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A Study of Modifications to Quantum Mechanics

Zachary E. Lewis

(ABSTRACT)

In this work, the consequences of several modifications to quantum mechanics are
examined. These modifications, motivated by string theory, fall into two categories:
ones in which the canonical commutation relations between position and momentum
are deformed and ones in which the space of states used are vector spaces over
Galois fields instead of complex Hilbert spaces. The particular deformation of the
canonical commutation relations used leads to a minimum value of the uncertainty
in position which is interpreted as a minimum length scale. Both harmonic and
anharmonic oscillators are studied in this framework with normalizable, positive
energy eigenstates found in both cases. The quantum uncertainty relations and
classical counterparts to these states are discussed. Creating modified quantum
theories by replacing the Hilbert spaces of canonical quantum mechanics with vector
spaces defined over several finite, Galois fields is accomplished. Correlation functions
are calculated in these theories and the maximum values are shown to not behave
as would be expected by the standard, Bell-like, bounding inequality theorems. The
interpretations and implications of these theories are discussed.

This work was partially supported by the U.S. Department of Energy, grant DE-
FG05-92ER40609, Task A and grant DE-FG05-92ER40677, Task A.
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Chapter 1

History and Motivation

1.1 The Theory Group and its Inspirations

The goal in this work is to analyze particular, string theory motivated, extensions of
quantum mechanics. The material contained herein is a compilation and exposition
of the work carried out by an informal theory group at Virginia Tech, of which I
have been a recent participant, but that is more regularly comprised of Prof. Lay
Nam Chang, Prof. Djordje Minic, and Prof. Tatsu Takeuchi. Previous participants
that aided in the progression of the research that is presented herein were Prof. Chia
Tze, Sandor Benczik, Naotoshi Okamura, and Saifuddin Rayyan .

To completely describe the motivations that drive such a diverse group would be a
study in itself, though, the common threads are strong and clearly distinguishable.
There is an ambition to address the major outstanding puzzles in theoretical physics,
such as the cosmological constant problem, the incompatibility of the gravitational
interaction with the Standard Model, and the limits of quantum mechanics. Also,
although we are theorists with lofty aspirations, there is always a pressing desire to
find ways to connect our theories to experiment; a desire that is not often known to
the public as they view us working in our ivory trailer tower. We also find ourselves
applying new techniques and conceptual frameworks to old problems, as will be seen
shortly through the influence of string theory in guiding our efforts.

It is my aim in this chapter to give an overview of some of the ideas and reasoning
that have led to the results that will be discussed in chapters 2 and 3. Chapter 2
will discuss our success in the study of the addition of a minimal length scale to

1



Z. Lewis Chapter 1. History and Motivation 2

quantum mechanics and chapter 3 will detail our attempts at replacing the usual
Hilbert spaces in quantum theory with the more exotic Galois fields. Parts of this
overview have appeared in the follow review letters: Refs. ([1, 2]).

1.2 Minimal Length

Just as c defines the velocity scale at which special relativity becomes important and
~ defines the phase space volume scale at which quantum mechanical effects become
prominent, the length scale defined by `P =

√
~GN/c3 (called the Planck length) is

expected to be of similar importance to any quantum theory of gravity. This length
scale has been suggested by Wheeler [3] and others (Refs. [4][5][6][7], to list a few) to
be a minimal length scale, below which spacetime intervals may not be resolvable,
as expressed by

δs & `P . (1.1)

Since GN does not appear in the formalism of ordinary quantum mechanics, such
a length scale would have to be introduced through an appropriate modification of
said formalism.

Although we will be considering a modification that is motivated by the length scale
in string theory that specifies the spacetime extent of a string, `s =

√
α′ where ~c/α′

is the string tension (as can be found in introductory textbooks on the subject [8]),
there is a relatively long history of attempts to include a minimal length scale, of
various sorts, in quantum mechanics.

Heisenberg, first in a letter to Bohr [9], used a minimal length and difference equations
to address the self energy problem of the electron in the newly formulated theory
of quantum electrodynamics [10]. Born also considered a minimum length, in the
form of a finite electron radius, when he proposed a quantizible Lagrangian for the
electromagnetic field [11].

Snyder noticed that there were discrete, Lorentz-invariant spacetime coordinates, and
showed that they had nonstandard commutation relations [12]. Yang then extended
that work by generalizing the invariance to include translations, albeit in a de Sitter
space [13]. Mead used perturbation theory to explore the consequences that an
assumed minimal uncertainty in position may have on the uncertainty in energy for
several systems [14].

Various ways to more drastically deform or extend quantum theory have also been
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suggested, such as Weinberg’s non-linear generalization [15] or the non-Hermitian,
PT symmetric theory of Bender, Brody, and Jones [16]. The focus of the group’s
analysis has been on the consequences of the introduction of a minimal length scale
into quantum mechanics through the modification of its algebraic structure, as done
by Maggiore [17] and Kempf [18].

1.2.1 Minimal Length Uncertainty Relation

Before discussing the algebraic structure, let’s identify the way in which a minimal
length scale is manifested; via the minimal length uncertainty relation (MLUR),

δx ∼
(

~
δp

+ α′
δp

~

)
. (1.2)

This form can be motivated from the study of string-string collisions as done by
Amati, Ciafaloni, and Veneziano in Ref. [19] and Gross and Mende in Ref. [20]. The
viewpoint of these papers is qualitatively similar to that of Heisenberg’s microscope
thought experiment, in which he reasoned that one could view the uncertainty in
a particle’s position as being cause by the uncertainty in the recoil direction of an
electron after interacting with a photon that is used to probe said electron’s position
[21]. The referenced papers use fundamental strings as probe and target instead of
photons probing the position of electrons.

The first term on the right-hand side is the usual Heisenberg term, that can be seen
as coming from the lessening of the probe’s wavelength as its momentum is increased,
while the second term can be viewed as being due to the increasing of the length of
the probe string as it becomes more energetic:

δp =
δE

c
∼ ~

α′
δx . (1.3)

Eq. (1.2) implies that the uncertainty in position, δx, is bounded from below by the
string length scale,

δx &
√
α′ = `s . (1.4)

The associated minimum in δp occurs at

δp ∼ ~√
α′

=
~
`s
≡ µs . (1.5)

From this, `s can be interpreted as a length scale below which distances cannot be
resolved with any certainty, as is consistent with Eq. (1.1).
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Of key interest here is that for large momenta, δp� µs, the MLUR is dominated by
the linear behavior of Eq. (1.3). The direct implication is that large δp, or ultraviolet
(UV), behavior corresponds to large δx, or infrared(IR), behavior and that one could
expect there to be some coupling between the physics at these scales. Relationships
between the UV and IR scales have been found in various string dualities [8], and in
the context of AdS/CFT correspondence [22].

Since these relations often connect small scale structure with large scale structure,
it is hoped that their study may lead to resolution of the cosmological constant
problem, as will be discussed shortly. With this target in mind, we will see first
how to manifest the MLUR in quantum mechanics and then see what the direct
implications are for the cosmological constant.

1
∆p�Μs

1

∆x�{s

Figure 1.1: The δp-dependence of the lower bound of δx under the minimal length
uncertainty relation Eq. (1.6) (red curve). The bound for the usual Heisenberg
relation δx ≥ ~/(2δp) is shown in blue, and the linear bound δx ≥ (~β/2)δp is
shown in green.

To further the study of the MLUR, Eq. (2.6), we start by rewriting it in the usual
form as

δx δp ≥ ~
2

(
1 + β δp2

)
, (1.6)

where the parameter β = α′/~2 is chosen for later convenience. The minimum value
of δx as a function of δp is plotted in Fig. 1.1.
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This uncertainty relation can be reproduced by modifying the canonical commutation
relation between x̂ and p̂ via

1

i~
[ x̂, p̂ ] = 1 −→ 1

i~
[ x̂, p̂ ] = A(p̂2) . (1.7)

Setting A(p2) = 1 + βp2, we find

δx δp ≥ 1

2

∣∣∣〈[ x̂, p̂ ]
〉∣∣∣ =

~
2

(
1 + β〈p̂2〉

)
≥ ~

2

(
1 + β δp2

)
, (1.8)

since δp2 = 〈p̂2〉−〈p̂〉2; the second inequality becoming equality in the case of bound
states, for which 〈p̂〉 = 0. As seen in Ref. [23], the function A(p2) can be more generic,
so, βp2 could be viewed as the linear term in an expansion of A(p2) in powers of p2.

In the case of multiple spatial dimensions, the modification in Eq. (1.7) generalizes
to

1

i~
[ x̂i, p̂j ] = A(p̂2) δij +B(p̂2) p̂ip̂j , (1.9)

where p̂2 =
∑

i p̂
2
i , as usual. This is the most general form that a) depends only on

the momentum and b) respects rotational symmetry, which it does by only depending
on the magnitude of the momentum vector. Assuming that the components of the
momentum commute among themselves,

[ p̂i, p̂j ] = 0 , (1.10)

the Jacobi identity demands that [24]

1

i~
[ x̂i, x̂j ] = −

{
2(Â+ B̂p̂2)Â′ − ÂB̂

}
L̂ij , (1.11)

where we have used the shorthand Â = A(p̂2), Â′ =
dA

dp2
(p̂2), B̂ = B(p̂2), and

L̂ij = (x̂ip̂j − x̂j p̂i) /Â . That L̂ij generates rotations can be seen from the following:

1

i~
[ L̂ij , x̂k ] = δikx̂j − δjkx̂i ,

1

i~
[ L̂ij , p̂k ] = δikp̂j − δjkp̂i ,

1

i~
[ L̂ij , L̂k` ] = δikL̂j` − δi`L̂jk + δj`L̂ik − δjkL̂i` . (1.12)
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Various choices for the functions A(p2) and B(p2) have been considered in the liter-
ature. Maggiore [17] proposed

A(p2) =
√

1 + 2βp2 , B(p2) = 0 ,
1

i~
[ x̂i, x̂j ] = −2βL̂ij , (1.13)

while Kempf [18] assumed

A(p2) = 1 + βp2 , B(p2) = β′ = constant , (1.14)

in which case

1

i~
[ x̂i, x̂j ] = −

{
(2β − β′) + β(2β + β′)p̂2

}
L̂ij . (1.15)

Kempf’s choice encompasses the algebra of Snyder [12]

A(p2) = 1 , B(p2) = β′ ,
1

i~
[ x̂i, x̂j ] = β′L̂ij , (1.16)

and that of Brau [25, 26]

A(p2) = 1 + βp2 , B(p2) = 2β ,
1

i~
[ x̂i, x̂j ] = O(β2) , (1.17)

for which the components of the position approximately commute. In the following
analysis, we follow Kempf and use Eq. (1.14).

1.2.2 Phase Space and the Density of States

Rewriting the 1-D deformed commutator as

[ x̂, p̂ ] = i~A(p̂2) (1.18)

Since ~ determines the phase space volume for which quantum effects dominate, it is
instructive to see how a momentum dependent phase space volume is effected by time
evolution. In classical mechanics, Liouville’s theorem states that phase space vol-
umes are preserved under canonical transformations. To see how this result changes,
we’ll modify the Poisson bracket of classical mechanics via the Dirac correspondence
principle, as done in Ref. [24],

1

i~
[ x̂, p̂ ] = A(p̂2) −→ { x, p } = A(p2) , (1.19)
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The Poisson brackets among the xi’s and pi’s for the multidimensional case are

{xi, pj } = Aδij +B pipj ,
{ pi, pj } = 0 ,

{xi, xj } = −
[

2(A+B p2)

A

dA

dp2
−B

]
(xipj − xjpi) . (1.20)

The generic Poisson bracket of arbitrary functions of the coordinates and momenta
can then be defined as

{F,G} =

(
∂F

∂xi

∂G

∂pj
− ∂F

∂pi

∂G

∂xj

)
{xi, pj}+

∂F

∂xi

∂G

∂xj
{xi, xj} . (1.21)

Here, we use the Einstein convention that repeated indices are summed. Assuming
that the equations of motion of xi and pi are given formally by:

ẋi = {xi, H } = {xi, pj }
∂H

∂pj
+ {xi, xj }

∂H

∂xj
,

ṗi = { pi, H } = −{xj, pi }
∂H

∂xj
, (1.22)

the evolution of xi and pi during an infinitesimal time interval δt is found to be:

x′i = xi + ẋi δt = xi +

[
{xi, pj }

∂H

∂pj
+ {xi, xj }

∂H

∂xj

]
δt ,

p′i = pi + ṗi δt = pi − {xj, pi }
∂H

∂xj
δt . (1.23)

To find the change in phase space volume associated with this evolution, we cal-
culate the Jacobian of the transformation from (x1, x2, · · · , xD; p1, p2, · · · , pD) to
(x′1, x

′
2, · · · , x′D; p′1, p

′
2, · · · , p′D):

dDx′ dDp′ =

∣∣∣∣∂(x′1, x
′
2, · · · , x′D; p′1, p

′
2, · · · , p′D)

∂(x1, x2, · · · , xD; p1, p2, · · · , pD)

∣∣∣∣ dDx dDp . (1.24)

Since
∂x′i
∂xj

= δij +
∂ẋi
∂xj

δt ,
∂x′i
∂pj

=
∂ẋi
∂pj

δt ,

∂p′i
∂xj

=
∂ṗi
∂xj

δt ,
∂p′i
∂pj

= δij +
∂ṗi
∂pj

δt ,
(1.25)

we find:∣∣∣∣∂(x′1, x
′
2, · · · , x′D; p′1, p

′
2, · · · , p′D)

∂(x1, x2, · · · , xD; p1, p2, · · · , pD)

∣∣∣∣ = 1 +

(
∂ẋi
∂xi

+
∂ṗi
∂pi

)
δt+O(δt2) , (1.26)
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where

∂ẋi
∂xi

+
∂ṗi
∂pi

=
∂

∂xi

[
{xi, pj }

∂H

∂pj
+ {xi, xj }

∂H

∂xj

]
+

∂

∂pi

[
−{xj, pi }

∂H

∂xj

]
=

∂

∂xi

[
{xi, xj }

]∂H
∂xj
− ∂

∂pi

[
{xj, pi }

]∂H
∂xj

= −(D − 1)

[
2(A+B p2)

A

dA

dp2
−B

]
pj
∂H

∂xj

−
[
2
dA

dp2
+ 2

dB

dp2
p2 + (D + 1)B

]
pj
∂H

∂xj

= −
[
(D − 1)

(
2(A+B p2)

A

dA

dp2

)
+2

(
dA

dp2
+
dB

dp2
p2 +B

)]
pj
∂H

∂xj
. (1.27)

On the other hand, using

δp2 = 2piδpi = 2pi ṗi δt = −2 (A+Bp2) pj
∂H

∂xj
δt , (1.28)

we have

A′ = A+
dA

dp2
δp2

= A

[
1−

(
2(A+Bp2)

A

dA

dp2

)
pj
∂H

∂xj
δt

]
,

A′ +B′p′2 = (A+Bp2) +

(
dA

dp2
+
dB

dp2
p2 +B

)
δp2

= (A+Bp2)

[
1− 2

(
dA

dp2
+
dB

dp2
p2 +B

)
pj
∂H

∂xj
δt

]
, (1.29)

where we have used a the shorthand A′ = A(p′2) and B′ = B(p′2). Thus

(A′)D−1(A′ +B′p′2)

AD−1(A+Bp2)
=

[
1−

{
(D − 1)

(
2(A+B p2)

A

dA

dp2

)

+2

(
dA

dp2
+
dB

dp2
p2 +B

)}
pj
∂H

∂xj
δt

]
. (1.30)

Comparing Eqs. (1.27) and (1.30), it is clear that the ratio

dDx dDp

AD−1(A+Bp2)
(1.31)
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is invariant under time evolution.

This behavior of the phase space volume can be demonstrated using simple Hamil-
tonians. In Ref. [24], the harmonic oscillator and coulomb potential problems for the
case A = 1 + βp2 and B = β′ are analyzed There, in addition to the behavior of the
phase space volumes, it is found that the orbits of particles in these potentials no
longer close on themselves.

For the case B = 0, Eq. (1.31) reduces to dDx dDp/AD, and the interpretation of
~A(p2) as the momentum dependent scale of phase space volumes becomes apparent.
Integrating Eq. (1.31) over space,

1

V

∫
dDx dDp

AD−1(A+Bp2)
=

dDp

AD−1(A+Bp2)
, (1.32)

we can identify

ρ(p2) =
1

AD−1(A+Bp2)
(1.33)

as the density of states in momentum space. At high momentum where A and
Bp2 become large, ρ(p2) will be suppressed. Next, we look at the direct impact
that this has on the cosmological constant. In Chapter 2, it will be noticed that
this momentum dependent density of states can be used to interpret an unexpected
result in what would normally be an unphysical system.

1.2.3 The Cosmological Constant

The origin of the cosmological constant remains a mystery, and its understanding
presents a major challenge to theoretical physics, as Refs. [27] explain in detail. It
is a contentious issue for string theory, as string theory is putatively the leading
candidate for a theory of quantum gravity,though various hints exist that may point
towards its resolution [28, 29]. Furthermore, the problem has recently assumed added
urgency due to observations that the cosmological constant is small, positive, and
clearly non-zero [30].

Let us briefly identify the scope of the cosmological constant problem. At its heart,
it is a disagreement between the observed energy density of the vacuum of space and
the calculated value from quantum field theory. The observed value of the vacuum
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energy density is

c2Λ

8πGN

= c2ρcrit ΩΛ =

(
3H2

0c
2

8πGN

)
ΩΛ

= (8.096× 10−47 GeV4/~3c3)(ΩΛh
2) ∼ 10−47 GeV4/~3c3 . (1.34)

where H0 is the Hubble parameter and ΩΛ is the ratio of the cosmological constant’s
contribution to the total energy density of the universe and the critical density of the
Friedmann equations that model cosmological expansion. The order of magnitude
of this result is set by the dimensionful prefactor in the parentheses which can be
expressed in terms of the Planck length `P = ~/µP =

√
~GN/c3 ∼ 10−35 m, and the

scale of the visible universe `0 = ~/µ0 ≡ c/H0 ∼ 1026 m as

H2
0c

2

GN

=
c

~3
µ2

Pµ
2
0 =

~c
`2

P `
2
0

. (1.35)

In quantum field theory (QFT), the cosmological constant is calculated as the sum of
the vacuum fluctuation energies of all momentum states. This is clearly infinite, so
the integral is usually cut off at the Planck scale µP = ~/`P beyond which spacetime
itself is expected to become foamy [3], and the calculation untrustworthy. For a
massless particle,

1

(2π~)3

∫ µP

d3p

[
1

2
~ωp
]

=
c

4π2~3

∫ µP

0

dp p3 =
c

16π2~3
µ4

P =
~c

16π2

1

`4
P

∼ 1074 GeV4

~3c3
,

(1.36)
which is about 120 orders of magnitude above the measured value. Note that this
difference is essentially a factor of (`0/`P)2, the scale of the visible universe in Planck
units squared. The change in the density of states in the presence of modified com-
mutation relations would lead to the slightly different calculation:

1

(2π~)3

∫ ∞
d3p ρ(p2)

[
1

2
~ωp
]

=
c

4π2~3

∫ ∞
0

dp
p3

A(p2)2[A(p2) + p2B(p2)]
. (1.37)

For the case A(p2) = 1 + βp2, B(p2) = 0, we find, as in Ref. [31]:

c

4π2~3

∫ ∞
0

dp
p3

(1 + βp2)3
=

c

16π2~3β2
=

c

16π2~3
µ4
s =

~c
16π2

1

`4
s

, `s =
~
µs

= ~
√
β .

(1.38)
The integral is finite, without a UV cutoff, due to the suppression of the contribution
of high momentum states.
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However, if we make the identification `s = `P, then this result is identical to
Eq. (1.36) and nothing is gained. Of course, this is not surprising given that `s
is the only scale in the calculation, and effectively plays the role of the UV cutoff.

To obtain the correct value of the cosmological constant from the above expression,
we must choose `s ∼

√
`P`0 ∼ 10−5 m, which is too large to be the minimal length,

or equivalently, µs = ~/`s ∼
√
µPµ0 ∼ 10−3 eV/c, which is too small to be the UV

cutoff.

We could introduce a second scale into the problem by letting B(p2) = β′ 6= 0. This
leads to

c

4π2~3

∫ ∞
0

dp
p3

(1 + βp2)2[1 + (β + β′)p2]
=

c

8π2~3

1

ββ′

[
1− β

β′
ln

(
1 +

β′

β

)]
β′�β−−−→ c

8π2~3

1

ββ′
=

c

8π2~3
µ2
sµ
′2
s

=
~c
8π2

1

`2
s`
′2
s

, (1.39)

where `′s = ~/µ′s = ~
√
β′. If we identify `s = `P, then we must have `′s ∼ `0, which

is even more problematic than
√
`P`0.

As these considerations show, such simple choices for A(p2) and B(p2) succeed in
rendering the cosmological constant finite, but do not provide an adequate suppres-
sion. Would some other choice of A(p2) and B(p2) do better? To this end, let’s try
to see whether we can reverse engineer these functions so that the correct order of
magnitude is obtained. Let us write

ε4 =

∫ ∞
0

dp ρ(p2) p3 . (1.40)

To generate the correct value for the cosmological constant, we must have ε ∼√
µPµ0 = 10−3eV/c, as we have seen. At this point, we invoke some numerology

and note that if the SUSY breaking scale µSUSY is on the order of a few TeV/c, then
the seesaw formula,

ε ∼ µ2
SUSY

µP

∼ 10−3 eV/c , (1.41)

would give the correct size for ε as observed by Banks [32]. This expression is
reminiscent of the seesaw mechanism used to explain the smallness of neutrino masses
[33].
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One way to obtain this result is to have the density of states scale as ρ(p2) ∼ p4/µ4
P,

and place the UV cutoff at µSUSY, beyond which the bosonic and fermionic con-
tributions cancel. This would yield ε4 ∼ µ8

SUSY/µ
4
P. Unfortunately, this density of

states is problematic since p4/µ4
P � 1 for the entire integration region, so we are

effectively suppressing everything. Furthermore, to obtain this suppression, we must
have A(p2) ∼ (µP/p)

4/3 � 1, making the effective value of ~, and thus the phase
space volume scale for quantum effects, huge at low energies, in clear contradiction
to reality.

In retrospect, this result is not surprising since raising the UV cutoff from
√
µPµ0 ∼

10−3 eV/c to much higher values naturally requires the drastic suppression of contri-
butions from below the cutoff. Thus, it is clear that the modification to the density
of states, as suggested by the MLUR, by itself cannot solve the cosmological constant
problem.

1.2.4 UV/IR connection and ’Jamming’

In the above discussion of summing over momentum states, the unstated assumption
was that states at different momentum scales were independent, and that their total
effect on the vacuum energy was the simple sum of their individual contributions. Of
course, this assumption is the basis of the decoupling between small (IR) and large
(UV) momentum scales, which underlies the use of effective field theories. However,
there are hints that this assumption is what needs to be reevaluated in order to solve
the cosmological constant problem.

First and foremost, the expression for the vacuum energy density itself, H2
0c

2/GN =
~c/`2

P`
2
0, is dependent upon an IR scale `0 and a UV scale `P, suggesting that whatever

theory that explains its value must be aware of both scales, and have some type of
dynamical connection between them. Note that effective QFT’s are not of this type,
but string theory is, given the UV/IR mixing relations discovered in several contexts
as mentioned previously.

Second, the contributions of the sub-Planckian modes (p < µP) independently by
themselves are clearly too large, and there is a limit to the tweaking that can be done
to the density of states in the IR since those modes undeniably exist. A way out of
this dilemma would be to cancel the contribution of the sub-Planckian modes against
those of something else, like the contribution from the trans-Planckian modes (p >
µP), by introducing a dynamical connection between the two regimes, as suggested
by Banks [32].
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That the sub-Planckian and trans-Planckian modes should cancel against each other
is also suggested by the following argument: Consider how the MLUR, Eq. (1.6),
would be realized in field theory. The usual Heisenberg relation δx δp = ~/2 is a
simple consequence of the fact that coordinate and momentum spaces are Fourier
transforms of each other. The more one wishes to localize a wave-packet in coordinate
space (smaller δx), the more momentum states one must superimpose (larger δp).
In the usual case, there is no lower bound to δx: one may localize the wave-packet
as much as one likes by simply superimposing states with ever larger momentum,
and thus ever shorter wavelength, to cancel out the tails of the coordinate space
distributions. On the other hand, the MLUR implies that if one continues super-
imposing states with momenta beyond µP = 1/

√
β, then δx ceases to decrease and

starts increasing instead. (See Fig 1.1.) The natural interpretation of such a phe-
nomenon would be that the trans-Planckian modes (p > µP) when superimposed
with the sub-Planckian ones (p < µP) would ‘jam’ the sub-Planckian modes and
prevent them from canceling out the tails of the wave-packets effectively.

The mechanism envisioned here is analogous to the ‘jamming’ behavior seen in non-
equilibrium statistical physics, in which systems are found to freeze with increasing
temperature [34]. In fact, it has been argued that such “freezing by heating” could
be characteristic of a background independent quantum theory of gravity [35].

Note that in the above calculation, the phase space over which the integration was
performed was fixed and flat. Quantum gravity will naturally change the situation,
leading to a fluctuating dynamical spacetime background. Furthermore, the MLUR
implies that energy-momentum space will be a fluctuating dynamical entity as well,
as proposed in Ref. [36].

First, the necessity of “jamming” between the sub-Planckian and trans-Planckian
modes to implement the MLUR in field theory clearly illustrates that momentum
space cannot be the simple Fourier transform of coordinate space, but must rather
be an independent entity.

Second, the quantum properties of spacetime geometry may be understood in terms
of effective expressions that involve the spacetime uncertainties:

gab(x) dxadxb → gab(x) δxaδxb . (1.42)

The UV/IR relation δx ∼ ~β δp in the trans-Planckian region implies that this
geometry of spacetime uncertainties can be transferred directly to the space of energy-
momentum uncertainties, endowing it with a geometry as well:

gab(x) δxaδxb → Gab(p) δp
aδpb . (1.43)
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The usual intuition that local properties in spacetime correspond to non-local features
of energy-momentum space (as implied by the canonical uncertainty relations) is
obviated by the linear relation between the uncertainties in coordinate space and
momentum space.

What would a dynamical energy-momentum space entail? Let us speculate. It has
been argued, in Refs. [3] and [37], that a dynamical spacetime, with its foamy UV
structure, would manifest itself in the IR via the uncertainties in the measurements
of global spacetime distances as:

δ` ∼
√
` `P , (1.44)

a relation which is reminiscent of the famous result for Brownian motion derived by
Einstein [38], and is also covariant in 3 + 1 dimensions. Let us assume that a similar
‘Brownian’ relation holds in energy-momentum space due to its ‘foaminess’ [36]:

δµ ∼ √µµP . (1.45)

If the energy-momentum space has a finite size, a natural UV cutoff, at µ+ � µP,
then its fluctuation δµ+ will be given by δµ+ =

√
µ+ µP � µP. The MLUR implies

that the mode at this scale must cancel, or ‘jam,’ against another which shares
the same δx, namely, the mode with an uncertainty given by δµ− = µ2

P/δµ+ =
µP

√
µP/µ+ =

√
µ−µP � µP, that is:

µ− =
µ2

P

µ+

=
δµ2
−

µP

� µP . (1.46)

All modes between µ− and µ+ will ‘jam.’ Therefore, µ− will be the effective UV
cutoff of the momentum integral and not µ+, which would yield

ε4 ∼ µ4
− ∼

δµ8
−

µ4
P

∼ µ8
P

µ4
+

. (1.47)

This reproduces the seesaw formula, Eq. (1.41), and if δµ− ∼ few TeV/c, we obtain
the correct cosmological constant.

1.2.5 Towards a Model of ’Jamming’

In order to study the possibilities of jamming, it is essential to find a model in which
it explicitly exists. Specifically, one would want a model which contains some states
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for which δx ∼ 1/δp and other states for which δx ∼ δp. The relationships and
interactions between such states, for the reasons given in the previous section, are
expected to be the place to look for jamming.

In Chapter 2, it will be shown that for the quantum harmonic oscillator with modified
commutation relations, there do indeed exist both kinds of states, in which δx ∼ 1/δp
and δx ∼ δp. Unfortunately, these states exist in different regions of the physical
parameter space. The states with δx ∼ 1/δp occur when the mass is taken to be
positive whereas the states with δx ∼ δp occur when the mass is negative.

Though this result is not what we ultimately want, it is still encouraging for a couple
of reasons. The existence of positive energy, normalizable states for the negative
mass case is in opposition to the usual intuition and results from ordinary quantum
mechanics. A physical interpretation is provided with the assistance of the results of
the analysis of the correspondingly modified classical system. The other encouraging
feature is that the δx ∼ δp behavior occurs for physical states of a system that is
relatively straightforward to analyze. This provides hope that similar states exist in
other familiar systems.

While consideration of other systems, such as ones containing linear potentials, the
group began discussing other ways to move beyond quantum mechanics.

1.3 Supercorrelations

Another way of modifying quantum mechanics was motivated by the ability of Bell’s
inequalities to clearly distinguish between classical and quantum theories. It was
hoped that by studying Bell-like inequalities we could gain some insight on how
modifications to quantum mechanics could be tested.

As is widely known, the Bell inequalities, based on the assumption of classical local
realism, are theoretically and experimentally violated by the correlations of canoni-
cal quantum mechanics [39]. This remarkable feature of quantum mechanics is often
attributed to the ’non-locality’ of quantum mechanics. However, even quantum corre-
lations, with their apparent non-locality, are bounded and satisfy another inequality
discovered by Cirel’son [40].

It was wondered whether modifications to quantum mechanics would share the
Cirel’son bound, or would have some other, greater bound; implying the existence of
states with extremely high degrees of correlations, or supercorrelations. Popescu and
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Rohrlich have demonstrated that such supercorrelations can be consistent with rel-
ativistic causality (aka the no-signaling principle) [41]. Another question is whether
or not the Bell and Cirel’son bounds can even be associated with the boundaries
between classical, quantum, and superquantum theories in some other framework
than the one in which they were originally derived.

So, we set out to find a toy model of a modified quantum mechanics in which the
apparent bound on the strength of correlations surpassed the Cirel’son bound with
the goal of answering these questions. We were guided by heuristic arguments, based
on non-perturbative string theory, that suggest features to look for in a model of such
a superquantum theory. Before discussing these arguments and the, positive, results
of the search, let’s review the Bell inequalities and the Cirel’son bound.

1.3.1 Correlations in Classical and Quantum Mechanics

Consider two classical variables A and B, which represent the outcomes of measure-
ments performed on some isolated physical system by detectors 1 and 2 placed at
two causally disconnected spacetime locations. Assume that the only possible values
of both A and B are ±1. Denote the state of detector 1 by a, and that of detector 2
by b. The local realism condition demands that A depend only on a, and B depend
only on b and they can also depend on some hidden, but shared, information, λ.

The correlation between A(a, λ) and B(b, λ) is then

P (a, b) =

∫
dλ ρ(λ)A(a, λ)B(b, λ) ,

∫
dλ ρ(λ) = 1 , (1.48)

where ρ(λ) is the probability density of the hidden information λ. This classical
correlation is bounded by the following form of Bell’s inequality [42] as formulated
by Clauser, Horne, Shimony and Holt (CHSH) [43]:∣∣∣P (a, b) + P (a, b′) + P (a′, b)− P (a′, b′)

∣∣∣ ≤ 2 . (1.49)

The quantum version of these correlations violate this bound, but are themselves
bounded by a similar inequality obtained by replacing the 2 on the right-hand side
with 2

√
2. This is the famous Cirel’son bound [40], the extra factor of

√
2 being

determined by the Hilbert space structure of QM. The same Cirel’son bound has
been shown to apply for quantum field theoretic (QFT) correlations also [44].



Z. Lewis Chapter 1. History and Motivation 17

To see how these bounds emerge, and following Refs. [40] and [45], consider 4 classical
stochastic variables A, A′, B, and B′, each of which takes values of +1 or −1.
Obviously, the quantity

C ≡ AB + AB′ + A′B − A′B′ = A(B +B′) + A′(B −B′) , (1.50)

can be only +2 or −2 and thus the absolute value of its expectation value is bounded
by 2: ∣∣∣〈C〉∣∣∣ =

∣∣∣〈AB + AB′ + A′B − A′B′
〉∣∣∣ ≤ 2 . (1.51)

This is the CHSH version of Bell’s inequality. For the quantum case, we replace the
classical stochastic variables with Hermitian operators acting on a Hilbert space.

Following Ref. [40], we find that if Â2 = Â′2 = B̂2 = B̂′2 = 1 and
[
Â, B̂

]
=
[
Â, B̂′

]
=[

Â′, B̂
]

=
[
Â′, B̂′

]
= 0 , then C is replaced by

Ĉ = ÂB̂ + ÂB̂′ + Â′B̂ − Â′B̂′ , (1.52)

from which we find
Ĉ2 = 4−

[
Â, Â′

]
·
[
B̂, B̂′

]
. (1.53)

If these operators commute, we recover the classical bound of 2. If they do not, we can
use the uncertainty relations

∣∣〈i[Â, Â′]〉∣∣ ≤ 2‖Â‖·‖Â′‖ and
∣∣〈i[B̂, B̂′]〉∣∣ ≤ 2‖B̂‖·‖B̂′‖

to obtain〈
Ĉ2
〉
≤ 4 + 4 ‖Â‖·‖Â′‖·‖B̂‖·‖B̂′‖ = 8 −→

∣∣∣〈Ĉ〉∣∣∣ ≤ √〈
Ĉ2
〉
≤ 2
√

2 ,

(1.54)
which is the Cirel’son bound.

Alternatively, following Ref. [45], let Â |ψ〉 = |A〉, B̂ |ψ〉 = |B〉, Â′ |ψ〉 = |A′〉, and
B̂′ |ψ〉 = |B′〉. These 4 vectors all have unit norms and∣∣∣〈Ĉ〉∣∣∣ =

∣∣∣〈ψ∣∣Ĉ∣∣ψ〉∣∣∣ =
∣∣∣〈A∣∣B+B′

〉
+
〈
A′
∣∣B−B′〉∣∣∣ ≤ ∥∥∥ |B〉+|B′〉∥∥∥+

∥∥∥ |B〉−|B′〉∥∥∥ ,
(1.55)

which implies:∣∣∣〈Ĉ〉∣∣∣ ≤ √
2
(
1 + Re

〈
B
∣∣B′〉)+

√
2
(
1− Re

〈
B
∣∣B′〉) ≤ 2

√
2 . (1.56)

This second proof suggests that the Cirel’son bound is actually independent of the
requirement of relativistic causality. If relativistic causality is broken, then the Â’s
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and B̂’s will not commute. Then Ĉ must be symmetrized as

Ĉ =
1

2

[(
ÂB̂ + B̂Â

)
+
(
ÂB̂′ + B̂′Â

)
+
(
Â′B̂ + B̂Â′

)
−
(
Â′B̂′ + B̂′Â′

)]
,

(1.57)
to make it hermitian, and its expectation value will be〈

Ĉ
〉

= Re
[〈
A
∣∣B +B′

〉
+
〈
A′
∣∣B −B′〉] , (1.58)

which is clearly subject to the same bound as before. So it is the Hilbert space
structure of quantum mechanics alone which determines this bound.

Indeed, Popescu and Rohrlich have demonstrated that one can abstractly concoct
super-quantum correlations which violate the Cirel’son bound, while still maintain-
ing consistency with relativistic causality [41]. Their construction is information
theoretical and they do not replicate the quantum formalism, as we would wish to
do. Though they are not bounded by the Cirel’son bounds, such super-quantum
correlations are also bounded; the value of X in Eq. (1.49) being replaced, not by
XQM = 2

√
2 but, by X = 4:∣∣∣P (a, b) + P (a, b′) + P (a′, b)− P (a′, b′)

∣∣∣ ≤ 4 . (1.59)

Note, though, that this is not a physical bound per se, as the value of 4 is the absolute
maximum that the left-hand side can possibly be since each of the 4 terms has its
absolute value bounded by one. If the four correlations represented by these 4 terms
were completely independent, then, in principle, there seems to be no reason why
this bound cannot be saturated.

But what type of theory would predict such correlations? It has been speculated
that a specific super-quantum theory could essentially be derived from the two re-
quirements of relativistic causality and the saturation of the X = 4 bound, in effect
elevating these requirements to the status of ‘axioms’ which define the theory [41]. In
a similar fashion, quantum mechanics may also be derivable from causality and the
Cirel’son bound as ‘axioms’ [46]. However, to our knowledge, no concrete realization
of such a program has thus far emerged.

A related development has been the proof by van Dam that super-quantum corre-
lations which saturate the X = 4 bound can be used to render all communication
complexity problems trivial [47]. Subsequently, Brassard et al. discovered a pro-
tocol utilizing correlations with X > Xcc = 4

√
2/3, which solves communication

complexity problems trivially in a probabilistic manner [48]. We also do not yet
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see experimental evidence of correlations that are stronger than those of quantum
mechanics.

Due to these reasons, it has been speculated that nature somehow disfavors super-
quantum theories, and that super-quantum correlations, especially those with X >
Xcc, should not exist [49]. However, none of these arguments preclude the existence
of superquantum theories or of their realizations in nature.

One proposal for a super-quantum theory discussed in the literature uses a formal
mathematical redefinition of the norms of vectors from the usual `2 norm to the more
general `p norm [50]. In a 2D vector space with basis vectors {e1, e2}, the `p norm is∥∥∥αe1 + βe2

∥∥∥
p

= p
√
αp + βp . (1.60)

If one identifies |B〉 = e1 and |B′〉 = e2, then∥∥∥ |B〉 ± |B′〉∥∥∥
p

= 21/p . (1.61)

Eq. (1.59) would then be saturated for the p = 1 case.

Unfortunately, it is unclear how one can construct a physical theory based on this
proposal in which dynamical variables evolve in time while preserving total proba-
bility.

At this point, we make the very simple observation that it is the procedure of ‘quan-
tization’, which takes us from classical to quantum,that increases the bound from the
Bell/CHSH value of 2 to the Cirel’son value of 2

√
2. That is, quantization increases

the bound by a factor of
√

2. Thus, if one could perform another step of ’quantiza-
tion’ onto QM, would it not lead to the increase of the bound by another factor of√

2, thereby take us from the Cirel’son value of 2
√

2 to the ultimate 4? That would
be marvelous, but, of course, is difficult to do explicitly. To gain some guidance on
where to look, we’ll turn to string theory.

From the point of view of general mathematical deformation theory [51], quantum
mechanics is a theory with one deformation parameter ~, while string theory is a
theory with two. The first deformation parameter of string theory is the world-
sheet coupling constant α′, which measures the essential non-locality of the string,
and is responsible for the organization of perturbative string theory [8]. The second
deformation parameter of string theory is the string coupling constant gs, which
controls the non-perturbative aspects of string theory, such as D-branes and related
membrane-like solitonic excitations, and the general non-perturbative string field
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theory [52]. Therefore, string theory can be expected to be more ‘quantum’ in
some sense than canonical quantum mechanics, given the presence of the second
deformation parameter.

As previously mentioned, super-quantum correlations point to a non-locality which
is more non-local, so to speak, than the non-locality of quantum mechanics and
quantum field theory. However, quantum field theories are actually local theories,
and true non-locality is expected only in theories of quantum gravity. That quantum
gravity must be non-local stems from the requirement of diffeomorphism invariance,
as has been known from the pioneering days of that field [53]. So, by looking at string
theory, which should contain quantum gravity, it is possible that we can encounter
specific consequences of non-locality with which we can use to construct our model.

1.3.2 Guidance from String Theory

Given that a super-quantum theory is may be more ‘quantum’ than ordinary quan-
tum mechanics, let us now consider the the extreme quantum limit of quantum
mechanics, ~ → ∞. Therefore, the ~ → ∞ limit of quantum mechanics may also
be a sensible theory, but at the same time quite different from quantum mechanics.
After all, if the ~ → 0 limit is to recover classical mechanics, with the Bell bound
of XBell = 2, and apparently quite different from quantum mechanics, it may not be
too farfetched to conjecture that the ~ → ∞ limit would flow to a super-quantum
theory, with the super-quantum bound of X = 4.

What would the ~ → ∞ limit mean from the point of view of the path integral?
Given that the path-integral measure is eiS/~, in the ~ → ∞ limit this measure will
be unity for any S, and all histories in the path integral contribute with equal unit
weight. Similarly all phases, measured by eiS/~, will be washed out. Because the
phases are washed out, we cannot distinguish between |B〉+ |B′〉 and |B〉 − |B′〉 as
−1 = eiπ and can be absorbed into a phase of |B′〉). This suggests∥∥∥ |B〉 ± |B′〉∥∥∥ =

∥∥∥|B〉∥∥∥+
∥∥∥ |B′〉∥∥∥ , (1.62)

which, if applied to the proof of the Cirel’son bound given earlier, leads to the super-
quantum bound of 4. This property is similar to what was obtain by replacing the
`2 norm with an `1 (or `∞) norm, cf. Eq. (1.61), but presumably, unlike the change
of norm, this relation is independent of the choice of basis. This argument seems to
suggest that the ~→∞ limit is indeed super-quantum.
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However, this observation is perhaps a bit naive since the proof of the Cirel’son
bound itself may no longer be valid under the washed-out of all phases. Let us
invoke here an optical-mechanical analogy: geometric optics is the zero wavelength
limit of electromagnetism, which would correspond to the ~ → 0 limit of quantum
mechanics. The ~→∞ limit of quantum mechanics would therefore correspond the
extreme near field limit of electromagnetism, and in that case, the superposition of
waves is washed out. Note also, that from a geometric point of view, the holomorphic
sectional curvature 2/~ of the projective Hilbert space CPN of canonical quantum
mechanics goes to zero as ~ → ∞, and CPN becomes just CN . For a general
discussion of the geometry of quantum theory and its relevance for quantum gravity
and string theory, see [35]. From these observations, it is clear that the usual Born
rule to obtain probabilities will no longer apply.

But before we ask what rule should replace that of Born, let us confront the obvious
problem that in the limit ~ → ∞, only the ground state of the Hamiltonian will
remain in the physical spectrum and the theory will be rendered trivial. This can
also be argued via the general Feynman-Schwinger formulation of quantum mechanics
[54]:

δS ψ = i~ δψ . (1.63)

By taking the ~ → ∞ limit, we eliminate the classical part δS, so that we are left
only with δψ = 0 and thus ψ must be a constant ψ ≡ |ψ|, a trivial result.

Could the ~ → ∞ limit of quantum mechanics be made less-than-trivial? Consider
the corresponding α′ →∞ and gs →∞ limits in string theory. In the α′ →∞ limit
of string theory, as opposed to the usual α′ → 0 field theory limit, one seemingly
ends up with an infinite number of fields and a non-trivial higher spin theory [55].

The gs →∞ limit of string theory appears in the context of M-theory, one of whose
avatars arises in the gs → ∞ limit of type-IIA string theory [52]. Neither the high
spin theory, nor the avatars of M-theory are trivial, the presence of the tunable
second deformation parameter saving them from triviality. Thus, the introduction
of a second tunable parameter into quantum mechanics, perhaps something related
to Newton’s gravitational constant GN , may be necessary for the limit ~→∞ to be
non-trivial.

Another issue here is that of interpretation: in the classical (~ → 0) case we have
one trajectory, and one event (position, for example) at one point in time. One
could speculate that the super-quantum (~ → ∞) limit would correspond to the
complement of all other virtual trajectories. A general linear map relating virtual
and classical trajectories is presumably non-symmetric (there are in principle more
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possibilities than actual events). Very naively, one would then expect that if we
impose the condition that all possible events can be ‘mapped’ to actual events, we
could end up with a symmetric linear map corresponding to quantum theory (~ ∼ 1),
with a natural ‘map’ between the actual events and possibilities, presumably realized
by the Born probability rule. Note that according to this scenario, the super-quantum
theory would correspond essentially to a theory of possibilities and without actual
events, so interpretation may be difficult.

Also, one could imagine the existence of a new experimental ‘knob’ needed to test
a doubly quantized approach to super-quantum correlations. In the classic experi-
mental tests of the violation of Bell’s inequalities [39], such a ’knob’ is represented
by the relative angle between polarization vectors of entangled photos. If we have
another quantization, there should be, in principle, another angle-like “knob.” Thus,
the usual one dimensional data plot [39] should be replaced by a two dimensional
surface. By cutting this surface at various values of the new, second angle, we should
be able to obtain one dimensional cuts for which the value of the CHSH bound varies
depending on the cut: exceeding 2

√
2 in some cases, and perhaps not exceeding 2 in

others. Thus, the second “knob” may very well allow us to interpolate between the
classical, quantum, and superquantum cases.

Putting this insight together, we are lead to believe that a toy model of supercorrela-
tions should possibly contain 1) some increased degeneracy in the phases structure,
and 2) some extra degree or parameter of quantization, while 3) possibly containing
interpretational issues with regards to probabilities.

Before discussing our progress in the search for such a toy model, it should be men-
tioned that though normally correlations are thought of in the context of quan-
tum communication and information, signatures of supercorrelations could manifest
themselves elsewhere, such as in cosmology. The current understanding of the large
scale structure of the universe, i.e. the distribution of galaxies and galaxy clusters,
is that they are seeded by quantum fluctuations in the early universe. In standard
calculations, it is assumed that the quantum correlations of these fluctuations are
Gaussian,though non-Gaussian correlations have also been considered. If there were
to exist correlations in the early universe that were in fact super-quantum, their
signature could appear as some type of deviation from the standard predicted large
scale structure based on Gaussian correlations.
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1.3.3 Galois Fields

A key piece of inspiration came from a paper by Nambu [56], in which he was describ-
ing the possibility of defining quantum field theory on a special type of discretized
position space. He chose to let position be an element of a Galois field, as opposed
to the usual real number field.

Galois fields are group theoretic generalizations of the real and complex numbers
in which the normal operations of arithmetic are definable, though, not all of the
normal rules apply. Specifically, there is an identification of elements via the modulo
operation that turns regular arithmetic into modular arithmetic. Once the modular
arithmetic is suitably restricted, to avoid zero having nonzero factorizations and
similar problems, by defining equivalence to be with respect to the modulo operation
involving a prime number of the power of a prime number, spaces containing only
a finite number of elements, but having many of the usual properties of the real
numbers, can be constructed. The sizes of the spaces are essentially determined by
the primes and powers chosen for the modulo relation. See Ref. ([57]) for a complete
introduction to finite fields.

A property of lengths on these spaces that Nambu noted, while long known in math-
ematics, became the centerpiece for our analysis. Namely, as a consequence of Fer-
mat’s Little Theorem:

(a+ b)p = a+ b = ap + bp mod p , (1.64)

which looks similar to the attempted modified norm in Ref. [50], discussed earlier.

As will be explained at length in Chapter 3, to try to implement this norm in as
simple of a way as possible, we took the Galois fields to be the base number space on
which vector fields are defined. Using these vector fields to replace the normal Hilbert
spaces, we were able to construct toy models that 1) contained the discreteness of
the underlying number field, 2) had large degeneracies in the phase structure arising
from the modular arithmetic, and not surprising 3) have to be interpreted carefully
in order to yield a theory that could be called both physical and quantum.

The resulting models lead to some surprising conclusions. In the simplest models,
the CHSH correlations had a maximum value of 2, even though the predictions it
generates can be argued to be not reproducible by classical theories. This line of
arguments follows those set out in the Kochen-Specker theorem [58] and developed
in the context of correlations by Hardy [59] and Greenberger, Horne, Shimony, and
Zeilinger [60]; the gist of which is that the entanglement of variables in quantum
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mechanics lead to predictions that are logically inconsistent from a classical perspec-
tive. Thus, the roles of the Bell/CHSH bound and the Cirel’son bound as indicators
for what is a classical or quantum theory are called into question.

In a slightly less simple model, the base number field of the vector spaces is extended
to include numbers that are analogous to complex numbers. Concepts similar to
Hermiticity and unitarity are uncovered, though, difficulty is had in interpreting
the predictions of these models in terms of probabilities, though, this difficulty is
addressed by forgoing a rigidly probabilistic interpretation. These models are also
logically distinguishable from classical theories and have states whose CHSH correla-
tor value is 4. Extending the mathematical structures encountered in these particular
models to function spaces is currently in progress, with the hope of recovering the
previous results while making connections to ’real’ systems, as opposed to abstracted,
toy systems.



Chapter 2

Minimal Length through Modified
Commutation Relations

2.1 Background

The beginnings of the following analysis can be traced to the work of Kempf during
the 90’s. Specifically, while studying Bargmann-Fock representations of quantum
group symmetric Heisenberg algebras [23], he demonstrated that the deformation
of the commutation relations between position and momentum operators that is
induced by the quantum group deformation of the Heisenberg algebra leads to min-
imum values of the uncertainties of those operators.

In that paper, Kempf begins by constructing q-deformed creation and annihilation
operators, â and â†, and then, by ansatz, writes the position and momentum oper-
ators as particular linear combinations of â and â†. In one dimension, these look
like

x̂ = L(â+ â†), p̂ = K(â− â†) (2.1)

where

K =
~

4L
(q2 + 1). (2.2)

The minimum values of the uncertainties of these operators are found to be

∆x0 = L
√

(q2 − 1)/q2, ∆p0 = K
√

(q2 − 1)/q2. (2.3)

With this identification, and the assumption that the product ∆x0∆p0 is significantly

25
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smaller than ~/2, the commutation relation between x̂ and p̂ can be written

[x̂, p̂] = i~ +
4i

~
(
x̂2(∆p0)2 + p̂2(∆x0)2)

)
. (2.4)

This was followed by Kempf, Mangano, and Mann [18], in which the authors began
by finding a Hilbert space representation for the position and momentum operators
that obeyed the assumed relation

[ x̂, p̂ ] = i~(1 + βp̂2). (2.5)

As can be seen by comparing Eq. (2.4) and Eq. (2.5), ∆p0 is expected to be zero and
∆x0 is expected to be proportional to ~

√
β.

This modification allows for the modeling of systems which obey the minimal length
uncertainty relation (MLUR), as described in [19]:

∆x ≥ ~
2

(
1

∆p
+ β∆p

)
. (2.6)

The exact form of the momentum space representations used are as follows:

x̂ = i~ (1 + βp2)
∂

∂p
,

p̂ = p . (2.7)

They then calculated the energy eigenvalues and eigenstates for a 1-d harmonic
oscillator and found them to be

En = ~ω
(
n+

1

2

)(
1

4
√
r

+

√
1 +

1

16r

)
+ ~ω

n2

4
√
r

(2.8)

and

ψn(p) ∝ 1

(1 + βp2)
√
q+rn

F

(
an,−n; cn;

1

2
+ i

√
β

2
p

)
(2.9)

where

r = (4m2ω2~2β2)−1,
√
q + rn =

1

2
(n+

1

2
) +

1

4

√
1 + 16r,

an = −n−
√

1 + 16r,

cn = 1− 2
√
q + rn, (2.10)
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and F () is a hypergeometric function.

Chang, Minic, Okamura, and Takeuchi were able to markedly simplify the solution
from [18] and were thus able to extend it to an n-dimensional harmonic oscillator
[64].

The analysis in the remainder of this chapter takes a detailed look at the 1-d case of
the solution from [64]. We’ll start by recalling pertinent details of the 1-d harmonic
oscillator in canonical quantum mechanics. The solutions from [64] will then be
given explicitly while being extended to the case of negative mass, the uncertainties in
position and momentum will be calculated explicitly, and all results will be compared
to their classical counterparts. The key findings from this analysis were published in
[65].

This analysis was performed mainly to study the behavior of the uncertainty relations
while they are under the influence of this particular form of minimal length scale.
Specifically, we were looking to find states for which the uncertainties in position and
momentum are proportional, as mentioned in the last chapter, and as could naively
be expected from examination of Fig. 1.1.

An unexpected result was the appearance of physical bound states for an anharmonic
oscillator, as there are not usually physical solutions for that potential in canonical
quantum mechanics. Not only was their existence surprising, these states are pre-
cisely the states with the uncertainty behavior we were looking for. It will be exciting
to study this relationship in the future.

2.2 Canonical Harmonic Oscillators

As stated in the introduction, we have modified the canonical commutation relations
between x̂ and p̂ and then studied the effect this has in the context of the usual
harmonic oscillator. Before we begin to look at the details of that study, we should
refresh our memory on what happens in the canonical case. The following is a brief
overview that can be found in any suitable introductory text on the subject, such as
Shankar [61] or Schwabl [62].

In canonical quantum mechanics, the relation between the operators that represent
position and momentum can be specified by the following commutation relation:

[ x̂, p̂ ] = i~ (2.11)
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We then recognize that suitable representations for these operators, when acting on
a Hilbert space, are

x̂ = x,

p̂ = i~
∂

∂x
. (2.12)

since

[ x̂, p̂ ]ψ(x) = xi~
∂

∂x
ψ(x)− i~ ∂

∂x
xψ(x)

= xi~
∂

∂x
ψ(x)− i~ψ(x)− i~x ∂

∂x
ψ(x)

= i~ψ(x) (2.13)

The Schrödinger equation for a harmonic oscillator is then

E ψ(x) =

(
p̂2

2m
+
kx̂2

2

)
ψ(x)

= − ~2

2m

∂2

∂x2
ψ(x) +

kx2

2
ψ(x) (2.14)

where E is the total energy of the particle, m is the particle’s mass, and k is the
spring constant. Proceeding with the solution, we can write that

−2mE

~2
ψ(x) =

∂2

∂x2
ψ(x)− mkx2

~2
ψ()

−ε ψ(x) =
∂2

∂x2
ψ(x)− x2

a4
ψ(x) (2.15)

where we have defined

ε =
2mE

~2
, a =

[
~2

k|m|

]1/4

. (2.16)

Though the absolute value seems out of place, as the mass should never be negative,
we’ll use this definition in anticipation of later analysis. Collecting terms, we see
that

∂2

∂x2
ψ(x) +

(
−x

2

a4
+ ε

)
ψ(x) = 0 (2.17)

By substituting y = x/a, the equation becomes

∂2

∂y2
ψ(y) + (a2ε− y2)ψ(y) = 0 (2.18)
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If we replace ψ(y) with φ(y)e−y
2/2 and use a prime to indicate derivatives, this

equation will transform into the eigenvalue equation

ψ′′(y)− 2yψ′(y) = −(a2ε− 1)ψ(y) (2.19)

The equation has solutions when a2ε − 1 is an even integer and those solutions are
the Hermite polynomials, Hn(y):

εn =
2n+ 1

a2
, ψn(x) ∝ e−x

2/2a2Hn(x/a) (2.20)

Utilizing the orthogonality relation between the Hermite polynomials,∫ +∞

−∞
e−x

2

Hn(x)Hm(x)dx = 2nn!
√
πδnm, (2.21)

we find that the normalized energy eigenstates are

ψn(x) = (2nn!
√
πa)−1/2e−x

2/2a2Hn(x/a). (2.22)

To calculate the uncertainties in position and momentum, it is easiest to use the
creation and annihilation operators, â and â†, which in this case are given by:

â =

√
kmx̂+ ip̂√
2
√
km~

, â† =

√
kmx̂− ip̂√
2
√
km~

(2.23)

These operators have the following effects on energy eigenstates:

â†ψn(x) =
√
n+ 1 ψn+1(x),

â ψn(x) =
√
n ψn−1(x). (2.24)

Rewriting â and â† in terms of x̂ and p̂ yields

x̂ =

√
~

2
√
km

(â+ â†), p̂ = −i

√
~
√
km

2
(â− â†). (2.25)

Using Dirac notion, ψn(x) = |n〉, we see that the moments and uncertainty of x̂ in
an energy eigenstate are

〈n| x̂ |n〉 =

√
~

2
√
km
〈n| (â+ â†) |n〉

=

√
~

2
√
km

(
√
n〈n|n− 1〉+

√
n+ 1〈n|n+ 1〉)

= 0, (2.26)
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〈n| x̂2 |n〉 =
~

2
√
km
〈n| (â2 + â†â+ ââ† + â†2) |n〉

=
~

2
√
km

(√
n
√
n− 1〈n|n− 2〉

+((n+ 1) + n)〈n|n〉+
√
n+ 1

√
n+ 2〈n|n+ 2〉

)
=

~
2
√
km

(2n+ 1),

and

(∆x)2 = 〈x2〉 − 〈x〉2 =
~

2
√
km

(2n+ 1). (2.27)

Likewise, the moments and uncertainty of p̂ in an energy eigenstate are

〈n| p̂ |n〉 = −i

√
~
√
km

2
〈n| (â− â†) |n〉

= −i

√
~
√
km

2
(
√
n〈n|n− 1〉 −

√
n+ 1〈n|n+ 1〉)

= 0, (2.28)

〈n| p̂2 |n〉 = −~
√
km

2
〈n| (â2 − â†â− ââ† + â†2) |n〉

= −~
√
km

2

(√
n
√
n− 1〈n|n− 2〉

−((n+ 1) + n)〈n|n〉+
√
n+ 1

√
n+ 2〈n|n+ 2〉

)
=

~
√
km

2
(2n+ 1),

and

(∆p)2 = 〈p2〉 − 〈p〉2 =
~
√
km

2
(2n+ 1). (2.29)

Note that when the mass or the spring constant are changed to be negative in
Eq. (2.14), making the harmonic oscillator into an anharmonic one, the resulting
differential equations are solved by complex-indexed parabolic cylinder functions.
These functions are not square-integrable for real values of the energy, which im-
plies that there are no physical states that correspond to these negative parameter
variants of the harmonic oscillator potential in canonical quantum mechanics.
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2.3 Energy Eigenstates of The Deformed Harmonic

Oscillator

We begin the consideration of the effects of the modified commutation relations by
starting with the same quadratic harmonic oscillator potential. The Schrödinger
equation for the harmonic oscillator in the representation from Eq. (2.7) is

Ĥ Ψ(p) =

[
kx̂2

2
+

p̂2

2m

]
Ψ(p) = EΨ(p),[

−~2k

2

{
(1 + βp2)

∂

∂p

}2

+
p2

2m

]
Ψ(p) = EΨ(p) . (2.30)

At this point, it is not assumed that m > 0, so the kinetic energy term can potentially
contribute with either sign. While this seems an arbitrary thing to do, as has been
mentioned before, it will be of interest shortly.

This differential equation is rendered manageable with the help of the following
variable transformation from [64]: p maps to ρ via

ρ ≡ 1√
β

arctan(
√
βp) , (2.31)

which maps the region −∞ < p <∞ to

− π

2
√
β
< ρ <

π

2
√
β
. (2.32)

The x̂ and p̂ operators are then

x̂ = i~
∂

∂ρ
,

p̂ =
1√
β

tan(
√
βρ) , (2.33)

and the inner product in momentum space is

〈φ|ψ〉 =

∫ π/2
√
β

−π/2
√
β

dρ φ∗(ρ)ψ(ρ) . (2.34)

Note that x̂ now resembles the usual representation of the momentum operator,
but for ρ, and is thus the wave-number operator in ρ-space. This implies that the
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Fourier coefficients of the wave-function in ρ-space may be interpreted as providing
the probability amplitudes for a discretized x-space.

In ρ-space, Eq. (2.30) becomes:[
−~2k

2

∂2

∂ρ2
+

1

2mβ
tan2

√
βρ

]
Ψ(ρ) = EΨ(ρ) . (2.35)

Under this transformation, the usual potential energy term, kx̂2/2, effectively be-
comes the kinetic energy term, and the usual kinetic energy term, p̂2/2m, effectively
becomes the potential energy term. Explicitly, we now have a tangent-squared po-
tential which is ‘inverted’ when 1/m < 0.

The following dimensionless parameters and dimensionless variable help to simplify
later analysis:

κ ≡
[
β2~2k|m|

]1/4
=

∆xmin

a
,

ε ≡ 2|m|Eβ
κ2

,

ξ ≡
√
βρ

κ
; (2.36)

where the length-scale a was introduced in Eq. (2.16). As m is no longer assumed
to be positive, the absolute value of m will be used for clarity. The constant κ is a
ratio comparing the characteristic length of the harmonic oscillator to the minimal
length while ε is the energy of the harmonic oscillator appropriately scaled by said
ratio. The dimensionless variable ξ is the appropriately scaled kinematic variable,
which is constrained to the range

− π

2κ
< ξ <

π

2κ
. (2.37)

The ξ-space inner product is

〈φ|ψ〉 =
κ√
β

∫ π/2κ

−π/2κ
dξ φ∗(ξ)ψ(ξ) . (2.38)

Since the integral in the inner product in ξ-space is dimensionless, the dimension of
the inner product is contained in the prefactor, 1/

√
β.

After these substitutions, the Schrödinger equation is now[
∂2

∂ξ2
∓ 1

κ2
tan2 κξ + ε

]
Ψ(ξ) = 0 , (2.39)
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where the minus sign in front of the tangent-squared potential is for the case m > 0,
and the plus sign for the case m < 0.

Let Ψ(ξ) = cλ f(s), where s ≡ sinκξ, c ≡ cosκξ =
√

1− s2, and λ is a constant to
be determined. The variable s is in the range

−1 < s < 1 , (2.40)

with inner product given by

〈φ|ψ〉 =
1√
β

∫ 1

−1

ds

c
φ∗(s)ψ(s) . (2.41)

When written in terms of s and f(s), Eq. (2.39) becomes

(1− s2)f ′′ − (2λ+ 1) s f ′

+

[{
ε

κ2
− λ
}

+

{
λ(λ− 1)∓ 1

κ4

}
s2

c2

]
f = 0 .

(2.42)

The parameter λ can be determined by requiring that the coefficient of the tangent-
squared term should vanish:

λ(λ− 1)∓ 1

κ4
= 0 . (2.43)

This is done so that the tangent-squared term, and its singularity at κξ = ±π/2, is
removed from the equation. The solutions for λ are

λ =


1

2
+

√
1

4
+

1

κ4
≡ λ+ (m > 0) ,

1

2
+

√
1

4
− 1

κ4
≡ λ− (m < 0) ,

(2.44)

where we have chosen the branches for which λ ≥ 1/2 to prevent the inner-product,
Eq. (2.41), from becoming infinite at the domain boundaries.

Note that 1 < λ+ while 1
2
≤ λ− < 1, and that λ± → 1 in the limit κ2 = β~

√
k|m| →

∞. The dependence of λ± on κ2 is shown in Fig. 2.1. The λ− branch does not extend
below κ2 = 2.

Setting λ = λ+ for m > 0, and λ = λ− for m < 0 simplifies Eq. (2.42) to

(1− s2) f ′′ − ( 2λ+ 1 ) s f ′ +
( ε
κ2
− λ
)
f = 0 , (2.45)
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Figure 2.1: Plots of λ+ (blue) and λ− (red), Eq. (2.44), as functions of κ2 = β~
√
k|m|.

the sign of m being encoded in the value of λ. Since f(s) should be non-singular at
s = ±1, we demand a polynomial solution to Eq. (2.45). This requirement imposes
the following condition on the coefficient of f :

ε

κ2
− λ = n (n+ 2λ ) , (2.46)

where n is a non–negative integer [67].

Eq. (2.45) becomes

(1− s2)f ′′ − ( 2λ+ 1 ) s f ′ + n (n+ 2λ ) f = 0 , (2.47)

the solution of which is given by the Gegenbauer polynomial:

f(s) = Cλ
n(s) . (2.48)

The Gegenbauer polynomials satisfy the following orthogonality relation:∫ 1

−1

c2λ−1Cλ
n(s)Cλ

m(s) ds =
2π Γ(n+ 2λ)

[ 2λΓ(λ) ]2 n! (n+ λ)
δnm . (2.49)
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The energy eigenvalues follow from the condition Eq. (2.46). Replacing λ with λ±,
we find

ε(±)
n = κ2

[
n2 + (2n+ 1)λ±

]
=

n2 + (2n+ 1)λ±√
λ±
∣∣λ± − 1

∣∣
= κ2

(
n2 + n+

1

2

)
+ (2n+ 1)

√
κ4

4
± 1 ,

(2.50)

or in the original dimensionful units,

E(±)
n =

1

2β|m|
n2 + (2n+ 1)λ±

λ±
∣∣λ± − 1

∣∣
= ~ω

[(
n+

1

2

)√
β2m2~2ω2

4
± 1

+

(
n2 + n+

1

2

)
β|m|~ω

2

]
=

k

2

[(
n+

1

2

)√
(∆xmin)4 ± 4a4

+

(
n2 + n+

1

2

)
(∆xmin)2

]
,

(2.51)

where ω =
√
k/|m|.

For the m > 0 case, we can take the limit ∆xmin = ~
√
β → 0, and we recover

lim
∆xmin→0

E(+)
n = ka2

(
n+

1

2

)
= ~ω

(
n+

1

2

)
(2.52)

as was found earlier in the chapter for the canonical harmonic oscillator.

For the m < 0 case, it is clear that we must have ∆xmin ≥
√

2a for the square-root
in Eq. (2.51) to remain real. Therefore, the limit ∆xmin = ~

√
β → 0 cannot be taken

in this case for non-zero a.

The two cases converge when |m| → ∞, at which a = 0, and we find that the energy
levels in that limit are

lim
|m|→∞

E(±)
n =

k

2
(∆xmin)2(n+ 1)2 . (2.53)
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Figure 2.2: λ-dependence of the wave-functions of the first few energy eigenstates.
The λ > 1 values correspond to m > 0, while the 1

2
≤ λ < 1 values correspond to

m < 0. The λ = 1 case corresponds to the limit |m| → ∞.
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Thus, the 1/m > 0 and 1/m < 0 cases connect smoothly at 1/m = 0.

The normalized energy eigenfunctions are thus given by:

Ψ(λ)
n (p) = N (λ)

n cλCλ
n(s) , (2.54)

where

N (λ)
n = 4

√
β

[
2λΓ(λ)

√
n! (n+ λ)

2π Γ(n+ 2λ)

]
,

c = cos
√
βρ =

1√
1 + βp2

,

s = sin
√
βρ =

√
βp√

1 + βp2
. (2.55)

The wave-functions for the first few energy eigenstates for several representative
values of λ are shown in Figs. 2.2.

Comparing Eq. (2.51) and Eq. (2.54) with Eq. (2.8) and Eq. (2.9) show how much
simplification is achieved through the variable transformation in Eq. (2.31).

Using the wave-functions derived above, and the formula provided in the appendix,
the expectation values of x̂, p̂, x̂2, and p̂2 for the energy eigenstates are found to be

〈n, λ| x̂ |n, λ〉 = 0 ,
〈n, λ| p̂ |n, λ〉 = 0 ,

〈n, λ| x̂2 |n, λ〉 = (~2β)
(λ+ n)

[
(2λ− 1)n+ λ

]
(2λ− 1)

,

〈n, λ| p̂2 |n, λ〉 =
1

β

(
2n+ 1

2λ− 1

)
, (2.56)

giving the uncertainties in 〈x̂〉 and 〈p̂〉 as

∆xn = ∆xmin

√
(λ+ n)

[
(2λ− 1)n+ λ

]
(2λ− 1)

,

∆pn =
1√
β

√
2n+ 1

2λ− 1
. (2.57)

For fixed n and fixed β, ∆xn is a monotonically decreasing function of λ in the range
1
2
< λ < 1, and a monotonically increasing one in the range 1 < λ. On the other
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hand, ∆pn is a monotonically decreasing function of λ throughout. Eliminating λ
from the above expressions, we find

∆xn
∆xmin

=
1

2
√
β∆pn

√[
1 + β∆p2

n

][
(2n+ 1)2 + β∆p2

n

]
≥ 1

2

(
1√
β∆pn

+
√
β∆pn

)
, (2.58)

where the equality in the second line is saturated for the n = 0 case only. The first
line gives the curve on the ∆p-∆x plane that the point (∆pn,∆xn) follows as λ is
varied.

Differentiating with respect to ∆pn we find

d

d(∆pn)

[
∆xn

∆xmin

]
=

β2∆p4
n − (2n+ 1)2

2
√
β∆p2

n

√[
1 + β∆p2

n

][
(2n+ 1)2 + β∆p2

n

] , (2.59)

indicating that the curve is flat at the λ = 1 point where ∆pn =
√

(2n+ 1)/β and
∆xn reaches its minimum of ∆xmin(n + 1). Therefore, the λ = 1 point is the turn-
around point where the uncertainties switch from the ∆x ∼ 1/∆p behavior to the
∆x ∼ ∆p behavior. To go from one branch to another one must flip the sign of the
mass m.

Eliminating n from Eq. (2.57), we find

∆xn
∆xmin

=
1

2

√
(1 + β∆p2

n)
[
1 + (2λ− 1)2β∆p2

n

]
. (2.60)

This gives the curve on which the points (∆pn,∆xn) fall on for constant λ. In
particular, for λ = 1 this reduces to

∆xn
∆xmin

=
1 + β∆p2

n

2
, (2.61)

and gives the 1/m = 0 boundary between the 1/m > 0 and 1/m < 0 regions in
∆x-∆p space. These properties of the uncertainties have been plotted in Fig. 2.3.

As shown in Fig. 2.3, the value of λ determines where the uncertainties (∆pn,∆xn)
are along their trajectories given by Eq. (2.58), with λ > 1 keeping the uncertainties
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on the ∆x ∼ 1/∆p branch of the trajectory, while 1
2
< λ < 1 keeping them on the

∆x ∼ ∆p branch. Let us consider a few limiting values of λ to see the behavior of
the solutions there.

Figure 2.3: ∆p versus ∆x for the lowest six energy eigenstates of the harmonic
oscillator. ∆x is in units of ∆xmin = ~

√
β, while ∆p is in units of 1/

√
β = ~/∆xmin.

The location of the state along the curves shown is determined by the value of λ
defined in Eq. (2.44). The λ = 1 points correspond to the case 1/m = 0. As 1/m is
increased to the positive side, the value of λ will increase away from one and the state
will move toward the left along the ∆x ∼ 1/∆p branch. If 1/m is decreased into the
negative, the value of λ will decrease toward 1/2, and the state will move toward the
right along the ∆x ∼ ∆p branch. The n = 0 curve (shown in red) corresponds to
the minimal length uncertainty bound, Eq. (2.6).
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2.4 Limiting Cases: λ→∞

The β → 0 limit only exists for the m > 0 case where λ = λ+. As β → 0, the
parameter λ+ diverges to infinity as

λ = λ+ ∼
1

m~ωβ
β→0−−→ ∞ , (2.62)

where ω =
√
k/m. In that limit, the Gegenbauer polynomials become Hermite

polynomials:
lim
λ→∞

n!λ−n/2Cλ
n(x/
√
λ) = Hn(x) . (2.63)

Noting that as β → 0, we have

s ∼
√
βp ∼ p√

λm~ω
, (2.64)

we can conclude that

lim
λ→∞

n!λ−n/2Cλ
n(s) = Hn

(
p√
m~ω

)
. (2.65)

Similarly,

lim
λ→∞

cλ = lim
λ→∞

(
1− p2

λm~ω

)λ/2
= exp

(
− p2

2m~ω

)
. (2.66)

Using Stirling’s formula

Γ(z) ∼
√

2π e−zzz−(1/2) + · · · (2.67)

the normalization constant can be shown to converge to

lim
λ→∞

N (λ)
n

λn/2

n!

= lim
λ→∞

4
√
β

[
2λΓ(λ)

√
n! (n+ λ)

2π Γ(n+ 2λ)

λn/2

n!

]

= lim
λ→∞

4

√
1

µ~ωλ

√
22λ−1λn (n+ λ)

[
Γ(λ)

]2
n! π Γ(n+ 2λ)

= lim
λ→∞

1
4
√
µ~ω

√√√√22λ−1λn−(1/2) (n+ λ)
[√

2π e−λλλ−(1/2)
]2

n! π
√

2π e−n−2λ(n+ 2λ)n+2λ−(1/2)
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= lim
λ→∞

1
4
√
µ~ω

√
22λ−(1/2)λn+2λ−(3/2) (n+ λ)

n!
√
π e−n(n+ 2λ)n+2λ−(1/2)

=
1√

2nn! e−n
1

4
√
µ~ωπ

lim
λ→∞

√
(1 + n/λ)

(1 + n/2λ)n+2λ−(1/2)

=
1√

2nn! e−n
1

4
√
µ~ωπ

√
1

en

=
1√
2nn!

1
4
√
m~ωπ

. (2.68)

Therefore,

lim
λ→∞

Ψ(λ)
n (p)

=
1√
2nn!

1
4
√
m~ωπ

exp

(
− p2

2m~ω

)
Hn

(
p√
m~ω

)
,

(2.69)

which are just the usual harmonic oscillator wave-functions in momentum space, as
shown earlier in the chapter. The energy eigenvalues reduce to the usual ones given
in Eq. (2.52).

Using Eq. (2.62), the uncertainties reduce to the canonical ones from earlier, as
expected:

∆xn = ~
√
β

√
(λ+ n)

[
(2λ− 1)n+ λ

]
(2λ− 1)

= ~

√
(λβ + nβ)

[
(2λβ − β)n+ λβ

]
(2λβ − β)

β→0−−→ ~

√
(λβ)

[
(2λβ)n+ λβ

]
(2λβ)

=

√
~(2n+ 1)

2mω
,

∆pn =
1√
β

√
2n+ 1

2λ+ 1

β→0−−→
√

~mω(2n+ 1)

2
, (2.70)

which satisfy

∆xn∆pn
λ→∞−−−→ ~

(
n+

1

2

)
≥ ~

2
. (2.71)
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2.5 Limiting Cases: λ→ 1

The limit λ = 1 is reached when β and k are kept constant while |m| is taken to infin-
ity. When λ = 1, the Gegenbauer polynomials become the Chebycheff polynomials
of the second kind:

C1
n(s) = Un(s) , (2.72)

where

Un(cos θ) =
sin(n+ 1)θ

sin θ
, (2.73)

while the normalization constant reduces to

N (λ)
n

λ→1−−→ 4
√
β

√
2

π
. (2.74)

Therefore,

lim
λ→1

Ψ
(1)
n (p)
4
√
β

=

√
2

π
cUn(s) . (2.75)

The orthonormality relation for the Chebycheff polynomials is∫ 1

−1

√
1− x2 Un(x)Um(x) dx =

π

2
δnm , (2.76)

and we can see that the correct normalization constant is obtained. Since the ar-
gument in our case is s = sin

√
βρ, it is more convenient to express the Chebycheff

polynomials as

U2n(sin θ) = (−1)n
cos[(2n+ 1)θ]

cos θ
,

U2n+1(sin θ) = (−1)n
sin[(2n+ 2)θ]

cos θ
, (2.77)

for n = 0, 1, 2, · · · . This will allow us to write

lim
λ→1

Ψ
(1)
2n (p)
4
√
β

= (−1)n
√

2

π
cos
[
(2n+ 1)

√
βρ
]
,

lim
λ→1

Ψ
(1)
2n+1(p)

4
√
β

= (−1)n
√

2

π
sin
[
(2n+ 2)

√
βρ
]
.

(2.78)
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The energy eigenvalues in this limit were given in Eq. (2.53). Here, our procedure
of keeping the spring constant k fixed while taking |m| to infinity maintains the
finiteness of En, while taking the kinetic energy contribution to En to zero.

From the n-dependence of the energies, we can see that, in this limit, the problem
reduces to that of an infinite square well potential, of width π/

√
β, in ρ-space. Indeed,

the effective potential in ρ-space was

1

2mβ
tan2

(√
βρ
) m→∞−−−→


0 for ρ 6= ± π

2
√
β
,

∞ at ρ = ± π

2
√
β
.

(2.79)

This can also be seen from the form of the energy eigenfunctions, which have reduced
to simple sines and cosines. We will see in the next section that the classical solution
also behaves as that of a particle in an infinite square well potential in ρ-space in the
same limit.

The uncertainties become

∆xn
λ→1−−→ ∆xmin

(
n+ 1

)
,

∆pn
λ→1−−→

√
(2n+ 1)

β
, (2.80)

as was shown in Fig. 2.3. Note that

~
2

[
1

∆pn
+ β∆pn

]
= ∆xmin

n+ 1√
2n+ 1

≤ ∆xmin

(
n+ 1

)
= ∆xn ,

(2.81)

the bound being saturated only for the ground state n = 0.

2.6 Limiting Cases: λ→ 1
2

The λ → 1
2

limit is reached as ∆xmin →
√

2a when m < 0. In this limit, the

Gegenbauer polynomials become the Legendre polynomials, C
1/2
n (s) = Pn(s), while

the normalization constant reduces to
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N (λ)
n

λ→ 1
2−−−→ 4
√
β

√
2n+ 1

2
. (2.82)

The wavefunctions are

Ψ
(1/2)
n (p)

4
√
β

=

√
2n+ 1

2

√
c Pn(s) . (2.83)

Note that the orthonormality relation for the Legendre polynomials is

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm , (2.84)

so these wave-functions are properly normalized. The integrals for 〈x̂2〉 and 〈p̂2〉
diverge in this limit, so both ∆xn and ∆pn are divergent for all n. However, the
energy, which is the difference between k〈x̂2〉/2 and 〈p̂2〉/2|m|, stays finite:

E−n =
k

2
(∆xmin)2

(
n2 + n+

1

2

)
. (2.85)

2.7 The Classical Equations of Motion

As we have seen above, for values of β which maintain the inequality ∆xmin = ~
√
β >√

2a, the harmonic oscillator Hamiltonian admits an infinite ladder of positive energy
eigenstates even when m < 0. Furthermore, these are states with finite ∆x and ∆p,
implying that the particle is ‘bound’ close to the phase space origin, just as in the
m > 0 case. But how can a particle be ‘bound’ for an ‘inverted’ harmonic oscillator?
To gain insight into this question, we solve the corresponding classical equation of
motion.

We assume that the classical limit of our commutation relation, Eq. (2.5), is obtained
by the usual correspondence between commutators and Poisson brackets:

1

i~
[ Â, B̂ ] → {A, B } . (2.86)

Therefore, we assume

{x, x } = 0 ,
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{ p, p } = 0 ,
{x, p } = (1 + βp2) . (2.87)

Then, the equations of motion for the harmonic oscillator with Hamiltonian given
by

H =
1

2
kx2 +

1

2m
p2 , (2.88)

are

ẋ = {x, H } =
1

m
(1 + βp2) p ,

ṗ = { p, H } = −k(1 + βp2)x . (2.89)

We allow m to take on either sign: if m > 0, then ẋ and p will have the same sign; if
m < 0 they will have opposite sign. Note that, even though the equations of motion
of x and p have changed, the total energy will still be conserved. Consequently,
the time-evolution of x and p in phase space will be along the trajectory given by
H = constant. For the m > 0 case this will be an ellipse, while for the m < 0 case
this will be a hyperbola.

To solve these equations, we change the variable p to ρ, which was introduced in
Eq. (2.31) for the quantum case. Then, the equations become

ẋ =
1

m
√
β

[
tan(
√
βρ)

cos2(
√
βρ)

]
=

1

2mβ

d

dρ

[
tan2(

√
βρ)
]
,

ρ̇ = −kx . (2.90)

Therefore,

ρ̈ = −kẋ = − k

2mβ

d

dρ

[
tan2(

√
βρ)
]
, (2.91)

Multiplying both sides of the equation with ρ̇, we obtain

ρ̇ρ̈ = − k

2mβ
ρ̇
d

dρ

[
tan2(

√
βρ)
]
, (2.92)

which can be rewritten as

1

2

d

dt

[
ρ̇2
]

= − k

2mβ

d

dt

[
tan2(

√
βρ)
]
, (2.93)

and thus,

ρ̇2 = − k

mβ

[
tan2

(√
βρ
)
− C

]
, (2.94)
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where C is the integration constant. Since we must have ρ̇2 > 0, the range of allowed
values of C will depend on whether m > 0 or m < 0. We will consider the two cases
separately.

2.7.1 m > 0 case

When m > 0, we introduce the angular frequency

ω =

√
k

m
(2.95)

as usual. Then, Eq. (2.94) becomes

β ρ̇2 = ω2

[
C − tan2

(√
βρ
)]
, (2.96)

and taking the square-root, we obtain√
β ρ̇ = ±ω

√
C − tan2(

√
βρ) . (2.97)

In this case, we must have C > 0 for the content of the square-root to be positive.
Separating variables, we obtain

√
β dρ√

C − tan2
(√

βρ
) = ±ω dt . (2.98)

The left-hand side integrates to∫ √
β dρ√

C − tan2(
√
βρ)

=
1√

1 + C
arcsin

[√
1 + C

C
sin
(√

βρ
)]

. (2.99)

Therefore, √
βρ(t)

= arcsin

[√
C

1 + C
sin
{
±
√

1 + C ω(t− t0)
}]
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(2.100)

where t0 is the integration constant. Without loss of generality, we can choose the
sign inside the braces to be ’plus’. Setting t0 = 0, we obtain:

√
βmk x(t) = −

√
β

ω
ρ̇

= −
√
C(1 + C) cos

(√
1 + C ωt

)√
1 + C cos2

(√
1 + C ωt

) ,

√
β p(t) = tan(

√
βρ)

=

√
C sin

(√
1 + C ωt

)√
1 + C cos2

(√
1 + C ωt

) , (2.101)

and the energy is given by

E =
k

2
x(t)2 +

p(t)2

2m

=
1

2βm

[√
βmk x(t)

]2

+
1

2βm

[√
β p(t)

]2

=
C

2βm
> 0 . (2.102)

The period of oscillation T is no longer equal to 2π/ω when β 6= 0. It is now

T =
2π

ω

1√
1 + C

. (2.103)

If we let

A ≡

√
C

βmk
, (2.104)

then

E =
1

2
kA2 , (2.105)
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Figure 2.4: The dependence of the classical behavior of a positive mass particle in a
harmonic oscillator potential on the parameter C = 2mEβ = βm2ω2A2, where E is
the particle’s energy, and A is the amplitude of the oscillation in x. The undeformed
β = 0 case is shown in red. The other four cases are C = 1 (orange), C = 2 (green),
C = 4 (blue), and C = 8 (purple).
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If we take the limit β → 0 while keeping A fixed, we find:

x(t)
β→0−−→ −A cos(ωt) ,

p(t)
β→0−−→ Amω sin(ωt) , (2.106)

which shows that the canonical behavior is recovered in this limit. The behavior of
the solution when β 6= 0 is compared with the β = 0 limit for several representative
values of C in Fig. 2.4.

Another interesting limit is obtained by setting C = 2mEβ and letting m → ∞
while keeping E and β fixed. In that limit,

√
1 + C ω

m→∞−−−→
√

2Eβk =
√
βkA ≡ ω0 , (2.107)

and we find √
β ρ(t)

m→∞−−−→ arcsin
[
sin(ω0t)

]
,√

β p(t)
m→∞−−−→ +

sin(ω0t)

| cos(ω0t)|
,

x(t)/A
m→∞−−−→ − cos(ω0t)

| cos(ω0t)|
. (2.108)

The behavior of the solution in this limit is shown in Fig. 2.5. The motion of a particle
in an infinite square well potential (in ρ-space) is reproduced, in correspondence to
the quantum λ→ 1 limit.

2.7.2 m < 0 Case

For the m < 0 case, by an abuse of notation, let us set

ω =

√
k

|m|
. (2.109)

Then, Eq. (2.94) becomes

β ρ̇2 = ω2

[
tan2

(√
βρ
)
− C

]
. (2.110)

The integration constant C can have either sign in this case. We will consider the
three cases C < 0, C > 0, and C = 0 separately.
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Figure 2.5: The classical behavior of a positive mass particle in a harmonic oscillator
potential with modified Poisson brackets, Eq. (2.87), in the limit m → ∞ with
C = 2mEβ where E and β are kept fixed. ρ(t) and x(t) take on the behavior of the
position and momentum of a particle in an infinite square well.
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C < 0 (positive energy) case

For the C < 0 case, the square-root of Eq. (2.110) gives us√
β ρ̇ = ± ω

√
tan2(

√
βρ) + |C| . (2.111)

Therefore, √
β dρ√

tan2
(√

βρ
)

+ |C|
= ± ω dt . (2.112)

The left-hand side integrates to∫ √
β dρ√

tan2(
√
βρ) + |C|

=



1√
|C| − 1

arcsin

[√
|C| − 1

|C|
sin
(√

βρ
)] (

|C| > 1
)

sin
(√

βρ
) (

|C| = 1
)

1√
1− |C|

arcsinh

[√
1− |C|
|C|

sin
(√

βρ
)] (

|C| < 1
)

(2.113)

Therefore,

sin
(√

βρ(t)
)

=



√
|C|
|C| − 1

sin
[
±
√
|C| − 1 ω(t− t0)

] (
|C| > 1

)
± ω(t− t0)

(
|C| = 1

)√
|C|

1− |C|
sinh

[
±
√

1− |C| ω(t− t0)
] (
|C| < 1

)
(2.114)

where t0 is the integration constant, which we will set to zero in the following. From
this, we find:√

β|m|k x(t) = −
√
β

ω
ρ̇
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=



∓
√
|C|(|C| − 1) cos

(
±
√
|C| − 1ω t

)√
|C| cos2

(
±
√
|C| − 1ω t

)
− 1

(
|C| > 1

)
∓ 1√

1− (ω t)2

(
|C| = 1

)
∓
√
|C|(1− |C|) cosh

(
±
√

1− |C|ω t
)√

1− |C| cosh2
(
±
√

1− |C|ω t
) (

|C| < 1
)

√
β p(t) = tan(

√
βρ)

=



√
|C| sin

(
±
√
|C| − 1ω t

)√
|C| cos2

(
±
√
|C| − 1ω t

)
− 1

(
|C| > 1

)
± ω t√

1− (ω t)2

(
|C| = 1

)
√
|C| sinh

(
±
√

1− |C|ω t
)√

1− |C| cosh2
(
±
√

1− |C|ω t
) (

|C| < 1
)

(2.115)

In all three cases, we have

E =
k

2
x(t)2 − p(t)2

2|m|
=

1

2β|m|

[√
β|m|k x(t)

]2

− 1

2β|m|

[√
β p(t)

]2

=
|C|

2β|m|
> 0 . (2.116)

Let

B ≡

√
|C|
β|m|k

. (2.117)

Then

E =
1

2
kB2 , (2.118)

and we can identify B as the distance of closest approach to the origin (aka impact
parameter).
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Figure 2.6: The dependence of the classical behavior of a negative mass particle in
a harmonic oscillator potential on the parameter C = −2µEβ = −β|m|kB2, where
E is the particle’s energy, and B is the distance of closest approach to the origin in
x-space. Note that due to the negative mass, p(t) is negative when ẋ(t) is positive,
and vice versa. The undeformed β = 0 case is shown in red. The other three cases
are C = − 1

16
(orange), C = −1

4
(green), C = −1 (blue), and C = −4 (purple).
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Taking the limit β → 0 while keeping B fixed, we find:

x(t)
β→0−−→ ∓B cosh(±ωt) ,

p(t)
β→0−−→ B|m|ω sinh(±ωt) , (2.119)

which recovers the canonical solution. This behavior of x(t) and p(t) for the β = 0
case is compared with that in the β 6= 0 case for several representative values of C
in Fig. 2.6.

It should be noted that for any finite value of C < 0, it only takes a finite amount
of time for the particle to get from (x, p) = (±∞,±∞) to (x, p) = (±∞,∓∞), or
equivalently, for

√
βρ to evolve from ∓π/2 to ±π/2. We will call this time T/2 for

reasons that will become clear later. T is given by:

T =
4

ω
×



1√
|C| − 1

arccos
1√
|C|

(
|C| > 1

)
1

(
|C| = 1

)
1√

1− |C|
arccosh

1√
|C|

(
|C| < 1

) (2.120)

This dependence on C < 0 is shown in Fig. 2.7.

Figure 2.7: ωT as a function of −C = 2|m|Eβ, where ω =
√
k/|m|, and E is the

particle’s energy. T/2 is the time it takes for the particle to traverse the entire
trajectory.
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C > 0 (negative energy) case

For the C > 0 case, taking the square-root of Eq. (2.110) yields√
β ρ̇ = ± ω

√
tan2

(√
βρ
)
− C . (2.121)

Therefore, √
β dρ√

tan2
(√

βρ
)
− C

= ±ω dt . (2.122)

The left-hand side integrates to∫ √
β dρ√

tan2(
√
βρ)− C

=
1√

1 + C
arccosh

∣∣∣∣∣
√

1 + C

C
sin
(√

βρ
)∣∣∣∣∣ .

(2.123)

Therefore,

sin
(√

βρ(t)
)

= ±
√

C

1 + C
cosh

[
±
√

1 + C ω(t− t0)
]

(2.124)

where t0 is the integration constant, which we will set to zero in the following. The
sign on the argument of the hyperbolic cosine is also irrelevant so we will set it to
plus. From this, we find:

√
β|m|k x(t) = −

√
β

ω
ρ̇

= ∓
√
C(1 + C) sinh

(√
1 + C ω t

)√
1− C sinh2

(√
1 + C ω t

)√
β p(t) = tan(

√
βρ)

= ±
√
C cosh

(√
1 + C ω t

)√
1− C sinh2

(√
1 + C ω t

)
(2.125)
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and

E =
k

2
x(t)2 − p(t)2

2|m|
=

1

2β|m|

[√
β|m|k x(t)

]2

− 1

2β|m|

[√
β p(t)

]2

= − C

2β|m|
< 0 . (2.126)

Let

pmin ≡

√
C

β
. (2.127)

Then

E = − p
2
min

2|m|
, (2.128)

and we can identify pmin as the magnitude of the momentum that the particle has
at the origin x = 0. Taking the limit β → 0 while keeping pmin constant, we find

x(t)
β→0−−→ ∓ pmin

|m|ω
sinh(±ωt) ,

p(t)
β→0−−→ ± pmin cosh(±ωt) . (2.129)

As in the C < 0, the time T/2 it takes for the particle to travel from x = ∓∞ to
x = ±∞ is finite. T is given by:

T =
4

ω
√

1 + C
arcsinh

1√
C
. (2.130)

This dependence on C > 0 is also shown in Fig. 2.7.

C = 0 (zero energy) case

For C = 0, Eq. (2.110) leads to√
β ρ̇ = ± ω tan

(√
βρ
)
, (2.131)

or √
β dρ

tan
(√

βρ
) = ± ω dt , (2.132)
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Figure 2.8: The classical behavior of a zero-energy particle with negative mass in a
harmonic oscillator potential. The particle starts out at x = −∞ at time t = 0 and
asymptotically approaches the origin.



Z. Lewis Chapter 2. Minimal Length 58

which can be integrated easily to yield

ln
∣∣∣sin(√βρ

)∣∣∣ = ± ω (t− t0) , (2.133)

or

sin
(√

βρ
)

= ± e±ω (t−t0) , (2.134)

with all combinations of signs allowed. Set t0 = 0. The solutions for the t > 0 region
are √

β|m|k x(t) = −
√
β

ω
ρ̇ = ± 1√

e2ωt − 1
,

√
β p(t) = tan

(√
βρ
)

= ± 1√
e2ωt − 1

.
(2.135)

The particle starts out at (x, p) = (±∞,±∞) and asymptotically approaches the
origin, taking an infinite amount of time to get there. This behavior is show in
Fig. 2.8.

2.8 Compactification

As we have seen, when m < 0 and β 6= 0, it only takes a finite amount of time for the
particle to traverse the entire classical trajectory as long as the energy of the particle
is non-zero. This means that we must specify what happens to the particle after
it reaches infinity. For this, we could either compactify x-space so that the particle
which reaches x = ±∞ will return from x = ∓∞, in which case the momentum of the
particle will bounce back from infinite walls at p = ±∞, or we could compactify p-
space so that the particle which reaches p = ±∞ will return from p = ∓∞, in which
case the position of the particle will bounce back from infinite walls at x = ±∞.

Here, we choose to compactify x-space so that the |m| → ∞ limit of the m < 0,
C < 0 solution will match the m → ∞ limit of the m > 0, C > 0 solution. This
choice also agrees with the boundary condition we imposed in the quantum case,
in which the wave-function in ρ was demanded to vanish at the domain boundaries
ρ = ±π/2

√
β, which corresponds to placing infinite potential walls there. The m > 0,

C > 0 solution was given by Eq. (2.108). Taking the |m| → ∞ limit of Eq. (2.115)
while keeping B fixed, we find√

|C| − 1ω
m→∞−−−→

√
2Eβk =

√
βkB ≡ ω0 , (2.136)
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Figure 2.9: The periodic behavior of the negative-mass particle in a harmonic oscil-
lator potential in compactified x-space. The example shown is for C = −1.
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and √
β ρ(t)

|m|→∞−−−−→ arcsin
[
sin(±ω0t)

]
,√

β p(t)
|m|→∞−−−−→ +

sin(±ω0t)

| cos(±ω0t)|
,

x(t)/B
|m|→∞−−−−→ ∓ cos(±ω0t)

| cos(±ω0t)|
. (2.137)

which formally agrees with Eq. (2.108), and if graphed will lead to a figure similar
to Fig. 2.5. The one significant difference is, however, that when the particle jumps
from x = ±A to x = ∓A in the m > 0 case it goes through x = 0, while when it
jumps from x = ±B to x = ∓B in the m < 0 case, it must go through x =∞.

By compactifying x-space, all motion when E 6= 0 will become oscillatory through
x =∞, and the T calculated above becomes the oscillatory period. As an example,
we plot the x-compactified solution for C = −1 in Fig. 2.9, for which the period
is T = 4/ω. Note that the period for the m < 0, C < 0 solution in the limit of
|m| → ∞ becomes

lim
|m|→∞

T = lim
|m|→∞

4

ω
√
|C|2 − 1

arccos
1√
|C|

=
2π

ω0

, (2.138)

the arccosine providing a π/2.

2.9 Classical Probablities

Consider the m < 0, C = −2|m|Eβ < 0 case.
√
βρ evolves from −π/2 to π/2 in

time T/2, that is:

T

2
=

∫ T/4

−T/4
dt =

∫ π/2
√
β

−π/2
√
β

dt

dρ
dρ =

∫ π/2
√
β

−π/2
√
β

dρ

ρ̇

=
1

ω

∫ π/2
√
β

−π/2
√
β

√
β dρ√

tan2
(√

βρ
)

+ |C|
. (2.139)

Thus, we can identify

P (ρ) =
2

ωT

√
β√

tan2
(√

βρ
)

+ |C|
(2.140)
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Figure 2.10: Classical probabilities in ρ-, p-, and x-spaces of a negative mass particle
in a harmonic oscillator potential for the case C = −2|m|Eβ = −1. The time
dependence of this solution was shown in Fig. 2.9. Though the trajectory of the
particle is not confined to a finite region of phase space, the classical probabilities of
finding the particle near the phase-space-origin is still finite due to the finiteness of
the time it takes for the particle to traverse the entire trajectory.
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as the classical probability density of the particle in ρ-space. The classical probablity
in p- and x-spaces can be defined in a similar manner:

P (p) = P (ρ)
dρ

dp

=
2

ωT

√
β

(1 + βp2)
√
|C|+ βp2

,

P (x) = P (ρ)
dρ

dx

=
2

T

√
β|m|√

β|m|kx2 − |C|
(
β|m|k2x2 − |C|+ 1

)
=

2

ωT

B2

√
x2 −B2

[
|C|(x2 −B2) +B2

] .
(2.141)

These probability functions are plotted in Fig. 2.10 for the case C = −2|m|Eβ = −1.

Comparing the energies of the quantum and classical solutions given in Eqs. (2.51)
and (2.116), we can conclude that the correspondence is given by the relation

−C =
n2 + (2n+ 1)λ

λ(1− λ)
,

1

2
< λ < 1 . (2.142)

We expect the quantum and classical probabilities to match for large n. As an
example, we take λ = 3

4
and n = 30, which correspond to:

C = −5044 ,

κ =
∆xmin

a
=

1
4
√
λ(1− λ)

=
2
4
√

3
≈ 1.52,

B =

√
|C|
κ2

∆xmin
1�n
≈ n∆xmin = 30 ∆xmin .

(2.143)
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Figure 2.11: Comparison of quantum and classical probabilities in ρ-, p-, and x-spaces
for a negative mass particle in a harmonic oscillator potential for the case λ = 3

4
and

n = 30, which corresponds to the classical C = −2|m|Eβ = −5044. The quantum
distribution in x-space is discrete due to the existence of the minimal length. There
is also some seepage of the probability into classically forbidden regions in x-space
as is expected of quantum probabilities.



Z. Lewis Chapter 2. Minimal Length 64

The comparison of the quantum and classical probabilities for this case in ρ-, p-,
and x-spaces are shown in Fig. 2.11. If we average out the bumps in the quantum
case, it is clear that the distributions agree, up to the typical quantum mechanical
phenomenon of seepage of the probability into energetically forbidden regions. Thus,
the existence of ‘bound’ states with a finite ∆x and ∆p in the quantum case can be
associated with the fact that the particle spends a finite amount of time near the
phase space origin in the classical limit.

2.10 Further Discussion

We have solved for the eigenstates of the harmonic oscillator hamiltonian under
the assumption of the deformed commutation relation between x̂ and p̂ as given in
Eq. (2.5), and successfully calculated the uncertainties in position and momentum
without encountering any analytic incongruities. Though none were expected, as the
analytic structure of the employed representation was shown by Kempf [18] to be
free from anomalies, it is always nice to see the details check out.

To reiterate, for the normal harmonic oscillator with positive mass (1/m > 0), the
eigenstates are found on the ∆x ∼ 1/∆p branch of the MLUR, where decreasing 1/m
leads to larger ∆p, and thus smaller ∆x; the behavior seen in canonical quantum
systems. This leads us to think that we are dealing with a perfectly reasonable,
small-parameter deformation to canonical quantum mechanics.

The question of possible experimental tests has been addressed by Benczik, Chang,
Minic, and Takeuchi in [66] where they analyze the energy eigenstates of the hydrogen
atom under a similar modification of the commutation relations. Unfortunately,
that system provides poor bounds on the size of the minimal length under current
modeling assumptions.

Somewhat surprisingly, 1/m can be decreased through zero into the negative, thereby
‘inverting’ the harmonic oscillator, while still maintaining an infinite ladder of pos-
itive energy eigenstates so long as the condition ∆xmin/

√
2 > a ≡ [ ~2/k|m| ]1/4 is

satisfied. There, the eigenstates are found on the ∆x ∼ ∆p branch of the MLUR,
where decreasing 1/m away from zero further into the negative leads to larger ∆p,
and thus larger ∆x, with both diverging as a approaches the above bound from be-
low. The 1/m = 0 line separating the ∆x ∼ 1/∆p and ∆x ∼ ∆p regions is given by
Eq. (2.61).

One way to understand why the negative mass solutions are being stabilized, is
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by considering what happens to the phase space volume when the commutation
relations are modified. As we saw in Chapter 1, the density of states in the phase
space becomes momentum dependent. As the momentum increases, the density of
states decreases, attenuating the contribution from the high momentum states. This
attenuation is apparently sufficient to allow for the states to be normalizable.

Though the states in the negative mass case have ∆x ∼ ∆p, they are separated from
the ∆x ∼ 1/∆p states by the sign of the mass parameter, and so there seems to be
no interaction between them. This would have been required to study possible mech-
anisms of jamming, and is currently being searched for in other potentials. There are
indications that both states are simultaneously accessible in the free particle case,
but the subtleties of that situation have yet to be explored.

Taking the classical limit by replacing our deformed commutator with a deformed
Poisson bracket, we solved the corresponding classical equations of motion and find
that the solutions for the ‘inverted’ harmonic oscillator are such that the particle
only takes a finite amount of time to traverse its entire trajectory. This leads to a
finite classical probability density of finding the particle near the phase space origin,
and provides another explanation of why ‘bound’ states with discrete energy levels
can be expected in the quantum case. Although compactification was used to make
sense of this ’bound’ behavior, it would be interesting to see if angular motion in a
2D or 3D case could allow for similar ’bound’ behavior in regular space.

One significant difference between the classical and quantum cases is, however, that
the classical system has no restriction on the sign of the energy, whereas the quantum
system only allows for positive energy eigenstates. The latter is guaranteed by the
above mentioned condition on ∆xmin and a. Indeed, the condition is equivalent to

E =
k

2
(∆x)2 − 1

2|m|
(∆p)2 > 0 , (2.144)

when one assumes ∆x ∼ (~β/2)∆p.

Another interesting thing to consider would be the relativistic implications of mod-
ified commutation relations. In our case, when the mass was negative, the classical
equations of motion calls for the particle to move at arbitrarily large speeds. We are
also assuming that Eq. (2.5) embodies the non-relativistic limit of some relativistic
theory with a minimal length. From that perspective, the infinite speed that the
negative-mass particle attains seems problematic.



Chapter 3

Galois Fields as State Spaces

3.1 Background

One of the centerpieces of canonical quantum mechanics is the use of Hilbert spaces
for the state spaces of the theory. This has been formally the case since von Neu-
mann’s work, especially after landmark explanations of the foundations of quantum
mechanics [68]. In this chapter we will explore the use of spaces other than Hilbert
spaces for use as the state space of a quantum theory and will see that many features
of the canonical theory can be recovered.

Before we begin the process of modifying this aspect of the theory, we will take a look
at some key features of Hilbert spaces and see how they are used in the canonical
quantum theory. This information can be found in any introductory text on analysis,
such as Kolmogorov and Fomin [69].

A Hilbert space is a real, or complex, inner product space that is also a complete
metric space. Completeness in this sense means that all Cauchy sequences in the
space converge to an element of the space, where the convergence is with respect
to the metric defined by the inner product. We can thus treat convergent series,
such as Fourier series, simply, as the limit is guaranteed to be an element of the
space. It also allows us to avoid major issues in defining derivatives and other useful
operations. If we also assume that the Hilbert spaces we will use are also separable,
as is often done, then there is guaranteed to exist some countable orthogonal basis
for the space.

For a given Hilbert space, H, the space of linear functionals, often called the dual

66
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space, of H is isomorphic to H, and that these spaces are linked through the inner
product on H. This correspondence is the result of the Riesz representation theorem.
A further consequence of this theorem is that a bounded linear operator, Â, acting
on H can be identified with a bounded linear operator, Â†, acting on the dual space
of H. Â† is called the adjoint of Â. An operator that is equal to it’s own adjoint
is called self-adjoint, or Hermitian. These operators have real eigenvalues and their
eigenvectors form orthogonal bases for the Hilbert space.

Linear operators that preserve the inner product between any two elements of a
Hilbert space are called unitary operators and they correspond to basis transforma-
tions between orthonormal bases. These act as canonical coordinate transforms do
in classical theories (as can be seen in Goldstein, Safko, and Poole [70] or Landau
and Lifshitz [71]).

In canonical quantum mechanics, spaces such as the space of square integrable func-
tions over some interval, L2[a, b], or the usual space of sequences of elements of RN ,
are important examples of Hilbert spaces. The function spaces are useful when deal-
ing with solutions to differential equations, particularly the Schrödinger equation
and sequence spaces aid in the Fourier analysis of these solutions.

Now that we have recalled the basic mathematical structures of Hilbert spaces, let’s
take a step-by-step look at how these structures can be associated with elements of a
physical system, thus creating a physical theory. For more details, see any graduate
level quantum mechanics text, like Shankar [61] of Schwabl [62].

Quantum descriptions of physical systems can begin with the introduction of a vector
space, generally defined over the complex number field, C, or over a space of complex
functions. Elements of the space are then associated with states of the physical
system under consideration. Such a space, in the canonical approach, is assumed to
be a Hilbert space H and, in the case of N -level systems, with which we will be most
interested in considering, these spaces are explicitly H = CN .

The Hilbert space, by definition, H possesses an inner product H ×H → C, which
we denote (

||α〉〉 , ||β〉〉
)
∈ C , |α〉 , |β〉 ∈ H . (3.1)

As specified by the Reisz representation theorem, we can associate with each vector
|α〉 ∈ H, a similarly labeled dual-vector 〈α| ∈ H∗, via

〈α| =
(
||α〉〉 , | 〉

)
, (3.2)

so that
〈α|β〉 =

(
||α〉〉 , ||β〉〉

)
. (3.3)
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The presence of the inner product allows for us to define for each linear operator
acting on the vector space, Â, the Hermitian conjugate, Â†, of that operator via(

||α〉〉 ,
∣∣∣Â |β〉〉) =

( ∣∣∣Â† |α〉〉 , ||β〉〉) , (3.4)

Linear operators that satisfy the relation Â† = Â are said to be Hermitian, or as
before, self-adjont, operators.

Having an inner product also allows for the definition of unitary operators via( ∣∣∣Û |α〉〉 , ∣∣∣Û |β〉〉) =
(
||α〉〉 , ||β〉〉

)
. (3.5)

These operators, by definition, are those that leave the inner product unchanged.
Specifically, they will not alter the ’magnitude’ of a vector, defined by the norm
that is induced by the inner product. This will be advantageous as we want this
magnitude to represent an absolutely unchangeable value.

We will now consider two ways for quantum descriptions using these mathematical
structures to make contact with physical experiments. In canonical quantum me-
chanics, these different ways provide equivalent predictions for measurements of the
properties of a given system.

In the first approach, possible outcomes of a measurement of an observable property
of a system , A, are assumed to be identifiable with the eigenvalues of a Hermitian
linear operator, Â. Let us denote an eigenvector of some observable, Â, that is
associated with eigenvalue α by |α〉:

(Â− αÎ) |α〉 = 0 . (3.6)

When the system is in the state represented by the vector |ψ〉 ∈ H, the probability
of obtaining the outcome α ∈ R as a result of a measurement of Â is given by

P (α|ψ) =

∣∣〈α|ψ〉∣∣2∑
β

∣∣〈β|ψ〉∣∣2 , (3.7)

where the sum in the denominator runs over all the eigenvalues of Â. The hermiticity
of Â ensures that its eigenvalues are all real, and that the eigenvectors are mutually
orthogonal and form a complete basis of the state space.

If the vector representing the state of the system and the eigenvectors of Â are
normalized,

〈ψ|ψ〉 = 1 , 〈α|β〉 = δαβ , (3.8)
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the above expression for the probability simplifies to the usual form of the Born
rule: P (α|ψ) = |〈α|ψ〉|2. Since the eigenvectors of Â form an orthonormal basis, the
requirement that a state is normalized forces the sum of the probabilities of all of
the possible measurement outcomes to be 1.

Another consequence of Â having normalized, orthogonal eigenstates is that it can
be represented as a sum of projection operators:

Â =
∑
α

α |α〉 〈α| , (3.9)

where, again, the sum is over the possible eigenvalues of Â.

From their definition in Eq. (3.5), it is clear to see that unitary operators acting on
the state space will leave the inner product invariant. Thus, unitary transformations
of the state space will act as basis transformations as well as guaranteeing that the
sum of the probabilities of all the possible measurement outcomes will remain 1.
This makes them useful in describing dynamic changes to the system, such as time
evolution.

Thus, given states in a Hilbert space and Hermitian linear operators, we can predict
the probabilities of the outcomes of measurements. One can then bring the tools
statistics to bear on these probability distributions; calculating quantities such as
expectation values and uncertainties.

Instead of defining a formula for the probabilities of measurement outcomes, there
is an alternative way of making contact with experiment. Let’s begin this time with
the quantity

E
(
Â, |ψ〉

)
=
〈ψ| Â |ψ〉
〈ψ|ψ〉

, (3.10)

which is real for hermitan Â, and interpret the result as the expectation value for
repeated measurement of the associated observable in the state |ψ〉. If 〈ψ|ψ〉 = 1,
the expression reduces to 〈ψ| Â |ψ〉.

As an aside, though this is not the approach typically used in ordinary quantum
mechanics, it is the standard approach in Quantum Field Theory (QFT), a much
more advanced version of quantum mechanics, in which all physical predictions are
expressed in terms of N -point correlation functions, i.e., the vacuum expectation
values of the products of N field operators. This is most explicit in the path integral
formulation of QFT, as detailed in Feynman and Hibbs [72].
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To recover the probabilistic interpretation of the first approach, one asserts that the
probability for obtaining the outcome α for the measurement of Â on the state |ψ〉
is given by

P (α|ψ) =
〈ψ| δ(Â− α) |ψ〉

〈ψ|ψ〉
. (3.11)

Here the delta function is evaluated heuristically: its value is 1 if Â and a have the
same effect on |ψ〉 and is 0 otherwise. No absolute values are invoked, and attention
is shifted to moments of the relevant observable operator in the state in question. In
particular, we need the expectation values of several powers of the operator in order
to determine all of the probabilities that correspond to a generic state.

For canonical quantum descriptions using the Hilbert space H, these two starting
points lead to identical results. That is because the linearity that is required to
form an expectation value through the probability-weighted sum of measurement
outcomes is guaranteed by the use of the inner product in defining both, as we will
see in detail shortly. This situation however changes when the underlying space is
not a Hilbert space. Indeed, for spaces for which the inner product is ill-defined, one
can expect different outcomes for these two approaches.

The main goal of this chapter is to explore the consequences of choosing for a state
space a space that cannot have an inner product while retaining as much of the
usual structure as we can. The states spaces that we will use will be formed by
discretizing the number fields over which the vector space is defined. We then impose
the physical interpretation provided by one of the two approaches mentioned above:
the first approach being the direct definition of probabilities via Eq. (3.7) and the
second approach being the direct definition of expectation values via Eq. (3.10).

Replacing the field of the state space has been done or suggested before, in various
contexts. Several authors have attempted to extend canonical quantum mechanics
by using the quaternions as the base number field. Reviews of these attempts can be
found in various works by Finkelstein [73]. As they are non-commutative, they do
provide for a richer mathematical structure, though, many of the physical predictions
turn out to be the same as for complex quantum mechanics. In Ref. [56], Nambu
suggests that one could replace the usual continuous position and momentum spaces
by Galois fields. The purpose behind this would be to study the special form of the
norm that these spaces have. As mentioned in the first chapter, this was a major
inspiration for the current analysis. From a quantum computation perspective, Schu-
macher and Westmoreland [74], consider replacing the base field with the simplest
Galois field, GF(2). They then study the logical and computational structure of that
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theory. The current analysis of the probability approach extends their work, though,
it focuses on correlations and symmetry, as opposed to qubits and logic gates.

The fields we consider are finite Galois fields GF (pn), where n ∈ N and p is a prime
number. For the n = 1 case, they are GF (p) = Zp = Z/pZ. Vector spaces over
GF (pn) do not have inner products since GF (pn) is not an ordered field; ordered
fields being fields on which an ordering can be imposed that respects both addition
and multiplication. This prevents any bilinear map to GF (pn) from being positive-
definite (or non-negative) in a natural way.

However, for either Eq. (3.7) or Eq. (3.10) to make sense, the dual-vectors that
appear in the expression only need to constitute a basis for the dual-vector space
and have a possible outcome of a measurement associated with each one. The usual
pairing of dual-vectors with vectors via the inner product is inessential. Indeed, all
the inner product does, in a sense, is connect the two approaches via the property

〈ψ|α〉 =
(
||ψ〉〉 , ||α〉〉

)
=
(
||α〉〉 , ||ψ〉〉

)∗
= 〈α|ψ〉∗ , (3.12)

so that we can write,

∑
α

αP (α|ψ) =

∑
α α
∣∣〈α|ψ〉∣∣2∑

β

∣∣〈β|ψ〉∣∣2 =

∑
α〈α|ψ〉∗α〈α|ψ〉∑
β〈β|ψ〉∗〈β|ψ〉

=

∑
α〈ψ|α〉α〈α|ψ〉∑
β〈ψ|β〉〈β|ψ〉

=
〈ψ| Â |ψ〉
〈ψ|ψ〉

, (3.13)

where we have made the identification

Â =
∑
α

α |α〉 〈α| . (3.14)

Thus, we will avoid defining inner products, and instead, once a basis of the dual-
vector space and the associated set of outcomes is specified, we will use those to
define ‘observables’.

To make contact with the outcome of measurements and probability distributions, we
need a map from the Galois field to that of non-negative real numbers. It is essential
that this map preserves not only scalar products, which is necessary to distinguish
entangled states from product ones, but also the actions of symmetry groups, our
version of unitary transformation, on the Galois field.

This connection is achieved in the first approach through the use of an absolute value
function. Eq. (3.7) can be used as is to define the probability of each outcome via
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the absolute value function from GF (pn) to R given by

| k | =

{
0 if k = 0 ,

1 if k 6= 0 .
(3.15)

Here, numbers and symbols with underlines are used to denote elements ofGF (pn), to
distinguish them from elements of R. Note that this function is a product preserving
as |k`| = |k||`|, making it a group homomorphism. This property is essential for the
probabilities of product states to factorize, which is essential for two particles to be
considered distinct, as we will see later.

Applying this formalism to 2-level systems, we will construct spin-like observables
for which the measurement outcomes are ±1 ∈ R, and calculate the Clauser-Horne-
Shimony-Holt (CHSH) [43] bound for the model, as motivated and described in the
first chapter. In the first approach, it is found that the CHSH bound for spin-like
systems over Galois fields cannot be larger than 2.

It will also be shown that the predictions that this theory make are not obtainable
from classical theories with suitable restrictions. The arguments used will be similar
to those used by Hardy [59] and Greenberger, Horne, Shimony, and Zeilinger [60] in
the case of canonical quantum mechanics.

The major results from this analysis have been accepted for publication (pre-prints
of those articles can be found on the arXIv: [75] and [76]).

We will then explore the consequences of the second approach to interpretation,
namely, the direct definition of expectation values via Eq. (3.10). Again, we consider
vector spaces over the finite Galois field GF (pn), which do not have inner products.

The concepts of normalizability of states, hermiticity of operators, and that of a
dual-vector being a Hermitian conjugate of a vector, must all be reexamined before
we can apply Eq. (3.10). Furthermore, working in a vector space over GF (pn), the
expression 〈ψ| Â |ψ〉 = (row vector)·(matrix)·(column vector) will generically lead to
an element of GF (pn), which must be mapped to an element of R if the result is to
represent the expectation value of a measurement of a physical observable.

These issues are addressed one by one and we will look at the specific implications
of these definitions on vector spaces over the fields GF (3) = Z3 and then GF (9) =
Z3[ i ], where i is the solution to the equation x2 + 1 = 0 (which is irreducible in
GF (3)). In these cases, we will find that 〈ψ| Â |ψ〉 ∈ GF (3) by construction, which
will determine an appropriate mapping to a number in R. Because we are looking at
the expectation values of observables, the range of this map need not be restricted
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to the non-negative reals as in the case of the absolute value function. It will be
shown that the requirement that this map be a group homomorphism and invariant
under the actions of the relevant symmetry groups determines the map uniquely. It
is the use of this map for expectation values, instead of the absolute value function
on brackets, that leads to the markedly different results between the two approaches.

It is also shown below that the connection to probabilities given by Eq. (3.11) for
canonical QM is no longer valid. In fact, individual probability distributions are not
fixed in this approach, giving rise to indeterminacies beyond those of canonical QM.

We will find that in this approach, the predictions again go beyond those of classical
theories, as will be shown with a GHSZ/Hardy type argument. Lastly, we will find
that the CHSH bound for the GF (3) case is also 2, while for the GF (9) case, however,
the CHSH bound violates the Cirel’son bound [40] and is found to be 4; the maximum
possible value.

While the major results of this analysis are currently under review for publication,
a preprint can be found on the arXiv: Ref. [77].

3.2 The Probability Path

3.2.1 Preliminaries

The essential modification in this chapter is the replacement of the Hilbert space of
an N -level quantum system, HC = CN , with a discrete vector space over a finite
field: Hq = ZNq . Here, Zq denotes the Galois field GF (q), where q = pn with p prime
and n ∈ N.

Once this choice is made, as we saw in the last section, there are two paths that can
be taken towards creating the modified theory. In this section, the consequences of
preserving the canonical probability rule will be explored.

To begin, we’ll need to identify the various parts of (3.7) with elements of Hq or
associated spaces. Mirroring the canonical case, we’ll assume that the states of
the system are represented by vectors |ψ〉 ∈ Hq. The dual-vectors, 〈x| ∈ H∗q , will
be used to represent the outcomes of measurements, though, as will be explained
later, the particular outcome represented can and shall depend on the context of the
measurement.
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Observables are associated with a choice of basis of H∗q , each dual-vector in each
basis representing a different outcome. The probability of obtaining the outcome
represented by 〈x| when a measurement of the observable is performed on the state
represented by |ψ〉 is given by the canonical form

P (x|ψ) =

∣∣〈x|ψ〉∣∣2∑
y

∣∣〈y|ψ〉∣∣2 , (3.16)

where the sum in the denominator is taken over the basis of the dual space cor-
responding to the observable and the bracket 〈x|ψ〉 ∈ Zq is converted into a non-
negative real number |〈x|ψ〉| ∈ R via the absolute value function:

| k | =

{
0 if k = 0 ,
1 if k 6= 0 .

(3.17)

Here, underlined numbers and symbols represent elements of Zq, to distinguish them
from elements of R or C.

As all non-zero elements of Zq are assigned an absolute value of 1, they may act like
the phases of canonical quantum mechanics, which share this same property. Since
Zq\{0} is a cyclic multiplicative group, this definition of absolute value is consistent
with the requirement that

|kl| = |k||l| , (3.18)

which is necessary for the probabilities of product states to factorize, as will be
important when we discuss two particle state spaces.

There is one other finite subset of R that is a cyclic group with respect to multipli-
cation that could be used, in some cases, to build an alternate, absolute value like
function; the set {−1, 1}. Since the result of the absolute value is squared in the
probability formula, there will be no ultimate difference if it is used instead of {1},
so we will take (3.17) as our absolute value function. In the second approach, this
will not be the case, and the use of {−1, 1} will have interesting consequences.

Note that we now have only two possible measurement outcomes. This does not
conceptually pose a problem for the current scheme as we are mainly concerned with
the description of spin-like systems.

Since the multiplication of |ψ〉 with a non-zero element of Zq will not affect the prob-
ability as defined above, vectors that differ by a non-zero multiplicative constant are
identified as representing the same physical state, thus endowing the state space with
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a finite projective geometry (for more information about finite projective geometry,
these texts are recommended [78, 79, 80]).

PG(N − 1, q) = (ZNq \{0} )
/

(Zq\{0} ) (3.19)

The group of all possible basis transformations in this space is the projective group
PGL(N, q):

PGL(N, q) = GL(N, q)
/
Z(N, q) . (3.20)

Here, GL(N, q) is the general linear group of ZNq , and Z(N, q), the N × N unit
matrices multiplied by elements of Zq\{0}, is the center of GL(N, q). As a reminder,
the center of a given group is the subset of its elements that commute with all
elements of the group.

Effectively, the elements of PGL(N, q) lead to permutations of the states in PG(N−
1, q), and is thus a subgroup of the symmetric group of all possible state permuta-
tions. Physically, basis transformations usually correspond to a change of detector
settings, such as the rotation of the polarization axis of a spin-measuring device.
This interpretation will be seen later to be justified in this discrete context as well.

Let us denote the model resulting from this procedure as DQM(N, q), where ’DQM’
stands for discrete quantum mechanics. Spin-like systems, those with two possible
outcomes ±1, can be constructed on the space Vq ≡ Z2

q as DQM(2, q), and two-
particle spin-like systems on Vq⊗Vq = Z2

q⊗Z2
q = Z4

q as DQM(4, q). We will consider
the cases q = 2, 3, 4, and 5 as concrete examples of this procedure, so that we may
gain some intuition about these systems.

3.2.2 Z2 Quantum Mechanics

One-Particle Spin

As the smallest prime is 2, the first concrete example is q = 2. The spin-like system
DQM(2, 2) is perhaps the simplest quantum system imaginable as it is constructed
on the finite field consisting of only two elements, GF (2) = Z2 = Z/2Z = {0, 1},
with the following addition and multiplication tables:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1
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As stated above, numbers with underlines indicate elements of Z2 in order to dis-
tinguish them from elements of R or C. Since Z2\{0} = {1} is trivial, there are
no phases to deal with. Therefore, each physical state is represented by a unique
non-zero vector in V2 = Z2

2.

There are only 22 − 1 = 3 non-zero vectors in V2, which we denote:

|a〉 =

[
1
0

]
, |b〉 =

[
0
1

]
, |c〉 =

[
1
1

]
, (3.21)

and thus, there are 3 possible states of the system. Since these states are related by

|a〉 = |b〉+ |c〉 ,
|b〉 = |c〉+ |a〉 ,
|c〉 = |a〉+ |b〉 , (3.22)

any pair of them can be used as a basis for V2. A change of basis in V2 would permute
the above column representations among the three vectors, or equivalently, permute
the vector labels a, b, and c on the three column vectors. Since all permutations of the
three vectors are possible, the group of basis transformations on V2 is S3

∼= PGL(2, 2).

The dual vector space V ∗2 is the space of all linear maps from V2 to Z2. There are
22 − 1 = 3 non-zero dual vectors in V ∗2 , and we denote them as:

〈ā| =
[

0 1
]
,〈

b̄
∣∣ =

[
1 0

]
,

〈c̄| =
[

1 1
]
. (3.23)

With this choice of labeling, the result of dual vectors acting on vectors can be
written as:

〈r̄|s〉 =

{
0 if r = s,
1 if r 6= s,

(3.24)

and consequently,
|〈r̄|s〉| = 1− δrs . (3.25)

This ’anti-orthogonality’ relation pairs up vectors with dual-vectors in a somewhat
non-standard way, and leads to the various consequences of the current model. A
different labeling could have been chosen, but this labeling highlights the symmetry
of the actions of the dual vectors since each dual vector yields 0 once and 1 twice when
acting on the vectors in V2. To maintain Eq.(3.25), we assume that a relabeling of
vectors in V2 is always accompanied by the corresponding relabeling of dual-vectors
in V ∗2 .
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Observables are associated with a choice of basis in V ∗2 . There are six possible
choices:

Ars = { 〈r̄| , 〈s̄| } , (3.26)

with rs ∈ {ab, ba, bc, cb, ca, ac}. Each of the dual vectors in each basis represents
an outcome which could occur as the result of a measurement of the observable
represented by that basis. That is, the measurement of the observable Ars would
result in one of the two outcomes, the one represented by 〈r̄| or the one represented
by 〈s̄|. For reference, in [74], Schumacher and Westmoreland referred to these as
effects instead of outcomes.

Although elements of V ∗2 map elements of V2 onto Z2, the outcomes they represent
need not be elements of Z2 themselves. We can assign the numerical values ±1 to
the two outcomes represented by the ordered pair of dual vectors in each basis: +1
to the first dual vector, and −1 to the second dual vector. Thus, 〈r̄| represents the
outcome +1 when Ars is measured, while 〈s̄| represents the outcome −1 when Ars
is measured. If the ordering of the dual vectors is reversed, to { 〈s̄| , 〈r̄| }, then this
pair corresponds to −Ars. Thus Asr = −Ars, and we can consider Ars and Asr to be
essentially the same observable. So the number of distinct observables in our system
is three; namely Aab, Abc, and Aca.

The above assignment of outcomes allows us to view the Ars as being spin-like
observables, with the ordered pair of indices rs being analogous to the direction
of the spin axis. Ref. [74] labels them as:

X = Abc , Y = Aca , Z = Aab . (3.27)

Indeed, if we look at their transformation properties under the group of basis trans-
formations, S3, we find:

(ab)X = Aac = −Y , (ab)Y = Acb = −X , (ab)Z = Aba = −Z ,
(bc)X = Acb = −X , (bc)Y = Aba = −Z , (bc)Z = Aac = −Y ,
(ca)X = Aba = −Z , (ca)Y = Aac = −Y , (ca)Z = Acb = −X ,

(abc)X = Aca = +Y , (abc)Y = Aab = +Z , (abc)Z = Abc = +X ,
(acb)X = Aab = +Z , (acb)Y = Abc = +X , (acb)Z = Aca = +Y ,

(3.28)

which can all be considered SO(3) rotations of the mutually orthogonal X, Y , and
Z axes as shown in Fig. 3.1. The six basis transformations in S3 can be mapped
onto the six rotations of the dihedral group D3 which keep the equilateral triangle
abc in Fig 3.1 invariant. Thus, our spin-like states transform in an analogous way to
canonical spin states under basis transformations, which are analogous to rotations
of the canonical spin axes.



Z. Lewis Chapter 3. Galois Fields 78

Figure 3.1: The 6 spin-like directions of DQM(2, 2). Allowed SO(3) rotations are
those that rotate the equilateral triangle abc onto itself.

Despite this similarity, a significant difference exists: the same dual vector can rep-
resent different outcomes of different observables. In addition to the outcome of
+1 when Aab is measured, 〈ā| represents the outcome −1 when Aca is measured.
Similarly,

〈
b̄
∣∣ represents the outcome −1 when Aab is measured and +1 when Abc

is measured. Therefore, what outcome each dual vector represents depends on the
observable under consideration.
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The probabilities of outcomes are calculated with Eq. (3.7). For the measurement of
the observable Z = Aab, for instance, we find:

P (Aab ; + | a) =

∣∣〈ā|a〉∣∣2∣∣〈ā|a〉∣∣2 +
∣∣〈b̄|a〉∣∣2 = 0 ,

P (Aab;− | a) =

∣∣〈b̄|a〉∣∣2∣∣〈ā|a〉∣∣2 +
∣∣〈b̄|a〉∣∣2 = 1 ,

P (Aab; + | b) =

∣∣〈ā|b〉∣∣2∣∣〈ā|b〉∣∣2 +
∣∣〈b̄|b〉∣∣2 = 1 ,

P (Aab;− | b) =

∣∣〈b̄|b〉∣∣2∣∣〈ā|b〉∣∣2 +
∣∣〈b̄|b〉∣∣2 = 0 ,

P (Aab; + | c) =

∣∣〈ā|c〉∣∣2∣∣〈ā|c〉∣∣2 +
∣∣〈b̄|c〉∣∣2 =

1

2
,

P (Aab;− | c) =

∣∣〈b̄|c〉∣∣2∣∣〈ā|c〉∣∣2 +
∣∣〈b̄|c〉∣∣2 =

1

2
. (3.29)

The expectation values of Z = Aab on the three states, being calculated in the usual
way, are:

〈Aab〉a = (+1)× 0 + (−1)× 1 = −1 ,
〈Aab〉b = (+1)× 1 + (−1)× 0 = +1 ,

〈Aab〉c = (+1)× 1

2
+ (−1)× 1

2
= 0 .

(3.30)

When measuring Aab with the system in the state |a〉, the probability of measuring
−1 is 1 and the expectation value is also −1. The same goes for |b〉 and the outcome
+1. Thus, |a〉 and |b〉 take on the role of the eigenstates of Aab, while |c〉 is the
superposition of the two with a 50-50 chance of obtaining either +1 or −1. The
probabilities and expectation values of all other observables can be calculated in a
similar fashion and the results are listed in Table 3.1.

The probabilities for X = Abc and Y = Aca can also be calculated by ‘rotating’
the results for Z = Aab via Eq.(3.28). For instance, since (abc)Aab = Abc, we can
conclude that

P (Abc; + | b) = (abc)P (Aab; + | a) = 0 ,
P (Abc;− | b) = (abc)P (Aab;− | a) = 1 . (3.31)

Note that, due to our construction, states |r〉 and |s〉 act as eigenstates of Ars for
any rs. However, in our approach, observables are not linear Hermitian maps from
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observable state P (+) P (−) Expectation Value

a 0 1 −1

Aab b 1 0 +1

c 1
2

1
2

0

a 1
2

1
2

0

Abc b 0 1 −1

c 1 0 +1

a 1 0 +1

Aca b 1
2

1
2

0

c 0 1 −1

Table 3.1: The probabilities of the two outcomes + and − for all combinations of
observables and states in DQM(2, 2).

V2 to V2 as is the case in canonical quantum mechanics, and thus we do not have
eigenstates in the usual sense of the term.

Also note that each state acts as an eigenstate of two observables at a time: |a〉 of Aab
and Aca, |b〉 of Abc and Aab, and |c〉 of Aca and Abc. This is due to each of the three
dual vectors appearing in two distinct observables. Thus, despite the resemblance to
spins existing along the x, y, and z directions of canonical quantum mechanics, the
spin-like nature of this discrete quantum system is quite distinct.

3.2.3 Two Particle States

Two particle states are expressed as vectors in the space formed by the tensor product
V2 ⊗ V2 = Z4

2. This system is denoted DQM(4, 2). There are 24 − 1 = 15 non-zero
vectors in this space, of which nine are product states and six are entangled states.
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The nine product states are:

|aa〉 = |a〉 ⊗ |a〉 =
[

1 0 0 0
]T
,

|ab〉 = |a〉 ⊗ |b〉 =
[

0 1 0 0
]T
,

|ba〉 = |b〉 ⊗ |a〉 =
[

0 0 1 0
]T
,

|bb〉 = |b〉 ⊗ |b〉 =
[

0 0 0 1
]T
,

|ac〉 = |a〉 ⊗ |c〉 =
[

1 1 0 0
]T
,

|bc〉 = |b〉 ⊗ |c〉 =
[

0 0 1 1
]T
,

|ca〉 = |c〉 ⊗ |a〉 =
[

1 0 1 0
]T
,

|cb〉 = |c〉 ⊗ |b〉 =
[

0 1 0 1
]T
,

|cc〉 = |c〉 ⊗ |c〉 =
[

1 1 1 1
]T
.

(3.32)

The six non-product, or ’entangled’, states can be classified according to their trans-
formation properties under global S3 ‘rotations’, as follows.

The first is a singlet which transforms into itself under S3, the set of all permutations
of the labels a, b, and c:∣∣S〉 = |aa〉+ |bb〉+ |cc〉 =

[
0 1 1 0

]T
. (3.33)

This state is the closest analog to the spin singlet state |0, 0〉 = 1√
2

(|↑↓〉 − |↓↑〉) that

exists in canonical quantum mechanics, as can be seen from the fact that |S〉 can
also be written as∣∣S〉 = |ab〉+ |ba〉 = |bc〉+ |cb〉 = |ca〉+ |ac〉 . (3.34)

Unlike its canonical counterpart, this state is symmetric under the interchange of the
two particles since there is no analog of −1 in Z2.

Three more states are symmetric under the interchange of the two particles. These
three states transform into each other under S3 and each state is labeled by the
transformation under which that state is invariant:∣∣(ab)〉 = |ab〉+ |ba〉+ |cc〉 =

[
1 0 0 1

]T
,∣∣(bc)〉 = |aa〉+ |bc〉+ |cb〉 =

[
1 1 1 0

]T
,∣∣(ca)

〉
= |ac〉+ |bb〉+ |ca〉 =

[
0 1 1 1

]T
.

(3.35)

These would be the analogs of the spin-one triplet in canonical quantum mechanics.
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The remaining two states are asymmetric under the interchange of the two particles:∣∣(abc)〉 = |ab〉+ |bc〉+ |ca〉 =
[

1 1 0 1
]T
,∣∣(acb)〉 = |ac〉+ |cb〉+ |ba〉 =

[
1 0 1 1

]T
.

(3.36)

These transform as a doublet: they are invariant under even permutations, but trans-
form into each other under odd permutations. There is a one-to-one correspondence
between these entangled states and the elements of S3, as well as a correspondence
between the state multiplets and the conjugate classes of S3.

3.2.4 Geometric Characterization

As mentioned previously, the space of the fifteen state vectors inDQM(4, 2) possesses
the projective geometry PG(3, 2). In this geometry, the three points |r〉, |s〉, and |t〉
are on a line if they add up to the zero vector. The 15 points lie on 35 lines, with 7
lines crossing at each point. These 35 lines are contained in 15 planes, with 3 planes
intersecting at each line.

In the current context, the nine product states are points that lie on six lines, no
three of which are in the same plane, forming a non-planar grid:

|aa〉 == |ab〉 == |ac〉
‖ ‖ ‖
|ba〉 == |bb〉 == |bc〉
‖ ‖ ‖
|ca〉 == |cb〉 == |cc〉

(3.37)

The six entangled states are each a sum of three product state points, no two of
which lie on the same line of this grid. That is, no two states in the sum share the
same row or column.

Beyond this, we have been unsuccessful in finding a geometric characterization of, or
differentiation between, product and entangled states. It is unclear whether a similar
characterization is possible in cases other than the current q = 2. The discovery of a
geometrical understanding applicable to the generic DQM(4, q) case with PG(3, 2)
geometry could be enlightening.
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3.2.5 Local Rotations

It will be useful to see how the six entangled states listed above transform into each
other under basis transformations of either the first or the second particle, but not
both. We find:

(ab)1 |S〉 = (ab)2 |S〉 = |ba〉+ |ab〉+ |cc〉 = |(ab)〉 ,
(bc)1 |S〉 = (bc)2 |S〉 = |aa〉+ |cb〉+ |bc〉 = |(bc)〉 ,
(ca)1 |S〉 = (ca)2 |S〉 = |ca〉+ |bb〉+ |ac〉 = |(ca)〉 ,

(acb)1 |S〉 = (abc)2 |S〉 = |ca〉+ |ab〉+ |bc〉 = |(abc)〉 ,
(abc)1 |S〉 = (acb)2 |S〉 = |ba〉+ |cb〉+ |ac〉 = |(acb)〉 .

(3.38)

The transformation properties of the other states can be obtained from these rela-
tions, for instance:

(ab)1 |(bc)〉 = (ab)1(bc)1 |S〉 = (abc)1 |S〉 = |(acb)〉 . (3.39)

The fact that all six entangled states transform into each other this way, under what
amounts to a simple relabeling of the states in the two one-particle vector spaces,
means that they are all roughly equivalent and equally entangled.

3.2.6 Two Particle Observables

There are fifteen non-zero dual vectors in V ∗2 ⊗ V ∗2 , but we will only be looking at
the nine product observables constructed from the nine product dual vectors which
are of the form

ArsAtu = { 〈r̄| ⊗ 〈t̄| , 〈r̄| ⊗ 〈ū| , 〈s̄| ⊗ 〈t̄| , 〈s̄| ⊗ 〈ū| } , (3.40)

where the indices rs and tu are ab, bc, or ca. The four pairs of tensored dual vectors
in this expression respectively represent the outcomes, ++, +−, −+, and −− when
ArsAtu is measured. For reference, the row vector representations of all nine tensor
products are as follows:

〈ā| ⊗ 〈ā| =
[

0 0 0 1
]
,

〈ā| ⊗
〈
b̄
∣∣ =

[
0 0 1 0

]
,

〈ā| ⊗ 〈c̄| =
[

0 0 1 1
]
,〈

b̄
∣∣⊗ 〈ā| =

[
0 1 0 0

]
,〈

b̄
∣∣⊗ 〈b̄∣∣ =

[
1 0 0 0

]
,
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〈
b̄
∣∣⊗ 〈c̄| =

[
1 1 0 0

]
,

〈c̄| ⊗ 〈ā| =
[

0 1 0 1
]
,

〈c̄| ⊗
〈
b̄
∣∣ =

[
1 0 1 0

]
,

〈c̄| ⊗ 〈c̄| =
[

1 1 1 1
]
. (3.41)

Applying Eq. (3.7) to product observables, the probability of obtaining an outcome
(x, y) represented by the product dual vector 〈xy| = 〈x| ⊗ 〈y| when observable O1O2

is measured on state |ψ〉 is given by:

P (O1O2 ;xy |ψ) =
|〈xy|ψ〉|2∑
zw |〈zw|ψ〉|2

. (3.42)

For a product state |ψ〉 = |r〉 ⊗ |s〉 ≡ |rs〉, the brackets factorize:

〈xy|rs〉 =
(
〈x| ⊗ 〈y|

)(
|r〉 ⊗ |s〉

)
= 〈x|r〉〈y|s〉 , (3.43)

and due to the condition Eq. (3.17) we imposed on the absolute values, we have∣∣〈xy|rs〉∣∣ =
∣∣〈x|r〉∣∣ ∣∣〈y|s〉∣∣ . (3.44)

Consequently, the probability also factorizes as

P (O1O2 ;xy | rs) =
|〈xy|rs〉|2∑
zw |〈zw|rs〉|2

=
|〈x|r〉|2|〈y|s〉|2∑

z

∑
w |〈z|r〉|2|〈w|s〉|2

=

[
|〈x|r〉|2∑
z |〈z|r〉|2

] [
〈y|s〉|2∑
w |〈w|s〉|2

]
= P (O1 ;x | r)P (O2 ; y | s) , (3.45)

which is a property we would like to preserve for unentangled states. Otherwise, no
isolated particle would be possible as a measurement performed on one particle of a
product state could affect the outcome of a measurement on the other particle. Note
the importance of Eq. (3.17) for this factorization to occur.

The expectation value of the product observable O1O2, i.e. the correlation between
O1 and O2, will be

〈O1O2〉ψ =
∑
xy

xy P (O1O2 ;xy |ψ)
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=

∑
xy xy |〈xy|ψ〉|2∑
zw |〈zw|ψ〉|2

, (3.46)

which for product states factorizes as

〈O1O2〉rs = 〈O1〉r〈O2〉s . (3.47)

Thus, the correlations for the nine product states will simply be products of those
listed in Table 3.1.

The probabilities and expectation values of the nine product observables for all six
entangled states are shown in Table 3.2, where we have used the notation X = Abc,
Y = Aca, Z = Aab. The entries can be rotated into each other via Eqs. (3.28) and
(3.38) as before. For instance, since −Y1X2 = (ab)1X1X2 and (ab)1 |(ab)〉 = |S〉, we
have

P (Y1X2; ++, S) = P (−Y1X2;−+, S)

= (ab)1P (X1X2;−+, (ab)) =
1

3
. (3.48)

3.2.7 Entanglement and the Impossibility of Hidden Vari-
ables

It can now be demonstrated that a classical hidden variable theory cannot reproduce
the probabilities and correlations predicted by this discrete quantum mechanics for
entangled states. The argument used here is analogous to those of Hardy [59] and of
Greenberger, Horne, Shimony, and Zeilinger [60], for canonical quantum mechanics.

Since all six entangled states are roughly equivalent, it suffices to consider only one,
for which we will use the state

∣∣S〉. From Table 3.2, it is seen that

P (X1X2; ++, S) = P (X1X2;−−, S) = 0 ,
P (Y1 Y2 ; ++, S) = P (Y1 Y2 ;−−, S) = 0 ,
P (Z1Z2 ; ++, S) = P (Z1Z2 ;−−, S) = 0 ,

(3.49)

which means that the pairs (X1, X2), (Y1, Y2), and (Z1, Z2) are all completely anti-
correlated. That is to say, if any of those pairs of observables are measured with
the sate of the system is |S〉, the outcomes for the observables in the pair must be
opposites.
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Table 3.2: Correlations of observables for the six entangled states.

Next, note that
P (X1Z2; +−, S) = 0 , (3.50)

which means that X1 = +1 necessarily implies Z2 = +1, while Z2 = −1 necessarily
implies X1 = −1. Similarly,

P (Y1Z2;−+, S) = 0 (3.51)

means that Z2 = +1 necessarily implies Y1 = +1, while Y1 = −1 necessarily implies
Z2 = −1. Going through Table 3.2 in this fashion, we obtain the implication diagram
shown in Fig. 3.2. As is clear from the diagram, no classical configuration exists which
would be compatible with all of these constraints.

For instance, X1 = +1 implies Z2 = +1, which implies Y1 = +1, which implies
X2 = +1, which contradicts the requirement that X1 and X2 are anti-correlated.
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X1 = +1

X2 = −1

Z2 = +1

Z1 = −1

Y1 = +1

Y2 = −1

X2 = +1

X1 = −1

Z1 = +1

Z2 = −1

Y2 = +1

Y1 = −1

Figure 3.2: The implication chart for the state
∣∣S〉. Arrows point from the condition

toward the implication. By tracing the arrows, it is easy to see that no classical con-
figurations, and thus no hidden variable theory, can satisfy all of these requirements.
If we ignore the observable X and look at only Y and Z, then the assignments within
the dashed boxes are possible classical configurations. However, neither allow for the
pairs (Y1Z2) and (Z1Y2) to be anti-correlated, which occurs with probability 1/3 in
our toy quantum model.

While this seeming contradiction is not problematic for a quantum mechanical de-
scription, it is for a classical one, regardless of whether it has hidden variables or
not, just as in [59] or [60].

It should be noted that even if we limit our attention to only two of the three
observables available for each particle, hidden variables still cannot reproduce the
quantum probabilities. For instance, consider only Y and Z for both particles. In this
case, the selection of values within the dashed boxes on Fig. 3.2 give possible classical
configurations. However, the combinations (Y1Z2) = (+−) and (Z1Y2) = (−+)
cannot occur classically even though they are possible quantum mechanically.

By the fact that there exist states that cannot be reproduced classically, even with
hidden variables, there is good reason to call this model ’quantum’.

3.2.8 The CHSH Bound

Let us now find the CHSH bound of our model, i.e. the upper bound of the absolute
value of the CHSH correlator defined as〈

A1, A2;B1, B2

〉
≡
〈
A1B1

〉
+
〈
A1B2

〉
+
〈
A2B1

〉
−
〈
A2B2

〉
, (3.52)

where the subscripts here refer to different possible generic choices of the operators
A, acting on particle 1 (written on the left), and B, acting on particle 2 (written on
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the right), not with any particular choice of those operators.

Owing to the equivalence of all entangled states, we only need to look at the correla-
tions for one state for all possible observable combinations. That is, using Eqs. (3.28)
and (3.38), we can convert the correlations for any entangled state into those for the
state |S〉.

For instance:

〈X1, Y1;X2, Y2〉(ab) = 〈X1X2〉(ab) + 〈X1Y2〉(ab) + 〈Y1X2〉(ab) − 〈Y1Y2〉(ab)
= −〈Y1X2〉S − 〈Y1Y2〉S − 〈X1X2〉S + 〈X1Y2〉S
= −〈Y1, X1;X2, Y2〉S (3.53)

We also need not consider the negatives of the observables as long as all possible
choices for A1, A2, B1, and B2 are considered since

〈A1, A2 ;B1, B2〉
= 〈A1,−A2 ;B2, B1〉 = −〈−A1, A2 ;B2, B1〉
= 〈A2, A1 ;B1,−B2〉 = −〈A2, A1 ;−B1, B2〉 .

(3.54)

Then, from simple inspection of Table 3.2, we can see that the maximum absolute
value of the CHSH correlator is achieved for

〈X, Y ;Y,X〉S = −2 ,
〈X,Z;Y, Z〉S = +2 , (3.55)

with arbitrary permutations of the three observables leading to the same values. All
the other correlators yield ±2/3. Thus, the CHSH bound for our model is 2, despite
the fact that it is fully ‘quantum’ and does not allow for any hidden variables.

This result suggests that the non-violation of the CHSH inequality is not necessarily
a robust indicator of whether a theory is classical or quantum. Stated more directly,
the fact that this DQM(4,2) has a CHSH bound of 2 does not make it classical.

3.2.9 Z3 case

DQM(2, 3) is constructed on the field consisting of three elements, GF (3) = Z3 =
Z/3Z = {0, 1, 2}, with addition and multiplication tables given by
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+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

In the following, we will write 2 as −1. Since Z3\{0} = {1,−1}, each physical state
will be represented by two vectors in V3 = Z2

3 which differ by the multiplicative
‘phase’ −1.

Therefore, of the 32 − 1 = 8 non-zero vectors in V3, there are pairs of vectors that
are equivalent, and the inequivalent ones can be taken to be:

|a〉 =

[
1
0

]
, |b〉 =

[
0
1

]
, |c〉 =

[
−1

1

]
, |d〉 =

[
1
1

]
. (3.56)

Note that any pair of these states can be written as the sum and difference of the
other two up to phases, e.g.

|c〉 = − |a〉+ |b〉 ,
|d〉 = |a〉+ |b〉 . (3.57)

Thus, a basis transformation which interchanges a pair of states would leave the
other two unaffected. In the above example, interchanging |a〉 and |b〉 would leave
|d〉 unchanged, while |c〉 only acquires a physically insignificant phase factor of −1.

Thus, single transpositions of the vector labels are possible, and the group generated
by those transpositions would be S4

∼= PGL(2, 3). That implies that all permutations
of the vector labels are possible under basis transformations. This is the group of
‘rotations’ for DQM(2, 3).

The inequivalent dual-vectors of V ∗3 can be taken to be

〈ā| =
[

0 −1
]
,〈

b̄
∣∣ =

[
1 0

]
,

〈c̄| =
[

1 1
]
,〈

d̄
∣∣ =

[
1 −1

]
, (3.58)

The actions of these dual-vectors on the vectors are given by:

|a〉 |b〉 |c〉 |d〉
〈ā| 0 −1 −1 −1〈
b̄
∣∣ 1 0 −1 1
〈c̄| 1 1 0 −1〈
d̄
∣∣ 1 −1 1 0
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(a)

(b) (c)

Figure 3.3: To map ‘rotations’ in PGL(2, 3) ∼= S4 to rotations in SO(3): (a) label
the faces of an octahedron with four symbols as shown. Then, every permutation
of the four labels abcd will correspond a rotation of the octahedral group. (b) The
‘spin’ observable Aab in DQM(2, 3) can be mapped onto a direction in 3D space as
shown. (c) The urchin diagram showing all 12 ‘spin’ directions DQM(2, 3).
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Thus,

〈r̄|s〉 = 0 if r = s,
6= 0 if r 6= s, (3.59)

and the relation |〈r̄|s〉| = 1− δrs is obtained in this case as before. Maintaining this
anti-orthogonality relation requires relabeling the dual vectors in the same way as
the vectors under basis transformations.

From the set of four dual-vectors, we can define 4×3 = 12 observables with outcomes
±1. If we count the ’spins’ pointing in opposite directions as the same observable,
we are left with 6 distinct observables. These ‘spins’ can be diagrammatically, not
physically, associated with actual directions in 3-D, and their PGL(2, 3) ∼= S4 trans-
formations can be associated with rotations in SO(3), as shown in Fig. 3.3 via the
following procedure:

First, label the faces of an octahedron with four letters abcd, each letter appearing
twice, on opposing faces as shown in Fig. 3.3a. The octahedral group O which
rotates the octahedron onto itself consists of 24 elements. Each of these elements
will permute the four letters on the faces of the octahedron. Thus, there exists
a one-to-one correspondence between elements of the octahedral group and the 24
permutations of S4. For more on octahedral groups, see [81] .

The ‘direction’ of the spin-like observable Aab can be associated with the direction
of the arrow shown in Fig. 3.3b. All 12 ‘spin directions’ can be mapped this way,
and Fig. 3.3c shows the resulting sea-urchin like array of spin-directions. These 12
‘spins’ transform into each other under S4

∼= O rotations.

3.2.10 Z4 case

DQM(2, 4) is constructed on the field consisting of four elements, GF (4) = Z4 =
Z2[ω] = {0, 1, ω, ω2}, which is the Galois extension of Z2 = Z/2Z by the solutions of
the equation

x2 + x+ 1 = 0 , (3.60)

which we denote ω and ω2 = 1 + ω. The addition and multiplication tables of this
field are:
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+ 0 1 ω ω2

0 0 1 ω ω2

1 1 0 ω2 ω
ω ω ω2 0 1
ω2 ω2 ω 1 0

× 0 1 ω ω2

0 0 0 0 0
1 0 1 ω ω2

ω 0 ω ω2 1
ω2 0 ω2 1 ω

Since Z4\{0} = {1, ω, ω2}, each physical state will be represented by three vectors
in V4 = Z2

4 which differ by the multiplicative ‘phases’ ω or ω2.

Therefore, of the 42− 1 = 15 non-zero vectors in V4, every three of them are equiva-
lent, and the 15/3 = 5 inequivalent ones can be taken to be:

|a〉 =

[
1
0

]
, |b〉 =

[
0
1

]
, |c〉 =

[
ω
1

]
,

|d〉 =

[
ω2

1

]
, |e〉 =

[
1
1

]
,

(3.61)

Let us choose a pair of vectors as a basis and express the other three as linear
combinations of those two, e.g.

|c〉 = ω |a〉+ |b〉 ,
|d〉 = ω2 |a〉+ |b〉 ,
|e〉 = |a〉+ |b〉 . (3.62)

Now consider a basis transformation that would interchange |a〉 and |b〉. This would
leave |e〉 unchanged, but |c〉 and |d〉 would transform into each other:

|c〉 → |a〉+ ω |b〉 ∼= ω2 |a〉+ |b〉 = |d〉 ,
|d〉 → |a〉+ ω2 |b〉 ∼= ω |a〉+ |b〉 = |c〉 . (3.63)

Thus, single transpositions of the vector labels are impossible. Transpositions must
always come in pairs, and these would generate the alternating groupA5

∼= PGL(2, 4),
which is the group of all even permutations of the five labels abcde. This is the group
of ‘rotations’ for DQM(2, 4).

The inequivalent dual-vectors of V ∗4 can be taken to be

〈ā| =
[

0 1
]
,〈

b̄
∣∣ =

[
1 0

]
,

〈c̄| =
[

1 ω
]
,〈

d̄
∣∣ =

[
1 ω2

]
,

〈ē| =
[

1 1
]
. (3.64)

The actions of these dual-vectors on the vectors are:
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|a〉 |b〉 |c〉 |d〉 |e〉
〈ā| 0 1 1 1 1〈
b̄
∣∣ 1 0 ω ω2 1
〈c̄| 1 ω 0 1 ω2〈
d̄
∣∣ 1 ω2 1 0 ω
〈ē| 1 1 ω2 ω 0

Thus,

〈r̄|s〉 = 0 if r = s,
6= 0 if r 6= s, (3.65)

and the relation |〈r̄|s〉| = 1 − δrs is obtained as before. Again, maintaining this
anti-orthogonality relation would require relabeling the dual vectors in the same way
as the vectors under basis transformations.

From the set of five dual-vectors, we can define 5 × 4 = 20 observables with out-
comes ±1, or 10 if we count the ‘spins’ pointing in opposite directions as the same
observable. These ‘spins’ can be associated with actual directions in 3D, and their
PGL(2, 4) ∼= A5 transformations can be associated with rotations in SO(3) as shown
in Fig. 3.4 via the following procedure:

First, label the faces of an icosahedron with five letters abcde, each letter appearing
four time, as shown in Fig. 3.4a. This pattern will place each letter at the vertices of a
tetrahedron. The icosahedral group Y [81] which rotates the icosahedron onto itself
consists of 60 elements. Each of these elements will lead to an even permutation
of the five letters on the faces of the icosahedron. Thus, there exist a one-to-one
correspondence between elements of the icosahedral group and the 60 permutations
of A5.

The ‘direction’ of the ‘spin’ observable Aab can be associated with the direction of
the arrow shown in Fig. 3.4b. All 20 ‘spin’ directions can be mapped this way, and
Fig. 3.4c shows the resulting array of spin-directions. These 20 ‘spins’ transform into
each other under A5

∼= Y rotations.
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(a)

(b) (c)

Figure 3.4: To map ‘rotations’ in PGL(2, 4) ∼= A5 to rotations in SO(3): (a) label
the faces of an icosahedron with five symbols as shown above left. Then, to every
even permutation of the five labels abcde will correspond a rotation belonging to
the icosahedral group. (b) The ‘spin’ observable Aab in DQM(2, 4) can be mapped
onto a direction in 3D space as shown. (c) The urchin diagram showing all 20 ‘spin’
directions of DQM(2, 4).
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Conjugate Conjugate
Classes of S6 S6 PGL(2, 5) Classes of S5 A5

− 120 20 −

+ 144 24 +
√

− 90 30 −

+ 90 0

+ 40 20 +
√

− 120 0

− 15 10 −

+ 45 15 +
√

+ 40 0

− 15 0

+ 1 1 +
√

total 720 120

Table 3.3: PGL(2, 5) is a subgroup of S6, which is isomorphic to S5. This table
shows how many elements in each conjugate class of S6 are in PGL(2, 5), and the
conjugate class in S5 that they correspond to. The signs adjacent to the Young
tableaux indicate the signature of the permutations in each class. Only the even
permutations in PGL(2, 5), which form an invariant subgroup of order 60 isomorphic
to A5, can be mapped to elements in SO(3).
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3.2.11 Z5 case

DQM(2, 5) is constructed on the field consisting of five elements, GF (5) = Z5 =
Z/5Z = {0, 1, 2, 3, 4}. The addition and multiplication tables of this field are:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

We will denote 4 = −1 and 3 = −2. Since Z5\{0} = {±1,±2}, each physical state
will be represented by four vectors in V5 = Z2

5 which differ by the multiplicative
‘phases’ −1 or ±2.

Thus, of the 52 − 1 = 24 non-zero vectors in V5, every four of them are equivalent,
and the 24/4 = 6 inequivalent ones can be taken to be:

|a〉 =

[
1
0

]
, |b〉 =

[
0
1

]
, |c〉 =

[
2
1

]
,

|d〉 =

[
−1

1

]
, |e〉 =

[
−2

1

]
, |f〉 =

[
1
1

]
.

(3.66)

The group of basis transformations of this space is a subgroup of S6, the group of
permutations of the six vector labels. It consists of both odd and even permutations,
and the distribution of its elements among the 11 conjugate classes of S6 are shown
in Table 3.3. There are 120 = 5! elements in total in 7 conjugate classes. These
numbers match those of S5 exactly, and in fact, there is an isomorphism between
the two, i.e. PGL(2, 5) ∼= S5. Of the 120 elements of PGL(2, 5), a subgroup of 60
elements consisting of the even permutations, and isomorphic to A5, can be mapped
onto SO(3) rotations in the icosahedral group Y as we will see below.

The inequivalent dual-vectors of V ∗5 can be taken to be

〈ā| =
[

0 −1
]
,〈

b̄
∣∣ =

[
1 0

]
,

〈c̄| =
[

1 −2
]
,〈

d̄
∣∣ =

[
1 1

]
,

〈ē| =
[

1 2
]
,
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〈
f̄
∣∣ =

[
1 −1

]
. (3.67)

The actions of these dual-vectors on the vectors are:

|a〉 |b〉 |c〉 |d〉 |e〉 |f〉
〈ā| 0 −1 1 −1 −1 −1〈
b̄
∣∣ 1 0 2 −1 −2 1
〈c̄| 1 −2 0 2 1 −1〈
d̄
∣∣ 1 1 −2 0 −1 2
〈ē| 1 2 −1 1 0 −2〈
f̄
∣∣ 1 −1 1 −2 2 0

Thus,

〈r̄|s〉 = 0 if r = s,
6= 0 if r 6= s, (3.68)

and the relation |〈r̄|s〉| = 1 − δrs is obtained as before. Maintaining this anti-
orthogonality relation would require relabeling the dual vectors in the same way as
the vectors under basis transformations.

From the set of six dual-vectors, we can define 6 × 5 = 30 observables with out-
comes ±1, or 15 if we count the ‘spins’ pointing in opposite directions as the same
observable. These ‘spins’ can be associated with actual directions in 3D, and their
transformations under the subgroup of PGL(2, 5) mentioned above can be associated
with rotations in SO(3), as shown in Fig. 3.5, via the following procedure:

First, label the 12 faces of a dodecahedron with 6 letters abcdef , with each letter
appearing twice on faces that oppose each other, as shown in Fig. 3.5. Note that the
dodecahedron is dual to the icosahedron, under the interchange of vertices and faces,
so its symmetry group under rotations is the icosahedral group Y , which was shown
to be isomorphic to A5 in the q = 4 case we discussed above. Each of the rotations of
the icosahedral group will lead to an even permutation of the six letters on the faces
of the dodecahedron. These will generate the subgroup of PGL(2, 5) consisting of
even permutations only. The ‘direction’ of the ‘spin’ observable Aab can be associated
with the direction of the arrow shown in Fig. 3.5b. All 30 ‘spin’ directions can be
mapped this way, and Fig. 3.5c shows the resulting urchin of spin-directions. These
30 ‘spins’ transform into each other under A5

∼= Y rotations.
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(a)

(b) (c)

Figure 3.5: Not all ‘rotations’ in PGL(2, 5) ∼= S5 can be mapped to rotations in
SO(3). The even permutations, isomorphic to A5, can be mapped as follows: (a)
label the faces of a dodecahedron with six symbols as shown above left. Then, to
every even permutation of the six labels abcdef will correspond a rotation belonging
to the icosahedral group. (b) The ‘spin’ observable Aab in DQM(2, 5) can be mapped
onto the direction in 3D space as shown. (c) The urchin diagram showing all 30 ‘spin’
directions of DQM(2, 5).
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Unfortunately, there are 60 more elements of PGL(2, 5) unaccounted for, and these
do not seem to be representable as rotations or reflections of the dodecahedron. Thus,
in a sense, the ‘rotations’ in the state space of DQM(2, 5) are much richer than a
finite group of SO(3) rotations.

3.2.12 Comments

As we have seen, for the q = 2, 3, 4, and 5 cases, the group PGL(2, q) itself, or its
invariant subgroup, is isomorphic to some polyhedral group, allowing for the iden-
tification of those PGL(2, q) group elements with SO(3) rotations. Therefore, our
‘spins’ can be considered objects that transform like canonical spin under ‘rotations’
for these cases.

Whether a similar pattern emerges for DQM(2, 7) and beyond remains to be ex-
plored. In general, the PGL(2, q) group is a subgroup of Sq+1 of order q(q2 − 1).
Constructing a correspondence via the methods that were just discussed would re-
quire the labeling of the faces of some polyhedron with q + 1 symbols. Given that
only 5 Platonic solids and 13 Archimedean solids are at our disposal, it is not at all
clear that such a correspondence exists for generic q.

In the detailed examination of DQM(2, 2), DQM(2, 3), DQM(2, 4) and DQM(2, 5),
we have encountered a fascinating geometric structure, namely finite projective ge-
ometry, that is very similar to the projective geometry of canonical quantum theory
[83]. These examples possibly represent the simplest theoretical playground for un-
derstanding some outstanding issues in the foundations of quantum theory, quantum
information and quantum computation [82] (see also [73]). It is hoped that features
of DQM could shed light on questions raised in the geometric formulation of canoni-
cal quantum theory and in natural generalizations of the geometric quantum theory
[84], which are argued to be relevant to quantum gravity [85].
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3.3 Expectation Value Path

We will now follow the second approach to making a modified quantum theory using
Galois fields by preserving the canonical formula for an expectation value Eq. (3.10)
as far as we are able.

3.3.1 Biorthogonal Systems over Galois Fields

In order to adopt the definition of expectation values via Eq. (3.10) onto a vector
space over the Galois field GF (pn), we must again define analogs of the various
components of the formula. In this approach, we find it convenient to define a notion
similar to Hermitian conjugation of vectors and linear operators, though, this notion
does not require the use of an inner product. We’ll start by demonstrating how this
can be accomplished via biorthogonal systems, of the type described in Ref. [86].

In the following, we restrict our attention to the Galois fields GF (pn) with p =
3 mod 4 and n = 1 or 2. As we will see below, this restriction allows our formalism
to maintain a close parallel to quantum mechanics defined on vector spaces over R
(n = 1 case) or C (n = 2 case). As in the previous approach, elements of the finite
Galois field GF (pn) are denoted by underlined symbols and numbers to distinguish
them from elements of R or C. The N -dimensional vector space over GF (pn) is
denoted V (N, pn).

A biorthogonal system over V (N, pn) is a set consisting of a basis {|1〉 , |2〉 , · · · , |N〉}
of the vector space V (N, pn), and a basis {〈1| , 〈2| , · · · , 〈N |} of the dual vector space
V (N, pn)∗ such that

〈r|s〉 = δrs , r, s = 1, 2, · · · , N, (3.69)

where

δrs =

{
0 if r 6= s ,

1 if r = s .
(3.70)

As we will be using a type of orthogonality, our present results will be notably
different from the use of anti-orthogonality in the previous model.

To explicitly construct biorthogonal systems, it will be useful to first assemble a bit
of technology, beginning with a dot product.
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Dot Product

Denoting the k-th element of the vector |a〉 ∈ V (N, pn) as ak ∈ GF (pn), we can
define the ‘dot product’ in V (N, pn) as

|a〉·|b〉 =
N∑
k=1

apk bk ∈ GF (pn) . (3.71)

Note that raising an element to the p-th power is semilinear in GF (pn) since

(a+ b)p = (ap + bp) (3.72)

in a field of characteristic p. When n = 1, it is an identity transformation due to
Fermat’s little theorem

ap−1 = 1 mod p , ∀a ∈ Z . (3.73)

For the case n = 2, p = 3 mod 4, it is an analogue of complex conjugation in C. To
see this, first note that the equation

x2 + 1 = 0 (3.74)

is irreducible in GF (p) = Zp if p = 3 mod 4. The polynomial x2 + 1 = 0 is reducible
for p = 2 or p = 1 mod 4 since in those cases p− 1 will be a solution.

Denote the solutions to this equation as ±i. Adjoining i to GF (p) = Zp gives us
GF (p2) = Zp[ i ]. Elements of this field can be expressed as a + i b, where a, b ∈ Zp.
Then

(a+ i b)p = ap + ipbp = a− i b . (3.75)

Furthermore,

(a+ i b)p(c+ i d) = (ac+ bd) + i(ad− bc) ,
(c+ i d)p(a+ i b) = (ac+ bd)− i(ad− bc) , (3.76)

in particular,
(a+ i b)p(a+ i b) = a2 + b2 ∈ Zp . (3.77)

Therefore, |a〉·|b〉 and |b〉·|a〉 are ‘complex conjugates’ of each other, while |a〉·|a〉 is
‘real.’ Thus, when p = 3 mod 4, the fields GF (p) = Zp and GF (p2) = Zp[ i ] take on
similar roles as R and C.

In the following, when we say GF (pn), we will mean either GF (p) or GF (p2) with
p = 3 mod 4 unless stated otherwise. Also, borrowing from standard terminology, we
will say that two vectors in V (N, pn) are ‘orthogonal’ to each other when they have
a zero dot product, and that a vector is ‘self-orthogonal’ when it is orthogonal to
itself.
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Conjugation of Vectors

Next, choose a basis {|1〉 , |2〉 , · · · , |N〉} for V (N, pn) such that:

|r〉·|s〉

{
6= 0 if r = s ,

= 0 if r 6= s ,
(3.78)

that is, all the basis vectors are orthogonal to each other, but none are self-orthogonal.
Let us call such a basis an ‘ortho-nondegenerate’ basis. The simplest example of an
ortho-nondegenerate basis would be the standard basis, in which the r-th element
of the s-th vector is given by δrs, proving that such a basis always exists. On the
other hand, not all bases necessarily satisfy this condition since V (N, pn) typically
has multiple self-orthogonal vectors other than the zero vector.

Define the ‘conjugate’ dual vector for each vector |r〉 in the selected ortho-nondegenerate
basis as

〈r| ≡ |r〉 ·
|r〉·|r〉

(3.79)

where it is crucial that |r〉 · |r〉 6= 0 for 〈r| to exist. Then, the set of dual vectors
{〈1| , 〈2| , · · · , 〈N |} provides a basis for the dual vector space V (N, pn)∗ such that
〈r|s〉 = δrs. Thus, we obtain the set{

{〈1| , 〈2| , · · · , 〈N |}, {|1〉 , |2〉 , · · · , |N〉}
}

(3.80)

which constitutes a biorthogonal system.

3.3.2 Observables

Given a biorthogonal system, we can define the analog of Hermitian operators via

Â =
N∑
k=1

αk |k〉 〈k| , αk ∈ GF (p) . (3.81)

Due to the biorthogonality of the system, |k〉 is the eigenvector of Â with eigenvalue
αk. Note that the eigenvalues αk are chosen to be elements of GF (p), not GF (p2),
i.e. they are ‘real’, mirroring the similar property of Hermitian operators.

In the defining biorthogonal system, the matrix representation of Â is diagonal. In a
different biorthogonal system, say

{
{〈1′| , 〈2′| , · · · , 〈N ′|}, {|1′〉 , |2′〉 , · · · , |N ′〉}

}
, its
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matrix representation is

〈r′| Â |s′〉 =
N∑
k=1

αk 〈r′|k〉 〈k|s′〉

=
N∑
k=1

αk
(|r′〉·|k〉) (|k〉·|s′〉)
(|r′〉·|r′〉) (|k〉·|k〉)

, (3.82)

which in general is not a Hermitian matrix. However, the diagonal elements 〈r′| Â |r′〉
are nevertheless ‘real’ since |r′〉·|k〉 and |k〉·|r′〉 are ‘complex conjugates’ of each other,
while |r′〉·|r′〉 and |k〉·|k〉 are ‘real.’ We identify these Hermitian-like operators with
physical observables.

3.3.3 Physical States

Since we wish to use Eq. (3.10) to define the expectation value for the observable
Â, every physical state |ψ〉 must have a conjugate dual 〈ψ|, which we define via
Eq. (3.79). Thus, we demand that all physical states belong to some biorthog-
onal system. Essentially, all vectors that are not self-orthogonal belong to some
biorthogonal system, so this requirement is equivalent to dropping all vectors that
are self-orthogonal from the set of physical states.

Note that if we multiply |ψ〉 with a scalar, that is, a non-zero element of GF (pn),
then its conjugate 〈ψ| will be multiplied by the inverse of that scalar. This will
leave Â and 〈ψ| Â |ψ〉 invariant. Thus, we can identify all vectors that differ with
each other by a multiplicative scalar as representing the same physical state, that
is, all non-zero elements of GF (pn) can be considered to be ‘phases.’ For V (N, pn),
this means that the set of physical states is the non-self-orthogonal subset of the
projective space

PG(N − 1, pn) =
[
V (N, pn)\{0}

]/[
GF (pn)\{0}

]
. (3.83)

3.3.4 Expectation Values

With the above definitions of observables and physical states, we can now calculate
the quantity 〈ψ| Â |ψ〉 ∈ GF (p) = Zp for observable Â and state |ψ〉. We would like

to interpret this quantity as the expectation value of the observable Â. However, if Â
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is to represent a physical quantity such as spin, one must map the resulting number
in GF (p) to a number in R.

We demand that this map from GF (p) to R be product preserving, just as in the
discrete quantum mechanics models, for the same reasons. It is easy to see that the
absolute value function given in Eq. (3.15) is a product preserving map for any p.
For the p = 3 mod 4 case, however, in addition to the absolute value function, there
is another product preserving map which can be constructed as follows.

First, denote the generator of the multiplicative group GF (p)\{0} by g and express
the non-zero elements of GF (p) as {g, g2, g3, · · · , gp−1 = 1}. Define:

ϕ (x) =


0 if x = 0 ,

+1 if x = geven ,

−1 if x = godd .

(3.84)

It is straightforward to show that ϕ (ab) = ϕ (a)ϕ (b), making ϕ a group homomor-
phism from GF (p) to {−1, 0,+1}.

Note that p = 3 mod 4 implies (p− 1) = even and (p− 1)/2 = odd. Therefore,

ϕ (+1) = ϕ
(
gp−1

)
= +1 ,

ϕ (−1) = ϕ
(
g(p−1)/2

)
= −1 , (3.85)

where −1 denotes the additive inverse of 1 in GF (p). That is, this function respec-
tively maps −1, 0, and 1 in GF (p) to −1, 0, and 1 in R.

We will use this map to give meaning to Eq. (3.10) as an expectation value in our
current model:

E(A|ψ) = ϕ
(
〈ψ| Â |ψ〉

)
. (3.86)

The ϕ function defined in Eq. (3.84) is the only function that allows us to calculate
real expectation values, as we will see via the following argument.

First, we must determine what the physical requirements on ϕ are. Primarily, it
must be a map from GF (p) to R, as we assume that the results of measurements are
real numbers. For the expectation value of the identity operator to be 1, we must
have that ϕ(1) = 1. Likewise, for the expectation value of the zero operator to be 0,
we must have that ϕ(0) = 0.

When we consider two particle states,as will be done shortly, if we require that the
expectation values of product states should factorize, then ϕ must respect multipli-
cation. This is done if the image of GF (p)\{0} is homomorphic to GF (p)\{0}. Since
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GF (p)\{0} is cyclic, any group homomorphic to it must also by cyclic. The only
cyclic, multiplicative subgroups of R are {+1}, {0}, and {+1,−1}.

As the image must contain +1, {0} is excluded. If we choose {+1,−1} as the image
of GF (p)\{0} under ϕ, we are allowed to interpret eigenvalues of observables as the
expectation values of the corresponding eigenstates. Thus, the image of GF (p)\{0}
should be {+1,−1} and ϕ should be surjective between GF (p)\{0} and {+1,−1},
to ensure the presence of −1 as an expectation value.

For ϕ to be a such a surjection, it must be true that ϕ(g) = −1 whenever g is a
multiplicative generator of GF (p)\{0}. It then follows that all even powers of g
should map to +1.

Thus, the kernel of ϕ must contain all (p− 1)/2 even powers of g. Note that it does
not matter which generator is chosen since any given generator is an odd power of
each of the other generators.

The kernel of a group homomorphism, the set of elements that map to the identity,
is a subgroup. In order for ϕ to be surjective from GF (p)\{0} to {+1,−1}, its kernel
must be a proper subgroup of GF (p)\{0}. As we have shown that the kernel must
contain half of the elements of GF (p)\{0}, it can only contain those elements, as the
order of the kernel must divide the order of GF (p)\{0}.

Therefore, ϕ as defined in Eq. (3.84) is the only map that fits the relevant criteria.

An important consequence of Eq. (3.84) adn Eq. (3.86) is that the uncertainty in the
measurement of Â will be given by

(∆A)2 = E(A2|ψ)−
[
E(A|ψ)

]2
= ϕ

(
〈ψ| Â2 |ψ〉

)
−
[
ϕ
(
〈ψ| Â |ψ〉

)]2

. (3.87)

When |ψ〉 is an eigenvector of Â with eigenvalue α, we find

(∆A)2 = ϕ
(
α2
)
−
[
ϕ (α)

]2
= 0 , (3.88)

due to the fact that ϕ is a product preserving map.

3.3.5 2D Vector Space over GF (3)

Let’s now look at a specific example to see what the explicit consequences are of our
choices.
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We’ll first consider the 2D vector space V (2, 3) over GF (3) = Z/3Z = {0, 1,−1},
where we denote the additive inverse of 1 as −1 instead of 2. There are 32 − 1 = 8
non-zero vectors in this space which are the 4 vectors

|a〉 =

[
1
0

]
, |b〉 =

[
0
1

]
, |c〉 =

[
1
1

]
, |d〉 =

[
1
−1

]
, (3.89)

and their multiples by the ‘phase’ −1. Checking ’orthogonality’, we find:

|a〉·|a〉 = |b〉·|b〉 = 1 ,
|c〉·|c〉 = |d〉·|d〉 = −1 ,
|a〉·|b〉 = |c〉·|d〉 = 0 .

(3.90)

Thus, none of the vectors are self-orthogonal, and their conjugates are

〈a| =
[

1 0
]
, 〈c| =

[
−1 −1

]
,

〈b| =
[

0 1
]
, 〈d| =

[
−1 1

]
.

(3.91)

There are two biorthogonal systems in V (2, 3)∗ × V (2, 3), namely{
{〈a| , 〈b|}, {|a〉 , |b〉}

}
and

{
{〈c| , 〈d|}, {|c〉 , |d〉}

}
, (3.92)

up to different orderings of the vectors and dual-vectors, and signs. All four in-
equivalent vectors belong to one of these biorthogonal systems so they all represent
physical states.

We can now construct spin-like observables with eigenvalues ±1. Since V (2, 3) has
only two biorthogonal systems, the two possible observables are

1 |a〉 〈a| −1 |b〉 〈b| =

[
1 0
0 −1

]
≡ σ̂3 ,

1 |c〉 〈c| −1 |d〉 〈d| =

[
0 1
1 0

]
≡ σ̂1 ,

(3.93)

up to signs. By construction, |a〉 and |b〉 are respectively eigenvectors of σ̂3 with
eigenvalues ±1. Thus, the expected outcome of a measurement of σ̂3 on |a〉 will al-
ways be +1, while that on |b〉 will always be −1. Similarly, |c〉 and |d〉 are respectively
eigenvectors of σ̂1 with eigenvalues ±1, so the expected outcome of a measurement
of σ̂1 on |c〉 will always be +1, while that on |d〉 will always be −1.

On the other hand, the expectation values of σ̂1 and σ̂2
1 for the state |a〉 are

E(σ1|a) = ϕ (〈a| σ̂1 |a〉) = ϕ (0) = 0 ,
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E(σ2
1|a) = ϕ

(
〈a| σ̂2

1 |a〉
)

= ϕ (1) = 1 , (3.94)

so [
∆σ1(a)

]2
= E(σ2

1|a)−
[
E(σ1|a)

]2
= 1 . (3.95)

From these expectation values, we can infer the probabilities of obtaining the out-
comes ±1 when σ̂1 is measured on |a〉. Denoting these probabilities as P (±1|a), we
must have

1 = P (+1|a) + P (−1|a) ,
0 = P (+1|a)− P (−1|a) , (3.96)

which yields

P (+1|a) = P (−1|a) =
1

2
. (3.97)

Therefore, the measurement of σ̂1 on |a〉 will yield the two outcomes +1 and −1 with
equal probability, consistent with our earlier results in the discrete quantum mechan-
ical model. Similar results are found for the measurement of σ̂1 on |b〉, and those of
σ̂3 on |c〉 or |d〉. The expectation values and uncertainties for both observables and
all states are listed in Table 3.4.

Note that the current formalism predicts expectation values but does not specify
the probabilities directly. The probabilities must be inferred from the expectations
values as shown above. Indeed, though we can write

〈a| σ̂1 |a〉 = 〈a|
(

1 |c〉 〈c| − 1 |d〉 〈d|
)
|a〉

= 1 〈a|c〉〈c|a〉 − 1 〈a|d〉〈d|a〉 , (3.98)

we cannot associate 〈a|c〉〈c|a〉 = 〈a|d〉〈d|a〉 = −1 with the probabilities of the out-
comes ±1.

Furthermore, we will see later how, in some cases, the probabilities cannot be
uniquely determined from the expectation values. It will be argued later that a
theory which predicts expectation values but leaves the probabilities indeterminate
can still make physical sense.
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σ1 ∆σ1 σ3 ∆σ3

|a〉 0 1 1 0
|b〉 0 1 −1 0
|c〉 1 0 0 1
|d〉 −1 0 0 1

Table 3.4: Expectation values and uncertainties of spin-like observables in biorthog-
onal quantum mechanics on V (2, 3).

Before moving on, let’s look at the effect of basis transformation on the state space.
The group of all possible basis transformations consist of the sixteen matrices given
by

e ↔ ±
[

1 0
0 1

]
, (ab) ↔ ±

[
0 1
1 0

]
,

(cd) ↔ ±
[

1 0
0 −1

]
, (ab)(cd) ↔ ±

[
0 −1
1 0

]
,

(ac)(bd) ↔ ±
[

1 1
1 −1

]
, (ad)(bc) ↔ ±

[
−1 1

1 1

]
,

(acbd) ↔ ±
[

1 −1
1 1

]
, (adbc) ↔ ±

[
1 1
−1 1

]
.

(3.99)

However, since we identify vectors that only differ by multiplicative phases as rep-
resenting the same physical state, we identify the matrices that only differ by a
multiplicative phase as representing the same transformation on the projective space
PG(1, 3), each of which corresponds to a permutation of the vector labels a, b, c,
and d as indicated above. These eight transformations constitute the projective or-
thogonal group PO(2, 3) ∼= D4, namely, the group of 2× 2 matrices O with elements
in GF (3) which satisfy the condition

OTO = ±12×2 , (3.100)

with matrices which differ by a sign identified. This group is a subgroup of the
projective general linear group PGL(2, 3) ∼= S4.

The isomorphism between PO(2, 3) and D4 is implemented by labeling the four
corners of a square as shown in Fig. 3.6. Every rotation of the quadrangle in D4

leads to a permutation of the four vertex labels, which is the corresponding element of
PO(2, 3). The two spin observables σ̂1 and σ̂3 transform under PO(2, 3) permutations
as

e : σ̂1 → σ̂1 , σ̂3 → σ̂3 ,
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Figure 3.6: The correspondence between the dihedral group D4 and the projective
orthogonal group PO(2, 3). Every D4 rotation of the quadrangle corresponds to a
permutation of the four vertex labels abcd belonging to PO(2, 3).

(ab) : σ̂1 → σ̂1 , σ̂3 → −σ̂3 ,
(cd) : σ̂1 → −σ̂1 , σ̂3 → σ̂3 ,

(ab)(cd) : σ̂1 → −σ̂1 , σ̂3 → −σ̂3 ,
(ac)(bd) : σ̂1 → σ̂3 , σ̂3 → σ̂1 ,
(ad)(bc) : σ̂1 → −σ̂3 , σ̂3 → −σ̂1 ,

(acbd) : σ̂1 → −σ̂3 , σ̂3 → σ̂1 ,
(adbc) : σ̂1 → σ̂3 , σ̂3 → −σ̂1 , (3.101)

just as they should under rotations of the quadrangle.

3.3.6 2D Vector Space over GF (9)

Next, consider the 2D vector space V (2, 9) over GF (9) = Z3[ i ]. This field consists
of 32 = 9 elements given explicitly by {0, 1,−1, i,−i, 1 + i, 1− i,−1 + i,−1− i}.

There are 92 − 1 = 80 non-zero vectors in V (2, 9). These are the scalar multiples of
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σ1 ∆σ1 σ2 ∆σ2 σ3 ∆σ3

|a〉 0 1 0 1 1 0
|b〉 0 1 0 1 −1 0
|c〉 1 0 0 1 0 1
|d〉 −1 0 0 1 0 1
|e〉 0 1 1 0 0 1
|f〉 0 1 −1 0 0 1

Table 3.5: Expectation values and uncertainties of spin-like observables in biorthog-
onal quantum mechanics on V (2, 9).

80/8 = 10 vectors consisting of the four listed in Eq. (3.89) and the following six:

|e〉 =

[
1
i

]
, |g〉 =

[
1

1 + i

]
, |i〉 =

[
1

−1 + i

]
,

|f〉 =

[
1
−i

]
, |h〉 =

[
1

1− i

]
, |j〉 =

[
1

−1− i

]
.

(3.102)

The dot products of these six vectors with themselves are

|e〉·|e〉 = |f〉·|f〉 = −1 ,
|g〉·|g〉 = |h〉·|h〉 = |i〉·|i〉 = |j〉·|j〉 = 0 .

(3.103)

As we can see |g〉, |h〉, |i〉, and |j〉 are all self-orthogonal. The conjugates of |e〉 and
|f〉 are

〈e| =
[
−1 i

]
, 〈f | =

[
−1 −i

]
. (3.104)

Thus, in addition to the two biorthogonal systems listed in Eq. (3.92), V (2, 9)∗ ×
V (2, 9) has a third given by {

{〈e| , 〈f |}, {|e〉 , |f〉}
}
, (3.105)

and |e〉 and |f〉 are added to the list of physical states.

The above biorthogonal system contributes a third operator to the list of spin-like
observables in Eq. (3.93):

1 |e〉 〈e| −1 |f〉 〈f | =

[
0 −i
i 0

]
≡ σ̂2 . (3.106)

By construction, |e〉 and |f〉 are respectively eigenvectors of σ̂2 with eigenvalues ±1.
The expectation values and uncertainties of all three observables for all six states are
listed in Table 3.5.
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the group of allowed basis transformation are represented by the following matrices:

e ↔ η

[
1 0
0 1

]
, (ab)(ef) ↔ η

[
0 1
1 0

]
,

(cd)(ef) ↔ η

[
1 0
0 −1

]
, (ab)(cd) ↔ η

[
0 −1
1 0

]
,

(acbd) ↔ η

[
1 −1
1 1

]
, (ac)(bd)(ef) ↔ η

[
1 1
1 −1

]
,

(adbc) ↔ η

[
1 1
−1 1

]
, (ad)(bc)(ef) ↔ η

[
−1 1

1 1

]
,

(aebf) ↔ η

[
1 i
i 1

]
, (ae)(bf)(cd) ↔ η

[
1 −i
i −1

]
,

(afbe) ↔ η

[
1 −i
−i 1

]
, (af)(be)(cd) ↔ η

[
1 i
−i −1

]
,

(cedf) ↔ η

[
1 0
0 i

]
, (ab)(ce)(df) ↔ η

[
0 −i
1 0

]
,

(cfde) ↔ η

[
1 0
0 −i

]
, (ab)(cf)(de) ↔ η

[
0 i
1 0

]
,

(ace)(bdf) ↔ η

[
1 −i
1 i

]
, (adf)(bce) ↔ η

[
1 i
−1 i

]
,

(acf)(bde) ↔ η

[
1 i
1 −i

]
, (ade)(bcf) ↔ η

[
−1 i

1 i

]
,

(aec)(bfd) ↔ η

[
1 1
i −i

]
, (afd)(bec) ↔ η

[
−1 1
i i

]
,

(aed)(bfc) ↔ η

[
1 −1
i i

]
, (afc)(bed) ↔ η

[
1 1
−i i

]
,

(3.107)

Identifying matrices that differ by a multiplicative phase, we obtain a group of basis
transformation with 24 elements, each of which corresponds to a permutation of the
vector labels abcdef as indicated above. This group is the projective unitary group
PU(2, 9) consisting of 2 × 2 matrices U with elements in GF (9) which satisfy the
condition

U †U = ±12×2 , (3.108)

with matrices that differ by a multiplicative phase identified. This group is a sub-
group of PGL(2, 9) which is isomorphic to the octahedral group O, which is also
isomorphic to S4.

The isomorphism between PU(2, 9) and the octahedral group O is implemented by
labeling the six vertices of the octahedron as shown in Fig. 3.7. Every rotation of
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Figure 3.7: The correspondence between the octahedral group O and the projec-
tive unitary group PU(2, 9). Every O rotation of the octahedron corresponds to a
permutation of the six vertex labels abcdef belonging to PU(2, 9).

the octahedron in O will lead to a permutation of the vertex labels corresponding
to an element of PU(2, 9). For instance, the 180◦ rotation around the x-axis lead to
the permutation (ab)(ef). The spin observables transform under PU(2, 9) as

e : σ̂1 → σ̂1 , σ̂2 → σ̂2 , σ̂3 → σ̂3 ,
(ab)(ef) : σ̂1 → σ̂1 , σ̂2 → −σ̂2 , σ̂3 → −σ̂3 ,
(ab)(cd) : σ̂1 → −σ̂1 , σ̂2 → σ̂2 , σ̂3 → −σ̂3 ,
(cd)(ef) : σ̂1 → −σ̂1 , σ̂2 → −σ̂2 , σ̂3 → σ̂3 ,

(aebf) : σ̂1 → σ̂1 , σ̂2 → −σ̂3 , σ̂3 → σ̂2 ,
(afbe) : σ̂1 → σ̂1 , σ̂2 → σ̂3 , σ̂3 → −σ̂2 ,
(acbd) : σ̂1 → −σ̂3 , σ̂2 → σ̂2 , σ̂3 → σ̂1 ,
(adbc) : σ̂1 → σ̂3 , σ̂2 → σ̂2 , σ̂3 → −σ̂1 ,
(cedf) : σ̂1 → σ̂2 , σ̂2 → −σ̂1 , σ̂3 → σ̂3 ,
(cfde) : σ̂1 → −σ̂2 , σ̂2 → σ̂1 , σ̂3 → σ̂3 ,

(ae)(bf)(cd) : σ̂1 → −σ̂1 , σ̂2 → σ̂3 , σ̂3 → σ̂2 ,
(af)(be)(cd) : σ̂1 → −σ̂1 , σ̂2 → −σ̂3 , σ̂3 → −σ̂2 ,
(ac)(bd)(ef) : σ̂1 → σ̂3 , σ̂2 → −σ̂2 , σ̂3 → σ̂1 ,
(ad)(bc)(ef) : σ̂1 → −σ̂3 , σ̂2 → −σ̂2 , σ̂3 → −σ̂1 ,
(ab)(ce)(df) : σ̂1 → σ̂2 , σ̂2 → σ̂1 , σ̂3 → −σ̂3 ,
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(ab)(cf)(de) : σ̂1 → −σ̂2 , σ̂2 → −σ̂1 , σ̂3 → −σ̂3 ,
(ace)(bdf) : σ̂1 → σ̂2 , σ̂2 → σ̂3 , σ̂3 → σ̂1 ,
(adf)(bce) : σ̂1 → σ̂2 , σ̂2 → −σ̂3 , σ̂3 → −σ̂1 ,
(acf)(bde) : σ̂1 → −σ̂2 , σ̂2 → −σ̂3 , σ̂3 → σ̂1 ,
(ade)(bcf) : σ̂1 → −σ̂2 , σ̂2 → σ̂3 , σ̂3 → −σ̂1 ,
(aec)(bfd) : σ̂1 → σ̂3 , σ̂2 → σ̂1 , σ̂3 → σ̂2 ,
(afc)(bed) : σ̂1 → σ̂3 , σ̂2 → −σ̂1 , σ̂3 → −σ̂2 ,
(aed)(bfc) : σ̂1 → −σ̂3 , σ̂2 → −σ̂1 , σ̂3 → σ̂2 ,
(afd)(bed) : σ̂1 → −σ̂3 , σ̂2 → σ̂1 , σ̂3 → −σ̂2 ,

(3.109)

just as they should under the corresponding rotations of the octahedron in 3D space.

3.3.7 Spin Correlations

In the examples considered above, spin-like observables were represented by Pauli
matrices, with elements in GP (3n), acting on the 2D vector spaces V (2, 3n), n = 1
or 2. If we associate this model with the spin of one particle, two particle spin-states
will be represented by vectors in V (2, 3n) ⊗ V (2, 3n) = V (4, 3n), n = 1 or 2, while
the product spins will be represented by Kronecker products of the Pauli matrices.
In this section, we will look at the correlations of these spins.

n = 1 case

The space V (4, 3) has 34−1 = 80 non-zero vectors, every two of which differ by only
a multiplicative phase, namely −1, leaving 80/2 = 40 inequivalent vectors. Of these,
42 = 16 are products of physical states in V (2, 3), all of which are also physical in
V (4, 3) since

(〈ψ| ⊗ 〈φ|)(|ψ〉 ⊗ |φ〉) = 〈ψ|ψ〉〈φ|φ〉 = 1 , (3.110)

if 〈ψ|ψ〉 = 〈φ|φ〉 = 1. Of the remaining 40− 16 = 24 vectors, 16 are self-orthogonal,
e.g. 

1
1
1
0

 ·


1
1
1
0

 = 1 + 1 + 1 + 0 = 0 , (3.111)

leaving 24− 16 = 8 physical entangled states.
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To label these states, we first note that the eight elements of PO(2, 3) fall into five
conjugacy classes given by

{e} ,
{(ab)(cd)} ,
{(ab), (cd)} ,
{(ac)(bd), (ad)(bc)} , and
{(acbd), (adbc)} . (3.112)

The eight physical entangled states in V (4, 3) also fall into five classes that trans-
form among themselves under global PO(2, 3). They can be classified and labeled
according to their transformation properties under the full global PGL(2, 3).

|S〉 =
[

0 1 −1 0
]T
,

|(ab)〉 =
[

1 0 0 −1
]T
,

|(cd)〉 =
[

0 1 1 0
]T
,

|(ab)(cd)〉 =
[

1 0 0 1
]T
,

|(ad)(bc)〉 =
[

1 1 1 −1
]T
,

|(ac)(bd)〉 =
[
−1 1 1 1

]T
,

|(acbd)〉 =
[

1 −1 1 1
]T
,

|(adbc)〉 =
[

1 1 −1 1
]T
. (3.113)

Here, |S〉 is the singlet state which is invariant under all transformations in PGL(2, 3).
The state |(ab)(cd)〉 is also a singlet under PO(2, 3) transformations, but transforms
into |(ac)(bd)〉 and |(ad)(cd)〉 under the full PGL(2, 3). The other states transform
in pairs under PO(2, 3), falling into the same classes as the PO(2, 3) transformations
themselves as listed in Eq. (3.112).

Under local PO(2, 3) transformations, that is, PO(2, 3) transformations acting on
only one of the V (2, 3) vector spaces in V (4, 3) = V (2, 3) × V (2, 3), all eight states
fall into the same class and can be transformed into the singlet state |S〉. Explicitly,
we have:

|S〉 = (cd)1 |(cd)〉 = (cd)2 |(cd)〉
= (ab)1 |(ab)〉 = (ab)2 |(ab)〉
= (ab)1(cd)1 |(ab)(cd)〉 = (ab)2(cd)2 |(ab)(cd)〉
= (ac)1(bd)1 |(ac)(bd)〉 = (ac)2(bd)2 |(ac)(bd)〉
= (ad)1(bc)1 |(ad)(bc)〉 = (ad)2(bc)2 |(ad)(bd)〉
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= (acbd)1 |(acbd)〉 = (acbd)2 |(adbc)〉
= (adbc)1 |(adbc)〉 = (adbc)2 |(acbd)〉 , (3.114)

where the subscript indicates which V (2, 3) space the transformations are acting on.

Product spins are represented by σ̂i ⊗ σ̂j, i, j = 1 or 3. For product states, the
expectation value of product spins factorizes due to the product preserving property
of ϕ:

E(σiσj|ψφ) = ϕ
[(
〈ψ| ⊗ 〈φ|

)(
σ̂i ⊗ σ̂j

)(
|ψ〉 ⊗ |φ〉

)]
= ϕ

(
〈ψ| σ̂i |ψ〉 〈φ| σ̂j |φ〉

)
= ϕ

(
〈ψ| σ̂i |ψ〉

)
ϕ
(
〈φ| σ̂j |φ〉

)
= E(σi|ψ)E(σj|φ) . (3.115)

This factorization is necessary if we are to have isolated one particle states. Again,
the product preserving map ϕ plays a fundamental role. The explicit representations
of the product spin operators are

σ̂1 ⊗ σ̂1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

σ̂1 ⊗ σ̂3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,

σ̂3 ⊗ σ̂1 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ,

σ̂3 ⊗ σ̂3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (3.116)

Using these expressions, we can calculate the spin correlations of this system and
determine the Clauser-Horne-Shimony-Holt (CHSH) bound. To reiterate, the CHSH
bound is the upper bound of the absolute value of the following combination of
correlators:

C(A, a ;B, b |Ψ)
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≡ E(AB|Ψ) + E(Ab|Ψ) + E(aB|Ψ)− E(ab|Ψ) , (3.117)

where A and a are two observables of particle 1, and B and b are two observables
of particle 2. All four observables are assumed to take on only the values ±1 upon
measurement. For classical hidden variable theory, the bound on |C(A, a ;B, b |Ψ)|
is 2, while for canonical quantum mechanics, it is the Cirel’son bound: 2

√
2 [40].

In the current case, each of the four observables A, a, B, and b is either σ1 or σ3.
The cases in which the operators are the negatives of either σ1 or σ3 need not be
considered since

C(A, a ;B, b |Ψ)
= C(A,−a ; b, B |Ψ) = −C(−A, a ; b, B |Ψ)
= C(a,A ;B,−b |Ψ) = −C(a,A ;−B, b |Ψ) . (3.118)

To compress our notation, let us define

Cijk`(Ψ) = C(σi, σj;σk, σ`|Ψ) . (3.119)

There are only four possible combinations of indices to consider: C1313, C1331, C3113,
and C3131. Only the CHSH correlators for entangled states are of interest, since
those for the product states cannot exceed the classical bound. Furthermore, all
eight entangled states can be transformed into the singlet state |S〉 by an appropriate
local PO(2, 3) transformation, so one only needs to consider correlations for this one
state. It is straightforward to show that

〈S| σ̂1 ⊗ σ̂1 |S〉 = 〈S| σ̂3 ⊗ σ̂3 |S〉 = −1 ,
〈S| σ̂1 ⊗ σ̂3 |S〉 = 〈S| σ̂3 ⊗ σ̂1 |S〉 = 0 . (3.120)

From this, we find

C1313(S) = C3131(S) = 0 ,
C1331(S) = C3113(S) = −2 . (3.121)

Thus, the CHSH bound for this model is the classical value of 2.

A major result of the discrete quantum mechanical model from the last section is
that the CHSH bound of 2 does not necessarily imply that the predictions of a given
model can be mimicked by a classical hidden variable theory. In the current case,
however, they can be.

Let us denote the classical values of σ1 and σ3 of particle 1 as X1 and Z1, and those
of the particle 2 as X2 and Z2, respectively. The first line of Eq. (3.120) implies that
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the pairs (X1, X2) and (Z1, Z2) are completely anti-correlated. Therefore, the only
classical configurations possible are (X1, Z1;X2, Z2) = (+,+;−,−), (+,−;−,+),
(−,+; +,−), and (−,−; +,+). To reproduce the second line of Eq. (3.120), we only
need to demand that the probabilities of these configurations satisfy:

1

2
= P (+,+;−,−) + P (−,−; +,+)

= P (+,−;−,+) + P (−,+; +,−) . (3.122)

Thus, an entire class of hidden variable mimics exists.

n = 2 case

The space V (4, 9) has 94 − 1 = 6560 non-zero vectors, every eight of which differ
by only a multiplicative phase, i.e. an element of GF (9)\{0}, leaving 6560/8 = 820
inequivalent states. Of the 102 = 100 product states, the 62 = 36 products of physical
states in V (2, 9) are also physical in V (4, 9). The remaining 64 product states are
self-orthogonal and unphysical. Of the 820 − 100 = 720 entangled states, 216 are
self-orthogonal, leaving 720− 216 = 504 physical entangled states.

These 504 physical entangled states fall into classes that transform among themselves
under global PU(2, 9) transformations. Since we cannot list all 504 states here, we
will only mention that they fall into 17 classes of 24 elements each, 4 classes of 12
elements each, 4 classes of 8 elements each, 2 classes of 6 elements each, 1 class of 3
elements, and the singlet state |S〉 = [ 0, 1,−1, 0 ]T.

This can be verified by a direct search, or through use of Burnside’s lemma and the
orbit-stabilizer theorem, which can be found in any decent abstract algebra textbook
(such as [57]).

For a group, G, acting on a set, X, a subset that is preserved by the action of the
entire group is called an orbit. The set of orbits forms a partition of the set X. To
calculate the number of orbits, here denoted |X/G|, one can use Burnside’s lemma:

|X/G| =
1

|G|
∑
g∈G

|Xg| , (3.123)

where Xg is the set of elements in X that are invariant under the action of g.

For global PU(2, 9) transformations, Burnside’s lemma indicates that there should
be 29 orbits in the set of entangled states. To calculate the length of these orbits,
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one could use the orbit-stabilizer theorem, which states that the order of the orbit
containing an element is equal to the order of the group divided by the order of the
stabilizer subgroup of that element. The stabilizer subgroup of an element is the
subgroup under which that element is invariant.

This computation indicates that there are 408 states that belong to orbits of order
24, 48 states that belong to orbits of order 12, 32 states that belong to orbits of order
8, 12 states that belong to orbits of order 6, 3 states that belong to orbits of order
3, and 1 state that belongs to an orbit of order 1.

Under local PU(2, 9) transformations, the same 504 entangled states fall into three
classes with 24, 288, and 192 elements each. Again, this result can be arrived at
through a manual search or through the group theoretic means mentioned above.

These classes can be represented by the following three states:

|S〉 =


0
1
−1
0

 , |T 〉 =


1
0

1 + i
1

 , |U〉 =


1
0
1

1 + i

 , (3.124)

with the duals

〈S| =
[

0 −1 1 0
]
,

〈T | =
[

1 0 1− i 1
]
,

〈U | =
[

1 0 1 1− i
]
. (3.125)

Let’s now turn our attention to calculating the CHSH correlators so that we can
determine the maximum value.

As all of the entangled states transform into either |S〉, |T 〉, or |U〉, we only need
to calculate the correlators for these states to obtain the CHSH bound. Also, since
there are three spin observables (σ̂1, σ̂2, and σ̂3) this time, the number of possible
CHSH correlators is 62 = 36.

Let us first look at the correlators involving only σ̂1 and σ̂3. The correlations for the
state |S〉 are the same as those listed in Eq. (3.120) and (3.121).

Those for the state |T 〉 are

〈T | σ̂1 ⊗ σ̂1 |T 〉 = 〈T | σ̂1 ⊗ σ̂3 |T 〉 = −1 ,
〈T | σ̂3 ⊗ σ̂1 |T 〉 = 1 ,
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state 0 1 2 3 4

|S〉 6 24 6 0 0
|T 〉 6 18 6 6 0
|U〉 12 12 4 4 4

Table 3.6: The number of CHSH correlators with the respective absolute values for
the three states |S〉, |T 〉, and |U〉.

〈T | σ̂3 ⊗ σ̂3 |T 〉 = 0 , (3.126)

from which we obtain

C1313(T ) = −1 ,
C3113(T ) = C3131(T ) = 1 ,
C1331(T ) = −3 . (3.127)

Similarly, for the state |U〉 we have

〈U | σ̂1 ⊗ σ̂1 |U〉 = 〈U | σ̂1 ⊗ σ̂3 |U〉
= 〈U | σ̂3 ⊗ σ̂3 |U〉 = −1 ,

〈U | σ̂3 ⊗ σ̂1 |U〉 = 1 , (3.128)

and

C1313(U) = C3113(U) = C3131(U) = 0 ,
C1331(U) = −4 . (3.129)

As can be seen, the absolute value of the correlator C1331 for the states |T 〉 and |U〉
exceed not only the classical bound of 2 but also the Cirel’son bound of 2

√
2.

In a similar fashion, all 36 spin combinations for the three states can be calculated
and the have obtained the tally shown in Table 3.6. Thus, we find that the CHSH
bound for this model is 4.

Unlike the n = 1 case, which had a CHSH bound of 2, the above correlations can-
not be reproduced by any classical hidden variable theory. For instance, the first
line of Eq. (3.126) demands that the pairs (X1, X2) and (X1, Z2) are completely
anti-correlated, while the second line demands that the pair (Z1, X2) is completely
correlated. But then X1 = ±1 would imply X2 = ∓1 and Z2 = ∓1, the first of
which implies Z1 = ∓1. Therefore, the pair (Z1, Z2) must also be completely corre-
lated which contradicts the third line of Eq. (3.126). Similarly, Eq. (3.128) demands
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that the pairs (X1, X2), (X1, Z2), and (Z1, Z2) are completely anti-correlated, while
(Z1, X2) is completely correlated. But then X1 = ±1 would imply X2 = ∓1 and
Z2 = ∓1, the former of which implies Z1 = ∓1 while the latter Z1 = ±1, leading to
a contradiction. Of course, this is not surprising since the CHSH bound for classical
hidden variable theories is 2. The unexpected result is that the CHSH bound of our
model also exceeds the quantum Cirel’son bound of 2

√
2.

3.3.8 Expectation Values without Definite Probabilities

In canonical quantum mechanics, the states that correspond to |S〉, |T 〉, and |U〉 are

∣∣∣S̃〉 =
1√
2


0
1
−1
0

, ∣∣∣T̃〉 =
1

2


1
0

1 + i
1

, ∣∣∣Ũ〉 =
1

2


1
0
1

1 + i

, (3.130)

Calculating the correlations of canonical spin σ̃i for the state
∣∣∣S̃〉 in canonical quan-

tum mechanics, we find〈
S̃
∣∣∣ σ̃1 ⊗ σ̃1

∣∣∣S̃〉 =
〈
S̃
∣∣∣ σ̃3 ⊗ σ̃3

∣∣∣S̃〉 = −1 ,〈
S̃
∣∣∣ σ̃1 ⊗ σ̃3

∣∣∣S̃〉 =
〈
S̃
∣∣∣ σ̃3 ⊗ σ̃1

∣∣∣S̃〉 = 0 , (3.131)

which agree with those for |S〉 in Eq. (3.120) via the product preserving map ϕ. For∣∣∣T̃〉 and
∣∣∣Ũ〉, however, we find:

〈
T̃
∣∣∣ σ̃1 ⊗ σ̃1

∣∣∣T̃〉 =
〈
T̃
∣∣∣ σ̃1 ⊗ σ̃3

∣∣∣T̃〉 =
1

2
,〈

T̃
∣∣∣ σ̃3 ⊗ σ̃1

∣∣∣T̃〉 = −1

2
,〈

T̃
∣∣∣ σ̃3 ⊗ σ̃3

∣∣∣T̃〉 = 0 ,〈
Ũ
∣∣∣ σ̃1 ⊗ σ̃1

∣∣∣Ũ〉 =
〈
Ũ
∣∣∣ σ̃1 ⊗ σ̃3

∣∣∣Ũ〉
=

〈
Ũ
∣∣∣ σ̃3 ⊗ σ̃3

∣∣∣Ũ〉 =
1

2
,〈

Ũ
∣∣∣ σ̃3 ⊗ σ̃1

∣∣∣Ũ〉 = −1

2
, (3.132)
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++ +− −+ −− E.V.∣∣∣S̃〉 0
1

2

1

2
0 −1∣∣∣T̃〉 1

4
0

1

2

1

4
0∣∣∣Ũ〉 1

4
0

1

4

1

2
+

1

2

Table 3.7: The probabilities of the four possible outcomes ++, +−, −+, and −− in

canonical quantum mechanic when σ̃3⊗ σ̃3 is measured on the canonical states
∣∣∣S̃〉,∣∣∣T̃〉, and

∣∣∣Ũ〉.

Thus, the correspondence here is

−1 ↔ 1

2
, 1 ↔ −1

2
, (3.133)

which is to be expected since 1 ÷ 2 = 2 = −1 in GF (3). So the large correlation
is due to the fact that GF (3) has only three elements {−1, 0, 1} which are mapped
to {−1, 0, 1} ∈ R by the product preserving map ϕ. The fact that the only spin-
correlations possible are 0 or ±1 will of course persist for larger values of p = 3
mod 4 as long as we use ϕ.

What are the corresponding probabilities? Let us take the spins in the Z-direction,
σ3 ⊗ σ3, as an example. The probabilities of the outcomes (σ3σ3) = (++), (+−),
(−+), and (−−) in canonical quantum mechanics are listed in Table 3.7. As can be
seen, they reproduce the correlations listed above as they should.

In biorthogonal quantum mechanics, however, the probabilities of individual out-
comes are ill defined. Taking the point of view that the probabilities must be inferred
from the expectation values, we have the constraints

P (+ + |T ) + P (+− |T ) + P (−+ |T ) + P (−− |T ) = 1 ,
P (+ + |T )− P (+− |T )− P (−+ |T ) + P (−− |T ) = 0 ,

(3.134)

for |T 〉, and

P (+ + |U) + P (+− |U) + P (−+ |U) + P (−− |U) = 1 ,
P (+ + |U)− P (+− |U)− P (−+ |U) + P (−− |U) = −1 ,

(3.135)
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for |U〉. These constraints imply

1

2
= P (+ + |T ) + P (−− |T )

= P (+− |T ) + P (−+ |T ) ,

0 = P (+ + |U) + P (−− |U) ,

1 = P (+− |U) + P (−+ |U) , (3.136)

but beyond this, the probabilities cannot be specified. Therefore, though our for-
malism predicts definite expectation values, it leaves probabilities indeterminate.
Physically, we interpret this to mean that if the same measurement is repeated many
times, the average of the outcomes will converge to the predicted expectation value,
while the frequencies of each outcome will continue to fluctuate.

In canonical quantum mechanics, it is possible to construct the probability distri-
bution for the measurement outcomes of some observable through use of the system
of equations formed by the expectation values of the powers of the observable in
question. This is not possible for spin observables in the model under consideration
due to the cyclic nature of the underlying field. Explicitly, the system of equations:

E(A|ψ) =
∑
i

Piαi

E(A2|ψ) =
∑
i

Pi(αi)
2

. . . = . . .

E(An|ψ) =
∑
i

Pi(αi)
n

will be singular if n is greater than the least common multiple of the multiplicative
orders of the eigenvalues αi of A since the cyclic nature of the field is necessar-
ily shared by the eigenvalues when the product preserving map also preserves the
eigenvalues. In our examples, using GF (3) as the ’real’ field, the eigenvalues of spin
observables, {+1,−1}, have multiplicative orders no greater than 2. Thus, when
we form a four level system by entangling two particles, we find that the system of
equations needed to solve for the probabilities of these four measurement outcomes
is singular and cannot be used to assign consistent probabilities.
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3.3.9 Comments

As was mentioned in the first chapter, it has been conjectured that a ‘doubly’ quan-
tized theory may contain super-quantum correlations with a CHSH bound which
exceeds the Cirel’son value of 2

√
2. Although we have found such supercorrelations,

it is unclear whether or not the discreteness led to by the choice of Galois fields is of
a type that may be considered a second quantization. One of the future goals is to
study these models for arbitrary large Galois fields.

It might be conjectured that a state in such a theory might be thought of as a
‘superposition’ of various ‘singly’ quantized states, each of which predicts definite
probabilities. A ‘measurement’ in a ‘doubly’ quantized theory could then be ex-
pected to collapse the ‘doubly’ quantized state to a ‘singly’ quantized one, selecting
a particular probability distribution from all possible ones. Every ‘measurement’
would then lead to a different probability distribution, so no definite probability will
be predicted. In this model, we have observed indeterminate probabilities, but it is
unclear whether they are of the sort just described.

Another point of interest is in whether or not similar theories can be constructed for
other spaces that lack inner products, like Banach spaces. This will certainly be a
topic of future research.
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Appendix A

A Useful Integral Formula for
Gegenbauer Polynomials

The following integral formula is necessary in calculating the expectation value of
p̂2. For two non-negative integers m and n such that m ≤ n, and λ > 1

2
, we have∫ 1

−1

c2λ−3Cλ
m(s)Cλ

n(s) ds

=


4π Γ

(
m+ 2λ

)
(2λ− 1)

[
2λΓ
(
λ
) ]2

m!
if n−m = even,

0 if n−m = odd,

(A.1)

where c =
√

1− s2. We were unable to find this result in any of the standard tables
of integrals [67] though Mathematica seems to be aware of it. Here we present a
proof.

We start from recursion relations which can be found in Ref. [67]. In section 8.933
of Gradshteyn and Ryzhik, we have:

(n+ 2λ)Cλ
n(x) = 2λ

[
Cλ+1
n (x)− xCλ+1

n−1(x)
]
,

nCλ
n(x) = 2λ

[
xCλ+1

n−1(x)− Cλ+1
n−2(x)

]
. (A.2)
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Eliminating Cλ+1
n−1(x) and then shifting λ by one unit, we obtain

Cλ
n(x)− Cλ

n−2(x) =

(
n+ λ− 1

λ− 1

)
Cλ−1
n (x) , (A.3)

which is Equation 22.7.23 of Abramowitz and Stegun. Iterating this relation, we
deduce that

Cλ
2k(x) = Cλ

0 (x) +
k∑
i=1

(
2i+ λ− 1

λ− 1

)
Cλ−1

2i (x) ,

Cλ
2k+1(x) = Cλ

1 (x) +
k∑
i=1

(
2i+ λ

λ− 1

)
Cλ−1

2i+1(x) . (A.4)

Since

Cλ
0 (x) = 1 = Cλ−1

0 (x) ,

Cλ
1 (x) = 2λx =

(
λ

λ− 1

)
Cλ−1

1 (x) , (A.5)

we can write

Cλ
2k(x) =

k∑
i=0

(
2i+ λ− 1

λ− 1

)
Cλ−1

2i (x) ,

Cλ
2k+1(x) =

k∑
i=0

(
2i+ λ

λ− 1

)
Cλ−1

2i+1(x) . (A.6)

Thus, the even Cλ
n ’s can be expressed as a sum of the even Cλ−1

n ’s, and the odd Cλ
n ’s

as a sum of the odd Cλ−1
n ’s. Invoking the orthogonality relation, Eq. (2.49), which

is valid when λ > −1
2
, it is clear that∫ 1

−1

c2λ−3Cλ
2k(s)C

λ
2`+1(s) ds = 0 (A.7)

for λ > 1
2
. So for the integral of Eq. (A.1) to be non-zero, m and n must be both

even, or both odd. For two non-negative integers k and ` such that k ≤ `, we find∫ 1

−1

c2λ−3Cλ
2k(s)C

λ
2`(s) ds
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=

∫ 1

−1

c2λ−3

[
k∑
i=0

(
2i+ λ− 1

λ− 1

)
Cλ−1

2i (s)

]

×

[∑̀
j=0

(
2j + λ− 1

λ− 1

)
Cλ−1

2j (s)

]
ds

=
k∑
i=0

∑̀
j=0

(
2i+ λ− 1

λ− 1

)(
2j + λ− 1

λ− 1

)
×
∫ 1

−1

c2λ−3Cλ−1
2i (s)Cλ−1

2j (s) ds

=
k∑
i=0

(
2i+ λ− 1

λ− 1

)2
2π Γ(2i+ 2λ− 2)

(2i+ λ− 1)
[

2λ−1Γ(λ− 1)
]2

(2i)!

=
2π[

2λ−1Γ(λ)
]2 k∑

i=0

(2i+ λ− 1) Γ(2i+ 2λ− 2)

(2i)!
,

∫ 1

−1

c2λ−3Cλ
2k+1(s)Cλ

2`+1(s) ds

=

∫ 1

−1

c2λ−3

[
k∑
i=0

(
2i+ λ

λ− 1

)
Cλ−1

2i+1(s)

]

×

[∑̀
j=0

(
2j + λ

λ− 1

)
Cλ−1

2j+1(s)

]
ds

=
k∑
i=0

∑̀
j=0

(
2i+ λ

λ− 1

)(
2j + λ

λ− 1

)
×
∫ 1

−1

c2λ−3Cλ−1
2i+1(s)Cλ−1

2j+1(s) ds

=
k∑
i=0

(
2i+ λ

λ− 1

)2
2π Γ(2i+ 2λ− 1)

(2i+ λ)
[

2λ−1Γ(λ− 1)
]2

(2i+ 1)!

=
2π[

2λ−1Γ(λ)
]2 k∑

i=0

(2i+ λ) Γ(2i+ 2λ− 1)

(2i+ 1)!
. (A.8)

The sums in the above expressions are given by

k∑
i=0

(2i+ λ− 1) Γ(2i+ 2λ− 2)

(2i)!
=

Γ(2k + 2λ)

2(2λ− 1)(2k)!
,
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k∑
i=0

(2i+ λ) Γ(2i+ 2λ− 1)

(2i+ 1)!
=

Γ(2k + 2λ+ 1)

2(2λ− 1)(2k + 1)!
.

(A.9)

These relations can be proved by induction in k. Putting everything together, we
obtain Eq. (A.1).

Using this formula, we find the matrix elements of the operator p̂2 to be:

〈m| p̂2 |n〉 = 〈n| p̂2 |m〉

=



1

β

[
−δmn +

2
√

(λ+m)(λ+ n)

2λ− 1

√
n! Γ(2λ+m)

m! Γ(2λ+ n)

]

for n−m = even, m ≤ n,

0 for n−m = odd.
(A.10)

In particular, the diagonal elements are given by

〈n| p̂2 |n〉 =
1

β

(
2n+ 1

2λ− 1

)
. (A.11)

The expectation value of x̂2 is obtained from

k

2
〈x̂2〉 = 〈Ĥ〉 − 〈p̂

2〉
2m

. (A.12)


