
TECHNICAL REPORT 1

TheEffectivenessof CacheCoherence
Implementedon theWeb

FeliciaDoswellandMarcAbrams
Departmentof ComputerScience

VirginiaTech
Blacksburg, Virginia 24060�
fdoswell,abrams� @.vt.edu

Abstract—The popularity of the World Wide Web (Web) hasgenerated
so much network traffic that it has increasedconcerns as to how the In-
ternet will scaleto meetfutur e demand. The increasedpopulation of users
and the large sizeof files being transmitted have resulted in concerns for
different typesof Internet users.Server administrators want a manageable
load on their servers. Network administrators needto eliminate unneces-
sary traffic, thereby allowing more bandwidth for useful information. End
usersdesire faster document retrieval. Proxy cachesdecreasethe number
of messagesthat enter the network by satisfying requestsbefore they reach
the server. However, the useof proxies intr oducesa concern with how to
maintain consistencyamongcacheddocumentversions.

Existing consistencyprotocolsusedin the Web are proving to be insuf-
ficient to meet the growing needsof the World Wide Web population. For
example,too many messagesare due to cachesguessingwhen their copy is
inconsistent.One option is to apply the cachecoherencestrategiesalready
in usefor many other distributed systems,suchasparallel computers.How-
ever, thesemethodsare not satisfactory for the World Wide Web due to its
larger sizeand range of users. This paper provides insight into the char-
acteristicsof documentpopularity and how often thesepopular documents
change. The fr equencyof proxy accessesto documentsis also studied to
test the feasibility of providing coherenceat the server. The main goal is
to determine whether server invalidation is the most effective protocol to
useon the Webtoday. Wemakerecommendationsbasedon how fr equently
documentschangeand areaccessed.

Keywords—Caching,Proxy, Coherence,Consistency, Web.

I . INTRODUCTION

Due to its simple interfaceto a wide array of mediatypes
and its accessibilityfrom multiple platforms,the Web hasbe-
comea major form of informationdissemination.It provides
easieraccessto informationvia Web browsers,sometimesre-
ferredto as“clients“. This massive availability of information
hasleadto anumberof concerns.Endusersexperiencehigh la-
tency whenattemptingto retrievedocumentsandimages.High
bandwidthconsumptionandnetwork congestionareotherprob-
lemsevident. In addition,a large amountof the Web traffic is
dueto fetchingof documentsthathave recentlybeenretrieved,
possiblyby usersat the samesite. Enhancementsto control
theseproblemsare constantlybeing proposedby researchers.
Compressionof documentsandsendingdocumentdifferences
(DIFF) in responseto requestsis one option that reducesthe
numberof bytesthataresentoverthenetwork asopposedto en-
tire documents.However, it hasbeenshown thatonly 10percent
of bandwidthis saved by usingthesemethods.StoringHTTP
headers(in compressedbinary form) separatelyfrom the body
is anotherbandwidthimprovement. Unfortunately, this would
requiretwice asmany files anddemandmoreeffort to manage
them.Reducingthenumberof protocolmessagesthataretrans-
mittedover theInternetis anothercostsaving solutionbut only
appliesto reducingnetwork traffic. Documentpre-fetchingis a

techniquethatprovidesquickeraccessto documentsfor theend
userby predeterminingandretrieving whattheusermayaccess
next. However, this techniquecouldpossiblyintroduceunnec-
essarytraffic ontothenetwork by retrieving documentsthat the
userdoesnot want.

Proxycachingis oneway to addressmany of theseconcerns.
They provide benefitsto the end user, network administrator,
andserver administratorby reducingthe amountof redundant
traffic that circulatesthroughthe web. In addition,they act as
intermediateagentsto allow multipleclientsto quickly accessa
groupof popularWebpages.In suchanapproach,requestsfor
documentsareredirectedto a cacheratherthanbeingserviced
directlyby aserver. Whendocumentsarefetchedfrom aserver,
copiesarekept in proxy cachesthroughouttheWeb. Although
proxy cachesprovide a significantreductionin network traffic,
they alsopresenta new setof concernsthatmustbeaddressed.
How do we managethe documentchangesat the server that
mustbepropagatedto theproxies?Thesecachedcopiesshould
beupdatedin suchamannerthatall versionsareconsistentwith
theserver copy. The techniquefor accomplishingthis is called
cacheconsistencyor coherence.

Several approacheshave beenproposedto limit the number
of stale copiesof a documentthat occur in the Web. They
include Time-To-Live (TTL), Client Polling, and Invalidation
[7]. In consideringcachecoherenceprotocols,it is necessary
to determinewhenchangesshouldbepropagatedto proxiesand
whetherthe server or the proxy shouldcontrol when modifi-
cationsareavailable to clients. The currentdocumentconsis-
tency mechanismsimplementedon the Web is client polling,
whereperiodically the server is contactedwhen the client re-
questa document. If a documentchangesfrequently, suchas
onlinenews andsports,thena staledocumentmaybereturned
if the userrequeststhe documentbeforeit is updated.Current
Webtechnologyalsoallows theuserto avoid inconsistentdoc-
umentsby specificallyrequestingthe updatedversiondirectly
from the server. However, this may introduceunnecessaryex-
changeof messagesbetweenthe client and server, especially
whentheserverdocumentsarechangedinfrequently.

Thepurposeof this studyis to addresstheconsistency issue.
It describesananalyticalapproachto approximatewhich cache
consistency algorithmswork bestgivencertainnetwork param-
eters.An upperboundstudywasdoneto ascertaintheratethat
documentson the Web change,and to reveal how many mes-
sageswill be requiredto communicatethesechangesto copy
holders. This will allow us to enumeratethe circumstancesin

TECHNICAL REPORT 2

which certainmechanismsaremostappropriate.We evaluate
whethera server-basedinvalidationprotocol is the mosteffec-
tive choice to solve the problem. Two experimentsare per-
formed. First, we measurethe fraction of documentsthat are
modifiedoftenandtry to determinewhetherthechangesoccur
in a predictablemanner. In otherwords, if a large numberof
documentschangein a shortperiodof time,do they changeev-
ery � hours.If � is large,but therateof readaccessesis small,
thenHTTP todaygeneratesmany unnecessaryrequeststo the
server. A major part of this study is to determinehow many
proxieswould be notified of changesin a server documentif
server invalidationwereused. We alsoanalyzethe datato re-
vealhow many proxiesactuallyaccessmorethanonedocument
ataserveror accessadocumentmultiple times.Thiswill reveal
how muchoverheadis involvedin usingtheinvalidationmethod
to disseminatechangesat the server. We want to provide con-
sistentdocumentswhile minimizing thenumberof consistency
checksnecessaryto accomplishthis task.

The rest of this sectionis an overview of caching,and the
HTTP protocol. The remainderof the paperbegins with an
overview of relatedwork followedby a presentationof theob-
jectivesof this research.Section4 describesthe analyticalap-
proachandresultsto approximatetheperformanceof four pro-
posedalgorithms.Section5 is a discussionof theexperimental
designandresults.Thepaperconcludeswith a summaryof the
resultsandtheconclusionsdrawn aboutthemeritsof server in-
validation.

A. ProxyCachingOverview

Cachesaredesignedto keepcopiesof documentspresumably
closerto the client (user)in order to handlerepeatedrequests
for documents.If locatedin thenetwork betweentheclient and
server, a cachepreventsthe client from having to always re-
trievedocumentsdirectly from theserver. This is calledaproxy
cache.They allow sharingof documentsrequestedby multiple
clients.In aWebconfiguration,thebrowserretrievesdocuments
by communicatingwith aproxyor origin server. First, theclient
browserforwardsarequestto theproxycacheit is configuredto
use. If thecachedoesnot have therequesteddocument,it for-
wardstherequestto theserverin thesamemannerthatabrowser
would if a direct connectionwere madeto the server. If the
cachecontainsthe requesteddocument,it will checkto deter-
mineif it hasa freshcopy. Freshdocumentsareserveddirectly
from the cachewithout checkingwith the server. If the docu-
ment is stale,the origin server will be asked to verify whether
thecachedcopy is consistentwith theserver copy. If theserver
sendsanupdatedcopy of thedocument,theproxystoresacopy
of it andforwardsthedocumentto therequestingclient.

B. HTTPandConsistency

Thewaythatmostproxycachesandserverssendmessagesis
by usingtheHyperText TransferProtocol(HTTP). It is a com-
municationprotocol for transferringdatathroughoutthe Inter-
net. AlthoughHTTP1.1is thefirst versionto giveexplicit rules
for consistency on theWeb, it is necessaryto discussHTTP1.0
sinceit paved the way for the next generationcommunication
protocol.

B.1 HTTP1.0andConsistency

Thedirectwayto retrieveadocumentis tousetheHTTPGET
request.To addressconsistency, HTTP1.0allows useof a con-
ditional GET. With this featurea documentis retrieved based
on whetherit hasbeenmodifiedsincethe last access.If it has
beenmodified,the new documentis retrieved from the server.
If it hasnot beenmodified,theserverwill returna not modified
messagethat instructsthe proxy to return its own cachedver-
sion. It is apparentthatsimplyusingtheconditionalGET every
timearequestis sentwill providetheclientwith consistentdoc-
uments. If we assumethat most documentsdo changeoften,
thenemploying sucha techniquecouldgive thedesiredconsis-
tency. However, this methodcouldalsowastemorebandwidth
by introducingunnecessarymessagesontotheWeb. Thisoccurs
if mostdocumentrequestsresultin thereturnof a not modified
messageswhenthecachecopy maybesufficient in providing a
consistentdocument.

An alternative is to usethedate/timestampsto identify when
anentity is inconsistentwith thedocumenton theorigin server.
A client canbe notified of a documentspotentialstalenessby
usingthe Expiresheader. Similarly, the ageof a documentre-
vealswhethera cacheddocumentis stale. Thesedirectivesare
usedby proxiesto determineif a cacheddocumentis inconsis-
tent. If so, thenthe server is polled to determineif the docu-
menthaschanged.Oneproblemwith the last-modifiedandthe
expiresmechanismsis that documentownersoften do not use
theseheaderfields, which makes it impossiblefor proxiesto
controlcacheconsistency in this manner. Finally, theno cache
optionin theHTTP1.0headersprovidesa way to tell theproxy
that thedocumentshouldnever becachedandthereforeshould
bedirectly retrievedfrom theserver [10].

B.2 HTTP1.1andConsistency

In contrast,HTTP/1.1 usesentity tags(ETags) to compare
two or moreobjectsfrom the samerequestedresource.ETags
are unique identifiers that are generatedby the server. They
changeeachtime the documentchanges.In addition to these
new identifiers,HTTP1.1still providesthe functionsspecified
in the HTTP1.0versionof the protocol. This includesspeci-
fying what shouldbe cacheable(public), what may be stored
by caches(no-cache),anexpire mechanism(max-age),andthe
reloadoperation.HTTP1.1alsooffers revalidationtagswhere
theserver tells theclientsexactly how to validatethedata.This
includestheability to forceeachcachealongthepathto theori-
gin server to revalidateits own entrywith thenext cachein the
path.

B.3 HTTPBrowsersandConsistency

In addition to the proxy, the browser cacheplays a role in
consistency control. Browsercaches,alsocalledclient caches,
aredisk storageon theenduserscomputerthatonly cachedoc-
umentsfor its attachedbrowser. Theadvantageof suchcaches
is to provideimmediateaccessto previouslyviewedpages,such
aswhenthe”back” button is pressedon theWebbrowser. The
preferencesdialog of InternetExploreror Netscape,containa
“cache” setting. There are two mechanismshere that allow
the user to specify when a fresh documentmust be retrieved

TECHNICAL REPORT 3

from the server, or whether it would be sufficient to have a
copy from the browseror network cache.Generally, the client
usermustmanuallyconfigurewhichproxyto usetherebygiving
thepermissionto retrieve possiblycacheddocuments.In addi-
tion, browsershave a cachesettingwherethe usercanspecify
whetherit wantsthebrowserto verify adocumentonceperses-
sion,every time thedocumentis retrieved,or never. If thedoc-
umenthasanexpiration time or otherage-controllingdirective
set,thebrowsercandetermineif thedocumentis still within the
freshperiodandwill not contacttheserver. However, requiring
thedocumentto beretrieveddirectly from theserver will cause
increaseddelay in getting the document,which may not have
beenmodifiedsincethelastretrieval. Also, theusercanalways
usethereloadbuttonthatis availablewith Webbrowserstoday.
This involvesuseof the no-cacheheadermentionedearlier. If
the userfeelsthat a retrieveddocumentis not up-to-date,they
cansimply pressthe reloadbuttonandretrieve thelatestserver
copy.

I I . RELATED WORK

A. Consistencyin OtherSystems

Cacheconsistency hasbeenan issuelong beforethe World
Wide Web madeits entrance. Hardware caches,and caches
within distributedsystemshave provided someextensive cov-
erageof cacheconsistency andhaveresultedin provenmethods
to solve the consistency problem. However, the solutionsare
not directly applicableto theWeb. Hardwaresystemscanpro-
vide strict cacheconsistency dueto its smallersize[8]. In addi-
tion, hardwarecachesdonot requireattentionto failing network
conditions. This is difficult to apply to the Internetdueto the
needfor scalabilityasmorecachesareadded.Also, hardware
systemsrequirehandlingof multiple readsandwritesby users,
whereasthe Internet is currently a one writer-multiple reader
problem[2]. Distributedsystemsincludedistributeddatabases,
file systemsandmainmemory. Thedistributedsystemsthatare
most closely relatedto the Internet,in termsof cacheconsis-
tency, aredistributedfile systemswherebothareimplemented
in softwareandinvolveaccessto volumesof information.How-
ever, theWebis differentfrom distributedfile systemsin terms
of accesspatterns,its largersize,andits singlepoint of access.
Thefirst two issuesmakescachingmoredifficult in theInternet
thanfile systems,while thelatteronemakesit easier. [7].

B. A Survey of CacheConsistencyMechanisms

In general,cachedcopiesshouldbeupdatedwhenthe origi-
nalschange.However, usersmaydesireto have anout-of-date
copy of a documentratherthanwaiting for thedocumentto ar-
rive from theserver. An algorithmthatdoesthis is considereda
weakconsistencyalgorithm. On theotherhand,if a stalecopy
is not tolerable,thena strong consistencyalgorithm is neces-
sary. Suchalgorithmsguaranteethat theuserwill seethesame
versionastheorigin server. Most existing Web cachesprovide
weakconsistency. Useof suchmechanismsrequirestheuserto
ensurefreshness,when desired,by pressingthe reloadbutton
on a browser. This causesa burdenon theserver aswell asthe
user[7]. Oneadvantageof eachof the weakconsistencyalgo-
rithmsis thatthey areeasyto implementin HTTP1.1.Here,we

presenta few weakandstrongconsistency protocolsthat have
beenproposedin theliterature.

B.1 Time-To-Live

Time-to-live(TTL) [7] is atechniquewhereapriori estimates
of adocument’s lifetime areusedto determinehow longcached
dataremainsvalid. Thismethodis mostusefulfor serveradmin-
istratorswho know whena documentchanges.For instance,if
a news pageis updatedoncea day at 7 am, the objectcanbe
setto expire at that time, andthecachewill know whento get
a freshcopy. With theTTL approach,eachdocumentis givena
fixed“time-to-live” expire field associatedwith it. Thetime-to-
livefield is usedby thecacheto determineif acacheddocument
is fresh. WhentheTTL elapses,thedatais consideredinvalid.
Subsequentrequestsof invalid dataresult in theclient request-
ing thenewestversionfrom theoriginal server. This weakcon-
sistency mechanismis implementedusingtheHTTP1.0expires
field. However, it is not easyto selectapproximateTTL values.
Too short of an interval could causedatato be unnecessarily
reloaded.Too long of an interval resultsin increasedstaleness.
The adaptive TTL approachis a proposedideawherethe TTL
valueis adjustedperiodicallybasedon observationsof its life-
time. This reducesthepossibilityof staledocuments.Gwertz-
man and Seltzer[7] have shown that adaptive TTL keepsthe
probabilityof staledocumentsto below 5%.

B.2 Client Polling

In client polling [7], clientsperiodicallycheckbackwith the
server to determineif thecacheddocumentsarestill valid. Each
clientcachesendsanif-modified-sincerequestto theserver. The
server thenchecksto seeif thedocumenthaschangedsincethe
timestamp. If so, a statuscodeof 200, is sentalongwith the
fresh document. Otherwise,the server returnsa codeof 304
(documentnot modified). ALEX [3], a form of client polling,
usesan updatethresholdto determinehow frequentlyto poll
the server. The thresholdis a percentageof the document’s
age. The age is the time since the last accessto the docu-
ment. A documentis invalidatedwhenthe time sincethe last
validationexceeds(� � � � � � � 	
 � � 	 � � � � � � � � � � � � � �). This
mechanismis implementedusingtheHTTP1.0if-modified-since
requestheaderfield. It is also fault resilient for unreachable
caches.On theotherhand,useof client polling canresult in a
cachereturningstaledataor invalidatingdatathatis still valid.

Polling-Every-Read[13], alsocalledClient Invalidation[9]
andPolling-Every-Time[2], is aversionof clientpolling where
the server is polledevery time a requestis sentratherthanpe-
riodically. NetscapeNavigator Version3.0 andabove already
allows usersto selectthis approach.However, this technique
negatesthe needfor cachingbecauseit always bypassesthe
cacheeven thoughthe documentmay be cached. In this in-
stance,client polling becomesa strongconsistency mechanism
at thecostof bombardingtheserverandnetwork with excessive
requestsand responses.In addition, the userwill experience
delayin receiving thedocumentevery timea requestis made.

B.3 Invalidation

Server invalidation[7], alsocalledcallbacks[13], is a mech-
anismwherethe server sendsout notificationsto clientswhen

TECHNICAL REPORT 4

a documentis modified. Theadvantageof this approachis that
it provides� strongerconsistency while introducinglessunneces-
sarymessagesthanthecurrentlyproposedconsistency methods.
However, thisschemerequirestheserver to keeptrackof which
clientsor proxiesstorecopiesof a document.This is expensive
in termsof storageoverheadandprocessing.In addition,thelist
of clientsmaintainedby theservermaybecomeoutof date.An-
otherproblemis how to handlerecoverywhencachesor servers
becomeunavailable.If aclientbecomesunreachabledueto fail-
ure or lost messages,the serversmay have to wait indefinitely
to senda new documentversionto a client. Another issueto
consideris thatinvalidationrequiresmodificationsto theserver
andtheHTTP1.1protocol,whereasTTL andClient Polling are
implementedat the proxy level. Therearevariationsof invali-
dationmessagesthat minimize someof the costsnotedabove.
We list a few below.

B.3.a UpdateInvalidation. Along with eachinvalidation,the
new documentversionis returnedin the invalidationmessage.
Thereis no needto contactthe server on subsequentrequests.
Thedisadvantageis theexcessivesendingof largedocumentsto
cachesthatmayneverbecontactedagainfor thesaiddocument
[5].

B.3.b Delta Invalidation. Along with eachinvalidation,send
the revisionsto eachproxy ratherthanthe entireupdate.This
would requireuseof deltaencoding(which is not widely used),
andalthoughit minimizesthe bandwidthusage,thereis still a
chancethatthedocumentmayneverbeaccessedagain[5].

B.3.c PiggyBackInvalidation. Along with eachinvalidation
message,sendadditional invalidationsfor pagesthat may be
accessedin the future. This will decreasethe numberof sub-
sequentrequestmessages[9]. However, it is possibleto send
documentsthatwill not beaccessedlater.

B.3.d Leases. Distributedfile systemscurrentlyuseleases[6]
to addresstheproblemswith basicinvalidation.With leases,ev-
ery documentthat is sentto a client containsa leaseto specify
a lengthof time thatserverswill notify clientsof modifications
to cacheddata.If a documentchangesbeforetheleaseexpires,
then the server will useinvalidationto notify the client of the
modification. After the leaseexpires,the client will senda re-
newal requestin theform of an if-modified-sincemessage.The
protocolis a combinationof client polling andserver invalida-
tion. This decreasestheamountof time thata server will have
to wait, due to unreachableclients , to completea write. The
serveronly waitsuntil theleaseexpires,ratherthanindefinitely.
In addition,leasesdecreasethe possibility of contactingobso-
leteclientsthatretrievedthedocumentin thepastbut no longer
accessthem.

C. Evaluationof ConsistencyMechanisms

Severalapproacheshave beenappliedto maintainingconsis-
tency in the Web. Researchefforts have includedcomparisons
and proposalsof several invariantsof the three major proto-
cols: time-to-live,client polling, andinvalidation.For example,
Worrell’s thesisconcludesthat invalidationis a betterapproach
for cacheconsistency. The studywasrestrictedto the investi-
gationof consistency in a hierarchicalnetwork, which already

carriesa higheroverheadin communicationthana simple,flat
network [12]. Contradictingtheresultsof Worrell, Gwertzman
andSeltzer[7]discussvariouscacheconsistency approachesand
concludethat a weak-consistency approachsuch as adaptive
TTL would performbetterfor Webcachingin termsof network
bandwidth.CaoandLiu [2], extendedthisstudyandstudiedthe
implicationusingothermetricslike server load,responsetime,
andmessagedelay. Theseauthorsconcludedthat invalidation
performedbetterthanclientpolling andsimilar to adaptiveTTL
in termsof network traffic, averageclient responsetime, and
server load [2]. Their study however, assumesthat all docu-
mentsareequallyimportantin termsof consistency, andtrades
this guaranteefor strongconsistency with the increasedband-
width usage.They alsodo not addressthe overheadnecessary
for serversto invalidatecopies.Weareconcernedwith how cur-
rent consistency mechanismswill affect network performance,
particularlybandwidth.

D. Effectof WebAccessPatternson CacheConsistency

Douglis,et al. [5] performeda studyto determinetherateat
which documentschange.Their maingoalwasto uncoverhow
theratesof modificationsaffectsystemsthatusedelta-encoding.
This informationis alsoimportantto consistency. If we cande-
tect that modificationsoccur at regular intervals, thenwe can
predict which algorithm will perform bettergiven the rate of
modifications.In their study, Douglis,et al. collectedtracesat
theInternetconnectionof two corporatenetworksandanalyzed
this datafor a rateof change.This datasetrestrictsthestudyto
measuringrequestsat a specificpoint in time (whenit wascol-
lected)[5]. Similarly, statisticswerecollectedonly whena ref-
erenceto a resourceoccurred.This doesnot accountfor docu-
mentsthatareaccessedonceandneveraccessedagain.In terms
of consistency, it is importantto know the accessandchange
patternof all documents.We measuredataperiodicallyusing
variouspredeterminedintervals. In addition,Douglaset al. [5]
discusshow oftenmodificationsoccurwhenaffectedby certain
characteristics(e. g. content-type,numberof references).We
investigatecharacteristicssuchas category of URLs, and the
timeof daythatmodificationsoccur. Sincepeoplegenerallyde-
terminewhat they will accessbasedon categories(e. g. news,
business)ratherthancontenttype (e. g. text, video, GIF), it
wouldbemoreinformativeto measurethedatafrom thatrealis-
tic perspective.

Wills andMikhailov [11] did asimilarstudyto determinethe
natureandrateof changeof documentsusingURLs ratherthan
testinglog samples.They useMD5 Checksumto obtainthedif-
ferencein documents[11]. The MD5 checksumalgorithmhas
beenfoundto producecollisionswhencomputingthehashfunc-
tions[4]. Therefore,ourstudywill makeuseof theUNIX DIFF
andCMP commandsto determinethe differenceamongdocu-
ments. Thesecommandsprovide lesspossibility of error than
the computationof a checksum.In addition,CMP allows the
userto comparebinarycontentof images.Wills andMikhailov
[11] used“.com”, “.net”, andsearch(which are specialtypes
of “.com”) categories.We usemorerealisticcategoriesof busi-
ness,family, news,andsearch.In addition,wehaveacombined
”catch all” category basedon a rating by a popularcomputer
magazine.The researchdataof [11] wascollectedover a one

TECHNICAL REPORT 5

dayperiod. To have a randomsample,we usea longercollec-
tion period.

I I I . OBJECTIVES

The primary goal of this studyis to determinethe effective-
nessof server invalidationandits role in providing consistency.
We wish to definewheninvalidationshouldbe used. The ob-
jective is to study, andunderstandthepatternof accessto docu-
mentsin termsof frequency of requestsandthenumberof proxy
accessesfor adocument.

We addressthefollowing issues.� Are the documentsmodifiedin a predictablemanner(never,
sometimes,often,always)?� How doestheaccessandmodificationrateaffect thenumber
of messagessent?� How many websitesneedto benotifiedof achangein adoc-
umentif server invalidationis used?� How often do proxiescontactthe server for the samedocu-
mentandfor differentdocuments?

IV. ANALYTICAL EVALUATION OF CONSISTENCY

MECHANISMS

In this section,we describethe analyticalevaluationof the
performanceof four basicconsistency algorithms.We compare
Polling-Every-Read,Time-To-Liveandtwo variationsof Inval-
idation. Themetricsusedto measuretheperformanceof these
algorithmsis thenumberof controlmessages,CM, andthenum-
berof file transfers,FT. Controlmessagesarethemessagesthat
triggerforwardingof requeststo theserverandresponsesthatdo
not carry data. Thesearegenerallyif-modified-sincerequests,
invalidations,or not-modified(304)responsemessages.Thefile
transfersarethemessagesthatcarrydata.

Table I lists the variablesthat representthe numberof re-
questsor modificationsthataresentdueto consistency. There
is onespecialvariableusedfor TTL, � � . Theserequestsmust
be distinguishedbecausea requestis only sentto the server if
the requesteddocumentis consideredstaleby the cache(doc-
ument timeout). A regular request,R, resultswhen a simple
GET (� � � �) or IMS (� � � �) requestis sentwithout the extra
time constraints.

Themessagevariablesthatbegin with aM definethemessage
typesfor eachof the requestsandfile transfers. Our analysis
actuallystartedwith theform � � � � � � � � � � � ! " � # $ � � % � � .
However, sinceall consistency control messagesare the same
size, we simplified the equationsby using like valuesfor the
first two terms.For example,� � � � � � � � � � � ! " � # $ � � % � �
becomes& ' � � � � # $ � � % � � . If the bandwidthis desired,
thensubstitutethe size for eachof the M terms. However, if
only thecountis needed,thentheM termsgo away. Therefore,& ' � � � � # $ � � % �) becomes& ' � # $. Weareonly interested
in thecountfor this analysis.

A. FormulaDerivations

Next, we describederivationsfor formulasusedto estimate
thenumberof controlandfile transfermessagessentfor Polling-
Every-Read,Time-To-Live,andthetwo variantsof invalidation,
Purge InvalidateandUpdateInvalidate. We usethe variables
definedin TableI.

TABLE I

VARIABLES REPRESENTING THE NUMBER OF REQUESTS OR WRITES THAT

ARE SENT

Variable Definition� � � � If-Modified-Since control
message� � � � Regular GET control message� � () Invalidation (only) control
message� � () * % � Invalidation control message
with file included� % � File transfer response message� ! " 304 response message� # of request� � # of request after timeout (TTL)
(first occurrence only)� + # of request after a write� � + # of request after timeout and
write (first occurrence only)� � () # of request after a write

$ � + # of writes after timeout
(first occurrence only)

$ # of writes,
Length of time of the traffic
sampling-
Timeout value

A.1 Polling-Every-Read

Polling-Every-Read[13] isactivatedwheneverauserrequests
a documentusing a If-Modified-Sinceheaderin the GET re-
quest.The numberof consistency control messagesthat result
from therequestis CM = 2Rif nomodificationsoccurred.How-
ever, this numberis reducedby thenumberof file transfermes-
sagesresultingaftera write hasoccurred.Therefore,thenum-
ber of control messagesis actuallyCM = 2R - FT whereR is
thenumberof request.Thenumberof file transfersis FT = W
if therearemorereadsthanwritesgenerated.However, if there
aremorewrites, then . , / � + where � + is the numberof
readsthatoccuraftera write.

A.2 Time-To-Live

The Time-To-Live [7] consistency mechanismis activated
whenevera cachetimesout its copy of a document.It involves
thecacherecognizingthata cachedcopy is staleusingtheTTL
field of the document. Oncea copy is determinedto be stale
it is fetchedfrom the server on a subsequentrequestfor that
document.The numberof control messagesis the numberof
timeoutintervals in a samplingof traffic. That resultgenerally
dependson whetherthereis a readin every interval. Therefore,0 � / , 1 -

where
,

is the lengthof time of the samplingof
traffic and

-
is the timeoutvalue. If the interval length is less

thantherateof reads,thenthenumberof requestthatgenerate
a messageto theserver is � � . This valuerepresentsthefirst re-
queststhat occurafter a timeout. The numberof file transfers
is . , / $ � where$ � is the numberof writesexactly aftera
timeout,but beforethatfirst readafter thetimeout.This means

TECHNICAL REPORT 6

that 2 3 4 5 6 7 8 9 : 8 .
A.3 Invalidation

We considerthepurgeandupdateinvalidationtechniquesin
this analysis. With the invalidationapproach,the mechanism
is activated when data changeson the server (write). It in-
volves the server notifying the proxiesthat a cacheditem has
becomestale.If we let ; denotethenumberof proxiesto con-
tactin theeventof aninvalidation,and : denotethenumberof
write modifications,thenthe numberof invalidationmessages
is ; 6 : . For the purge invalidationmethod,the numberof
file transfersresultingfrom consistency is < = 4 7 > , where7 > is the numberof subsequentrequestsafter an invalidation.
Therefore,the total numberof controlmessagesdueto consis-
tency is 2 3 4 ; 6 : ? 7 > . For the updateinvalidation
method, < = 4 @ , which reducesthe numberof control mes-
sagesto 2 3 4 ; 6 : . Although < = is larger for the purge
method,thereis morebandwidthusagefor the updatemethod
becausetheinvalidationsincludesdata.To demonstratethatup-
dateinvalidationhasextra overheadof sendingthefile with the
invalidation,we includethe 3 A B C D E 8 term. Therefore,for up-
dateinvalidation2 3 4 ; 6 : 6 3 A B C D E 8 .

Table II gives the formulas for determiningthe numberof
controlmessages(CM) andfile transfermessages(FT) for each
patternfragmentof messagetraffic.

B. Summaryof Analysis

Usingtheformuladerivationsabove,wesummarizehow each
of thesevariablesaffect consistency. Note that in TableII, the
M termswere left in the equationsfor the updateinvalidation
method. This was donebecausethosemessagetypesinclude
control information and file datawhile the othersdo not. To
simplify comparisons,we let the numberof proxies, ; 4 F .
Therefore,N is not shown in the formulasfor the invalidation
methodsin TableII.

In TableII, thenumberof consistency controlmessagesand
file transfersdependonwhetherthewritesdominateor thereads
dominate.Whenthereadsdominatethenumberof messagesare
controlledby boththenumberof writesandthenumberof reads
for all protocolsexcept updateinvalidation. When the writes
dominate,thenthecontrolisbasedonthenumberof readsfor all
protocolsexceptpurgeandupdateinvalidation. Finally, for the
TTL approach,additionalcontrolwasbasedonwhethertherate
of readsandwriteswerelessthantherateof timeouts.Figures
1 and2 demonstratehow therateof reads,writesandtimeouts
controlthenumberof messages,specificallyhow they affect the2 3 and < = values.

Themostobvioustrendsin figure1 is thatthePolling-Every-
Readstartsto increaseexponentiallyasthereadsincrease,while
theothermethodsstartto level off. This is becausethecontrol
messagesfor the Polling-Every-Readtechniqueis directly de-
pendanton theratethat readsoccurwhile theotheralgorithms
dependon a timeoutvalue (TTL) or the rateof writes (Inval-
idation). The Time-To-Live algorithm is dependentupon the
thresholdandthe timeoutvalue. Therefore,it resultsin a con-
stantvalueof = G H 4 I in figure1. However, whenrateof reads
or writes fall outsideof the timed interval, H , the countsstart

TABLE II

OF CONTROL MESSAGES AND FI LE TRANSFERS FOR FOUR

CONSISTENCY MECHANISM PROPOSED IN THE L I TERATURE

Method Message Count By
Read/Write Rate7 8 J = G H , : 8 J 7 8 : 8 K 7 8: 8 J = G H

TTL 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6= G H 9 < = 7 8 9 < = 7 8 9 < =
< = 4 = G H 6 < = 4 : 8 < = 4 7 8 >L 7 8 > M

Poll 2 3 4 5 6 2 3 4 5 6
Every NA 7 9 < = 7 9 < =
Read < = 4 : < = 4 7 >
Purge 2 3 4 5 6 2 3 4 5 6
Invalidate NA : 9 < = : 9 < =

< = 4 : < = 4 7 >
Update 2 3 4 : 6 2 3 4 : 6
Invalidate NA 3 A B C D E 8 3 A B C D E 8

< = 4 @ < = 4 @

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.5 1 1.5 2

#
 o

f
C

o
n

tr
o

l
M

e
s
s
a

g
e

s

N

Reads/Writes

Comparison of Method by Control Message Count
T=24, t=3, W=MAX_READS/2

Polling Every Time
Time-To-Live

Invalidation by Purge
Invalidation by Update

Fig. 1. Numberof ControlMessagesbasedon ratio of Readsto Writes

to dependon whetherthereis a : O P H Q R R 7 Q S T patternthat oc-
cursimmediatelyafter that timeout. Figures1 and2 show that
Polling-Every-Readis betteruntil the readsbecomemorethan
the writes or 7 Q S T U G : O P H Q U J F . At that point, the Update
Invalidationbecomesbetterfor the control messages.Update
Invalidationis shown to performslightly betterthanPurge In-
validationbecauseof thecountof subsequentrequeststhatresult
in a miss.TheUpdateInvalidationalgorithmreturnsdatawhen
it invalidates,so thereareno subsequentmisses.However, we
mustconsiderthefact thatobjectsthataremodifiedmaynever
be accessedagain. For that reason,sendingbytesbeforethey
arerequestedbecomea risk.

Wealsoproducedgraphsthatchangedthethresholdandtime-

TECHNICAL REPORT 7

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2

#
 o

f
F

ile
 T

ra
n

s
fe

r
M

e
s
s
a

g
e

s

V

Reads/Writes

Comparison of Method by File Transfer Message
T=24, t=3, W=MAX_READS/2

Polling Every Time
Time-To-Live

Invalidation by Purge
Invalidation by Update

Fig. 2. Numberof File Transfersbasedon ratioof Readsto Writes

out values.They arepresentedin Figures3 and4.

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6

#
 o

f
C

o
n

tr
o

l
M

e
s
s
a

g
e

s

W

Reads/Writes

Comparison of Method by Control Message Count
T=24, t=0.001, W=MAX_READS/2

Polling Every Time
Time-To-Live

Invalidation by Purge
Invalidation by Update

Fig. 3. Numberof ControlMessagesbasedon ratioof Readsto Writes

V. EXPERIMENTAL DESIGN

The experimentsperformed to addressthe objectives are
given next. We presentthe datacollectedfor input, detailsof
theexperimentimplementation,andtheresults.

A. Experiment1: Percentageof URL Changes

A.1 About theInputData

In this experiment,we analyzedvariousgroupsof popular
URL listings. Eachday for a period of 7 days,we collected
popularURLs from two Hot Spotsites,100HOT.COMandPC-
magazineTopListing. Wethencombinedtheresultsof thedaily
retrievals to producea comprehensive listing for eachsite. Af-
ter gettingtheoriginal list of URLs (first level), we gathera list
of the links at eachfirst level URL andstorein separatefiles
(secondlevel URLs). Peoplewho browsefor documentsusu-

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6

#
 o

f
F

ile
 T

ra
n

s
fe

r
M

e
s
s
a

g
e

s

V

Reads/Writes

Comparison of Method by File Transfer Message
T=24, t=0.001, W=MAX_READS/2

Polling Every Time
Time-To-Live

Invalidation by Purge
Invalidation by Update

Fig. 4. Numberof File Transfersbasedon ratioof Readsto Writes

ally accessonly the first pageof Web siteswithout exploring
links within thepage.Therefore,accessto thefirst level pages
areexpectedto be larger thanthe links within Websites.Each
predeterminedinterval, the full contentsof eachretrievedpage
is savedandcomparedfor differences.For brevity andstorage
concerns,we decreasethenumberof URLs of thesecondlevel
listing, by only traversingthe URLs of the first 20 first-level
URLs.

We selectedfiveclassesof documentsto performthis experi-
ment:popularbusiness,family, news,searchandacombination
of thetop 100sites.Thefirst four categoriesareextractedfrom
the100HOT.COMlist. The100hotpageranksthetopWebsites
basedon theanalysisof log files from cacheserversat strategic
pointson theInternetbackbone[1]. The100top siteswerere-
trievedfrom thefinal 1998updateof thePCMagazinelist. These
selectionsweremadeby a largegroupof PCMagazineeditors
who spendgreatamountsof time exploring the Web. A sum-
maryof thenumbersof URLspercategory is givenin TableIII.
In addition, the averagepercentageof URLs that reportLast-
Modified-Time (LMT) andContent-Length(BYTE) aregiven
in TableIII. In the table,Level 1 andLevel 2 URLs arerepre-
sentedby X Y and X Z respectively.

TABLE III

SERVER LOG CHARACTERISTICS

Category # URLs % LMT % BYTE
Reported Reported

L1 L2 L1 L2 L1 L2
Business 26 312 45 80 45 84

Family 34 200 58 58 58 62
News 34 305 46 72 37 57

Search 15 428 56 60 42 43
PCMag 100 774 30 54 34 50

TECHNICAL REPORT 8

A.2 ImplementationDescription

Wemeasurethepercentageof populardocumentsthatchange
andhow popularityaffectsthenumberof messagessentby three
consistency mechanisms.We alsocomparethe changeresults
calculatedfrom DIFF with thedifferenceusingLast-Modified-
Time andContent-Length. With thesemeasures,we report the
availability of thesedirectives. This will give us a measureof
whetheruserswould specifyTTL valuesandif contentlength
canbe an indicatorof documentchange.We measurethe first
level URLs (initial page)aswell asthesecondlevel URLs (tra-
versedlinks within the first page). We acquirestatisticsthat
give us the percentageof documentschangedover a specified
time period. This effort accountsfor this by receiving thecon-
tent of a groupof URLs over several intervals andcomparing
themusingthe UNIX DIFF command.We determinethe per-
centagethatchangedoverconsecutive3, 6, 12,and24 hourpe-
riods. A Java programwaswritten to obtainthesepercentages.
We save thecontentsof two consecutive intervalsandcompare
themusingDIFF. We alsocomparethe last-modified-timeand
content-lengthreturnedin the header. Using a script, this pro-
cessis repeatedfor several intervalsover 14 days. Finally, the
producedinterval files werecomparedto determinewhat per-
centof documentschangewithin eachinterval.

A.3 Results

We repeattheanalysisdoneby Wills andMikhailov, but us-
ing DIFF as the calculationtool ratherthanMD5. We collect
additionalinformationduringdataretrieval: Last-modified-time
(LMT) andcontent-length(CL). Thesevaluesareusedto deter-
mineany correlationbetweenthemandthecontentdifferences.
TableIII reportsthepercentageof documentsthatspecifyLMT
and CL. In general,the percentof pagesreportingLMT and
content-lengthis 30to 60percentfor thefirst level URLsand50
to 85percentfor thesecondlevel URLs. Thisshowsa largegap
in how documentsreport the directivesandsuggestthat there
is inconsistency in their usage.Due to the largenumberof ac-
cessesthatexcludetheseparametersandthelargegap,we con-
cludethatLMT andCL areinsufficient indicatorsof document
change. Our resultsaresignificantlydifferent to Wills, et al.,
whoreportedthatabout85to 90percentof LMT andCL values
werespecified.[11].

Theresultsof experiment1 aresummarizedin figures5 and
6 1. The figuresdepict trendsthatoccurdueto interval length
(hours),URL type (business,family, search,news, combined
PCMAG), andpagelevel (first level, secondlevel). We found
that a large numberof populardocumentsaremodifiedover a
very shortperiodof time. For first level pages,PCMagazine’s
listsof thetop100sitesreportedthelargestpercentageof chang-
ing documents(67 to 72 %) with Search(58 % to 60 %) and
News (54 % to 60 %) trailing closelyin percentages.Business
andFamily orientedpageshave a smallerpercentageof docu-
mentsthat changein a small interval block. This meansthat
theseURLs, althoughpopular, changelessoftenthantheother
category of URLs. Specialpurposeserverscouldbenefitfrom
knowing what consistency methodto usebasedon the type of

[
Theindividualgraphsof resultsbasedonthe3 criteriaaregivenin Appendix

A

documentsit serves.
Thepercentof URL changesdroppedfor thesecondlevel for

Business,News, and PCMagand remainsthe samefor Fam-
ily andSearchsites. The decreaseoccursdueto the sitesthat
changea small item, suchas dateor hit counters. Although
thesefirst level pageschangemoreoften than in secondlevel
pages,thereis little difference(10%).Overall our resultsimply
thatwhena front pageof a popularsitechanges,otherembed-
dedlinks within thatsitealsochange.Accordingto thebrows-
ing natureof users,if a pageis accessed,its links will most
likely beaccessed.Sincewe know that theselinks alsochange
asmany timesasthereferencepage,weshouldconsiderconsis-
tency schemesthat allow additionalinvalidationsto piggyback
ontorelatedinvalidations.

Popular Documents Indicating Change (Level 1)

0

10

20

30

40

50

60

70

80

3 hour 6 hour 12 hour 24 hour

Interval Length

%
 D

oc
um

en
ts

 th
at

 C
ha

ng
e

Business

Family

News

Search

PCMag

Fig. 5. DocumentDifferencesfor theFirst Level

Popular Documents Indicating Change (Level 2)

0

10

20

30

40

50

60

70

80

3 hour 6 hour 12 hour 24 hour

Interval Length

%
 D

oc
um

en
ts

 th
at

 C
ha

ng
e

Business

Family

News

Search

PCMag

Fig. 6. DocumentDifferencesfor theSecondLevel

B. Experiment2: ProxyCacheHoldingsper URL

B.1 About theInputData

Two alternativesof datacollectionwereconsideredfor this
experiment. The first, usingdatacollectedby a traffic genera-
tor, takestoo longandmaynotproperlysimulatetherealworld.

TECHNICAL REPORT 9

Alternatively, log files give usthenecessaryaccessinformation
abouteachURL in afile suchasthenumberof accesses.Weuse
threedaysof serverlogfilesfrom VirginiaTech’sComputerSci-
enceserver, www.cs.vt.edu. Theselogs,containingdaily collec-
tions,includeaccessesfrom August1, 1999to August3, 1999.
In this paper, we will refer to theselogs asVT-CS1,VT-CS2,
VT-CS3 to representthe day that the log covers. In addition
to the VT-CS logs,we usetwo weeksof log files from several
JamesCook University servers in Australia. Thesefiles, con-
tainingweeklycollections,representserversin theEngineering
department(JCU-ENG)and the university library (JCU-LIB).
Theselogs cover the first two weeksin August,and therefore
JC-LIB1,andJC-LIB2 representweek1 and2 respectively.

B.2 ImplementationDescription

We study a group of servers to reveal percentageof prox-
ies that accessdocumentsat a server. This tells us how many
Web sitesshouldbe notified of changesin a documentmain-
tainedby the server (for invalidation). We also measurethe
numberof referencesmadeto eachserver documentby each
proxy. We calculatethenumberof proxiesthataccessa certain
setof server documents.This is doneby attemptingto access
the IP addressesthatoccurin a server log entry, anddetermin-
ing if the server at the IP addressis a proxy. A programwas
written to determinehow many sitesrequirenotification. For
instance,we can determinehow many URLs were cachedby\] ^ _ ` a b \] ^ _ ` c b d d d d \] ^ _ ` e . We examinethe server log, and
get theIP addresses.Thenwe attemptto opena socket on port
80, thewell-known HTTP port. If we cannotconnect,we have
not accesseda proxy (aclient requestedthedocumentdirectly).
Otherwise,it is assumedto be a proxy if it is runninga Web
serverandsendingrequests.

B.3 Results

Table IV gives the percentageof referencesto a server. It
summarizesthepercentageof uniquereferencesandaccessesto
theURLsby threeclient types.Theuniquecountis thefraction
of distinctfirst time referencesto theserver. Theaccesses,total
duplicatereferences,give the fraction of accessesto the server
includingmultiple accessesto thesamedocumentandmultiple
accessesby a proxy to severaldifferentdocuments.In addition,
the averagepercentageand standarddeviation is given in the
table. The datarevealsthat an averageof only 11.20%of the
uniqueaccessesand 14.30%of the total accessescomefrom
proxy clients. Therefore,a large percentageof the accessesto
serversaredonethroughnon-proxyclients.

TableV givesthenumberof proxy, non-proxy, andunknown
clientsaccessingthe server. Thesenumbersdo not includethe
numberof referencesthe clientsmake to the server for unique
documents.In otherwords,thetableonly representsthenumber
of machinesthat accessthe server. This table also gives the
numberof URLs accessedon the server by proxy, non-proxy,
andunknown clients.Thisdataonly reflectstheactualnumbers
usedto calculatethepercentagein tableIV.

The experimentalsoconsistedof calculatingthe numberof
proxiesthat accesseachURL in the server log file. About 92
percentof URLs wereaccessedby only oneproxy. This shows

TABLE IV

PERCENT UNIQUE AND TOTAL REFERENCES BY PROXY, NON-PROXY

(NON-P), AND UNKNOWN CLIENTS (X)

% Unique 1st % Accesses By
References By

Proxy Non-P X Proxy Non-P X
VT 8.86 87.61 3.53 8.98 87.51 3.51
CS1
VT 13.36 81.07 5.56 12.94 81.56 5.50
CS2
VT 12.07 84.01 3.92 12.08 83.87 4.05
CS3
JCU 8.04 91.96 0.00 14.75 85.25 0.00
Lib1
JCU 9.33 90.67 0.00 14.03 85.97 0.00
Lib2
JCU 15.55 84.45 0.00 23.04 76.96 0.00
Eng

Avg 11.20 86.63 2.17 14.30 83.52 2.18
Std
Dev 0.03 0.04 0.03 0.05 0.04 0.03

TABLE V

UNIQUE AND TOTAL REFERENCES BY PROXY, NON-PROXY (NON-P),

AND UNKNOWN CLIENTS (X)

Trace # Unique 1st # Total Accesses
Trace References by by

Proxy Non-P X Proxy Non-P X
VT-CS1 1084 10717 432 1273 12404 498
VT-CS2 3048 18490 1269 3610 22753 1534
VT-CS3 2879 20031 934 3413 23694 1144

JCU-Lib1 2473 27157 0 8534 49329 0
JCU-Lib2 2941 28573 0 8599 52679 0

JCU-Eng 4035 21916 0 11779 39349 0

thatnot many proxieshave to be contacted.The actualdatais
givenin TableVI.

We also measuredthe numberof proxies that accessed1
URL, 2 URLs, 3 URLs, andso on. Thesevaluesgive an idea
of the numberof URLs, ownedby this server, thata particular
proxy is holding. Theresultsshow thatbetween20 and30 per-
centof proxiesaccessa singleURL on the server. Therefore,
70 to 80 percentof the proxiesthat accessthe Virginia Tech
andJamesCookserversrequestmultipleURLs from theserver.
Therewould clearly be an advantageto usingschemeswhere
severalinvalidationsaresentin batchesto proxiesholdingmul-
tiple documentsownedby servers. Table VII shows the data
collectedto supportthesestatistics.

Finally, we measuredthe numberof duplicateURLs that
proxies accessed.For instance,how many proxies accessa
documentonly once,or twice. This givesan upperboundon
the numberof URLs that wereaccessedmultiple timesby the
sameproxy. We found that a small percentageof proxiesac-
cesseda documentmorethanonce(between3 and18 %). This

TECHNICAL REPORT 10

TABLE VI

URLS HELD BY PROXIES

Proxies # URLs Requested at Server
Holding VT- VT- VT- JCU- JCU- JCU-
URLs CS1 CS2 CS3 Lib1 Lib2 Eng

1 proxy 317 550 597 218 97 521
2 proxy 19 26 50 16 16 36
3 proxy 2 10 1 5
4 proxy 1
5 proxy 2
Total 338 576 657 236 113 564

TABLE VII

COUNT OF PROXIES HOLDING MULTIPLE DI FFERENT URLS

of URLs # of Proxies Requesting From Server
Accessed VT- VT- VT- JCU- JCU- JCU-

URLs CS1 CS2 CS3 Lib1 Lib2 Eng
1 url 67 101 125 53 52 34
2 url 18 31 43 16 24 31
3 url 16 18 31 10 11 127
4 url 28 40 41 11 9 16
5 url 9 22 16 14 15 16
6 url 6 9 8 6 9 3
7 url 8 16 22 17 12 6
8 url 7 5 8 6 3 4
9 url 4 5 6 4 3 4
10 url 4 8 1 2 11f

10 url 31 74 71 57 62 67
Total 194 325 379 195 202 319

is impactedby the existing consistency mechanismusedwith
HTTP1.1.

TableIX providesa summaryof thecharacteristicsof proxy
accessesto theserversin theworkload.

VI . SUMMARY OF RESULTS

To summarize,the analytical analysisand experimentsre-
vealedthefollowing results.g Basedon the ratio of readsto writes, invalidationperforms
better than the other strong consistency algorithm, Polling-
Every-Read,whentherearemorereadsthanwrites performed
on a document.g Although first level pageschangemore often than second
level pages,there is little difference. This implies that other
pagesat the site will most likely be modified. This is an ar-
gumentfor PiggyBackserver invalidationwheretheusersends
updatesof a group of relateddocumentswhen invalidating a
document.g Servers administratorscan benefitfrom the knowledgethat
if givena certaintype of document,a givenmechanismworks
best. News and SearchEnginedocumentschangemore fre-
quentlythanothercategories,but they alsorequirethemostcon-
sistency. Invalidationwouldwork well for thesedocumentsthat
areknown to changeoften.BusinessandFamily orientedpages
would benefitfrom a weaker consistency mechanismlike client

TABLE VIII

COUNT OF PROXIES REQUESTING DUPLICATES FROM THE SERVER

Duplicate # Proxies Requesting From
URLs VT- VT- VT- JCU- JCU- JCU-

Requested CS1 CS2 CS3 Lib1 Lib2 Eng
1 991 2739 2581 1879 2178 2661
2 68 219 211 279 394 593
3 11 37 52 115 110 227
4 4 21 10 34 67 147
5 1 6 6 21 29 83
6 1 10 5 17 12 50
7 2 5 6 14 18 32
8 1 5 2 6 17 33
9 2 2 2 5 24
10 1 10 8 26f

10 3 3 6 96 103 159
Total 1084 3048 2879 2473 2941 4035

TABLE IX

PERCENTAGE OF REFERENCES TO PROXIES

Scenario # of URLs Requested at Server
VT- VT- VT- JCU- JCU- JCU-

URLs CS1 CS2 CS3 Lib1 Lib2 Eng
% proxies 13 13 15 12 13 15
accessing
the server
% unique 9 9 10 6 3 18
URL accessed
by proxies
% total 11 13 12 15 14 23
references
by proxy (dups)
% proxy 65 68 67 72 74 89
references to
multiple unique
documents
% accesses to 9 10 10 24 26 34
previously
requested
documents

polling or adaptive time-to-live.g The majority of the documentsat serversareonly accessed
by oneproxy. In addition, theseproxiesaccesseddocuments
only once. Therefore,invalidationwill not consumeany more
bandwidththan the other mechanismswhen usedfor popular
documents,especiallysincethe numberof proxiesto contact
doesnot impactthenetwork.

VI I . CONCLUSIONS

We have investigatedsomecharacteristicsof Webdocuments
that affect how consistency shouldbe performedin the Web.
The resultsshow that a high percentageof populardocuments
changeovera small interval of time. Specifically, 50 to 70 per-
cent of the most populardocuments,News and Searchsites,

TECHNICAL REPORT 11

changewithin a threehourperiod. This rateof modificationis
lessthantherateof accessreportedin theliterature.Usingthis
knowledge,weproposethatstrongconsistency mechanismscan
beusedfor populardocuments.Clientpolling will bombardthe
server with unnecessaryrequestsif no changesoccurbetween
oneandthreehours.TTL will requirethatthedocumentcreator
have a priori knowledgeof whena documentchangeswhich is
not alwayspossible.Invalidationis shown to bemostusefulof
thethreegeneralconsistency methodsproposedin theliterature,
but how effective is it?

Weobservedthatof the11to 20% proxiesthatdid accessthe
servers,many did not accesstheserversmorethanoncefor the
samedocuments(about15%). Also, 90 percentof URLs were
accessedby only oneproxy. In addition,proxiesdo not gener-
ally accessdocumentsmorethantwice,but they doaccessmany
differentdocumentsat oneserver. Basedon thesestatisticsand
thelow numberof proxiesthatneedto benotified,server-based
invalidationwill minimally impact the bandwidthuseddue to
consistency. Therefore,server invalidationis recommendedfor
populardocumentsthatchangefrequentlyandinfrequently. For
documentsthatareaccessedinfrequently, client polling or TTL
would work best. TableX, shown in AppendixB, summarizes
theconclusions.

Although we recommendthe updatingof very popularand
frequentlychangingWebdocumentsusinginvalidation,we be-
lieve our study would have benefitedfrom an analysisof the
natureof thedocumentchanges.How muchof achangeconsti-
tutestheneedfor a freshdocument?Weretheresmall changes
like a dateor spellingerror?Or weretherehugeparagraphsbe-
ing rewritten?Thesetypesof decisionscanhelpusto determine
whenthestalecopiesareactuallyacceptable.In additionto the
basicalgorithmswe discussin this paper, therearemany vari-
antsof invalidationthat canbe investigatedsuchasPiggyback
ServerValidation[9], Invalidationwith DeltaEncoding[5], Vol-
umeleaseInvalidation[13]. Our futurework involvescombin-
ing thebestelementsof existing consistency mechanismsto al-
low proxiesandserversto adaptto conditionsof the Web and
decidewhichmechanismto invoke.

REFERENCES

[1] 100hot.com.h URL: http:www.hot.comi .
[2] P. Cao and ChengjieLiu. Maintaining strongcacheconsistency in the

world wide web. In Proceedingsof ICDCS’97, pages12–21,May 1997.
[3] V. Cate.Alex - a globalfile system.In Proceedingsof the1992USENIX

File SystemWorkshop, pages1–12,May 1992.
[4] B. denBoer andA. Bosselaers.Collisionsfor the compressionfunction

of md5. In Advancesin Cryptology, ProceedingsEurocrypt ’93, pages
293–304,1994.

[5] F. Douglis,A. Feldmann,B. Krishnamurthy, andJ.Mogul. Rateof change
andothermetrics:A live studyof theworld wide web. USENIXSympo-
siumon InternetworkingTechnologiesandSystems, December1997.

[6] C. Gray andD. Cheriton. Leases:An efficient fault-tolerantmechanism
for distributed file cacheconsistency. In In Proceedingsof the Twelfth
ACM SymposiumonOperatingSystemsPrinciples, pages202–210,1989.

[7] J. Gwertzmanand M. Seltzer. World-wide web cache consistency.
USENIXSymposiumon InternetworkingTechnologiesandSystems, pages
141–152,January1996.

[8] J. L. HennessyandD. A. Patterson.ComputerArchitecture: A Quantita-
tive Approach. MorganKaufmannPublishers,Inc.,2ndedition,1990.

[9] B. KrishnamurthyandC.E.Wills. Piggybackserver invalidationfor proxy
cachecoherency. In In SeventhInternationalWorld WideWebConference,
volume30,pages185–193,April 1998.

[10] Ari Luotonen.WebProxyServers. Prentice-Hall,London,1998.
[11] C. E. Wills and Mikhail Mikhailov. Toward a betterunderstandingof

webresourcesandserver responsesfor improvedcaching.In 8th Interna-
tional World-wideWebConference, 1999.h URL:http://www.cs.wpi.edu/-
˜ mikhail/papers/www8.ps.gzi .

[12] K. Worrell. Invalidation in large scalenetwork object cache. Master’s
thesis,Universityof Colorado,Boulder, 1994.

[13] J.Yin, L. Alvisi, M. Dahlin,andC. Lin. Volumeleasesfor consistency in
large-scalesystems.IEEETransactiononKnowledge andDataEngineer-
ing, 1999.

TECHNICAL REPORT 12

APPENDIX

I . ADDITIONAL FIGURES

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 0) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 7. 1stLevel BusinessURLs ComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 0) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 8. 1stLevel Family URLsComparedEvery 3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 0) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 9. 1stLevel News URLsComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 0) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 10. 1stLevel SearchURLsComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 0) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 11. 1stLevel PCMAG URLs ComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 0) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 12. 1stLevel BusinessURLsComparedEvery6 Hoursfor Differences

TECHNICAL REPORT 13

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 0) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 13. 1stLevel Family URLs ComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 0) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 14. 1stLevel News URLsComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 0) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 15. 1stLevel SearchURLsComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 0) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 16. 1stLevel PCMAG URLs ComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 0) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 17. 1stLevel BusinessURLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 0) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 18. 1stLevel Family URLsComparedEvery12Hoursfor Differences

TECHNICAL REPORT 14

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 0) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 19. 1stLevel News URLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 0) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 20. 1stLevel SearchURLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 0) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 21. 1stLevel PCMagURLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 0) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 22. 1stLevel BusinessURLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 0) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 23. 1stLevel Family URLsComparedEvery24Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 0) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 24. 1stLevel News URLsComparedEvery 24Hoursfor Differences

TECHNICAL REPORT 15

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 0) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 25. 1stLevel SearchURLsComparedEvery24Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 0) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 26. 1stLevel PCMagURLsComparedEvery24Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 1) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 27. 2ndLevel BusinessURLsComparedEvery 3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 1) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 28. 2ndLevel Family URLs ComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 1) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 29. 2ndLevel News URLs ComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 1) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 30. 2ndLevel SearchURLsComparedEvery3 Hoursfor Differences

TECHNICAL REPORT 16

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 1) - Percentage of URLs Changed Every 3 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 31. 2ndLevel PCMagURLs ComparedEvery3 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 1) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 32. 2ndLevel BusinessURLsComparedEvery 6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 1) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 33. 2ndLevel Family URLs ComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 1) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 34. 2ndLevel News URLs ComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 1) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 35. 2ndLevel SearchURLsComparedEvery6 Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/18
00:00:00

04/20
00:00:00

04/22
00:00:00

04/24
00:00:00

04/26
00:00:00

04/28
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 1) - Percentage of URLs Changed Every 6 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 36. 2ndLevel PCMagURLsComparedEvery6 Hoursfor Differences

TECHNICAL REPORT 17

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 1) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 37. 2ndLevel BusinessURLs ComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 1) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 38. 2ndLevel Family URLsComparedEvery 12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 1) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 39. 2ndLevel News URLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 1) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 40. 2ndLevel SearchURLs ComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/16
00:00:00

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 1) - Percentage of URLs Changed Every 12 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 41. 2ndLevel PCMagURLsComparedEvery12Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Business Sites (Level 1) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 42. 2ndLevel BusinessURLsComparedEvery24Hoursfor Differences

TECHNICAL REPORT 18

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Family Sites (Level 1) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 43. 2ndLevel Family URLsComparedEvery 24Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

News Sites (Level 1) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 44. 2ndLevel News URLsComparedEvery24Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Search Sites (Level 1) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 45. 2ndLevel SearchURLsComparedEvery24Hoursfor Differences

0

20

40

60

80

100

04/17
00:00:00

04/18
00:00:00

04/19
00:00:00

04/20
00:00:00

04/21
00:00:00

04/22
00:00:00

04/23
00:00:00

04/24
00:00:00

04/25
00:00:00

04/26
00:00:00

04/27
00:00:00

P
er

ce
nt

 C
ha

ng
edj

Time Interval

Top 100 Sites (Level 1) - Percentage of URLs Changed Every 24 Hours

LMT % Change in Time T
BYTE % Change in Time T
DIFF % Change in Time T

Fig. 46. 2ndLevel PCMagURLsComparedEvery24Hoursfor Differences

TECHNICAL REPORT 19

I I . SUMMARY OF CONCLUSIONS

TABLE X

SELECTION OF A CONSISTENCY APPROACH

Criterion Suggested Consistency Explanation
Method

Strong Weak
A priori knowledge of Invalidation TTL This assumes that the proxy has prior knowledge of
lifetime exactly when a document changes. This is

usually impossible even with documents that have
a set time to change. However, it would be best
to use TTL unless strong consistency is required

Popular documents Invalidation Client The number of requests (R) is at least equal to the
that are modified Polling number of modifications (M). According to Douglis,
frequently et al. and our results, the rate of requests are

higher than the rate of modification. This implies
that many more reads are performed in comparison
to writes. In addition, an average of one proxy
needs to be contacted for invalidation. Using our
results and those in the literature, we conclude that
invalidations produce less messages than the strong
consistency mechanism, Polling Every Time. Client
Polling decreases the need to poll the server at
the expense of acquiring possibly stale documents.

Popular documents Invalidation Client The number of requests (R) and the number of
that are modified Polling modifications (M) are greater than 1, however
infrequently k l m . According to our analysis, Business

and Family sites fall in this category. Invalidation
would be the best algorithm in general.

Unpopular documents Polling Client The number of requests (R) is less than the number
that are modified Every Time Polling of modifications (M). This scenario implies that
frequently there are many more writes performed than

reads. If documents are not frequently requested,
then there are less IMS and 304 messages
generated. Polling the server gives fewer
messages while invalidations would produce
unnecessary messages. Since it is highly probable
that most of the writes will occur in succession with
no intercepting reads, w may not have to poll the
server as often as required by Polling-Every-Read

Unpopular documents Polling Client The number of requests (R) and number of
that are modified Every Time Polling modifications (M) are small and equally likely.
infrequently This scenario implies that the documents are not

requested very often and hardly ever change.
These are usually old documents hanging around
on the Web. The current Web mechanism, Client
Polling would work best.

