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Weifeng Rao 

ABSTRACT 

 Phase field modeling and simulation is employed to study the underlying mechanism 

of enhancing electromechanical properties in single crystals and polycrystals of 

perovskite-type ferroelectrics around the morphotropic phase boundary (MPB). The 

findings include:  

 (I) Coherent phase decomposition near MPB in PZT is investigated. It reveals 

characteristic multidomain microstructures, where nanoscale lamellar domains of 

tetragonal and rhombohedral phases coexist with well-defined crystallographic 

orientation relationships and produce coherent diffraction effects. 

 (II) A bridging domain mechanism for explaining the phase coexistence observed 

around MPBs is presented. It shows that minor domains of metastable phase 

spontaneously coexist with and bridge major domains of stable phase to reduce total 

system free energy, which explains the enhanced piezoelectric response around MPBs. 

 (III) We demonstrate a grain size- and composition-dependent behavior of phase 

coexistence around the MPBs in polycrystals of ferroelectric solid solutions. It shows that 

grain boundaries impose internal mechanical and electric boundary conditions, which 

give rise to the grain size effect of phase coexistence, that is, the width of phase 

coexistence composition range increases with decreasing grain sizes. 

 (IV) The domain size effect is explained by the domain wall broadening mechanism. 

It shows that, under electric field applied along the nonpolar axis, without domain wall 
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motion, the domain wall broadens and serves as embryo of field-induced new phase, 

producing large reversible strain free from hysteresis. 

 (V) The control mechanisms of domain configurations and sizes in 

crystallographically engineered ferroelectric single crystals are investigated. It reveals 

that highest domain wall densities are obtained with intermediate magnitude of electric 

field applied along non-polar axis of ferroelectric crystals.  

 (VI) The domain-dependent internal electric field associated with the short-range 

ordering of charged point defects is demonstrated to stabilize engineered domain 

microstructure. The internal electric field strength is estimated, which is in agreement 

with the magnitude evaluated from available experimental data. 

 (VII) The poling-induced piezoelectric anisotropy in untextured ferroelectric ceramics 

is investigated. It is found that the maximum piezoelectric response in the poled ceramics 

is obtained along a macroscopic nonpolar direction; and extrinsic contributions from 

preferred domain wall motions play a dominant role in piezoelectric anisotropy and 

enhancement in macroscopic nonpolar direction. 

 (VIII) Stress effects on domain microstructure are investigated for the MPB-based 

ferroelectric polycrystals. It shows that stress alone cannot pole the sample, but can be 

utilized to reduce the strength of poling electric field.  

 (IX) The effects of compressions on hysteresis loops and domain microstructures of 

MPB-based ferroelectric polycrystals are investigated. It shows that longitudinal 

piezoelectric coefficient can be enhanced by compressions, with the best value found 

when compression is about to initiate the depolarization process. 
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Chapter I 
 

 

Introduction 

 

 

 

 
I.1. Background 

 Ferroelectrics, first reported in 1921 by Valasek,1 are a family of functional materials 

with spontaneous polarizations and domain microstructures that can convert energies of 

mechanical to electric and vice versa under externally applied fields. As demonstrated by 

Fig. 1-1, they are widely employed to manufacture piezoelectric and electrostrictive 

actuators, sensors, transducers, et al.2 

 For engineering applications, the perovskite-type solid solutions (ABO3), such as 

Pb(Zr1-xTix)O3 (PZT),3 Pb[(Zn1/3Nb2/3)1-xTix]O3 (PZN-PT),4 and Pb[(Mg1/3Nb2/3)1-xTix]O3 

(PMN-PT),5 are of the most interest. The schematic phase diagram, Fig. 1-2, shows that, 

at certain temperature, the paraelectric cubic phase will transform to rhombohedral or 

tetragonal phases at low or high PT composition, respectively. These two phases are 

separated by a nearly vertical phase boundary, called morphotropic phase boundary 

(MPB). The real phase diagrams are shown in Fig. 1-3, with the MPBs highlighted in red. 

Because the best piezoelectric properties of these materials are obtained at compositions 
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in the vicinity of their MPBs,3,6-8 the underlying mechanism for the enhanced properties 

around MPBs is a question of both scientific and technological importance. 

 

FIG. 1-1. Piezoelectric effects in ferroelectrics (after ref. 2).  

 

  

 

 

 

 

 

 

 

 

 

 

FIG. 1-2. Schematic phase diagram of perovskite pseudo-binary solid solutions.   
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 There are two methods available to theoretically analyze the ferroelectric phase 

transformation. One is the microscopic theory in terms of crystal lattice dynamics, called 

Soft-Modes theory,9,10 another is the macroscopic, thermodynamic theory, which can 

successfully describe the successive phase transitions in BaTiO3 single domain single 

crystal.11 But because of the complication of the mesoscale domain microstructure around 

MPBs and its evolution under externally applied fields, the origin of the exceptional 

properties around the MPBs cannot be explained by aforementioned approaches, and is 

yet to be clarified, in spite of the investigations over decades.  

Recently, new intermediate MPB phases were observed by high-resolution X-ray and 

neutron diffractions,12 which renews the interest in the phase diagrams of these 

ferroelectric solid solutions. Some investigators attribute the origin of the exceptional 

properties to the presence of new intermediate MPB phases.12 It is known that the phases 

in ferroelectric solid solutions are usually identified by x-ray or neutron powder 

diffractions. When the microstructure size is much smaller than the coherence length of 

radiations, i.e., nanoscale microstructures, scattered waves from individual nanodomains 

coherently superimpose in diffraction, where the resultant diffraction intensity profiles 

only reflect the average diffraction effect of crystal lattices over multiple nanodomains. 

Recent nanotwin diffraction analysis shows that nanotwins of tetragonal and 

rhombohedral phases are perceived by x-ray and neutron diffractions as monoclinic 

phases, where adaptive Bragg reflection peaks appear between the conventional twin 

peaks of coarse domains, and the positions of the new peaks are determined by the 

relative thicknesses of nanotwin variants.13 Such extraordinary diffraction peaks cannot 

be explained by conventional diffraction theory of coarse domains, and an introduction of 
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monoclinic phase is found to improve the Rietveld refinement of diffraction data, which 

leads to the report of new monoclinic phase.12   

It is worth noting that the monoclinic lattice corresponds to the average symmetry of 

the nanotwins and exhibits intrinsic lattice parameter relationships,14,15 as predicted by 

both diffraction analysis13 and crystallographic analysis through nanodomain 

averaging.14,15 Moreover, nanotwins of tetragonal and rhombohedral phases with domain 

sizes about 10nm have recently been directly observed. Experiments of transmission 

electron microscopy (TEM) in combination with selected area electron diffraction 

(SAED) and convergent beam electron diffraction (CBED) observe nanotwins of 

tetragonal phase with {101} twin plane16 and rhombohedral phase with {110} twin 

plane17 with average size ~10nm in ferroelectric PMN-PT; in particular, the high-

resolution electron microscopy (HREM) together with image simulation provide the 

atomic-resolution imaging of nanotwins of rhombohedral phase in PMN-PT.17 These 

nanotwins appear as monoclinic MC and MB phases, respectively, in previous diffraction 

experiments. Nanodomains with typical size ~10nm are also observed in ferroelectric 

PZT by complementary TEM, SAED, CBED, electron paramagnetic resonance (EPR) 

and high-resolution synchrotron X-ray diffraction experiments;18-21 most importantly, the 

high-resolution diffraction combined with TEM imaging establish a direct correlation 

between the appearance of extraordinary diffraction peak profiles and the formation of 

nanodomains;19,20 although the new reflection peaks suggest a monoclinic phase, CBED 

and EPR only detect rhombohedral and tetragonal phases, while monoclinic phase is not 

observed.19,20  
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FIG. 1-2. Real phase diagrams for PZT (upper, after ref. 3.), PMN-PT (lower left, after 

ref. 4), and PZN-PT (lower right, after ref. 5), where the MPBs are highlighted in red.  
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PT,12 where the observed extraordinary peak patterns cannot be explained by the 

conventional diffraction theory of coarse-domained materials. These experimental 

findings16-21 clarify the nanotwin nature of these monoclinic phases, demonstrate the 

coherent scattering and interference effects of nanodomain microstructures, and support 

the nanotwin diffraction theory.13 Without taking into account the nanoscale domain 

microstructures, the diffraction data have been misinterpreted and led to identification of 

wrong phase. In order to correctly interpret diffraction data and identify the phases, it is 

crucial to know the nanodomain microstructures.  

Meanwhile, because rhombohedral and tetragonal phase coexistence is commonly 

observed and expected from the Gibbs phase rule of equilibrium thermodynamics,22 some 

investigators conceptually attributed the origin of the exceptional properties around 

MPBs to the phase coexistence. Insights have been gained from different perspectives, 

e.g., the range of phase coexistence was considered from the idea of the relative stability 

and metastability, or the overlapped existing ranges, of coexisting phases near MPB;23 the 

coexisting phases (two end members) were shown to have the constant lattice parameters 

over the coexisting range, respectively, and the relative amounts could be calculated from 

defined edges of coexisting range through the lever rule,24 the origin of the phase 

coexistence was suggested as a natural result of the compositional fluctuation during the 

processing;25 the molar fractions of two coexisting phases were calculated by assuming 

that the statistical distribution functions are related to the effective solid angles 

(geometrical constraints) and the free energy difference (energy considerations) 

associated with these two phases;26  the progression of the range of local structural order, 

from short-range to long-range and back to short-range structural order across the MPB, 
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was proposed to explain the adjacent phases and the associated MPB;27 the equilibrium 

phase diagram satisfying Gibbs phase rule was predicted through the peritectoid reaction 

by treating the PZT system as a regular solution and combining the conventional Landau-

Ginzburg-Devonshire (LGD) free energy function11 with positive enthalpy of formation28 

and entropy of mixing;22 the dramatic domain wall energy reduction and the nanodomain 

formation were expected by the inherent vanishing of the orientational anisotropy near 

MPB. 29 

While these studies together provide a broad aspect of MPB phase coexistence 

phenomenon, none of them considers the formation of ferroelectric and ferroelastic 

domain microstructures and its role in phase coexistence. These investigations are based 

on local free energy analyses within conventional Gibbsian thermodynamics, and do not 

consider the dependence of total system free energy on domain microstructures through 

long-range electrostatic and elastostatic interactions.  

It is well known that the ferroelectric behaviors are profoundly affected by the 

heterogeneity of the polar domain microstructures and their evolutions, which are further 

complicated by the fact of the coexistence of two dissimilar phases (tetragonal and 

rhomobohedral) in polycrystalline ferroelectrics around MPBs. For better understanding 

of the underlying mechanism of the piezoelectric responses of ferroelectric single crystals 

and polycrystals in service conditions, it is required to investigate the polar domain 

configurations and their evolution in absence and presence of externally applied fields. 

Given the difficulties in direct experimental observations and the complexity in 

theoretical treatments, it is thus highly desired to conduct computer modeling and 

simulation of MPB ferroelectrics.  
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 A successful model capable of simulating phase transition should be able to treat 

microstructures, featured as domain size, shape and spatial arrangements. It should also 

be able to treat the microstructure evolution to reduce the total free energy, consisting of 

chemical free energy, interfacial energy, electrostatic energy and elastic strain energy.30  

  Some computer simulations that are based on constitutive laws and ad hoc switching 

criteria, e.g., finite element methods, are capable of studying the macroscopic hysteresis 

phenomena of ferroelectric materials, by explicitly treating the phase boundaries as sharp 

interfaces,30 assuming each individual area is in single domain state,31 or pre-determined 

(laminated) domain microstructures.32 However, such approach will encounter serious 

difficulties when it formulates the interfacial movements as a time-dependent boundary 

problem, which makes it impractical in complicated phase transition simulation.30 Since 

the domain microstructures can only evolve in the pre-decided ways, the constitutive 

approaches are thus not suitable for gaining insights on the mesoscale ferroelectric 

domain microstructures, which are even more complicated in the vicinity of MPBs, due 

to the presence of phase coexistence.  

 In comparison, the phase-field model can naturally describe the mesoscale 

morphological and microstructure evolution, without explicitly tracking the interface. 

Based on Ginzburg-Landau33, 34 and Cahn-Hilliard35 theories, the free energy functional 

of microstructures is constructed by a set of field variables crossing the interfacial 

regions. This approach circumvents the complication associated with moving interface 

and is thus easy for numerical implementation. With a simple and elegant description of 

evolving microstructures, it makes it possible to simulate various realistic physical 

processes, including solidification, solid-state structural phase transformations, grain 
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growth and coarsening, domain formations and evolutions, pattern formation on surfaces, 

dislocation microstructures, crack propagation, and electromigration.30 It also has been 

shown that this method is one of the most suitable approaches to study the complex phase 

transitions/domain structures in ferroelectrics, see ref. 36 for a recent review on its 

applications on ferroelectric thin films.  

 The phase-field model is recently employed to investigate the domain microstructures 

of coexisting metastable and stable phases in single crystals of MPB-based ferroelectrics 

in inhomogeneous system involving configuration-dependent long-range elastostatic and 

electrostatic interactions.37-38 The modeling and simulations on displacive phase 

transformation (diffusionless)37 and coherent phase decomposition (diffusional)38 show 

that the electrostatic and elastostatic interactions play significant roles in the phase 

coexistence around MPBs through the formation of coupled ferroelectric and ferroelastic 

domain microstrutures. In particular, it shows that, due to the small bulk free energy gap 

between metastable and stable phases in the vicinity of MPBs, mosaic domain 

microstructures composed of coexisting phases spontaneously form in compositionally 

homogeneous system without compositional fluctuation, which effectively reduce the 

total free energy, including bulk free energy, domain wall energy, long-range electrostatic 

and elastostatic energies. It has been shown that the mosaic domain microstructures can 

be stabilized in polycrystalline ferroelectrics by the constraints imposed by grain 

boundaries, and is thus corresponding to an energy minimum state.39 The mosaic domain 

microstructure subjected to an externally applied electric field is thus capable of returning 

to its original state upon the removal of external field, which provide a ferroelectric shape 

memory effect.40 It is also revealed that, due to phase coexistence, large macroscopic 
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electromechanical response can be anisotropically produced in MPB-based ferroelectric 

polycrystals.40 Similar phase coexistence phenomenon is also reported in the computer 

modeling and simulation studies of epitaxially strained ferroelectric thin films.41  

 

I.2. Objectives and Arrangements 

 The objectives of this dissertation are to develop a phase-field model for studying the 

MPB-based ferroelectrics, discuss issues when applying this model to quantitatively 

investigate the domain microstructures and the underlying mechanism for enhanced 

electromechanical properties around MPBs, present obtained results on single crystals 

and polycrystals, and outline the directions of further research. In particular, efforts will 

be placed on understanding the formation of multi-phase domain microstructures cooled 

with or without external electric fields, the evolutions of the obtained domain 

microstructures under the externally applied fields, and the resulted electromechanical 

properties in MPB-based single crystals and polycrystals. The possibility of optimizing 

and stabilizing the preferred domain microstructures in single crystals that give better 

electromechanical properties will be explored, as well as utilizing piezoelectric 

anisotropy in untextured polycrystalline ferroelectrics.  

A general three dimensional phase field model for ferroelectric polycrystals will first 

be described in Chapter II. This model will then be applied to study the phase-coexisting 

domain microstructures of MPB-based ferroelectric single crystals and polycrystals in 

Chapter III, including the coherent phase decomposition (diffusional),38 the displacive 

phase transformation (diffusionless),37 and  the grain size effects on the composition 
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width of phase coexistence range.39  Chapter IV will be focused on investigating the best 

electromechanical properties of the MPB-based single crystals through domain 

engineering, in which a domain wall broadening mechanism for explaining the domain 

size effect42 will be first presented, followed by controlling the domain configurations 

and sizes by applying external electric fields upon cooling,43 and stabilizing the 

engineered domain microstructures through the aged short-range ordering of charged 

point defects.44 The utilization of the best piezoelectric properties of MPB-based 

ferroelectric polycrystals will be discussed in Chapter V, where the poling-induced 

single-crystal-like piezoelectric anisotropy (under pure electric fields) will be reported,40 

and the effects of pure stress fields and the combination of both stress and electric fields 

on the hysteresis behaviors will also be explored.  Conclusions and future work will be 

provided in the last chapter, Chapter VI. In order to make this dissertation self-contained, 

discussions on calculating the intrinsic piezoelectric properties of ferroelectric single 

crystals around MPB by currently available LGD polynomials45-51 are provided in the 

appendix.  
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Chapter II 
 

 

Phase Field Model for Ferroelectric 

Materials 

 

 

 

 
II.1. Formulation 

 MPB-based ferroelectric material is a compositionally, structurally, and electrically 

heterogeneous system composed of multiphase and multidomain microstructures, which 

is determined by the competitions among several energy contributions: 

total bulk grad elec elasF F F F F= + + + , (1) 

where total
F is a sum of all energy contributions over the volume space, bulk

F  is the local 

chemical free energy that defines the thermodynamic properties of ferroelectric phases in 

stress-free homogeneous states,  gradF is the non-local short-range gradient energy 

(interfacial energy), characterizing the local polarization variations across the domain 

walls and grain boundaries, elec
F is  the long-range electrostatic energy, arising from the 

dipole-dipole interactions and the externally applied electric field, and elas
F is the long-
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range elastostatic energy induced by the coherency  lattice misfit strain and externally 

applied mechanical loadings. 

 According to Landau-Ginzburg-Devonshire (LGD) theory,8 the nonequilibrium bulk 

free energy density of ferroelectric single crystal in stress-free homogeneous states can be 

described in its own crystallographic coordinate system by a six-order polynomial, as, 

2 2 2 4 4 4
1 1 2 3 11 1 2 3

2 2 2 2 2 2
12 1 2 2 3 3 1

6 6 6
111 1 2 3

4 2 2 4 2 2 4 2 2
112 1 2 3 2 3 1 3 1 2

2 2 2
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( )[ ( ) ( ) ( )]
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bulk g g g g g g

g g g g g g

g g g

g g g g g g g g g

g g g

f c T c T P P P c P P P

c P P P P P P

c P P P

c P P P P P P P P P

c P P P

α α

α

α

α

α

= + + + + +

+ + +

+ + +

+ + + + + +

+

�

, (2) 

where iα , ijα and ijkα are the dielectric stiffness and higher order stiffness coefficients for 

a specific material system, determined by fitting the theoretical predictions to 

experimental data,  T is temperature, c  is the mole fraction of one component in a binary 

solid solution, and g

iP is the i-th component of the polarization vector in the local 

crystallographic coordinate system aligned with <100> lattice axes of the parent cubic 

phase in a given grain. It is worth noting that, the positive enthalpy of formation and 

entropy of mixing can be added to Eq. (2) to automatically reproduce the incoherent 

equilibrium (diffusional) phase diagram of ferroelectric solid solution,9 and this free 

energy formulation can be adopted in computer simulation to account for coherent phase 

decomposition processes that are expected by the limited dislocation activities and 

nanoscale decomposition microstructure.3  

 Because of the distribution of crystallographic orientation of each grain, a reference 

(global) coordinate system is introduced to relate the disorientated grains in a polycrystal. 

The local polarization vector is thus transformed from the global system through 
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( )g

i ij jP R P= r , (3) 

where summation convention over repeated indices is implied, jP is the j-th component of 

the polarization vector in the global coordinate system, and ( )ijR r is a transformation 

(rotation) matrix field that describes the geometry (size, shape, and location) and 

crystallographic orientation of individual grains in the polycrystal, as in the phase field 

models of martensitic,10 ferromagnetic,11 and ferroelectric12 polycrystals.  

 With the rotation matrix field, the spontaneous lattice misfit strain from the 

electrostriction effect, 0
ijε , can be expressed as, 

0
ijε =RmiRnjRpkRqlQmnpqPkPl , (4) 

where Qijkl is the electrostriction coefficient tensor, which is generally a function of both 

composition and temperature.  

 If under stress-control condition, the overall elastostatic energy is a sum of following 

two equations, 

0 3elas Ex

Ex ij ijF dσ ε= −∫ r , (5a) 

0 0 31
( )( )

2
Cohelas

ijkl ij ij kl klF C dε ε ε ε= − −∫ r , (5b) 

where, Ex

ijσ is the externally applied stress,  ijklC is the elastic modulus constant tensor, 

ijε is the local strain. Eq. (5a) accounts for the energy associated with the externally 

applied stress, and Eq. (5b) is for the energy induced by the coherency lattice misfit 

strain.  
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 We follow ref. 13 to solve the elastic energy, Eq.(5b). For completeness, this 

derivation is described here. The total strain is written as a sum of the spatial 

heterogeneous and homogeneous strains,  

ij ij ijeε ε= + ,  (6) 

where, the heterogeneous strain satisfies 3 0ije d =∫ r , and the homogenous strain, defined 

as a spatial average of the total strain, 31
ij ijd

V
ε ε= ∫ r , determines the macroscopic 

deformation of a polycrystal.  

 Substituting Eq.(6) into Eq.(5b) , and rearranging yields the coherency elastic energy, 

0 0 0 3

0 3 3

1
 ( 2 )

2
1

( 2 )
2

Cohelast

ijkl ij kl ij kl ij kl

ijkl ij kl ij kl ijkl ij kl

F C d

C e e e d C e d

ε ε ε ε ε ε

ε ε

= − +

+ − +

∫

∫ ∫

r

r r

, (7) 

 Since the third integral goes to zero, Eq.(7) can be separated into two parts as, 

0 0 0 31
( 2 )

2
Cohelast

Homo ijkl ij kl ij kl ij klF C dε ε ε ε ε ε= − +∫ r ,  (8a) 

0 31
( 2 )

2
Cohelast

Heter ijkl ij kl ij klF C e e e dε= −∫ r ,  (8b) 

where Eq. (8a) accounts for the homogeneous elastostatic energy and Eq. (8b) is for the 

heterogeneous elastostatic energy. 

 At elastic equilibrium, the total elastostatic energy should be minimized. Thus, for 

homogeneous part, we have,  

0 3( ) 0
Cohelast

Homo
ijkl kl kl

ij

F
C dε ε

ε

∂
= − =

∂ ∫ r ,  (9) 

and it yields, 



 19

0 3 01
ij ij ijd

V
ε ε ε= =∫ r ,  (10) 

 To minimize Eq. (8b), instead of strain, we use the displacement as the independent 

variable, and introduce, 

, ,

1
( )

2ij i j j ie v v= + ,  (11) 

where iv is the i-th component of displacement vector in the global coordinate system, 

and ,i j i jv v x= ∂ .  

 Assuming the stress field is applied uniformly and substituting Eq. (11) into Eq. (8b), 

the minimization of the heterogeneous elastostatic energy gives,  

0
, ,( ) 0

Cohelas

Heter
ijkl k lj kl j

i

F
C v

v

δ
ε

δ
= − − = ,  (12) 

which can be shown to be equivalent to the equilibrium equation of elasticity, , 0ij jσ = , 

where 
ijσ is stress tensor.   

 In order to solve Eq. (12), Fourier transform technique is applied and the 

displacement field is solved in the reciprocal space, 

0( ) ( ) ( )i ij jklm k lmv iG C k ε= −k k k�� ,  (13) 

where k is a directional vector in the reciprocal space, the tilde sign ~ indicates the 

Fourier transform of the corresponding function, for example, 3( ) ( ) i

k kv v e d
− ⋅= ∫

k r
k r r� , 

and 0 0 3( ) ( ) i

kl kl e dε ε − ⋅= ∫
k r

k r r� , and 1( ) ( )ik ijkl j lG C k k
−=k  is the Green function tensor of 

elasticity.  

 The strain can thus be calculated by inverse Fourier transform,  
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3

0
, 3(2 )

i

i j ik klmn j l mn

d
v G C k k eε

π
⋅= ∫

k rk
� , (14) 

 Hence, using Eq.(14), the heterogeneous contribution can  be expressed as, 

3
0 0 *

3

1

2 (2 )
Cohelas

Heter ijmn m np q klpq ij kl

d
F C n n C ε ε

π
= − Ω∫

k
� � , (15) 

where superscript asterisk * indicates the complex conjugate, 

2 1( ) ( ) ( )ij ij ikjl k lG C n n −Ω = =n k k ,and / k=n k is a unit directional vector in the reciprocal 

space. 

 Also, using Eq.(10), the homogeneous elastostatic energy can be calculated in the 

reciprocal space as, 

3
0 0 * 0 0 3

3

1 1

2 (2 ) 2
Cohelas

Homo ijkl ij kl ijkl ij kl

d
F C C dε ε ε ε

π
= −∫ ∫

k
r� � , (16) 

 The electric state of a ferroelectric polycrystal is described by the distribution of 

polarization field, ( )P r , and the divergence of polarization field gives the density of 

volume charge at each spatial position. Considering the Coulomb’s law, the total dipole-

dipole interaction electrostatic energy is given by a double integral of the potential energy 

of interacting local charges at positions r and ′r ,  

3 3

0

1 1 ( ) ( )
( )

2 4
elec

interF d d
πε

′ ′∇ ⋅ ⋅ ∇ ⋅
′=

′−∫ ∫
P r P r

r r
r r

, (17) 

where 0ε is the permittivity constant of vacuum.  Using the Fourier transform technique, 

this integration can be efficiently calculated in the reciprocal space,  

3
*

3
0

1
( ) ( )

2 (2 )
i jelec

inter i j

n nd k
F P P

π ε
= ∫ k k� � ,  (18) 
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 If an electric field is applied, the polarization is likely to be rotated or poled into the 

same direction of the applied field. The interaction of local polarization with the 

externally applied electric field can be described by 

3( )elec

Ex ExF d= − ⋅∫E P r r ,  (19) 

where ExE is the externally applied electric field. Thus, the sum of Eq.(18) and Eq. (19) 

gives the total electrostatic energy of a ferroelectric polycrystal. 

 The inhomogeneity of polarization distribution, for example, due to polarization 

crossing the domain walls and grain boundaries, gives rise to an extra contribution to the 

total free energy. When the diffusion process is considered, the inhomogeneous 

composition distribution also causes the total energy increasing. These terms are usually 

called the gradient energies, and are described by the gradient of polarization field and 

composition field as,  

3( ) ( )1
2

grad P i k
polar ijkl

j l

P P
F d

r r
β

∂ ∂
=

∂ ∂∫
r r

r ,  (20a) 

31 ( ) ( )
2

grad c

comp ij

i j

c c
F d

r r
β

∂ ∂
=

∂ ∂∫
r r

r ,  (20b) 

where the tensors P

ijklβ  and c

ijβ  are the positive gradient coefficients of polarization field 

and composition field, respectively. 

 Hitherto, all energy contributions have been explicitly expressed as functionals of 

composition field and global polarization field. Adding up the integral of Eq. (2) over the 

volume space, Eq. (5a), (15), (16) and (18-20) gives the total energy.  

 The temporal evolution of the microstructures is completely characterized by the 

evolution of the composition and polarization fields, which are driven by a reduction of 
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the total system free energy through diffusion and structural relaxation. The phase 

decomposition process and the evolution of polarization and domain microstructures are 

governed by two phenomenological equations, namely, the time-dependent Ginzburg-

Landau14,15 equations for nonconserved polarization fileds and the Cahn-Hilliard16 

nonlinear diffusion equation for conserved composition field, respectively, 

( )
( )

( )
,

,
,

total
i P

ij i

j

P t F
L t

t P t

δ
ξ

δ

∂
= − +

∂

r
r

r
, (21a) 

( )
( )

( )
,

,
,

total
c

c t F
D t

t c t

δ
ξ

δ

∂
= ∇ ⋅ ∇ +

∂

r
r

r
, (21b) 

where t is time, ijL is the kinetic coefficient of polarization relaxation, D is the chemical 

mobility of diffusion, ∇ is the gradient operator, ( , )P

i tξ r  and ( , )c tξ r  are Gaussian-

distributed Langevin noise terms to account for the effect of thermal fluctuation.  

 

II.2. Numerical simulations 

 The above formulation is generally applicable to three-dimensional ferroelectric 

polycrystals. However, due to the limitations of the computation capability, two-

dimensional simulations will be performed to study polarization rotations and domain 

microstructure formations and evolutions.  

 For calculating the total energy, Eq.(2), the sample is assumed to be elastically 

homogeneous and isotropic, thus,  

  Cijkl=2µνδijδkl/(1−2ν)+µ(δikδjl+δilδjk),  (22) 

where δij is Kronecker delta, µ and ν are shear modulus and Poisson’s ratio. Therefore, 

we have,  
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  Gij=δij/νk
2−kikj/2µ(1−ν)k4,  (23a) 

 Ωij=δij /µ−ninj/2µ(1−ν), (23b) 

 The gradient and kinetic coefficients are assumed to be orientation independent, as, 

 P P

ijkl ik jlβ β δ δ= , (24a) 

 c c

ij ijβ β δ= , (24b) 

 ij ijL Lδ= . (24c) 

 The periodic boundary conditions are assumed in the phase field model. It is worthy 

to note that, while some functionals of energetic contributions, for example, the bulk 

chemical and gradient energies, can be described either in real space or in reciprocal 

space, it is a real challenge to explicitly solve the heterogeneous parts of elastostatic and 

electrostatic energies in real space. Thus, Fast Fourier Transform (FFT) techniques are 

employed to calculate all energy terms in reciprocal space. As a consequence, the 

periodic boundary condition is implemented in simulations.   

 To better understand the simulation results, it is necessary to discuss the currently 

available LGD polynomials and the intrinsic electrostrictive and piezoelectric properties 

of ferroelectrics, which is provided in the appendix of this dissertation.  
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Chapter III 
 

 

Phase-Coexisting Domain 

Microstructure 

 

 

 

 
III.1. Introduction 

Phase coexistence is commonly observed around the morphotropic phase boundaries 

(MPBs) of ferroelectric solid solutions. In the temperature-composition phase diagrams 

of lead-based perovskite-type systems, such as PZT,4 PZN-PT,5 and PMN-PT,6 the MPB 

is a nearly vertical phase boundary separating two ferroelectric phases, namely, 

rhombohedral and tetragonal phases at low and high Ti contents, respectively. The 

presence of MPB as a sharp-line phase boundary has raised great scientific curiosity, 

because it violates Gibbs phase rule for thermodynamically equilibrium temperature-

composition phase diagram,7 and the mechanism of phase transition between ferroelectric 

rhombohedral and tetragonal phases across MPB is an interesting question.8 It has been 

long-recognized that a two-phase zone is required around MPB, and the MPB is 

considered as located at the composition where the two phases coexist in equal quantity.4 
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Because the best piezoelectric properties of these materials are obtained at compositions 

in the vicinity of their MPBs,4,9-11 the effect of MPB phase coexistence on the 

piezoelectric properties is a question of both scientific and technological importance.  

 Recently, new intermediate MPB phases were observed by high-resolution X-ray and 

neutron diffractions,12 which renews the interest in the phase diagrams of these 

ferroelectric solid solutions. Some investigators thus associate the origin with the 

presence of new intermediate MPB phases.12 However, there are new findings that 

questioned those lower-symmetry phases, from both theoretical13-15 and experimental16-21 

aspects. Those investigations reveal nanodomain aspects of the MPB structures and 

coherent scattering and interference effects in nanodomain diffractions, underscoring the 

importance of domain microstructures and mechanisms in the vicinity of MPBs. 

As the current material of choice for a wide variety of high-performance 

electromechanical devices, PZT has been best studied over decades. In order to explain 

the origin of the exceptional properties found around MPB, insights have been gained 

from different perspectives, e.g., stability and metastability of coexisting phases,22 

solubility gap,23 compositional fluctuation,24 statistical distribution of accessible polar 

states,25 progression of local structural order,8 equilibrium phase diagram satisfying 

Gibbs phase rule,7 and inherent nanoscale structural instability associated with vanishing 

electrocrystalline anisotropy near MPB.26 These studies have significantly improved our 

understandings on the nature of MPB-based ferroelectrics. However, none of them 

considers the formation of ferroelectric and ferroelastic domain microstructures and its 

role in phase coexistence. These investigations are based on local free energy analyses 

within conventional Gibbsian thermodynamics, and do not consider the dependence of 
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total system free energy on domain microstructures through long-range electrostatic and 

elastostatic interactions. 

It is known that spontaneous domain formation is an essential feature of 

ferroelectrics, where the spontaneous polarization self-arranges into head-to-tail patterns 

to minimize the long-range electrostatic interaction energy, and the accompanying 

ferroelastic lattice distortion is self-accommodated through formation of structural twins 

to minimize the long-range elastostatic interaction energy. While twin formation is a 

well-known lattice misfit-accommodating mechanism among multiple structural 

orientation variants of single phase (rhombohedral or tetragonal), the strain-

accommodating mechanism for the crystal lattice misfit between different phases is less 

well understood. As a matter of fact, adjoining rhombohedral and tetragonal domains 

across a coherent interface does not accommodate the lattice misfit between them, thus a 

stress-free state cannot be achieved. Moreover, the polarization distribution in the inter-

phase interface region also needs to be better investigated. Clearly, the electrostatic and 

elastostatic interactions have significant effects on the formation of coupled ferroelectric 

and ferroelastic domain microstructures and on the phase coexistence around MPBs.  

In this chapter we employ computer modeling and simulation to quantitatively study 

the interplays among various energetic contributions, including electrostatic energy of 

polarization distribution, elastostatic energy of lattice misfit, gradient energy of 

polarization change across domain walls, and bulk energy gap between metastable and 

stable phases. In particular, we investigate the domain microstructures and mechanisms 

for phase coexistence and piezoelectricity enhancement around MPBs. 
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III.2.  Coherent Phase Decomposition  

In this section, coherent microstructures of phase decomposition near morphotropic 

phase boundary in lead zirconate titanate are investigated by using computer modeling 

and simulation. The model is based on the recently proposed incoherent equilibrium 

phase diagram [G.A. Rossetti, Jr. et al., Appl. Phys. Lett. 88, 072912 (2006)] and takes 

into account the coherency strain energy and electrostatic energy. It reveals characteristic 

multi-domain microstructures, where nanoscale lamellar domains of tetragonal and 

rhombohedral phases coexist with well-defined crystallographic orientation relationships. 

The phase-coexisting nanodomain microstructures play a significant role in interpretation 

of X-ray and neutron diffraction data and identification of phases near morphotropic 

phase boundary. 

 

Recently, an extended thermodynamic theory of PZT solid solution was formulated,7 

which treats PZT system as a regular solution and combines the conventional LGD free 

energy function27 with positive enthalpy of formation28 and entropy of mixing, as, 
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where T is temperature, TC is Curie-Weiss temperature of PZT, x is the mole fraction of 

PT in PZT, xm is the MPB composition, w is the atomic exchange interaction parameter 

characterizing enthalpy of mixing, kB is Boltzmann’s constant, Ω is the unit cell volume 
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of PbTiO3, and a’s are the polynomial coefficients of LGD expansion of the polarization-

dependent part of the bulk free energy. 

The new free energy formulation automatically predicts equilibrium (diffusional) 

PZT phase diagram with two-phase region replacing the linear MPB and satisfying the 

Gibbs phase rule.7 As shown in Fig. 3-1, the phase diagram predicts phase decomposition 

through peritectoid reaction, where diffusion rate is estimated to be sufficiently fast 

during normal material processing.7   

It is worth noting, while providing valuable insight into the phase coexistence 

phenomenon, the predicted phase diagram is for incoherent phases, i.e., coherency strain 

energy is not considered. In real PZT samples, coherent phases are expected because of 

the limited dislocation activities and nanoscale decomposition microstructures.  

The purpose of this section is to report characteristic two-phase multidomain 

microstructures that are formed by phase decomposition near MPB, gain insight into 

nanodomain effects on diffraction, and better understand the phase behavior and phase 

diagram of PZT. In this section, We adopt the recently proposed free energy 

formulation,7 Eq. (25), and employ computer modeling and simulation to study the 

effects of coherency strain energy (and electrostatic energy and polarization gradient 

energy as well) on domain microstructure evolution during phase decomposition near the 

MPB in PZT. A value of w=0.5kBTC /Ω is used in the computer simulation for the positive 

enthalpy of mixing.7,28
 The simulation is performed with 512x512 computational cell 

with grid size of ~2 nm.  
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FIG. 3-1. (After ref. 7). Computed equilibrium phase diagrams for PZT solid solutions 

exhibiting ideal behavior with atomic exchange mixing parameter w=0 (a); exhibiting 

nonideal behavior with w=2.75 (b). Both are peritectoid diagrams with invariant lines 

located at 617 K in (a) and 592 K in (b). 

Our simulation reveals characteristic multi-domain microstructures, where lamellar 

domains of tetragonal and rhombohedral phases coherently coexist with well-defined 

crystallographic orientation relationships, as shown in Fig. 3-2. We consider PZT system 

at room temperature with nominal MPB composition, x=xm=0.5 defined in Eq. (25). Fig. 

3-2(a)-(e) show the simulated two-phase microstructures from the early-stage to 

coarsened decomposition, respectively, where tetragonal (red) and rhombohedral (blue) 

phases are visualized according to their compositions.These representative stages of 

coherent phase decomposition exhibit essentially the same morphological characteristics, 

despite that the composition has not reached equilibrium values in Fig. 3-2(a) and the 

microstructural sizes grow with increasing simulation time in Fig. 3-2(e).  
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    (a)        (b) 

    
    (c)        (d) 

    
    (e)        (f) 
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FIG. 3-2. (After ref. 1). Computer simulation of coherent microstructures of phase 

decomposition in PZT near MPB at room temperature. (a)-(e) Two-phase morphology at 

different stages of decomposition (from early to coarsened stages, corresponding to 

simulation time t=1, 3, 5, 10, 30, respectively), where color scale shows the composition 

profile: tetragonal phase in red (x≈0.77) and rhombohedral phase in blue (x≈0.38). (f) 

Close-up visualization of a portion of the phase-coexisting multi-domain microstructure 

shown in (e), where arrows represent the in-plane components (Px, Py) of polarization 

vector and the out-of-plane component (Pz) is represented by color: red domains (Pz=0) 

are tetragonal phase, green (Pz>0) and blue (Pz<0) domains are rhombohedral phase. 

 

This coarsening phenomenon is driven by a reduction in the interfacial energy, as 

observed in conventional decomposition phase transformations. Nevertheless, compared 

with conventional phase decompositions, the ferroelectric phase decomposition shows 

some peculiar microstructural features from its very early stage, which result from the 

coherency strain and, in particular, the electrostatics of polarization. As shown in Fig. 3-

2, the interfaces of lamellar compositional domains of tetragonal (red) phase (i.e., the 

habit planes of the lamellas) exhibit well-defined orientations, which are close to {340} 

in two-dimensional simulation. Analysis shows that such habit planes minimize the 

interfacial charge density by satisfying (PR−P
T)⋅n≈0, where n is the interface normal 

vector, and PR and PT are the polarization vectors of the decomposed rhombohedral and 

tetragonal phases, respectively.  

Fig. 3-2(f) shows a close-up view of the phase-coexisting multi-domain 

microstructure, which is visualized according to the components of the polarization. The 

{340} interfaces are 55° domain walls between rhombohedral and tetragonal phases. The 

domains of tetragonal (red) phase mutually form twins of {110} twin boundaries, which 

are 90° ferroelectric domain walls; the domains of rhombohedral (green and blue) phase 
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form twins of either {100} or {110} twin boundaries, which are 109° and 71° domain 

walls, respectively. These twins are in agreement with the crystallographic analysis of 

domain microstructures.  

It is worth noting another peculiar behavior of the ferroelectric phase decomposition 

as revealed by the computer simulation. The ferroelectric domain walls possess a lower 

Ti content, i.e., composition x is a little lower along domain walls than inside domains.  

Such domain wall depletion zones are visible as deep blue narrow regions running along 

tetragonal-rhombohedral interfaces and inside rhombohedral (blue) phase in Fig. 3-2(b)–

(e). The domain wall Ti depletion results from the modification of diffusional 

decomposition by elastostatic and electrostatic interactions between different ferroelastic-

ferroelectric domains, in particular, the local stress and electric fields in domain wall 

regions. 

The computer simulation shows that coherent phase decomposition in PZT produces 

nanoscale multi-domain microstructures. Experimental investigation24 and theoretical 

estimation7 show that the diffusion rate in PZT produces composition heterogeneities 

with a typical wavelength of the order of 10 nm. This domain size is significantly below 

the coherence length of diffraction radiations used to characterize PZT phases. Therefore, 

the phase-coexisting nanodomain microstructures play a significant role in interpretation 

of X-ray and neutron diffraction data and identification of phases near MPB. Nanotwin 

diffraction analysis has shown that, with domain sizes reduced to nanoscale, adaptive 

Bragg reflection peaks appear between the conventional twin peaks of coarse domains, 

the positions of the new peaks are determined by the relative thicknesses of nanotwin 

variants, and the peak intensities depend on the nanodomain size and volume fraction.13 
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These adaptive Bragg peaks correspond to monoclinic phases, whose lattice parameters 

are intrinsically related to that of the conventional phases forming the nanotwins.14-15 

Such extraordinary diffraction peaks cannot be explained by conventional diffraction 

theory of coarse domains, and an introduction of monoclinic phase is found to improve 

the Rietveld refinement of diffraction data, which leads to the report of new monoclinic 

phase.12 It is noteworthy that such an adaptive diffraction phenomenon from nanodomain 

microstructures has been directly observed in PZT near MPB by complementary X-ray 

powder diffraction and transmission electron microscopy experiments,20 where the 

appearance of a new peak between conventional twin peaks is correlated to the formation 

of nanodomains and Rietveld refinement leads to monoclinic phase. Clearly, without 

taking into account the nanoscale domain microstructures, the diffraction data could be 

easily misinterpreted and assigned to wrong phase such as monoclinic.  

It is worth noting that the monoclinic lattice corresponds to the average symmetry of 

the nanotwins and exhibits intrinsic lattice parameter relationships,14,15 as predicted by 

both diffraction analysis13 and crystallographic analysis through nanodomain 

averaging.14,15 Following nanodomain averaging, the phase-coexisting multi-domain 

microstructure shown in Fig. 3-2 exhibits, in general, an averaged crystal structure of 

pseudo-orthorhombic symmetry with small triclinic shear distortions. In particular, when 

lamellar domains of one tetragonal orientation variant is dominant in a local volume of 

coherent diffraction, the average lattice has a pseudo-tetragonal symmetry with lattice 

parameters c=ωct+(1-ω)ar and a=ωat+(1-ω)ar, where ct, at and ar are the lattice 

parameters of tetragonal and rhombohedral phases, respectively, and ω is the volume 

fraction of tetragonal phase. One important implication of these relations is that the 
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measured lattice parameters c and a, as assigned to tetragonal phase, are strongly 

dependent on the volume fraction ω of tetragonal phase.  

With the nominal composition x of PZT samples decreasing from tetragonal to 

rhombohedral phase fields across the MPB, ω rapidly drops from 1 to 0 over a narrow 

composition range, whose width depends on both the positive enthalpy of mixing and 

diffusion rate. Accompanying ω change, the measured tetragonal lattice parameters c and 

a rapidly converge towards ar with tetragonality ratio c/a rapidly decreasing to 1. Such 

predictions are, in fact, consistent with the Rietveld refinement-measured PZT lattice 

parameters, where c and a change smoothly with composition before rapidly converging 

towards ar within a narrow composition range of MPB phase-coexistence.29 It, thus, 

raises the question whether such a rapid lattice parameter variation near MPB is an 

intrinsic behavior or instead a result of coherence diffraction effect due to the phase-

coexisting nanodomain microstructure. Answers to this question will help better 

understand the nature of MPB, phase coexistence, PZT phase diagram, and enhanced 

piezoelectricity near MPB.  
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III.3. Bridging Domain Mechanism 

In this section, a bridging domain mechanism is revealed to explain the phase 

coexistence commonly observed around the morphotropic phase boundaries of 

ferroelectric solid solutions. The simulation takes into account the important role of 

coupled ferroelectric and ferroelastic domain microstructures in phase coexistence 

phenomenon. It shows that minor domains of metastable phase spontaneously coexist 

with and bridge major domains of stable phase to reduce total system free energy, 

including bulk free energy, domain wall energy, long-range electrostatic and elastostatic 

energies. It also shows that the existence of bridging domains enhances the piezoelectric 

response in the vicinity of morphotropic phase boundaries. 

 

Spontaneous domain formation is an essential feature of ferroelectrics, where the 

spontaneous polarization self-arranges into head-to-tail patterns to minimize the long-

range electrostatic interaction energy, and the accompanying ferroelastic lattice distortion 

is self-accommodated through formation of structural twins to minimize the long-range 

elastostatic interaction energy. In particular, phase-coexisting ferroelectrics around MPBs 

are spatially more heterogeneous systems with multi-phase and multi-domain 

microstructures. The heterogeneity can originate from two physically distinct processes, 

i.e., diffusional and diffusionless. Diffusional process leads to compositional fluctuation24 

or decomposition into two-phase equilibrium.7 In computer simulations, ( , )tP r  and 

( , )c tr  are simultaneously evolved with different speeds, characterized by the kinetic 

coefficient Lij in Eq. (21a) and diffusivity D in Eq. (21b), respectively. Depending on the 
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different combinations of L and D, the kinetic pathway of evolution can be quite 

different, as schematically shown in Fig. 3-3.  

 

FIG. 3-3. Kinetic pathways of phase decomposition in PZT.  The color on this map shows 

contour of free energies of two coexisting phases, e.g., tetragonal phase on the right and 

rhombohedral phase on the left, the location of MPB is indicated by the green line, two 

red dots represent the equilibrium states of two coexisting phases. Three different paths 

are schematically drawn out by yellow, black, and purple vectors, for the cases of L<< D, 

L~D, and L >>D, respectively; the transition path between two equilibrium phases is 

shown by orange double vectors.  

 

Since the kinetic pathway profoundly affects microstructures and the microstructures 

determine the material properties, it is desirable to experimentally control the L-D ratio 

and investigate the microstructure evolution under achievable conditions. However, 

quantitative observation is not available at present. Since diffusion kinetics in the 

complex oxide solid solutions is slow at room temperature, diffusional process is 

expected to play an important role only at elevated temperature or over long time period. 
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In the following work, we focus on the diffusionless mechanism, i.e., the displacive 

evolution of spontaneous polarization leading to the formation of domain microstructure 

without local composition change.  

In this section, the experimentally determined LGD polynomial coefficients,30 

ultrasonically-measured elastic constants,31 and Rietveld refinement-derived 

electrostriction coefficients29 for PZT system at room temperature within MPB 

composition range are employed. It shows that, even without compositional 

heterogeneity, stable and metastable phases spontaneously coexist around MPB to reduce 

the domain microstructure-dependent total system free energy. 

The computer simulation reveals a bridging domain mechanism for formation of 

mosaic domain microstructures that explains the phase coexistence phenomenon and 

enhanced piezoelectricity around MPBs, as shown in Fig. 3-4. We consider PZT system 

at room temperature with near MPB compositions. Fig. 3-4(a) shows the simulated 

domain microstructure in PZT of composition x=0.49. The in-plane components of 

polarization vector are represented by arrows, and the out-of-plane component is 

represented by color. The simulation shows that minor domains of tetragonal phase 

(green) spontaneously coexist with and bridge major domains of rhombohedral phase 

(red and blue), and together form mosaic domain microstructure. Fig. 3-4(b) shows the 

simulated domain microstructure in PZT of composition x=0.50. In contrast to the case of 

x=0.49, the rhombohedral phase (red and blue) forms minor domains that coexist with 

and bridge the major domains of tetragonal phase (green). Such phase-coexisting mosaic 

domain microstructures effectively reduce the total system free energy, including bulk 

free energy, domain wall energy, and long-range electrostatic and elastostatic energies. 
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   (a) x=0.49 
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   (b) x=0.50 
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FIG. 3-4. (After ref. 2). Computer simulation of bridging domains and mosaic domain 

microstructures of coexisting phases in PZT system at room temperature with near MPB 

compositions: (a) x=0.49 and (b) x=0.50. Arrows represent the in-plane components of 

polarization vector, and the out-of-plane component is represented by color, where green 

domains are tetragonal phase, red and blue domains are rhombohedral phase. Minor 

domains of metastable phase spontaneously coexist with and bridge major domains of 

stable phase and together form mosaic domain microstructures to reduce total system free 

energy. The coupled ferroelectric and ferroelastic domain microstructures lead to 

spontaneous phase coexistence in compositionally homogeneous system around MPB. 

 

In the simulated phase-coexisting mosaic domain microstructures (Fig. 3-4), the 

domains of tetragonal phase form structural (ferroelastic) twins of {110} twin planes, 

where the twin boundaries are also 90° ferroelectric domain walls; the domains of 

rhombohedral phase form twins of either {100} or {110} twin planes, where the twin 

boundaries are 109° and 71° ferroelectric domain walls, respectively. This observation is 

in agreement with the crystallographic analysis of domain microstructures simultaneously 

minimizing elastostatic and electrostatic energies. The more interesting observation, 

however, is the spontaneous coexistence of minor phase that bridges the domains of 

major phase. The existence of minor phase as bridging domains reduces both elastostatic 

energy, electrostatic energy and polarization gradient energy in complex domain 

microstructures, which arise from the frustrations caused by the crystal lattice misfit 

among multiple structural orientation variants and the polarization distribution among 

multiple polar axes.  

It is worth noting that the transformation twinning mechanism can completely self-

accommodate the lattice misfit only within one set of twin-related lamellar domains 

composed of two structural variants with same twin plane orientation, i.e., polytwin.32 A 
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coherent domain microstructure consisting of multiple structural variants inevitably 

generates disclination-like and/or dislocation-like internal stresses, even in single-phase 

single crystals with each pair of neighboring domains forming twins.32 It is the relaxation 

of elastostatic energy associated with such internal stresses that drives the formation of 

bridging domains of minor phase, and leads to phase coexistence. In particular, the 

disclinations caused by the rigid-body rotations of multiple twin-forming structural 

variants stabilize the bridging domains of minor phase. As shown in Fig. 3-4, the inter-

phase interfaces exhibit preferred orientations, which are close to either {350} or {250}. 

Analysis shows that such interface orientations minimize the interfacial charge density 

associated with polarization gradient across the inter-phase interfaces, i.e., (PR−P
T)⋅n≈0, 

where n is the interface normal vector, and PR and PT are the polarization vectors in the 

neighboring rhombohedral and tetragonal domains, respectively. In particular, {350} and 

{250} inter-phase interfaces are respectively 55° and 125° domain walls between 

rhombohedral and tetragonal phases, and {350} is favored over {250} because of its 

lower polarization gradient energy, as confirmed by our simulations shown in Fig. 3-4, 

i.e., the characteristic triangular bridging domains have two {350} and one {250} 

interfaces. Three-dimensional simulation is underway to investigate the polyhedral 

shapes and interface orientations of the bridging domains. 

Bridging domain also provides a low-energy pathway for polarization transition 

among different polar axes of the major phase, as shown in Fig. 3-5. It is shown that, to 

rotate the polarization from one stable variant to other energy equivalent stable variants, 

the best paths that increase minimum amount of energy are through the metastable 
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variants, i.e., one tetragonal to other tetragonal variants through rhombohedral variants, 

and one rhombohedral to other rhombohedral variants through tetragonal variants.  

 

FIG. 3-5. Free energies of ferroelectrics around MPB in the polarization space (calculated 

from ref. 30) on (a) the rhombohedral side, and (b) tetragonal side. The energy space is 

defined by three components of the polarization vector in the crystallographic coordinate 

system aligned with <100> lattice axes of the parent cubic phase, where {100} planes 

intersected at the origin are shown as transparent films. Free energy associated with each 

polarization state, i.e., every combination of (Px, Py, Pz), is calculated for the whole 

space, but only iso-surfaces are drawn out to show positions of equal energy states 

through the space.  Energy states inside the blue spheres are lower than those enclosed by 

the green shapes, inside the green are lower than inside the orange, and outside are higher 

than all insides. Thus, the lowest energy states are confined along <111> and <100> 

directions on (a) rhombohedral side and (b) tetragonal side, respectively, and those states 

are connected by the metastable states along <100> and <111> directions on (a) 

rhombohedral side and (b) tetragonal side, respectively.  

 

Formation of bridging domains of minor phase increases the bulk free energy of the 

ferroelectric system. In the vicinity of MPB, the bulk energy gap between rhombohedral 

and tetragonal phases is small, thus the bulk free energy increase is over-counterbalanced 

(a) (b) 
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by the elastostatic energy relaxation, leading to decrease in total system free energy. With 

compositions increasingly deviated from the MPB, the bulk energy gap becomes 

increasingly large, resulting in prohibitively high energy cost for minor phase formation. 

Our simulations with compositions x=0.48 and x=0.51 show diminishing amount of 

minor phase and bridging domains. Therefore, bridging domain mechanism can operate 

only in the vicinity of MPB, and lead to phase coexistence around MPB. Taking MPB as 

located at the composition where the two phases coexist in equal quantity,4 the 

simulations indicates that the MPB is located at composition between x=0.49 and 0.50.  

Phase coexistence due to bridging domain mechanism is expected for a wider 

composition range around MPB in polycrystalline ceramics than in single crystals. This is 

because grain boundary constraints generate larger internal stresses in polycrystal grains, 

as has been investigated in ferroelastic (martensitic) systems.33,34 The larger internal 

stresses tend to stabilize the bridging domains of minor phases over a wider composition 

range around MPB. Phase coexistence in ferroelectric ceramics will be presented in the 

next section. 

It is worth noting that the MPB location between x=0.49 and 0.50 determined by the 

domain microstructure simulations according to equal volume fraction of coexisting 

phases (i.e., domain criterion) is about 0.01 higher than the composition x≈0.483 from the 

experimentally fitted LGD polynomial.30 In LGD theory, MPB is defined as the 

composition where the rhombohedral and tetragonal phases have equal bulk free energy 

under stress-free condition (i.e., energy criterion), which is one of the fitting criteria.30 

LGD theory assumes a stress-free homogeneous state (i.e., single-phase single-domain 

single crystal), while experimental data around MPB are obtained from internally stressed 
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heterogeneous state (i.e., multi-phase multi-domain polycrystal). Therefore, the 

experimentally determined LGD polynomial inherently incorporates the inhomogeneity 

effects, thus deviating from the free energy function of a stress-free homogeneous 

ferroelectric state (the latter is required for domain simulations). As a result of the 

inconsistency between domain and energy criteria, when the domain microstructure-

dependent long-range interaction energies are taken into account, MPB determined by 

domain criterion deviates from that determined by energy criterion based on such an 

experimentally fitted LGD polynomial, which will be shown in the next section.  

Investigation is underway to improve LGD polynomial by taking into account the multi-

domain and/or multi-phase effects, which would better describe the intrinsic 

thermodynamic properties of a ferroelectric system. 

The spontaneously formed phase-coexisting mosaic domain microstructure 

corresponds to an energy-minimizing state. An externally applied electric field can 

induce a configurational change in the domain microstructure, deviating from the local 

minimum-energy state. The field-induced microstructure will automatically return to its 

original minimum-energy state upon removal of external field, leading to a ferroelectric 

shape memory effect. The configurational change is achieved through domain wall 

motion and inter-ferroelectric phase transition. The ferroelectric shape memory effect 

associated with the phase-coexisting mosaic domain microstructure in the vicinity of 

MPB produces large macroscopic electromechanical response, which explains the 

enhanced piezoelectricity around MPB. Detailed simulation studies of ferroelectric shape 

memory effect will be reported in chapter IV. 
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III.4. Grain Size effect 

In this section, computer modeling and simulation reveals a grain size- and 

composition-dependent behavior of phase coexistence around the morphotropic phase 

boundaries in polycrystals of ferroelectric solid solutions. It shows that domain 

microstructures and mechanisms play important roles in phase coexistence phenomenon, 

where minor domains of metastable phase coexist with and bridge major domains of 

stable phase to effectively reduce elastostatic, electrostatic and domain wall energies. It 

also shows that grain boundaries impose internal mechanical and electric boundary 

conditions, which affect the phase-coexisting domain microstructures in the grains and 

give rise to the grain size dependence of phase coexistence composition range. 

 

Our previous computer modeling and simulation studies of polar domain 

microstructures in single crystals of MPB-based ferroelectric solid solutions showed that 

electrostatic and elastostatic interactions play important roles in the MPB phase 

coexistence phenomenon through the formation of coupled ferroelectric and ferroelastic 

domain microstructures which are produced by either displacive phase transformation 

(diffusionless)2 or coherent phase decomposition (diffusional).1 The phase-coexisting 

domain microstructures effectively reduces the system’s total free energy, including bulk 

free energy, domain wall energy, and long-range electrostatic and elastostatic energies. 

Similar phase coexistence phenomenon is also reported in the computer simulation of 

epitaxially strained ferroelectric thin films.36 In this section, we study ferroelectric 

polycrystalline ceramics. The purpose is to report grain size-dependent behavior and 

underlying mechanism of phase coexistence in polycrystals, where the width of phase 
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coexistence composition range increases with decreasing grain sizes. In particular, we 

investigate the effects of internal mechanical and electric boundary conditions imposed 

by grain boundaries, which affect the phase-coexisting domain microstructures in the 

grains.  

Grain size effect of phase coexistence is a particularly important issue in PZT 

systems. PZT is the current material of choice for a wide variety of high-performance 

electromechanical devices. Since PZT is intractable for single crystal growth, 

polycrystalline ceramics is the material form for practical applications. In this work, we 

use the material parameters experimentally determined for PZT29-31 in our modeling and 

simulation to investigate the effects of grain boundaries and grain sizes. 

The computer simulations reveal a grain size effect of phase coexistence around the 

MPB in ferroelectric polycrystals, as shown in Figs.3-6 and 3-7. Two-dimensional 

polycrystalline structure of 16 grains is generated by using Voronoi tessellation,33-35 with 

grain orientation distributed within ±45°. In order to separate grain size effect from other 

effects, the same polycrystalline grain structure (i.e., grain shape, location and 

orientation) is used in all simulations. Different grain sizes are simulated by using 

different numbers of discrete computational grids N×N, with N=128, 256, and 512, 

respectively. A range of compositions around MPB (i.e., mole fraction of PT 

0.40≤x≤0.56) are simulated. For better comparison with experimental results, statistical 

average is performed among 10 phase fraction values individually simulated with 

different random initial conditions for same specific composition and grain size. This 

procedure is necessary because the simulation volume only represents a small portion of 

polycrystalline ceramic or powder samples used in diffraction experiments (a 
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conventional technique for phase characterization), where different parts of the samples 

develop different domain microstructures and diffraction experiments measure the 

average phase fractions. The individual and averaged volume fraction values of 

tetragonal phase are shown as open and filled symbols, respectively, in Fig. 3-6. Some 

representative phase-coexisting domain microstructures from individual simulations for 

different compositions and grain sizes are shown in Fig. 3-7. 

 
 
FIG. 3-6. (After ref. 3). Computer simulation of grain size-dependent phase coexistence 

phenomenon around MPB in ferroelectric polycrystals. The volume fraction of tetragonal 

phase is plotted versus the mole fraction of PT for various grain sizes. The width of phase 

coexistence composition range decreases with increasing grain size (simulation system 

size N). The open symbols represent individual simulation results from random initial 

conditions. Each of the filled symbols represents the average of 10 simulation results for 

same specific composition and grain size. The solid and dashed lines are the fitting 

curves by using symmetric and asymmetric functions, respectively. 
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Fig. 3-6 plots the volume fraction of tetragonal phase versus the mole fraction of PT 

for different grain sizes. It shows that the tetragonal phase fraction smoothly increases 

across the MPB from rhombohedral side to tetragonal side. Thus, there is a composition 

range of phase coexistence around the MPB. The simulated data are widely scattered for 

near-MPB compositions and become narrowly distributed for compositions away from 

the MPB. The average data points well follow the analytical functions: 
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where h(x) is the Heaviside step function, and the parameters are obtained by data fitting 

and listed in Table 1. In particular, the value τ is a measure of the width of phase 

coexistence composition range. The difference between symmetric (solid line in Fig. 3-6) 

and asymmetric (dashed line in Fig. 3-6) fitting functions, i.e., τ1<τ<τ2, is consistent with 

the fact that the energy gap between stable and metastable phases increases slightly faster 

with composition deviation from MPB on rhombohedral side than on tetragonal side, 

according to the LGD polynomial30 used in our simulations. Most importantly, Fig. 3-6 

reveals a grain size effect of phase coexistence around the MPB in ferroelectric 

polycrystals: the width of phase coexistence composition range increases with decreasing 

grain size, as quantified by the values of τ in Table 1. The underlying mechanisms are 

revealed in Fig. 3-7. 
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FIG. 3-7. (After ref. 3). Computer simulation of grain size- and composition-dependent 

phase-coexisting domain microstructures around MPB in ferroelectric polycrystals. Same 

polycrystalline grain structures with different grain sizes (simulation system size N) and 

compositions (mole fraction x) are simulated. Arrows represent the in-plane components 

of polarization vector, and the out-of-plane component is represented by color, where 

green domains are tetragonal phase, red and blue domains are rhombohedral phase. 

 

Fig. 3-7 shows representative phase-coexisting domain microstructures in 

polycrystals from individual simulations for different compositions and grain sizes. As in 

the case of single crystals,2 due to the small bulk free energy gap between metastable and 

stable phases in the vicinity of MPBs, minor domains of metastable phase spontaneously 

coexist with and bridge major domains of stable phase and together form mosaic domain 

microstructures. The existence of minor phase as bridging domains reduces elastostatic, 

electrostatic and polarization gradient (domain wall) energies of complex domain 
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microstructures, which arise from the frustrations caused by both the crystal lattice misfit 

and the polarization distribution among multiple polar domain variants. With 

compositions deviated from the MPB, the bulk energy gap becomes large, thus the 

energy cost of minor phase formation is high and the volume fraction of metastable phase 

decreases. This bridging domain mechanism gives rise to the composition-dependent 

phase coexistence behavior, as described by Eq. (26). In polycrystals, the grain 

boundaries impose internal mechanical and electric boundary conditions, which affect the 

phase-coexisting domain microstructures in the grains. High internal stresses usually 

develop around grain boundaries and especially their junctions, where electric charges 

also accumulate because of grain misorientation. As a result, minor domains of 

metastable phase preferably form near grain boundaries and their junctions, as shown in 

Fig. 3-7. Fig. 3-7 also shows that the effects of grain boundaries are more significant for 

smaller grains. This mechanism explains the grain size-dependent phase coexistence 

behavior: phases coexist over a wider composition range around MPB in polycrystals of 

smaller grains, where the larger internal stresses and charge accumulation tend to 

stabilize the bridging domains of minor phases. 

Table 1. Parameter values of the functions in Eq. (26) 

obtained by fitting to the simulation data. (After Ref. 3). 

N x0 τ x0 τ1 τ2 

128 0.4891 0.0223 0.4878 0.0207 0.0242 

256 0.4867 0.0099 0.4863 0.0094 0.0103 

512 0.4878 0.0035 0.4876 0.0032 0.0038 

 
The simulation results presented in Figs. 3-6 and 3-7 show that the domain 

microstructures and phase volume fractions vary widely from grain to grain. Thus, 
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experimental observations based on imaging of local domain microstructures may not 

provide a reliable measurement of the volume fractions of coexisting phases in the whole 

polycrystalline sample. The conventionally used diffraction method is the appropriate 

technique to characterize phase coexistence and measure the average amount of each 

phase. The findings also suggest that MPB phase coexistence could be engineered 

through control of grain sizes, i.e., phase coexistence can be stabilized in fine-grained 

polycrystalline ceramics, while suppressed in coarse-grained materials. 

It is worth noting that the presence of MPB as a sharp line phase boundary violates 

the Gibbs phase rule of equilibrium thermodynamics,7 indicating that the MPB-based 

phase diagram is a nonequilibrium (or diffusionless) one due to limited diffusion kinetics 

in complex oxide solid solution. It has been long-recognized that a two-phase zone is 

required for PZT around MPB, and the MPB is experimentally considered as located at 

the composition where the rhombohedral and tetragonal phases coexist in equal quantity4 

(we call this definition of MPB experimental criterion). In the developed LGD theory, 

the position of MPB corresponds to the composition where the rhombohedral and 

tetragonal phases have equal free energy density under stress-free condition without 

external electric field (theoretical criterion).30,37-42 As one fitting requirement, the fitted 

LGD free energy function reproduces the MPB at experimentally observed 

composition.30,37-42 It is worth noting that the theoretical and experimental criteria 

address different material states: LGD theory assumes an equilibrium, homogeneous state 

(i.e., single-phase, single-domain, single-crystal, stress-free, no external electric field), 

while in experiments the PZT samples are highly heterogeneous, nonequilibrium systems 

(i.e., polycrystalline ceramics consisting of multiple domains and coexisting phases and 
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under nonuniform internal stress and electric field), in particular around MPB. In such a 

complex heterogeneous ferroelectric system, long-range electrostatic and elastostatic 

interactions play important roles in domain formation and phase coexistence, as has been 

demonstrated early. Therefore, as pointed out in the previous section, the two criteria in 

defining MPB are not equivalent, that is, the equal quantity of coexisting phases 

(experimental criterion) does not necessarily imply the equality of free energy density of 

the two phases (theoretical criterion), due to the domain microstructure-dependent 

electrostatic and elastostatic interaction energies, which again raises the same concern 

about whether or not the developed LGD theory30,37-42 mainly based on polycrystalline 

ceramics data can be reliably applied to single-phase and single-domain single crystals to 

investigate the intrinsic electrostrictive and piezoelectric properties.  

For demonstrating the difference between these criteria, we apply the same grain 

structure with N = 256 to simulate the domain microstructures by using two fitted LGD 

polynomials and the corresponding electrostrictive coefficients,30,37-42 and plot the 

volume fraction of tetragonal phase versus the mole fraction of PT again in Fig. 3-8. It is 

clearly shown that, although the fitted free energy function predicts the position of MPB 

in homogeneous state very well, directly applying them in heterogeneous and 

nonequilibrium systems does not give the correct location of MPB. It is worthy to note 

that even the structural twins between two adjacent rhombohedral domains, which are 

required by crystallographic analysis of domain microstructures simultaneously 

minimizing elastostatic and electrostatic energies, can not be correctly reproduced by 

directly applying the fitted function.  
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FIG. 3-8. Volume fraction of tetragonal phase versus the mole fraction of PT for N=256. 

The ranges of phase coexistence composition are shaded with different colors for two sets 

of LGD polynomials.  The symbols (red diamonds and green triangles are for LGD 

198937-42 and LGD 1985,30 respectively) represent individual simulation results from 

random initials.  
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Chapter IV 
 

 

Crystallographic Domain Engineering 

 

 

 

 
IV.1. Introduction 

High-performance piezoelectrics for sensors, actuators and transducers are expected 

to exhibit large reversible strain free from hysteresis under electric field. However, the 

conventional strain mechanisms, such as electric field-induced domain wall motion and 

phase transition, though provide large spontaneous strain, are accompanied by large 

hysteresis and/or irreversibility. On the other hand, while the intrinsic response of single-

phase single-domain ferroelectrics is hysteresis free, the strain induced is small. Recently, 

an important advance in piezoelectrics research is the development of crystallographic 

domain engineering technique for ferroelectric single crystals.4,5 Single crystal with 

engineered domain configuration shows drastically enhanced, hysteresis-free strain 

versus electric field (ε-E) behavior along the non-polar axis rather than the conventional 

polar axis.4,5  
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The minimization of ε-E hysteresis in crystallographically engineered single crystal is 

achieved through the inhibition of electric field-induced domain wall motion.4-7 For 

engineered domain configuration, electric field is applied along the non-polar axis of the 

single crystal, which forms equal angle to the polarization vectors of individual domains. 

All the domains are energetically and crystallographically equivalent with respect to the 

electric field in non-polar direction, thus there is no driving force to domain wall motion, 

and electric field-induced intrinsic responses of these domains do not break such 

equivalency. As a result, tilted polarization remains in perfect head-to-tail patterns, and 

domain walls between intrinsically distorted domains are still charge-free 

crystallographic twin boundaries. Therefore, the piezoelectric properties of 

crystallographically engineered multi-domain single crystal can be predicted from the 

properties of a single-domain single crystal along its non-polar axis. Such single-domain 

intrinsic properties have been calculated and do exhibit piezoelectric anisotropy and 

enhanced response along non-polar axis.8-10 However, they are very sensitive to the 

coefficients used in the calculations,11 and the calculated anisotropy only accounts for a 

small part of the experimentally measured property enhancement.6,7 Moreover, the 

calculation does not explain the domain size effect recently observed in the 

crystallographically engineered crystals,6,7 where the piezoelectric properties significantly 

increase with decreasing domain size. Thus, further investigation of the mechanism for 

crystallographic domain engineering is required. In this chapter, we first report a domain 

wall broadening mechanism that explains the enhanced piezoelectricity and domain size 

effect.  
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The crystallographic domain engineering technique and domain size effect promise to 

further improve the electromechanical properties by engineering sub-micron and 

nanometer-sized domains and develop high-performance, environment-friendly, lead-free 

piezoelectrics for sensors, actuators and transducers. In order to fully exploit this 

technique, we need to better understand the mechanisms of crystallographic domain 

engineering and find optimal processing condition to control the domain microstructures 

and domain sizes. In the second section of this chapter, we report the control mechanisms 

of domain configurations and sizes in crystallographically engineered ferroelectric single 

crystals. 

For practical application, there is another issue that must be resolved: the engineered 

domain microstructures are sensitive to external electric, mechanical and thermal 

conditions, thus method is required to stabilize the domains so that they do not change or 

disappear during service. Recent experimental studies12,13 of ferroelectric aging 

phenomenon and stabilization effect in ferroelectrics provide a promising way to stabilize 

the engineered domain microstructures. The mechanism of aging and domain 

stabilization is attributed to short-range ordering of charged point defects in ferroelectric 

materials,12 which provides a restoring force to the domains if deviated from the original 

domain configurations in response to external stimuli. In the last section of this chapter, 

we report our simulation results on the aging-stabilization of ferroelectric domains 

through short-range ordering of charged point defects. 
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IV.2. Domain Wall Broadening Mechanism 

In this section, computer modeling and simulation reveals a domain wall broadening 

mechanism that explains the domain size effect of enhanced piezoelectric properties 

recently observed in domain engineered ferroelectric single crystals. The simulation 

shows that, under electric field applied along the non-polar axis of single crystal which 

does not induce domain wall motion, the domain wall broadens and serves as embryo of 

field-induced new phase, producing large reversible strain free from hysteresis. This 

mechanism plays a significant role in the vicinity of inter-ferroelectric transition 

temperature and morphotropic phase boundary, where the energy difference between 

stable and metastable phases is small. Engineered domain configuration fully exploits this 

domain wall broadening mechanism. 

 

Large reversible strain free from hysteresis under electric field is expected for high-

performance piezoelectrics for sensors, actuators and transducers. Recent experiments4,5 

suggested that single crystal with engineered domain configuration shows drastically 

enhanced, hysteresis-free strain versus electric field (ε-E) behavior along the non-polar 

axis rather than the conventional polar axis. It is easy to understand that the hysteresis-

free can be achieved through the inhibition of electric field-induced domain wall 

motion,4-7 because all the domains are energetically and crystallographically equivalent 

with respect to the electric field in non-polar direction, the dramatic strain enhancement 

along the non-polar direction is, however, less understood. The intrinsic responses to the 

non-polar electric field were calculated by using the currently available LGD 

polynomials. The calculations do exhibit piezoelectric anisotropy and enhanced response 
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along non-polar axis. 8-10 However, analysis shows that the exhibited enhancement is very 

sensitive to the coefficients employed,11 and the calculated anisotropy only accounts for a 

small part of the experimentally measured property enhancement.6,7 Moreover, the 

calculation does not explain the domain size effect recently observed in the 

crystallographically engineered crystals,6,7 where the piezoelectric properties significantly 

increase with decreasing domain size.  

The domain size effect was discovered by directly correlating the measured 

piezoelectric properties to the observed domain configurations in barium titanate 

(BaTiO3) and potassium niobate (KNbO3) single crystals.6,7 Sophisticated thermo-

electrical treatment has been developed to control the domain configurations and domain 

sizes.6,7 The micrometer-sized (5.5~50µm) domains allow direct domain observation and 

domain size measurement by polarized light microscopy.6,7 Fig. 4-1(a) shows the domain 

size-dependent piezoelectric properties (d31 and k31) of [111]-oriented tetragonal BaTiO3 

single crystals.7 Based on the experimental data in Fig. 4-1(a), namely, d31=-97.8, -134.7, 

-180.1, -230.0pC/N for average domain size (defined as domain width or thickness) t=40, 

13.3, 6.5, 5.5µm, respectively, and d0=-62.0pC/N for single domain (t=∞),7 we calculate 

the property increase for engineered multi-domain configuration compared to single-

domain state, i.e., ∆d31=|d31-d0|. In Fig. 4-1(b), we plot ∆d31 versus the reciprocal domain 

size (proportional to domain wall density), 1/t. The data ∆d31 and 1/t are well fitted into a 

straight line passing the origin (∆d31=0, t=∞). The polarizing microscope observation 

shows that the engineered multi-domain configurations are composed of tetragonal phase 

with 90°-domain walls ({110} twin boundaries).7 Since the domains of [100], [010], and 

[001] polarization orientations have equal energy in [111] electric field, the 90°-domain 
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walls do not move. Thus, the quantity ∆d31 excludes both the intrinsic contribution d0 

from individual domains and the extrinsic contribution from domain wall motion. 

Therefore, the linear relationship between the property increase ∆d31 and the domain wall 

density 1/t shown in Fig. 4-1(b) unambiguously attributes the piezoelectric property 

enhancement and domain size effect to the domain walls themselves.  

 

 FIG. 4-1. (After ref. 1). Domain size effect in [111]-oriented tetragonal barium titanate 

single crystals. (a) Experimentally measured piezoelectric properties versus domain size 

(After ref. 7). (b) A linear relationship between the property increase ∆d31=|d31-d0| and 

reciprocal domain size (domain wall density), where the data (■) are calculated from (a), 

and the straight line is obtained by fitting. The result unambiguously attributes the 

piezoelectric property enhancement and domain size effect to domain walls. 

 

A hypothesis of crystal lattice symmetry change in domain wall has been proposed to 

provide a qualitative explanation.14 However, direct experimental observation of domain 

wall behavior is not available; and a quantitative picture of the competition among 

several energy contributions in domain wall region need to be explored, such as gradient 

energy of polarization rotation, elastic energy of lattice misfit, energy gap between 

(a) (b) 



 63

metastable and stable phases, and external energy associated with applied electric field. 

In this section, we employ computer modeling and simulation to study the underlying 

domain wall mechanism and clarify the role of domain walls under electric field along 

non-polar axis.  

 

FIG. 4-2. (After ref. 1).  Computer simulation of domain wall broadening behavior under 

electric field along non-polar axis. (a) Equilibrium 90°-domain wall and (110) twin 

boundary in tetragonal crystal without electric field. (b) Broadened domain wall 

composed of electric field-induced, heavily stressed [111] rhombohedral domain layer 

coherently sandwiched between tetragonal domains. The domain wall broadening 

mechanism explains the enhanced piezoelectric response along non-polar axis and the 

domain size (domain wall density) effect. 

 

The computer simulation reveals a domain wall broadening mechanism, as shown in 

Fig. 4-2. We consider a single crystal of stable tetragonal phase with engineered domain 

configuration in electric field along the non-polar [111] axis. The 90°-domain walls are 

also (110) twin boundaries. Fig. 4-2(a) shows the equilibrium domain wall without 

electric field. The arrows represent the polarization vector distribution (the out-of-plane 

component is represented by color). When electric field is applied along the non-polar 
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[111] axis, the 90°-domain wall does not move due to the equivalent energetic state of 

[100] and [010] tetragonal domains, as demonstrated by the evolution sequence in Fig. 4-

3. However, as shown in Fig. 4-2(b), the domain wall broadens, where a layer of heavily 

stressed [111] rhombohedral domain is induced by [111] electric field, which is 

coherently sandwiched between two adjacent stable tetragonal domains. Such an electric 

field-induced tetragonal→rhombohedral phase transition produces strain significantly 

larger than the intrinsic strain of tetragonal phase due to polarization tilting under the 

same electric field, leading to enhanced piezoelectric response of the single crystal.  

As revealed by Fig. 4-3, the domain wall broadening behavior exhibits several 

important features. Firstly, the domain wall starts to broaden upon the application of 

electric field and gradually grows with increasing field, which produces enhanced 

piezoelectric response at low electric field. In this process, the 90°-domain wall serves as 

pre-existing embryo of the field-induced rhombohedral phase. Secondly, the broadened 

domain wall shrinks reversibly with decreasing electric field, which produces hysteresis-

free ε-E curve. This reversibility is because the rhombohedral phase is metastable with 

respect to the stable tetragonal phase in the absence of electric field. Thirdly, the 

rhombohedral phase is epitaxially stressed by the tetragonal phase along (110) interfaces. 

Although the elastic strain energy does not favor the formation of a layer of 

rhombohedral phase in the domain wall, the interplay among various energetic 

contributions favors domain wall broadening mechanism. Finally, since the contribution 

of phase transformation strain to the total crystal strain is proportional to the number of 

domain walls present in the crystal (i.e., domain wall density), the domain wall 

broadening mechanism leads to the domain size effect of enhanced piezoelectricity. 
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FIG. 4-3. A sequence of domain wall broadening under electric field along non-polar 

axis. The first two figures show the equilibrium tetragonal (110) twins and the direction 

of the applied electric field (along [111] non-polar direction). The rest 9 snapshots show 

the sequence of domain wall broadening with first increasing and then decreasing non-

polar electric field, where arrows represent the in-plane components of polarization 

vectors, and the out-of-plane component is represented by color. It shows that with 

increasing electric field, a layer of the [111] rhombohedral domain is induced, and with 

decreasing electric field, the broadened domain wall shrinks reversibly and exactly (For 

providing more information, the snapshots are not taken at the same magnitudes of 

electric field during increasing and decreasing electric field). 

 

It is worth noting the similarity between lead-free BaTiO3, KNbO3 in the vicinity of 

inter-ferroelectric transition temperatures and lead-based solid solutions Pb(Zr1-xTix)O3, 

Pb[(Zn1/3Nb2/3)1-xTix]O3, Pb[(Mg1/3Nb2/3)1-xTix]O3 in the vicinity of morphotropic phase 

boundaries: there exist more than one ferroelectric phases (tetragonal, rhombohedral, 

orthorhombic) with small energy gap but large crystal lattice transformation strain in 

these perovskite-type ferroelectrics. An electric field-induced stable→metastable phase 

transition will produce a large strain associated with the crystal lattice rearrangement. 

However, in order to exploit the useful properties of the inter-ferroelectric transition, two 

special requirements must be satisfied: (1) the electric field-induced phase transition must 

be reversible to achieve hysteresis-free ε-E curve; and (2) the inter-ferroelectric transition 

must be induced by sufficiently small electric field to achieve good piezoelectric response 

at low field regime. In order to meet these conditions, special domain configuration and 

electric field direction are required. As shown by our simulation (Figs. 4-2 and 4-3), the 

crystallographically engineered domain configuration and non-polar electric field 

direction just satisfy these requirements. In this work, we considered Pb(Zr1-xTix)O3 in the 
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vicinity of morphotropic phase boundary. Figs. 4-2 and 4-3 show the [111] electric field-

induced tetragonal→rhombohedral phase transition in domain wall region. Since the 

lead-free and lead-based perovskite-type ferroelectrics are characterized by the same 

Landau-Ginzburg-Devonshire polynomial with different material-specific expansion 

coefficients, our results also provide insight into the domain wall broadening mechanism 

in other systems. In particular, a [01] electric field-induced rhombic→rectangular 

transition is observed in BaTiO3 in the vicinity of inter-ferroelectric transition 

temperature in a two-dimensional simulation, where rectangular phase nucleates at 

domain walls.15  

Finally, it is noteworthy that there are evidences showing that engineered nanodomain 

configuration exhibits in Pb[(Zn1/3Nb2/3)1-xTix]O3 and Pb[(Mg1/3Nb2/3)1-xTix]O3 single 

crystals. Intrinsic lattice parameter relationships16,17 and nanotwin diffraction analysis18 

show that the monoclinic MC phase in domain engineered Pb[(Zn1/3Nb2/3)1-xTix]O3 and 

Pb[(Mg1/3Nb2/3)1-xTix]O3 is tetragonal nanotwins. Recent TEM experiment directly 

observes tetragonal twins of average domain size about 10nm,20 which appears to be MC 

phase in diffraction and polarized light microscopy. Therefore, the domain wall 

broadening mechanism and domain size effect could play a role at nanoscale and be 

responsible for the superior piezoelectric properties of these materials. 
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IV.3. Engineering of Domain Configuration 

In this section, computer modeling and simulation is performed to study the control 

mechanisms of domain configurations and sizes in crystallographically engineered 

ferroelectric single crystals. The simulations reveal that minimal domain sizes and 

highest domain wall densities are obtained with intermediate magnitude of electric field 

applied along non-polar axis of ferroelectric crystals, while lower and higher fields 

produce coarser domains and lower domain wall densities. It is shown that selection of 

polar domain variants by external electric field during nucleation of ferroelectric phase 

transition significantly affects the subsequent domain growth and coarsening kinetics and 

controls the formation and sizes of twin-related lamellar domains. 

 

It has been shown in literature6,7 that the enhanced properties can be achieved by 

controlling the domain microstructures, i.e., forming structural twined domain 

configurations. The domain wall broadening mechanism further suggests that twin-

structured domain configurations in nanoscale can provide exceptional electromechanical 

properties under nonpolar electric fields. However, the domain sizes in 

crystallographically engineered ferroelectric crystals are very sensitive to the 

experimental conditions during sample treatment. Although sophisticated thermal and 

electrical processing with precise temperature and voltage control has been employed in 

experiments to engineer the domain configurations and sizes;7 the underlying 

mechanisms are still not fully understood. Since it is hard for experimental research alone 

to systematically explore techniques of domain engineering, computer modeling and 

simulation are desired to gain insight as a supplemental tool. In this section, we perform 
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computer modeling and simulation to investigate the control mechanisms of domain 

configurations and sizes, with a focus on the effect of external electric field applied along 

the non-polar axis of single crystals during cooling across ferroelectric phase transition 

temperature (i.e., Curie temperature).  

Our simulation reveals that, with on electric fields upon cooling, all polar domains 

will form with equal probabilities. Typical domain configurations consist of both 180o 

and 90o domain walls for ferroelectric single crystals of tetragonal composition, and 71o 

and 109o domain walls for rhombohedral composition, respectively. For MPB 

composition, the mosaic domain microstructures form. On the other hand, the simulation 

shows that, by applying electric fields along the non-polar directions upon cooling, the 

specific domains of favored orientations, as demonstrated for a tetragonal-phase single 

crystal by Fig. 4-4, can be selected to form structural twins. Three cases of forming twin-

related domain microstructure when cooling ferroelectric single crystals across the Curie 

temperature by applying non-polar electric fields are observed in our simulation:  

(i). For rhombohedral-phase single crystal, the polar directions are along <111> axes. 

If an electric field along [100] direction is applied, the rhombohedral twins of 

(100) twin plane form, shown in Fig. 4-5.   

(ii). For rhombohedral-phase single crystal again, under electric field along [110] 

direction, the rhombohedral twins of (110) twin plane form, shown in Fig. 4-6. 

(iii). For tetragonal-phase single crystal, the polar directions are along <100> axes, if 

an electric field along [111] direction is applied, the tetragonal twins of (110) twin 

plane form, shown in Fig. 4-7.  
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FIG. 4-4. Energy space of MPB-based ferroelectrics on tetragonal side (a) without and  

(b) with electric field applied along the nonpolar [111] direction. It is shown in (b) that 

the nonpolar electric field favors tetragonal variants of [100], [010] and [001], which are 

able to form [110] structural twins. 

 

It is shown in experiments7 that the magnitudes of non-polar electric fields play an 

important role on controlling the domain sizes. Thus, it is desirable to systematically 

investigate the statistical effects of the magnitude of cooling electric fields on the 

formation of twin structures. This can be achieved by using large the computing size and 

counting the number of individual domains formed under non-polar electric fields. 

However, this method is strictly limited by the computing capability, and thus 

impractical. An alternative way is to rotate the coordinate system of the crystals by 45 

degree about z axis (perpendicular to the paper plane), and use rectangle computing cells, 

i.e., 1024×64 and 2048×256, to simulate the formation of tetragonal twins of (110) plane 

under [111] electric field, as the shaded rectangle in Fig. 4-7. In the following part, we 

use the rotated computational cell and simulate the twin-related domain formation for 

PZT of tetragonal composition x= 0.6.11,21,22 

(a) (b) 
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FIG. 4-5. Domain evolution and formation of (100) rhombohedral twins in MPB-based 

ferroelectric single crystal of rhombohedral composition cooling across Curie 

temperature with an electric field applied along the non-polar [100] direction. Small 

arrows in each snapshot represent in-plane components of polarization vector, and the 

out-of-plane component is represented by color, where green domains are tetragonal 

phase, and blue and red domains are rhombohedral phase. The brown arrow in the center 

represents the direction of applied electric field (non-polar [100] direction). Yellow 

arrows in the last figure represent the directions of polarization in individual domains, 

and symbols  and  represent out-of-plane vector components.   



 72

 

FIG. 4-6. Domain evolution and formation of (110) rhombohedral twins in MPB-based 

ferroelectric single crystal of rhombohedral composition cooling across Curie 

temperature with an electric field applied along the non-polar [110] direction. Small 

arrows in each snapshot represent in-plane components of polarization vector, and the 

out-of-plane component is represented by color, where green domains are tetragonal 

phase, and blue and red domains are rhombohedral phase. The brown arrow in the center 

represents the direction of applied electric field (non-polar [110] direction). Yellow 

arrows in the last figure represent the directions of polarization in individual domains, 

and symbols  and  represent out-of-plane vector components.   
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FIG. 4-7. Domain evolution and formation of (110) tetragonal twins in MPB-based 

ferroelectric single crystal of tetragonal composition cooling across Curie temperature 

with an electric field applied along the non-polar [111] direction. Two snapshots in the 

first row, as well as those in the second row, are essentially the same and visualized with 

different methods.  Small arrows represent in-plane components of polarization vector. 

For the left snapshots uf the first two rows, the out-of-plane component is represented by 

color, where green domains are tetragonal phase, and blue and red domains are 

rhombohedral phase. For snapshots on the right and in the bottom-row, the color shows 

the contour of the length of polarizations. The brown arrow and symbol  represent the 

direction of applied electric field (non-polar [111] direction). Red arrows in the last figure 

represent the directions of polarization in individual domains.  It shows, after forming 

perfect structural twins, the polarizations are almost the same in every individual domain, 

and only vary at domain walls (shown by thick lines). Shaded rectangular region in the 

last figure demonstrates the typical domain microstructures gained from the 45 degree 

rotated simulation. 

 

Computer simulation reveals that, without applying electric fields, random domain 

configurations with all possible tetragonal variants form for PZT single crystals of 

tetragonal composition. Under non-polar [111] electric field, tetragonal variants of [-100] 

and [0-10] become less favored.  However, at low field strengths, it is still possible for 

them to nucleate and form domains, leading to complex domain patterns comprising of 

both 180o and 90o domain walls. These patterns are stable until the strength of non-polar 

electric field reaches certain threshold (activation strength, Ea).  Above this threshold, 

tetragonal variants of [100] and [010] become much more favored than of [-100] and [0-

10], and thus are selected out to form [110] tetragonal twins, as the shaded rectangle in 

Fig. 4-8. If further increasing the strength of [111] electric field to certain value (stretch 
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strength, Es), the otherwise metastable rhombohedral variant of [111] becomes kinetically 

more favored, thus is selected out to form single-domain microstructure.  

 

FIG. 4-8. The dependence of average domain size (domain wall density) on the 

magnitude of electric field applied along non-polar [111] direction at room temperature. 

Red diamonds represent individual simulation results for computational grids of 1024 by 

64, black circles represent average results. For comparison, the average results for 

computational grids of 2048 by 128 are also shown in blue squares. The approximated 

activation strength (Ea), strength for maximum density (Em), and stretch strength (Es) are 

indicated by lines. 

 

It shows that selection of domain variants by external electric field during nucleation 

of ferroelectric phase transition significantly affects the subsequent domain growth and 

coarsening kinetics and controls the formation and sizes of twin-related lamellar domains. 

As shown in Fig. 4-8, our statistical simulation suggests that, with increasing the strength 

of applied non-polar [111] electric field, the domain walls density first increases and then 

decreases, the maximum values appears at an intermediate strength (Em). 

aE

mE
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The evolution of domain microstructure can be better understood by considering the 

energy difference of possible variants/phases versus the lengths of polarization calculated 

from the LGD polynomials,21 as shown in Fig. 4-9. It is shown that if the strength of 

externally applied non-polar [111] electric field is just above the activation strength 

(E~Ea), the energy difference among the metastable and stable variants/phases is very 

small at the very beginning of the nucleation stage, and thus the possibilities of 

nucleating those variants/phases are nearly equal. Since with the polarization growing, 

the energies associated with rhombohedral variants increases very fast, as demonstrated 

by the [111] rhombohedral variant in Fig. 4-9, the nucleated rhombohedral embryos will 

quickly transform to tetragonal variants at almost equal probabilities. With further growth 

of the polarization, the energy difference among metastable and stable tetragonal variants 

become large, thus, the metastable variants of [-100] and [0-10] are finally consumed by 

the stable variants of [100] and [010]. If increasing the strength of applied electric field 

(Ea<E<Em), the evolution of domain microstructure is similar, except nucleating more 

rhombohedral embryos at the beginning. However, due to bigger energy difference 

among the metastable and stable tetragonal variants at higher non-polar electric field, the 

possibilities of individually nucleating domains of stable variants are getting bigger. Once 

nucleated, those stable domains will grow by consuming the metastable ones: either 

merge together or form tetragonal structural twins, depending on the type of variants 

separately nucleated in the adjacent domains. Thus, higher chance of individually 

nucleating domains of stable variants leads to higher chance of forming structural twins, 

which explains the trend of increasing domain wall density with increasing the strength 

of applied electric field for Ea<E<Em . 
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FIG. 4-9. The effects of non-polar [111] electric field on energy difference for different 

variants versus the polarization length for PZT of tetragonal composition x = 0.6 

(calculated from ref.21). The energies associated with all possible variants under different 

strengths of non-polar [111] electric field are calculated for different lengths of the 

polarization, the resulted energies then subtract that of tetragonal [100] variant, and the 

difference is plotted. Where red line is for the energy difference of [100] or [010] variant 

(always zero because of equal energy states under the non-polar electric field), green 

lines are for the energy difference between [-100] and [100] (or [0-10] and [100]) 

tetragonal variants, and blue lines are for the energy difference between rhombohedral 

[111] variant and tetragonal [100] variant. Those lines, in green and in blue, are plotted 

for increasing strengths of non-polar electric field. The strength increasing is indicated by 

arrows and at a pace of 0.02 kV/cm, e.g. the first and second lines are under 0.02 and 

0.04 kV/cm, respectively.  It shows that, at the very beginning of growing new variants, 

with increasing the strength of electric field applied along non-polar [111] direction, the 

relative energy of rhombohedral [111] variant is getting lower, and that of tetragonal [-

100] and [0-10] variants are getting higher.   
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For cases of E>Em, the evolution of polar domains takes different kinetic pathways. It 

is shown in Fig. 4-9 that for E>Em, [111] rhombohedral variant is in much lower energy 

state during the beginning of nucleation, leading to a large amount of embryos of [111] 

rhombohedral nucleated. These rhombohedral embryos may percolate to form fully 

developed rhombohedral domains, which will be consumed by tetragonal variants later 

through domain wall motions.  Thus, the chance of individually nucleating stable 

domains (of either [100] or [010] variant) decreases. As a result, the chance of forming 

twin walls decreases from the value at E=Em, explaining the second part of the trend 

shown in Fig. 4-8.  

The idea of higher chance of individually nucleating stable domains leading to higher 

chance of forming structural twins is supported by the simulation of offset initials, as 

shown in Fig. 4-10. A small positive constant is artificially added to all three components 

of the initial random polarization at each computational grid, and a small non-polar 

electric field (just above Ea) is applied.  Fig. 4-10 plots the resulted domain wall density 

versus the amount of offset. Clearly, the trend shown in this figure is similar to that in 

Fig. 4-8: with increasing the amount of offset, the domain wall density first increases then 

decreases. Since the applied non-polar electric field is too low to noticeably change the 

energy difference among different variants/phases, the amount of offset is responsible for 

the trend shown in Fig. 4-10. It is straightforward that the amount of offset directly 

affects the possibilities of nucleating variants: more tetragonal variants of [100] and [010] 

will be nucleated for intermediate offset, and a large amount of rhombohedral [111] 

variant will be nucleated for big offset. Thus, it is the chance of nucleating tetragonal 
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variants of [100] and [010] that determines the formation of structural tetragonal twins of 

(110) twin plane, and the domain wall density.  

 

FIG. 4-10. The dependence of average domain size (domain wall density) on the 

percentage of initial offset under a small non-polar [111] electric field (~ Ea). Red 

diamonds represent individual simulation results, black circles represent average results. 

The percentage of initial offset is defined by the figure on the upper right. The initial 

polarization without offset can randomly have any value (a combination of 1P , 2P  and 3P , 

where 3P  is not shown for clarity) from the green box of 2r  in length.  The offset initial 

polarization is randomly selected from the red box of the same length, but with the center 

shifted in three components by %o r x= × , where x  is the abscissa shown in this figure.  

 

It is noteworthy that, while our simulation does show the domain wall density is 

increased by applying an intermediate non-polar [111] electric field, the enhanced 

domain wall density, comparing to that for E ~ Ea, is much lower than the value reported 

in literature (enhanced by about 10 times through sophisticated thermal-electric 

%o r x= ×

r

o

o

2P
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treatments). 7 This discrepancy can be attributed to the fact that our simulation does not 

consider temperature effects on the domain wall density. Our further simulation on 

cooling across Curie temperature to 250oC, rather than to room temperature, does show 

that the overall domain wall density is systematically increased, with the maximum 

density also obtained under intermediate magnitude of electric field applied along non-

polar axis, as shown in Fig. 4-11.  

 

FIG. 4-11. The dependence of average domain size (domain wall density) on the 

magnitude of electric field applied along non-polar [111] direction at 250oC. Red 

diamonds and black circles represent individual and average results for computational 

grids of 1024×64, respectively. For comparison, the average results for 1024×64 at room 

temperature are also depicted. It is clear that all characteristic field strengths are lower, 

and the domain wall densities of the increasing branch are systematically higher at 

elevated temperature (250oC).  
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IV.4. Stabilization of Domain Microstructure 

In this section, computer modeling and simulation is performed to study the domain 

stabilization effect due to short-range ordering of charged point defects in aged 

ferroelectrics. Phase field model takes into account various energetic contributions 

involved in domain aging phenomenon, including chemical, domain wall, electrostatic 

and elastostatic energies, as well as domain-dependent internal electric field associated 

with the short-range ordering of charged point defects. The internal electric field strength 

is estimated by the computer simulation. Clausius-Clapeyron-type thermodynamic 

analysis of field-induced ferroelectric phase transition is used to evaluate aging-produced 

internal field strength from relevant experimental data, which is in agreement with the 

computer simulation. 

 

It is suggested by the domain wall broadening mechanism1 and domain size effects6,7 

that twin-structured domain microstructures are optimized configuration and can provide 

exceptional electromechanical properties under non-polar electric fields. It is also 

demonstrated in previous section that the domain configurations and domain sizes can be 

controlled by applying an external electric field along non-polar direction. However, the 

engineered domain configurations are very fragile if the applied electric fields are 

deviated from specific directions where every variant is energetic equivalent. Moreover, 

once the optimized domain microstructures evolve into other configurations, it will be 

hard to recover them. Thus it is desirable to find ways to stabilize the optimized domain 

configurations, or, make the engineered domain patterns stay at the optimized states when 

experiencing mechanical, thermal and/or electrical fluctuations and transform back to the 
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engineered states once the shortly applied external fields are removed. In this section, we 

perform computer modeling and simulation to investigate the aging-stabilization effects 

of ferroelectric domains, with a focus on the internal bias electric field associated with 

the short-range ordering of charged point defects. We also perform thermodynamic 

analysis to derive a Clausius-Clapeyron-type equation and predict the magnitude of 

aging-produced internal bias electric field.  

It is reported in literature12,23 that the symmetry of short-range order of point defects 

in crystals follows the crystal symmetry when in equilibrium, and the symmetry-

conforming properties can lead to “aging-induced microstructure memory”. This general 

symmetry conforming property of point defects was applied in several ferroelectric 

systems and large recoverable nonlinear electric-field-induced strains were reported. 12 It 

is suggested12,23  that the aging process of crystals with point defects can be viewed as an 

ion redistribution process, and the broken balance of local charge just makes local unit 

cells like dipoles, which follow the local symmetry of the ferroelectric phases and form 

internal electric fields.  

Therefore, for an aged ferroelectric sample with domain microstructure described by 

polarization field P
0(r), the short-range ordering of charged point defects generates an 

effective internal bias electric field E0(r) that is spatially heterogeneous and depends on 

the domain microstructure, i.e., E0(r) is aligned with P0(r) in individual domains.12 For 

convenience, we write ( ) ( )0 1 0
0κε −=E r P r , where 0ε  is the permittivity of free space, and 

κ a constant characterizing the internal field strength. We incorporate this internal bias 

field into the model described in chapter 2, and perform the computer simulation for 

tetragonal PZT of composition x=0.6.11, 21, 22  
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The computer simulation shows that domain microstructures are stabilized in 

sufficiently aged ferroelectric samples, where the original, aged domain configurations 

are automatically recovered from arbitrarily deviated states, as shown in Fig. 4-12. The 

restoring force to such domain stabilization and recovery behaviors is the internal bias 

electric field associated with the short-range ordering of charged point defects. The 

degree of short-range ordering and, thus, strength of the internal field is characterized by 

the parameter κ. In an aged sample, the short-range ordering is maintained during a 

diffusionless process, such as domain switching driven by a short-period external electric 

field12 or phase transformation during rapid heating-cooling cycle.23  

To investigate domain stabilization and recovery phenomena, we consider a rapid 

heating-cooling cycle during which an aged multi-domain ferroelectric sample transforms 

first to paraelectric phase and then back to ferroelectric phase. Since the sample stays in 

paraelectric state only for a short period, diffusion of point defects does not have 

sufficient time to alter their short-range ordering, as experimentally observed;12 upon 

transforming back to ferroelectric phase, the sample tends to form the same domain 

microstructure as in the aged state to minimize total system free energy. Figure 4-12(f) 

shows an aged lamellar domain microstructure representative of engineered domain 

configurations, where the short-range ordering of charged point defects and the 

associated internal bias field conform to the polarization distribution. Figures 4-12(a)-(f) 

show the simulated domain recovery process in a sufficiently aged sample (E0 ≈1.0 

kV/cm, or κ ≈1.5×10−6, corresponding to red regions on Fig. 4-14) upon cooling across 

Curie temperature (i.e., transforming back to ferroelectric phase after rapid heating) under 

the effect of internal bias field: Fig. 4-12(a) shows an arbitrary polarization distribution at 
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the initial stage of cooling-induced ferroelectric phase transformation under the effect of 

thermal noise, and Figs. 4-12(b)-(f) show the evolution of a random initial to the fully 

recovered domain microstructure that turns out to be identical to the original, aged 

domain configuration (Fig. 4-12(f) is shown as both the original and recovered domain 

configurations).  

For comparison, a similar heating-cooling cycle is also simulated for an insufficiently 

aged sample, and a very different domain microstructure is formed, as shown in Fig. 4-13 

(E0 ≈0.05 kV/cm, or κ ≈7.5×10−8, corresponding to blue regions on Fig. 4-14), which is 

typical of multi-domain ferroelectric states consisting of both 90° and 180° domain walls. 

The lack of domain stabilization and recovery effects in such an insufficiently aged 

sample is expected because the charged point defects only form weak short-range 

ordering, thus, restoring force is not strong enough to recover the domain microstructure.  

In order to determine the critical strength of internal bias field required for domain 

recovery in aged ferroelectrics, statistical simulations are performed with different initials 

and parameterκ, as shown in Fig. 4-14. It is found that when internal bias field is much 

greater than about 0.45kV/cm (or, red regions on Fig. 4-14), domain configurations are 

immediately fully recovered after the heating-cooling cycles, as shown in Fig. 4-12. A 

case of smaller internal field is also plotted in Fig. 4-15 (E0 ≈ 0.42 kV/cm, or κ ≈6.3×10−7, 

corresponding to the boundaries between red and green regions on Fig. 4-14). The 

comparison between Figs. 4-12 and 4-15 shows that, domains nucleate with polarization 

aligned with local bias field (conforming to the symmetry of short-range ordering), and 

higher strength of internal field leads to better alignment of nucleated polarization and 

faster recovery of the domain microstructures.  
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FIG. 4-12. Domain stabilization and recovery behaviors of an aged tetragonal PZT of 

composition x=0.6 during a rapid heating-cooling cycle. The internal bias electric field is 

about 1.0 kV/cm. (a) is an arbitrary polarization distribution at the initial stage of cooling 

process, (b)–(f) demonstrates the process of restoring the original, aged domain 

configuration (corresponding to simulation time t=2, 2.4, 2.8, 3.2, 4, respectively). Since 

the resulted domain microstructure is identical to the original one, (f) also represents the 

original, aged domain microstructure. Arrows represent the in-plane polarization 

components. A mapping between components of polarization (Px, Py, Pz) and color 

elements (red, green and blue) is employed to represent the polarization states, and thus 

the polar domains in light color are close to those in the same deep color. It is shown that 

the nucleation and growth of polar domain are strongly affected by internal bias field 

associated with the short-range ordering of charged point defects, and the restoring 

process is fast.   

 

On the other hand, with internal field weaker than about 0.07kV/cm, domain recovery 

is not guaranteed. The presence of such a weak bias field is not able to generate sufficient 

driving force for resembling the original domain states from the beginning, thus, the 

resultant domain microstructure depends on the kinetic pathway of evolving high 

temperature random initial. If a domain pattern very different to the original one is 

kinetically favored, the domain microstructure may evolve as if there is not internal field, 

as demonstrated in in Fig. 4-13. If a domain pattern similar to the original one is favored, 

and the internal field is not negligible, a slow process of domain wall motions might be 

followed to recover the original configuration, as demonstrated in Fig. 4-16 (E0 ≈0.065 

kV/cm, or κ ≈9.75×10−8, corresponding to green regions on Fig. 4-14). This restoring 

process, generating similar domain configurations and then moving domain walls to fully 

recover, is always observed with intermediate internal bias field, no matter whether it is 

kinetically favored or not, as shown by the green regions on Fig. 4-14. 
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FIG. 4-13. Random domain evolution of an insufficiently aged tetragonal PZT of 

composition x=0.6 during a rapid heating-cooling cycle. The internal bias electric field is 

about 0.05 kV/cm. (a)–(f) demonstrates the process of evolving to a pattern different to 

the original, aged domain configuration (corresponding to simulation time t=3, 6, 21, 36, 

96, and 300, respectively). It is shown that, with a relatively weak internal field, the 

nucleation and growth of polar domain are dependent on the initial: if unfavorable 

domain pattern is resulted, the internal field will not be able to restore the aged domain 

configuration.  

 

 

FIG. 4-14. Statistical results on the domain microstructure recovery of 10 aged tetragonal 

PZT samples of composition x=0.6 during a rapid heating-cooling cycle. The internal 

bias electric fields are systematically varied, and three different domain processes are 

identified for each series, as shown by color on bars: red regions are for immediate 

recovery of the domain microstructure under relatively large internal field, green regions 

are for domain configuration recovery involving a slow process of domain wall motions 

with intermediate internal field, blue regions are for the cases of weak internal field, 

where the domain microstructures do not recover. The simulation cases shown in Figs. 4-

12, 4-13, 4-15, and 4-16 are marked on the bars as A, B, C, and D, respectively.  
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FIG. 4-15. Domain stabilization and recovery behaviors of an aged tetragonal PZT of 

composition x=0.6 during a rapid heating-cooling cycle. The internal bias electric field is 

about 0.42 kV/cm. (a)–(f) demonstrates the process of restoring the original, aged domain 

configuration (corresponding to simulation time t=2.4, 2.8, 3.2, 3.6, 4.0, and 6.0, 

respectively).  

 
It is interesting to note in Fig. 4-16 that, though most parts of the matured polar 

domains align along the original ones, nucleating and growing polar domains of 

unfavorable orientations are still possible. If no internal filed presented, the resultant 

domain microstructure, Fig. 4-16(d), is stable. It is the presence of internal field that 

makes the misaligned domains shrink to fully recover the original domain microstructure, 

as shown in Figs. 4-16(d)-(f), and strength of the internal field that determines the speed 

of the motions of domain walls.  

It is noteworthy that charged point defects are usually introduced by doping, which 

effectively reduces domain wall mobility, as in hard PZT. Friction to domain wall motion 

due to point defects is not considered in the simulation, thus above intermediate internal 

field strength should be insufficient for complete domain recovery in real ferroelectric 

samples, and the estimated critical field strength of 0.5kV/cm should be taken as a lower 

limit. 

To compare our simulation with experiment, we also evaluate the internal bias 

electric field strength from relevant experimental data. Based on the fact that aging-

generated internal electric field produces the same effect in individual ferroelectric 

domains as an externally applied electric field does in electric field-induced ferroelectric 

phase transformation, it is expected that the Curie temperature increases with the internal 

field strength in aged samples ( i.e., degree of aging and short-range ordering of charged 
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FIG. 4-16. Domain stabilization and recovery behaviors of an aged tetragonal PZT of 

composition x=0.6 during a rapid heating-cooling cycle. The internal bias electric field is 

about 0.065 kV/cm. (a)–(f) demonstrates the process of restoring the original, aged 

domain configuration (corresponding to simulation time t=6, 20, 40, 160, 30000, and 

100000, respectively). (d) is a domain pattern similar to the original, aged one, and (d)-(f) 

demonstrate a very slow process of domain wall motion, as suggested by the 

corresponding simulation time. 

 

point defects). Such a phenomenon is, indeed, experimentally observed in BaTiO3.
13 

Therefore, the internal bias field strength can be evaluated from the Curie temperature 

change of aged samples. Considering the equality of Gibbs free energy G=H−TS between 

paraelectric and ferroelectric phases at Curie temperature TC under zero electric field, and 

their equal free energy change dG=−SdT−PdE under nonzero electric field (assuming 

constant pressure), thermodynamic analysis gives a Clausius-Clapeyron-type equation: 

dT P

dE S

∆
=

∆
, (27) 

where ∆P=Pferro−Ppara=Ps(TC) is equal to the spontaneous polarization at Curie 

temperature TC, and ∆S is the entropy change of ferroelectric phase transition. Using 

∆P=0.18C/m2 and ∆S=13.5kJ/(m3⋅K) reported for BaTiO3,
24,25 we obtain 

dT/dE=1.33×10−5C⋅m⋅K/J. Experiments observe a Curie temperature change of 2K in 

fully aged samples,13 thus the internal electric field is evaluated to be 1.5kV/cm. It is 

worth noting that this experimentally evaluated value in the fully aged samples should be 

higher than the critical value estimated from computer simulations. Therefore, simulation 

and experiment are in agreement and the aging-produced internal bias field in sufficiently 

aged ferroelectric samples is of the order of magnitude of 1kV/cm. 
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Chapter V 
 

 

Piezoelectricity under External Fields 

 

 

 

 

 
V.1. Introduction 

Since single crystals of MPB-based ferroelectrics are either unavailable or too 

expensive, polycrystalline ceramics are widely applied to manufacture high-performance 

electromechanical devices. Usually, untextured ferroelectric polycrystals with random 

distribution of grain orientations exhibit isotropic macroscopic properties that are 

independent of directions. These materials, if properly “poled” along an arbitrary 

direction by electric field, can exhibit anisotropic properties. They possess low-symmetry 

phases with several crystallographically equivalent orientation and/or polar variants that 

form domain microstructures. Without application of external mechanical, or electric 

field, the domains form with equal probability for all orientation/polar variants, resulting 

in macroscopic isotropy of the untextured polycrystals. However, within an external field, 

the energies of crystallographically equivalent variants are no longer equal and the 
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domains with energetically favorable orientations or polar directions are selected, leading 

to macroscopic anisotropy of the untextured polycrystals. Such phenomena are 

sometimes called variant selection in ferroelastics and domain texture in ferroelectrics. 

In this chapter, we employ phase field modeling and simulation to study the 

electromechanical properties of MPB-based ferroelectric polycrystals under externally 

applied electric and/or mechianical fields. In the first section, we investigate the 

piezoelectric response of electrically poled polycrystals along the original poling 

direction and the macroscopic non-polar directions, report single-crystal-like strong 

piezoelectric anisotropy where the piezoelectricity is significantly enhanced in a non-

polar direction rather than the conventional macroscopic polar direction. In the second 

section, the evolution of domain microstructure and its effects to the macroscropic 

responses of MPB-based ferroelectric polycrystals are investigated. It is found that while 

stress alone can not pole the ferroelectric polycrystals, the resulted domain configurations 

can significantly reduce the required poling electric field. In the last section, both electric 

and mechanical fields will be applied to the polycrystals, and the resulted macroscopic 

hysteresis and butterfly loops will be examined. It reveals that the longitudinal 

piezoelectric coefficient is dramatically increased with the applied compressive stress 

field approaching a level of initiating the polarization rotations.  
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V.2. Anisotropic Piezoelectricity 

In this section, phase field model is employed to investigate the poling-induced 

piezoelectric anisotropy in untextured ferroelectric polycrystalline ceramics with random 

grain orientations. It is found that the poled ceramics exhibit single-crystal-like strongly 

anisotropic piezoelectricity, where the maximum piezoelectric response is obtained along 

a macroscopic nonpolar direction about 50o away from the poling and macroscopic polar 

direction. This behavior resembles the anisotropy observed in ferroelectric single crystals 

with engineered domain configuration. The underlying domain microstructures in poled 

ferroelectric ceramics and their evolutions in response to electric field applied along 

different directions are examined to explain the observed anisotropy. It shows that 

extrinsic contributions from preferred domain wall motions between poling-selected 

domains of favored orientations play a dominant role in piezoelectric anisotropy and 

enhancement in macroscopic nonpolar direction. 

 
In order to obtain better properties in ferroelectric polycrystalline materials, special 

processing routes are often employed to achieve a preferred (non-random) distribution of 

the crystallographic orientations of grains (i.e., texture).2-5 A textured ferroelectric 

polycrystal exhibits anisotropic properties, e.g., the material’s macroscopic response to 

external stimulus depends on the direction along which the measurement is performed. 

Alternatively, electric poling of ferroelectric polycrystals is routinely used to render 

untextured ceramic samples macroscopic piezoelectricity.6 It is known that the poled 

untextured samples also possess low-symmetry phases with several crystallographically 

equivalent orientation and/or polar variants that form domain microstructures, where the 
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energies of crystallographically equivalent variants are no longer equal and the domains 

with energetically favorable orientations or polar directions are selected, leading to 

macroscopic anisotropy of the untextured polycrystals. However, since these materials 

are conventionally used in the same direction of poling, that is, piezoelectric response is 

exploited with electric field applied or electric signal measured in the original poling 

direction, anisotropic piezoelectric responses of poled ferroelectric ceramics poled 

ceramics are rarely found in literatures. It is thus desirable to investigate this topic by 

using computer modeling and simulation.  

In this section, phase field modeling and simulation are performed to study the 

piezoelectric responses of ferroelectric ceramics under externally applied electric fields, 

along the poling direction, as well as macroscopic non-polar direction. In the simulation, 

the experimentally determined LGD polynomial coefficients,7 ultrasonically-measured 

elastic constants,8 and Rietveld refinement-derived electrostriction coefficients9 for PZT 

system at room temperature are applied. We first discuss the piezoelectric responses, or 

the ferroelectric shape memory effects, in MPB-based ferroelectric ceramics along the 

poling direction. More interestingly, we also report single-crystal-like strong anisotropy 

of significantly enhanced piezoelectricity in a nonpolar direction rather than the 

conventional macroscopic polar direction, which is in striking analogy to the recently 

discovered piezoelectric anisotropy of ferroelectric single crystals where the best property 

is obtained along nonpolar rather than polar axes.10 Since PZT is the current material of 

choice for a wide variety of high-performance electromechanical devices, and it is 

intractable for PZT single crystal growth, single-crystal-like property in untextured 

polycrystalline ceramics is particularly important. Moreover, grain texturing techniques 
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are more complex and costly than the conventional ceramic poling processes, thus the 

finding of single-crystal-like property in untextured polycrystals has important 

implication in both fundamental understanding and technological application of 

piezoelectric ceramics.  

 

FIG. 5-1. A typical domain microstructure in a MPB-based ferroelectric polycrystal of 

randomly oriented 64 grains.  Arrows represent the in-plane components of polarization 

vector, and the out-of-plane component is represented by color, where green domains are 

tetragonal phase, and red and blue domains are rhombohedral phase, the grain 

orientations are indicated by the arrows in green regions.  

 

In this and the following sections, a two-dimensional polycrystalline structure of 64 

grains is first generated by Voronoi tessellations,11-14 with random grain orientations 

specified by the rotation matrixes assigned to all computational grids, as described in 

chapter 2. The grain structure is then simulated with computational grids of 512×512, 
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without varying the rotation matrixes, as shown in Fig. 5-1. Figure 5-1 shows a typical 

domain microstructure for a MPB-based ferroelectric polycrystal cooling across Curie 

temperature. It clearly shows that the bridging domains are usually developed around 

grain boundaries and their junctions, especially for grains with larger misorientations.14-15 

Our simulation shows that under an external electric field, the bridging domains 

usually sever as starting points, and the growth of favorable domains of either metastable 

or stable phases at the expense of adjacent domains is the major process for adjusting the 

domain configuration to reduce the total free energy. Under small electric fields, it is 

shown that evolution of domain microstructures is reversible, which produces the 

ferroelectric shape memory effects.15 However, since defects are not considered, the 

constraints imposed by grain boundaries alone can only trap the randomly evolved 

domain configuration under small electric fields. Once the driving force provided by 

externally applied electric field is large enough to overcome the energy barriers among 

local minima, domain microstructure will evolve to other local minimum states, instead 

of deviating from its original state. It is worthy noting that, however, upon several cycles 

of electric fields (training cycles), the mosaic domain microstructure15 can always find a 

relative stable state capable of being recovered under electric fields lower than the 

training fields, as shown in Fig. 5-2. While Fig. 5-2(a) demonstrates that during the 

training cycles, the domain microstructure experiences several local minima, Fig. 5-2(b) 

shows that the domain evolution will eventually end up at a relative stable state, and once 

it gets there, the electric field-strain curve nearly becomes linear and closed (minimizing 

the energy dissipation). It is noted that, the round segments and small area surrounded by 
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the curve are due to the electric field applied in a relatively high speed (faster than the 

polarization switching). 

 

FIG. 5-2. Two typical electric field-strain curves for training MPB-based ferroelectric 

polycrystals.  

 

The necessity of training cycles in the MPB-based ferroelectric polycrystals suggests 

that if a large external electric field (should be lower than the coercive fields) will be 

applied to the polycrystals, a poling process is needed to evolve the domain 

(a) 

(b) 
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microstructures to a very stable state. However, fully poling is not necessary if the 

polycrystals will only work under low electric fields. Meanwhile, our simulation reveals 

that the electromechanical property of less poled polycrystals is at least not worse than 

those fully poled ones, which means fully aligned domain microstructures do not 

guarantee the best properties.  

 

FIG. 5-3. Longitudinal strain versus strength of electric fields for poled ferroelectric 

polycrystals around MPB. The fields are applied along directions away from the poling 

direction at a pace of 5o. For clarity, the curves are shifted with different constants.  

 

We rotate the direction of applied electric field to study the piezoelectric anisotropy 

in ferroelectric polycrystals around MPB. It is interestingly found that the best 

electromechanical property of the MPB-based ferroelectric polycrystals is along about 

50o away from the poling direction, as shown in Fig. 5-3. 

To reveal the underlying mechanism of the poling-induced piezoelectric anisotropy, 

similar simulation is performed for tetragonal phase PZT polycrystals of composition 

0o away 

45o away 

90o away 
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x=0.65 to avoid the complication associated with phase coexistence around MPB, as 

shown in Fig. 5-4.  Figure 5-4 shows a typical poled domain microstructure for a 

polycrystal with randomly distributed crystallographic [100] and [010] axes and uniform 

[001] axis. The main feature shown in Fig. 5-4 is that for each individual grain, either two 

possible tetragonal variants of [100] and [010] form 90o domain structure to 

macroscopically best align along the poling direction, denoted as Dp, or a single domain 

state is reached if the crystallographic [100] axis is close to Dp.   

 

FIG. 5-4. A typical domain microstructure for a poled tetragonal PZT polycrystal (x = 

0.65). The grain boundaries are depicted by pink lines; vectors represent the local 

polarizations in each grain. The black streamtraces are to guide to the eyes and show that 

two possible tetragonal variants of [100] and [010] form 90o domain structure to 

macroscopically align along the poling direction. 

aD

pD

γ
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Externally applied electric fields, denoted as Ea, rotating away from Dp are then 

applied to the poled domain configuration, Fig. 5-4. The electromechanical response is 

plotted in Fig. 5-5. Fig. 5-5(a) shows the longitudinal strain along Da versus the strength 

of electric field applied along Da, and Fig. 5-5(b) shows the normalized slopes of those 

curves versus the angle between Da and Dp , denoted as γ .  It is clear that the largest 

piezoelectricity is obtained when γ  is about 50o, which resembles the anisotropy 

experimentally10,16 and theoretically 17-19 reported in perovskite single crystals near MPB. 

However, it is shown that the intrinsic anisotropy theoretically predicted from the LGD 

polynomials is strong only for rhomboheral compositions with small Q44/Q11,
9 where Q11 

and Q44 are electrostrictive coefficients. Meanwhile, since the simulated composition is 

tetragonal and relatively far away from the MPB, the intrinsic explanation for the 

piezoelectric anisotropy is excluded. This is further confirmed by summing up the 

piezoelectric response of each individual computational grid under the rotated electric 

fields. Therefore, it must be the extrinsic contributions, i.e., evolutions of domain 

microstructure that are responsible for the property enhancements along non-poling 

directions for ferroelectric polycrystals. 

By examining the evolution of domain microstructure, it is found that, while almost 

no domain wall motion is observed at 0oγ =  , the most severe domain wall motions are 

experienced at 90oγ = , although almost no net strain is induced in this case. In the cases 

of 50oγ ≈ , some amounts of domain wall motions are noticed, producing the largest 

strain. Since the strain change induced by extrinsic domain wall motions, or switching 

variants, is much bigger than that induced by intrinsic elongations of the polarizations, 

the observation above conceptually suggests that the strain increase at low γ  
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( 00 50oγ< < ) is due to the strain contributions from the domain wall motions, and at 

high γ  ( 050 90oγ< < ), the strain induced by some domain wall motions is canceled by 

that induced by others, leading to decreasing the overall strain, or, the macroscopic 

piezoelectric responses of ferroelectric polycrystals. 

Above explanation can be better understood by formulating the strain induced by 

domain wall motions in an untextured ferroelectric polycrystal. Generally, the poling 

process will select out three tetragonal variants of [100], [010] and [001] in each grain to 

form 90o domain walls, as suggested by Fig. 5-4. It shows in Fig. 5-6 that, to equally 

account for any randomly distributed grain orientations, we define the poling direction 

(Dp) in local crystallographic <100> axes by ϕ and θ  of values from 0o to 90o, and rotate 

the field applying direction (Da, γ angle away) along Dp with ω  running from 0o to 360o.  

Thus, the strain of a variant, i.e., [100], in the global poling coordinate system is,   

 [100] [100]( , , , ) ( , , , ) ( , , , )ij kl ik jlg T Tγ θ ϕ ω ε γ θ ϕ ω γ θ ϕ ω= ,     (28) 

where ( , , , )ikT γ θ ϕ ω is the rotation tensor transforming the local crystallographic axes to 

the global poling coordinate system, and [100]
klε is the spontaneous strain tensor of 

tetragonal [100] variant in the local crystallographic coordinate system, coupled to local 

polarization as,  

[100] 2
11 11 TQ Pε = ,

[100] [100] 2
22 33 12 TQ Pε ε= = , and 

[100] [100] [100]
12 13 23 0ε ε ε= = = ,  (29)  

Since the poled domain configuration is a stable state under the poling field, the 

criteria for switching from one variant to others, i.e., from [100] and [010], can be 

expressed by,  

100 100 010 100 010
010 ( , , , ) ( , , , ) ( , , , ) ( , ) ( , )a a p pC d d d dγ θ ϕ ω γ θ ϕ ω γ θ ϕ ω θ ϕ θ ϕ= − − + ,  (30) 
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FIG. 5-5. Electromechanical response of poled ferroelectric polycrystals. (a) Longitudinal 

strain versus the strength of electric field applied along Da, where γ  increases from 0o to 

90o at a pace of 5o. For clarity, the curves are shifted with different constants. (b) 

Normalized strain difference versusγ , read from figures like (a). Blue points are read 

from (a), red and green data are for MPB compositions, and purple for rhombohedral 

composition, and cyan for tetragonal composition with pseudo 3 D grain orientations. 

The corresponding curves are fitted to Eq. (35) with different c (7.203, 6.255, 2.963, 

1.517, and 1.340). 

1 1 1 1( ) / ( 0 )ε γ ε∆ ∆

(degree)γ

γ = 0o 

 γ =50o  

γ = 90o  

(a) 

(b) 
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FIG. 5-6. Coordinate system for correlating the crystallographic <100> axes (black axes) 

to the global coordinate system (blue axes) in each individual grain. The cyan vectors are 

to demonstrate a possible combination of tetragonal variants to align along the 

macroscopic poling direction. 

 

where ad and pd are unit vectors along Da and Dp, and the superscript 100 and 010 

represent the [100] and [010] components of unit vectors in the local crystallographic 

coordinate system. Thus, positive 100
010C  means domain switching from 010 to 100 will 

occur. If all domain wall motions equally contribute to the final strain change, the total 

strain change from the domain wall motions can be calculated in the global poling 

coordinate system as,  

2 100 100 0102 2
0103 0 0 0

2 100 100 0012 2
0013 0 0 0

2 010 010 0012 2
1003 0 0 0

2
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2
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2
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ex

ij ij ij
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C g g d d d
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∫ ∫ ∫

∫ ∫ ∫
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For 11( )ε γ∆ , it shows in Fig. 5-7 that the numerical solution of Eq.(31) can be 

approximated by a constant times of the analytical solution for the case shown in Fig. 5-

4, where 0ϕ ω= = , and  

2
11 11 12

4
( ) ( ) cos sinex

TQ Q Pε γ γ γ
π

∆ = − ,       (32) 

The external electric field applied along Da can be decomposed to two components of 

perpendicular and parallel to Dp, written as sinE E γ⊥ = and // cosE E γ= , respectively. If 

assuming that the amount of extrinsic domain wall motions is proportional to E⊥ , and the 

amount of intrinsic polarization elongation is proportional to //E , the total strain change 

induced by applying electric field is, 

//( ) ( ) ( )ex in

ij ex ij in ijc E c Eε γ ε γ ε γ⊥∆ = ∆ + ∆ ,     (33) 

where ( )in

ijε γ∆  is the intrinsic strain change, 
exc and 

inc are two constants. Normalizing 

Eq. (33), we have,  

( ) ( ) ( )
sin cos

(0) (0) (0)

ex in

ij ex ij ij

in in

ij in ij ij

c

c

ε γ ε γ ε γ
γ γ

ε ε ε

∆ ∆ ∆
= +

∆ ∆ ∆
,     (34) 

Since the extrinsic contributions to 11 11( ) / (0)ε γ ε∆ ∆  is considered in this letter, and 

11 ( )inε γ∆ < 11 (0)inε∆  for tetragonal composition, it is safe to exaggerate 11 ( )inε γ∆  by 

letting 11 11( ) / (0) 1in inε γ ε∆ ∆ = . Thus, applying Eq.(32), we have, 

1111

11 11

( )( )
sin cos sin cos sin cos

(0) (0)

ex

ex

in

in

c
c

c

ε γε γ
γ γ γ γ γ γ

ε ε

∆∆
≈ + = +

∆ ∆
,   (35) 

where 2
3 11 12 114 ( ) / (0)in

d ex T inc c c Q Q P cπ ε= − ∆ , and 3dc is a constant that correlates the 3 

dimensional Eq.(31) to 2 dimensional Eq(32). Thus, c  is a measure of the ratio of the 
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strain induced by domain wall motions to that by the intrinsic elongation of polarization 

in the ferroelectric polycrystals.  

 

FIG. 5-7. Strain change induced by domain wall motions, where red is the numerical 

solution for a randomly distributed polycrystal, green is the analytical solution for a 

polycrystal with fixed [001], and the blue is / 2.4π times of green curve.   

 

This model, though very simple, fits very well to the simulation results, as shown in 

Fig. 5-5(b), even for compositions around MPB and on rhombohedral side, in 

polycrystals of fixed [001] axes and randomly distributed grain orientations. Thus, it is a 

general feature of untextured ferroelectric ceramics that domain wall motions play a 

dominant role in defining the anisotropic piezoelectricity.  

It is worth noting that the piezoelectric anisotropy is much higher around MPB, as 

shown in Fig.5-6(b). This is because the possible tetragonal and rhombohedral variants 

form bridging domains around MPB14,15 to better release the constrains imposed by grain 

boundaries, which is more fragile under the non-polar electric fields, confirmed by 

2
11 11 12( ) /( )

T
Q Q Pε γ∆ −

degreeγ
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comparing Fig. 5-3 and Fig. 5-5(a). Our simulation and analysis thus suggest that, to 

exploit the best electromechanical properties in the non-polar directions through preferred 

domain wall motions, it is necessary to optimize the combination of the density and 

fragility, or switching ability, of domain walls. This could be achieved by using 

ferroelectric ceramics of MPB composition/temperature and making the grain sizes 

distributed in an appropriated range, because appropriate grain sizes around MPB can 

optimize the amount of individual domains,14 and domain wall motions around MPB 

through bridging domain mechanism are easier.15  
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V.3. Domain Microstructure under Stresses 

In this section, phase field modeling and simulation is employed to investigate the 

domain microstructure evolution of MPB-based ferroelectric polycrystals under variable 

stresses. It shows that the formation of cross-grains regions is an essential feature of the 

domain configuration, where the orientations of fairly straight region boundaries are 

mainly determined by the externally applied stress fields, and the actual grain structure of 

a ferroelectric polycrystal plays insignificant roles in defining the region formation. It is 

also revealed that stress alone can not pole the ferroelectric polycrystals, the resulted 

layered domain microstructure, however, can be utilized as a starting point to reduce the 

required strength of poling electric field.  

 

The triangular bipolar stress fields are applied to the stabilized ferroelectric 

polycrystalline sample (Fig. 5-1) to study the pure stress effects on the evolution of 

domain microstructure. To reduce the dependence of initial configurations, the external 

stress fields are applied along different directions in the simulations, for example, along 

the directions of 0, 45, 90, and 135 degree that counterclockwise rotated from the 

horizontal x axis. Due to the brittleness of ferroelectric ceramics, the tensile stress applied 

in simulations is in fact impractical in experiments. The reason for applying bipolar stress 

fields is to study the similarity of the effects of tensile stresses and  perpendicular 

compressive stresses, and thus to facilitate the investigation of the mechanically depoling 

and “poling” effects in the directions parallel and perpendicular to the compressive fields 

that are usually experienced in applications. To clearly demonstrate the underlying 
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mechanism of domain switching under externally applied stress field, the simulation 

results of one and a quarter cycles of stress fields are shown in Fig. 5-8.  

 

FIG. 5-8. Macroscopic responses of MPB-based ferroelectric polycrystals under 

mechanical field, where (a) is for averaged polarization versus stress fields, (b) is for 

stress-strain curves, and (c) is two selected curves in (a), for whom the domain evolution 

will be discussed. The solid and dashed curves stand for the responses of starting from 

compression and tension, respectively, the red, green, blue, and cyan curves represent the 

results of along 0, 45, 90, and 135 degree to the horizontal direction, respectively. 
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Figure 5-8 shows the macroscopic responses of a ferroelectric polycrystal under pure 

mechanical loadings, starting from the stress-free configuration shown in Fig. 5-1. In Fig. 

5-8(a), the average polarization along the direction of applying field versus the stress 

field is plotted, where the solid and dashed curves stand for the responses of first 

applying compression and tension, respectively; the red, green, blue, and cyan curves 

represent the results of along 0, 45, 90, and 135 degree, respectively. For clarity, the 

corresponding stress strain curves are only plotted in the stress range of -300MPa and 

300MPa, in Fig. 5-8(b), since the trends outside are just linear extensions. It shows in Fig. 

5-8(b) that the mechanical behaviors of all cases are nearly isotropic and history 

independent, the polarization rotation switching processes, corresponding to the points of 

nonlinearly strain increase, start at about the same stress level.  

However, as shown in Fig. 5-8(a), while the depoling effects of compression are 

consistently observed, the “poling” effects of tension are strongly dependent on the 

loading history. The average polarization under tension of those cases of first applying 

tensile stresses (dashed curves) are far from the saturate state, whereas, it is shown that 

the polarization tends to be closer to the saturate value after a compression cycle. 

Furthermore, the average polarization of those cases of applying compression first (solid 

curves) is almost saturated after the stress induced switching. It is also shown that the 

saturated polarization continuously and linearly increase, mainly due to the linear 

elasticity assumed in computer simulation. This observation seems to suggest that the 

tensile stress is able to “poling” the ferroelectric polycrystals and the previous 

compressive stress can facilitate this process. However, to our best knowledge, this is not 

supported by experiments, due to the presence of 180 degree domain walls.  
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To study the discrepancy, it is necessary to examine the evolution of polar domain 

microstructures. The domain microstructures of two representative cases (starting from 

compression along 0 degree and from tension along 90 degree, respectively) at different 

simulation steps are shown in Figs. 5-9 and 5-10, and the corresponding polarization 

stress curves are reproduced in Fig. 5-8 (c) for direct comparison. 

In Figure 5-9 and 5-10, the grain boundaries are shown by light cyan color. For 

clarity, the sub-grain phases, for example, tetragonal and rhombohedral phases, are not 

illustrated; only the in-plane components of certain polarization, selected as one out of 

400 computational grids, are represented by arrows with the aid of colors. This 

visualization method, nevertheless, smears out some detailed information, helps to 

demonstrate the overall polarization rotation process.  

Figures 5-9(a) and 5-10(a) are essentially the same as Fig. 5-1, but in-plane 

components of polarization vectors are displayed in three categories, as shown by red, 

blue and green for the vectors close to point-down, point-up and horizontal, respectively. 

It is noted that, without externally applied fields, three types of cross-grain regions 

roughly form clusters and distribute with different sizes and irregular shapes. If a stress 

field is applied to the sample, as 0 degree compression in Fig. 5-9 and 90 degree tension 

in Fig. 5-10, the stabilized domain configuration is broken and the polarization rotations 

are initiated through the shrinkage, growth and motions of bridging domains. When the 

applied field is small, the internal constrains imposed by grain boundaries play important 

roles in nucleating new bridging domains, shaping the geometries and hindering the 

growths and motions of bridging domains.  If the field becomes large enough to compete 
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with the internal stress induced by grain boundaries, a severe evolution of polar domain 

microstructures is observed.  

Comparing the Figs. 5-9 (b) to 5-9(a) and Figs. 5-10(b) to 5-10(a), it is shown that 

while the unfavorable regions, green ones, dramatically decrease in the region number 

and area, the situations for the equally favored regions, red and blue ones, are complex. 

When the external mechanical loadings make them grow at the expense of green ones and 

merge with those of the same color, they also compete with each other. This can be 

analogous to the grain growth process where the driving force is from reducing the 

interface area. Thus, if the boundaries between two regions are curved, they are likely to 

be stretched and an immersed small region tends to be consumed.  

It is worthy of note that, the orientations of region boundaries are mainly determined 

by externally applied stress field, and actual grain configuration of a ferroelectric 

polycrystal plays insignificant roles in defining region formations. This is more apparent 

after the stress induced rotation process is suddenly finished, where fairly straight 

boundaries between red and blue regions pass through different grains with little 

deviations. Meanwhile, the region boundaries are perpendicular to compressive stress in 

Fig. 5-9(c) and parallel to tensile stress in Fig. 5-10(c), respectively. Because there are 

many variants (6 tetragonal variants and 8 rhombohedral variants) in the phase-coexisting 

composition range, it is expected that the internal stress induced by the grain boundaries 

can be accommodated easily, which partly explains why straight region boundaries can 

quite freely cross grains after applying large stress fields. 
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FIG. 5-9. Evolution of domain microstructure of a MPB-based ferroelectric polycrystal 

under pure mechanical stresses along the horizontal direction.  The grain boundaries are 

shown by light cyan color. For clarity, the sub-grain phases, e.g., tetragonal and 

rhombohedral phases, are not illustrated; only the in-plane components of certain 

polarizations, selected as one out of 400 computational grids, are represented by arrows 

with the aid of colors. The snapshots, from(a) to (i), are corresponding to the solid red 

curve in Fig. 5-8 (c) with stress states (in MPa) at  0, -160, -320, 0, 160, 320, 0, -160, and 

-320, respectively.   

(a (b (c

(d (e (f) 

(g (h (i) 
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FIG. 5-10. Evolution of domain microstructure of a MPB-based ferroelectric polycrystal 

under pure mechanical stresses along the vertical direction. The snapshots, from(a) to (i), 

are corresponding to the dashed blue curve in Fig. 5-8 (c) with the stress states (in MPa) 

at  0, 160, 320, 0, -130, -320, 0, 160, and 320, respectively.   

 

However, domain microstructures are still confined by the grain boundaries and most 

of the domain walls are close to either perpendicular (major walls) or parallel (minor 

walls) directions of applied fields, minimizing the interfacial charge density by satisfying 

1 2( ) 0⋅ − ≈n P P , where n is the normal vector of domain wall, and 1
P and 2

P are the 

polarization vectors of two adjacent domains.  

(a (b (c

(d (e (f) 

(g (h (i) 
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The preferred orientations of domain walls and region boundaries do not mean the 

polarizations in a region are aligned perfectly. In Figs. 5-9 (d)-(e) and 5-10 (d)-(e), the 

polarizations are depicted by different colors for distinguishing two polarization rotation 

paths when gradually changing the signs of applying stress fields. It is shown in Figs. 5-

9(d)-(f) and 5-10(d)-(f) that, the polarizations switch from vertical to horizontal by either 

counterclockwise or clockwise rotations. These processes, through nucleation and growth 

processes, suddenly finish when the stress field reaches some thresholds (see Fig. 5-8(c)). 

However, because of inevitable misalignments caused by grain misorientations, the 

growth of existing regions is dominantly observed.  

During the growth of favorite regions, it is interesting to note in Figs. 5-9(e) and 5-

10(e) that, the boundaries of pre-aligned regions are twisted under oppositely applied 

stress fields, and stripes are formed inside the pre-aligned regions, with the normal 

direction parallel to the original region boundaries. As the twisting goes severer, those 

preferred stripes (red and blue regions) become wider and consume those unflavored 

(green) regions. When magnitudes of applying fields are close to some threshold values, 

interaction between matured stripes inside and outside of the shaded regions becomes 

significant, the balance between alternative stripes is broken, and only favored regions 

grow.  

In general, the interaction is equally in favor of both counterclockwise and clockwise 

rotations, thus two types of regions (to the left and to the right) should coexist beyond 

stress threshold, with the boundaries oriented along the stripes. However, it is noted that, 

for phase field modeling and simulation, when the feature size, for example, the 

characteristic length of a region in our simulation, is comparable to the computational 
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size, the periodic boundary condition is satisfied so strictly that some situations with a 

little less possibility are hard to survive during the microstructure evolution. Thus, there 

is only one region in one case, as to the left shown in Fig. 5-9(f) and to the right shown in 

Fig. 5-10(f). The equal favorite is also demonstrated when the sign of applying field 

changes again. It is shown in Fig. 5-9(i) and 10(i) that, when no interaction between two 

regions exists, the matured stripes finally develop to layers. The evolution sequences 

shown in Figs. 5-9 and 5-10 thus explain the microscopic origin of the “poling” effects of 

tensile stresses and history dependence behaviors of mechanical loadings observed in Fig. 

5-8. However, to our best knowledge, mechanical poling of a ferroelectric polycrystal has 

not been reported in experiments.  

This can be explained by the limitations of our simulations. In current work, only 

several matured regions are developed, which oversimplifies the otherwise complex 

configuration in a real ferroelectric polycrystal consisting of tons of grains; our model is 

defects free, it is not easy for some events with a little less possibilities to survive. In 

order to directly compare with experimental observations, it is thus required to increase 

the computational size, and/or integrate the pining effects of defects into our modeling. 

However, it is beyond the scope of this work to develop a new methodology to consider 

defects, and impractical to increase the simulations size, due to the extreme computation 

intensity.  

In spite of these difficulties, detailed examination can still be exercised to draw 

valuable conclusions. The similarities shown in corresponding microstructures in Figs. 5-

9 and 5-10, suggest that the in-plane responses of a ferroelectric polycrystal under an 

externally applied compressive field can also be achieved by applying a tensile field 
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along the in-plane perpendicular direction. The possibility of evolving into two 

equivalent states under the influence of the interaction between pre-existing opposite 

regions ( Figs. 5-9(f) and 5-10(f) ), and that of evolving from one predominant region 

into multiple-region states (Figs. 5-9(i) and 5-10(i)) suggest that there is no preferred 

switching path under solely mechanical loadings, and regions with opposite signs will 

equally exist all the time in real ferroelectric polycrystals. Thus, no poled state can be 

reached by solely applying mechanical loadings, and there is no history dependence of 

loading.  

After applying compression, the layered domain microstructure is anisotropic. It is 

expected that the resulted domain configuration can be utilized as a starting point to 

reduce the required poling electric field, as shown in Fig. 5-11. Figure 5-11(a) shows a 

MPB-ferroelectric polycrystal forming layered regions after cycles of compression, 

where the volume fractions of two different regions are approximately half to half. 

Different strengths of electric fields are applied to the sample along the horizontal and 

vertical directions, and average polarization along the field applying direction is 

recorded, as plotted in Fig. 5-11(c) and Fig. 5-11(d), respectively. For comparison, 

averaged polarization for a sample experienced no stress history (Fig. 5-1) is also 

recorded in Fig. 5-11(b) for different strengths of applying electric field. It is thus clear 

that, the strength of electric field for poling a MPB-based polycrystal is reduced when the 

field is applied along the horizontal direction of the pre-compressed sample, while it is 

dramatically increased when the field is applied along the vertical direction.  
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FIG. 5-11. Average polarization of a MPB-based ferroelectric polycrystal under different 

strengths of externally applied electric fields. (a) shows layered regions for a pre-

compressed sample, (b) is for a sample without stress history (see Fig. 5-9(a) for the 

region information), (c) and (d) are for the sample shown in (a). (b)-(d) record the 

average polarization under different strengths of electric fields, where the fields are 

applied along horizontal (b and  c) and vertical (d). From lower to upper, the curves in 

(b)-(c) represent for electric field at 1, 2, 3, 4, 5, 6, 8, and 10 kV/cm, respectively, and  

the curves in (d) are for electric field at 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 20, and 25 kV/cm, 

respectively.  

(a) 

(c) (d) 

(b) 
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V.4. Piezoelectricity under Electric and 

Mechanical Fields 

In this section, phase field modeling and simulation is employed to investigate the 

hysteresis, butterfly loops, and the associated evolution of domain microstructure of 

MPB-based ferroelectric polycrystals under fixed compressions and variable electric 

fields. Our simulation shows that the shape and characteristic electric fields and strains 

for the hysteresis and butterfly loops of the compressed ferroelectric ceramics are 

significantly modified by the applied compressive stresses, where the formation of cross-

grain regions is an essential feature of domain configuration. It is also revealed that 

longitudinal piezoelectric coefficient can be enhanced by applying compressions, with 

the best properties found when the compression alone is about to initiate the 

depolarization process. 

 

In this section, we study the effects of fixed stress on the macroscopic hysteresis and 

butterfly loops and the evolution of microscopic domain microstructure of a MPB-based 

ferroelectric polycrystal.  Prior to applying electric field, different compressive stresses 

are applied to the sample, Fig. 5-1. With keeping the compression as constant, triangular 

bipolar electric fields along the same direction of compression are then applied to the 

compressively stabilized configuration.  

Our simulation shows that the loops under variable electric and fixed stress fields of 

any direction well represent those of other directions, and the loops will be center-

symmetric if averaging the responses of many cycles. To directly correlate to the 

evolution of domain microstructure and reduce dependences of the initial configuration, 
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hysteresis and butterfly loops of the second cycle of fields applied along horizontal 

direction are depicted in Fig. 5-12, which is not completely center-symmetric and 

somewhat shifted, due to the inevitable dependences of current domain microstructure.  

 

FIG. 5-12. One cycle of typical hysteresis and butterfly loops for MPB-based 

ferroelectric polycrystals under constant compressions. The corresponding compressions 

(in MPa) are about 0, -30, -65, -95, -130, -160, -325, and -490 respectively.  

Compression
Increasing

Compression
Increasing

(b)

(a) 
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Figure 5-12 (a) shows that, with the applied compressive stresses are gradually 

increased from zero, the areas enclosed by hysteresis loops (hysteresis loss) decrease 

without significant shape changes; if the magnitude of compression is greater than certain 

value (~ -80MPa), the hysteresis loops clockwise rotate significantly, and the enclosed 

areas quickly decrease; when the applied compressive stresses are overwhelming, the 

hysteresis loops seem to close up, and become bumpy.  

It is worthy to note that, the bumpiness shown in Fig. 5-12(a), as well as in 5-12(b), is 

come from discontinuous region switching. In other words, as a method to reduce the 

total energy, the domain microstructures are likely to form regions (clusters) under large 

compressive stresses, and the polarizations in a region are likely to rotate at the same 

pace, which causes bumpiness in single-cycle simulation curves. This situation can be 

alleviated significantly by using a larger computational size and/or averaging the results 

over several cycles. Thus, the bumpiness is not a real hysteresis behavior of ferroelectric 

polycrystals under fixed compression. 

It is shown in Fig. 5-12(b) that, as the applied compression increasing, the butterfly 

loops shift down as a whole, and characteristic strains, i.e., lowest strains, strains at zero 

and maximum electric fields, change dramatically. It is also shown in Fig. 5-12(b) that 

the shapes of butterfly loops can be roughly separated into three categories, according to 

the strain changes during the polarization switching processes: (i) sudden needle-like 

strain changes at low compressions, where the suppressive effect of compressions is 

insufficient, the average polarization quickly pass the lowest strain states that are 

perpendicular to the external electric fields; (ii) smooth strain changes under large 
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compressions, due to the extensive polarization suppression, and (iii) neither needle-like 

nor smooth strain changes when intermediate compressions are applied. It is worthy to 

note that, since the sudden switching under low compressions is an instable process, the 

corresponding electric field varies to some extent, and the needle-like shapes may be 

smeared out in experiments. 

 

FIG. 5-13. (a)Maximum polarizations (red dots), remnant polarizations (green triangles), 

coercive fields (pink square), and (b) longitudinal piezoelectric coefficients of MPB-

based ferroelectric polycrystals under constant compressions read from Fig. 5-12. 

 

The maximum polarizations, remnant polarizations, coercive fields, and the slopes at 

zero electric field (corresponding to the slopes of continuously decreasing electric field to 

the opposite direction) of cases in Fig. 5-12, as well as cases for other stress levels not 

shown in Fig. 5-12, are read, averaged, and plotted as functions of magnitudes of the 

applied compressive stresses in Fig. 5-13. Because the model, the LGD polynomial and 

material constants used in our simulations are not sufficient to describe a real, complex 

ferroelectric polycrystalline material system, and those values in Fig. 5-13 are taken from 

Compressive stress (MPa) Compressive stress (MPa) 

Max Polarization 

Remnant Polarization 

Coercive Field 

(a) (b) 
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curves of single-cycle-one-direction simulations, large dispersions are expected and 

serious consideration of those values is not recommended. However, the tendencies 

shown in Fig. 5-13 are reliable and informative.   

Fig. 5-13(a) shows that, while the maximum polarizations smoothly decrease with 

compression increasing, the remnant polarizations and coercive fields are nonlinearly 

correlated with the externally applied compressive fields. It is interesting to note that, the 

magnitudes of compression for dramatically decreasing the remnant polarizations and 

coercive fields are about -100MPa, close to but a little less than the lowest compression 

for inducing polarization rotations under pure compression, as shown in Fig. 5-8(b). This 

finding suggests that externally applied compressive stresses directly influence 

polarization rotation and hysteresis behaviors of ferroelectric polycrystals. 

An interesting enhancement shown in Fig. 5-13(b) is that, the longitudinal 

piezoelectric coefficient (induced by electric field oppositely applied along the poling 

direction) is dramatically increased with the compression approaching to a level (~ -100 

MPa) of initiating the polarization rotation. But on the other side, if further increasing the 

magnitude of compression, the coefficient drops quickly.  

The underlying mechanism of enhancing piezoelectric properties by applying 

compressive stress can be illustrated by examining the evolution of domain 

microstructure. Domain microstructures at representative stress levels are shown in Fig. 

5-14, where visualization method similar to that used in Figs. 5-9 and 5-10 are employed. 

For each case, the domain configurations under maximum, zero and coercive electric 

fields, and under fields of starting significant polarization rotations are arranged 

according to decreasing the strengths of applying electric fields.  
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FIG. 5-14. Domain microstructures of a MPB-ferroelectric polycrystal under fixed 

compression and variable strengths of electric field. For each row, the applied 

compression is the same, and the applied electric fields decrease from left to the right. 

From top row to bottom row, the compressions (in MPa) are 0, -95, -190 and -320, 

respectively. The characteristic electric fields selected for each row are the maximum, 

zero (red boxes) and coercive electric fields, as well as the electric field of starting 

significant polarization rotations (black boxes). The corresponding strengths of electric 

field (in kV/cm) are: 80, 0, -27,-29 for the first row; 80, 3, 0, and -7 for the second row; 

80, 33, 0, and -6 for the third row, and 80, 42, 0, and -3 for the last row.  

0 MPa 

95 MPa 

190 MPa 

320 MPa 
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Domain microstructures shown in the first row of Fig. 5-14 are for the case of 

applying electric field only. The first two figures (under maximum and zero electric 

fields) essentially have the same domain configurations. It is interesting to note that the 

red and blue regions in these two figures form stripes, similar to the microstructures 

shown in Figs. 5-9 (f)-(g), and 5-10(f)-(g), and are normal to the applied electric fields. It 

is shown that the polarization switching processes are finished by growing the pre-

existing stripes. However, this is a deconstruction process. Without the help of 

compression, the former stripe patterns are gradually distorted when the electric field 

goes negative, and are completely destroyed under the coercive field. This observation 

demonstrates a vector-like property of electric fields: unlike tensor-like effect of stress 

fields discussed in previous section, the electric field has no effect on controlling the 

domain microstructures in the normal direction of the applied field. That is, there is no 

microstructure relationship between the in-plane negative electric fields and the in-plane 

perpendicular electric fields. Therefore, the domain patterns are modified along the 

perpendicular direction by other constraints, i.e., grain boundaries.  

Conceptually, the compressive stress field is to suppress the polarization along the 

field direction, while the electric field is to rotate it to the direction. Hence, when both 

fields are applied to a ferroelectric polycrystal, the compression affects the polarization 

rotation process profoundly. If electric fields and compressive stress fields are along the 

same direction, stripe formation is an effective way to reduce both electrostatic and 

elastostatic energies. It is shown in the first column of Fig. 5-14 (under the maximum 

electric fields) that, the amount of green sites decreases, and red and blue stripes grow 

and even interconnect as the compression increasing. It is also shown in the last column 



 129

of Fig. 5-14 (coercive fields) that under larger compressions, the stripe are straighter, and 

polarizations inside regions are closer to perpendicular direction. 

The domain microstructures shown in black boxes of Fig. 5-14 are right before the 

sudden polarization rotations. Since under large compression, hysteresis loops are 

severely rotated, as shown in Fig. 5-12, the point of sudden polarization rotation is 

weakly defined. Thus, we compare the first three domain microstructures and find that, 

before overall polarization rotations, the green regions become isolated and the number 

of sites is, although reduced notably, about the same for three domain configurations. 

This suggests that the amount of green regions serves as a barrier for overall polarization 

rotation, the potential for overcoming the barrier is accumulated through growth of pre-

existed red and blue stripes, and the overall switching is triggered when the amount of 

green regions reaches some critical values.   

Analyzing the domain microstructure under zero electric field, enclosed by red boxes, 

is more important for understanding the properties enhancement induced by applying 

compression, as shown in Fig. 5-13(b). It is shown in the first red box that, under no 

compression and zero electric field, the polarizations (green regions) of a poled sample 

are well aligned along the poling direction, with some mild deviations shown as red and 

blue regions. If we apply a small electric field along parallel or anti-parallel to the poling 

direction, for aligned polarizations, only intrinsic piezoelectric responses will occur; for 

mildly deviated polarizations, both intrinsic responses and polarization rotations will take 

place. Because there are only a few deviated sites and driving force for rotating the 

mildly deviated polarization is small, the sample intrinsically reacts to external electric 

field dominantly. Thus, small piezoelectric coefficient is expected under no compression, 
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due to the small strain induced by intrinsic responses. Our simulation also shows that the 

amount of deviated sites increases and the deviation becomes severe when the sample is 

under increasing compressions. More contributions from polarization rotations are 

expected to enhance the longitudinal piezoelectric coefficient, as shown in Fig. 5-13(b). 

When the applied compression is further increased, under zero electric field, the 

amount of green site decreases and the polarizations are deviated severely from the 

poling direction, as shown in the second red box of Fig. 5-14.  Based on the same 

arguments, further property enhancement is expected. However, this contribution is not 

enough to explain the dramatic enhancement demonstrated in Fig. 5-13(b). As examining 

Fig. 5-12(b) again, it shows that the polarization switching occurs at low electric field, 

which suggests that the compression “push” the domain configuration to a very fragile 

state (as it is close to phase transition): a small electric field oppositely applied along the 

poling direction is enough to severely rotate the polarization. Comparing Figs. 5-8 and 5-

13, it shows that the most fragile state or the largest longitudinal coefficient is reached 

when the compression alone is about enough to initiate the depolarization process.  

If the applied compression is further increased, although the polarizations are 

deviated more severely, the depolarized domain microstructures become stable again. 

Thus excessive suppression effect of compression should be overcome by poling effect of 

electric field to rotate the polarization, as exemplified in the third red box of Fig. 5-14. If 

the sample is over-compressed (the last red box of Fig. 5-14), although all polarizations 

are close to the direction normal to the poling direction, overwhelming suppressive 

effects of compression are capable to reduce the rotation effectively. As a result, the 

piezoelectric coefficients  is even smaller than that under no compression. 
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Chapter VI 
 

 

Conclusions and Future work 

 

 

 

 
VI.1. Conclusions  

 In this dissertation, phase field model is employed to study the underlying mechanism 

for the enhanced electromechanical properties in single crystals and polycrystals of MPB-

based ferroelectrics. A general three dimensional phase field model for ferroelectric 

polycrystals is first described in Chapter 2. This model is then applied to study the phase-

coexisting domain microstructures of MPB-based ferroelectric single crystals and 

polycrystals in Chapter 3. Chapter 4 is focused on investigating the best 

electromechanical properties of the MPB-based single crystals through domain 

engineering. The utilization of the best piezoelectric properties of MPB-based 

ferroelectric polycrystals is discussed in Chapter 5. Main findings of this dissertation are: 

 Characteristic multidomain microstructures are reported for coherent phase 

decomposition (diffusional) in PZT around MPB, where nanoscale lamellar domains of 

tetragonal and rhombohedral phases coexist with well-defined crystallographic 

orientation relationships and produce coherent diffraction effects. The simulated 
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microstructures provide important information for interpretation of diffraction data and 

identification of phases near MPB. It is demonstrated in the bridging domain mechanism 

(diffusionless) that minor domains of metastable phase spontaneously coexist with and 

bridge major domains of stable phase to reduce total system free energy around MPB. 

The existence of bridging domains also explains the enhanced piezoelectric response in 

the vicinity of MPBs, and the mosaic domain microstructures can be stabilized by 

internal mechanical and electric boundary conditions imposed by the grain boundaries, 

which leads to the grain size effect of phase coexistence, that is, the width of phase 

coexistence composition range increases with decreasing grain sizes. 

 A domain wall broadening mechanism is proposed to explain the domain size effect 

of enhanced piezoelectric properties in domain engineered ferroelectric single crystals. It 

shows that, under electric field applied along the nonpolar axis, without the domain wall 

motion, the domain wall broadens and serves as embryo of field-induced new phase, 

producing large reversible strain free from hysteresis. Our simulation demonstrated that 

this twin-related domain configuration can be optimized by the controlling the magnitude 

of electric fields applied along non-polar axis of ferroelectric crystals, because the 

selection of polar domain variants by external electric field during nucleation of 

ferroelectric phase transition significantly affects the subsequent domain growth and 

coarsening kinetics and controls the formation and sizes of twin-related lamellar domains. 

It is also shown that the engineered domain configuration can be stabilized by the 

presence of domain-dependent internal electric field associated with the short-range 

ordering of charged point defects. 

 It is revealed that the poled ferroelectric polycrystalline ceramics with random grain 
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orientations exhibit single-crystal-like strongly anisotropic piezoelectricity, where the 

maximum piezoelectric response is obtained along a macroscopic non-polar direction 

about 50o away from the poling and macroscopic polar direction. It shows that extrinsic 

contributions from preferred domain wall motions between poling-selected domains of 

favored orientations play a dominant role in piezoelectric anisotropy and enhancement in 

macroscopic nonpolar direction. The simulation on the stress effects on the domain 

microstructure shows that the formation of cross-grain regions is an essential feature, 

where the actual grain structure of a ferroelectric polycrystal plays insignificant roles in 

defining the region formation. Although stress alone can not pole the ferroelectric 

polycrystals, the resulted layered domain microstructure can be utilized as a starting point 

to reduce the required strength of the poling electric field. Investigations on the effects of 

compressions on piezoelectricity of MPB-based ferroelectric polycrystals show that the 

shape and characteristic electric fields and strains of hysteresis and butterfly loops are 

significantly modified by the applied compressive stresses, where the formation of cross-

grain regions is an essential feature of domain configuration. It is also revealed that 

longitudinal piezoelectric coefficient can be enhanced by applying compressions, with 

the best properties found when the compression alone is about to initiate the 

depolarization process. 

 

VI.2. Future Work 

The developed LGD polynomials have been used to predict the intrinsic properties of 

MPB-based ferroelectrics, and widely employed in the phase field model as a description 

of the chemical free energy of single-phase, single-domain single crystals. However, as 
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pointed out in the Appendix, there is a natural concern about the accuracy and 

applicability of the polycrystalline ceramics-based LGD theory, and our simulation has 

shown that the position of MPB can not be correctly reproduced by the currently 

available LGD polynomials. Thus, it is highly desired to have more high quality 

experimental data to develop more accurate LGD polynomials, especially around MPBs.  

It is shown in Appendix that the lattice parameters of PZT vary rapidly near MPB. It 

is unknown whether this is an intrinsic behavior or instead a result of coherence 

diffraction effect due to the phase-coexisting nanodomain microstructure. Answers to this 

question will help better understand the nature of MPB, phase coexistence, PZT phase 

diagram, and enhanced piezoelectricity near MPB. To further address this important 

issue, it is thus desirable to conduct three-dimensional simulation to investigate the 

polyhedral shapes and interface orientations of the coexisting domains, and detailed 

computational diffraction analysis of the phase-coexisting multi-domain microstructures, 

i.e., diffusional lamellar domain microstructures and diffusionless mosaic domain 

microstructures. 

It is pointed out that the domain wall broadening mechanism and domain size effect 

could play a role at nanoscale and be responsible for the superior piezoelectric properties 

of these materials. Thus, systematic investigation of the domain wall broadening 

mechanism and enhanced piezoelectric properties in different systems involving 

ferroelectric tetragonal, rhombohedral and orthorhombic phases in the vicinity of 

transition temperatures and MPBs will be helpful to better understand the inter-

ferroelectric phase transitions.  
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Our simulation demonstrates that the average domain sizes can be controlled by 

combining heat treatments with an electric field applied along non-polar direction. In the 

next step, it will be good to systematically investigate the mechanism of sophisticated 

thermal-electrical approaches applied in the experiments for varying the domain size, 

explore the possibilities of combining different heat treatments to further reduce the 

domain size, and find effective thermal-electrical treatments to optimize the domain 

configurations for enhanced electromechanical properties in ferroelectric single crystals.   

It is found that the configuration of the short range order (original domain 

configuration) plays a role on the stabilization/recovery process. Thus, further 

simulations could be carried out to statistically study this effect by varying the volume 

fraction, the average size of domains in simply twined and complex domain 

configurations. It is also found that the strength of the short range order field can not be 

uniform; otherwise, it is difficult to explain the experimentally observed behaviors of 

aged single crystals. Thus, variable distributions, e.g., Gaussian distributions, of the 

strength of short range order electric fields could be introduced to explore the possibility 

of controlling the properties of aged, engineered single crystals. Since complex grain 

structures provide extra constraints on the evolution of domain microstructures, the 

stabilization process is expected to be different. Further simulation and analysis on 

stabilizing the domain microstructures in ferroelectric polycrystals will be helpful for 

understanding the experimentally observed aging induced stabilization. 

Our simulation and analysis suggest that better piezoelectric properties can be 

achieved along a non-polar direction by making the domain wall fragile and optimizing 

phase coexistence through the grain size effects. Even for the properties along 
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conventional poling direction, our simulation suggests that the longitudinal piezoelectric 

coefficient can be enhanced by simply applying compressions. Since the processing 

techniques involved in above-mentioned cases are relatively simple, it is desirable to 

systematically explore those ideas by real material experiments, as well as further 

computer simulations.    
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Appendix 
 

 

 
A.1. Intrinsic Electrostrictive and  

Piezoelectric Properties 

Full sets of phenomenological thermodynamic LGD3-9 theory have only been 

developed for the most extensively studied PZT solid solution. The LGD free energy 

function3-9 provides a systematic description of the PZT properties, in good agreement 

with the experimental results of polycrystalline ceramics. However, because of the 

unavailability of single-domain single crystals of PZT samples, upon which the intrinsic 

dielectric, piezoelectric, and elastic properties could be directly measured, the polynomial 

coefficients and relevant material parameters are determined by using indirect methods. It 

is thus an outstanding and challenging issue to accurate determination of the intrinsic 

electrostrictive and piezoelectric properties of PZT system over its whole composition 

range, in particular, near its morphotropic phase boundary (MPB), which can then be 

used to separate intrinsic and extrinsic contributions to the piezoelectric behaviors of 

polycrystalline ceramics used in practical applications, clarify the underlying 

mechanisms, and understand the relationships between domain microstructures and 

electromechanical properties.  

According to the concept of Landau,10 LGD free energy function describes the 

nonequilibrium (with equilibrium as a special case at the free energy minimum) 
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thermodynamic properties of a homogeneous ferroelectric system.11 That is, LGD theory 

describes the intrinsic properties of ferroelectric material, in particular, PZT system in a 

single-phase, single-domain and single-crystal state (i.e., homogeneous state). Therefore, 

the LGD polynomial coefficients and relevant material parameters assume, in principle, 

the values that are fitted to the experimental data of homogeneous materials, which, 

however as mentioned above, are not available for PZT. Although care has been taken 

when fitting the coefficients to polycrystalline ceramics data, 3-9 it is difficult to exclude 

all extrinsic effects, such as domain wall motions, phase transformations, mechanical and 

electric boundary conditions associated with the complex grain structures of 

polycrystalline ceramics, etc. Furthermore, phase coexistence phenomenon is commonly 

observed around MPB, and the best piezoelectric properties are obtained at compositions 

near the MPB.12 It is unclear if the property enhancement at MPB is mainly an intrinsic 

or extrinsic effect. While the developed LGD theory provides valuable insight into this 

issue,3-9,13-15 there is, nevertheless, a natural concern about the accuracy and applicability 

of the polycrystalline ceramics-based LGD theory when applied to single-phase, single-

domain single crystals, due to the above-mentioned reasons.  

Electrostriction is an intrinsic property of a ferroelectric material that simultaneously 

exhibits spontaneous polarization and lattice strain, which are correlated through a fourth-

rank electrostrictive coefficient tensor Q, as in Eq.(3). Since the elastostatic energy plays 

an important role on the ferroelectric domain formations and evolutions, the 

electrostrictive tensor is essential in our model. In principle, if both the lattice parameters 

and the polarization of a ferroelectric phase are known, the electrostrictive coefficients 

can be directly determined, which, however, requires accurate structural information of 



 140

atomic arrangements as well as electronic distributions of ions in the ferroelectric phase 

unit cell. Alternatively, the values of Qijkl can be derived from macroscopic 

measurements of electric field-induced strain and polarization on polycrystalline ceramic 

samples, which, however, inevitably suffers from certain extrinsic effects. With a 

growing body of experimental data from high-resolution X-ray and neutron diffraction 

and Rietveld refinement results recently reported in the literature16-30, it becomes possible 

to investigate the intrinsic electrostrictive and piezoelectric properties of PZT directly 

from an analysis of available diffraction data. 

The symmetry property of the electrostrictive coefficient tensor Q is determined by 

the symmetry of high-temperature paraelectric phase. Therefore, Q is a fourth-rank tensor 

of cubic symmetry, which has three independent components Q1111, Q1122 and Q1212, with 

other nonzero components obtained from them by cubic symmetry operations. The three 

independent components can be determined from the spontaneous polarization and lattice 

strain in ferroelectric tetragonal (assuming polarization along [001] to be specific) and 

rhombohedral (polarization along [111]) phases according to the following relations: 

2
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3 11
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where superscript and subscript T and R indicate tetragonal and rhombohedral phases, 

respectively, and PT and PR are the magnitudes of spontaneous polarization in respective 

phases. Both tensor and Voigt matrix notations convenient for engineering application are 

adopted in Eqs.(A.1)-(A.3). If the lattice parameters and polarization of both 
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rhombohedral and tetragonal phases are obtained at the same composition and 

temperature, Eqs.(A.1)-(A.3) completely determine the electrostrictive tensor Q. 

The spontaneous strain components 33
Tε  and 11

Tε  of tetragonal phase are defined as 

33
T t c

c

c a

a
ε

−
= , 11

T t c

c

a a

a
ε

−
= ,       (A.4) 

where ct and at are the tetragonal lattice parameters, and ac is the cubic lattice parameter. 

In evaluating the strains in Eq. (A.4), the parameter ac of the cubic paraelectric phase 

should be extrapolated to the ferroelectric phase temperature, at which ct and at are 

measured. To avoid this ambiguity associated with the extrapolation, instead of 33
Tε  and 

11
Tε , we analyze their difference: 

33 11
T T t t

c

c a

a
ε ε

−
− = ,         (A.5) 

which is insensitive to the value of ac extrapolated with different structural models, 

because of the smallness of spontaneous strain, i.e., 
t c ta a c< <  and 

t c ta a c≈ ≈  within 

1%. To be specific, we use 3
ca = Ω , where Ω is the pseudocubic unit cell volume (Å3) 

that is well described by a linear function of composition x in the range of 0.1≤x≤0.8, i.e., 

71.80 8.75xΩ = − .29 It is noted that so-obtained ac is used only in Eq. (A.5) but not in 

Eq. (A.4), because the former is insensitive while the latter sensitive to the value of ac. 

The spontaneous strain component 23
Rε  of rhombohedral phase is defined as 

23

1
2 2

R π
ε α

 
= − 

 
,         (A.6) 

where α is the rhombohedral angle. Using the hexagonal cell parameters aH and cH, α is 

expressed as 
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The spontaneous polarization for tetragonal and rhombohedral phases, defined as 

dipole moment per unit volume, can be written as, 

( ){ }Zr Ti O2,3 O12
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e
x x
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s t

a
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where e is elementary charge, z is a unit vector along tetragonal ct axis, the fractional 

ionic displacements δ’s are defined with respect to the tetragonal unit cell, c is a unit 

vector along hexagonal cH axis, and the fractional ionic displacements s and t are defined 

with respect to the hexagonal cell.29 

It is worth noting that the above dipole moment as determined from nominal ionic 

charges and point ion displacements only captures the ionic contribution to the 

polarization. In fact, the interatomic bonding in PZT exhibits strong covalent character, 

as reflected by the electronegativity values of respective elements. Thus, Eqs. (A.8) and 

(A.9) do not take into account the electronic contribution to the polarization. Based on the 

Rietveld refined lattice parameters and ionic displacements,16-30 Eqs. (A.8) and (A.9) 

provide approximation of the polarization, which, together with directly measured values 

of saturation polarization,19,31-33 reveal the composition dependence of polarization in 

PZT system. 

We employ the above equations to analyze the diffraction data and Rietveld 

refinement results reported in the literature16-30 to evaluate spontaneous strain and 

polarization from the refined lattice parameters and ionic displacements, from which the 

electrostrictive coefficients and piezoelectric properties are further calculated.  
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Figure A-1 plots the lattice parameters of tetragonal and rhombohedral phases within 

their respective phase stability composition ranges at room temperature. These data 

points are determined from the diffraction experiments,16-30 as indicated by different color 

symbols. Figure A-2 plots the spontaneous polarization of tetragonal and rhombohedral 

phases within their respective phase stability composition ranges at room temperature. 

These data points are determined from Eqs. (A.8) and (A.9) and the Rietveld refinement 

results,19,20,22-24,27,29,30 as indicated by different color symbols. It is shown that the 

Rietveld refinement-derived spontaneous polarization, plotted as red and blue dashed 

curves in Fig. A-2, seems to reasonably describe the general behavior of its composition 

dependence. (See ref. 1 for more discussions on the analysis of the experimental data).  

The electrostrictive coefficients can be determined from the lattice parameters in Fig. 

A-1 and the spontaneous polarization in Fig. A-2. In particular, for tetragonal phase, 

Q11−Q12 can be calculated as, 

11 12 2
t t

c T

c a
Q Q

a P

−
− = .        (A.10) 

 For rhombohedral phase, Eqs. (A.3) and (A.6) give 
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Q
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π
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.        (A.11) 

Fig. A-3(a) plots Q11−Q12 and Q44 within respective tetragonal and rhombohedral 

composition ranges. The black curves are determined from diffraction data and Rietveld 

refinement results16-30 as summarized in Fig. 1 (black solid curves) and Fig. 2 (red and 

blue dashed curves). The composition ranges of respective phases are determined by the 

experimental data.  
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FIG. A-1. (After ref.1) Lattice parameters of tetragonal and rhombohedral phases of PZT 

within respective phase stability composition ranges at room temperature, as determined 

from the diffraction data and Rietveld refinement results reported in the literature.16-30 (a) 

Tetragonal phase: ct−at. (b) Rhombohedral phase: 90°−α. Color symbols represent data 

points and indicate their original experimental literature, as listed in the figure legend. 

Black lines are fitting curves to guide the eye. 
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FIG. A-2. (After ref.1) Spontaneous polarization of tetragonal (blue symbols) and 

rhombohedral (red symbols) phases of PZT within respective phase stability composition 

ranges at room temperature, as determined from Eqs. (A.8) and (A.9) and the Rietveld 

refinement results reported in the literature.19,20,22-24,27,29,30 Saturation polarization (green 

symbols) from direct experimental measurements19,31-33 are also shown. Color symbols 

represent data points and indicate their original experimental literature, as listed in the 

figure legend. Red and blue solid lines are fitting curves to guide the eye. Red and blue 

dashed curves are 1.33 times the original fitting curves to coincide with the saturation 

polarization at end member PbTiO3 of composition x=1.32 For comparison, purple and 

black lines plot the spontaneous polarization as a function of composition at room 

temperature, as obtained from LGD theories,3-9 where black line takes into account the 

low-temperature FR(LT) phase of R3c space group with oxygen octahedron tilting. 

33 

32 

31 
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It is worth noting two pronounced features in the composition dependence of 

electrostrictive coefficients near MPB. First, the electrostrictive coefficients drastically 

increase when composition approaches MPB from both sides, which is caused by the 

drastic decrease in spontaneous polarization of both phases with composition 

approaching MPB, as shown in Fig. A-2. Second, the electrostrictive coefficients 

suddenly decrease within the MPB composition range, which is caused by the rapid 

decrease in spontaneous lattice strain (i.e., 90°−α and ct−at) of both phases around MPB, 

as shown in Fig. A-1. The coexistence of tetragonal and rhombohedral phases around 

MPB makes it possible to completely determine the electrostrictive coefficient tensor Q 

from the diffraction data.  

Fig. A-3(b) plots Q11, Q12 and Q44 within the MPB composition range, as shown in 

black curves. As mentioned above, in order to determine individual Q11 and Q12 from 

their difference Q11−Q12, one more relation is required. To this end, we consider the fact 

that the hydrostatic electrostrictive constant Qh of PZT is small around MPB,9 which 

means Q11/Q12~−2. We adopt Q11/Q12=−2.1 around MPB,9 which is used to determine 

Q11 and Q12 curves shown in Fig. A-3(b). It is worth noting that Q44/Q11 drastically drops 

from 3.25 to 0.814 across MPB within 0.45<x<0.5. This behavior is a direct result of the 

rapid decrease in spontaneous lattice strain around MPB, i.e., 90°−α of rhombohedral 

phase rapidly drops with increasing composition for x>0.4, and ct−at of tetragonal phase 

rapidly drops with decreasing composition for x<0.5, as shown in Fig. A-1. Since 

tetragonal phase is not observed for x<0.45 and rhombohedral phase not observed for 

x>0.5, Q11 and Q12 for x<0.45 and Q44 for x>0.5 cannot be determined from above direct 

diffraction data analysis. 
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FIG. A-3. (After ref.1) Electrostrictive coefficients of PZT at room temperature, as 

determined from the diffraction data and Rietveld refinement results reported in the 

literature.16-30 (a) Q44 and Q11−Q12 within respective rhombohedral and tetragonal phase 

composition ranges. (b) Q11, Q12, and Q44 within MPB composition range of phase 

coexistence. Black curves are determined by using diffraction-derived polarization. Red 

and blue curves are determined by using polarizations calculated from LGD theories.3-9 

For comparison, the composition-dependent electrostrictive coefficients used in LGD 

theory9 are also plotted in (a), as shown in blue dashed curves. 
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Electrostrictive coefficients are used to calculate spontaneous strain from spontaneous 

polarization, and to predict piezoelectric coefficients from LGD theory. For this purpose, 

experimentally-fitted LGD polynomial is needed. As shown in Fig. A-2, the developed 

LGD theory that takes into account the oxygen octahedron tilting in FR(LT) phase of R3c 

space group4-9 seems to reasonably describe the general behavior of composition-

dependent spontaneous polarization in PZT system; it also provides a good description of 

the relative free energy states of different phases.4-9 The developed LGD theory3-9 has 

been widely used, which, in fact, is the only theory available for PZT system up to date. 

Therefore, it is convenient to adopt the LGD theory3-8 to describe the free energy and 

spontaneous polarization of PZT system, while recalculate the electrostrictive coefficients 

based on the diffraction-determined lattice parameters in Fig. A-1. And consequently, 

using the electrostrictive coefficients in Fig. A-3 together with the corresponding LGD 

theory3-8 gives the diffraction-determined lattice parameters and spontaneous strains in 

Fig. A-1. 

In Fig. A-3(a), the composition-dependent electrostrictive coefficients used in LGD 

theory9 are also plotted as blue dashed curves for comparison. Discrepancy between the 

blue solid curves and blue dashed curves is apparent, in particular around MPB, which 

means that the LDG theory3-8 does not reproduce well the strain and lattice parameters as 

directly determined by diffraction experiments.16-30 To show this, we calculate the lattice 

parameters 90°−α and ct−at and plot them as black curves in Fig. A-4. For comparison, 

we also plot the diffraction-determined lattice parameters in red and blue. It is clear that 

the LGD theories2-8 are not accurate around MPB, which could be due to the lack of 

diffraction data around MPB at the time of the LGD theory development, and implies the 
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electrostrictive coefficients around MPB are much different to those values reported in 

literatures.  

 

 

 
FIG. A-4. (After ref.1) Calculated lattice parameters of tetragonal and rhombohedral 

phases of PZT by using the LGD theories,3-9 as shown in black and green lines. The 

diffraction-determined lattice parameters16-30 are also shown in red and blue for 

comparison. 

 

It is worth noting that, since the volume per formula unit Pb(Zr1-xTix)O3 is well 

described by a linear function of composition x in the range of 0.1≤x≤0.8.29 the equality 

of the volume strain of tetragonal and rhombohedral phases is expected, and leads to: 
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and 
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FIG. A-5. (After ref. 2) Rhombohedral lattice parameter, ar (red symbols), and weighted 

average of tetragonal lattice parameters, ( )2 3t tc a+  (blue symbols), of PZT as a 

function of composition at room temperature, as determined from the diffraction data and 

Rietveld refinement results reported in the literature.16-30 Color symbols represent data 

points and indicate their original experimental literature, as listed in the figure legend. 

Black solid straight lines serve to guide the eye. The inset shows details of data points at 

MPB. Dashed line emphasizes a systematic deviation of the data in a particular 1952 

experiment.16 

 

R TP P= ,  (A.13) 

Figure A-5 plots the rhombohedral lattice parameter, ar, and weighted average of 

tetragonal lattice parameters, ( )2 3t tc a+ , of PZT as a function of composition at room 
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temperature. It is shown, especially in the inset, that the data points are well distributed 

along a straight line,2 and confirms the lattice parameter relationship given in Eq. (A.12). 

Further analysis on the diffraction data and Rietveld refinement results shows that this 

relationship also holds well in PMN-PT and PZN-PT solid solutions.2 Together with the 

equality of the ionic part of the spontaneous polarization of both phases at MPB, as 

shown in Fig.A-2,  Fig.A-5 and Eq.(A.12) demonstrate the continuity of thermodynamic 

properties across the MPB, in agreement with the Landau theory of second-order and 

weak first-order phase transitions at MPB,34 and support our analysis on the 

electrostrictive coefficients around MPB.  

The piezoelectric properties can be calculated by using the elastic Gibbs free energy 

function developed in the LGD theory.4-9 Such calculations have shown strong crystal 

orientation dependence (i.e., anisotropy) of piezoelectric properties of PZT.13-15 We 

follow the approaches provided in the literature13-15 and calculate the orientation 

dependence of piezoelectric coefficient d33. It is shown in Fig. A-6 that the piezoelectric 

anisotropy is very sensitive to the electrostrictive coefficient ratio Q44/Q11, which varies 

significantly with composition around MPB, as shown in Fig. A-3(b). 

Fig. A-6 plots the d33 surfaces and the cross-sections as calculated by using the LGD 

theory4-8 with different ratios of Q44/Q11. It is worth noting that for given Q44/Q11 and 

Q11/Q12, the value of Q11 only affects the absolute value of the calculated d33 while does 

not affect its orientation dependence or anisotropy. It shows that, while the maximum d33 

is obtained along a direction close to [001] axis of the rhombohedral crystal rather than 

the polar [111] axis, the anisotropy is sensitive to the ratio Q44/Q11 and decreases with 

increasing Q44/Q11. Moreover, for Q44/Q11=3 as shown in Fig. A-6(c), the maximum d33 is 
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no longer confined to direction close to [001] axis rather instead is degenerated to all 

directions forming the same angle with [111] axis. 

 

 
 

FIG. A-6. (After ref. 1) Effect of electrostrictive coefficient ratio Q44/Q11 on piezoelectric 

anisotropy of rhombohedral PZT at MPB composition x=0.46. The orientation-dependent 

piezoelectric coefficient d33 is calculated by using the LGD theory4-8 with different ratios: 

(a) Q44/Q11=0.5, (b) Q44/Q11=2, (c) Q44/Q11=3. Q11/Q12=−2.1. The cyan symbol on the 

surface indicates [100] direction. (d) Cross-sections of the d33 surfaces as cut through 

[111] and [001] directions. Black, red, green and blue curves correspond to Q44/Q11=0.5, 

1, 2 and 3, respectively. 
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To show the effects of all three electrostrictive coefficients Q11, Q12 and Q44 on the 

piezoelectric anisotropy of PZT, we systematically vary the ratios Q11/Q12 and Q44/Q11 

and calculate the orientation-dependent d33 surfaces of rhombohedral PZT. The 

maximum d33 is found and the ratio of maximum d33 to the d33 along polar [111] axis is 

evaluated in each case, which is a measure of the degree of piezoelectric anisotropy. 

Figure A-7(a) plots the piezoelectric anisotropy versus the electrostrictive coefficient 

ratios Q11/Q12 and Q44/Q11 for MPB composition x=0.46. It shows that the piezoelectric 

anisotropy is insensitive to the ratio Q11/Q12, while is very sensitive to the ratio Q44/Q11. 

In particular, piezoelectric anisotropy is very small (i.e., d33Max/d33[111]~1) for large ratio 

Q44/Q11, and becomes strong only when the ratio Q44/Q11~1 and smaller. This is a general 

behavior for rhombohedral PZT, as observed in the calculations for compositions 

0.4≤x≤0.48 (the composition range of FR(HT) phase). Fig. A-7(b) plots the calculation 

results for composition x=0.4 (cyan) and x=0.48 (purple), and other composition cases are 

distributed between them (not shown for clarity). For the same ratio Q44/Q11, larger 

anisotropy is observed for composition closer to MPB at x=0.48.  

It is worth noting an error in the shear strain as used in the LGD theory,9 which makes 

Q44 smaller by a factor of π/2,35 and predicts very strong piezoelectric anisotropy,13-15 as 

demonstrated in Fig. A-7. Thus, it is believed that the enhanced properties along the non-

polar direction are not exclusively from the intrinsic responses of MPB-based 

ferroelectrics, and can only be fully explained together with the extrinsic contributions, 

e.g., the evolutions of complex domain microstructures around the MPB.  
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FIG. A-7. (After ref. 1) Effect of electrostrictive coefficients Q11, Q12 and Q44 on 

piezoelectric anisotropy of rhombohedral PZT at composition range 0.4≤x≤0.48. (a) 

x=0.46. (b) x=0.4 (cyan) and 0.48 (purple). The orientation-dependent piezoelectric 

coefficient d33 is calculated by using the LGD theory4-8 with different ratios Q11/Q12 and 

Q44/Q11. The ratio of maximum d33 (d33Max) to d33 along polar [111] axis (d33[111]) is 

plotted as a measure of the degree of piezoelectric anisotropy. 
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