 
comparison in relation to the given scenario. This will include the 3D structure of the face in 
terms of the learned surface normal and counter the effect of illumination through the training on 
the subject’s natural albedo and ambient lighting. Most remote measurements of BVP assume the 
face to be a Lambertian surface (de Haan & Jeanne, 2013; van Gastel, Stuijk, & de Haan, 2015), 
and therefore any standard model can be merged with this lighting model.  

PROBLEMS RELATED TO NATURALISTIC DRIVING VIDEOS AND SHRP 2 

In addition to the data collections discussed thus far, we also manually reduced more than 100 
videos of crash and near-crash scenarios from the SHRP 2 NDS (Campbell, 2012). A summary 
of the reduction is shown in Appendix B. During this explorative process, we noticed several 
practical problems that may limit the scope of the VidMag algorithm. Some of the SHRP 2 face 
video data uses automatic zooming on the face, causing a loss of continuity in the vision-based 
detection process. Additionally, sometimes the camera’s field of view is directed to the sun, 
rendering the face barely visible due to the camera’s automatic gain control and white balance.  

Another major problem was the quality of nighttime video. Due to the low light conditions, the 
video frames have high spatial and temporal noise. Sometimes face detection is beyond human 
capabilities. The signal-to-noise ratio is also quite low in some particular video frames. Figure 42 
shows one such example. If we crop everything out but the face, it is very difficult to recognize 
the resulting image as a person, and impossible to point out different parts of the face. The 
available face detectors often fail for these kind of video frames. The current quality of nighttime 
videos along with their low resolution makes it highly challenging to apply any remote 
measurement of physiological signal.  
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Figure 42. Screenshot. Face detection problem in SHRP 2 video. 

We also noticed that in some cases the camera angle does not record the face, but is rather 
oriented in some other direction. Additionally, occlusions sometimes hide faces or the presence 
of the sun in the background creates problems with the white balance of the frame. The current 
algorithm is insufficient to overcome all of these practical issues with true naturalistic data. 

As discussed previously, we observed a case study where a rising heart rate indicated interesting 
behavior (hard braking; Figure 33). In reviewing other video data from SHRP 2, we observed 
that, often, after a critical event, the driver moves out of the vehicle or moves in a way that 
occludes the face (e.g., puts the hands over the face area). This may limit the algorithm’s utility 
for certain segments of data that are of particular interest and require additional research to 
understand their full implications.  

AUTHENTIC DATA FOR BEHAVIOR ANALYSIS 

We have discussed how physiological measurements are capable of indicating a person’s 
behavioral characteristics. A substantial amount of work has been done in the last few decades to 
demonstrate these measures’ effectiveness under controlled conditions. The study of a driver’s 
behavioral patterns is not new either. However, at this point in time, the driving research 
community does not have a good set of reliable data that may validate these theories and allow 
for testing of the algorithms described herein. We believe that if a set of data, with simultaneous 
recording of face video and physiological variables (i.e., ground truth), were collected for drivers 
with events like drowsiness or alcohol consumption, it may be possible to come to some 
conclusions about the relationship among these variables and behaviors that would help justify 
moving toward increasingly refined and deployment-ready, non-obtrusive cardiovascular 
measurement systems within vehicles. 

RECENT DEVELOPMENTS IN THE FIELD OF REMOTE MEASUREMENTS OF 
HEART RATE 

Recently, Hernandez, McDuff, and Picard (2015) showed that it is possible, using a wrist 
wearable watch, to measure cardiac and respiratory parameters with a motion sensor and 
gyroscope. Similar measurement is possible via wearable glasses or any head-mounted motion 
sensor (Hernandez & Picard, 2014). It has also been reported by McDuff, Gontarek, and Picard 
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(2014b) that characteristics of systolic and diastolic peaks of pulse signal can be detected from 
face video. Another recent work showed that the microvascular blood flow can be monitored 
using a vision system (Zhang et al., 2016). This can show the structure of the vessels and the 
flow characteristics of the blood inside the vessels. All of these works have shown substantial 
promise over recent years, and we believe that with good quality video, these measurements are 
possible in the future and widely implementable in real-life conditions. Future research should 
consider the availability and applicability of these potentially overlapping methods for capturing 
biometric information. 

CONCLUSION 

In this work, we have demonstrated the feasibility of non-contact monitoring of heart rate in 
naturalistic situations using RGB face video data. We have used a “video magnification” 
approach, which exaggerates small, nearly imperceptible changes of blood volume over time 
reflected in pixel intensities. The use of the video magnification algorithm in real-life situations 
is challenging due to head movement, changes in illumination, low spatial resolution, low frame 
rate, and image noise. This work has shown that a step-by-step approach to addressing several of 
these limitations for the purpose of heart-rate monitoring is effective. With our algorithm, we can 
achieve very good estimation of instantaneous heart rate and average heart rate. Both of these 
measurements are useful to understand the psychophysiological condition of a driver. This 
includes stress, panic, fatigue, and drowsiness. We used two sets of data to demonstrate our 
results. First, we used an indoor dataset with very restricted conditions. Second, we used a 
naturalistic driving dataset. In both cases the heart rate estimation results were promising. The 
estimation of heart rate information is more challenging in real-life driving scenarios, but, if we 
carefully select the frame sequence where the change in illumination is restricted, we can predict 
panic using frequency domain analysis of heart rate variability. Despite several practical 
limitations, this work shows the possibility of nonintrusive heart rate measurements for 
developing driver state monitoring tools in naturalistic scenarios. 
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APPENDIX A. AVAILABLE FACE DETECTORS 

Online Freeware Commercial 
BioID Flandmark BetaFace 
BetaFace Semantic CogniTec 
LambdaLab fdlib KeyLemon 
Face ++ OpenCV – numerous Luxand 
 Visage NeuroTechnology 
 FraunHofer Tastenkunst 
 SkyBio Visage 
 ImageVision Facebook 
 And more including recent 

work 
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APPENDIX B. CRASH – SHRP 2 

Event ID File ID 
Start 
time 

End 
time  

Event 
status 
ID 

Event 
type 
ID Note 

30881809 3917717 363677 393677 3 181 Minor 

35257227 5008191 61365 91365 3 181 

forward 
crash but 
face not 
visible 

61426936 5821251 1423976 1453976 3 181 Nothing 

142007898 8076762 946369 976369 3 181 

gets 
excited, 
moves out 
and came 
back, too 
much 
zoom out 

135946520 12900554 201208 231208 3 181 

Quickly 
moved 
out, too 
much 
zoom 
control 

116163145 14647680 899985 929985 3 181 

too much 
zoom 
control 

132522489 18518468 272848 302848 3 181 
minor 
event 

29714720 32043038 2086804 2116804 3 181 

not sure 
what 
happened, 
harsh light 

151086604 37083609 113285 143285 3 181 

moves 
out, car 
off 

31281062 37366857 797471 827471 3 181 
Harsh 
light 

30879203 38179311 1077327 1107327 3 181 

moves 
out, car 
off 

142030120 40843113 950163 980163 3 181 

moves 
out, car 
off 

60633156 59011982 1648483 1678483 3 181 
minor 
event 
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Event ID File ID 
Start 
time 

End 
time  

Event 
status 
ID 

Event 
type 
ID Note 

33575087 62878789 554451 584451 3 181 Nothing 
29877166 62938051 3415976 3445976 3 181 Nothing 

151545522 65698175 1586094 1616094 3 181 Nothing 
138605443 69649499 6605255 6635255 3 181 ??? 

2934487 14219686 1649177 1679177 3 181 get out 
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